

Fakultät Physik Theoretische Physik III

1

Philipp Leser (TU Dortmund)

S₃ flavor symmetry at the LHC

G. Bhattacharyya, P. Leser, H. Päs, Phys. Rev. **D83**, 011701 (2011) + work in progress

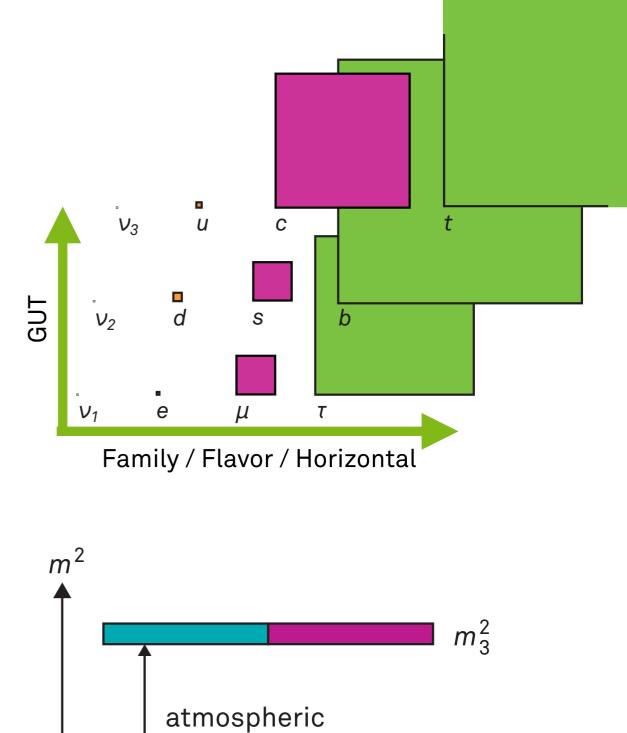
Philipp Leser | FLASY11, 2011-07-13

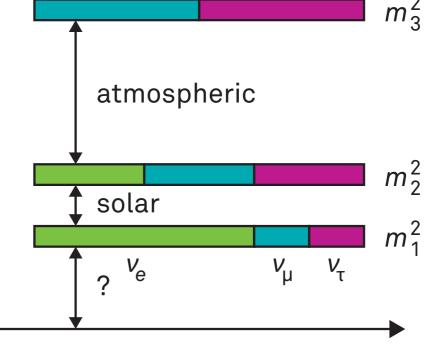
Why flavor symmetries?

- Flavor symmetries have the potential to explain:
- Masses, mass relations, hierarchies
- Patterns in the mixing matrices (CKM vs. PMNS)

$$V_{\text{TBM}} = \begin{pmatrix} -\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \end{pmatrix}$$

