Supersymmetric Musings on the Predictivity of Family Symmetries

Jörn Kersten

University of Hamburg

1. Introduction

2. Soft Masses from Family Symmetries

3. Comparison with Experimental Constraints
Introduction

Soft Masses from Family Symmetries

Comparison with Experimental Constraints
Curing SUSY Problems by Family Symmetries

- **Non-Abelian** symmetry, matter fields in 3D representation
 \[\psi, \psi^c \sim 3 \]

- **Gravity**-mediated SUSY breaking
 \[\Rightarrow \text{SUSY terms generated at } M_{\text{Pl}} \gg \text{flavon vev } \langle \phi \rangle \]
 \[\Rightarrow \text{Invariant under family symmetry} \]
Curing SUSY Problems by Family Symmetries

- **Non-Abelian** symmetry, matter fields in 3D representation
 \[\psi, \psi^c \sim 3 \]

- **Gravity-mediated** SUSY breaking
 \[\Rightarrow\] SUSY terms generated at \(M_{Pl} \gg \) flavon vev \(\langle \phi \rangle \)
 \[\Rightarrow\] Invariant under family symmetry

- Allowed scalar mass term:
 \[\tilde{\psi}_i^* \delta_{ij} m_0^2 \tilde{\psi}_j \Rightarrow \text{Soft mass matrices} \quad \tilde{m}^2 = m_0^2 \mathbb{1} \]

- Trilinear couplings \(a=0 \)
Curing SUSY Problems by Family Symmetries

- **Non-Abelian** symmetry, matter fields in 3D representation
 \[\psi, \psi^c \sim 3 \]

- **Gravity**-mediated SUSY breaking
 \[\Rightarrow \text{SUSY terms generated at } M_{\text{Pl}} \gg \text{flavon vev } \langle \phi \rangle \]
 \[\Rightarrow \text{Invariant under family symmetry} \]

- Allowed scalar mass term:
 \[\tilde{\psi}_i^* \delta_{ij} m_0^2 \tilde{\psi}_j \Rightarrow \text{Soft mass matrices } \tilde{m}^2 = m_0^2 I \]

- Trilinear couplings \(a=0 \)
 \(\Rightarrow \text{SUSY flavor problem solved} \)
Curing SUSY Problems by Family Symmetries

- **Non-Abelian** symmetry, matter fields in 3D representation
 \[\psi, \psi^c \sim 3 \]

- **Gravity**-mediated SUSY breaking
 \[\Rightarrow \text{SUSY terms generated at } M_{\text{Pl}} \gg \text{flavon vev } \langle \phi \rangle \]
 \[\Rightarrow \text{Invariant under family symmetry} \]

- Allowed scalar mass term:
 \[\tilde{\psi}_i^* \delta_{ij} m_0^2 \tilde{\psi}_j \Rightarrow \text{Soft mass matrices } \tilde{m}^2 = m_0^2 \ 1 \]

- Trilinear couplings \(a=0 \)
 \[\sim \text{SUSY flavor problem solved} \]

- Extension: **CP** symmetry
- Spontaneously broken by complex flavon vev
 \[\sim \text{SUSY CP problem solved} \]
Family symmetry breaking

\[\tilde{m}_{ij}^2 \sim m_0^2 \left(\frac{\langle \phi \rangle}{M} \right)^n \]

\[a_{ij} \sim \left(\frac{\langle \phi \rangle}{M} \right)^n \]
Family symmetry breaking

\[\tilde{m}_{ij}^2 \sim m_0^2 \left(\frac{\langle \phi \rangle}{M} \right)^n \]

\[a_{ij} \sim \left(\frac{\langle \phi \rangle}{M} \right)^n \]

New terms

- **Suppressed** \(\leadsto \) flavor and CP violation still under control
- **Predicted** \(\leadsto \) additional experimental test

Abel, Antusch, Calibbi, Feruglio, Hagedorn, Ishimori, Jones-Perez, Khalil, King, Kobayashi, Lebedev, Lin, Malinský, Maurer, Merlo, Nomura, Ohki, Olive, Omura, Ross, Spinrath, Stolarski, Takahashi, Tanimoto, Velasco Sevilla, Vives,
1. Introduction

2. Soft Masses from Family Symmetries

3. Comparison with Experimental Constraints
Example: SU(3)

- **Flavon** $\phi \sim \mathbf{3}$
- **Messengers** $\chi_1 \sim \mathbf{3}, \chi_2 \sim \mathbf{1}$
- $Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}} \rightsquigarrow$ only product of messenger masses determined
1. Write down superpotential W of renormalizable theory
2. Write down Kähler potential K (constrained by symmetry)
3. Integrate out heavy messengers
 - Solve $\frac{\partial W}{\partial \chi_1} = 0, \ldots$ for messenger fields
 - Plug results into W and K
4. Rough estimate: $(\tilde{m}_\psi^2)_{ij} \sim m_0^2 \frac{\partial^2 K}{\partial \psi_i^* \partial \psi_j}, \ldots$

