I use words "triplet" for $SU(2)_L$, "3-rep." for A_4

Phenomenology in the Higgs Triplet Model with A₄ Symmetry

Hiroaki SUGIYAMA (Ritsumeikan Univ., Shiga, Japan)

Contents Introduction

- Higgs Triplet Model & A₄ Group
- Higgs Triplet Model with A₄ Symmetry
- Phenomenology (Higgs decays etc.)

Summary

some underlying physics for the lepton flavor ?

Motivation

Higgs Triplet Model : a simple model to generate neutrino masses

 restricted phenomenology on Higgs bosons by the neutrino oscillation measurements H^{--} h_{ee}^{*} eleptonic decays of the doubly charged Higgs boson $H^{--} \rightarrow \ell \ell'$ $\mu - \bar{h}_{\mu e} = \bar{e}$ flavor violating decays of charged leptons at the tree level $\mu \to \bar{e}ee \quad \tau \to \bar{\ell}\ell'\ell''$ h_{ee}^{*} flavor violating radiative decays of charged leptons $\ell \rightarrow \ell' \gamma$

 A_4 symmetry : a possibility to reproduce the MNS matrix in a simple way

sharp prediction about flavor structure in the lepton sector

our goal

sharp predictions about $H^{--} \to \ell \ell', \ \mu \to \overline{e}ee, \ \tau \to \overline{\ell}\ell'\ell'', \ \ell \to \ell'\gamma$ etc. in the Higgs Triplet Model with A_4 symmetry

Phenomenology in the Higgs Triplet Model with A₄ Symmetry

Hiroaki SUGIYAMA (Ritsumeikan Univ., Shiga, Japan)

Contents Introduction

- Higgs Triplet Model & A₄ Group
- Higgs Triplet Model with A₄ Symmetry
- Phenomenology (Higgs decays etc.)
- Summary

Higgs Triplet Model

the SM + a complex Higgs triplet of $SU(2)_L$ no ν_R (no seesaw mechanism)

Yukawa interaction with a complex Higgs triplet

Higgs triplet (Y = 2, L# = -2)

$$h_{\ell\ell'} \left(-\overline{(\ell_L)^c}, \underbrace{(\nu_{\ell L})^c}_{\Delta^0} \right) \left(\begin{array}{c} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{array} \right) \left(\begin{array}{c} \nu_{\ell' L} \\ \ell'_L \end{array} \right) + \text{h.c.}$$

 $|| = \sqrt{2}/\sqrt{2}$

$$\frac{1}{2} \sqrt{2} \underline{v_{\Delta}} h_{\ell\ell'} \overline{(\nu_{\ell L})^c} \nu_{\ell' L} + \text{h.c.} + \cdot$$

Majorana ν_L mass matrix

$$(M_{\nu})_{\ell\ell'} = \sqrt{2} \, \underline{v}_{\Delta} \, h_{\ell\ell'}$$

H⁺⁺ : doubly charged Higgs (characteristic particle)

W. Konetschny and W. Kummer, PLB70, 433 J. Schechter and J.W.F. Valle, PRD22, 2227 T.P. Cheng and L.F. Li, PRD22, 2860

alternating group on 4 letters

12 elements of A_4 group: even-permutations of 4 letters e, a_1, \cdots, a_{11}

1-dim. rep. : $\underline{\mathbf{1}}, \underline{\mathbf{1}}', \underline{\mathbf{1}}''$ 3-dim. rep. : $\underline{\mathbf{3}} = \begin{pmatrix} \mathbf{3}_y \\ \mathbf{3}_z \end{pmatrix}$

 A_4 is minimal one which includes 3-dim. irreducible rep.

Phenomenology in the Higgs Triplet Model with A₄ Symmetry

Hiroaki SUGIYAMA (Ritsumeikan Univ., Shiga, Japan)

Contents Introduction

- Higgs Triplet Model & A₄ Group
- Higgs Triplet Model with A₄ Symmetry
- Phenomenology (Higgs decays etc.)
- Summary

A_4 - Symmetric Higgs Triplet Model (A4HTM)

Particle contents

no $SU(2)_L \times U(1)_Y$ singlet fields (ν_R , "flavon")

	ψ_{1R}^-		ψ_{2R}^{-}		ψ^{3R}	$\Psi_{AL} = ($	$\left(egin{array}{c} \psi^0_{{f A}L} \ \psi^{{f A}L} \end{array} ight)$		A = x, y, z	
A_4		1	<u>1</u> ′		<u>1</u> "		<u>3</u>			
$SU(2)_L$		singlet	sing	let	t singlet		ıblet			
$U(1)_{T}$	<u>r</u>	-2		2	-2	-	-1			
	4		$\begin{pmatrix} + \\ A \\ A \end{pmatrix}$	δ =	$= \begin{pmatrix} \frac{\delta^+}{\sqrt{2}} \\ \delta^0 \end{pmatrix}$	$\left(egin{array}{c} \delta^{++} \ - rac{\delta^{+}}{\sqrt{2}} \end{array} ight)$	$\Delta_{\mathbf{A}} = \left($	$\frac{\Delta_A^+}{\sqrt{2}} \\ \Delta_A^0$	$ \begin{array}{c} \Delta_{\underline{A}}^{++} \\ -\frac{\Delta_{\underline{A}}^{+}}{\sqrt{2}} \end{array} \right) $	
		<u>3</u>	<u>1</u>			<u>3</u>				
		doublet			triple	triplet				
		1			2	2				

three Higgs doublets and four Higgs triplets

Vacuum alignment

Phenomenology in the Higgs Triplet Model with A₄ Symmetry

Hiroaki SUGIYAMA (Ritsumeikan Univ., Shiga, Japan)