Philipp Leser | FLASY11, 2011–07–13



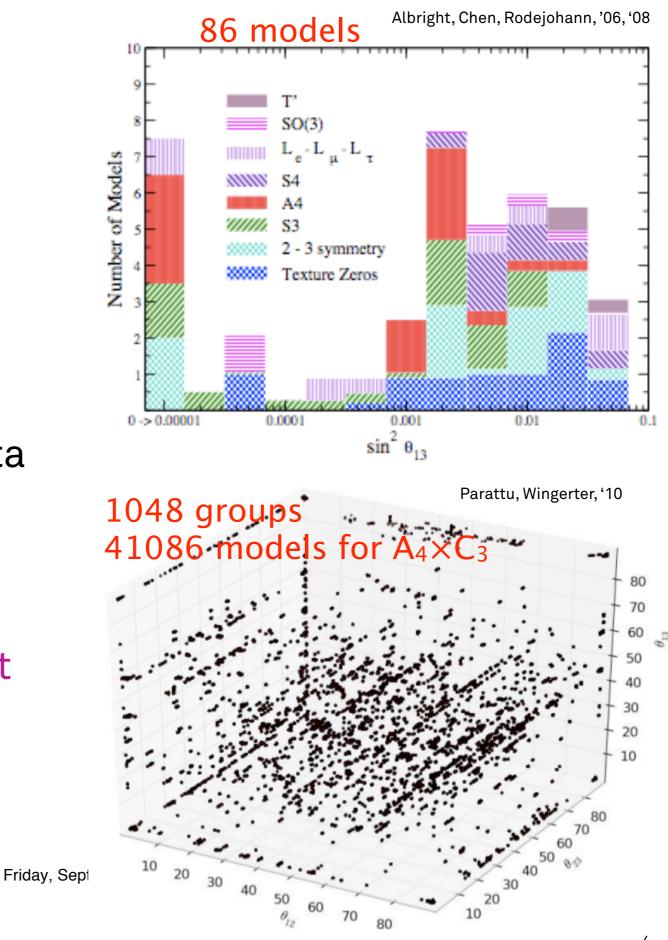


What kind of symmetries?

- Abelian symmetries like Froggatt-Nielsen U(1), or Z_n
- All kinds of non-abelian discrete symmetries like S₃, A₄, S₄, ... can be used to deduce some of these relations
 - through specific choice of representations for particle content
 - through vacuum alignment of extra scalars

How to discriminate?

- Huge variety of models
- A lot of them fit neutrino data reasonably well, but the allowed parameter space is large
- Search for other ways to test flavor symmetries

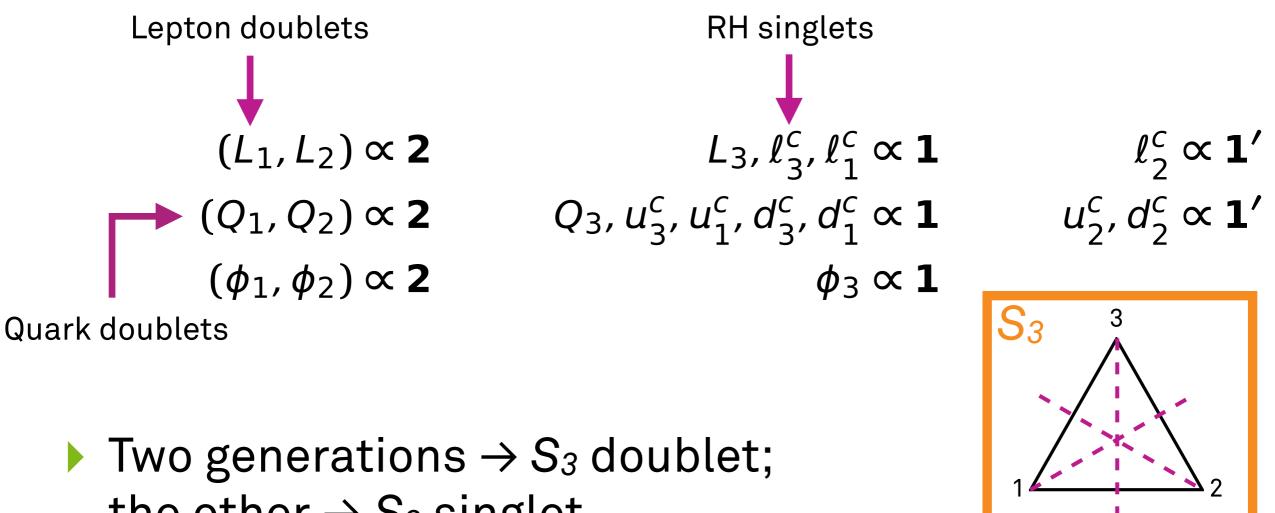


Phenomenology of discrete symmetries

- Typical interesting predictions:
 - ▶ sum rules / connections between lepton and quark sectors (\Rightarrow GUT embedding)
 - enlarged scalar sector (masses, mixings)
 - branching ratios of scalar decays differ from SM
 - unusual collider signatures
 - FCNCs in scalar decays

An exemplary S₃ model

Chen, Frigerio, Ma, Phys. Rev. D70, 073008 (2004)



the other $\rightarrow S_3$ singlet

6 elements

irreps: 1,1',2

A specific S₃ model

Chen, Frigerio, Ma, *Phys. Rev.* **D70**, 073008 (2004)

