Slepton cascade decays at ILC

J. A. Aguilar-Saavedra

IST Lisboa & Universidad de Granada

Workshop on the future Linear Collider Gandía, December 2005

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Final state momenta reconstructed kinematically

Pair production of SUSY particles \Leftrightarrow two $\tilde{\chi}_1^0$ in final state Decay of charginos \Leftrightarrow additional ν

Too many unknown momenta unless kinematical relations among particle momenta exist

 Multi-lepton final states Small backgrounds (Sometimes signals small as well)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ヨヨ ののの

What for?

Kinematical reconstruction of sparticle masses Example: $m_{\tilde{e}_L}^2 = p_{\tilde{e}_L}^2 / p_{\tilde{e}_L}$ reconstructed from decay products

Measurement of spin-related quantities

spin spin analysing power const. CP asymmetries

- Spin direction easy to obtain
- Reconstruction of rest frames possible

Necessary to have slepton decays to other particles than LSP

Example:

$$\tilde{e}_L^{\pm} \to e^{\pm} \tilde{\chi}_2^0 \to e^{\pm} f f \, \tilde{\chi}_1^0$$

 $\tilde{\nu}_e \to e^- \tilde{\chi}_1^+ \to e^- f \bar{f}' \tilde{\chi}_1^0$

Additionally:

In scenarios with $\tilde{\chi}_2^0$ 3-body decays: sizeable CP violation scenario similar to SPS1a with heavier sfermions and complex M_1 , μ

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ヨヨ ののの

SUSY scenario

RGE evolution, masses and mixings calculated with SPheno

M_1	102.0 $e^{i\phi_1}$ GeV	
M_2	192.0 GeV	For
μ	377.5 $e^{i\phi_{\mu}}$ GeV	101
$\tan \beta$	10	COI
$m_{\tilde{e}_R}, m_{\tilde{\mu}_R}$	224.0 GeV	
$m_{\tilde{e}_L}, m_{\tilde{\mu}_L}$	264.5 GeV	
$m_{ ilde{ u}_e}$	252.4 GeV	
$m_{\tilde{u}_L}, m_{\tilde{c}_L}$	571.5 GeV	
$m_{\tilde{d}_I}, m_{\tilde{s}_L}$	577.0 GeV	
. L		

For $\phi_1 = \phi_\mu = 0$ they correspond to

$$m_{1/2} = 250 \text{ GeV}$$

 $m_{\tilde{E}} = m_{\tilde{L}} = m_{H_i} = 200 \text{ GeV}$
 $A_E = -200 \text{ GeV}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $m_{\tilde{\chi}_1^0} \simeq 99 \text{ GeV}, \quad m_{\tilde{\chi}_1^-}, m_{\tilde{\chi}_2^0} \simeq 178 \text{ GeV}, \quad m_{\tilde{\chi}_2^-} \simeq 401 \text{ GeV}$

How?

Selectron pair production and cascade decay:

$$e^{+}e^{-} \to \tilde{e}^{+}_{L,R}\tilde{e}^{-}_{L,R} \to \begin{bmatrix} e^{+}\tilde{\chi}^{0}_{1} \ e^{-}\tilde{\chi}^{0}_{2} \to e^{+}\tilde{\chi}^{0}_{1} \ e^{-}\tilde{\mu}^{+}\mu^{-}\chi^{0}_{1} \\ e^{+}\tilde{\chi}^{0}_{2} \ e^{-}\tilde{\chi}^{0}_{1} \to e^{+}\mu^{+}\mu^{-}\tilde{\chi}^{0}_{1} \ e^{-}\tilde{\chi}^{0}_{1} \\ \text{[JAAS, PLB '04]} \end{bmatrix}$$

Sneutrino pair production and cascade decay:

See diagrams

ъ

∃ > < ∃

$$e^+e^- \to \tilde{\nu}_e^*\tilde{\nu}_e \to e^+\tilde{\chi}_1^- e^-\tilde{\chi}_1^+ \to \begin{bmatrix} e^+\bar{\nu}_\mu\mu^-\tilde{\chi}_1^0 e^-q\bar{q}'\tilde{\chi}_1^0\\ e^+\bar{q}q'\tilde{\chi}_1^0 e^-\nu_\mu\mu^+\tilde{\chi}_1^0\\ \text{[JAAS, NPB '05]} \end{bmatrix}$$

Also in e^-e^- collisions:

See diagrams

$$e^-e^- \rightarrow \tilde{e}^-_{L,R}\tilde{e}^-_{L,R} \rightarrow e^-\tilde{\chi}^0_1 e^-\tilde{\chi}^0_2 \rightarrow e^-\tilde{\chi}^0_1 e^-f\bar{f}\tilde{\chi}^0_1$$

