
Linear Collider Flavour Identification

■ Physics at the ILC: 
♦ Quark flavour and charge identification
♦ Required vertex detector performance
♦ Constraints due to machine and detector

■ Vertex detector design 
♦ Conceptual design for ILC
♦ Vertex detector performance

■ Sensor design and testing
♦ Charge Coupled Devices
♦ Column Parallel CCDs
♦ Storage sensors

■ Mechanical and thermal studies
■ Summary



Flavour and quark charge identification at the ILC

■ Many of interesting measurements at 
ILC involve identification of heavy 
quarks.

■ E.g. determination of branching 
ratios of Higgs boson.

■ Are BRs compatible with the SM?

■ Physics studies can also benefit from 
separation of

■ E.g.                      

■ Reduce combinatorial background.
■ Study of this process allows 

determination of Higgs self-coupling.

b from b.
e e HHZ:+ − →



Quark charge identification

■ Increases sensitivity to new physics.
■ E.g. effects of large extra dimensions 

on 
■ Study ALR = (σL – σR)/σtot as a 

function of cos θ. 
■ For muons, effects of ED not visible:

■ Changes much more pronounced for 
c (and b) quarks:

■ Requires efficient charge 
determination out to large cos θ.

e e ff .+ − →



Vertex detector performance goals

■ Average impact parameter δ of B 
decay products ~ 300 μm, of 
charmed particles less than 100 μm.

■ δ resolution given by convolution of 
point precision, multiple scattering, 
lever arm and mechanical stability.

■ Multiple scattering significant despite 
large √s at ILC: charged track 
momenta extend below 1 GeV.

■ Must resolve all tracks in dense jets.
■ Cover large solid angle: 

forward/backward events are of 
particular significance for studies 
with polarised beams.

■ Stand-alone reconstruction desirable.

■ Implies typically:
♦ Pixels ~ 20 x 20 μm2. 
♦ Hit resolution better than 5 μm.
♦ First measurement at r ~ 15 mm.
♦ Five layers out to radius of about 

60 mm, i.e. total ~ 109 pixels
♦ Material ~ 0.1% X0 per layer.
♦ Detector covers |cos θ| < 0.96.
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Constraints due to machine and detector

■ Minimum beam pipe radius ~ 14 mm.
■ Pair background at this radius in ~ 4T 

field causes ~ 0.03 (0.05) hits per BC 
and mm2 at √s = 500 (800) GeV.

■ Bunch train structure:

■ For 109 pixels of size 20 x 20 μm2, 
implies readout or storage of signals  
~ 20 times during bunch train to obtain 
occupancy less than ~ 0.3 (0.9) %. 

■ Must withstand:
♦ Radiation dose of ~ 50 krad p.a.
♦ Annual dose of neutrons from 

beam and beamstrahlung dumps 
~ 1 x 109 1 MeV equiv. n/cm2.

■ Must cope with operation in magnetic 
field of up to 5 T.

■ Must be robust against beam-related 
RF pickup and noise from other 
detectors.

337 (189) ns

2820 (4500)

0.2 s

0.95 ms



Conceptual vertex detector design

■ Here using CCDs:

■ VXD surrounded by ~ 2 mm thick Be 
support cylinder.

■ Allows Be beam pipe to be 
~ 0.4 mm thick.

■ Pixel size 20 x 20 μm2, implies about 
109 pixels in total. 

■ Standalone tracking using outer 4 
layers.

■ Hits in first layer improve 
extrapolation of tracks to IP.

■ Readout and drive connections routed 
along BP.

■ Important that access to vertex 
detector possible.



Conceptual detector design

■ Amount of material in active region 
minimized by locating electronics 
only at ends of ladders.

■ Resulting material budget, assuming 
unsupported silicon sensors of 
thickness ~ 50 μm:

Material of:
beam pipe
five CCD layers
cryostat
support shell



Flavour identification performance

■ Simulate flavour ID in
events, here at Z0 pole.

■ Feed information on impact 
parameters and vertices 
identified using Zvtop algorithm 
into neural net. 

■ Modest improvement in beauty 
tagging efficiency/purity over 
that achieved at SLD.

■ Improvement by factor 2 to 3 in 
charm tagging efficiency at high 
purity. 

■ Charm tag with low uds
background interesting, e.g. for 
Higgs BR measurements.

■ Efficiency and purity of tagging of 
beauty and charm jets:

e e qq+ − →
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Improving flavour identification

■ Increase efficiency of b identification 
through implementation of Zvkin
“ghost track” algorithm.

■ Identify b-jets in which secondary 
and/or tertiary vertex one pronged.