- One scalar for each generation
- Neutrino sector separate, diagonal (See-Saw II, 2 heavy EW triplet scalars)
- Simple vacuum alignment: $\langle \phi_1 \rangle = \langle \phi_2 \rangle = v \qquad \langle \phi_3 \rangle = v_3 \qquad 2v^2 + v^3 = v_{SM}^2$

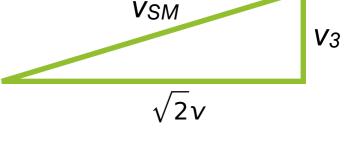
translates
directly into
$$\mathcal{M}_{\ell} = \begin{pmatrix} f_4 v_3 & f_5 v_3 & 0 \\ 0 & f_1 v & -f_2 v \\ 0 & f_1 v & f_2 v \end{pmatrix}$$

PMNS matrix

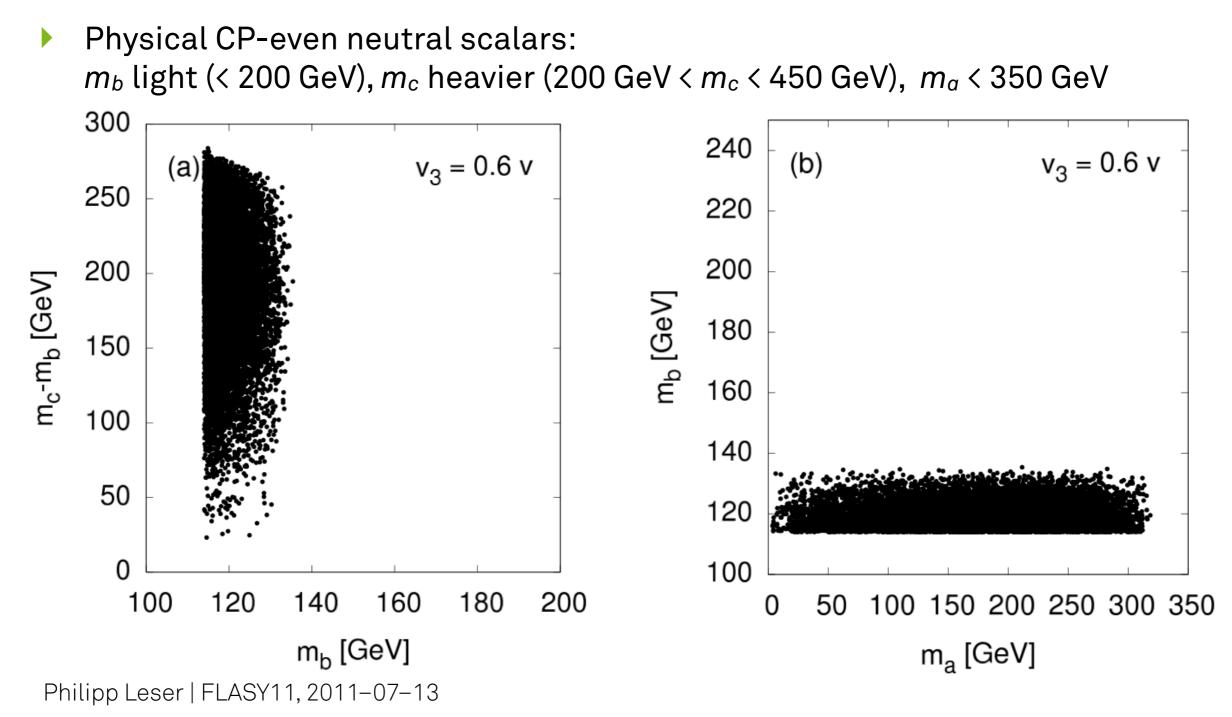
technische universität dortmund

Minimization of the potential

- Conditions applied for minimization
 - Wanted vacuum alignment $\langle \phi_1 \rangle = \langle \phi_2 \rangle = v$ must be a solution
 - It must actually be a minimum
 - Global stability of the solution
 - Allow fixed ratio of v₃ and v
 - We only consider real parameters
- restrict parameters of the potential, but the parameter space is still large



