Supersymmetric Musings on the Predictivity of Family Symmetries

Jörn Kersten

University of Hamburg

Based on Kenji Kadota, JK, Liliana Velasco Sevilla, Phys. Rev. D82 (2010), arXiv:1007.1532 [hep-ph]

2 Soft Masses from Family Symmetries

Omparison with Experimental Constraints

2 Soft Masses from Family Symmetries

3 Comparison with Experimental Constraints

• Non-Abelian symmetry, matter fields in 3D representation

 $\psi,\psi^{\rm C}\sim{\bf 3}$

- Gravity-mediated SUSY breaking
 - \Rightarrow SUSY terms generated at $M_{\rm Pl} \gg$ flavon vev $\langle \phi \rangle$
 - ⇒ Invariant under family symmetry

• Non-Abelian symmetry, matter fields in 3D representation

 $\psi,\psi^{\rm C}\sim{\bf 3}$

- Gravity-mediated SUSY breaking
 - \Rightarrow SUSY terms generated at $M_{\rm Pl} \gg$ flavon vev $\langle \phi \rangle$
 - ⇒ Invariant under family symmetry
- Allowed scalar mass term:

$$\widetilde{\psi}_i^* \, \delta_{ij} \, m_0^2 \, \widetilde{\psi}_j \quad \Rightarrow \quad \text{Soft mass matrices } \widetilde{m}^2 = m_0^2 \, \mathbb{1}$$

• Trilinear couplings a=0

• Non-Abelian symmetry, matter fields in 3D representation

 $\psi,\psi^{\rm C}\sim{\bf 3}$

- Gravity-mediated SUSY breaking
 - \Rightarrow SUSY terms generated at $M_{\rm Pl} \gg$ flavon vev $\langle \phi \rangle$
 - ⇒ Invariant under family symmetry
- Allowed scalar mass term:

$$\widetilde{\psi}_i^* \, \delta_{ij} \, m_0^2 \, \widetilde{\psi}_j \quad \Rightarrow \quad \text{Soft mass matrices } \widetilde{m}^2 = m_0^2 \, \mathbb{1}$$

- Trilinear couplings a=0
- \rightsquigarrow SUSY flavor problem solved

• Non-Abelian symmetry, matter fields in 3D representation

 $\psi,\psi^{\rm C}\sim{\bf 3}$

- Gravity-mediated SUSY breaking
 - \Rightarrow SUSY terms generated at $M_{\rm Pl} \gg$ flavon vev $\langle \phi \rangle$
 - ⇒ Invariant under family symmetry
- Allowed scalar mass term:

$$\widetilde{\psi}_i^* \, \delta_{ij} \, m_0^2 \, \widetilde{\psi}_j \quad \Rightarrow \quad \text{Soft mass matrices } \widetilde{m}^2 = m_0^2 \, \mathbb{1}$$

- Trilinear couplings a=0
- ~ SUSY flavor problem solved
 - Extension: CP symmetry
 - Spontaneously broken by complex flavon vev

\rightsquigarrow SUSY CP problem solved

Added Bonus

Family symmetry breaking

 \rightsquigarrow Off-diagonal entries

$$\widetilde{m}_{ij}^2 \sim m_0^2 \left(rac{\langle \phi
angle}{M}
ight)^n$$

1

→ Non-zero trilinears

$$a_{ij} \sim \left(rac{\langle \phi
angle}{M}
ight)^n$$

Added Bonus

Family symmetry breaking

→ Off-diagonal entries

$$\widetilde{m}_{ij}^2 \sim m_0^2 \left(rac{\langle \phi
angle}{M}
ight)^n$$

→ Non-zero trilinears

$$a_{ij} \sim \left(rac{\langle \phi
angle}{M}
ight)^n$$

New terms

- Suppressed ~> flavor and CP violation still under control
- Predicted ~ additional experimental test

Abel, Antusch, Calibbi, Feruglio, Hagedorn, Ishimori, Jones-Perez, Khalil, King, Kobayashi, Lebedev, Lin, Malinský, Maurer, Merlo, Nomura, Ohki, Olive, Omura, Ross, Spinrath, Stolarski, Takahashi, Tanimoto, Velasco Sevilla, Vives, hep-ph/0112260, hep-ph/0211279, hep-ph/0401064, 0708.1282, 0801.0428, 0803.0796, 0804.4620, 0807.3160, 0807.4625, 0807.5047, 0808.1380, 1104.3040

2 Soft Masses from Family Symmetries

3 Comparison with Experimental Constraints

de Medeiros Varzielas, Ross, hep-ph/0507176

- Flavon $\overline{\phi} \sim \overline{\mathbf{3}}$
- Messengers $\chi_1 \sim \overline{\mathbf{3}}, \chi_2 \sim \mathbf{1}$
- $Y \sim \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_1} M_{\chi_2}} \rightsquigarrow$ only product of messenger masses determined

Soft Masses

- Write down superpotential W of renormalizable theory
- Write down Kähler potential K (constrained by symmetry)
- Integrate out heavy messengers

• Solve
$$\frac{\partial W}{\partial \chi_1} = 0, \dots$$
 for messenger fields

• Plug results into W and K

• Rough estimate:
$$\left(\widetilde{m}_{\psi}^{2}\right)_{ij} \sim m_{0}^{2} \frac{\partial^{2} K}{\partial \psi_{i}^{*} \partial \psi_{j}}$$
, ...

