Predicting Deviations and Alternatives to tri-bimaximal Mixing

Outline

- Current Status of PMNS
- Tri-bimaximal Mixing (TBM):
 - abundance of models
 - importance of neutrino mass observables
 - deviating from TBM: how to get $\theta_{13}\simeq 0.1$
- Alternatives to TBM
- sterile neutrinos?

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
atmospheric and LBL

$$\stackrel{?}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} sBL reactor \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{?}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

$$\stackrel{(sin^{2}\theta_{13} \stackrel{?}{=} 0)}{(sin^{2}\theta_{13} \stackrel{?}{=} 0)} \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

$$\stackrel{(sin^{2}\theta_{12} \stackrel{?}{=} \frac{1}{3})}{(sin^{2}\theta_{12} \stackrel{?}{=} \frac{1}{3})}$$

$$\stackrel{(alk by Mariam}{}$$

Mixing close to TBM \Rightarrow expand around it

$$U = R_{23} \left(-\frac{\pi}{4}\right) R_{23}(\epsilon_{23}) \tilde{R}_{13}(\epsilon_{13}; \delta) R_{12}(\epsilon_{12}) R_{12} \left(\sin^{-1}\frac{1}{\sqrt{3}}\right)$$

Only one small ϵ_{ij} responsible for deviation of (and only of) θ_{ij} from θ_{ij}^{TBM}

$$\sin^2 \theta_{12} = \frac{1}{3} \left(\cos \epsilon_{12} + \sqrt{2} \sin \epsilon_{12} \right)^2$$
$$\simeq \frac{1}{3} + \frac{2\sqrt{2}}{3} \epsilon_{12} + \frac{1}{3} \epsilon_{12}^2$$
$$\sin^2 \theta_{23} = \frac{1}{2} + \sin \epsilon_{23} \cos \epsilon_{23} \simeq \frac{1}{2} + \epsilon_2$$
$$U_{e3} = \sin \epsilon_{13} e^{-i\delta}$$

Mass Matrix

Special case of μ - τ symmetry

$$(m_{\nu})_{\text{TBM}} = U_{\text{TBM}}^{*} m_{\nu}^{\text{diag}} U_{\text{TBM}}^{\dagger} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

$$A = \frac{1}{3} \left(2 m_1 + m_2 e^{-2i\alpha} \right) , \quad B = \frac{1}{3} \left(m_2 e^{-2i\alpha} - m_1 \right) , \quad D = m_3 e^{-2i\beta}$$

•
$$m_{e\mu} = m_{e\tau}$$
 and $m_{\mu\mu} = m_{\tau\tau}$

- $m_{ee} + m_{e\mu} + m_{e\tau} = m_{\mu e} + m_{\mu\mu} + m_{\mu\tau} = m_{\tau e} + m_{\tau\mu} + m_{\tau\tau}$
- masses independent on mixing (i.e., not $V_{us} = \sqrt{m_d/m_s}$)

Correlations between mass matrix elements \leftrightarrow flavor symmetries

How to choose the group

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1′, 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1,\ldots 1_4,2$	$A^4 = B^2 = (AB)^2 = 1$
D_5	10	1 , 1′, 2 , 2′	$A^5 = B^2 = (AB)^2 = 1$
D_6	12	$1_1, \dots 1_4$, 2, 2'	$A^6 = B^2 = (AB)^2 = 1$
D_7	14	1 , 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1, 1′, 1″, 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3′, 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1 , 1', 1'', 2, 2', 2'', 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1 , 1', 2 , 3 , 3'	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	$1_1, \ldots 1_9, 3, \overline{3}$	
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^{3} = B^{2} = (BA)^{7} = (B^{-1}A^{-1}BA)^{4} = 1$
$T_7 \sim Z_7 \rtimes Z_3$	21	$\overline{1,1',\overline{1'},3,\overline{3}}$	$A^7 = B^3 = 1, \ AB = BA^4$

Altarelli, Feruglio, 1002.0211

How to choose the group: A_4

- minimality
 - smallest group with 3 irrep
 - has 3 one-dimensional irreps 1, 1', 1"
- geometry

angle between two faces: $\alpha = 2 \theta_{\text{TBM}}$, where $\sin^2 \theta_{\text{TBM}} = \frac{1}{3}$

Т	he	Zoo

Type	L_i	ℓ_i^c	ν_i^c	Δ	References
A1	127.	070	570	-	$[1-14]$ $[15]^{\#}$
A2	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	-	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				$\underline{1}, \underline{3}$	[19]
B1	3	1 1' 1"	3	-	[4, 20-27] [#] $[28-30]$ [*] $[31-45]$
B2	5	1,1,1	9	$\underline{1}, \underline{3}$	$[46]^{\#}$
C1				~	[2, 47, 48]
C2	3	3	_	1	$[49, 50] \ [51]^{\#}$
C3	2	2		$\underline{1}, \underline{3}$	[52]
C4				$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$	[53]
D1				-	$[54, 55]^{\#}$ $[56, 57]^*$ $[58]$
D2	3	3	3	1	$[59]$ $[60]^*$
D3	2	2	<u> </u>	$\underline{1}'$	$[61]^*$
D4				$\underline{1}', \underline{3}$	$[62]^*$
Е	<u>3</u>	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$		[63, 64]
F	$\underline{1},\underline{1}',\underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[65]
G	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$		[66]
Н	<u>3</u>	<u>1, 1, 1</u>	-	-	[67]
Ι	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	$\underline{1}, \underline{1}, \underline{1}$		[68]*
J	<u>3</u>	<u>1, 1, 1</u>	3	-	[12, 39, 69, 70]
К	<u>3</u>	<u>1, 1, 1</u>	$\underline{1}, \underline{1}$	1	[71]*
L	<u>3</u>	<u>1, 1, 1</u>	1	≂	[72]*
М	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}$	-	[73,74]
Ν	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1},\underline{1}^{\prime\prime},\underline{1}^{\prime}$	$\underline{3}, \underline{1}', \underline{1}''$		[75]

Barry, W.R., PRD 81, 093002 (2010), updated regularly on http://www.mpi-hd.mpg.de/personalhomes/jamesb/Table_A4.pdf

How to distinguish?