Results of parameter scan for scalars



Scalar mixing

Weak basis scalars $h_{1/2/3}$ are connected to physical scalars $h_{a/b/c}$ via

$$h_{1} = U_{b}h_{b} + U_{c}h_{c} - \frac{1}{\sqrt{2}}h_{a}$$

$$h_{2} = U_{b}h_{b} + U_{c}h_{c} + \frac{1}{\sqrt{2}}h_{a}$$

$$h_{3} = U_{3b}h_{b} + U_{3c}h_{c}$$

The U are analytically tractable but complicated functions of the parameters of the scalar potential

Couplings to gauge and matter fields

- Couplings of symmetry basis scalars h_i to W and Z are **modified by a factor** of $v_i/v_{SM} < 1$ compared to Standard Model
- In terms of physical scalars h_a , h_b and h_c :
 - Suppression of the couplings of h_b and h_c to gauge fields is governed by VEVs and scalar mixing parameters

h_a is special

- h_a does not couple to W or Z via the three-pointvertex
 - this follows because the h_a content in the symmetry basis scalars h₁ and h₂ is equal, but has opposite signs.
 - As the VEVs v₁ and v₂ are equal, the h_a coupling vanishes

Yukawa couplings

- Identical structures in charged lepton sector and up- / down quark sectors
- 2 scalars h_{b,c} couple similarly to SM Higgs:

$$h_{b,c} \rightarrow ee(uu, dd) h_{b,c} \rightarrow \mu\mu(ss, cc) h_{b,c} \rightarrow \tau\tau(bb, tt)$$

Additional FCNC coupling: $h_{b,c} \rightarrow e\mu$

h_{α} is special, again

The 3rd scalar ha only couples off-diagonally, always with 3rd generation:

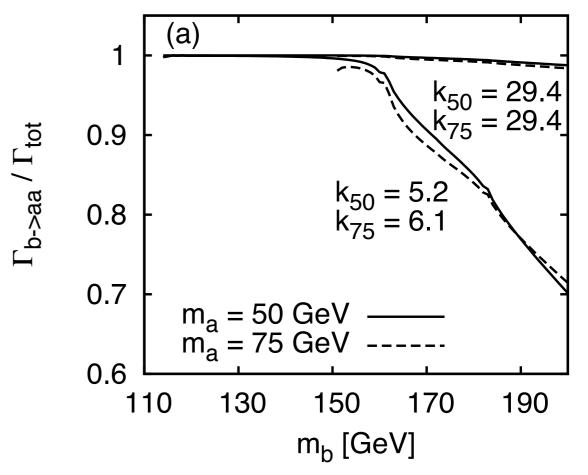
$$h_a \rightarrow e\tau(db, ut) \qquad h_a \rightarrow \mu\tau(sb, ct)$$

FCNC couplings are numerically small and fixed by fermion masses

$$Y_{h_{a}} = \begin{pmatrix} 0 & 0 & Y_{e_{L}\tau_{R}}^{a} \\ 0 & 0 & Y_{\mu_{L}\tau_{R}}^{a} \\ Y_{\tau_{L}e_{R}}^{a} & Y_{\tau_{L}\mu_{R}}^{a} & 0 \end{pmatrix}, \quad Y_{h_{b}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{b} & Y_{b}^{b} & 0 \\ Y_{b}^{b} & Y_{b}^{b} & 0 \\ \mu_{L}e_{R} & \mu_{L}\mu_{R} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{b} \end{pmatrix}, \quad Y_{h_{c}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{c} & Y_{e_{L}\mu_{R}}^{c} & 0 \\ Y_{\mu_{L}e_{R}}^{c} & Y_{e_{L}\mu_{R}}^{c} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{c} \end{pmatrix}$$

Signatures of h_b and h_c

- Both can decay into usual Higgs decay modes
 (ZZ, WW, bb̄, γγ, . . .), but:
- **Dominant decay** for a light scalar h_a is three-scalar mode $h_{b/c} \rightarrow h_a h_a$
- Parameter k is the ratio between three-scalar coupling and hbWW coupling

