Name	Title	Abstract
A. Adulpravitchai	Flavored Orbifold GUT -	e Orbifold grand unified theories (GUTs) solve sev-
	an $SO(10) \ge S4$ model	eral problems in GUT model building. Therefore, it
		is intriguing to investigate similar constructions in
		the flavor context. In this paper, we propose that a
		flavor symmetry might emerge due to orbifold com-
		pactification of one orbifold and broken by boundary
		conditions of another orbifold. The combination of
		the orbifold parities in gauge and flavor space de-
		termines the zero modes. We demonstrate the con-
		struction in a supersymmetric (SUSY) SO(10) x S_4
		orbitold GU1 model, which predicts the tribimaxi-
		mai mixing at leading order in the lepton sector as
D Aristizabal	Implications of tribimari	In two I socraw models extended with flavor sum
D. MISUZADAI	mal lepton mixing for lep-	metries accounting for the tribimaximal lepton mix-
	togenesis	ing the baryon asymmetry, derived via leptogenesis.
		could be related with other low-energy observables.
		In this talk I will discuss the implications that such
		a symmetry can have on the different relevant pa-
		rameters of leptogenesis. In particular, I will show
		that in the limit of exact tribimaximal mixing the
		CP-violating asymmetry necessary for leptogenesis
		vanishes and that non-vanishing values are possible
		only when departures from this limit are allowed.
G. Blankenburg	Different $SO(10)$ Paths to	Recently SO(10) models with type-II see-saw dom-
	Fermion Masses and Mix-	inance have been proposed as a promising frame-
	ings	work for obtaining Grand Unification theories with
		rapproximate III-Dimaximal (ID) mixing in the neu-trino sector. We make a general study of $SO(10)$
		models with type-II see-saw dominance and show
		that an excellent fit can be obtained for fermion
		masses and mixings, also including the neutrino sec-
		tor. To make this statement more significant we
		compare the performance of type-II see-saw domi-
		nance models in fitting the fermion masses and mix-
		ings with more conventional models which have no
		built-in TB mixing in the neutrino sector. For a fair
		comparison the same input data and fitting proce-
		dure is adopted for all different theories. We find that
		the type-II dominance models lead to an excellent fit,
		comparable with the best among the available mod-
		a significantly larger amount of fine tuning with re-
		spect to other approaches.
F.Bazzocchi	The challenge of low scale	Low scale flavor symmetries are appealing for theo-
	flavor symmetry	retical and phenomenological reasons. Nevertheless
	- v	they are more constrained than high energy ones:
		new contributions to the oblique corrections as well
		as new sources of CP and flavour violation usually
		appear in this context. This talk will address the
		issue of the possibility of having a realistic low scale
		flavor symmetry, focusing on the discrete non abelian
		ones.

Name	Title	Abstract
S. Boucenna	Phenomenology of a Dis-	In this talk, I will present the phenomenological
	crete Dark Matter	study of a Dark Matter (DM) candidate whose sta-
		bility is achieved by means of a Z2 parity resulting
		from the same non-abelian discrete flavour symmetry
		that accounts for the observed patterns of neutrino
		mixing. This is realised with the A4 group. Regions
		in the parameter space are found to be compatible
		with the latest results of direct and indirect detec-
		tion searches of DM as well as collider constraints
		making our candidate a viable one.
Gui-Jun Ding	SUSY Adjoint $SU(5)$	We construct a supersymmetric (SUSY) $SU(5)$
	Grand Unified Model	model with the flavor symmetry $S_4 \times Z_3 \times Z_4$. Three
	with S_4 Flavor Symmetry	generations of adjoint matter fields are introduced to
		generate the neutrino masses via the combined type
		I and type III see-saw mechanism. The first two gen-
		erations of the the IU dimensional representation in $GU(\mathcal{I})$ are presented to be a doublet of G the mound
		50(5) are assigned to be a doublet of 54 , the second family 10 is chose as the first component of the doublet
		blot and the first family as the second component
		Tri-himaximal mixing in the neutrino sector is pro-
		dicted exactly at leading order charged lepton mix-
		ing leads to small deviation from the tri-bimaximal
		mixing pattern, which is desceribed by well-known
		sum rules. Subleading contributions introduce cor-
		rections of order λ_c^2 to all three lepton mixing an-
		gles. The model also reproduces a realistic pattern
		of quark and charged lepton masses and quark mix-
		ings. Finally the phenomenological implications of
		the model are discussed.