- LFV
- low scale scalars: Higgs, LFV
- compatible with GUTs?
- leptogenesis possible?
- neutrino mass observables

correlation with observables

Valle; talk by Merlo

Sum-rules in Models and $0\nu\beta\beta$

	Sum-rule	Flavour symmetry
1	$2m_2 + m_3 = m_1$	$A_4, T', (S_4)$
$2m_2$ m_3	$m_1 + m_2 = m_3$	$S_4,(A_4)$
m _1	$\frac{2}{m_2} + \frac{1}{m_3} = \frac{1}{m_1}$	A_4, T'
<i>m</i> 1	$\frac{1}{m_1} + \frac{1}{m_2} = \frac{1}{m_3}$	S_4

constrains masses and Majorana phases

Barry, W.R., NPB 842, 33 (2011)

 $m_1 + m_2 - m_3 = \epsilon \, m_{\max}$

stable: new solutions not before $\epsilon \simeq 0.2$

Usual caveat: interpretation of $0\nu\beta\beta$

amplitude and				
particle physics parameter	current limit	test		
a2		oscillations,		
$rac{G_F^2}{a^2} \left U_{ei}^2 m_i \right $	0.5 eV	cosmology,		
,		neutrino mass		
$\sim 2 \left \frac{S_{ei}^2}{S_{ei}^2} \right $	$0 \sim 10^{-8} \text{ CeV}^{-1}$	LFV,		
$ G_F \overline{M_i} $	2 X 10 Gev	collider		
$C^2 = \frac{4}{c^2}$	$4 \times 10^{-16} \text{ CeV}^{-5}$	flavor,		
$G_F \mathcal{M}_W \overline{M_i M_W^4}$	4 X 10 Gev	collider		
		flavor,		
$G_F^2 m_W^4 \frac{(M_R)_{ee}}{m_W^2 - M_{ee}^4}$	$10^{-15} \text{ GeV}^{-1}$	collider		
$\cdots \Delta_R \cdots W_R$		e^- distribution		
a -		flavor,		
$G_F^2 \frac{m_W^2}{a} \left \frac{U_{ei} S_{ei}}{M_{ei}^2} \right $	$1.4 imes 10^{-10} { m ~GeV^{-2}}$	collider,		
$ m_{W_R} $		e^- distribution		
		flavor,		
$G_{F_{a}}^{2} \frac{1}{\tan \zeta} \left U_{ei} \tilde{S}_{ei} \right $	$6 imes 10^{-9}$	collider,		
		e^- distribution		
<u></u>		collider,		
$\Lambda_{\text{SUSY}} = f(m_2, m_2, m_3, m_2)$	7 × 10 ⁻¹⁰ GeV 5	flavor		
$\frac{115051 - j(m_g, m_{u_L}, m_{d_R}, m_{\chi_i})}{2}$	$0 \sim 10^{-13} \text{ Cm}^{-12}$			
$\frac{G_F}{q} \left \sin 2\theta^b \lambda'_{131} \lambda'_{113} \left(\frac{1}{m_r^2} - \frac{1}{m_r^2} \right) \right $	2 X 10 - Gev	flavor,		
$C_{F} = \chi_{121} \chi_{112}^{b_1} \qquad b_2 / 1$	1 - 10-14 - 17-3	collider		
$\sim \frac{1}{q} \frac{1}{16} \frac{\Lambda_{BUBY}^2}{\Lambda_{BUBY}^2}$	1 X 10 - GeV -			
$\propto \langle q_{\gamma} \rangle $ or $ \langle q_{\gamma} \rangle ^2$	$10^{-4} \dots 1$	spectrum,		
		cosmology		
review on $0 u\beta\beta$ and particle physics: W.R., 1006.1334				
	amplitude and particle physics parameter $\frac{G_{P}^{2}}{q^{2}} U_{ei}^{2} m_{i} $ $G_{P}^{2} \frac{S_{ei}^{2}}{M_{i}} $ $G_{P}^{2} m_{W}^{4} \frac{V_{ei}^{2}}{M_{i}M_{W_{R}}^{4}}$ $G_{P}^{2} m_{W}^{4} \frac{(M_{R})_{ee}}{m_{\Delta_{R}}^{2} M_{W_{R}}^{4}}$ $G_{P}^{2} m_{W}^{4} \frac{(M_{R})_{ee}}{m_{\Delta_{R}}^{2} M_{W_{R}}^{4}}$ $G_{P}^{2} \frac{m_{W}^{2}}{q} \left \frac{U_{ei} \bar{S}_{ei}}{M_{W_{R}}^{2}} \right $ $G_{P}^{2} \frac{1}{q} \tan \zeta \left U_{ei} \tilde{S}_{ei} \right $ $\int_{SUSY} A_{SUSY} = f(m_{\bar{g}}, m_{\bar{u}_{L}}, m_{\bar{d}_{R}}, m_{\chi_{i}})$ $\frac{G_{P}}{q} \sin 2\theta^{b} \lambda_{131}' \lambda_{113}' \left(\frac{1}{m_{\bar{b}_{1}}^{3}} - \frac{1}{m_{\bar{b}_{2}}^{2}} \right) \right $ $\sim \frac{G_{P}}{q} m_{b} \frac{\chi_{121}' \chi_{112}'}{\Lambda_{RUSY}^{2}}$ $\propto \langle g_{\chi} \rangle \text{ or } \langle g_{\chi} \rangle ^{2}$ DV $\beta\beta$ and particle physics	amplitude and current limit $\frac{G_F^2}{q^2} U_{ei}^2 m_i $ 0.5 eV $G_F^2 \frac{S_{ei}^2}{M_i} $ $2 \times 10^{-8} \text{ GeV}^{-1}$ $G_F^2 m_W^4 \frac{V_{ei}^2}{M_i M_{W_R}^2} $ $4 \times 10^{-16} \text{ GeV}^{-5}$ $G_F^2 m_W^4 \frac{M_{R}}{m_{\Delta_R}^2 M_{W_R}^4} $ $10^{-15} \text{ GeV}^{-1}$ $G_F^2 m_W^2 \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} $ $1.4 \times 10^{-10} \text{ GeV}^{-2}$ $G_F^2 \frac{m_W^2}{q} \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} $ $1.4 \times 10^{-10} \text{ GeV}^{-2}$ $G_F^2 \frac{1}{q} \tan \zeta U_{ei} \tilde{S}_{ei} $ 6×10^{-9} $G_F^2 \frac{1}{q} \tan \zeta U_{ei} \tilde{S}_{ei} $ 6×10^{-9} $\frac{\lambda_{11}^{\prime 11}}{\Lambda_{SUSY}^2} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$ $7 \times 10^{-18} \text{ GeV}^{-5}$ $\Lambda_{SUSY} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$ $2 \times 10^{-13} \text{ GeV}^{-2}$ $\frac{\lambda_{131}}{q} \left(\frac{1}{m_{\tilde{g}_1}^2} - \frac{1}{m_{\tilde{b}_1}^2} \right) \right $ $2 \times 10^{-13} \text{ GeV}^{-2}$ $\sim \frac{G_F}{q} \min_{\chi_{131}} \lambda_{113}' \left(\frac{1}{m_{\tilde{g}_1}^2} - \frac{1}{m_{\tilde{b}_2}^2} \right) \right $ $2 \times 10^{-13} \text{ GeV}^{-2}$ $\sim \langle g_X \rangle $ or $ \langle g_X \rangle ^2$ $10^{-4} \dots 1$ $\mathcal{W}\beta\beta$ and particle physics: W.R., 1006 $100^{-4} \dots 1$		