[JAAS, Teixeira, NPB '03]

[JAAS, LC-TH '03]

<ロ> < (日) < (1) < (1) </p>

Use full $2 \rightarrow n$ resonant matrix elements \Leftrightarrow Finite width and spin effects included

Details of the calculation

ISR and beamstrahlung effects are included

We perform a parton-level analysis, with a Gaussian smearing of charged lepton and jet energies

$$rac{\Delta E^e}{E^e} = rac{10\%}{\sqrt{E^e}} \oplus 1\% \qquad rac{\Delta E^j}{E^j} = rac{50\%}{\sqrt{E^j}} \oplus 4\% \qquad rac{\Delta E^{\mu}}{E^{\mu}} = 0.02\% \, E^{\mu}$$

Kinematical cuts $p_T \ge 10$ GeV, $|\eta| \le 2.5$, $\Delta R \ge 0.4$

Reconstruct momenta requiring energy-momentum conservation and the kinematics of the cascade decays

Outcome:

For $\tilde{\chi}_2^0$ and hadronic $\tilde{\chi}_1^{\pm}$ decay $p_{\tilde{\chi}_1^0}$ can be reconstructed In $\tilde{\chi}_1^{\pm}$ leptonic decay only $p_{\nu} + p_{\tilde{\chi}_1^0}$ can be determined

イロト 不得 トイヨト イヨト

Mass reconstruction

Selectron masses not used in reconstruction procedure

Reconstruction done assuming two equal mass particles produced

米吉利米吉利 臣

< □ > < /⊒ >

Decay of scalars

Example: $\tilde{\nu}_e \rightarrow e^- \tilde{\chi}_1^+$

Flat distribution indicates that $\tilde{\nu}_e$ is scalar and $\tilde{\chi}_1^+$ has half-integer spin

Decay of gauginos

Example: $\tilde{\chi}_1^- \to \bar{f}f'\tilde{\chi}_1^0 \qquad \Gamma^- \equiv \Gamma(\tilde{\chi}_1^- \to \bar{f}f'\tilde{\chi}_1^0)$

 $\bar{f} = \bar{\nu}, \bar{u}, \bar{c}, \quad f' = \mu^-, d, s \quad \vec{s}_- \text{ is the spin direction}$

 $h_{\bar{f}}, h_{f'}, h_0^-$ constants between -1 and 1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For charge-conjugate decay $\tilde{\chi}_1^+ \rightarrow f \bar{f}' \tilde{\chi}_1^0$

Angular distributions in $\tilde{\chi}_1^+$ rest frame given by analogous equations Determined by constants h_f , $h_{\bar{f}'}$, h_0^+

- If CP is conserved: $h_f = -h_{\bar{f}}, h_{\bar{f}'} = -h_{f'}, h_0^+ = -h_0^-$
- If CP is broken, these equalities hold at tree level up to small particle width effects

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ヨヨ ののの

But what is the spin direction?

Sneutrino decays given by the Lagrangian

$$\mathcal{L}_{\tilde{\nu}_e e \tilde{\chi}_1^-} = -g V_{11} \, \bar{e} \, P_R \, \tilde{\chi}_1^- \, \tilde{\nu}_e - g V_{11}^* \, \overline{\tilde{\chi}_1^-} \, P_L e \, \tilde{\nu}_e^*$$

e massless \Rightarrow helicity = chirality

But what is the spin direction?

Sneutrino decays given by the Lagrangian

$$\mathcal{L}_{\tilde{\nu}_e e \tilde{\chi}_1^-} = -g V_{11} \, \bar{e} \, P_R \, \tilde{\chi}_1^- \, \tilde{\nu}_e - g V_{11}^* \, \overline{\tilde{\chi}_1^-} \, P_L e \, \tilde{\nu}_e^*$$

e massless \Rightarrow helicity = chirality

But what is the spin direction?

Sneutrino decays given by the Lagrangian

$$\mathcal{L}_{\tilde{\nu}_e e \tilde{\chi}_1^-} = -g V_{11} \, \bar{e} \, P_R \, \tilde{\chi}_1^- \, \tilde{\nu}_e - g V_{11}^* \, \overline{\tilde{\chi}_1^-} \, P_L e \, \tilde{\nu}_e^*$$

e massless \Rightarrow helicity = chirality

OK... But angular distributions – why?

- Show that charginos and neutralinos have spin
- Can be theoretically predicted [Djouadi et al., EPJC '01] Measured precisely <>>> measure them
- Could help determine SUSY parameters?

- **3** • - **3**

Determination of angular distributions

Example: $t\bar{t}$ production at LHC

[Hubaut et al., SN-ATLAS '05] [JAAS et al., ATL-COM in prep.]

