Right unitarity triangles and tribimaximal mixing from discrete symmetries and unification

Martin Spinrath

FLASY 20II - I2th July

Based on collaborations with S.Antusch, S.F. King, C. Luhn and M. Malinsky: PRD 8 I (20I0) 033008, PRD 83 (20II) 0I3005, NPB 850 (201I) 477

Outline

- Motivation
- Quark Mixing Sum Rules
- Discrete Vacuum Alignment
- Examples
- Summary and Conclusions

Outline

- Motivation

- Quark Mixing Sum Rules
- Discrete Vacuum Alignment
- Examples
- Summary and Conclusions

The CKM Unitarity Triangle

$$
V_{b i}^{\dagger} V_{i d}=0
$$

Fit result [UTfit]: $\alpha=(87.8 \pm 3.0)^{\circ}$

Plot and number taken from the UTfit collaboration summer 2010 results (pre-ICHEP)

The CKM Unitarity Triangle

$$
V_{b i}^{\dagger} V_{i d}=0
$$

Fit result [UTfit]: $\alpha=(87.8 \pm 3.0)^{\circ}$

Accident???

Plot and number taken from the UTfit collaboration summer 2010 results (pre-ICHEP)

Outline

- Motivation
- Quark Mixing Sum Rules
- Discrete Vacuum Alignment
- Examples
- Summary and Conclusions

Assumptions

[Antusch, King, Malinsky, MS 20IO]

- Hierarchical Quark Mass Matrices
 - Texture Zeros in the I-3 Elements

The Sum Rules

[Antusch, King, Malinsky, MS 20IO]

$$
\begin{aligned}
\theta_{12}^{u} & =\frac{\theta_{13}}{\theta_{23}}=(4.96 \pm 0.30)^{\circ} \\
\theta_{12}^{d} & =\left|\theta_{12}-\frac{\theta_{13}}{\theta_{23}} e^{-i \delta_{\mathrm{CKM}}}\right|=\left(12.0_{-0.22}^{+0.39}\right)^{\circ} \\
\alpha \alpha & =\delta_{12}^{d}-\delta_{12}^{u}=\left(89.0_{-4.2}^{+4.4}\right)^{\circ}
\end{aligned}
$$

Idea: Mass matrices with purely real/imaginary elements!

[Antusch, King, Malinsky, MS 20IO]
see also [Fritzsch and Xing; Masina and Savoy 2006;
Harrison, Dallison, Roythorne, Scott 2009]

Outline

- Motivation
- Quark Mixing Sum Rules
- Discrete Vaccum Alignment
- Examples
- Summary and Conclusions

Ingredients

- Discrete Family Symmetry ($\mathrm{A}_{4}, \mathrm{~S}_{4}, \ldots$)
- Discrete Shaping Symmetry (Z_{n} 's)
- Spontaneous CP violation
- SUSY GUT (SU(5), ...)

The Method I

- Use family symmetry to align flavon, e.g.:

$$
\langle\phi\rangle \propto(0,0, x)^{T} \quad \text { or } \quad\langle\phi\rangle \propto(x, x, x)^{T}
$$

- Add term to W compatible with shaping symmetry:

$$
P\left(\frac{\phi^{n}}{\Lambda^{n-2}} \mp M^{2}\right)
$$

- Solve F-term condtions ($\left|\mathrm{F}_{\mathrm{p}}\right|=0$)

$$
\arg (\langle\phi\rangle)=\arg (x)= \begin{cases}\frac{2 \pi}{n} q, \quad q=1, \ldots, n & \text { for " }-" \\ \frac{2 \pi}{n} q+\frac{\pi}{n}, \quad q=1, \ldots, n & \text { for " }+"\end{cases}
$$

Outline

- Motivation
- Quark Mixing Sum Rules
- Discrete Vacuum Alignment
- Examples
- Summary and Conclusions

First Example: Ingredients ${ }^{\text {nemancummmann }}$

- Symmetries: $\operatorname{SU}(5) \times A_{4} \times G_{\text {shaping }}$
- 5 Flavons
- Matter sector: $\mathrm{F}_{\mathrm{I}}^{\mathrm{I}, 2,3} \mathrm{~N}_{\mathrm{I}, 2}$
- Higgs Fields in 5-, 24-, 45-dim. SU(5) Reps.

First Example: Alignment memancammsann

We use the following flavon alignment:

$$
\begin{aligned}
& \left\langle\phi_{1}\right\rangle \propto\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left\langle\phi_{2}\right\rangle \propto\left(\begin{array}{c}
0 \\
-\mathrm{i} \\
0
\end{array}\right),\left\langle\phi_{3}\right\rangle \propto\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \\
& \left\langle\phi_{23}\right\rangle \propto\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right),\left\langle\phi_{123}\right\rangle \propto\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

For details of the alignment, see paper...

