Status of three-flavour oscillation parameters from global neutrino data

Mariam Tórtola

FLASY 2011 – 1st Workshop on Flavor Symmetries and consequences in Accelerators and Cosmology. 11 – 14 July 2011, Valencia (Spain).

Outline

* Introduction * The solar neutrino sector: (Δm²₂₁, θ₁₂) * The atmospheric neutrino sector: (Δm²₃₂, θ₂₃) * The bound on θ₁₃ and indications for θ₁₃ ≠0 * The next generation of neutrino oscillation experiments. * Summary

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

There are two possible mass orderings:

* Neutrino oscillations are sensitive only to Δm^2_{ij}

- Δm^2_{31} : atmospheric + long-baseline
- Δm^2_{21} : solar + KamLAND
- absolute scale m_v ???

Absolute scale of neutrino mass

* Tritium β -decay experiments:

 $m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$

m_β < 2.05–2.33 (95%CL) Troitsk, Mainz.

KATRIN sensitivity m_{β} ~0.2 eV

*Neutrinoless double β-decay:

 $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$

claim in ⁷⁶Ge m_{$\beta\beta$} \in [0.16, 0.52] eV (2 σ)

 2σ upper limit from Cuoricino m_{$\beta\beta$} < [0.23, 0.85] eV

Cosmology: Σ m_i = m₁ + m₂ + m₃
 95%CL bounds on Σ m_i
 Fogli et al.,PRD78 (2008) 033010

CMB < 1.19 eV CMB+LSS < 0.71 eV CMB+HST+SN-Ia < 0.75 eV CMB+HST+SN-Ia+BAO < 0.60 eV CMB+HST+SN-Ia+BAO+Ly < 0.19 eV

Determination of oscillation parameters from global v data

all data samples are connected \rightarrow a global 3v analysis is required.

The solar neutrino sector: $(\Delta m_{21}^2, sin^2\theta_{12})$

Solar neutrinos

First solar v detectors: the radiochemical experiments

First solar v detectors: the radiochemical experiments

Chlorine experiment:

- gold mine in Homestake (South Dakota)
- 615 tons of perchloro-ethylene (C_2Cl_4)
- detection process: $V_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$
- only 1/3 of SSM prediction detected:

 $\mathsf{R}^{\mathrm{SSM}}_{Cl}$ = 8.12 \pm 1.25 SNU

 R_{Cl} = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

First solar v detectors: the radiochemical experiments

Chlorine experiment:

- gold mine in Homestake (South Dakota)
- 615 tons of perchloro-ethylene (C_2Cl_4)
- detection process: $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$
- only 1/3 of SSM prediction detected:

 $\mathsf{R}^{\mathrm{SSM}}_{Cl}$ = 8.12 \pm 1.25 SNU

$$R_{Cl}$$
 = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

• Gallium experiments (GALLEX/GNO, SAGE):

 $R_{GALLEX/GNO}$ = 69.3 ± 4.1 (stat.) ± 3.6 (syst.) SNU

50% deficit

Solar neutrinos in Super-Kamiokande

Super-Kamiokade detector

- water cherenkov detector
- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$
- threshold energy ~ 4-5 MeV
- real-time detector: (E, t)

Solar neutrinos in Super-Kamiokande Super-Kamiokade detector water cherenkov detector 50,000 ton water Cherenkov detector (22,500 ton fiducial volume) sensitive to all neutrino flavors: $V_{X} e^{-} \rightarrow V_{X} e^{-}$ FXI threshold energy \sim 4-5 MeV real-time detector: (E, t) 11200 PMT(Inner detector) SK-III Flux (x10⁶/cm²/s) 7 9 9 Data/SSM(2004) 0 00 9 8 0 8 0 2.2 stat. uncertainty only 0.2 Dashed line: SK-III average 0 JAN MAR APR MAY JUN JUN JUL AUG SEP SEP OCT NOV 15 10 20 Total electron energy (MeV)

