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Motivation

Find a unified framework to account for  the masses and 

mixing patterns of quarks and leptons.

Fermion mass hierarchy

Smallness and hierarchy of quark mixing angles
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Largeness of neutrino mixing angles and 

smallness of neutrino masses

Normal Inverted

See-saw mechanism is the 
most elegant solution

TBM +H.O ?



Fogli et al.- arXiv:1106.6028 [hep-ph]

sin2(θ13) = 0.025+0.025−0.02 (3σ)
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SU(2)L × SU(2)R × U(1)B−L

SU(2)D
SU(2)L × U(1)Y ×U(1)B−L

y = πR
y = 0

H

S1/Z2

QL, uR, dR, ℓL, eR

A4 → Z2

ds2 = e−2k|y|ηµνdx
µdyν + dy2

A4 → Z3A4 × (Z2)
′



A4 Assignments

The Yukawa Lagrangian

LY uk5D = LLO + LNLO

UV/IR Cross brane

Λ
−7/2
5D Q̄L(ℓL)ΦχH(uR, dR, (eR))

Λ
−3/2
5D ℓ̄LHχνRΛ

−1/2
5D ℓ̄LHνR

Λ−25DQ̄L(ℓ̄L)ΦH(uR, dR, eR)

(Λ
−1/2
5D χ,M)νRν

c
R

SU(3)c × SU(2)L × SU (2)R × U (1)B−L × A4



A4 → Z3 A4 → Z2

LO Results
SSB of A4

〈χ〉 = (0, vχ, 0)〈Φ〉 = (vΦ, vΦ, vΦ)

TBM neutrino mixingNo quark mixing at LO!

ω = e2πi/3
V u,d,e
R = 13×3

V u,d,e
L = U(ω) = 1√
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NLO Corrections to the CKM Matrix
• Cross brane flavon interactions induce deviations of the 

CKM matrix from unity

•Parameterizing VCKM in terms of     :    

12 complex parameters

q=u,d

λ

O(xu,di , yu,di )

|Vub| �= |Vtd|, and phase structureVii �= 1

VCKM =




1 aλ bλ3

−a∗λ 1 cλ2

−b∗λ3 −c∗λ2 1





Mq+∆Mq = U(ω)
√
3




ỹq1v+(xq1 + yq1)/3 (xq2 + yq2)/3 (xq3 + yq3)/3

(xq1 +ωyq1)/3 ỹ′q2v+(xq2 +ωyq2)/3 (xq3 +ωyq3)/3
(xq1 +ω2yq1)/3 (xq2 +ω2yq2)/3 ỹ′′q3v+(xq3 +ω2yq3)/3





(xqi , y
q
i ) = fqχCχ(x̃

q
i , ỹ

q
i ) ≃ 0.05(x̃qi , ỹ

q
i )

O
(
(xu,di )2, (yu,di )2

)



NLO Corrections to the PMNS Matrix
• Cross brane flavon interactions induce deviations of the 

PMNS matrix from TBM

•Parameterizing VPMNS in terms of                            ,

12 complex parameters

VPMNS = (U (ω)V ℓ
L)
†V ν(NLO)

L

Mℓ+∆Mℓ = U (ω)
√
3




ỹev + (xℓ1 + yℓ1)/3 (xℓ2 + yℓ2)/3 (xℓ3 + yℓ3)/3

(xℓ1 + ωyℓ1)/3 ỹµv + (xℓ2 + ωyℓ2)/3 (xℓ3 + ωyℓ3)/3
(xℓ1 + ω2yℓ1)/3 (xℓ2 + ω2yℓ2)/3 ỹτv + (xℓ3 + ω2yℓ3)/3





(V
ν(NLO)
L )13,31 = ǫν

ǫν ≃ 0.08λℓ = f ℓχCχ ≃ 0.05

V ℓ
L =




1 λℓ(x̃

ℓ
2 + ỹℓ2) λℓ(x̃

ℓ
3 + ỹℓ3)

−λℓ(x̃ℓ∗2 + ỹℓ∗2 ) 1 λℓ(x̃
ℓ
3 + ωỹℓ3)

−λℓ(x̃ℓ∗3 + ỹℓ∗3 ) −λℓ(x̃ℓ∗3 + ω2ỹℓ∗3 ) 1







NLO Corrections to the PMNS matrix-(cont.)