Contents Introduction

- Higgs Triplet Model & A₄ Group
- Higgs Triplet Model with A₄ Symmetry
- Phenomenology (Higgs decays etc.)

Summary

Vacuum alignment : revisited

Λ.

$$egin{aligned} & \left(ig< \phi^0_x
ight
angle \ \left(ig< \phi^0_y
ight
angle \ \left(ig< \phi^0_y
ight
angle \ \left(ig< \phi^0_z
ight
angle \
ight) = \left(igvee v_{\delta} \ \left(ig< \phi^0_z
ight
angle \ \left(ig< \phi^0_z
ight
angle \
ight) = \left(igvee v_{\Delta} / \sqrt{2} \ 0 \ 0 \
ight) \ v = 246 \, {
m GeV} \quad \sqrt{v_{\delta}^2 + v_{\Delta}^2} \lesssim 1 {
m GeV} \end{aligned}$$

$$v: A_4 \to Z_3$$

 $v_\Delta: A_4 \to Z_2$
 $v_\Delta \ll v$ An approximate Z_3 symmetry remains in the A4HTM

Mass eigenstates of particles (excpt. for ν_i) should have definite Z_3 - charges

= eigenstates of T

A to Z (from mathematics to physics)

$$\frac{1}{\omega} \begin{pmatrix} e_{R} \\ \mu_{R} \\ \tau_{R} \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_{1R} \\ \psi_{2R} \\ \psi_{3R} \end{pmatrix} \frac{1}{1'} \\ \frac{1'}{1''} \\ \frac{1}{\omega} \begin{pmatrix} L_{e} \\ L_{\mu} \\ L_{\tau} \end{pmatrix} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} \end{pmatrix} \begin{pmatrix} \Psi_{xL} \\ \Psi_{yL} \\ \Psi_{zL} \end{pmatrix} \frac{3}{2}$$

$$\frac{\omega^{2}}{\omega} \begin{pmatrix} H_{1}^{++} \\ H_{2}^{++} \\ H_{3}^{++} \\ H_{4}^{++} \end{pmatrix} \equiv \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_{\pm\pm} & s_{\pm\pm} \\ 0 & 0 & -s_{\pm\pm} & c_{\pm\pm} \end{pmatrix} \begin{pmatrix} 1 & \omega & \omega^{2} & 0 \\ 1 & \omega^{2} & \omega & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & \sqrt{3}e^{-i\alpha_{\pm\pm}} \end{pmatrix} \begin{pmatrix} \Delta_{x}^{++} \\ \Delta_{y}^{++} \\ \Delta_{z}^{++} \\ \delta^{++} \end{pmatrix} \frac{3}{1}$$

13/17

Triplet Yukawa in physics basis (renormalizable)

$$(h_{i\pm\pm})_{\ell\ell'} \overline{(\ell_L)^c} \ell'_L H_i^{++} + \text{h.c.} \qquad \begin{array}{c} 1 & \omega & \omega^2 & \omega^2 & \omega^2 \\ \frac{2}{\sqrt{3}} h_\Delta \left\{ -\overline{(e_L)^c} \mu_L + \overline{(\tau_L)^c} \tau_L \right\} H_1^{++} \\ h_{1\pm\pm} &= \frac{1}{\sqrt{3}} h_\Delta \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \\ h_{2\pm\pm} &= \frac{1}{\sqrt{3}} h_\Delta \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ h_{3\pm\pm} &= \frac{1}{\sqrt{3}} h_\Delta c_{\pm\pm} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_\delta s_{\pm\pm} e^{i\alpha_{\pm\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ h_{4\pm\pm} &= -\frac{1}{\sqrt{3}} h_\Delta s_{\pm\pm} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + h_\delta c_{\pm\pm} e^{i\alpha_{\pm\pm}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ \end{array}$$

