Leptogenesis and Flavour Symmetries

H. Serôdio CFTP - Instituto Superior Técnico, Lisboa

Works in collaboration with: G.C.Branco, R. González Felipe, N.M.Rebelo, HS, PRD (2009) R. González Felipe, HS, PRD (2010) I. de Medeiros Varzielas, R. González Felipe, HS, PRD (2011)

FLASY, Valencia, 14 July 2011

See-saw models

Type-I see-saw: addition of heavy singlet fields, ν_R .

$$-\mathcal{L}_{High} = \overline{\ell_L} Y_D \tilde{\phi} \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \text{H.c.}$$

Type-II see-saw: addition of heavy scalar triplet fields, Δ .

$$-\mathcal{L}_{High} = \frac{1}{2} \overline{\ell_L^c} Y_\Delta \Delta \ell_L + M_\Delta^2 \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) + \mu \widetilde{\phi}^{\,\mathsf{T}} \Delta \widetilde{\phi} + \mathrm{H.c.}$$

Low-Energy:

$$\mathcal{L}_{eff} = \frac{1}{2} \overline{\nu_L} m_\nu \nu_L^c + \text{H.c.}$$
$$[m_\nu]_I = m_D M_R^{-1} m_D^T, \quad [m_\nu]_{II} = v_\Delta^* Y_\Delta^*$$

Hugo Serôdio (CFTP-IST)

▲ □ ▶ ▲ □ ▶ ▲

See-saw models and Leptogenesis CP asymmetry Sakharov conditions: β , ζ and ζ Pand Out of thermal equilibrium Type-I: (ϵ_k^{α}) Type-II: $(\epsilon_a^{\alpha\beta})$

$$\frac{\Gamma\left(N_k \to \ell_\alpha \bar{\phi}\right) - \Gamma\left(N_k \to \bar{\ell}_\alpha \phi\right)}{\Gamma\left(N_k \to \ell_\alpha \bar{\phi}\right) + \Gamma\left(N_k \to \bar{\ell}_\alpha \phi\right)}$$

$$2 \times \frac{\Gamma(\Delta_a^* \to \ell_\alpha \ell_\beta) - \Gamma(\Delta_a \to \bar{\ell}_\alpha \bar{\ell}_\beta)}{\Gamma_{\Delta_a} + \Gamma_{\Delta_a^*}}$$

$$\begin{aligned} \epsilon_{k}^{\alpha} &\propto \operatorname{Im} \begin{bmatrix} m_{D,k\alpha}^{\dagger} m_{D,\alpha m} H_{km} \end{bmatrix} \text{flavoured} \quad \epsilon_{a}^{\alpha\beta} &\propto \operatorname{Im} \begin{bmatrix} \mu_{a}^{*} \mu_{b} Y_{\alpha\beta}^{b} Y_{\alpha\beta}^{*a} \end{bmatrix} \text{flavoured} \\ \epsilon_{k} &= \sum_{\alpha} \epsilon_{k}^{\alpha} &\propto \operatorname{Im} \begin{bmatrix} H_{km}^{2} \end{bmatrix} \text{ unflavoured} \qquad &\propto \operatorname{Im} \begin{bmatrix} \operatorname{Tr} \left(Y^{b} Y^{\dagger a} \right) Y_{\alpha\beta}^{b} Y_{\alpha\beta}^{*a} \end{bmatrix} \\ \text{with } H &= m_{D}^{\dagger} m_{D} \end{aligned}$$

Symmetry of Matrices

We shall focus on 3 × 3 matrices: • Hermitian Matrices:

 $G^{\dagger}MG = M, \quad M = UdU^{\dagger}$

Generators

$$G_i = g_2 \mathbb{I} + (g_1 - g_2) v_i v_i$$

where $|g_i| = 1$.

• Symmetric Matrices:

$$G^{T}MG = M, \quad M = U^* dU^{\dagger}$$

Generators

$$G_i = g_2 \mathbb{I} + (g_1 - g_2) v_i v_i^{\dagger}$$

where $g_i^2 = 1$.

C.S.Lam, PRD (2006) W. Grimus, L. Lavoura, P.O. Ludl, JPG (2009)

S.F. King, C. Luhn, JHEP (2009)

Symmetry Group
$$U(1) \times U(1) \times U(1)$$

$$\mathsf{Z}_2\times\mathsf{Z}_2\times\mathsf{Z}_2$$

Pure mathematical result!

Symmetry of mass as residual symmetry R. González Felipe, HS, PRD (2010)

$$\underline{\text{Type-I:}} - \mathcal{L}_{High} = \overline{\nu_L} m_D \nu_R + \frac{1}{2} \overline{\nu_R^c} M_R \nu_R \longrightarrow \mathcal{L}_{Low} = \frac{1}{2} \overline{\nu_L} m_\nu \nu_L^c$$

We always have

$$G_L^\dagger m_
u G_L^* = m_
u$$
 and $G_R^\intercal M_R G_R = M_R$

What are the consequences if:

 $\nu_L \rightarrow G_L \nu_L$, $\nu_R \rightarrow G_R \nu_R$ is a residual symmetry?

We get the constraint

$$G_L^\dagger m_D G_R = m_D$$

Hugo Serôdio (CFTP-IST)

Symmetry of mass as residual symmetry In the physical basis for Leptogenesis

$$G_R^{\prime au} d_R G_R^{\prime} = d_R$$
 and $G_R^{\prime \dagger} H G_R^{\prime} = H$

- non-degenerate M_i : G_R is diagonal with ± 1 . H diagonal
- degenerate M_i : $G_R'^T G_R' = 1 \longrightarrow G_R''^{\dagger} V_H^T V_H G_R'' = V_H^T V_H$, where V_H diagonalizes H. $V_H^T V_H$ has to be diagonal.