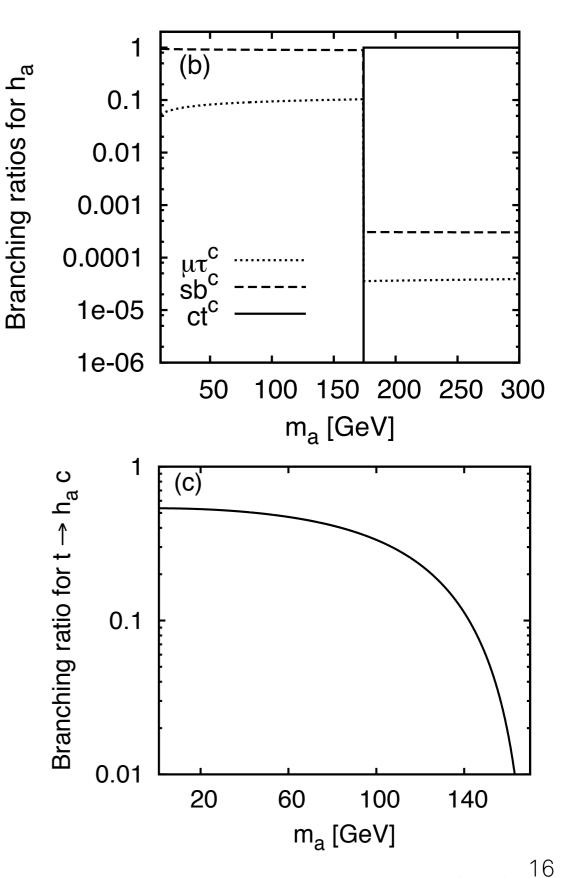


- For $m_a = 50$ GeV, $k \approx 10$
- Compare to THDM, where it is typically 5 ≤ k ≤ 30 for a 400 GeV scalar decaying into two 114 GeV scalars

15

Signatures of *h*_a

- As long as m_a < m_t, the dominant decay mode is into jets
- Possibly significant decay mode into μτ

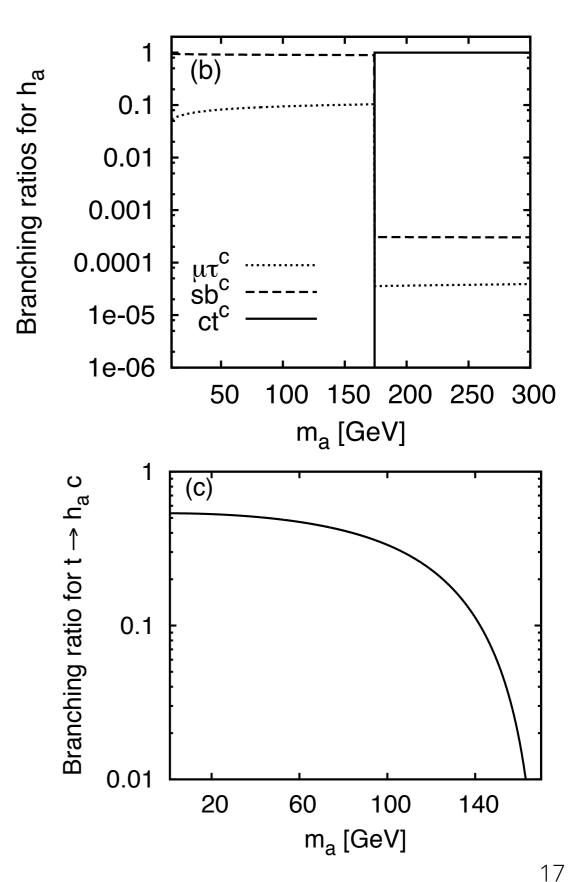


Philipp Leser | FLASY11, 2011-07-13

HDECAY: Djouadi, A., Kalinowski, J. and Spira, M., Comput. Phys. Commun. 108 56-74 (1998)

Production of *h*_a

- Light h_a is a decay product of h_{b/c}
- Production of h_a possible through top decays for light h_a, subsequent decay into µ\u03c0 might be possible to detect
- For m_a > m_t, h_a dominantly decays off-diagonally into ct