	Phenom	nenology
$\underline{H_i^{} \to \ell \ell'}$		prediction in A4HTM
$H_i^{} \xrightarrow{(h_{i\pm\pm})_{\ell\ell'}} \ell$		$BR(H_i^{} \to \ell \ell')$ $11 \omega \; \omega \; \omega^2 \omega^2 \; 1 \omega \; 1 \omega^2 \; \omega \omega^2$ $ee : \; \mu \mu : \; \tau \tau : \; e\mu : \; e\tau : \; \mu \tau$
e'	$\omega H_1^{}$	0: 0: 2: 1: 0: 0
same-signed	$\begin{array}{c} \omega^{-} H_{2} \\ \hline 1 H_{3}^{} \end{array}$	0:2:0:0:1:0 $R_3^{\pm\pm}:0:0:0:0:1$
charged leptons ↓	$1 H_4^{}$	$R_4^{\pm\pm}: \ 0 \ : \ 0 \ : \ 0 \ : \ 1$
clear signal	$R_3^{\pm\pm}$ =	$\equiv rac{ 2h_\Delta c_{\pm\pm}+\sqrt{3}h_\delta s_{\pm\pm}e^{ilpha_{\pm\pm}} ^2}{2 h_\Delta c_{\pm\pm}-\sqrt{3}h_\delta s_{\pm\pm}e^{ilpha_{\pm\pm}} ^2}$
testable at LHC	$R_4^{\pm\pm}$:	$\equiv rac{ 2h_\Delta s_{\pm\pm}-\sqrt{3}h_\delta c_{\pm\pm}e^{ilpha_{\pm\pm}} ^2}{2 h_\Delta s_{\pm\pm}+\sqrt{3}h_\delta c_{\pm\pm}e^{ilpha_{\pm\pm}} ^2}$
if some of them are light	parts of z	zero : Z_3 nonzero values : A_4

Ω

1

A4HTM is a **renormalizable model** for neutrino masses and mixings (no "flavons")

A4HTM is testable at LHC

		$\parallel \qquad \mathrm{BR}(H_i^{} o \ell \ell')$										
		11 ee	•	ω	י :	$\frac{\omega^2 \omega}{\tau \tau}$	2ں :	$\frac{1\omega}{e\mu}$:	$\frac{1\omega}{e\tau}$, 2	$\frac{\omega\omega^2}{\mu\tau}$
ω	$H_1^{}$	0		0	•	2	е *	1	•	0	•	0
ω^2	$H_2^{}$	0	E F	2	•	0	-	0	E E	1	E E	0
1	$H_{3}^{}$	$R_3^{\pm\pm}$	•	0	•	0	•	0	•	0	•	1
1	$H_{4}^{}$	$R_4^{\pm\pm}$	•	0	•	0	•	0	•	0	•	1

 $\begin{array}{l} & \omega^{2} \quad \frac{1\omega\omega}{\overline{e}\mu\mu}, \quad \frac{\omega^{2}11}{\overline{\mu}ee} \\ \text{possible} : \quad \tau \to \overline{\overline{e}}\mu\mu, \quad \tau \to \overline{\mu}ee \\ \text{almost forbidden} : \quad \tau \to \overline{\overline{e}}ee, \quad \tau \to \overline{\overline{e}}e\mu, \quad \tau \to \overline{\mu}\mu\mu, \quad \tau \to \overline{\mu}e\mu \\ \quad \mu \to \overline{\overline{e}}ee, \quad \mu \to e\gamma \end{array}$

17/17

Possible Realization of the Vacuum

Higgs potential in HTM

$$V = -m^2(\Phi^{\dagger}\Phi) + M^2 \text{Tr}(\Delta^{\dagger}\Delta) + \left(\frac{1}{\sqrt{2}}\mu(\Phi^T i\sigma^2 \Delta^{\dagger}\Phi) + \text{h.c}\right) + (\text{quartic terms})$$

 $v \equiv \sqrt{2} \langle \phi^0 \rangle = 246 \,\text{GeV}$: spontaneous breaking of $SU(2)_L$ $v_\Delta \equiv \sqrt{2} \langle \Delta^0 \rangle \simeq \frac{\mu v^2}{2M^2}$: explicit breaking of L# \longrightarrow no NG-boson for L# ("Majoron")

Soft breaking terms of L# and A_4 in A4HTM (a possibility)

$$\tilde{V}_{\mu} = \frac{1}{\sqrt{2}} \underbrace{\Phi_{\alpha} \Phi_{\beta}}_{\Delta} \underbrace{1}_{1} (i\sigma^{2}\delta^{\dagger})_{\alpha\beta} + \frac{1}{\sqrt{2}} \underbrace{\Phi_{\alpha} \Phi_{z\beta}}_{\Delta x} \underbrace{\Phi_{z\beta}}_{z\beta} (i\sigma^{2}\Delta_{x}^{\dagger})_{\alpha\beta} + \text{h.c.}$$

$$v_{\delta} \equiv \sqrt{2} \langle \delta^{0} \rangle \qquad v_{\Delta} \equiv \sqrt{2} \langle \Delta_{x}^{0} \rangle \quad \langle \Delta_{y}^{0} \rangle = \langle \Delta_{z}^{0} \rangle = 0$$

one necessary condition : $v_{\delta} \operatorname{Re}(\lambda'_{4s} + \lambda'_{5s}) + v_{\Delta}(\lambda_{4\Delta ss} + \lambda_{5\Delta ss}) = 0$