Illustration:

• No messenger coupling to $\psi \overline{\phi} \rightsquigarrow \widetilde{m}_{\psi}^2 = m_0^2$

• Tri-bimaximal mixing intact after canonical normalization Antusch, King, Malinský, 0712.3759

• No messenger coupling to $\psi \overline{\phi} \rightsquigarrow \widetilde{m}_{\psi}^2 = m_0^2$

• Tri-bimaximal mixing intact after canonical normalization Antusch, King, Malinský, 0712.3759

•
$$\widetilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\left<\overline{\phi}\right>^2}{M_{\chi_2}^2}\right)$$

• No messenger coupling to $\psi \overline{\phi} \rightsquigarrow \widetilde{m}_{\psi}^2 = m_0^2$

• Tri-bimaximal mixing intact after canonical normalization Antusch, King, Malinský, 0712.3759

•
$$\widetilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_2}^2} \right)$$
 — recall $Y \sim \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_1} M_{\chi_2}}$

• Only M_{χ_2} enters soft masses \rightsquigarrow no prediction

• No messenger coupling to $\psi \overline{\phi} \rightsquigarrow \widetilde{m}_{\psi}^2 = m_0^2$

• Tri-bimaximal mixing intact after canonical normalization Antusch, King, Malinský, 0712.3759

•
$$\widetilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_2}^2} \right)$$
 - recall $Y \sim \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_1} M_{\chi_2}}$

- Only M_{χ_2} enters soft masses \rightsquigarrow no prediction
- Trilinears: same conclusion

Extend model

- Explicit theory of messenger sector Cf. King, Malinský, hep-ph/0608021 for SO(3) (already $M_{\chi} > \langle \overline{\phi} \rangle$ for all messengers and flavons could help) Figure the set flavors
- Fix ratios of flavon vevs
- Large Y₃₃ possibly helpful
- Change messenger sector

More Predictive Messenger Sector

•
$$Y \sim \frac{\left<\overline{\phi}\right>^2}{M_{\chi_1}M_{\chi_2}}$$

• All messengers SU(3) singlets

Soft Masses Again

Soft Masses Again

•
$$\widetilde{m}_{\psi}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{\underbrace{M_{\chi_1}^2}} \right)$$
, $\widetilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{\underbrace{M_{\chi_2}^2}} \right)$
• Recall $Y \sim \frac{\langle \overline{\phi} \rangle^2}{\underbrace{M_{\chi_1}}M_{\chi_2}} =: \epsilon_{u,d}^2$

Soft Masses Again

•
$$\widetilde{m}_{\psi}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_1}^2} \right)$$
, $\widetilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_2}^2} \right)$
• Recall $Y \sim \frac{\langle \overline{\phi} \rangle^2}{M_{\chi_1}M_{\chi_2}} =: \epsilon_{u,d}^2$

- Off-diagonal elements in all soft mass matrices
- All messenger masses appear
- Relations between expansion parameters

$$\widetilde{\epsilon}_{Q}\widetilde{\epsilon}_{U}\sim \epsilon_{U}^{2} \quad , \quad \widetilde{\epsilon}_{Q}\widetilde{\epsilon}_{d}\sim \epsilon_{d}^{2} \quad , \quad \widetilde{\epsilon}_{L}\widetilde{\epsilon}_{e}\sim \epsilon_{d}^{2}$$

• None of them can be arbitrarily small: $\tilde{\epsilon} \gtrsim 0.01$

Complete Matrices

$$\widetilde{m}_{f}^{2} \sim m_{0}^{2} \begin{pmatrix} 1 & \widetilde{\epsilon}_{f}^{2} \, \epsilon_{d}^{2} & \widetilde{\epsilon}_{f}^{2} \, \epsilon_{d}^{2} \\ \cdot & 1 + \widetilde{\epsilon}_{f}^{2} & \widetilde{\epsilon}_{f}^{2} \\ \cdot & \cdot & 1 \end{pmatrix} , \quad f = u, \, d, \, Q, \, e, \, L$$

Complete Matrices

$$\widetilde{m}_{f}^{2} \sim m_{0}^{2} \begin{pmatrix} 1 & \widetilde{\epsilon}_{f}^{2} \epsilon_{d}^{2} & \widetilde{\epsilon}_{f}^{2} \epsilon_{d}^{2} \\ \cdot & 1 + \widetilde{\epsilon}_{f}^{2} & \widetilde{\epsilon}_{f}^{2} \\ \cdot & \cdot & 1 \end{pmatrix} , \quad f = u, d, Q, e, L$$

