The Detector Concepts

Klaus Mönig

Introduction

- The GDE has requested costed detector concepts by the end of 2006
- These concepts should show that the required performance can be reached at a known cost
- Typical improvements wrt. LEP/SLC: factor 2-10
- \bullet The concepts should trigger a focused R&D program for detectors
- The concepts are **not** meant to be proto-collaborations
- Anybody should feel free to contribute to as many concepts as he likes
- Three established international concepts
 - $-\operatorname{SiD}$ follows from the American small detector
 - -LDC: follows from the TESLA and the American large detector
 - $-\operatorname{GLD:}$ follows from the GLC detector
- \bullet A new 4th concept based on the dream concept

Requirements for the detector

The task of ILC is precision measurements

This means

- Reconstruct all available channels
- with the highest possible efficiency
- the lowest possible systematics
- insensitive to machine-related background

Because of the environment an ILC detector is often considered "easy" However the extreme precision requirements make the detector pretty challenging

Benchmarks for the detector design

Momentum resolution

Want to reconstruct ZZH coupling from $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- X$ using the $\mu^+\mu^-$ recoil mass

Need $\Delta \frac{1}{p} \approx 4 \cdot 10^{-5}$ / GeV for large momenta

Is a better momentum resolution useful?

- Even better momentum resolution can give sharper signals
- However effect on physics quantities (H 200 mass after constrained 180 fit, H branching ratios, 140 SUSY masses) seems 100 modest

Energy flow in jets

- Some processes where WW and ZZ need to be separated without beam constraints (e.g. $e^+e^- \rightarrow \nu\nu WW$, $\nu\nu ZZ$)
- This requires a resolution of about $\Delta E/E = 30\%/\sqrt{E}$
 - WW-ZZ separation for $\Delta E/E = 60\%/\sqrt{E}$ and $\Delta E/E = 30\%/\sqrt{E}$

B-tagging

- Want to measure $BR(H \to c\bar{c})$ which is < 10% of $BR(H \to b\bar{b})$
- Have to tag 4-b final states ($e^+e^- \rightarrow ZHH$, $e^+e^- \rightarrow t\bar{t}H$ under huge non-b and 2-b background

Particle Flow

Particle flow is the common paradigm of the 1st three concepts How to measure the energy of a jet?

- Classical method: Calorimetry
 - $-\operatorname{typical}$ event: 30% electromagnetic and 70% hadronic energy
 - -typical resolution: $10\%/\sqrt{E}$ for Ecal and $50\%/\sqrt{E}$ for Hcal
 - $\Rightarrow \Delta E/E > 45\%/\sqrt{E}$ for jets
- The particle flow method
 - typical event: 60% charged tracks 30% electromagnetic and 10% neutral hadronic energy
 - tracking resolution negligible on this scale

 $\Rightarrow \Delta E/E = 20\%/\sqrt{E}$ for jets possible in principle

Main problem: Confusion

- At high energy jets are very narrow
- ➡ Tracks are very close at the calorimeter
 - Need very fine granularity of calorimeter and sophisticated software to separate showers
 - Energy resolution still dominated by confusion term

How to optimise the detector?

Optimisation of particle flow

How to choose R and B-field?

- Distance between showers due to natural opening angle (D_{θ}) goes with R
- \bullet Distance due to magnetic deflection (D_p) goes with BR^2
- Example: symmetric ρ decay at 90°

$$D_{\theta} = \frac{2m_{\rho}R}{p_{\rho}} \quad D_{p} = \frac{0.3BR^{2}}{p_{\rho}}$$

- $-\,\rho\text{-mass}$ is typical 2-particle mass in a jet
- in the relevant parameter range D_{θ} and D_p are very similar
- \Longrightarrow No simple scaling law applies

 ρ_{π}

p

Optimisation of the calorimeters

ECAL:

- \bullet Transverse shower size \approx Molière Radius
 - ⇒ Dense high Z material (e.g. W) with small gaps $(r_M \sim 1 \text{cm})$
- Want little hadronic showering in ECAL \Rightarrow large $\lambda/X_0 \Rightarrow$ favours high Z as well
- Recent studies show that readout resolution significantly smaller than r_M is useful \Rightarrow optimisation in progress

HCAL:

- Hadron showers are much more spread than electromagnetic ones
- Separation power can only be checked with sophisticated reconstruction software
- Two concepts
 - -Analogue: small pads $(\mathcal{O}(3 \times 3 \text{cm}^2))$ with analogue readout
 - Digital: very small pads $(\mathcal{O}(1 \times 1 \text{cm}^2))$ with binary (or 2-bit) readout
- Both versions are under intensive study
- \bullet The required solenoid has a thickness around 2λ
- \rightarrow HCAL inside solenoid is a must

Momentum resolution

$$\Delta \frac{1}{p} \propto \frac{\delta}{R^2 B \sqrt{n}}$$

4D space for optimisation: detector resolution – number of points – detector radius – B field B-tagging

Critical item: IP resolution of low momentum particles

IP error from multiple scattering: $\sigma \propto \sqrt{X}r$

X: thickness (in X_0) of beampipe and 1st VXD layer, r: radius of 1st VXD layer

b-tagging and B-field

- Large e^+e^- -pair background with small p_T from beamstrahlung
- \bullet Maximum r as function of p_T for pairs is determined by B-field
- VXD hits from pair background Large B-field reduces background ILC nominal beam parameters r=1.5cm **5** T at given radius 10 • High background band moves to larger p_t with larger \mathcal{L} 10 10 C. Rimbault 10 -2 10⁻¹

θ (rad)

• SiD:

The three Detector concepts

- -Small radius with high field $(R = 1.3 \text{ m}, B = 5 \text{ T}, BR^2 = 8.5 \text{ Tm}^2)$
- Few track measurements with high resolution (Si)
- -SiW calorimetry
- $-r_{\min}(\text{VXD}) = 1.4 \,\text{cm}$
- LDC:
 - Medium R with medium field $(R = 1.7 \text{ m}, B = 4 \text{ T}, BR^2 = 11.6 \text{Tm}^2)$
 - $-\operatorname{Many}$ track measurements with medium resolution (TPC)
 - -SiW calorimetry
 - $-r_{\min}(\text{VXD}) = 1.5 \,\text{cm}$
- GLD:
 - -Large radius with low field $(R = 2.1 \text{ m}, B = 3 \text{ T}, BR^2 = 13.2 \text{ Tm}^2)$
 - Many track measurements with medium resolution (TPC)
 - Scintillator-W calorimetry
 - $-r_{\min}(\text{VXD}) = 1.7 \,\text{cm}$

The SiD

Design philosophy

- Aim for SiW calorimeter with best possible resolution
- Keep radius small to make this affordable
- Compensate by high Bfield (5 T) and very precise tracking (Si)
- Fast timing of Silicon to suppress background

The SiD ECAL

Similar to LDC

The SiD HCAL

- \bullet W or stainless steel as absorber
- Different options for detector scintillator
 - pad size: 3×3 cm² \implies analogue readout needed
 - $-\operatorname{probably}$ not cheap

GEM

- pad size: 1×1 cm² \implies digital possible
- reliability is an issue, however first tests are positive
- -foils are expensive

RPCs

- pad size: 1×1 cm² \implies digital possible
- -simple, cheap
- however slow and possible problems with cross-talk

SiD tracking and vertexing

The SiD vertex detector:

- 5 layers small pixel (e.g. CCD) and disks in endcaps
- \bullet Small inner radius (1.4 cm) due to high B-field

The SiD tracker:

- $\bullet\,5$ barrel cylinders with ϕ readout only
- 4 endcap disks with r and ϕ readout
- Si modules of $10 \times 10 \,\mathrm{cm}^2$

This tracking system has an excellent momentum resolution

Pattern recognition philosophy in the SiD tracker

- Find tracks in VXD only (pixels, $\epsilon \sim 95\%$ in jets)
- Extrapolate tracks outward

• Missing tracks (especially V^0 s) can be extrapolated inwards from ECAL

The LDC

Design philosophy

- Fine resolution calorimeter for particle flow
- Gaseous tracking for high tracking efficiency and redundancy
- Large enough radius and high enough B-field (B=4T) to get required momentum resolution

ECAL

LDC calorimetry

- A SiW calorimeter similar to SiD is planned
- A prototype has already been tested in the beam

HCAL

- Two options: (Semi-)Digital:
 - -similar to SiD

Analogue:

- scintillating tiles, 3×3 cm² in front part, coarser in rear part
- prototype under construction
- $-\operatorname{common}$ test beam with ECAL next year

Tracking in the LDC

- Silicon tracker inside TPC consisting of barrel cylinders and forward disks
- Forward chamber behind TPC
- Silicon envelope possible, if needed