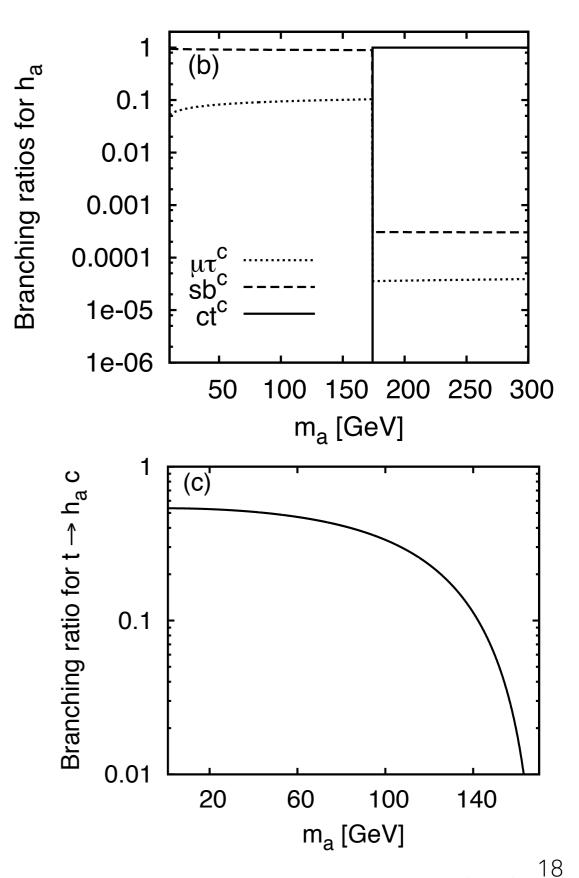


Philipp Leser | FLASY11, 2011-07-13

HDECAY: Djouadi, A., Kalinowski, J. and Spira, M., Comput. Phys. Commun. 108 56-74 (1998)

ha

- Dependency on vacuum alignment:
- Quark mixing requires small deviation from (1, 1, 0) vacuum alignment
- → some weakening of special properties of h_a, i.e. small three-vertex couplings to vector bosons

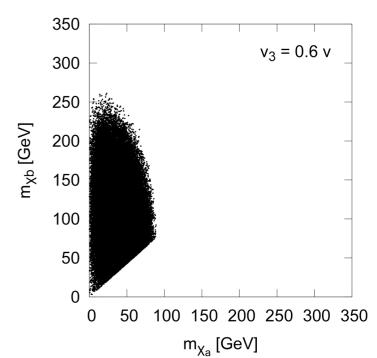


Pseudo-scalars

Physical pseudo-scalars Xa and Xb have patterns of couplings to quarks / leptons identical to ha and hb/hc:

$$Y_{\chi_{a}} = \begin{pmatrix} 0 & 0 & Y_{e_{L}\tau_{R}}^{a} \\ 0 & 0 & Y_{\mu_{L}\tau_{R}}^{a} \\ Y_{\tau_{L}e_{R}}^{a} & Y_{\tau_{L}\mu_{R}}^{a} & 0 \end{pmatrix}, \quad Y_{\chi_{b}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{b} & Y_{e_{L}\mu_{R}}^{b} & 0 \\ Y_{\mu_{L}e_{R}}^{b} & Y_{\mu_{L}\mu_{R}}^{b} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{b} \end{pmatrix}$$

• $h_a \rightarrow \chi_a \chi_b$ is allowed for certain mass hierarchies; would change special h_a decay properties