= 200

- Generate a reference sample of simulated events
- Calculate correction functions *f* relating theoretical and simulated results
- Apply the correction functions to a second sample

Here:

- Generate a "possible experimental result" according to the expected distribution (using Poisson statistics)
- Calculate h considering only the regions where f = 1

Signal and backgrounds

$$e^+e^-
ightarrow ilde{
u}_e ilde{
u}_e^*
ightarrow e^+ ar{
u}_\mu \mu^- ilde{\chi}_1^0 e^- q ar{q}' ilde{\chi}_1^0$$

SUSY backgrounds (SPHENO):

$$\begin{split} e^+e^- &\to \tilde{\chi}_1^\pm \tilde{\chi}_2^\mp \to \begin{bmatrix} \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp Z \\ \tilde{\chi}_1^\pm \tilde{\chi}_2^0 W^\mp \end{bmatrix} \\ e^+e^- &\to \tilde{\chi}_2^0 \tilde{\chi}_{3,4}^0 \to \chi_2^0 \tilde{\chi}_1^\pm W^\mp \end{split}$$

Cross section: 17.56 fb

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ヨヨ ののの

with $Z \to e^+e^-$, $\tilde{\chi}_2^0 \to e^+e^-\tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm}$ and W^{\mp} decaying one hadronically and the other leptonically \longrightarrow Total: 0.1 fb

SM background: six-fermion production $e^+e^- \rightarrow e^+e^-\mu\nu_\mu q\bar{q}'$ Cross section calculated with LUSIFER: 4 fb

Expected to be highly reduced with cuts

Distribution of μ^-

Fit performed excluding bins with $\cos heta_{\mu^-} \simeq -1$

Inclusion of $\tilde{\chi}^+_1 \rightarrow \nu_\mu \mu^+ \tilde{\chi}^0_1$ decays would improve statistics

Systematics $\lesssim 5\%$?

= 990

ヨトイヨト

Distribution of *s* quark

Distribution of *c* antiquark

SUSY CP violation – why?

- No *a priori* symmetry to ensure ϕ_1 , ϕ_μ real in MSSM
- EDM constraints allow for cancellations and large phases ϕ_1
- Asymmetries in $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ decays sensitive to both phases
- Large $\tilde{\chi}_1^0$ mass allows sizeable triple-product CP asymmetries of order O(0.1) at tree level

→ Ξ → → Ξ →

CP asymmetries sensitive to ϕ_1

- Triple-product asymmetry in $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$ [Bartl et al., JHEP '04] [JAAS, NPB '04]
- Triple-product asymmetry in selectron cascade decays [JAAS, PLB '04]
- Triple-product asymmetry in sneutrino cascade decays

```
[JAAS, NPB '05]
```

• Triple-product asymmetry in chargino production

[Bartl et al., PLB '04]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Azimuthal asymmetries with transversely polarised beams [Bartl et al., '05]

CP violation

Example: $\tilde{\chi}_2^0$ decays

Define triple product

$$Q = \vec{s} \cdot \left(\vec{p}_{\mu^{-}} \times \vec{p}_{\mu^{-}} \right) \qquad \begin{array}{c} \vec{s} & \to \text{ spin of } \tilde{\chi}_{2}^{0} \\ \vec{p}_{\mu^{-}} & \to \text{ momentum of } \mu^{-} \\ \vec{p}_{\mu^{+}} & \to \text{ momentum of } \mu^{+} \end{array}$$

Define the T-odd, CP-odd asymmetry

$$A = \frac{N(Q > 0) - N(Q < 0)}{N(Q > 0) + N(Q < 0)}$$

J. A. Aguilar-Saavedra Slepton cascade decays at ILC

P

CP violation

Example: $\tilde{\chi}_1^{\pm}$ decays

Define triple product

$$Q_{12} = \vec{s}_{\pm} \cdot (\vec{p}_{\bar{q}_1} \times \vec{p}_{q_2}) \qquad \begin{array}{ccc} \vec{s}_{\pm} & \to & \text{spin of } \tilde{\chi}_1^{\perp} \\ \vec{p}_{\bar{q}_1} & \to & \text{momentum of } \bar{q}_1 = \bar{c}, \bar{s} \\ \vec{p}_{q_2} & \to & \text{momentum of } q_2 = s, c \end{array}$$

_

▲□▶ ▲圖▶ ▲厘▶

Define the T-odd, CP-odd asymmetry (summing $\tilde{\chi}_1^+$ and $\tilde{\chi}_1^-$ decays)

$$A_{12} = \frac{N(Q_{12} > 0) - N(Q_{12} < 0)}{N(Q_{12} > 0) + N(Q_{12} < 0)}$$

Comparison

Conclusions

Cascade decays: Why ILC?