■ Use fact that IP, B- and D-decay 
vertices approx. on straight line due 
to boost of B hadron

■ Further flavour ID improvements 
possible by incorporating additional 
information.



Quark charge identification performance

■ Must assign all charged tracks to 
correct vertex.

■ Multiple scattering critical, lowest 
track momenta below 1 GeV.

■ Probability of incorrectly identifying 
vertex charge small for neutral and 
charged Bs.

■ For ~ 40% of cases in which b 
produces charged hadron, get quark 
charge from B vertex charge.

■ Quark charge identification for 
neutral B requires “dipole” algorithm.

■ (See Sonja Hillert’s talk at the 
Vienna ECFA meeting for more 
detail on this!)



 (GeV)JetE

50 100 150 200 250

0λ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 increased (4 layers)
bp

 R

 standard detector

 decreased
bp

 R

 < 0.9θaverage over 0 < cos 

15...60 mm

25...60 mm

8...60 mm

■ Quantify performance in terms of λ0, 
probability of reconstructing neutral 
B hadron as charged.

■ Investigate effects of changing 
detector inner radius.

■ Larger BP radius implies thicker BP:
♦ RBP = 14 mm, t = 0.4 mm.
♦ RBP = 25 mm, t = 1.0 mm. 

■ Significant loss of performance with 
increasing RBP.

■ Can quantify in terms of effective 
luminosity loss.

■ For EJet = 25 GeV and RBP = 25 mm, 
must inc. lumi. by factor ~1.7 w.r.t
RBP = 15 mm to get same error.

■ λ0 for different detector 
configurations: 

Quark charge identification performance



Sensors for the vertex detector – CCDs

■ Conventional CCD: ■ Charge collection in two-phase CCD, 
20 μm epitaxial layer, 100 Ω.cm (~ 10 
μm depleted), pixels 20 x 20 μm2. 




Sensors – CCDs

■ Charge transfer in two-phase CCD, 
gate potentials change from + to −2 V 
(and vice versa) in 10 ns:

■ Conventional CCD too slow for ILC.
■ LCFI developing Column Parallel 

architecture with e2v technologies.




Sensors – CPCCD

■ First of these, CPC1, manufactured 
by e2v.

■ Two phase, 400 (V) × 750 (H) pixels 
of size 20 × 20 μm2.

■ Metal strapping of clock gates.
■ Two different implant levels.
■ Two-stage and one-stage source 

follower and direct (charge) outputs.

■ Standalone CPC1 tests:
■ Noise ~ 100 e− (60 e− after filter).
■ Minimum clock potential ~1.9 V.

■ Max clock frequency above 25 MHz 
(design 1 MHz).



Sensors and readout – CPC1 and CPR1

■ Bump-bond to CMOS CPCCD 
readout ASIC, CPR1 (RAL).

■ IBM 0.25 μm process.
■ 250 parallel channels, 20 μm pitch.
■ Designed for 50 MHz.

■ Bump-bonding done at VTT. 
■ Yield ~ 30%: mechanical damage 

during compression? 
■ Signal from charge channels: 

■ Observe ~ 70 mV, expected 
80 mV signal, good agreement.



Next generation readout chip – CPR2

■ 6 × 9.5 mm2, 0.25 μm CMOS (IBM), 
“features” of CPR1 fixed.

■ Test clusters in:

■ Includes cluster finding logic and 
sparse data circuitry.

■ Sparsified data out:



Next generation CPCCD – CPC2

■ Three different chip sizes:
♦ CPC2-70: 92 × 15 mm2 image 

area.
♦ CPC2-40: 53 × 15 mm2.
♦ CPC2-10: 13 × 15 mm2.

■ Compatible with CPR1 and CPR2
■ Two charge transport sections.
■ Choice of epitaxial layers giving 

different depletion depths: 100 Ω cm 
(25 μm thick) and 1.5 kΩ cm 
(50 μm thick)

■ Design allows few MHz operation 
for CPC2-70.

■ Hope to achieve 50  MHz with small 
CPC2s.

Clock bus

Main clock 
wire bonds

Main clock 
wire bonds

CPR1 CPR2

Temperature 
diode on 

CCD

Charge 
injection

Four 1-stage and 
2-stage SF in 

adjacent columns

Four 2-stage SF in 
adjacent columnsStandard Field-enhanced Standard

No 
connections 

this side

Image area
Extra pads for 

clock monitoring 
and drive every 6.5 

mm



Next generation CPCCD – CPC2

■ Manufactured by e2v on 5” wafers.
■ One CPC2-70: 105 × 17 mm2 total 

chip size.
■ Two CPC2-40s per wafer.
■ Six CPC2-10s per wafer.
■ Fourteen In-situ Storage Image 

Sensors (ISIS1).
■ Three wafers delivered so far.