	Bari*	GM-I	GM-II	STV	TBM
$\sin heta_{13}$	$0.145^{+0.022}_{-0.031}$	$0.097\substack{+0.053 \\ -0.047}$	$0.089\substack{+0.051\-0.057}$	$0.130\substack{+0.025\\-0.041}$	0
$\sin^2 heta_{23}$	$0.42^{+0.08}_{-0.03}$	$0.462^{+0.082}_{-0.050}$	$0.462^{+0.082}_{-0.050}$	$0.51_{-0.06}^{+0.06}$	0.5
$\sin^2 \theta_{12}$	$0.306^{+0.018}_{-0.015}$	$0.319^{+0.016}_{-0.016}$	$0.321^{+0.016}_{-0.016}$	$0.316^{+0.016}_{-0.016}$	0.333

all groups find deviations from one or more TBM values

 $\delta\theta_{13} > \delta\theta_{12} \gtrsim \delta\theta_{23}$

Taking Bari results as example: $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.762 & -0.684 \\ 0 & -0.684 & 0.762 \end{pmatrix} \begin{pmatrix} 0.989 & 0 & 0.145 e^{-i\delta} \\ 0 & 1 & 0 \\ -0.145 e^{i\delta} & 0 & 0.989 \end{pmatrix} \begin{pmatrix} 0.833 & 0.553 & 0 \\ -0.553 & 0.883 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0.824 & 0.547 & 0.145 e^{-i\delta} \\ -0.421 - 0.078 e^{i\delta} & 0.634 - 0.052 e^{i\delta} & 0.641 \\ 0.359 - 0.092 e^{i\delta} & -0.540 - 0.061 e^{i\delta} & 0.754 \end{pmatrix}$

> Abbas, Smirnov, PRD 82, 013008 (2010): deviations from m_{ν}^{TBM} possible: "TBM accidental?"

How to perturb a mixing scenario/model

- VEV misalignment, NLO terms
- explicit naive breaking
- renormalization
- charged leptons

VEV misalignment, NLO terms

• "naive misalignment":

if $\langle \text{flavon} \rangle = (1, 1, 1)^T$, perturb it to $\langle \text{flavon} \rangle = (1, 1 + \epsilon_1, 1 + \epsilon_2)^T$

Honda, Tanimoto

Barry, W.R.

- of order $\langle \text{flavon} \rangle / \Lambda$ or $\langle \text{flavon} \rangle / M_R$, typically $\mathcal{O}(0.1)$ or $\mathcal{O}(\lambda_C)$ or $\mathcal{O}(0.01)$
- typically of the same order for $heta_{23}$ and $|U_{e3}|$
- solar neutrino mixing angle receives larger corrections

VEV misalignment, NLO terms

- NLO terms, VEV misalignment due to terms allowed by the symmetry ⇒ model-dependent!
 - Altarelli, Feruglio, Merlo, JHEP 0905:

- Altarelli, Feruglio, Hagedorn, JHEP 0803: corrections $\mathcal{O}(\lambda^2)$ to all mixing angles
- Lin, NPB 824:

 $\delta |U_{e3}| = \mathcal{O}(\lambda)$ and $\delta \sin^2 \theta_{12} \simeq \delta \sin^2 \theta_{23} = \mathcal{O}(\lambda^2)$

- Hagedorn, Ziegler, 1007.1888: $\delta |U_{e3}|^2 = \mathcal{O}(\lambda^2) \text{ and } \delta \sin^2 \theta_{12} = \mathcal{O}(\lambda)$
- Ishimori *et al.*, 1004.5004: $\delta |U_{e3}|^2 = \mathcal{O}(\lambda^2) \text{ and } \delta \sin^2 \theta_{12} = \mathcal{O}(\lambda) \text{ and } \delta \sin^2 \theta_{23} = \mathcal{O}(\lambda^2)$
- etc.:

etc.

How to perturb a mixing scenario/model

• "explicit" (naive) breaking

$$m_{\nu} = \begin{pmatrix} A(1+\epsilon_{1}) & B(1+\epsilon_{2}) & B(1+\epsilon_{3}) \\ \cdot & \frac{1}{2}(A+B+D)(1+\epsilon_{4}) & \frac{1}{2}(A+B-D)(1+\epsilon_{5}) \\ \cdot & \cdot & \frac{1}{2}(A+B+D)(1+\epsilon_{6}) \end{pmatrix}$$

small complex parameters $\epsilon_i = |\epsilon_i| e^{i\phi_i}$ with $|\epsilon_i| \le 0.2$ Albright, W.R., Phys. Lett. B **665**, 378 (2008)

- $\delta U_{e3} \sim \delta \theta_{23} < \delta \theta_{12}$ (θ_{12} connected to almost degenerate eigenvalues)
- $|U_{e3}| \simeq 0.1$ requires large $m_1 \gtrsim 0.02$ eV in normal ordering
- $|U_{e3}| \simeq 0.1$ requires nothing in inverted ordering

 $|U_{e3}|^2 \simeq 0.01$ requires

- $m_1\gtrsim 0.02$ eV in normal ordering ($\propto \epsilon^2 \,(m_1^2+\Delta m_\odot^2)/\Delta m_{
 m A}^2$)
- nothing in inverted ordering ($\propto \epsilon^2$)

 $\sin^2 \theta_{12}$ very unstable \leftrightarrow connected to two very close eigenvalues

Sign and size of RG correction

model	mass ordering	$ heta_{12}$	$ heta_{23}$
SM	$\Delta m_{31}^2 > 0$	\searrow	\searrow
	$\Delta m_{31}^2 < 0$	\searrow	~
MSSM	$\Delta m_{31}^2 > 0$	7	7
	$\Delta m_{31}^2 < 0$	7	\searrow

angle	NH	IH	QD
$\delta \theta_{12}$	1	$\Delta m_{ m A}^2/\Delta m_\odot^2$	$m_0^2/\Delta m_\odot^2$
$\delta heta_{13}$	1	1	$m_0^2/\Delta m_{ m A}^2$
$\delta \theta_{23}$	1	1	$m_0^2/\Delta m_{ m A}^2$

Note: potentially huge effect for θ_{12} unless (Majorana) phase suppression

Large $|U_{e3}|$ and RG aim: get $|U_{e3}| = 0.1$ from TBM

- constraint: keep $\sin^2 \theta_{12}$ close to TBM value
- what is $\sin^2 \theta_{23}$?

Goswami, Petcov, Ray, W.R., PRD 80 (2009) 053013

- we took "Bari hint": $0.077 \le |U_{e3}| \le 0.161$
- T2K: $|U_{e3}| \gtrsim 0.08 \ (0.09)$
- new Fogli *et al.*: $0.11 \le |U_{e3}| \le 0.16$

Renormalization and $|U_{e3}| \simeq 0.1$

• SM: doesn't work

Renormalization and $|U_{e3}| \simeq 0.1$

• MSSM: quasi-degenerate neutrinos and $4 \lesssim (m_0/\text{eV}) \tan \beta \lesssim 7$

 $\begin{array}{l} \mbox{Effect on } \theta_{12} \\ \\ k_{12} = \frac{\sqrt{2}}{3} \left. \frac{\left| m_1 + m_2 \, e^{i\alpha_2} \right|^2}{\Delta m_{\odot}^2} \propto \begin{cases} 1 & \mbox{NH} \\ \frac{\Delta m_A^2}{\Delta m_{\odot}^2} \left(1 + e^{i\alpha_2} \right) & \mbox{IH} \\ \frac{m_0^2}{\Delta m_{\odot}^2} \left(1 + e^{i\alpha_2} \right) & \mbox{QD} \end{cases}$

 \Rightarrow strong effect for IH and QD

 \Rightarrow suppress with $\alpha_2 = \pi$

 $|m_{ee}| \simeq m_0 \sqrt{1 - \sin^2 2\theta_{12}} \sin^2 \alpha_2 / 2 \stackrel{\alpha_2 = \pi}{\to} m_0 \cos 2\theta_{12}$

large cancellations in $0\nu\beta\beta!$

Renormalization and $|U_{e3}| \simeq 0.1$

•
$$|m_{ee}| \simeq c_{13}^2 m_0 |c_{12}^2 + s_{12}^2 e^{i\alpha_2}$$

- $\tan \beta = 5$: $|m_{ee}|$ takes values between 0.26 and 0.50 eV; general upper and lower limits: 0.2 eV and 1.4 eV
- $\tan \beta = 20$: $|m_{ee}|$ takes values between 0.07 and 0.11 eV; general upper and lower limits: 0.05 eV and 0.34 eV

- $|\theta_{23} \pi/4| = \mathcal{O}(|U_{e3}|)$
- can NOT be maximal

	charged leptons	renormalization (MSSM)	explicit breaking	
$\sin^2 heta_{23}$	0.44 - 0.53	$\begin{array}{rl} 0.55-0.64 & (\Delta m_{\rm A}^2>0) \\ 0.33-0.45 & (\Delta m_{\rm A}^2<0) \end{array}$		
$ U_{e3} $	$\simeq \frac{\lambda}{\sqrt{2}}$	$\propto rac{m_0^2}{\Delta m_{ m A}^2} \left(1 + an^2 eta ight)$	$ \begin{array}{c} \propto \epsilon & (\mathrm{IH}) \\ \propto \epsilon m_1 / \sqrt{\Delta m_\mathrm{A}^2} & (\mathrm{PD}/\mathrm{QD}) \end{array} $	
mass	_	QD: $m_0 an eta \simeq (4-7) { m eV}$	IH, PD, QD	
$ m_{ee} $		$m_0 c_{13}^2 \cos 2 heta_{12}$	$\frac{m_0 c_{13}^2 \cos 2\theta_{12}}{\sqrt{\Delta m_A^2} c_{13}^2 \cos 2\theta_{12}} \text{(QD)}$ (IH)	
СР	oscillations: almost maximal CP violation	$\alpha_2 \simeq \pi$	large $ U_{e3} $ requires suppressed $ m_{ee} $ only when initially $\alpha_2 \simeq \pi$	

 $0.077 \le |U_{e3}| \le 0.161$

Summary so far

- Corrections to U_{e3} and θ_{23} similar
- do we need precision experiments for θ_{12} ?
 - could distinguish very different approaches

$$\sin^2 \theta_{12} = \frac{1}{2} - \lambda/\sqrt{2} \simeq 0.339$$
 vs. $\sin^2 \theta_{12} = \frac{1}{3}$

– BUT: Corrections to θ_{12} tend to be largest...

Alternatives to TBM

• μ - τ symmetry (Z_2, D_4, \ldots) :

$$m_{\nu} = \begin{pmatrix} a & b & b \\ \cdot & d & e \\ \cdot & \cdot & d \end{pmatrix} \Rightarrow U_{e3} = 0, \ \theta_{23} = \pi/4$$

solar neutrino mixing unconstrained $(\theta_{12} = \mathcal{O}(1))$

countless papers

Alternatives to TBM

• Golden Ratio φ_1 (A_5)

$$\cot \theta_{12} = \varphi \implies \sin^2 \theta_{12} = \frac{1}{1 + \varphi^2} = \frac{2}{5 + \sqrt{5}} \simeq 0.276$$

(Datta, Ling, Ramond; Kajiyama, Raidal, Strumia; Everett, Stuart)

• Golden Ratio φ_2 (D_5)

$$\cos\theta_{12} = \frac{\varphi}{2} \quad \Rightarrow \sin^2\theta_{12} = \frac{1}{4}\left(3 - \varphi\right) = \frac{5 - \sqrt{5}}{8} \quad \simeq 0.345$$

(W.R.; Adulpravitchai, Blum, W.R.)
Golden Ratio Prediction
$$\varphi_1$$

 $\cot \theta_{12} = \varphi$ or: $\tan 2\theta_{12} = 2$
can be generated by $m_{\nu} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow Z_2 : S = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$

Model based on A_5 (isomorphic to rotational icosahedral symmetry group)?