TPC challenges:

- \bullet To achieve required momentum resolution and background tolerance need many (> 100) pad rows
- Bunch structure prevents gating
- Large effort to solve both problems with MPGD detectors (GEM, micromegas)
- Common R&D with many institutes from LDC and GLD

Inner silicon

- Needed as link between TPC and VXD and for momentum resolution
- Work on design with very low systematics for beam **3 disks with pixels** parameter measurements

The LDC solenoid

- A prototype of the LDC solenoid exists
- It will be tested extensively by CMS in the next years
- The SiD solenoid is based on the same technology

Design philosophy

- Large radius for particle flow optimisation
- Gaseous tracking for high tracking efficiency and redundancy
- Fine grained Scintillatortungsten calorimeter
- Moderate B-filed (3T)

The GLD calorimeter

Particle flow studies

- $\Delta E/E = 40\%/\sqrt{E}$ reached in $Z \rightarrow q\bar{q}$ events
- At present no difference between $4 \times 4 \text{ cm}^2$ pads and $1 \times 1 \text{ cm}^2$ pads
- Not completely understood why
- Similar results from other concepts

GLD tracking

- GLD baseline tracking is very similar to LDC: TPC with inner Si tracking
- Close collaboration with LDC groups on TPC R&D
- A small-cell jetchamber is kept as backup

With this tracking system the required momentum resolution of $\Delta \frac{1}{p} = 5 \cdot 10^{-5} / \text{GeV}$ is reached

If needed it can be improved with a Si-TPC hybrid solution ("clubsandwich")

Vertex detectors in the three concepts

- Vertex detectors are very similar in the concepts
- Only difference: inner radius/background due to B-field
- Common challenges:
 - -very precise and thin detectors to reach physics requirements
 - fast readout to reduce background (20 frames/train needed)
 - electromagnetic interference for readout during train
- Many technologies under study: CCD, CMOS, Depfet...
- \bullet Decision can only be taken later

New idea from GLD team: fine pixels

- Very small pixels $\sim 5 \times 5 \mu m^2$
- Cluster shapes allows signal/background separation
- Factor 20 background suppression possible
- → One readout/train sufficient

Nominal 2mrad

Common optimisation problem: VXD forward region

- Two option: Long cylinders or disks
- Advantage disks:
 - -less silicon
 - $-\operatorname{larger}$ crossing angle \Rightarrow less material and better measurement precision
- Advantage cylinders:
 - in disk solution tracks have to cross readout electronics and cables from barrel cylinders
- Need careful comparison of both options

The forward region in the three concepts

Similar in all three concepts

Detailed design for LDC and 0/2 mrad cross- Also preliminary SID design ing angle exists for 14/20 mrad available

- The forward region serves simultaneously as a mask and as a veto device
- The challenge is to find electrons under a huge pair backgrounds
- With a fine grained calorimeter this works in most parts for $0/2 \,\mathrm{mrad}$
- For 20 mrad crossing angle further optimisation is needed

The 4th concept

The 4th concept is based on the dual (or triple) readout approach

- Standard scintillation light readout measures the total energy However bad resolution due to fluctuation of em-component
- The em component is measured is measured separately with clear fibres, sensitive only to Cerenkov light
 - \implies can disentangle the two components
- Further improvement maybe possible by measuring the low-energy neutron component using timing (However large volume filled by neutrons!)

Layout of an ILC calorimeter cell

The whole detector concept

- With $\Delta E/E = 20\%/\sqrt{E}$ jet energies can be measured calorimetrically
- This requires a low field around $B = 2 \mathrm{T}$
- The inner tracking is copied from GLD/LDC
- Muons are remeasured outside the calorimeter with a dual-solenoid concept

Possible problems with the 4th concept

- The B-field deflects charged particles
 - Invariant mass of jets get increased and jet axis gets is shifted
- The low B-field increases the VXD background
 - \rightarrow 3 cm inner radius may be needed

The 4th concept still has to prove that it fulfils the physics requirements

Conclusions

- Three concept studies based on the particle flow approach going on
- A 4th concept based on the dream approach is starting
- All aim for a costed concept by the end of 2006
- The present designs seem to meet the requirements, but further optimisation and simulation work is needed
- It is too early to make comparisons since the level of optimisation and approximations in the analysis is too different
- All are open for new manpower
- More information at

http://physics.uoregon.edu/~lc/wwstudy/concepts/