Solar neutrinos in Super-Kamiokande Super-Kamiokade detector water cherenkov detector 50.000 ton water Cherenkov detector (22,500 ton fiducial volume) sensitive to all neutrino flavors: $V_{x} e^{-} \rightarrow V_{x} e^{-}$ FXI threshold energy \sim 4-5 MeV real-time detector: (E, t) 1200 PMT(Inner detector) SK-III Flux (x10⁶/cm²/s) 7 9 9 Data/SSM(2004) 0 9 8 0 8 0 2.2 stat. uncertainty only 0.2 Dashed line: SK-III average 0 JAN MAR MAY JUN JUL AUG SEP SEP OCT NOV 15 10 20 Total electron energy (MeV)

Super-Kamiokande detects less neutrinos than expected according to the SSM (40%)

The solar neutrino problem

➡ All the experiments detect less neutrinos than expected (30-50%)

What is happening?

– experimental errors ?–> different kinds of experiments.

- errors in the Standard Solar Model?

- something is happening with neutrinos in their way from the Sun to the Earth?

- new particle physics needed ??

The Sudbury Neutrino Observatory, SNO The Sudbury Neutrino Observatory SNO is sensitive to all v flavors: SNO interactions 6000 m.w.e. overburden Elastic-scattering (ES): v_e mainly 1000 tons D₂O $v_r + e^- \rightarrow v_r + e^$ strong directional sensitivity 12 m Diameter Acrylic Vessel Charged-currents (CC): v_e only E, well correlated $v_e + d \rightarrow p + p + e^-$ 1700 tons Inner Shield H₂O with E. Neutral-currents (NC): Support Structure 9500 PMTs, All flavors equally 60% coverage $v_r + d \rightarrow p + n + v_r$ Total neutrino flux 5300 tons Outer Shield H₂O

The Sudbury Neutrino Observatory, SNO The Sudbury Neutrino Observatory SNO is sensitive to all v flavors: SNO interactions 6000 m.w.e. overburden Elastic-scattering (ES): v_e mainly 1000 tons D₂O $v_r + e^- \rightarrow v_r + e^$ strong directional sensitivity 12 m Diameter Acrylic Vessel Charged-currents (CC): v_{ρ} only E, well correlated $v_e + d \rightarrow p + p + e^-$ 1700 tons Inner Shield H₂O with E. Neutral-currents (NC): Support Structure 9500 PMTs, All flavors equally 60% coverage $v_x + d \rightarrow p + n + v_x$ Total neutrino flux 5300 tons Outer Shield H₂O D₂O phase: $n + d \rightarrow t + \gamma + 6.25 \text{ MeV}$ Salt phase (D₂O + 2 tons of NaCl): $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$'s + 8.6 MeV NCD phase (³He proportional counters): $n + {}^{3}He \rightarrow p + t + 0.76 \text{ MeV}$

The Sudbury Neutrino Observatory, SNO The Sudbury Neutrino Observatory SNO is sensitive to all v flavors: SNO interactions 6000 m.w.e. overburden Elastic-scattering (ES): v_e mainly 1000 tons D₂O $v_{x} + e^{-} \rightarrow v_{x} + e^{-}$ strong directional sensitivity 12 m Diameter Acrylic Vessel Charged-currents (CC): v_{ρ} only E, well correlated $v_e + d \rightarrow p + p + e^-$ 1700 tons Inner Shield H₂O with E. Neutral-currents (NC): Support Structure 9500 PMTs, All flavors equally 60% coverage $v_x + d \rightarrow p + n + v_x$ Total neutrino flux 5300 tons Outer Shield H₂O D₂O phase: $n + d \rightarrow t + \gamma + 6.25 \text{ MeV}$ Salt phase (D₂O + 2 tons of NaCl): 30% v_e flux (CC): $= 0.301 \pm 0.033$ $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$'s + 8.6 MeV NCD phase (³He proportional counters): $n + {}^{3}He \rightarrow p + t + 0.76 \text{ MeV}$