The Matter Sector

[Antusch, King, Luhn, MS 201I]

We work in an SU(5) GUT:

$$
F_{i}=\left(\begin{array}{c}
d_{R}^{c} \\
d_{B}^{c} \\
d_{G}^{c} \\
e \\
-\nu
\end{array}\right)_{i}, \quad T_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
0 & -u_{G}^{c} & u_{B}^{c} & -u_{R} & -d_{R} \\
u_{G}^{c} & 0 & -u_{R}^{c} & -u_{B} & -d_{B} \\
-u_{B}^{c} & u_{R}^{c} & 0 & -u_{G} & -d_{G} \\
u_{R} & u_{B} & u_{G} & 0 & -e^{c} \\
d_{R} & d_{B} & d_{G} & e^{c} & 0
\end{array}\right)_{i}, \quad N_{1,2}
$$

We know the family and the shaping symmetries...

The Quark Sector

For the Yukawa matrices in the quark sector we find:

$$
\begin{aligned}
Y_{d} & =\left(\begin{array}{ccc}
0 & \text { i } \epsilon_{2} & 0 \\
\epsilon_{123} & \epsilon_{23}+\epsilon_{123} & -\epsilon_{23}+\epsilon_{123} \\
0 & 0 & \epsilon_{3}
\end{array}\right), \\
Y_{u} & =\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{12} & a_{22} & a_{23} \\
0 & a_{23} & a_{33}
\end{array}\right) .
\end{aligned}
$$

The sum rule is applicable and we have a right-angled CKM unitarity triangle!!!

The Lepton Sector

[Antusch, King, Luhn, MS 20II]
In the lepton sector we find:

$$
M_{R}=\left(\begin{array}{cc}
M_{R_{1}} & 0 \\
0 & M_{R_{2}}
\end{array}\right), Y_{\nu}=\left(\begin{array}{cc}
0 & a_{\nu_{2}} \\
a_{\nu_{1}} & a_{\nu_{2}} \\
-a_{\nu_{1}} & a_{\nu_{2}}
\end{array}\right),
$$

- New GUT relations
- No unitarity triangle
- Small deviations from tri-bimaximal mixing

Another Model (same same, but different)

[Antusch, King, MS 20I0]

- Symmetries: $\operatorname{SU}(5) \times \mathrm{A}_{4} \times \mathrm{G}_{\text {shaping }}$
- Matter sector as before: F,T, N
- Flavons: ϕ_{23}, ϕ_{123} and ϕ_{3} as before New Flavon: $\left\langle\tilde{\phi}_{23}\right\rangle \propto\left(\begin{array}{lll}0 & -i & w\end{array}\right)^{T}$
- H_{15} for type-II-seesaw

The SMYukawas

[Antusch, King, MS 20I0]

$$
\begin{aligned}
& \begin{array}{l}
Y_{u}=\left(\begin{array}{ccc}
2 a_{11} \epsilon_{23}^{2} & 0 & a_{13} \epsilon_{23} \epsilon_{3} \\
0 & 3 a_{22} \epsilon_{123}^{2}+\left(w^{2}-1\right) \tilde{a}_{22}^{2} \tilde{\epsilon}_{23}^{2} & a_{23} \epsilon_{1} \hat{p}_{3} \epsilon_{3} \\
a_{13} \epsilon_{23} \epsilon_{3} & a_{23} \epsilon_{123} \epsilon_{3} & a_{13}
\end{array}\right) \\
Y_{d}=\left(\begin{array}{ccc}
0 & \epsilon_{23} & -\epsilon_{23} \\
\epsilon_{123} & \epsilon_{123}+i \tilde{\epsilon}_{23} & \epsilon_{123}+w \tilde{\epsilon}_{23}
\end{array}\right)
\end{array} \\
& \text { Phase Sum Rule } \\
& Y_{e}^{T}=\left(\begin{array}{ccc}
0 & \epsilon_{23} & -\epsilon_{23} \\
\epsilon_{123} & \epsilon_{123}+\frac{(\underline{2} i}{} i \tilde{\epsilon}_{23} & \epsilon_{123}+\frac{9}{2} w \tilde{\epsilon}_{23} \\
0 & 0 & \epsilon_{3}
\end{array}\right) \\
& \text { not valid!! }
\end{aligned}
$$

What about the CKM CP phase?

From y_{e}, y_{μ}, and θ_{12} we can determine it to:

$$
\delta_{C K M} \approx 69.9^{\circ}
$$

This is in perfect agreement with experiment:

$$
\delta_{C K M} \approx\left(68.8_{-2.3}^{+4.0}\right)^{\circ}
$$

This is only due to the $9 / 2!$!