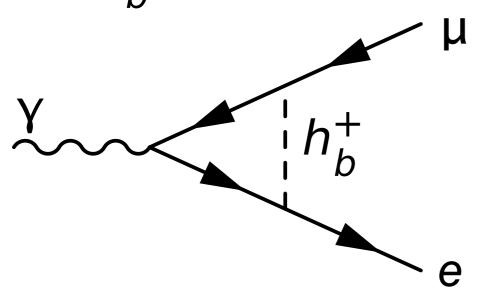


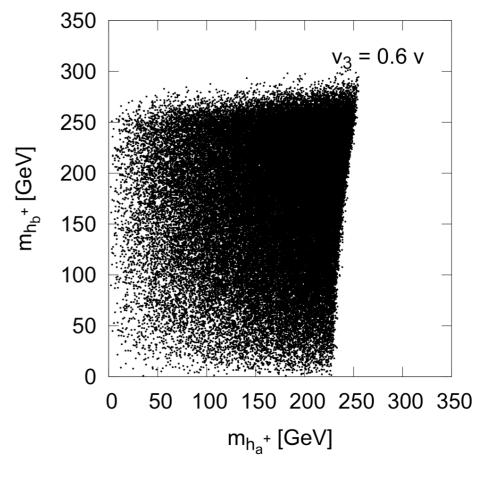
Charged scalars $Y_{h_a^+} = \begin{pmatrix} 0 & 0 & Y_{13}^a \\ 0 & 0 & Y_{23}^a \\ Y_{31}^a & Y_{32}^a & 0 \end{pmatrix}, \qquad Y_{h_b^+} = \begin{pmatrix} Y_{11}^b & Y_{12}^b & 0 \\ Y_{21}^b & Y_{22}^b & 0 \\ 0 & 0 & Y_{33}^b \end{pmatrix}$

The couplings of h⁺_a and h⁺_b to quarks and leptons follow the same pattern as pseudo-scalars.

• There is no
$$b \rightarrow s\gamma$$
.

• The off-diagonal (12) coupling of h_{b}^{+} allows for $\mu \rightarrow e\gamma$





Summary

- Scalar sector is an interesting avenue to test flavor symmetries
- ▶ S₃ can **explain some mixing angles**, comes with an **enlarged scalar sector**.
- **Two SM-Higgs-like scalars** h_b and h_c . Decay dominantly into third scalar $h_a h_a$
- Scalar h_a has **limited gauge interactions**
- h_a has only off-diagonal Yukawa couplings, involving a lepton or quark from the third generation
- Scalars might already be buried in existing LEP or Tevatron data
- Currently expanding the analysis to include all scalar degrees of freedoms

Philipp Leser | FLASY11, 2011–07–13

Backup material

Philipp Leser | FLASY11, 2011-07-13

Minimization of the potential

The conditions are met via the following parameter constraints:

$$-m^{2} = (2\lambda_{1} + \lambda_{3})v^{2} + (\lambda_{5} + \lambda_{6} + \lambda_{7})v_{3}^{2} + 3\lambda_{8}vv_{3},$$

$$-m_{3}^{2} = \lambda_{4}v_{3}^{2} + 2(\lambda_{5} + \lambda_{6} + \lambda_{7})v^{2} + 2\lambda_{8}v^{3}/v_{3}$$

$$\lambda_{1} + \lambda_{2} > 0, \qquad \lambda_{1} + \lambda_{3} > \lambda_{2}, \qquad \lambda_{4} > 0,$$

$$\lambda_{5} + \lambda_{6} > 0, \qquad \lambda_{7} > 0, \qquad \lambda_{8} > 0$$

The spectrum is then determined using a parameter scan in this space

Minimization of the potential

- Gives allowed vacuum alignments, masses and mixings of the scalars
- ► S3 invariant scalar potential (doublets, 8+2 params) $V = m^{2}(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2}) + m_{3}^{2}\phi_{3}^{\dagger}\phi_{3} + \frac{\lambda_{1}}{2}(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2})^{2} + \frac{\lambda_{2}}{2}(\phi_{1}^{\dagger}\phi_{1} - \phi_{2}^{\dagger}\phi_{2})^{2}$ $+\lambda_{3}\phi_{1}^{\dagger}\phi_{2}\phi_{2}^{\dagger}\phi_{1} + \frac{\lambda_{4}}{2}(\phi_{3}^{\dagger}\phi_{3})^{2} + \lambda_{5}(\phi_{3}^{\dagger}\phi_{3})(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2}) + \lambda_{6}\phi_{3}^{\dagger}(\phi_{1}\phi_{1}^{\dagger} + \phi_{2}\phi_{2}^{\dagger})\phi_{3}$ $+ \left[\lambda_{7}\phi_{3}^{\dagger}\phi_{1}\phi_{3}^{\dagger}\phi_{2} + \lambda_{8}\phi_{3}^{\dagger}(\phi_{1}\phi_{2}^{\dagger}\phi_{1} + \phi_{2}\phi_{1}^{\dagger}\phi_{2}) + h. c.\right]$

Scalar mixing

- One physical scalar is given by $h_a = (h_2 h_1)/\sqrt{2}$, i.e. there is no dependence on the scalar parameters or on the VEVs.
- This happens because S₃ requires the scalar mass matrix to be of the form
 - $\begin{pmatrix}
 a & b & c \\
 b & a & c \\
 c & c & d
 \end{pmatrix}$

same mechanism is responsible for maximal mixing in lepton sector

which always yields (-1, 1, 0) as one eigenvector.