The Sudbury Neutrino Observatory, SNO The Sudbury Neutrino Observatory SNO is sensitive to all v flavors: SNO interactions 6000 m.w.e. overburden Elastic-scattering (ES): v_e mainly 1000 tons D₂O $v_x + e^- \rightarrow v_x + e^$ strong directional sensitivity 12 m Diameter Acrylic Vessel Charged-currents (CC): v_e only E, well correlated $v_e + d \rightarrow p + p + e^-$ 1700 tons Inner Shield H₂O with E. Neutral-currents (NC): Support Structure 9500 PMTs, All flavors equally 60% coverage $v_x + d \rightarrow p + n + v_x$ Total neutrino flux 5300 tons Outer Shield H₂O D₂O phase: $n + d \rightarrow t + \gamma + 6.25 \text{ MeV}$ Salt phase (D₂O + 2 tons of NaCl): v_e flux (CC): 30% $\overline{0} = 0.301 \pm 0.033$ $n + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$'s + 8.6 MeV NCD phase (³He proportional counters): $n + {}^{3}\text{He} \rightarrow p + t + 0.76 \text{ MeV}$ $\phi_{\rm NC}^{\rm SNO} = 5.54^{+0.33}_{-0.31}(\text{stat})^{+0.36}_{-0.34}(\text{syst})$ total v flux (NC): 100% !!

The solar neutrino problem

The Sun produces v_e that arrive to the Earth as 1/3 v_e + 1/3 v_{μ} + 1/3 v_{τ}

→ flavor conversion: $v_e \rightarrow v_x$

Conversion mechanism ? Neutrino oscillations ??

The solar neutrino problem

The Sun produces v_e that arrive to the Earth as 1/3 v_e + 1/3 v_{μ} + 1/3 v_{τ}

→ flavor conversion: $v_e \rightarrow v_x$

Conversion mechanism ? Neutrino oscillations ??

Borexino: detection of low energy solar neutrinos

300 ton. liquid scintillator
first real-time measurement of 7Be neutrinos (< 5% error)
first real-time measurement of 8B flux below 4 MeV

- consistent with LMA parameters

The KamLAND reactor experiment

* average distance ~ 180 km \rightarrow sensitive to Δm^2_{21} few $10^{-5} \text{ eV}^2 (\Delta m^2_{LMA})$

* reactor experiment: $\bar{\nu}_e + p \rightarrow e^+ + n$

* CPT invariance: $(\Delta m^2_{21}, \theta_{12})$

Results from KamLAND

2002: First evidence $\bar{\nu}_e$ disappearance \rightarrow confirmation of solar LMA ν oscillations

KamLAND Coll, PRL 90 (2003) 021802

Results from KamLAND

2002: First evidence $\overline{\nu}_e$ disappearance \rightarrow confirmation of solar LMA ν oscillations

KamLAND Coll, PRL 90 (2003) 021802

2004: spectral distortions (L/E)

KamLAND Coll, PRL 94 (2005) 081801

Results from KamLAND

2002: First evidence $\bar{\nu}_e$ disappearance → confirmation of solar LMA ν oscillations KamLAND Coll, PRL 90 (2003) 021802

2004: spectral distortions (L/E)

KamLAND Coll, PRL 94 (2005) 081801

2008: 1-period oscillations observed \rightarrow high precision determination Δm^2_{21}

KamLAND Coll, PRL 100 (2008) 221803

Combined analysis solar + KamLAND data

KamLAND confirms LMA

 Best fit point: sin²θ₁₂ = 0.312 ^{+0.017}_{-0.015}
 Δm²₂₁ = 7.59 ^{+0.20}_{-0.18} × 10⁻⁵ eV²

 max. mixing excluded at more than 7σ

 \rightarrow Bound on θ_{12} dominated by solar data.

 \Rightarrow Bound on Δm^2_{21} dominated by KamLAND.

