Maximal atmospheric neutrino mixing from texture zeros and quasi-degenerate neutrino masses

Patrick Otto Ludl Faculty of Physics, University of Vienna

Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology, Valencia, July 2011

Lepton mass terms:

$$\begin{split} \mathcal{L} &= -\bar{\ell}_R' \mathcal{M}_\ell \ell_L' + \frac{1}{2} \nu_L'^T C^{-1} \mathcal{M}_\nu \nu_L' + \text{H.c.} = \\ &= -\bar{\ell}_R \hat{\mathcal{M}}_\ell \ell_L + \frac{1}{2} \nu_L^T C^{-1} \hat{\mathcal{M}}_\nu \nu_L + \text{H.c.} \end{split}$$

Diagonalization by a biunitary transformation:

$$\mathcal{M}_{\ell} = U_{R}^{\ell} \hat{\mathcal{M}}_{\ell} U_{L}^{\ell\dagger}, \quad \mathcal{M}_{\nu} = U_{L}^{\nu*} \hat{\mathcal{M}}_{\nu} U_{L}^{\nu\dagger}$$
$$\Rightarrow U_{L}^{\nu\dagger} \nu_{L}' = \nu_{L}, \quad U_{L}^{\ell\dagger} \ell_{L}' = \ell_{L}$$

Charged current interaction:

$$\mathcal{L}_{\rm CC} = -\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{\ell}_{L}^{\prime} \gamma^{\mu} \nu_{L}^{\prime} + \text{H.c.} = -\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{\ell}_{L} \gamma^{\mu} \underbrace{U_{L}^{\ell \dagger} U_{L}^{\nu}}_{U_{\rm PMNS}} \nu_{L} + \text{H.c.}$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $U_{\rm PMNS}$ can be parameterized by three mixing angles, the CP-violating phase δ and two physical Majorana phases.

parameter	best fit	2σ	HPS
$\sin^2\theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.28 - 0.35	$\frac{1}{3}$
$\sin^2\theta_{23}$	0.51 ± 0.06	0.41 - 0.61	$\frac{1}{2}$
	0.52 ± 0.06	0.42 - 0.61	$\frac{1}{2}$
$\sin^2\theta_{13}$	$0.010\substack{+0.009\\-0.006}$	\leq 0.027	0
	$0.013\substack{+0.009\\-0.007}$	\leq 0.031	0

T. Schwetz, M. Tórtola and J.W.F. Valle (2011)

Extremal mixing angles

 $U_{\rm PMNS}$ is compatible with the Harrison Perkins Scott (HPS) mixing matrix within 2σ .

$$\mathcal{U}_{ ext{HPS}} = egin{pmatrix} \sqrt{rac{2}{3}} & rac{1}{\sqrt{3}} & 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{6}} & -rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \end{pmatrix}$$

 \rightarrow ldea: symmetries in the lepton sector

HPS mixing matrix: two extremal mixing angles:

$$\theta_{13} = 0^\circ, \quad \theta_{23} = 45^\circ$$

C.I. Low (2005):

The only extremal mixing angle which can be obtained by an Abelian symmetry is $\theta_{13} = 0^{\circ}$.

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

$\theta_{23} = 45^{\circ} \Rightarrow$ non-Abelian symmetry needed

 \rightarrow Can we achieve $\theta_{23} \approx 45^{\circ}$ using Abelian symmetries?

\rightarrow Yes, we can!

Basic idea: $U_{\rm PMNS}$ close to $U_{\rm HPS}$

 U_{PMNS} looks like a matrix consisting of "pure numbers"

Famous relation in the quark sector:

$$\sin\theta_c\approx\sqrt{\frac{m_d}{m_s}}$$

 \rightarrow perhaps similar situation in the lepton sector!

Near extremal atmospheric mixing

Ansatz: If \mathcal{M}_{ℓ} (approximately) diagonal

 \Rightarrow lepton mixing from bidiagonalization of \mathcal{M}_{ν} only.

Suppose we would have a relation between the mixing angles and the neutrino mass ratios of the form

 $\sin^2\theta_{ij}=f_{ij}(m_a/m_b).$

 \Rightarrow In the limit of a quasi-degenerate neutrino mass spectrum

 $rac{m_a}{m_b}
ightarrow 1 \quad \Rightarrow \quad \sin^2 heta_{ij}
ightarrow f_{ij}(1) \quad {
m independent of the masses}.$

 \Rightarrow $U_{\rm PMNS}$ could look like a matrix consisting of "pure numbers". Cosmological bounds: PDG (2010):

 $\sum_{i} m_{i} < 1 \, \text{eV} \Rightarrow \text{quasi-degenerate spectrum not excluded yet.}$

Analysis of W. Grimus and PL (2011):

Assumptions:

- The charged lepton mass matrix M_l is (approximately) diagonal.
- We have an Abelian family symmetry in the lepton sector.
- The neutrino mass spectrum is quasi-degenerate.
- We assume Majorana nature for the neutrinos.

Only restrictions of Abelian symmetries on \mathcal{M}_{ν} : texture zeros.

 \Rightarrow We search for symmetric neutrino mass matrices with texture zeros compatible with the experimental data.