Illustration:
In Our Example

Forbidden by family symmetry

OK
In Our Example

Forbidden by family symmetry

- No messenger coupling to $\psi \phi \rightarrow \tilde{m}_\psi^2 = m_0^2$
- Tri-bimaximal mixing intact after canonical normalization

Antusch, King, Malinský, 0712.3759
In Our Example

Forbidden by family symmetry

- No messenger coupling to $\psi \phi \leadsto \tilde{m}_\psi^2 = m_0^2$
- Tri-bimaximal mixing intact after canonical normalization

\[\tilde{m}_{\psi}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2} \right) \]

Antusch, King, Malinský, 0712.3759
In Our Example

Forbidden by family symmetry

- No messenger coupling to $\psi \phi \rightsquigarrow \bar{m}_\psi^2 = m_0^2$
- Tri-bimaximal mixing intact after canonical normalization

Antusch, King, Malinský, 0712.3759

- $\bar{m}_{\psi c}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2}\right)$ — recall $Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}}$
- Only M_{χ_2} enters soft masses \rightsquigarrow no prediction
In Our Example

Forbidden by family symmetry

- No messenger coupling to $\psi \phi \sim \tilde{m}_\psi^2 = m_0^2$
- Tri-bimaximal mixing intact after canonical normalization

Antusch, King, Malinský, 0712.3759

- $\tilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2} \right)$ — recall $Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}}$
- Only M_{χ_2} enters soft masses \sim no prediction
- Trilinears: same conclusion
Approaches for Improving Predictivity

- Extend model
 - Explicit theory of messenger sector
 Cf. King, Malinský, hep-ph/0608021 for SO(3)
 (already $M_{\chi} > \langle \phi \rangle$ for all messengers and flavons could help)
 - Fix ratios of flavon vevs
 - Large Y_{33} possibly helpful
- Change messenger sector
More Predictive Messenger Sector

\[Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}} \]

- All messengers SU(3) singlets
Recall $\tilde{m}_\psi^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_1}^2} \right)$, $\tilde{m}_{\psi^c}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2} \right)$.
Soft Masses Again

\[\tilde{m}_\psi^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_1}^2} \right), \quad \tilde{m}_{\psi c}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2} \right) \]

- \tilde{\epsilon}_{Q, L}^2
- \tilde{\epsilon}_{u, d, e}^2

- Recall \(Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}} =: \epsilon_{u, d}^2 \)
Soft Masses Again

\[\tilde{m}_\psi^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_1}^2} \right), \quad \tilde{m}_{\psi c}^2 \sim m_0^2 \left(1 + \frac{\langle \phi \rangle^2}{M_{\chi_2}^2} \right) \]

\[\tilde{\epsilon}_{Q,L}^2 \]

Recall \(Y \sim \frac{\langle \phi \rangle^2}{M_{\chi_1} M_{\chi_2}} =: \epsilon_{u,d}^2 \)

Off-diagonal elements in all soft mass matrices

All messenger masses appear

Relations between expansion parameters

\[\tilde{\epsilon}_Q \tilde{\epsilon}_u \sim \epsilon_u^2, \quad \tilde{\epsilon}_Q \tilde{\epsilon}_d \sim \epsilon_d^2, \quad \tilde{\epsilon}_L \tilde{\epsilon}_e \sim \epsilon_d^2 \]

None of them can be arbitrarily small: \(\tilde{\epsilon} \gtrsim 0.01 \)
\[\tilde{m}_f^2 \sim m_0^2 \left(\begin{array}{ccc}
1 & \tilde{\epsilon}_f^2 & \tilde{\epsilon}_f^2 \\
1 + \tilde{\epsilon}_f^2 & 1 & \tilde{\epsilon}_d^2 \\
\tilde{\epsilon}_f^2 & \tilde{\epsilon}_d^2 & 1
\end{array} \right), \quad f = u, d, Q, e, L \]
Complete Matrices

\[\tilde{m}_f^2 \sim m_0^2 \begin{pmatrix} 1 & \tilde{\epsilon}_f^2 & \tilde{\epsilon}_f^2 \\ 1 + \tilde{\epsilon}_f^2 & \tilde{\epsilon}_d^2 & \tilde{\epsilon}_d^2 \\ \tilde{\epsilon}_f^2 & \tilde{\epsilon}_d^2 & 1 \end{pmatrix} , \quad f = u, d, Q, e, L \]

- Trilinear couplings: similar, but a bit more complicated
1 Introduction

2 Soft Masses from Family Symmetries

3 Comparison with Experimental Constraints
Running to Low Energy

- Results so far valid at high energy $\sim M_{\text{GUT}}$
- Renormalization group evolution \rightsquigarrow low-energy parameters
- Rough estimate
 Antusch, King, Malinský, 0708.1282,
 Bertolini, Borzumati, Masiero, Ridolfi, Nucl. Phys. B353

- Diagonal entries at low energy:
 \[
 (\tilde{\mathcal{m}}_q)_{ii} \sim 30 \, m_0^2 \\
 (\tilde{\mathcal{m}}_L)_{ii} \sim 4 \, m_0^2 \\
 (\tilde{\mathcal{m}}_e)_{ii} \sim 2 \, m_0^2
 \]

- Off-diagonal elements do not change order of magnitude
- Y_ν does not contribute because $M_3 > M_{\text{GUT}}$
Super-CKM Basis

- Basis with diagonal Yukawa couplings
- Convenient for low-energy phenomenology

\[
\tilde{m}_{d,RR}^2 \sim m_0^2 \begin{pmatrix}
30 & \tilde{\epsilon}_d^2 \epsilon_d & \tilde{\epsilon}_d^2 \epsilon_d + \epsilon_d^3 \\
. & 30 & \tilde{\epsilon}_d^2 + \epsilon_d^2 \\
. & . & 30
\end{pmatrix}
\]

- 12- and 13-elements enlarged by factor \(\sim 1/\epsilon_d \)
- Cancellations possible in principle
 - \(\tilde{m}_{d,LL}^2 \) analogous with \(\tilde{\epsilon}_d \rightarrow \tilde{\epsilon}_Q \)
 - \(\tilde{m}_{e,LL}^2 \) analogous with \(\tilde{\epsilon}_d \rightarrow \tilde{\epsilon}_L \), 30 \(\rightarrow \) 4
 - \(\tilde{m}_u^2 \) less interesting due to weaker experimental constraints
Flavor-changing neutral currents: Δm_K, $b \to s\gamma$, $\mu \to e\gamma$ etc.

Mass insertion approximation \leadsto constraints on

$$(\delta^d_{RR})_{ij} := \frac{(\tilde{m}^2_{d,RR})_{ij}}{(\tilde{m}^2_{d,RR})_{ii}}, \quad \ldots$$

Depend on $\tan \beta$, sparticle masses
Experiment vs. Model Predictions

Simple example:

\[\tilde{\epsilon}_Q = \tilde{\epsilon}_d = \tilde{\epsilon}_L = \tilde{\epsilon}_e = \epsilon_d \approx 0.15 \quad , \quad \tilde{\epsilon}_u = \frac{\epsilon_u^2}{\epsilon_d} \approx 0.02 \]
Experiment vs. Model Predictions

Simple example:

\[\tilde{\epsilon}_Q = \tilde{\epsilon}_d = \tilde{\epsilon}_L = \tilde{\epsilon}_e = \epsilon_d \approx 0.15, \quad \tilde{\epsilon}_u = \frac{\epsilon_u^2}{\epsilon_d} \approx 0.02 \]

<table>
<thead>
<tr>
<th>Our example</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\delta_{RR}^d)_{12})</td>
<td>(\frac{\tilde{\epsilon}_d^2}{30} \epsilon_d \sim 10^{-4})</td>
</tr>
<tr>
<td>((\delta_{LL}^d)_{12})</td>
<td>(\frac{\tilde{\epsilon}_Q^2}{30} \epsilon_d \sim 10^{-4})</td>
</tr>
<tr>
<td>((\delta_{LR}^d)_{12})</td>
<td>(\frac{\epsilon_d^3}{30} \sim 3 \cdot 10^{-5})</td>
</tr>
<tr>
<td>((\delta_{LL}^e)_{23})</td>
<td>(\frac{\tilde{\epsilon}_Q^2}{30} \sim 8 \cdot 10^{-4})</td>
</tr>
<tr>
<td>((\delta_{LL}^e)_{12})</td>
<td>(\frac{\epsilon_L^2}{4} \epsilon_d \sim 8 \cdot 10^{-4})</td>
</tr>
</tbody>
</table>

- **Some tension** in 12 sector
 See also Antusch, King, Malinský, 0708.1282

- **Only weak constraints on** \(\delta^u\) and \(\delta_{RR}^e\) \(\sim\) **easily satisfied**
Conclusions

- Non-Abelian family symmetries can solve flavor and CP problems
- Predictions for SUSY-breaking parameters
- Predictivity depends on messenger sector
- Example with SU(3) symmetry: Order-of-magnitude estimates
 - Experimental constraints satisfied
 - Predicted FCNC rates may be within reach