Cartesian coordinates of its 12 vertices: $(0, \pm 1, \pm \varphi)$ $(\pm 1, \pm \varphi, 0)$ $(\pm \varphi, 0, \pm 1)$

$\begin{array}{l} \mbox{Golden Ratio Prediction } \varphi_1 \\ A_5 \mbox{ has irreps 1, 3, 3', 4, 5} \\ \mbox{e.g., generators for triplet representation 3} \end{array}$ $S_3 = \frac{1}{2} \begin{pmatrix} -1 & \varphi & 1/\varphi \\ \varphi & 1/\varphi & 1 \\ 1/\varphi & 1 & -\varphi \end{pmatrix} \mbox{ and } T_3 = \frac{1}{2} \begin{pmatrix} 1 & \varphi & 1/\varphi \\ -\varphi & 1/\varphi & 1 \\ 1/\varphi & -1 & \varphi \end{pmatrix}$

Everett, Stuart, PRD 79, 085005 (2009)

4th generation model Chen, Kephart, Yuan, 1011.3199

symmetry group of decagon: D_{10}

Dihedral Groups

Blum, Hagedorn, Lindner, Hohenegger, PRD 77, 076004 (2008):

 D_n has several $\mathbf{2}_{\mathbf{j}}$, generated by

$$A = \begin{pmatrix} e^{2\pi i \frac{j}{n}} & 0\\ 0 & e^{-2\pi i \frac{j}{n}} \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

and Z_2 is generated by

$$B A^{k} = \begin{pmatrix} 0 & e^{-2\pi i \frac{j}{n} k} \\ e^{2\pi i \frac{j}{n} k} & 0 \end{pmatrix}$$

Thus, break D_n such that m_{ν} invariant under $B A^{k_{\nu}}$ and m_{ℓ} under $B A^{k_{\ell}}$:

$$|U_{e1}|^2 = \left|\cos\pi\frac{j}{n}\left(k_{\nu} - k_{\ell}\right)\right|^2$$

Again, D_5 or D_{10} to obtain $\pi/5$

A Model based on D_{10}

Adulpravitchai, Blum, W.R., New J. Phys. **11**, 063026 (2009)

Field	$l_{1,2}$	l_3	$e^c_{1,2}$	e_3^c	$h_{u,d}$	σ^e	$\chi^e_{1,2}$	$\xi^e_{1,2}$	$ ho^e_{1,2}$	σ^{ν}	$arphi_{1,2}^{ u}$	$\chi^{ u}_{1,2}$	$\xi_{1,2}^{ u}$
D_{10}	<u>2</u> 4	<u>1</u> 1	<u>2</u> 2	<u>1</u> 1	<u>1</u> 1	<u>1</u> 1	<u>2</u> 2	<u>2</u> 3	<u>2</u> 4	<u>1</u> 1	<u>2</u> 1	<u>2</u> 2	<u>2</u> 3
Z_5	ω	ω	ω^2	ω^2	1	ω^2	ω^2	ω^2	ω^2	ω^3	ω^3	ω^3	ω^3

Alternatives to TBM

Bi-maximal

$$U_{\rm BM} = \begin{pmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \sqrt{\frac{1}{2}} \\ \frac{1}{2} & -\frac{1}{2} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

 S_4 : Altarelli, Feruglio, Merlo, JHEP **0905**, 020 (2009) (needs large NLO corrections)

CKM(-like) charged lepton corrections may also resurrect it:

- $\operatorname{QLC}_0: \theta_{12} = \frac{\pi}{4} \theta_C \Rightarrow \sin^2 \theta_{12} \simeq 0.280$
- $\operatorname{QLC}_1: U = V^{\dagger} U_{BM} \Rightarrow \sin^2 \theta_{12} \simeq \frac{1}{2} \lambda/\sqrt{2} \cos \phi \simeq 0.331 \dots 0.670$
- $\operatorname{QLC}_2: U = U_{BM} V^{\dagger} \Rightarrow \sin^2 \theta_{12} \simeq \frac{1}{2} \lambda \cos \phi' \simeq 0.276 \dots 0.762$

"Quark-Lepton Complementarity"

Alternatives to TBM

Tri-maximal Mixing(s)

• $\mathsf{TM}_2(S_{3,4}, \Delta(27))$

$$\begin{pmatrix} |U_{e2}|^2 \\ |U_{\mu2}|^2 \\ |U_{\tau2}|^2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$

(Lam; Grimus, Lavoura)

• TM₁, TM₃, TM¹, TM², TM³, e.g.,

$$\mathsf{M}^{1}: \qquad \begin{pmatrix} |U_{e1}|^{2}, \ |U_{e2}|^{2}, \ |U_{e3}|^{2} \end{pmatrix} = \begin{pmatrix} \frac{2}{3}, \ \frac{1}{3}, \ 0 \end{pmatrix}$$
$$\mathsf{T}\mathsf{M}_{1}: \qquad \begin{pmatrix} |U_{e1}|^{2} \\ |U_{\mu 1}|^{2} \\ |U_{\tau 1}|^{2} \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/6 \\ 1/6 \end{pmatrix}$$

(Lam; Albright, W.R.; Friedberg, Lee; He, Zee)

Minimal Modification of TBM

want non-zero θ_{13} and $\sin^2 \theta_{12} \leq \frac{1}{3}$:

TM₁:
$$\begin{pmatrix} |U_{e1}|^2 \\ |U_{\mu 1}|^2 \\ |U_{\tau 1}|^2 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/6 \\ 1/6 \end{pmatrix}$$

gives observables

$$\sin^2 \theta_{12} = \frac{1}{3} \frac{1 - 3|U_{e3}|^2}{1 - |U_{e3}|^2} \simeq \frac{1}{3} \left(1 - 2|U_{e3}|^2 \right) \le \frac{1}{3}$$
$$\cos \delta \tan 2\theta_{23} = -\frac{1 - 5|U_{e3}|^2}{2\sqrt{2}|U_{e3}|\sqrt{1 - 3}|U_{e3}|^2} \simeq \frac{-1}{2\sqrt{2}|U_{e3}|} + \frac{7}{4\sqrt{2}}|U_{e3}|$$

Alternatives to TBM

• tetra-maximal (Xing; He, Zhou)

 $U = \operatorname{diag}(1,1,i) \,\tilde{R}_{23}(\pi/4;\pi/2) \,\tilde{R}_{13}(\pi/4;0) \,\tilde{R}_{12}(\pi/4;0) \,\tilde{R}_{13}(\pi/4;\pi)$

• symmetric mixing $U = U^T$ (Joshipura, Smirnov; Hochmuth, W.R.)

$$|U_{e3}| = \frac{\sin\theta_{12}\,\sin\theta_{23}}{\sqrt{1-\sin^2\delta\,\cos^2\theta_{12}\,\cos^2\theta_{23}} + \cos\delta\,\cos\theta_{12}\,\cos\theta_{23}}$$

 various other proposals after T2K: Xing, 1106.3244; Qui, Ma, 1106.3284; He, Zee, 1106.4359; Zheng, Ma, 1106.4040; Zhou, 1106.4808; Araki, 1106.5211; Haba, Takahashi, 1106.5926; Morisi, Patel, Peinado, 1107.0696, Chao, Zheng, 1107.0738; Zhang, Zhou, 1107.1097... • hexagonal mixing (D_6)

$$\theta_{12} = \pi/6 \Rightarrow \sin^2 \theta_{12} = \frac{1}{4}$$

(Albright, Dueck, W.R.; Kim, Seo)

Kim, Seo, 1005.4684: D_{12} model introduces 13 Higgs doublets(...), but achieved (QLC) $\theta_{12} = \pi/6$, $\theta_C = \pi/12 = 15^0 \simeq \theta_C + 1.8^0$ and called it dodecal

Once you start playing with numbers...

- "transcendental mixing":
 - $-\sin\theta_{13} = \theta_{13} \Rightarrow \theta_{13} = 0$
 - is the fixed point of sin(x)
 - $\cos \theta_{23} = \theta_{23} = 0.739085133... \Rightarrow \sin^2 \theta_{23} = 0.454$ is the fixed point of $\cos(x)$ "Dottie's number" $d = \lim_{n \to \infty} \cos_n(x)$ is irrational like π , e, $\sqrt{2}$
- Euler-Mascheroni constant:

$$- \theta_{12} = \gamma = 0.577215664 \dots \Rightarrow \sin^2 \theta_{12} = 0.298$$

- $|U_{e2}| = \gamma \Rightarrow \sin^2 \theta_{12} = 0.298 \dots 0.314$
- Euler's number:

$$-\tan 2\theta_{12} = e = 2.718281828... \Rightarrow \sin^2 \theta_{12} = 0.327$$

• etc :-))

Scenario	$\sin^2 heta_{12}$		\sin^2	θ_{23}	$\sin^2 heta_{13}$		T2K
TBM	0.3	333	0.5	500	0.000		—
$\mu- au$	-	-	0.5	500	0.000		-
TM_1	0.296	0.333	*	*	—		\checkmark
TM ₂	0.333	0.352	*	*	-	-	\checkmark
TM ₃	-	-	0.5	500	0.0	000	-
TM^1	0.3	333	-	-	0.000		-
TM ²	**		0.500	0.528	—		\checkmark
TM ³	*	*	0.472	0.500	—		\checkmark
T^4M	0.2	255	0.5	500	0.021		\checkmark
$U=U^{T}$	0.000 0.389		0.000	0.504	0.0343	0.053	\checkmark
BM	0.500		0.500		0.000		-
НМ	0.250		0.500		0.000		-
$arphi_1$	0.276		0.500		0.000		-
$arphi_2$	0.345		0.500		0.000		-
QLC ₀	0.280		0.4	159	-	_	—
QLC_1	0.331	0.670	0.442	0.534	0.023	0.029	\checkmark
QLC ₂	0.276	0.726	0.462	0.540	0.0005 0.0016		-

Albright, Dueck, W.R., 1004.2798

What's special about TBM?

The TBM mass matrix

$$\begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

is the **only one** invariant under

$$R_{\mu\tau} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \ S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

Note: S and $T = \text{diag}(1, \omega^2, \omega)$ generate A_4 via $S^2 = T^3 = (ST)^3 = \mathbb{1}$ in many A_4 models: $R_{\mu\tau}$ accidental, charged leptons preserve Z_3 invariance via T, neutrinos preserve Z_2 invariance via S Symmetry and Flavor Symmetry Each Majorana mass matrix is invariant under a $Z_2 \times Z_2$ $m_{\nu} = \begin{pmatrix} a & b & b \\ \cdot & d & e \\ \cdot & \cdot & d \end{pmatrix} \text{ invariant under } R_{\mu\tau} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

look for S such that

 $[S, R_{\mu\tau}] = 0 , \quad SS = \mathbb{1}$

Solvable for general θ_{12} and for special scenarios, e.g.

 $\begin{array}{ll} d+e=a & \mbox{bimaximal} \\ d+e=a+b & \mbox{tri-bimaximal} \\ d+e=a+\sqrt{2}\,b & \mbox{golden ratio}_1 \\ d+e=a+2\sqrt{2}\,b\,\cot 2\theta_{12} & \mbox{general} \end{array}$

Symmetry and Flavor Symmetry $S = \begin{pmatrix} \cos 2\theta_{12} & -\sqrt{2} \cos \theta_{12} \sin \theta_{12} & \sqrt{2} \cos \theta_{12} \sin \theta_{12} \\ \cdot & \sin^2 \theta_{12} & \cos^2 \theta_{12} \\ \cdot & \cdot & \sin^2 \theta_{12} \end{pmatrix}$ charged leptons are diagonal $T^{\dagger} m_{\ell}^{\dagger} m_{\ell} T = m_{\ell}^{\dagger} m_{\ell}$ With T = diag(-1, i, -i) it follows for $\theta_{12} = \pi/4$ (bimaximal) $S^2 = T^4 = (ST)^3 = 1 \Longrightarrow S_4$

Interpretation: flavor symmetry G_f generated by S, T broken such that m_{ν} invariant under S and charged leptons under T ($R_{\mu\tau}$ is accidental) (see also Lam)

invariance only under "hidden" Z_2 : Dicus, Ge, Repko, 1012.2571, 1104.0602

Scenario	S	T	relations	group
bimaximal	$ \begin{pmatrix} 0 & -1 & 1 \\ \cdot & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \cdot & \cdot & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \cdot & \cdot & \sqrt{\frac{1}{2}} \end{pmatrix} $	$\operatorname{diag}(-1, i, -i)$	$T^4 = (ST)^3 = 1$	S_4
tri-bimaximal	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	diag $(e^{-2i\pi/3}, e^{2i\pi/3}, 1)$	$T^3 = (ST)^3 = 1$	A_4
golden ratio (A)	$\frac{\frac{-1}{\sqrt{5}} \left(\begin{array}{ccc} 1 & -\sqrt{2} & \sqrt{2} \\ \cdot & 1/\varphi & \varphi \\ \cdot & \cdot & 1/\varphi \end{array} \right)$	diag $(1, e^{-4i\pi/5}, e^{4i\pi/5})$	$T^5 = (S T)^3 = 1$	A_5

from Feruglio, Paris, 1101.0393

Light sterile neutrinos?

Consider the "role model" Altarelli, Feruglio, NPB 720, 64 (2005) (effective model)

Field	L	e^{c}	μ^c	$ au^c$	$h_{u,d}$	arphi	arphi'	ξ	$ u_s$
$SU(2)_L$	2	1	1	1	2	1	1	1	1
A_4	<u>3</u>	<u>1</u>	<u>1</u> "	<u>1</u> ′	<u>1</u>	<u>3</u>	<u>3</u>	<u>1</u>	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	1
$U(1)_{ m FN}$	-	4	2	0	-	-	-	-	6

- Z_3 to separate charged leptons and neutrinos
- $U(1)_{\rm FN}$ for charged lepton mass hierarchy
- ν_s added by us, no extra symmetries or fields

Barry, W.R., Zhang, 1105.3911

allowed terms

$$\mathcal{L}_{\mathbf{Y}_s} = \frac{x_e}{\Lambda^2} \xi(\varphi' L h_u) \nu_s + m_s \nu_s^c \nu_s + \text{h.c.}$$

lies at eV scale due to FN

mass matrix

$$M_{\nu}^{4 \times 4} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e \\ \cdot & \cdot & \frac{2d}{3} & e \\ \cdot & \cdot & \cdot & m_s \end{pmatrix}$$

with the usual VEV alignment $\langle \xi \rangle = u$, $\langle \varphi \rangle = (v,0,0)$ and $\langle \varphi' \rangle = (v',v',v')$

 $U \simeq \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & \frac{e}{m_s} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0\\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0\\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0\\ 0 & 0 & 0 & -\frac{3e^2}{2m_s^2} \end{pmatrix}$

giving the eigenvalues

 $m_1 = a + d$, $m_2 = a - \frac{3e^2}{m_s}$, $m_3 = -a + d$, $m_4 = m_s + \frac{3e^2}{m_s}$

and sum-rules

$$\sin^2 \theta_{14} \simeq \sin^2 \theta_{24} \simeq \sin^2 \theta_{34} \simeq \left(\frac{e}{m_s}\right)^2 \simeq \frac{1}{2}(1 - 3\sin^2 \theta_{12}) \simeq 2\sin^2 \theta_{23} - 1$$

Still $U_{e3} = 0 \dots$

Can also add second ν_s , giving

$$M_{\nu}^{5\times5} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e & f \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e & f \\ \cdot & \cdot & \frac{2d}{3} & e & f \\ \cdot & \cdot & \cdot & m_{s_1} & 0 \\ \cdot & \cdot & \cdot & \cdot & m_{s_2} \end{pmatrix}$$

Trivial change of FN charge and scales gives keV sterile neutrinos

Summary

- Corrections θ_{13} and $\theta_{23} \pi/4$ are typically similar
- to test them on a level of 0.1 is a good idea...
- once θ_{13} will be determined, deviation from maximal θ_{23} will become crucial
- interesting theoretical speculations on θ_{12} , but receives typically large corrections (of phenomenological interest for $0\nu\beta\beta$)
- modify flavor models for other things?
- distinguishing them will be challenging task

Is
$$\theta_{13} = 0$$
 or $\theta_{23} = \pi/4$?

$$m_{\nu} = \begin{pmatrix} x_1 & x_2 & x_3 \\ \cdot & x_4 & x_5 \\ \cdot & \cdot & x_6 \end{pmatrix}$$
Vanishing θ_{13} implies

$$m_{\nu} \begin{pmatrix} 0 \\ -a \\ b \end{pmatrix} = m_3 \begin{pmatrix} 0 \\ -a \\ b \end{pmatrix} \Rightarrow m_{\nu} = \begin{pmatrix} x_1 & x_2 & cx_2 \\ \cdot & x_4 & c(x_4 - m_3) \\ \cdot & \cdot & m_3 + c^2(m_3 - x_4) \end{pmatrix}$$
Maximal θ_{23} implies

$$m_{\nu} \begin{pmatrix} \epsilon \\ -a \\ a \end{pmatrix} = m_3 \begin{pmatrix} \epsilon \\ -a \\ a \end{pmatrix} \Rightarrow m_{\nu} = \begin{pmatrix} x_1 & x_2 & x_2 + d(m_3 - x_1) \\ \cdot & x_4 & x_4 - m_3 - dx_2 \\ \cdot & \cdot & x_4 - d^2(m_3 - x_1) - 2 dx_2 \end{pmatrix}$$

How to perturb a mixing scenario/model

• Radiative corrections

$$\theta_{ij} \simeq \theta_{ij}^{\mathrm{TBM}} + k_{ij} \, \epsilon_{\mathrm{RG}}$$

$$k_{12} = \frac{\sqrt{2}}{3} \frac{\left|m_1 + m_2 e^{i\alpha_2}\right|^2}{\Delta m_{\odot}^2}$$

$$k_{23} = -\left(\frac{2}{3} \frac{\left|m_2 + m_3 e^{i(\alpha_3 - \alpha_2)}\right|^2}{m_3^2 - m_2^2} + \frac{1}{3} \frac{\left|m_1 + m_3 e^{i\alpha_3}\right|^2}{m_3^2 - m_1^2}\right)$$

$$k_{13} = -\frac{\sqrt{2}}{3} \left(\frac{\left|m_2 + m_3 e^{i(\alpha_3 - \alpha_2)}\right|^2}{m_3^2 - m_2^2} - \frac{\left|m_1 + m_3 e^{i\alpha_3}\right|^2}{m_3^2 - m_1^2}\right)$$

$$\epsilon_{\rm RG} = c \, \frac{m_{\tau}^2}{16\pi^2 \, v^2} \ln \frac{M_X}{m_Z}$$
 and $c = -3/2$ or $1 + \tan^2 \beta$

Note: potentially huge effect for θ_{12} unless (Majorana) phase suppression

Sum-rules in Models and $0\nu\beta\beta$

• constrains masses and Majorana phases:

$$m_1 + m_2 = m_3$$

$$1/m_1 + 1/m_2 = 1/m_3$$

$$\int_{\frac{\pi}{3}} \frac{\pi}{m_1} \int_{\frac{2\pi}{3}} \frac{2\pi}{m_1}$$

$$\langle m_{ee} \rangle \stackrel{\text{TBM}}{\approx} \frac{m_0}{\sqrt{3}}$$

• stable:

$$m_1 + m_2 - m_3 = \epsilon \, m_{\rm max}$$

new solutions not before $\epsilon\simeq 0.3$

Sum-rules in Models and $0\nu\beta\beta$

Barry, W.R., NPB 842, 33 (2011)

Testing Inverted Ordering

Nature gives us a scale:

 $|m_{ee}|_{\min}^{\text{IH}} = (1 - |U_{e3}|^2) \sqrt{|\Delta m_{A}^2|} (1 - 2\sin^2\theta_{12}) = \begin{cases} (0.015...0.020) \text{ eV} & 1\sigma \\ (0.010...0.024) \text{ eV} & 3\sigma \end{cases}$

factor 2 range due to uncertainty in $\sin^2 \theta_{12}$ Recall: a limit $|m_{ee}|_{\text{lim}}$ scales with $\left(\frac{\Delta E B}{M t}\right)^{\frac{1}{4}}$

 \Rightarrow factor 2 in $|m_{ee}|_{\min}^{\text{IH}}$ is a factor of $2^4 = 16$ in $\Delta E B/(M t)$

Dueck, W.R., Zuber, 1103.4152

$$\begin{array}{l} \begin{array}{l} \text{A Model based on } D_{10} \\ \begin{pmatrix} \langle \chi_1^e \rangle \\ \langle \chi_2^e \rangle \end{pmatrix} = v_e \begin{pmatrix} 1 \\ e^{\frac{2\pi i k}{5}} \end{pmatrix}, \begin{pmatrix} \langle \xi_1^e \rangle \\ \langle \xi_2^e \rangle \end{pmatrix} = w_e \begin{pmatrix} 1 \\ e^{\frac{3\pi i k}{5}} \end{pmatrix}, \begin{pmatrix} \langle \rho_1^e \rangle \\ \langle \rho_2^e \rangle \end{pmatrix} = z_e \begin{pmatrix} 1 \\ e^{\frac{4\pi i k}{5}} \end{pmatrix} \\ \text{where } k \text{ is an odd integer between 1 and 9, and} \\ \begin{pmatrix} \langle \varphi_1^\nu \rangle \\ \langle \varphi_2^\nu \rangle \end{pmatrix} = v_\nu \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} \langle \chi_1^\nu \rangle \\ \langle \chi_2^\nu \rangle \end{pmatrix} = w_\nu \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} \langle \xi_1^\nu \rangle \\ \langle \xi_2^\nu \rangle \end{pmatrix} = z_\nu \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} \sigma^e \rangle = x_e, \quad \langle \sigma^\nu \rangle = x_\nu \end{array}$$

$$U_{\ell} = \operatorname{diag}(e^{-2i\Phi}, 1, e^{-i(\Phi+\delta)}) \begin{pmatrix} -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0\\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{23} & \sin\theta_{23}\\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$$

where $\Phi = \frac{4\pi}{5}$
$$U_{\nu} = \begin{pmatrix} -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0\\ \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0\\ 0 & 0 & 1 \end{pmatrix} P$$

- $\theta_{12} = \pi/5$
- vanishing U_{e3}
- in general non-maximal θ_{23}
VEV alignment

SUSY and "driving fields"

Field	ψ^{0e}	$arphi_{1,2}^{0e}$	$\xi_{1,2}^{0e}$	$\psi^{0 u}$	$\chi^{0 u}_{1,2}$	$\xi_{1,2}^{0 u}$
D_{10}	<u>1</u> 3	<u>2</u> 1	<u>2</u> 3	<u>1</u> 4	<u>2</u> 2	<u>2</u> 3
Z_5	ω	ω	ω	ω^4	ω^4	ω^4

flavon superpotential $w_f = w_{f,e} + w_{f,\nu}$

flavor symmetry broken at high scale, thus minimize in supersymmetric limit

determine supersymmetric minimum by setting F-terms of driving fields to zero:

$$\frac{\partial w_{f,e}}{\partial \psi^{0e}} = a_e \left(\chi_1^e \xi_1^e + \chi_2^e \xi_2^e\right) = 0$$

$$\frac{\partial w_{f,e}}{\partial \varphi_1^{0e}} = b_e \chi_1^e \xi_2^e + c_e \xi_1^e \rho_2^e = 0$$

$$\frac{\partial w_{f,e}}{\partial \varphi_2^{0e}} = b_e \chi_2^e \xi_1^e + c_e \xi_2^e \rho_1^e = 0$$

$$\frac{\partial w_{f,u}}{\partial \xi_1^{0e}} = d_e \xi_2^e \sigma^e + f_e \xi_1^e \rho_1^e = 0$$

$$\frac{\partial w_{f,u}}{\partial \xi_2^{0e}} = d_e \xi_1^e \sigma^e + f_e \xi_2^e \rho_2^e = 0$$

solved by vev configuration given above...