- Reconstruction of final state momenta possible
- Large slepton production cross sections due to *t* channel exchange diagrams
- Good *b* tagging, b / \overline{b} separation, *c* tagging possible
- ... and small backgrounds

御下 (日下)(日

Conclusions

Cascade decays: Why ILC?

- Reconstruction of final state momenta possible
- Large slepton production cross sections due to *t* channel exchange diagrams
- Good *b* tagging, b / \overline{b} separation, *c* tagging possible
- ... and small backgrounds

招をくまたくまと

= na@

Conclusions

Cascade decays: Why ILC?

- Reconstruction of final state momenta possible
- Large slepton production cross sections due to *t* channel exchange diagrams
- Good b tagging, b / \overline{b} separation, c tagging possible
- ... and small backgrounds

イロト 不得 とくほ とくほう

Conclusions

Cascade decays: Why ILC?

- Reconstruction of final state momenta possible
- Large slepton production cross sections due to *t* channel exchange diagrams
- Good *b* tagging, b / \overline{b} separation, *c* tagging possible
- ... and small backgrounds

イロト 不得 とくほ とくほう

Conclusions

Cascade decays: Why ILC?

- Reconstruction of final state momenta possible
- Large slepton production cross sections due to *t* channel exchange diagrams
- Good *b* tagging, b / \overline{b} separation, *c* tagging possible
- ... and small backgrounds

伺き くほき くほき

 $\phi_1, \phi_{\underline{\mu}}$ values $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production Theoretical values of the asymmetries Feynman diagrams

(ϕ_1, ϕ_μ) values compatible with the electron EDM					
ϕ_1	ϕ_{μ}	ϕ_1	ϕ_{μ}		
0	0	π	0		
$\pi/8$	-0.0476	$7\pi/8$	-0.0454		
$\pi/4$	-0.0876	$3\pi/4$	-0.0845		
$3\pi/8$	-0.1136	$5\pi/8$	-0.1114		
$\pi/2$	-0.1218				
plus $(\phi_1, \phi_\mu) \to (-\phi_1, -\phi_\mu)$					

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ���

 $\phi_{\frac{1}{4}} \phi_{\frac{\mu}{2}}$ values $\chi_{1}^{-} \tilde{\chi}_{1}$ production Theoretical values of the asymmetries reynman diagrams

$\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production

In $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$ the produced charginos are polarised [Choi et al., EPJC '99]

Determination of spin-related quantities seems difficult:

- Chargino momenta cannot be determined
- Large background e⁺e⁻ → W⁺W⁻ → ℓ[±]νjj
 (3.5 pb at 500 GeV with P_{e⁺} = 0.6, P_{e⁻} = −0.8)

In $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$ the produced neutralinos are polarised too [Moortgat-Pick et al., EPJC '99]

but the same problems arise

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ヨヨ ののの

 $\begin{array}{l} \phi_{\frac{1}{2}}, \phi_{\underline{\mu}} \text{ values} \\ \tilde{\chi}_1^- \tilde{\chi}_1^- \text{ production} \\ \textbf{Theoretical values of the asymmetries} \\ \text{Feynman diagrams} \end{array}$

Theoretical value of the CP asymmetry A_1

Dependence on ϕ_{μ} negligible

P

 $\phi_{\substack{1, \\ \chi_1}} \phi_{\underline{\mu}}$ values $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ production Theoretical values of the asymmetries Feynman diagrams

Theoretical value of the CP asymmetry A_{12}

Dependence on ϕ_{μ} non-negligible for ϕ_{μ} values required by electron EDM

< □ > < 同

 $\phi_{\substack{1, \\ \tilde{\chi}_1}} \phi_{\underline{\mu}}$ values $\tilde{\chi}_1 \tilde{\chi}_1$ production Theoretical values of the asymmetries Feynman diagrams

Feynman diagrams

Selectron pair production

Neutralino decay

Scenario used: intermediate particles off-shell

▲ Back

문어 세

Image: A matched black

 $\phi_{\substack{1, \\ \tilde{\chi}_1}} \phi_{\underline{\mu}}$ values $\tilde{\chi}_1 \tilde{\chi}_1$ production Theoretical values of the asymmetries Feynman diagrams

Feynman diagrams

Sneutrino pair production

Chargino decay

Scenario used: decay is three-body but dominated by W exchange

Back

ヘロト 人間 とくほとくほと

 $\phi_{\underline{1}, \underline{\phi}} \phi_{\underline{\mu}}$ values $\tilde{\chi}_1^- \tilde{\chi}_1^-$ production Theoretical values of the asymmetries Feynman diagrams

Feynman diagrams

Selectron pair production

Neutralino decay

Scenario used: intermediate particles off-shell

J. A. Aguilar-Saavedra Slepton cascade decays at ILC

Image: A matched black

문어 세