Parametrize: $V_H = O_1 K O_2$.

Two conditions:

1) $O_2 = d\mathcal{P}$, $d = diag(\pm 1, \pm 1, \pm 1)$ 2) $\mathcal{K}^2 = e^{i\alpha}$

 $H_{ij} \in \mathbb{R}$, the freedom $u_R
ightarrow O
u_R$ leads to H diagonal

 $G_L^{\dagger} m_D G_R = m_D \Leftrightarrow U_L^D = U_{\nu} \mathcal{P} K , U_R^D = U_R \mathcal{P}' K$ No leptogenesis!

see also: E.Bertuzzo, P.Di Bari, F.Feruglio, E.Nardi, JHEP (2009)

(ロ) (間) (目) (日) (日)

Mass-independent textures

The diagonalization independent of the mass parameters (eigenvalues).

Rewriting the see-saw: $d_{\nu} = A d_R^{-1} A^T$ with $A = U_{\nu}^{\dagger} U_L^D d_D U_R^{D\dagger} U_R$

$$\sum_{k} M_{k}^{-1} A_{ik}^{2} = m_{i}, \quad \sum_{k} M_{k}^{-1} A_{ik} A_{jk} = 0$$

 $\left\{ \begin{array}{l} {\rm A \ is \ real, \ at \ least \ 6} \\ {\rm A}_{ij} \ {\rm vanish.} \ \nu_R \ {\rm degen.} \\ {\rm U}_R \rightarrow {\rm U}_R {\rm O}. \end{array} \right.$

Two distinct solutions: • $det(m_{\nu}) \neq 0$: $A = \mathcal{P}K d_D K^* \mathcal{P}'$

> Again No leptogenesis!

• $\det(\mathbf{m}_{\nu}) = \mathbf{0} : m_D = U_{\nu}A$

 $egin{aligned} H &= A^T A \ (ext{real}) \ m^*_{D,lpha i} m_{D,lpha j} = \ \sum_{k,k'} U^*_{lpha k} U_{lpha k'} A_{ki} A_{k'j} \end{aligned}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

see also: D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo, S. Morisi, NPB (2010) S.Choubey, S.F. King, M.Mitra, PRD(2010)

 $U_L^D = U_
u \mathcal{P} K$,

 $U_{R}^{\overline{D}} = U_{R}\mathcal{P}'K$

 $G_{I}^{\dagger}m_{D}G_{R}=m_{D}$

Leptogenesis and Flavour Symmetries

FLASY-2011 7 / 10

TB mixing from A_4 and Resonant Leptogenesis

G.C.Branco, R. González Felipe, N.M.Rebelo, HS, PRD (2009)

Resonant flavoured Leptogenesis:

$$\epsilon_{i}^{\alpha} \propto \sum_{j \neq i} \frac{\delta_{ij}^{N}}{\left(\delta_{ij}^{N}\right)^{2} + \left(\frac{H_{ji}}{16\pi}\right)^{2}} \frac{\mathcal{I}m\left[H_{ij}Y_{\alpha i}^{*}Y_{\alpha j}\right]}{H_{ii}}$$

using RGE
$$(t = \ln(\Lambda/M)/16\pi^2)$$

$$\delta_{ij}^{N} = 2 (H_{ii} - H_{jj}) t, \quad H_{ij} \simeq 3y_{\tau}^{2} Y_{3i}^{*} Y_{3j} t$$

using soft breaking $\delta M \overline{\nu_{3R}^c} \nu_{3R}$

$$M_R^{-1} = rac{1}{M} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 +
ho e^{i\varphi} \end{pmatrix}$$

Image: A matrix and a matrix

Leptogenesis in Type-II

I. de Medeiros Varzielas, R. González Felipe, HS, PRD (2011)

Type-II

- unflavoured $\epsilon_a \propto \lim \left[\mu_a^* \mu_b \operatorname{Tr} \left(Y^b Y^{\dagger a} \right) \right]$ product C and P is traceless. Zero unless D is present or $Y \sim C + P$
- flavoured $\begin{aligned} \epsilon_{a}^{\alpha\beta} \propto & \text{Im} \left[\mu_{a}^{*} \mu_{b} Y_{\alpha\beta}^{b} Y_{\alpha\beta}^{*a} \right] \\ \propto & \text{Im} \left[\text{Tr} \left(Y^{b} Y^{\dagger a} \right) Y_{\alpha\beta}^{b} Y_{\alpha\beta}^{*a} \right] \\ & \text{not restricted in general} \end{aligned}$

TB mixing (de Medeiros's Talk)

$$m_{TB} = x'C + y'P + z'D,$$

$$C = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad D = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

mass-independent mixing (X)

$$m_{\nu} = K_X m_{TB} K_X^T, \ U_X = K_X U_{TB}$$

Conclusions

- Type-I see-saw flavour models that predict a mass-independent mixing → No leptogenesis in leading order
- In these models the symmetry of mass matrices is the residual symmetry of the Lagrangian, i.e. $\nu_L \rightarrow G_L \nu_L$ and $\nu_R \rightarrow G_R \nu_R$.
- Type-II see-saw is not so restrictive in flavour models, and in the simplest implementation can be related to the inverted neutrino mass spectrum.