The atmospheric neutrino sector: (Δm²₃₁, sin²θ₂₃)

The atmospheric neutrino anomaly

Cosmic rays interacting with the Earth atmosphere producing pions and kaons, that decay generating neutrinos:

 $\pi^+ \to \mu^+ + \nu_\mu$ $\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$

$$\pi^- \to \mu^- + \bar{\nu}_\mu$$
$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

$$R_{\mu/e} = \frac{N_{\nu_{\mu}} + N_{\bar{\nu}_{\mu}}}{N_{\nu_{e}} + N_{\bar{\nu}_{e}}} \simeq 2$$

However, this prediction is in disagreement with the experimental results:

(p. He, ...)

μ

 v_{μ}

Ve

Atmospheric neutrinos

Super-K Coll., PRL 8 (1998) 1562.

Determination of atmospheric oscillation parameters

Three-neutrino analysis using latest Super-Kamiokande data

* 90% C.L. and 3σ regions.

Best fit point (IH):
 sin²θ₂₃ = 0.54
 Δm²₃₁ = 2.14 x 10⁻³ eV²

Long-baseline accelerator experiments

Neutrino beams are generated in accelerators from the decay of pions produced by the scattering of accelerated protons on a fixed target:

$$p+X \to \pi^\pm + Y$$

 $\begin{array}{c}
\pi^+ \to \mu^+ + \nu_\mu \\
\mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu
\end{array}$

 $\pi^- \to \mu^- + \overline{\nu}_\mu \\ \mu^- \to e^- + \overline{\nu}_e + \nu_\mu$

➡ the beam can be focalized to select only neutrinos or antineutrinos.

Goal: to test the atmospheric oscillations and improve parameter determination.

-> the experimental setup must be adjusted to be sensitive to $\Delta m^2 \sim 10^{-3} \text{ eV}^2$.

- K2K: L
$$\approx$$
 250 km, E _{ν} \approx 1.3 GeV

- MINOS: $L = 735 \text{ km}, \langle E_{\nu} \rangle \approx 3 \text{ GeV}$

K2K: KEK →Kamioka

MINOS: Fermilab → Soudan

consistent with atmospheric data
 atm v oscillations confirmed by laboratory exps

$v_{\mu} + \overline{v}_{\mu}$ disappearance data

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \frac{\sin^{2}(2\theta_{23})}{\sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}}{E/\text{GeV}} \times L/\text{km}\right)}$$
$$\left|\Delta m^{2}\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \text{eV}^{2} \qquad \left|\overline{\Delta m^{2}}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^{2}$$
$$\sin^{2}(2\theta) > 0.91 (90\% \text{ C.L.}) \qquad \sin^{2}(2\overline{\theta}) = 0.86 \pm 0.11$$

v_{μ} + \overline{v}_{μ} disappearance data

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \frac{\sin^{2}(2\theta_{23})}{\sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}/\text{eV} \times L/\text{km}}{E/\text{GeV}}\right)}$$
$$\left|\Delta m^{2}\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \text{eV}^{2} \qquad \left|\overline{\Delta m^{2}}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^{2}$$
$$\sin^{2}(2\theta) > 0.91 (90\% \text{ C.L.}) \qquad \sin^{2}(2\overline{\theta}) = 0.86 \pm 0.11$$

 2σ inconsistency

v_{μ} + \overline{v}_{μ} disappearance data

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \frac{\sin^{2}(2\theta_{23})}{\sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}/\text{eV} \times L/\text{km}}{E/\text{GeV}}\right)}$$
$$\left|\Delta m^{2}\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \text{eV}^{2} \qquad \left|\overline{\Delta m^{2}}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^{2} \\ \sin^{2}(2\theta) > 0.91 (90\% \text{ C.L.}) \qquad \left|\overline{\Delta m^{2}}\right| = 0.86 \pm 0.11$$
$$2\sigma \text{ inconsistency} \longrightarrow \text{More statistics}$$