Scalar masses

The squared masses of the CP-even neutral scalars are given by $m_a^2 = 4\lambda_2 v^2 - 2\lambda_3 v^2 - v_3 (2\lambda_7 v_3 + 5\lambda_8 v) ,$ $m_b^2 = \frac{1}{2v_3} \left[4\lambda_1 v^2 v_3 + 2\lambda_3 v^2 v_3 + 2\lambda_4 v_3^3 - 2\lambda_8 v^3 + 3\lambda_8 v v_3^2 - \Delta m^3 \right] ,$ $m_c^2 = \frac{1}{2v_3} \left[4\lambda_1 v^2 v_3 + 2\lambda_3 v^2 v_3 + 2\lambda_4 v_3^3 - 2\lambda_8 v^3 + 3\lambda_8 v v_3^2 + \Delta m^3 \right] ;$ where $\Delta m^3 = \left[8v v_3 \left\{ 2v v_3^3 \left(2(\lambda_5 + \lambda_6 + \lambda_7)^2 - \lambda_4 (2\lambda_1 + \lambda_3) \right) + 2\lambda_8 v^4 (2\lambda_1 + \lambda_3) - 3\lambda_4 \lambda_8 v_3^4 \right] \right] + 2\lambda_8 v^4 (2\lambda_1 + \lambda_3) - 3\lambda_4 \lambda_8 v_3^4 + 2\lambda_4 v_4^4 + 2\lambda_4 v_4^4 + 2\lambda_4 v_4^4 + 2\lambda_4 v_4^4 + 2\lambda_4 v_4 + 2\lambda_4 v_4^4 + 2\lambda_4 v_4 + 2\lambda_4$

$$\left\{ 2v^{2}v_{3}(\lambda_{5} + \lambda_{6} + \lambda_{7}) + 12\lambda_{8}^{2}v^{3}v_{3} \right\} + \left\{ 2v^{2}v_{3}(2\lambda_{1} + \lambda_{3}) + 2\lambda_{4}v_{3}^{3} - 2\lambda_{8}v^{3} + 3\lambda_{8}vv_{3}^{2} \right\}^{2} \right]^{\frac{1}{2}}$$

Yukawas

Chen, Frigerio, Ma (2004)

Mass terms for charged leptons (quarks are treated identically):

 $(\phi_1 L_2 + \phi_2 L_1) \ell_1^c \qquad (\phi_1 L_2 - \phi_2 L_1) \ell_2^c \qquad L_3 \ell_3^c \phi_3 \qquad L_3 \ell_1^c \phi_3$

After SSB, this leads to the **mass matrix**:

$$\mathcal{M}_{\ell} = \begin{pmatrix} f_4 v_3 & f_5 v_3 & 0 \\ 0 & f_1 v & -f_2 v \\ 0 & f_1 v & f_2 v \end{pmatrix}$$

- The specific alignment $\langle \phi_1 \rangle = \langle \phi_2 \rangle = v$ leads to maximal atm. mixing
- Special vacuum alignments like this are needed in most models based on discrete symmetries

Other decays

- Other typical processes are
 - ▶ $\mu \rightarrow eee$

$$\mu \rightarrow e\gamma$$

- All many orders of magnitude below current bounds (10⁻¹² for eee, 10⁻¹¹ for eγ)
- Due to the coupling structure, some interesting benchmark decays are not possible via these scalars:

$$\begin{array}{ccc} \tau \to e\gamma & \tau \to \mu\gamma & \tau \to \mu\mu\mu \\ & b \to s\gamma \end{array}$$