ISIS1

CPC2-70

CPC2-40

CPC2-10



Next generation CPCCD – CPC2

■ CPC2-40 on motherboard awaiting testing: let the fun begin!

■ (See Konstantin Stefanov’s talk at Vertex05 for more details!)



CCD radiation hardness tests

■ Study CTI in CCD58 before and after 
irradiation (90Sr 30 krad).

■ Measure decrease in charge from 55Fe 
X-rays as func. of number of pixels 
through which charge transferred.

■ Compare data with simulations 
performed using ISE-TCAD.

■ Extend to CPCCD.  



Sensors – ISIS

■ In-situ Storage Image Sensor.

■ Signal collected on photogate then 
transferred to CCD register in pixel 
20 times during bunch train.

■ Beam-related RF pickup is concern 
for all sensors converting charge to 
voltage during bunch train.

■ ISIS eliminates this source of EMI:
■ Readout in 200 ms quiet period 

between bunch trains.
■ Column parallel readout at ~ 1 MHz 

sufficient to read out before arrival of 
next bunch train. 

■ Signal charge always buried in 
silicon until bunch train has passed.

■ Approx. 100 times more radiation 
tolerant than CCDs.

■ Easier to drive than CPCCD because 
of low clock frequency.



Sensors – ISIS1

■ “Proof of principle” device designed 
by e2V technologies.

■ Array of 16 ×16 pixels with CCD 
storage register (5 cells) in each pixel.

■ ISIS1 in 100-pin 
PGA carrier →

■ Pixel pitch 40 × 160 μm2, no edge 
logic (pure CCD process).

■ Size ≈ 6.5 × 6.5 mm2.



First X-ray signals from ISIS1

■ Observe “steps” with correct amplitude: 3 μV/e− × 1620 e− × gain (10) =  49 mV.



Vreset Vdd

Out

Select
Reset

Sensors – FAPS

■ Monolithic Active Pixel Sensors also 
under investigation for ILC. 

■ Ongoing development for scientific 
applications by MI3 collaboration. 

■ Storage capacitors added to pixels for 
use at ILC: Flexible Active Pixel 
Sensors.



Sensors – FAPS

■ Present design “proof of principle”.
■ Pixels 20 x 20 μm2, 3 metal layers, 

10 storage cells.
■ Test of FAPS structure with LED:  

■ 106Ru β source tests:

■ Signal to noise ratio ~ 14. 



Mechanical and thermal studies

■ “Stretched” sensor studies revealed 
thickness of ~ 50 μm Si needed. 

■ Beryllium results poor: bad match of 
thermal expansion with Si.

■ Look at silicon “floating” on silicon 
carbide...

■ Thermal considerations:
■ CPCCD drive will exploit LC duty 

cycle of 0.5% to achieve low average 
power consumption: cool using N2 gas.

■ ...and silicon/carbon-foam 
(reticulated vitreous carbon) 
sandwich. 

■ Both use “Nusil” silicone to attach 
the silicon to the substrate.

■ Investigations of efficacy of cooling 
starting using quarter vertex detector 
thermal test rig. 

Ladder Material X/Xo

Silicon on SiC foam 
(~ 8% density)

Silicon (25 μm), SiC foam (1.5mm); 
silicone adhesive (~ 300 μm in tiny pads)

0.16% (~ 0.26% at glue pad 
locations)

Silicon-RVC foam sandwich     
(~ 3% density)

Silicon (25 μm) ×2; RVC foam (1.5mm); 
silicone adhesive (~100 μm in tiny pads) × 2

0.08% (~ 0.14% at glue pad 
locations)



Summary

■ LCFI studying many aspects of quark 
flavour and charge identification at the 
ILC, including:
♦ Algorithms for flavour/charge ID.
♦ Optimum vertex detector design.
♦ Sensors.
♦ Mechanical and thermal effects. 

■ Many opportunities in all these areas, 
some examples:

■ Physics:
♦ Move from fast MC (SGV) to full 

simulation.
♦ Develop pattern recognition in 

VXD, move to full reconstruction.
♦ Study benchmark reactions.

■ Sensors:
♦ Device simulation: effects of B 

field.
♦ Effects of increased background, 

halo muons... on readout.
♦ Sensor testing and design.

■ The vertex detector is small, but the 
amount of work that must be done to 
make sure we have the best possible 
system is not!
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