Viability of the exact Tri-Bimaximal mixing at the GUT scale in SO(10)

Ketan Patel

Physical Research Laboratory Ahmedabad, India

FLASY-2011

IFIC, Universitat de València, Spain July 12, 2011

Based on

A. S. Joshipura and K. M. Patel, [arXiv:1105.5943]

Ketan Patel (PRL)

Exact TBM mixing in SO(10)

TBM and Quark-Lepton Unification

- The observed mixing pattern among leptons indicates some underlying flavor symmetries if not accidental.
- Incorporating such symmetries or the tri-bimaximal mixing (TBM) into grand unified theories (GUTs), particularly based on the SO(10) gauge group is quite challenging.

[F. Bazzocchi et al. (2008), A. Joshipura et al.(2009), B. Dutta et al.(2010), . . .]

- Since all fermions in a given generation are unified into a single 16_F, imposition of the TBM structure on the leptonic mass matrices also constrains the quark mass matrices.
- It is not clear if the requirement of the exact tri-bimaximal mixing among leptons would be consistent with a precise description of the quark masses and mixing.

TBM and Quark-Lepton Unification

- The observed mixing pattern among leptons indicates some underlying flavor symmetries if not accidental.
- Incorporating such symmetries or the tri-bimaximal mixing (TBM) into grand unified theories (GUTs), particularly based on the SO(10) gauge group is quite challenging.

[F. Bazzocchi et al. (2008), A. Joshipura et al.(2009), B. Dutta et al.(2010), . . .]

- Since all fermions in a given generation are unified into a single 16_F, imposition of the TBM structure on the leptonic mass matrices also constrains the quark mass matrices.
- It is not clear if the requirement of the exact tri-bimaximal mixing among leptons would be consistent with a precise description of the quark masses and mixing.

Leptonic Mixing Matrices and TBM

• The TBM structure for $\mathcal{M}_{\nu f}$ (neutrino mass matrix in flavor basis)

$$\mathcal{M}_{
uf} = rac{1}{3} \left(egin{array}{cccc} 2f_1 + f_2 & f_2 - f_1 & f_2 - f_1 \ f_2 - f_1 & rac{1}{2}(f_1 + 2f_2 + 3f_3) & rac{1}{2}(f_1 + 2f_2 - 3f_3) \ f_2 - f_1 & rac{1}{2}(f_1 + 2f_2 - 3f_3) & rac{1}{2}(f_1 + 2f_2 + 3f_3) \end{array}
ight)$$

This matrix is diagonalized by

$$U_{PMNS} = O_{TBM}Q$$

where Q is a diagonal phase matrix.

• It is known that $\mathcal{M}_{
u f}$ is invariant under $Z_2 imes Z_2$ symmetry

$$S_2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix} \quad \text{and} \quad S_3 = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

and satisfy

$$S_{2,3}^T \mathcal{M}_{\nu f} S_{2,3} = \mathcal{M}_{\nu f}$$

Ketan Patel (PRL)

July 12, 2011 3 / 17

Leptonic Mixing Matrices and TBM

• The TBM structure for $\mathcal{M}_{\nu f}$ (neutrino mass matrix in flavor basis)

$$\mathcal{M}_{
uf} = rac{1}{3} \left(egin{array}{cccc} 2f_1 + f_2 & f_2 - f_1 & f_2 - f_1 \ f_2 - f_1 & rac{1}{2}(f_1 + 2f_2 + 3f_3) & rac{1}{2}(f_1 + 2f_2 - 3f_3) \ f_2 - f_1 & rac{1}{2}(f_1 + 2f_2 - 3f_3) & rac{1}{2}(f_1 + 2f_2 + 3f_3) \end{array}
ight)$$

This matrix is diagonalized by

$$U_{PMNS} = O_{TBM}Q$$

where Q is a diagonal phase matrix.