The Neutrino Sector

[Antusch, King, MS 2010]
The effective neutrino mass matrix:

$$
m_{\nu}=m_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{m_{2}^{\prime}}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{3}^{\prime}}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

We predict (at the GUT scale):

$$
\begin{aligned}
& \theta_{12}^{M N S} \approx 35.1^{\circ}, \\
& \theta_{23}^{M N S}=45^{\circ}, \\
& \alpha_{1} \approx 9.1^{\circ}, \\
& \theta_{13}^{M N S} \approx 3.3^{\circ}, \\
& \alpha_{2}=0^{\circ}
\end{aligned}
$$

At low energies (RGE effects below 1°): $\begin{gathered}\text { [Gonzale-Garcia, Maltoni, } \\ \text { Savado 2010] }\end{gathered}$
$\theta_{12}^{M N S}=(34.5 \pm 1.0)^{\circ}$,
$\theta_{23}^{M N S}=\left(42.3_{-2.8}^{+5.3}\right)^{\circ}$,

$$
\alpha_{1} \approx ?
$$

$$
\begin{aligned}
\theta_{13}^{M N S} & =\left(5.7_{-3.9}^{+3.0}\right)^{\circ}, \\
\alpha_{2} & =?
\end{aligned}
$$

Neutrinoless

Double Beta Decay

[Antusch, King, MS 20I0]

Outline

- Motivation
- Quark Mixing Sum Rules
- Discrete Vacuum Alignment
- Examples
- Summary and Conclusions

Summary \& Conclusions

- Quark Phase Sum Rule
- Simple method to fulfill this Phase Sum Rule
- Spontaneous CP violation
- Family Symmetry: A_{4}, S_{4}, \ldots
- Shaping Symmetries: Z_{2} 's and/or Z_{4} 's
- In combination with GUTs:
- (Small) Deviations from Tri-Bimaximal Mixing
- Predictions for Leptonic CP Phases

Backup

Symmetries

(Flavon Sector)

	$S U(5)$	A_{4}	$\mathbb{Z}_{4}^{(1)}$	$\mathbb{Z}_{4}^{(2)}$	$\mathbb{Z}_{4}^{(3)}$	$\mathbb{Z}_{4}^{(4)}$	$\mathbb{Z}_{2}^{(1)}$	$\mathbb{Z}_{2}^{(2)}$	$U(1)_{R}$
Flavons									
ϕ_{1}	$\mathbf{1}$	$\mathbf{3}$	3	0	0	0	0	0	0
ϕ_{2}	$\mathbf{1}$	$\mathbf{3}$	3	3	0	0	0	0	0
ϕ_{3}	$\mathbf{1}$	$\mathbf{3}$	0	0	0	0	1	0	0
ϕ_{123}	$\mathbf{1}$	$\mathbf{3}$	0	0	3	0	0	0	0
ϕ_{23}	$\mathbf{1}$	$\mathbf{3}$	0	0	3	3	0	0	0
ξ	$\mathbf{1}$	$\mathbf{1}$	0	0	1	0	0	0	0
Driving Fields									
P_{i}	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	2
A_{1}	$\mathbf{1}$	$\mathbf{3}$	2	0	0	0	0	0	2
A_{2}	$\mathbf{1}$	$\mathbf{3}$	2	2	0	0	0	0	2
A_{3}	$\mathbf{1}$	$\mathbf{3}$	0	0	0	0	0	0	2
A_{123}	$\mathbf{1}$	$\mathbf{3}$	0	0	2	0	0	0	2
$O_{1 ; 2}$	$\mathbf{1}$	$\mathbf{1}$	2	1	0	0	0	0	2
$O_{1 ; 3}$	$\mathbf{1}$	$\mathbf{1}$	1	0	0	0	1	0	2
$O_{2 ; 3}$	$\mathbf{1}$	$\mathbf{1}$	1	1	0	0	1	0	2
$O_{1 ; 23}$	$\mathbf{1}$	$\mathbf{1}$	1	0	1	1	0	0	2
$O_{123 ; 23}$	$\mathbf{1}$	$\mathbf{1}$	0	0	2	1	0	0	2

Proof of Principle!

Symmetries (Matter and Higgs Sector)

[Antusch, King, Luhn, MS 2011]		$S U(5)$	A_{4}	$\mathbb{Z}_{4}^{(1)}$	$\mathbb{Z}_{4}^{(2)}$	$\mathbb{Z}_{4}^{(3)}$	$\mathbb{Z}_{4}^{(4)}$	$\mathbb{Z}_{2}^{(1)}$	$\mathbb{Z}_{2}^{(2)}$	$U(1)_{R}$
	Matter Fields									
	F	$\overline{5}$	3	0	0	0	0	0	1	1
	T_{1}	10	1	1	0	0	0	0	0	1
	T_{2}	10	1	0	0	1	0	0	0	1
	T_{3}	10	1	0	0	0	0	1	0	1
	N_{1}	1	1	0	0	3	3	0	0	1
	N_{2}	1	1	0	0	3	0	0	0	1
Higgs Fields										
	\bar{H}_{1}	$\overline{5}$	1	0	1	0	0	0	0	0
		$\overline{45}$	1	0	0	0	1	0	0	0
New GUT		$\overline{5}$	1	0	0	0	0	0	0	0
relations!!!		5	1	0	0	0	0	0	0	0
[Antusch, MS '09]		24	1	0	0	0	0	0	1	0