v_{μ} + \overline{v}_{μ} disappearance data $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \frac{\sin^2(2\theta_{23})}{\sin^2} \sin^2\left(\frac{1.27 \times \Delta m_{32}^2/\text{eV} \times L/\text{km}}{E/\text{GeV}}\right)$ $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$ $\Delta m^2 = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2$ $\sin^2(2\theta) > 0.91 (90\% \text{ C.L.})$ $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$ 2σ inconsistency More statistics Ve appearance data (7x10²⁰ pot) $P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}\right)$

v_{μ} + \overline{v}_{μ} disappearance data $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \frac{\sin^2(2\theta_{23})}{\sin^2} \sin^2\left(\frac{1.27 \times \Delta m_{32}^2/\text{eV} \times L/\text{km}}{E/\text{GeV}}\right)$ $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$ $\overline{\Delta m^2} = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2$ $\sin^2(2\theta) > 0.91 (90\% \text{ C.L.})$ $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$ 2σ inconsistency More statistics Ve appearance data (7x10²⁰ pot) $P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}\right)$

 $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

\$\$54 electron events observed
 \$\$49.1 ± 7.0 ± 2.7 expected
 \$\$0.7σ excess

eV²)

 Δm^2 and $\Delta \overline{m}^2$ (10⁻³

v_{μ} + \overline{v}_{μ} disappearance data $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\frac{1.27 \times \Delta m_{32}^2/\text{eV} \times L/\text{km}}{E/\text{GeV}}\right)$ $\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$ $\Delta m^2 = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2$ $\sin^2(2\theta) > 0.91 (90\% \text{ C.L.})$ $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$ 2σ inconsistency More statistics Ve appearance data (7x10²⁰ pot) $P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}\left(\frac{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}{1.27 \times \Delta m_{32}^{2}/\text{eV}^{2} \times L/\text{km}}\right)$

* 54 electron events observed

49.1 ± 7.0 ± 2.7 expected

 \rightarrow 0.7 σ excess

NH: $sin^2(2\theta_{13}) < 0.12$ (90%CL) IH: $sin^2(2\theta_{13}) < 0.20$ (90%CL)

MINOS v_{μ} 90%

7.24 × 10²⁰ POT

Best v_u Fit

MINOS \overline{v}_{μ} 68% ---- MINOS v_{μ} 68%

Best ν_µ Fit

1.71× 10²⁰ POT

MINOS Preliminary

0.5 0.6 0.7 0.8 0.9

 $\sin^2(2\theta)$ and $\sin^2(2\overline{\theta})$

Combined analysis atmospheric + LBL data

Combining atmospheric with accelerator K2K and MINOS data we obtain a more precise determination of the oscillation parameters.

Bound on θ₂₃
 dominated by
 atmospheric data

Bound on Δm²₃₂ improved by LBL

Best fit point:

 $\sin^2\theta_{23} = 0.51 \pm 0.06 \qquad \qquad \sin^2\theta_{23} = 0.52 \pm 0.06 \\ \Delta m^2_{31} = 2.45 \pm 0.09 \times 10^{-3} \text{ eV}^2 \qquad \Delta m^2_{31} = -(2.34 \pm 0.10 \times 10^{-3} \text{ eV}^2)$

OPERA: from CERN to Gran sasso Decay "kink" principle: CERN's accelerator CERN Neutrinos ν_{μ} to Gran Sasso facility v_{τ} oscillation ~1 mm ____ 1 mm Germany I France Austria ν Italy Gran Sasso Pb (17.4%)

Kink

(17.8%)(49.5%) $\pi^+\pi^-\pi^-\nu$, $n\pi^\circ$ (14.5%) Multiprong

- ▶ L = 732 km.
- ♦ < E > ~ 17 GeV
- ▶ 2010: first observation of a v_{τ} in a v_{μ} beam.