▶ It is known that $\mathcal{M}_{\nu f}$ is invariant under $Z_2 \times Z_2$ symmetry

$$S_2 = rac{1}{3} \left(egin{array}{cccc} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{array}
ight) \quad ext{and} \qquad S_3 = \left(egin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}
ight)$$

and satisfy

$$S_{2,3}^T \mathcal{M}_{\nu f} S_{2,3} = \mathcal{M}_{\nu f}$$

Leptonic Mixing Matrices and TBM

• One can choose a basis in which M_{ν} exhibits the TBM structure and is invariant $Z_2 \times Z_2$

$$S_{2,3}^T M_{\nu} S_{2,3} = M_{\nu}$$

▶ In this basis, if U_1 itself is $Z_2 \times Z_2$ symmetric, *i.e.* satisfies

$$S_{2,3}^T U_I S_{2,3} = U_I$$

then $\mathcal{M}_{\nu f}$ will also be invariant under $Z_2 \times Z_2$ symmetry and exhibit the TBM structure.

Such a U_1 can be parameterized as

$$\tilde{U}_{I} = \begin{pmatrix} c_{\theta} & \frac{s_{\theta}}{\sqrt{2}} & \frac{s_{\theta}}{\sqrt{2}} \\ \frac{s_{\theta}}{\sqrt{2}} & -\frac{1}{2}(c_{\theta} + e^{i\delta}) & -\frac{1}{2}(c_{\theta} - e^{i\delta}) \\ \frac{s_{\theta}}{\sqrt{2}} & -\frac{1}{2}(c_{\theta} - e^{i\delta}) & -\frac{1}{2}(c_{\theta} + e^{i\delta}) \end{pmatrix}$$

where $P_l = \text{diag.}(1, e^{i\beta}, e^{i\beta})$ is a diagonal phase matrix and $\tan \theta = -2\sqrt{2} \cos \beta$.

Leptonic Mixing Matrices and TBM

• One can choose a basis in which M_{ν} exhibits the TBM structure and is invariant $Z_2 \times Z_2$

$$S_{2,3}^T M_{\nu} S_{2,3} = M_{\nu}$$

▶ In this basis, if U_1 itself is $Z_2 \times Z_2$ symmetric, *i.e.* satisfies

$$S_{2,3}^T U_1 S_{2,3} = U_1$$

then $\mathcal{M}_{\nu f}$ will also be invariant under $Z_2 \times Z_2$ symmetry and exhibit the TBM structure.

Such a U_l can be parameterized as

$$\begin{split} U_l &= e^{i\alpha} P_l \tilde{U}_l P_l \ ,\\ \tilde{U}_l &= \begin{pmatrix} c_\theta & \frac{s_\theta}{\sqrt{2}} & \frac{s_\theta}{\sqrt{2}} \\ \frac{s_\theta}{\sqrt{2}} & -\frac{1}{2} (c_\theta + e^{i\delta}) & -\frac{1}{2} (c_\theta - e^{i\delta}) \\ \frac{s_\theta}{\sqrt{2}} & -\frac{1}{2} (c_\theta - e^{i\delta}) & -\frac{1}{2} (c_\theta + e^{i\delta}) \end{pmatrix},\\ \end{split}$$
 where $P_l = \text{diag.}(1, e^{i\beta}, e^{i\beta})$ is a diagonal phase matrix and $\tan \theta = -2\sqrt{2} \cos \beta.$

Leptonic Mixing Matrices and TBM

- ► The Z₂ × Z₂ invariance of U_l is also necessary if M_{νf} is to exhibit the TBM structure.
- If $\mathcal{M}_{\nu f}$ has the TBM structure then $U_{PMNS} = O_{TBM}Q$.
- At the same time M_{ν} also has TBM structure in specified basis which implies $U_{\nu} = O_{TBM}P$.
- Since $U_I = U_{\nu} U_{PMNS}^{\dagger}$,

$$\begin{array}{lll} U_{I} & = & O_{TBM} P Q^{*} O_{TBM}^{T} \ , \\ & = & \displaystyle \frac{1}{3} \begin{pmatrix} 2 p_{1} + p_{2} & p_{2} - p_{1} & p_{2} - p_{1} \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) \end{pmatrix} \ , \end{array}$$

 p_i are the elements of the diagonal phase matrix PQ^* .

▶ The above U_l is obtained from the general TBM $\mathcal{M}_{\nu f}$, by replacing the neutrino masses with the phases p_i and like $\mathcal{M}_{\nu f}$ such a U_l is automatically $Z_2 \times Z_2$ symmetric.

Leptonic Mixing Matrices and TBM

- ► The Z₂ × Z₂ invariance of U_l is also necessary if M_{νf} is to exhibit the TBM structure.
- If $\mathcal{M}_{\nu f}$ has the TBM structure then $U_{PMNS} = O_{TBM}Q$.
- At the same time M_{ν} also has TBM structure in specified basis which implies $U_{\nu} = O_{TBM}P$.
- Since $U_I = U_{\nu} U_{PMNS}^{\dagger}$,

$$\begin{array}{lll} U_{I} & = & O_{TBM} P Q^{*} O_{TBM}^{T} \ , \\ & = & \displaystyle \frac{1}{3} \begin{pmatrix} 2 p_{1} + p_{2} & p_{2} - p_{1} & p_{2} - p_{1} \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) \end{pmatrix} \ , \end{array}$$

 p_i are the elements of the diagonal phase matrix PQ^* .

The above U_l is obtained from the general TBM $\mathcal{M}_{\nu f}$, by replacing the neutrino masses with the phases p_i and like $\mathcal{M}_{\nu f}$ such a U_l is automatically $Z_2 \times Z_2$ symmetric.

Ketan Patel (PRL)

July 12, 2011 5 / 17

Leptonic Mixing Matrices and TBM

- ► The Z₂ × Z₂ invariance of U_l is also necessary if M_{νf} is to exhibit the TBM structure.
- If $\mathcal{M}_{\nu f}$ has the TBM structure then $U_{PMNS} = O_{TBM}Q$.
- At the same time M_{ν} also has TBM structure in specified basis which implies $U_{\nu} = O_{TBM}P$.
- Since $U_I = U_{\nu} U_{PMNS}^{\dagger}$,

$$\begin{array}{lll} U_{I} & = & O_{TBM} P Q^{*} O_{TBM}^{T} \ , \\ & = & \displaystyle \frac{1}{3} \begin{pmatrix} 2 p_{1} + p_{2} & p_{2} - p_{1} & p_{2} - p_{1} \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) \\ p_{2} - p_{1} & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} - 3 p_{3}) & \displaystyle \frac{1}{2} (p_{1} + 2 p_{2} + 3 p_{3}) \end{pmatrix} \ , \end{array}$$

 p_i are the elements of the diagonal phase matrix PQ^* .

▶ The above U_l is obtained from the general TBM $\mathcal{M}_{\nu f}$, by replacing the neutrino masses with the phases p_i and like $\mathcal{M}_{\nu f}$ such a U_l is automatically $Z_2 \times Z_2$ symmetric.

Embedding leptonic structure in SO(10)

- ▶ We study the derived structure of M_{ν} and U_{l} in context of a well predictive susy GUT SO(10) model.
- A particular class of SO(10) model is studied in which we
 - consider a supersymmetric SO(10) model with the Higgs transforming as 10, 126, 120 representations of SO(10).
 - (a) impose the generalized parity leading to Hermitian mass matrices.

[B.Dutta et al. (2004), W.Grimus, H.Kuhbock (2007)]

() assume that the dominant contribution to M_{ν} is a type-II seesaw, *i.e.* linear in the 126 Yukawa coupling.

SO(10) Model and TBM

Embedding leptonic structure in SO(10)

The fermion mass relations after electroweak symmetry breaking can be written in their most general forms as

$$M_d = H + F + iG \quad , \quad M_u = r(H + sF + it_uG),$$

$$M_l = H - 3F + it_lG \quad , \quad M_D = r(H - 3sF + it_DG)$$

where H, F are real symmetric and G is real anti-symmetric matrices. r, s, t_f are real dimensionless parameters. The light neutrino mass matrix is given by,

$$\mathcal{M}_{\nu} = r_L F - r_R M_D F^{-1} M_D^T \equiv \mathcal{M}_{\nu}^{\prime \prime} + \mathcal{M}_{\nu}^{\prime}$$

The 16-plet fermions can be rotated in generation space in such a way that

$$M_{\nu} \propto F \rightarrow R^T F R = F_{TBM} \equiv O_{TBM} \text{ Diag.}(f_1, f_2, f_3) O_{TBM}^T$$

is diagonalized by the TBM matrix.

The model has altogether 17 independent real parameters (3 in *F_{TBM}*, 6 in *H*, 3 in *G*, *r*, *s*, *t_u*, *t_l* and *r_L*) which determine the entire 22 low energy observables of the fermion mass spectrum.

Ketan Patel (PRL)

July 12, 2011 7 / 17

SO(10) Model and TBM

Embedding leptonic structure in SO(10)

The fermion mass relations after electroweak symmetry breaking can be written in their most general forms as

$$M_d = H + F + iG \quad , \quad M_u = r(H + sF + it_uG),$$

$$M_l = H - 3F + it_lG \quad , \quad M_D = r(H - 3sF + it_DG)$$

where H, F are real symmetric and G is real anti-symmetric matrices. r, s, t_f are real dimensionless parameters. The light neutrino mass matrix is given by,

$$\mathcal{M}_{\nu} = r_L F - r_R M_D F^{-1} M_D^T \equiv \mathcal{M}_{\nu}^{\prime \prime} + \mathcal{M}_{\nu}^{\prime}$$

The 16-plet fermions can be rotated in generation space in such a way that

$$M_{\nu} \propto F \rightarrow R^{T}FR = F_{TBM} \equiv O_{TBM} \text{ Diag.}(f_{1}, f_{2}, f_{3}) O_{TBM}^{T}$$

is diagonalized by the TBM matrix.

The model has altogether 17 independent real parameters (3 in *F_{TBM}*, 6 in *H*, 3 in *G*, *r*, *s*, *t_u*, *t_l* and *r_L*) which determine the entire 22 low energy observables of the fermion mass spectrum.

Ketan Patel (PRL)

July 12, 2011 7 / 17

SO(10) Model and TBM

Embedding leptonic structure in SO(10)

The fermion mass relations after electroweak symmetry breaking can be written in their most general forms as

$$M_d = H + F + iG \quad , \quad M_u = r(H + sF + it_uG),$$

$$M_l = H - 3F + it_lG \quad , \quad M_D = r(H - 3sF + it_DG)$$

where H, F are real symmetric and G is real anti-symmetric matrices. r, s, t_f are real dimensionless parameters. The light neutrino mass matrix is given by,

$$\mathcal{M}_{\nu} = r_L F - r_R M_D F^{-1} M_D^T \equiv \mathcal{M}_{\nu}^{\prime \prime} + \mathcal{M}_{\nu}^{\prime}$$

The 16-plet fermions can be rotated in generation space in such a way that

$$M_{\nu} \propto F \rightarrow R^{T}FR = F_{TBM} \equiv O_{TBM} \text{ Diag.}(f_{1}, f_{2}, f_{3}) O_{TBM}^{T}$$

is diagonalized by the TBM matrix.

► The model has altogether 17 independent real parameters (3 in *F_{TBM}*, 6 in *H*, 3 in *G*, *r*, *s*, *t_u*, *t_l* and *r_L*) which determine the entire 22 low energy observables of the fermion mass spectrum.

Ketan Patel (PRL)

July 12, 2011 7 / 17

Embedding leptonic structure in SO(10)

- Some of these parameters can be fixed by the known values of observables directly.
- ▶ The SO(10) relation for the charged lepton mass matrix can be rewritten as

$$H + it_I G = V_I D_I V_I^{\dagger} + 3F_{TBM}$$

- V_l (~ Ṽ_lP) is a unitary matrix that diagonalizes M_l and contains six free parameters in the most general case.
- If we fix V_l = U_l, where U_l has the same Z₂ × Z₂ symmetry as M_ν and parameterized by only three parameters, then we get an exact TBM lepton mixing.
- In such case, most of the free parameters are fixed in terms of the observables of the lepton sector and remaining 6 parameters has to reproduce 10 observables of the quark sector.

Embedding leptonic structure in SO(10)

- Some of these parameters can be fixed by the known values of observables directly.
- The SO(10) relation for the charged lepton mass matrix can be rewritten as

$$H + it_I G = V_I D_I V_I^{\dagger} + 3F_{TBM}$$

- ▶ V_l (~ $\tilde{V}_l P$) is a unitary matrix that diagonalizes M_l and contains six free parameters in the most general case.
- If we fix V_l = U_l, where U_l has the same Z₂ × Z₂ symmetry as M_ν and parameterized by only three parameters, then we get an exact TBM lepton mixing.
- In such case, most of the free parameters are fixed in terms of the observables of the lepton sector and remaining 6 parameters has to reproduce 10 observables of the quark sector.

SO(10) Model and TBM: Numerical Analysis

Numerical Study of Model: χ^2 Analysis

- We do the χ² fitting to check the viability of the free parameters with the quark sector observables.
- We construct

$$\chi^{2}(\alpha_{j}) = \sum_{i} \left(\frac{X_{i}(\alpha_{j}) - O_{i}}{\sigma_{i}} \right)^{2}$$

Where,

- X_i are the quark masses and mixing as complex nonlinear functions of parameters α_j calculated from the given model at GUT scale.
- O_i (σ_i) are the input mean values(1 σ errors) of respective masses and mixing angles evaluated at M_{GUT} =2 × 10¹⁶ GeV.
- We assume normal hierarchy in neutrino masses and consider two separate cases corresponding to the individual dominance of type-I and type-II seesaw mechanism.
- ► Then the data are fitted by minimizing the χ^2 function with respect to parameters α_j using an algorithm based on the downhill simplex method.

SO(10) Model and TBM: Numerical Analysis

Results of χ^2 minimization

	Case A		Case B1		Case B2	
Observables	Fitted value	Pull	Fitted value	Pull	Fitted value	Pull
$m_d[MeV]$	1.19851	-0.101205	1.22098	-0.0463899	1.02686	-0.519852
$m_s[MeV]$	22.1374	0.0841145	21.9922	0.0561874	22.0058	0.058806
$m_b[GeV]$	1.05103	-0.0996223	1.16345	0.738942	1.2842	1.60145
$m_u[MeV]$	0.550206	0.000824013	0.550234	0.000936368	0.550787	0.00314771
$m_c[GeV]$	0.209956	-0.00208935	0.209952	-0.00230315	0.210481	0.0229054
$m_t[GeV]$	82.6175	0.00717855	82.5855	0.00612198	81.7487	-0.0440052
$m_e[MeV]$	0.3585	_	0.3585	_	0.3585	-
m_{μ} [MeV]	75.672	-	75.672	-	75.672	-
m_{τ} [GeV]	1.2922	_	1.2922	_	1.2922	-
$\left(\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}\right)$	0.031875	_	0.031875	-	0.031875	-
$\sin \theta_{12}^q$	0.224299	-0.0007232	0.2243	0.0002182	0.224303	0.0019076
$\sin \theta_{23}^q$	0.0350871	-0.0099165	0.0350951	-0.0038047	0.0351294	0.022597
$\sin \theta_{13}^{q}$	0.00317877	-0.0424606	0.00319436	-0.0112796	0.0031749	-0.0502087
$\sin^2 \theta_{12}^I$	0.303622	-0.0171641	0.3333	-	0.3333	-
$\sin^2 \theta_{23}^I$	0.501109	0.015842	0.5	_	0.5	-
$\sin^2 \theta_{13}^I$	0.0394	_	0	_	0	-
J _{CP}	2.24×10^{-5}	0.0732629	$2.21 imes 10^{-5}$	0.0194165	2.25×10^{-5}	0.0845729
δ_{MNS}	273.934	-	-	-	-	-
α_1	186.801	-	160.829	-	180	-
α2	70.8178	-	318.593	-	0	-
χ^2_{min}		0.0351		0.5519		2.8510

Ketan Patel (PRL)

Exact TBM mixing in SO(10)

July 12, 2011 10 / 17

Possible Perturbations to exact TBM

- The TBM is an ideal situation and various perturbations to this can arise in the model.
- We need to analyze these perturbations in order to distinguish this case from the generic case without the built in TBM.
- A deviation from tri-bimaximality can arise due to
 - ① renormalization group evolution (RGE) from M_{GUT} to M_Z .
 - I small contribution from the sub dominant type-I seesaw.
 - ③ the breaking of the $Z_2 \times Z_2$ symmetry in U_1 which ensured TBM.
- The effect of (1) is known to be negligible in case of the hierarchical neutrino mass spectrum which we obtain here.

[A. Dighe et al. (2006), T. Araki et al. (2010)]

Possible Perturbations to exact TBM

- The TBM is an ideal situation and various perturbations to this can arise in the model.
- We need to analyze these perturbations in order to distinguish this case from the generic case without the built in TBM.
- A deviation from tri-bimaximality can arise due to
 - **(**) renormalization group evolution (RGE) from M_{GUT} to M_Z .
 - 2) small contribution from the sub dominant type-I seesaw.
 - 3) the breaking of the $Z_2 \times Z_2$ symmetry in U_1 which ensured TBM.
- The effect of (1) is known to be negligible in case of the hierarchical neutrino mass spectrum which we obtain here.

[A. Dighe et al. (2006), T. Araki et al. (2010)]

Possible Perturbations to exact TBM

- The TBM is an ideal situation and various perturbations to this can arise in the model.
- We need to analyze these perturbations in order to distinguish this case from the generic case without the built in TBM.
- A deviation from tri-bimaximality can arise due to
 - **(1)** renormalization group evolution (RGE) from M_{GUT} to M_Z .
 - 2) small contribution from the sub dominant type-I seesaw.
 - **3** the breaking of the $Z_2 \times Z_2$ symmetry in U_1 which ensured TBM.
- The effect of (1) is known to be negligible in case of the hierarchical neutrino mass spectrum which we obtain here.

[A. Dighe et al. (2006), T. Araki et al. (2010)]

Perturbation from type-I seesaw

$$M_{\nu} = r_L (F - \xi M_D F^{-1} M_D^T)$$

- A sub dominant contribution from type-I seesaw term can perturb the TBM.
- ▶ It brings two new parameters ξ and t_D present in M_D which however affect only the neutrino sector.
- ► ξ and t_D remain unconstrained at this minimum and their values do not change the χ^2 obtained earlier since the latter contains only the observables in the quark sector.
- We randomly vary the parameters ξ and t_D and evaluate the neutrino masses and mixing angles.
- While doing this, we take care that all these observables remain within their 3σ limits.

[T. Schwetz et al. (2011)]

► Such constrains allow very small values of $|\xi| \le 10^{-7}$, $\epsilon_{??}$,

Perturbation from type-I seesaw

- Correlations among the lepton mixing angles when two real parameters ξ and t_D are varied randomly.
- The perturbation induced by type-I term cannot generate considerable deviation in the reactor angle.
- Requiring that $\sin^2 \theta'_{12}$ remains within the 3σ range puts an upper bound $\sin^2 \theta'_{13} \le 0.0002$.

Ketan Patel (PRL)

July 12, 2011 13 / 17

Perturbation from charged lepton mixing

- A different class of perturbation to TBM arise when U_l deviates from its $Z_2 \times Z_2$ symmetric form.
- ▶ We simultaneously perturb all three mixing angles by allowing the most general U_{l} .
- The specific value p_0 of an observable P is pinned down by adding a term

$$\chi_P^2 = \left(\frac{P - p_0}{0.01 \ p_0}\right)^2$$

to χ^2 and then minimizing

$$\hat{\chi}^2 \equiv \chi^2 + \chi_P^2 \; .$$

- Artificially introduced small error fixes the value p₀ for the observable P at the minimum of
 ²/₂.
- We then look at the variation of

$$ar{\chi}^2_{min}\equiv (\hat{\chi}^2-\chi^2_P)|_{min}$$

with p_0 .

Perturbation from charged lepton mixing

- A different class of perturbation to TBM arise when U_l deviates from its $Z_2 \times Z_2$ symmetric form.
- We simultaneously perturb all three mixing angles by allowing the most general U_l .
- The specific value p_0 of an observable P is pinned down by adding a term

$$\chi_P^2 = \left(\frac{P - p_0}{0.01 \ p_0}\right)^2$$

to χ^2 and then minimizing

$$\hat{\chi}^2 \equiv \chi^2 + \chi^2_P \ .$$

- Artificially introduced small error fixes the value p₀ for the observable P at the minimum of
 ^{^2}/₂.
- We then look at the variation of

$$ar{\chi}^2_{min} \equiv (\hat{\chi}^2 - \chi^2_P)|_{min}$$

with p_0 .

Perturbation from charged lepton mixing

- Correlations among the lepton mixing angles in case of the general charged lepton mixing matrix U_l.
- ▶ $ar{\chi}^2_{min} < 1$ (green); $1 \le ar{\chi}^2_{min} < 4$ (blue); $ar{\chi}^2_{min} \ge 4$ (red)
- ► The region χ²_{min} < 4 falls largely above sin² θ'₁₃ > 0.005 for sin² θ'₂₃ = 0.5 which may be regarded as an approximate lower bound on θ'₁₃.

- General structures of the charged lepton and the neutrino mixing matrices leading to tri-bimaximal leptonic mixing are determined.
- ▶ We have shown that it is possible to construct a class of non-trivial U_l quite different from identity which preserve the TBM structure of M_{ν} when transformed to the flavour basis.
- Identification of such non-trivial U_l becomes crucial in the context of SO(10) and allows us to obtain a viable fit to fermion spectrum keeping TBM intact.
- The quality of fit obtained in this case is excellent and differs only marginally from a general situation without imposing the TBM structure at the outset.
- The existence of TBM at the GUT scale may be inferred by considering its breaking which can arise in the model and the reactor mixing angle is a good pointer to this.

- General structures of the charged lepton and the neutrino mixing matrices leading to tri-bimaximal leptonic mixing are determined.
- ▶ We have shown that it is possible to construct a class of non-trivial U_l quite different from identity which preserve the TBM structure of M_{ν} when transformed to the flavour basis.
- Identification of such non-trivial U_l becomes crucial in the context of SO(10) and allows us to obtain a viable fit to fermion spectrum keeping TBM intact.
- The quality of fit obtained in this case is excellent and differs only marginally from a general situation without imposing the TBM structure at the outset.
- The existence of TBM at the GUT scale may be inferred by considering its breaking which can arise in the model and the reactor mixing angle is a good pointer to this.

- The quantum corrections lead to very small θ'_{13} for the hierarchical neutrinos.
- Similarly, corrections coming from type-I seesaw term imply an upper bound, $\sin^2 \theta'_{13} \leq 0.0002$
- ► These two cases are in sharp contrast to a situation in which one does not impose the TBM at M_{GUT} by breaking $Z_2 \times Z_2$ symmetry of U_l . In this case, one is lead to an approximate lower bound $\sin^2 \theta'_{13} \ge 0.005$.
- ▶ θ_{13}^l can thus provide a good way of determining the existence or otherwise of the exact TBM at M_{GUT} in the specific model considered here.

THANKS

- The quantum corrections lead to very small θ'_{13} for the hierarchical neutrinos.
- Similarly, corrections coming from type-I seesaw term imply an upper bound, $\sin^2 \theta'_{13} \leq 0.0002$
- ► These two cases are in sharp contrast to a situation in which one does not impose the TBM at M_{GUT} by breaking $Z_2 \times Z_2$ symmetry of U_l . In this case, one is lead to an approximate lower bound $\sin^2 \theta'_{13} \ge 0.005$.
- ▶ θ_{13}^l can thus provide a good way of determining the existence or otherwise of the exact TBM at M_{GUT} in the specific model considered here.

THANKS