Zeros of the neutrino mass matrix

P.H. Frampton, S.L. Glashow and D. Marfatia (2002):

In the basis where M_{ℓ} is diagonal, there are seven cases of two-texture zeros that are compatible with the experimental data.

$$\begin{aligned} A_1 &= \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{pmatrix}, \ A_2 &= \begin{pmatrix} 0 & \times & 0 \\ \times & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ B_1 &= \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \\ B_2 &= \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}, \ B_3 &= \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}, \ B_4 &= \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}, \\ C &= \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}. \end{aligned}$$

The cases B_3 and B_4

$$B_3: \mathcal{M}_{\nu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}, B_4: \mathcal{M}_{\nu} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}$$

 $\mathcal{M}_{\ell} \text{ diagonal} \Rightarrow U_{\mathrm{PMNS}} = U_{L}^{\nu} =: U.$

 $\mathcal{M}_{
u} = U^* \operatorname{diag}(m_1, m_2, m_3) U^{\dagger}$

Two texture zeros in $\mathcal{M}_{\nu} \Rightarrow$ two equations of the form

$$(\mathcal{M}_{\nu})_{ij}=\sum_{k}m_{k}U_{ik}^{*}U_{jk}^{*}=0.$$

Using the standard parameterization:

$$U = e^{i\hat{lpha}} V e^{i\hat{\sigma}}, \quad \hat{lpha}, \hat{\sigma} \text{ diagonal}$$

 $\sum_{k} \mu_{k} V_{ik}^{*} V_{jk}^{*} = 0, \quad \mu_{k} = m_{k} e^{2i\sigma_{k}}.$

The cases B_3 and B_4

Two equations of the form:

$$\sum_{k}\mu_{k}V_{ik}^{*}V_{jk}^{*}=0, \quad \mu_{k}=m_{k}e^{2i\sigma_{k}}.$$

Input: $m_1, m_2, m_3, \theta_{12}, \theta_{13} \Rightarrow$ predictions: $\theta_{23}, \delta, \sigma_{1,2}$ Note: $\sin^2\theta_{13} > 0$, because else $m_1 = m_2$. One obtains a cubic equation for $\lambda = \tan^2\theta_{23}$

 $\lambda^{3} + \lambda^{2} \left[s_{13}^{2} + c_{13}^{2} (c_{12}^{2}\rho_{1} + s_{12}^{2}\rho_{2}) \right] - \lambda \left[s_{13}^{2}\rho_{1}\rho_{2} + c_{13}^{2} (s_{12}^{2}\rho_{1} + c_{12}^{2}\rho_{2}) \right] - \rho_{1}\rho_{2} = 0.$

with

$$ho_i = \left(rac{m_i}{m_3}
ight)^2 \quad ({
m for} \ B_3) \quad {
m and} \quad
ho_i o rac{1}{
ho_i} \quad ({
m for} \ B_4).$$

The limit of a quasi-degenerate spectrum

In the limit of a quasi-degenerate neutrino mass spectrum $ho_i
ightarrow 1$ the cubic equation becomes

 $\lambda^3 + \lambda^2 - \lambda - 1 = 0$

$$\Rightarrow \lambda = \tan^2 \theta_{23} = 1 \Rightarrow \theta_{23} = 45^{\circ}.$$

Limit independent of the values of θ_{12} and θ_{13} !

Approximate solution of the exact equation:

$$\sin^2\theta_{23} \simeq \frac{1}{2} \mp \frac{1}{8} \frac{\Delta m_{31}^2}{m_1^2} (1 + \sin^2\theta_{13})$$

This indeed has the desired form

$$\sin^2\theta_{23}=f(m_a/m_b).$$

The limit of a quasi-degenerate spectrum

 $(\Delta m_{21}^2, \Delta m_{31}^2, \sin^2 \theta_{12} \text{ and } \sin^2 \theta_{13} \text{ fixed to best fit values.})$ B_3 (inverted) B_4 (normal) B_3 (normal) B_4 (inverted)

Patrick Otto Ludl (University of Vienna)

Maximal atmospheric neutrino mixing from texture zeros

The limit of a quasi-degenerate spectrum

In the limit of a quasi-degenerate mass spectrum:

Patrick Otto Ludl (University of Vienna) Maximal atmospheric neutrino mixing from texture zeros

In the limit of small $m_1: |{\rm cos}\delta| \le 1 \Rightarrow$ lower bound on m_1

Lower bound dependent on the value of $\sin^2 \theta_{13}$:

- inverted spectrum: bound $m_1 \gtrsim 0.05 \,\mathrm{eV}$ stable for $\sin^2 \theta_{13} \gtrsim 0.0001$.
- o normal spectrum:

$$m_1 \gtrsim 0.03 \,\mathrm{eV}$$
 at $\sin^2 heta_{13} \simeq 0.0001$.
 $m_1 \gtrsim 0.01 \,\mathrm{eV}$ at $\sin^2 heta_{13} \simeq 0.01$.

 \Rightarrow Quasi-degenerate spectrum not implied by texture zeros B_3 and B_4 . \Rightarrow has to be postulated.

- We have found two instances in the framework of two texture zeros in \mathcal{M}_{ν} (\mathcal{M}_{ℓ} diagonal) which lead to maximal atmospheric neutrino mixing in the limit of a quasi-degenerate neutrino mass spectrum.
- In this scenario

$$\lim_{m_1\to\infty}\sin^2\theta_{23}=\frac{1}{2}$$

is independent of the values of θ_{13} and θ_{12} !

• $\theta_{23} \approx 45^{\circ}$ and $\cos \delta \approx 0$ achievable by the use of an Abelian symmetry. This could be an alternative road to explain near maximal atmospheric neutrino mixing.