The bound on θ_{13} + indications for $\theta_{13} \neq 0$

The CHOOZ reactor experiment

- * disappearance reactor Ve
- ✤ L = 1 km, E~MeV
- * 2v approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

* non-observation of v_e disappearance:

R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

The CHOOZ reactor experiment

- * disappearance reactor Ve
- ★ L = 1 km, E~MeV
- * 2v approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

* non-observation of v_e disappearance:

$R = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (syst)

Exclusion plot $(\Delta m^2_{31}, \theta_{13})$ plane

The CHOOZ reactor experiment

- * disappearance reactor Ve
- ✤ L = 1 km, E~MeV
- * 2v approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

non-observation of v_e disappearance:

R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

Exclusion plot $(\Delta m^2{}_{31}, \theta_{13})$ plane

For $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \text{ eV}^2$ -> $\sin^2 \theta_{13} < 0.039 (90\% \text{CL})$

The reactor antineutrino anomaly

Mention et al, arXiv:1101.2755

increase of 3.5% in the reactor antineutrino fluxes
 SBL reactor experiments show a deficit in the number of detected over expected neutrinos: R = 0.937 ± 0.027

* possible explanations: sterile neutrino(s) with $\Delta m^2 \sim 1 \ eV^2$

* SBL exps. should be included in a 3v fit, to account for normalization of reactor exps. (CHOOZ, KamLAND) at short distances.

Reevaluation of the CHOOZ bound after new flux predictions

Old flux predictions:

For $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \text{ eV}^2$ -> $\sin^2 \theta_{13} < 0.039$ (90%CL) ($\sin^2 2 \theta_{13} < 0.15$)

New flux predictions:

For $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \text{ eV}^2$:

 without SBL: sin²θ₁₃ < 0.049 (90%CL) (sin²2θ₁₃ < 0.19)
 with SBL: sin²θ₁₃ < 0.028 (90%CL) (sin²2θ₁₃ < 0.11)

► SBL + free norm: $\sin^2\theta_{13} < 0.023(90\%CL)$ ($\sin^2 2\theta_{13} < 0.09$)

Global bound on θ_{13}

- * solar + KamLAND + SBL: $sin^2\theta_{13} < 0.072$ at 3σ
- atmospheric + LBL :
- * CHOOZ + SBL:
- Global bound:

Schwetz, MT, Valle, New J. Phys. 13 (2011) 63004.

sin²θ₁₃ < 0.072 at 3σ sin²θ₁₃ < 0.057 (0.075) at 3σ for NH (IH) sin²θ₁₃ < 0.038 at 3σ sin²θ₁₃ < 0.035 (0.039) at 3σ for NH (IH)

 $\sin^2 \theta_{12}$

3-flavour oscillation parameters

Schwetz, MT, Valle, New J. Phys. 13 (2011) 63004.

[T2K Collaboration], arXiv:1106.2822 [hep-ex].

Search for v_e appearance:

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} \text{ L/4E}) + \dots$$

Expected number of events for $\sin^2 2\theta_{13} = 0$

	Beam ve background	NC background	Oscillated vµ→ve (solar term)	Total
The expected # of events at SK	0.8	0.6	0.1	1.5

[T2K Collaboration], arXiv:1106.2822 [hep-ex].

Search for v_e appearance:

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E) + ...$$

Expected number of events for $\sin^2 2\theta_{13} = 0$

	Beam ve background	NC background	Oscillated vµ→ve (solar term)	Total
The expected # of events at SK	0.8	0.6	0.1	1.5

After all selection cuts:

[T2K Collaboration], arXiv:1106.2822 [hep-ex].

Search for v_e appearance:

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E) + ...$$

Expected number of events for $\sin^2 2\theta_{13} = 0$

	Beam ve background	NC background	Oscillated vµ→ve (solar term)	Total
The expected # of events at SK	0.8	0.6	0.1	1.5

After all selection cuts:

[T2K Collaboration], arXiv:1106.2822 [hep-ex].

Search for v_e appearance:

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E) + ...$$

Expected number of events for $\sin^2 2\theta_{13} = 0$

		Beam ve background	NC background	Oscillated vµ→ve (solar term)	Total
i	The expected # of events at SK	0.8	0.6	0.1	1.5

After all selection cuts:

* 62 electron events observed
* 49.5 ± 7.0 (stat) ± 2.8 (syst) expected
⇒ 1.7σ excess

* 62 electron events observed
* 49.5 ± 7.0 (stat) ± 2.8 (syst) expected
⇒ 1.7σ excess

For NH (IH): sin²(2θ₁₃) < 0.12 (0.19) at 90%CL sin²(2θ₁₃) = 0.04 (0.08) best fit sin²(2θ₁₃) = 0 excluded at 89% CL Next generation of neutrino oscillation experiments

Low energy solar experiments

real time measurements pp, pep, ⁷Be fluxes
 [ES] KamLAND, CLEAN, SNO+
 [CC] LENS, MOON, XMASS

⇒ constrain SSM

⇒ transition low to high energies

- $\Rightarrow \theta_{12}$ precision measurements
- ⇒ signatures of new physics

Next generation of reactor experiments

Chasing θ_{13} ...

Chasing θ_{13} ...

3 proposals...

France

The Double Chooz concept $v_{0,\mu,\tau}$ $D_1 = 100-200 \text{ m}$ $D_2 = 1,050 \text{ m}$

260m high 70m high 150m ~1.5km Far Detector

China

Korea

more powerful reactors (multi-core)
larger detector volume
2-3 detectors at 100 m - 1 km.
sensitivity after 3 years (90% C.L.):
Double-CHOOZ: sin²θ₁₃~0.005 - 0.008 RENO: sin²θ₁₃~0.005 - 0.008 Daya Bay: sin²θ₁₃~0.0025

Next generation of accelerator experiments

* long-baseline experiments (300 - 800 km)
* "off-axis" technology-> monoenergetic neutrino beam.
* precision measurements of atmospheric oscillation parameters (1%).
* optimized to search for ν_e appearance in a ν_µ beam.
* potentially sensitive to CP violation.

* long-baseline experiments (300 - 800 km)
* "off-axis" technology-> monoenergetic neutrino beam.
* precision measurements of atmospheric oscillation parameters (1%).
* optimized to search for v_e appearance in a v_µ beam.
* potentially sensitive to CP violation.

Further in the <u>future</u>...

* long-baseline experiments (300 - 800 km)
* "off-axis" technology-> monoenergetic neutrino beam.
* precision measurements of atmospheric oscillation parameters (1%).
* optimized to search for v_e appearance in a v_µ beam.
* potentially sensitive to CP violation.

β-beams (2015-2020??):

Further in the future...

* improved sensitivity: $\sin^2 2\theta_{13} \lesssim 10^{-3}$

* discovery potential for δ_{CP} and hierarchy if $\theta_{13} \gtrsim 1^{\text{o}}$

Neutrino Factory (> 2020):

* sensitivity on θ_{13} , δ_{CP} , mass hierarchy.

Large underground detectors

 ${\sim}1$ Mton water Cherenkov detector at Kamioka

Hyper-Kamiokande

MEMPHYS

LENA

Muon

proposals in USA (DUSEL), Europe (LAGUNA) and Japan (Hyper-K).
detector technology:

- * Mton water Cerenkov: Hyper-Kamiokande, MEMPHYS, UNO
- * liquid scintillator: LENA
- * liquid Argon: GLACIER

* multi-purpose: p decay, supernova, LBL, solar, atmospheric, ...

Summary

confirmation of neutrino oscillations at different experiments.
 (Δm²₃₂, θ₂₃), (Δm²₂₁, θ₁₂) measured accurately (≤ 10%) by the combination of different experiments.

* upper bound on θ_{13} coming mainly from reactor experiments. * recent indications for $\theta_{13}\neq 0 \Rightarrow$ to be confirmed.

good level of precision: neutrino oscillations can be used to investigate the presence of non-standard physics.
 next generation of neutrino oscillation experiments:
 precision measurements of atm and solar parameters.
 new discoveries: θ₁₃, δ_{CP}, mass hierarchy, new physics...