• Trilinear couplings: similar, but a bit more complicated

2 Soft Masses from Family Symmetries

Comparison with Experimental Constraints

Running to Low Energy

- Results so far valid at high energy $\sim M_{
 m GUT}$
- Renormalization group evolution ~> low-energy parameters

Rough estimate

Antusch, King, Malinský, 0708.1282, Bertolini, Borzumati, Masiero, Ridolfi, Nucl. Phys. **B353**

• Diagonal entries at low energy:

$$(\widetilde{m}_q^2)_{ii} \sim 30 \ m_0^2 \ (\widetilde{m}_L^2)_{ii} \sim 4 \ m_0^2 \ (\widetilde{m}_e^2)_{ii} \sim 2 \ m_0^2$$

- Off-diagonal elements do not change order of magnitude
- Y_ν does not contribute because M₃ > M_{GUT}

Super-CKM Basis

- Basis with diagonal Yukawa couplings
- Convenient for low-energy phenomenology

$$\widetilde{m}_{d,\text{RR}}^2 \sim m_0^2 \begin{pmatrix} 30 & \widetilde{\epsilon}_d^2 \epsilon_d & \widetilde{\epsilon}_d^2 \epsilon_d + \epsilon_d^3 \\ \cdot & 30 & \widetilde{\epsilon}_d^2 + \epsilon_d^2 \\ \cdot & \cdot & 30 \end{pmatrix}$$

- 12- and 13-elements enlarged by factor ~ 1/ε_d Ross, Velasco Sevilla, Vives, hep-ph/0401064
- Cancellations possible in principle
- $\widetilde{m}_{d,LL}^2$ analogous with $\widetilde{\epsilon}_d \rightarrow \widetilde{\epsilon}_Q$
- $\widetilde{m}_{e,LL}^2$ analogous with $\widetilde{\epsilon}_d \to \widetilde{\epsilon}_L$, $30 \to 4$
- \tilde{m}_u^2 less interesting due to weaker experimental constraints

Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives, hep-ph/0702144

- Flavor-changing neutral currents: Δm_K , $b \rightarrow s\gamma$, $\mu \rightarrow e\gamma$ etc.
- Mass insertion approximation ~> constraints on

$$(\delta^d_{\mathsf{RR}})_{ij} := rac{(\widetilde{m}^2_{d,\mathsf{RR}})_{ij}}{(\widetilde{m}^2_{d,\mathsf{RR}})_{ii}} \quad , \quad \dots$$

• Depend on $\tan \beta$, sparticle masses

Experiment vs. Model Predictions

Simple example:

$$\widetilde{\epsilon}_Q = \widetilde{\epsilon}_d = \widetilde{\epsilon}_L = \widetilde{\epsilon}_e = \epsilon_d \approx 0.15$$
 , $\widetilde{\epsilon}_u = \frac{\epsilon_u^2}{\epsilon_d} \approx 0.02$

Experiment vs. Model Predictions

Simple example:

$$\widetilde{\epsilon}_Q = \widetilde{\epsilon}_d = \widetilde{\epsilon}_L = \widetilde{\epsilon}_e = \epsilon_d \approx 0.15$$
 , $\widetilde{\epsilon}_u = \frac{\epsilon_u^2}{\epsilon_d} \approx 0.02$

	Our example	Bound
$(\delta^d_{RR})_{12}$	$rac{\widetilde{\epsilon}_d^2\epsilon_d}{30}\sim 10^{-4}$	$9\cdot 10^{-3}$
$(\delta^d_{LL})_{12}$	$rac{\widetilde{\epsilon}_Q^2\epsilon_d}{30}\sim 10^{-4}$	$1 \cdot 10^{-2}$
$(\delta^d_{LR})_{12}$	$rac{\propto \epsilon_d^3}{30} \sim 3 \cdot 10^{-5}$	$1 \cdot 10^{-5}$
$(\delta^d_{LL})_{23}$	$rac{\widetilde{\epsilon}_Q^2}{30}\sim 8\cdot 10^{-4}$	$2\cdot 10^{-1}$
$(\delta^{e}_{LL})_{12}$	$rac{\widetilde{\epsilon}_L^2 \epsilon_d}{4} \sim 8 \cdot 10^{-4}$	$6 \cdot 10^{-4}$

• Some tension in 12 sector

See also Antusch, King, Malinský, 0708.1282

• Only weak constraints on δ^u and $\delta^e_{BB} \rightsquigarrow$ easily satisfied

- Non-Abelian family symmetries can solve flavor and CP problems
- Predictions for SUSY-breaking parameters
- Predictivity depends on messenger sector
- Example with SU(3) symmetry: Order-of-magnitude estimates
 - ~> Experimental constraints satisfied
 - → Predicted FCNC rates may be within reach