θNLO
13 = eiδ−1√

6
− aǫν√

3
+ 1−ωeiδ√

6
(x̃ℓ2 + ỹℓ2 + ωx̃ℓ3 + ωỹℓ3)λℓ

θ23 =
ωeiδ−1√

6
− ǫν√

3
+ eiδ−1√

6
(x̃ℓ∗2 + ỹℓ∗2 )λℓ +

1−ω2eiδ√
6

(x̃ℓ∗3 + ω2ỹℓ∗3 )λℓ

θ12 =
1√
3
− ω2√

3
(x̃ℓ2 + ỹℓ2)λℓ − ω√

3
(x̃ℓ3 + ỹℓ3)λℓ

δ Is the CP violating phase in neutrino oscillations

generated only at the NLO and satisfies: 

Current Neutrino oscillation data (Including T2K) 

can still be explained with natural O(1) parameters. 

|δ| � 0.16



Main Features of RS-A4 setup

Degenerate CL

EWPM Zbb̄

MKK = 1.8TeV

ǫNP
K = 0

Neutron EDM at 1-loop and HMFCNC at tree 

level, strongly suppressed.

MKK � 10 TeV

(In flavor anarchy)

(
CK,D
2,4

)



As a first step we work in the mass insertion approximation

-Flavor part of amplitude in terms of spurions

-IR Higgs vs. Bulk Higgs couplings

FQ, Fu,d, Ŷu,d

r
HΦ(χ)
nm (cQi

, cuj ,dj , β)

(Agashe, Soni, Perez 2004)

Phenomenology-Dipole Operators

i = j = d (EDM)

FQYu,dY
†
u,dYdFu,d

Oγ
7 = q̄iLσ

µνFµνq
j
R



Overlap corrections

Dipole Operators (cont.)

Various levels of Approximation

(V d
R)LO = 13×3 EDM=0

(V d
R)NLO + Degenerate Overlaps EDM=0

(V d
R)NLO + Non degenerate Overlaps

r̃u,d01 r̃u,d11 = r̂u,d01 r̂u,d11 + r̂u,d01−+ r̂
u,d
1−+1

EDM ∼ O
(
(md/ms)f

u,d
χ ∆r)

)
≈ 10−29e · cm

(Cd−type
7γ(8g) )ij =

mdiA
1Lf2Q

v2MKK

[
V d†
R diag(f2d,s,b)(r̂

d
00)

−1r̃d01 r̃
d
11(r̂

d
00)

−1V d
R

×diag(m2
d,s,b)V

d†
R (r̂d00)

−1r̂d10 V
d
R

]

ij



Main drawback of spurion analysis            Failure 

to account for the explicit coupling to the various

types (BC) of KK modes.

Second step- diag. of the 1 gen. KK mass matrix

Dipole Operators (cont.)

Generational mixing effects Mass insertion approx.

(Agashe-Azatov-Zhu 2009, Gedalia-Isidori-Perez 2009)

Third step- Approximate analytical and numerical

diag. of 3 gen. zero +1st KK mass matrices. (12x12) 

(Aij)
overlap
D =

(∑
n(Ŷ

di
KK)mass

1n (Ŷ
dj
KK)mass

n1

)∣∣∣
overlap

M
(n)dj
KK



(TeV)

(TeV)

ΛIR

The constraint of

Zbb with running

of Higgs mass

Most significant 

constraints from dipole

operators

(Casagrande, Neubert et al. , 2010)

Zbb̄

mh

ǫ′/ǫK

nEDM

b→
sγ



Conclusions

RS-A4
Vacuum Alignment, Flavor Hierarchy

EW-Planck Hierarchy, CKM, TBM+…,

Neutrino masses. 

EWPM constrain bulk masses!

Significant Relaxation of Pheno. constraints compared

to flavor anarchy, due to degeneracy of CL!!!

Possible extensions-

PLR extended Custodial Symm.

Larger (other…) flavor symmetries

“Soft Wall”

ZMA remains the same!

Naturalness!