J.N.Esteves	A_4 -based neutrino masses	We propose an A_4 flavor-symmetric $SU(3) \times SU(2) \times$
	with Majoron decaying	U(1) seesaw model where lepton number is broken
	dark matter	spontaneously. A consistent two-zero texture pat-
		tern of neutrino masses and mixing emerges from the
		interplay of type-I and type-II seesaw contributions,
		with important phenomenological predictions. We
		show that, if the Majoron becomes massive, such see-
		saw scenario provides a viable candidate for decaying
		dark matter, consistent with cosmic microwave back-
		WMAP observations. We also calculate the sub-
		leading one-loop-induced decay into photons which
		leads to a mono-energetic emission line that may be
		observed in future X-ray missions such as Xenia.
Y.Farzan	A Novel Method to Ex-	When the Dark Matter (DM) particles captured in
	tract Dark Matter Param-	the Sun directly annihilate into neutrino pairs, the
	eters from Neutrino Tele-	oscillatory terms in the oscillation probability do not
	scope Data	average to zero and can lead to a seasonal variation
	_	as the distance between the Sun and Earth changes
		in time. We explore this feature as a novel method
		to extract information on the properties of dark mat-
		ter. We show that by studying the variation of the
		flux over a few months, it would in principle be pos-
		sible to derive the DM mass as well as new informa-
		tion on the flavor structure of the DM annihilation
		modes. In addition to analytic analysis, we present
		the results of our numerical calculations that take
		into account scattering and regeneration of neutri-
		nos traversing the Sun.

Name	Title	Abstract
C.Hagedorn	Continuous and discrete symmetries	In this talk I give an overview over continuous and discrete groups and how these are used in the field of model building as flavor symmetries which act on the space of the three generations of elementary par- ticles. I mainly concentrate on discussing generic mathematical properties of these groups relevant for understanding their possible predictive power when applied in order to explain fermion mass and mixing patterns. I also put emphasis on the classification of discrete groups.
Hiroaki Sugiyama	Phenomenology in the Higgs Triplet Model with the A_4 Symmetry	I will discuss the phenomenology of the doubly charged scalars of $SU(2)_L$ -triplet fields in the sim- plest extension of the Higgs Triplet Model with the A_4 symmetry. It is shown that their decays into a pair of leptons have unique flavor structures which can be tested at the LHC if some of their masses are below the TeV scale. Sizable decay rates for "tau to mubar e e" and "tau to ebar mu e" can be obtained naturally while other lepton flavor violating decays of charged leptons are almost forbidden in this model, which can be tested at MEG and super B factory.
A. Kadosh	RS - A4 model for quarks and leptons and phenomenological impli- cations	
K. Kadota	The effects of SUSY see- saw on the dark matter and collider signals	The effects of the GUT scale seesaw mechanisms on the dark matter and collider signals will be discussed. For the dark matter, the disappearance of the focus point regions and the appearance of the sneutrino coannihilation regions, in consistence with the ther- mal neutralino relic abundance, will be discussed. For the collider signals, the enhancement of the tau lepton signals in the constrained seesaw scenario will be presented.
J. Kersten	Supersymmetric Musings on the Predictivity of Family Symmetries	I discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. Unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. However, specific choices of messenger fields can improve the predictivity for the soft parameters.

Name	Title	Abstract
B. Koch	Gravitino Dark Matter and Neutrino Masses in Partial Split Supersym- metry	Partial Split Supersymmetry with bilinear R-parity violation allows to reproduce all neutrino mass- and mixing parameters. The viable dark matter candi- date in this model is the gravitino. We study the hypothesis that both possibilities are true: Partial Split Supersymmetry explains neutrino physics and that dark matter is actually composed of gravitinos. Since the gravitino has a small decay probability, its decay products could be observed in astrophysical experiments. Combining bounds from astrophysical photon spectra with the bounds coming from the mixing matrices in the neutrino sector we derive a stringent upper limit for the allowed gravitino mass. This mass limit is in good agreement with the find- ings of direct dark matter searches.
M. Krauss	Inverse see-saw from higher than $d = 5$ effec- tive operators in SUSY, and its phenomenological implications at the LHC	We discuss neutrino masses generated by higher than d=5 effective operators in a supersymmetric frame- work. We illustrate that at tree level, many pos- sibilities lead to inverse see-saw scenarios with the lepton number violating term naturally suppressed by a heavy mediator mass. We show one example with heavy fermion doublets as additional media- tors. This scenario may have LHC-observable phe- nomenology, since the added fermions lead to lepton number violating processes with displaced vertices. We will also discuss how this model might be em- bedded in an $SU(5)$ GUT.
P. Leser	S_3 flavor symmetry at the LHC	Discrete symmetries employed to explain neutrino mixing and mass hierarchies are often associated with an enlarged scalar sector which might lead to exotic Higgs decay modes. We explore such a pos- sibility in a scenario with S_3 flavor symmetry which requires three scalar $SU(2)$ doublets. The spectrum is fixed by minimizing the scalar potential, and we observe that the symmetry of the model leads to tan- talizing Higgs decay models potentially observable at the CERN Large Hadron Collider (LHC).
P. O. Ludl	Maximal atmospheric neutrino mixing from texture zeros and quasi- degenerate neutrino masses	It is well-known that exactly maximal atmospheric neutrino mixing cannot be enforced by Abelian sym- metries. The only extremal mixing angle enforceable by means of an Abelian symmetry is a vanishing re- actor mixing angle. We will show that assuming neu- trinos to be Majorana particles, in the basis where the charged lepton mass matrix is diagonal, there are two texture zeros which, in the limit of a quasi- degenerate neutrino mass spectrum, lead to nearly- maximal atmospheric neutrino mixing irrespective of the values of the solar and reactor mixing angles. In the same limit the aforementioned cases of texture zeros also lead to maximal CP-violation, provided the reactor mixing angle is not too small. Since tex- ture zeros may always be implemented by the use of Abelian symmetries this scenario could serve as an alternative to non-Abelian family symmetries.

Name	Title	Abstract
M. Malinsky	Flavour aspects of GUTs	
V. Maurer	From Flavour to SUSY Flavour Models	If supersymmetry (SUSY) will be discovered, suc- cessful models of flavour not only have to provide an explanation of the flavour structure of the Stan- dard Model fermions, but also of the flavour struc- ture of their scalar superpartners. We discuss aspects of such "SUSY flavour" models, towards predicting both flavour structures, in the context of supergrav- ity (SUGRA). We point out the importance of care- fully taking into account SUSY-specific effects, such as 1-loop SUSY threshold corrections and canonical normalization, when fitting the model to the data for fermion masses and mixings. This entangles the flavour model with the SUSY parameters and leads to interesting predictions for the sparticle spectrum. We demonstrate these effects by analyzing an exam- ple class of flavour models in the framework of an SU(5) Grand Unified Theory with a family symmetry with real triplet representations. For flavour viola- tion through the SUSY soft breaking terms, the class of models realizes a scheme we refer to as "Trilinear Dominance", where flavour violation effects are dom- inantly induced by the trilinear terms.
I. de Medeiros Varzielas	Neutrino phenomenol- ogy and considerations on family symmetry invariants	By conveniently decomposing the effective neutrino mass matrix associated with tribimaximal mixing, we derive generic predictions in terms of the pa- rameters governing the neutrino masses. We ex- tend this phenomenological analysis to other mass- independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis.
L. Merlo	Neutrinoless double beta decay in flavour physics	Neutrinoless double beta (0n2B) decay is a funda- mental observable to probe the Majorana character of neutrinos and to investigate on their absolute mass scale. The present status of experiments searching for 0n2B decay is reviewed and the most relevant results are discussed. The interplay with flavour physics in general provides clear predictions for 0n2B decay and some major examples are presented.
J.Jones Perez	U(2) and Minimal Flavour Violation in Supersymme- try	n SUSY, the MFV framework is usually called upon in order to ameliorate the New Physics contribu- tion to FCNC. However, this framework, based on a $U(3)^3$ flavour symmetry, is insufficient to solve cur- rent tensions in $\Delta F = 2$ processes related to CP Vi- olation. In this work, we analyze the consequences of reducing the symmetry down to a $U(2)^3$ acting on the two lighter generations. We shall outline the $U(2)^3$ framework, and show how it can resolve the current tension between $K^0 \rightarrow \bar{K}^0$ and $B^0 \rightarrow \bar{B}^0$ mixing, predicting at the same time a larger phase in $B_s^0 \rightarrow \bar{B}_s^0$ mixing. The preferred region for the gluino and the left-handed sbottom masses is below about $1 \div 1.5$ TeV.

Name	Title	Abstract
A. Papa	The $\mu^+ \rightarrow e^+ \gamma$ decay: waiting from the new re-	The aim of the MEG experiment is to measure the branching ratio of the rare muon decay $BR =$
	sults by means of the	$\frac{\mu^+ \rightarrow e^+ \gamma}{2}$ at a sensitivity of 10^{-13} . To reach this
	MEG experiment	$\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_{\mu}$ as a sensitivity of 10 ° . To reach this goal the experiment must use the most intense con-
	-	tinuous muon beam available ($\approx 10^8 \mu/s$) and obtain
		the highest energy, time and space resolutions, today
		reachable. MEG started to collect data at the end
		of 2008. During 2009 a large part of the data taking
		detector performance optimizations: a new physics
		data sample was collected at the end of this year in
		1.5 months of acquisition time. We have continued
		to take data during 2010 and the final analysis of this
		2009 and 2010 data samples. A description of the
		main features of each subdetector and of the mea-
		sured resolutions are given and the preliminary re-
		suits of the search for $\mu' \rightarrow e' \gamma$ decay based on the 2009 data sample are presented
G. Panotopoulos	The physics of a new	String theory constructions using D-brane physics of-
1	gauge boson in a Stueckel-	fer a framework where ingredients like extra abelian
	berg extension of the two-	factors in the gauge group, more than one Higgs dou-
	niggs-doublet model	pear at the same time. Motivated by works towards
		the direction of obtaining the Standard Model in ori-
		entifold constructions, we study in the present work
		a Stueckelberg extension of the two-Higgs-doublet
		sharp decay width for the heavy gauge boson, and ii)
		a charged Higgs boson having two main decay chan-
		nels at tree level with equal branching ratios.
K. M. Patel	Viability of the exact tri-	The general structures for the charged lepton and the neutrino mass matrices leading to the tribinarial
	GUT scale in $SO(10)$	leptonic mixing are determined. These are then inte-
		grated into a particular $SO(10)$ model within which
		detailed fits to fermion masses and mixing angles
		good fits to all the fermion masses and quark mix-
		ing angles keeping the tri-bimaximal leptonic mixing
		intact. Various perturbations to the tri-bimaximal
		mixing which can arise in the model are considered
		and their impact on the predictions of the reactor angle is numerically discussed.
W. Porod	Testing the flavour sector	The soft breaking sector of supersymmetric models
	of supersymmetric models	contains several sources of additional flavour struc-
	at the LHC	tures beyond the ones of the Standard Model. Af-
		that despite stringent constraints from rare lepton
		and meson decays there is still the possibility to ob-
		serve sizable flavour violating signals in production
W. Rodeiohann	Predicting deviations	The overwhelming majority of flavor symmetry mod-
W. Rodejonami	and alternatives to tri-	els focusses on tri-bimaximal mixing (TBM). Neu-
	bimaximal mixing	trino mass sum-rules are given as one rather robust
		example on how to distinguish some of them from
		TBM and estimate the typical order of magnitude
		of the corrections. Then we present several alter-
		natives to TBM, and outline their origin in flavor symmetries. Finally an example on how to to acco
		modate light eV-scale sterile neutrinos in a popular
		A4 model is discussed, which in principle works as
1	1	well for keV warm dark matter sterile neutrinos

Name	Title	Abstract
Saavedra	Flavour and the Tevatron	The forward-backward asymmetry measured by
	t tbar asymmetry	CDF has motivated numerous explanations beyond
		the SM. I review several of these explanations, such
		as new flavour-violating Z' bosons, colour sextets and
		triplets, and the connection to flavour
U. Saldana-Salazar	State of the Art of the	The Minimal S_3 -Invariant Extension of the Standard
	Minimal S_3 -Invariant Ex-	Model is formulated by introducing in the theory
	tension of the Standard	three Higgs fields that are $SU(2)_L$ doublets and a
	Model	flavour permutational symmetry, S_3 , in addition to
		the Majorana nature of massive neutrinos. There-
		fore, the concepts of flavour and generations are ex-
		tended to the Higgs sector. I will discuss the state
		of the art of the present model as well as some new
		results we have been working on.

Name	Title	Abstract
J. Santiago Perez	Lepton masses in holo- graphic composite Higgs models.	We discuss lepton masses in the context of a holo- graphic composite Higgs model with a discrete A_4 symmetry. The mixing pattern is very close to tri- bimaximal and the structure of the model provides a double layer of flavor protection with interesting con- sequences. Radiative lepton flavor violation is close to the current experimental limit and predicts light lepton resonances with strong coupling to the tau lepton. We review the LHC reach of such resonances.
H.Serodio	Resonant leptogenesis and tribimaximal leptonic mixing with A_4 symmetry	We investigate the viability of thermal leptogenesis in type-I seesaw models with leptonic flavour symme- tries that lead to tribimaximal neutrino mixing. We consider an effective theory with an $A_4 \times Z_3 \times Z_4$ sym- metry, which is spontaneously broken at a scale much higher than the electroweak scale. At the high scale, leptonic Yukawa interactions lead to exact tribimax- imal mixing and the heavy Majorana neutrino mass spectrum is exactly degenerate. In this framework, leptogenesis becomes viable once this degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. The implications for low-energy neutrino physics are discussed.
Y. Shimizu	Relating Quarks and Leptons without Grand- Unification	In combination with supersymmetry, flavor symme- try may relate quarks with leptons, even in the ab- sence of a grand-unification group. We propose a model where both supersymmetry and the assumed A4 flavor symmetries are softly broken. We predict a relation between down-type quarks and charged lep- ton masses. We also predict a correlation between the Cabibbo angle in the quark sector, and the re- actor angle characterizing CP violation in neutrino oscillations
Sin Kyu Kang	Revisiting the Quark- Lepton Complemen- tarity and Triminimal Parametrization of Neu- trino Mixing Matrix	We examine how a parametrization of neutrino mix- ing matrix reflecting quark-lepton complementarity can be probed by considering phase-averaged oscil- lation probabilities, flavor composition of neutrino fluxes coming from atmospheric and astrophysical neutrinos and lepton flavor violating radiative de- cays. We discuss about some distinct features of the parametrization by comparing with the triminimal parametrization of perturbations to tri-bimaximal neutrino mixing matrix.
H. Serodio	Leptogenesis and flavour symmetries	Based on symmetry arguments, it is shown that in type-I seesaw models the Dirac-neutrino Yukawa coupling combinations relevant for leptogenesis are diagonal in the physical basis where the charged lep- tons and heavy Majorana neutrinos are diagonal. This will lead to zero CP asymmetry in leading order. Type-II seesaw flavour models are not so restrictive and in general will allow for leptogenesis.
M. Spinrath	Right unitarity triangles and tri-bimaximal mixing from discrete symmetries and unification	We propose new classes of models which predict both tri-bimaximal lepton mixing and a right-angled Cabibbo-Kobayashi-Maskawa (CKM) unitarity tri- angle, alpha approximately 90 degrees. The ingredi- ents of the models include a supersymmetric (SUSY) unified gauge group such as SU(5), a discrete fam- ily symmetry such as A4 or S4, a shaping symmetry including products of Z2 and Z4 groups as well as spontaneous CP violation. We show how the vacuum alignment in such models allows a simple explanation of alpha approximately 90 degrees by a combination of purely real or purely imaginary vacuum expecta- tion values (vevs) of the flavons responsible for family symmetry breaking.

Name	Title	Abstract
E. Stamou	Constrains on Flavour Gauge Models from FCNCs	New neutral heavy gauge bosons appear automati- cally in many beyond the Standard Model (SM) con- structions with an extended gauge sector. Typical examples are Z' models and gauge-flavour models in which the flavour symmetry, necessary to explain the SM fermion masses and mixings, is gauged. Often, additional heavy exotic fermions must also be intro- duced to cancel the anomalies from the new gauge sector. In phenomenologically testable scenarios, the lightest heavy bosons and fermions have masses around the TeV scale and may be directly produced in current colliders. On the other hand, indirect bounds are present since the New Physics contri- butions affect low-energy Flavour-Changing-Neutral- Current (FCNC) observables. In this talk, I present constrains on flavour-gauge models from these FC- NCs arising from both new neutral-gauge bosons and possibly existing exotic fermions.
M. Taoso	News on indirect and di- rect dark matter searches	In this talk, we review the current status of direct and indirect Dark Matter (DM) searches, focusing in particular on those observations which have been interpreted as possible hints of a dark matter signal. We then discuss about the prospects for dark matter detection with upcoming experiments and the com- plementarity between different methods.
T. Toma	Indirect detection of dark matter and flavor symme- try	A few years ago, the positron excess and no anti- proton excess in the cosmic ray are observed by some experiments. This might be explained by annihila- tion or decay of dark matter. If one consider it to be an indirect evidence of annihilation or decay of dark matter, the flavor of produced leptons is important to fit the experiment and escape from the constraints of diffuse gamma ray. In my talk, I would like to talk that the flavor symmetry D_6 in a specific model takes an important role in the flavor choice. Direct detec- tion and collider detection of dark matter are also discussed if I have enough time.
M. Tortola	Status of three-flavour os- cillation parameters from global neutrino data	

Name	Title	Abstract
O. Zapata Norea	Baryon number violation	We study a supersymmetric model with R-parity vi-
	from from anomalous	olation and extended with an anomalous horizontal
	$U(1)_H$ models	symmetry $U(1)_H$. Our model considers only trilin-
		ear baryon number violating couplings which implies
		hadronic decays of the lightest supersymmetric par-
		ticle (LSP). The LSP branching ratios are analyzed
		and its consequences for collider physics are men-
		tioned. Implications for cosmology are analyzed also.
		The supressions for the superpotential couplings are
		properly generated and the mass matrix for the neu-
		trinos is constructed.
Sanjib Agarwalla	Very-short-baseline Neu-	Recent results from very-short-baseline (VSBL) neu-
	trino Anomalies and Fu-	trino oscillation studies seem to point towards neu-
	ture Probes	trino oscillations at high Δm^2 involving sterile neu-
		trinos. Here we propose that a combination of decay-
		at-rest (DAR) neutrino source and large liquid scin-
		tillator detectors like NOvA and LENA could pro-
		vide a stringent test of these recent ambiguous sig-
		nals for VSBL oscillations at high Δm^2 . These de-
		tectors are $\gtrsim 50$ m long, and so with a DAR beam,
		the characteristic oscillation wave will be apparent
		over the length of the detector, providing a powerful
		verification of the oscillation phenomena.