Questions

(…)





A4 Simplifications

Near degeneracy

Of overlap corrections



1 generation KK Yukawa matrices

Yd
KK =






Q̄
d(0)
L

d̄
(1−−)
L

Q̄
d(1)
L

¯̃
d
(1+−)
L






T 




y̆df
−1
q f−1d r00 0 y̆df

−1
q r01 y̆uf

−1
q r101

0 y̆∗dr22 0 0

y̆df
−1
d r10 0 y̆dr11 y̆ur111
0 y̆∗ur222 0 0











d
(0)
R

Q
d(1−−)
R

d
(1)
R

d̃
(1−+)
R






Ŷ
d(h−)
KK =






Q̄
d(0)
L

d̄
(1−−)
L

Q̄
d(1)
L

¯̃
d
(1+−)
L






T 




−y̆uf−1q f−1u r00 0 −y̆uf−1q r01 −y̆df−1q r101
0 y̆∗dr22 0 0

−y̆uf−1u r10 0 −y̆ur11 −y̆dr111
0 y̆∗ur222 0 0











u
(0)
R

Q
u(1−−)
R

u
(1)
R

ũ
(1−+)
R






Ŷ
d(h+)
KK =






Q̄
u(0)
L

ū
(1−−)
L

Q̄
u(1)
L

¯̃u
(1+−)
L






T 



y̆df−1q f−1d r00 0 y̆df−1q r01 y̆uf−1q r101
0 −y̆∗ur22 0 0

y̆df
−1
d r10 0 y̆dr11 y̆ur111
0 −y̆∗dr222 0 0










d
(0)
R

Q
d(1−−)
R

d
(1)
R

d̃
(1−+)
R








4X4 one gen. KK mass matrix

12X12 three gen. KK mass matrix



OsKK

L One example of KK diag. matrix

12X12 additional A4 rotation



Dynamical Completion Issues
• Vacuum Alignment – We will have to make sure 

that the scalar potential doesn’t ruin the specific 
VEV structure we are interested in.

• Most importantly in any flavor model one should 
explain the origin of quark and lepton masses 
and their hierarchy (FN, GUT’s, WED, UED 
etc.…).

• Ultimately, a dynamical origin for the A4
symmetry should be supplemented.

• One of the possibilities is obtaining A4 via 
compactification of a 6 dimensional flat space on 
an orbifold           . The various fields reside on 
the four orbifold fixed points (Branes).

T2/Z2

(Feruglio and Altarelli)



Off diagonal CKM elements

VCKM =




1 Vus Vub

−V ∗
us 1 Vcb

−V ∗
ub −V ∗

cb 1







ZMA RH diag. Matrices



The Tetrahedral 

Group A4
• A(4) is the group of even 

permutations of 4 objects

• It is also isomorphic to the 
symmetry group of a regular 
tetrahedron, and is a 
subgroup of SO(3)

• Other extensions include:                  

• Will be used to explain 
proximity of mixing in the 
lepton sector to TBM, and 
proximity of mixing in the 
quark sector to unity.

• Differs from other types of 
flavor models: “Anarchic”, 
continuous flavor groups, 
GUT’s, (SUSY),…

∆(27)T′ Σ(81)



Some A(4) Basic properties:

•A(4) has one real triplet,    and three “singlets”:



A simple  A(4) Model 
(Ma, Feruglio, Altarelli, Babu, Volkas…)

•We assign the SM fermions to the following representations:

•The scalar sector of this model will be given by:

Under A(4)

SU(3)xSU(2)xU(1)

•We will also need an additional U(1) symmetry which will be     
explicitly broken to         under which     ,     and        are odd

and the rest of the fields are even.
Z2 φ χ QL



•The Yukawa Lagrangian is:

•And the resulting mass matrix in each sector, f=(u,d,e):



The Neutrino Sector
• From the Yukawa Lagrangian we get that the Dirac and 

the bare Majorana mass matrices are proportional to the 

identity: 

and

The required non-trivial structure is supplied by the Yukawa 
coupling to the field,   , which turns out to be:χ

•Inserting the VEV of     the resulting 6x6 mass matrix is:χ



• In the see-saw limit,                              the effective 3x3 
mass matrix for the light neutrinos is given by:

•The diagonalization matrix turns out to be :

•So the MNSP matrix at this order is Tri-bi-maximal:




