U(2) and Minimal Flavour Violation in Supersymmetry

Joel Jones-Pérez

INFN – Laboratori Nazionali di Frascati

In Collaboration with R. Barbieri, G. Isidori, P. Lodone and D. Straub

arXiv:1105.2296 [hep-ph]

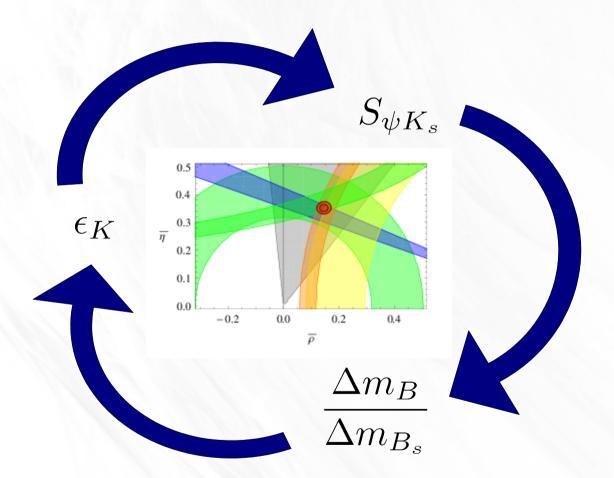
FLASY 2011 Valencia, 11/07/2011

Minimal Flavour Violation Framework

- U(3)⁵ framework built in order to suppress New Physics contributions to flavoured processes.
- SUSY masses are forced to be nearly degenerate.
- Flavour off-diagonal contributions are related to CKM and mass hierarchies: y_t, y_b.

D'Ambrosio, Giudice, Isidori, Strumia (hep-ph/0207036)

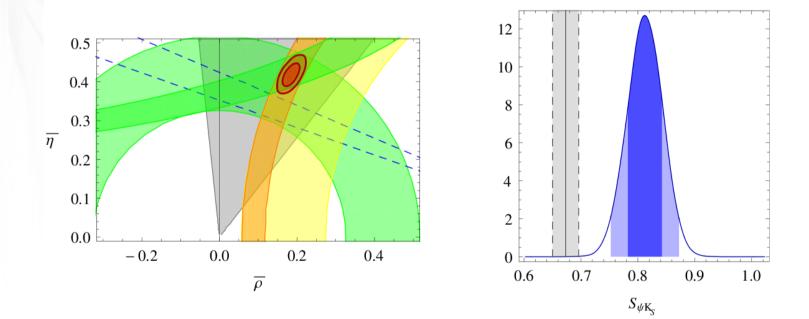
Flavour Tension in the SM



Buras, Guadagnoli (0901.2056 [hep-ph]) Altmannshofer *et al* (0909.1333 [hep-ph])

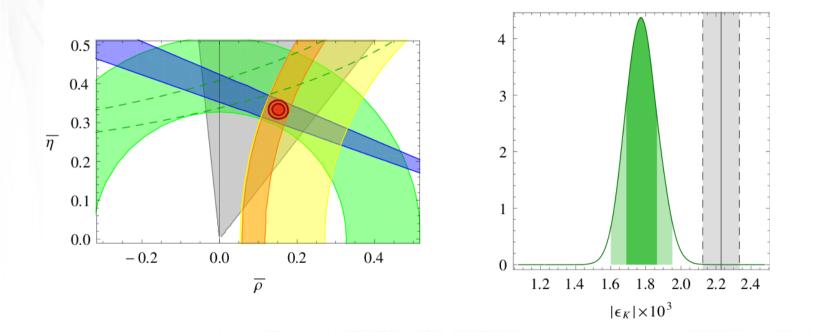
Flavour Tension in the SM

UT fit without $S_{\psi Ks}$:



Flavour Tension in the SM

UT fit without ε_{κ} :



U(2) Minimal Flavour Violation Framework

- We would like to establish a framework with the virtues of MFV, but with more liberty, such that flavour tension can be accommodated.
- Inspiration:
 - U(3)³ expansion breaks down to U(2)³ at large tanβ
 Kagan, Perez, Volansky, Zapan (0903.1794 [hep-ph])
 - Flavour bounds do not strongly force the third generation squark masses to be degenerate.

Giudice, Nardecchia, Romanino (0812.3610 [hep-ph])

- U(2) SUSY flavour model Barbieri, Dvali, Hall (hep-ph/9512388)

Outline

Construction of Framework I: Yukawas

Construction of Framework II: Soft Masses

Phenomenological Predictions

U(2)³ Framework

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d$

 $Q^{(2)} = (Q_1, Q_2) \sim (\bar{2}, 1, 1)$ $u_R^{c(2)} = (u_{R,1}^c, u_{R,2}^c)^T \sim (1, 2, 1)$ $d_R^{c(2)} = (d_{R,1}^c, d_{R,2}^c)^T \sim (1, 1, 2)$

U(2)³ Framework

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d$

$$Q^{(2)} = (Q_1, Q_2) \sim (\bar{2}, 1, 1)$$
$$u_R^{c(2)} = (u_{R,1}^c, u_{R,2}^c)^T \sim (1, 2, 1)$$
$$d_R^{c(2)} = (d_{R,1}^c, d_{R,2}^c)^T \sim (1, 1, 2)$$

 $W_q = y_t Q_3 t_R^c H_u + y_b Q_3 b_R^c H_d$

U(2)³ Spurions

 $V \sim (2,1,1)$

 $Y_d = \left(\begin{array}{cc} 0 & x_b V \\ 0 & 1 \end{array}\right) y_b$ $Y_u = \left(\begin{array}{cc} 0 & x_t V \\ 0 & 1 \end{array}\right) y_t$

Hierarchy between V_{cb} and V_{tb} should be related to suppression in *V*. (Hierarchy between V_{ub} and V_{tb} shall be understood later.)

U(2)³ Spurions

$$V \sim (2, 1, 1)$$

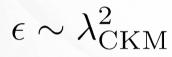
$$\Delta Y_u \sim (2, \overline{2}, 1)$$

$$\Delta Y_d \sim (2, 1, \overline{2})$$

$$Y_u = \begin{pmatrix} \Delta Y_u & x_t V \\ 0 & 1 \end{pmatrix} y_t \qquad Y_d = \begin{pmatrix} \Delta Y_d & x_b V \\ 0 & 1 \end{pmatrix} y_b$$

Hierarchy between y_{f_2} and y_{f_3} should be related to suppression in ΔY_f . (Hierarchy between y_{f_1} and y_{f_3} shall be commented later)

 $V = \epsilon \, U_V \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$ \hat{s}_2



 $\Delta Y_u = U_{Q_u}^{\dagger} \Delta Y_u^d U_U$ $\Delta Y_d = U_{Q_d}^{\dagger} \Delta Y_d^d U_D$

$$\Delta Y_u^d = \begin{pmatrix} \lambda_{f1} & 0\\ 0 & \lambda_{f2} \end{pmatrix} \qquad \begin{aligned} \lambda_{f1} & \sim & y_{f1}/y_{f3}\\ \lambda_{f2} & \sim & y_{f2}/y_{f3} \end{aligned}$$

 $\Delta Y_u = U_{Q_u}^{\dagger} \Delta Y_u^d U_U$ $\Delta Y_d = U_{Q_d}^{\dagger} \Delta Y_d^d U_D$

$$\Delta Y_u^d = \begin{pmatrix} \lambda_{f1} & 0 \\ 0 & \lambda_{f2} \end{pmatrix} \qquad \begin{aligned} \lambda_{f1} & \sim & y_{f1}/y_{f3} \\ \lambda_{f2} & \sim & y_{f2}/y_{f3} \end{aligned}$$

This framework does not justify the hierarchy between the first two generations.

A flavour model seeking this framework must provide some alignment mechanism in the (1-2) sector.

 $V = \epsilon U_V \hat{s}_2$

 $\Delta Y_u = U_{Q_u}^{\dagger} \Delta Y_u^d U_U$ $\Delta Y_d = U_{Q_d}^{\dagger} \Delta Y_d^d U_D$

Field redefinition

$$Y_{u} = \begin{pmatrix} U_{Q_{u}}^{\dagger} \Delta Y_{u}^{d} & x_{t} \epsilon \hat{s}_{2} \\ 0 & 1 \end{pmatrix} y_{t}$$
$$Y_{d} = \begin{pmatrix} U_{Q_{d}}^{\dagger} \Delta Y_{d}^{d} & x_{b} \epsilon \hat{s}_{2} \\ 0 & 1 \end{pmatrix} y_{b}$$

 $Y_f = \begin{pmatrix} U_{Q_f}^{\dagger} \Delta Y_f^d & x_f \, \epsilon \, \hat{s}_2 \\ 0 & 1 \end{pmatrix} y_f$

 $U_{Q_f} = \begin{pmatrix} c_f & s_f e^{i\alpha_f} \\ -s_f e^{-i\alpha_f} & c_f \end{pmatrix}$

$$Y_f = \begin{pmatrix} U_{Q_f}^{\dagger} \Delta Y_f^d & x_f \, \epsilon \, \hat{s}_2 \\ 0 & 1 \end{pmatrix} y_f$$

$$U_{Q_f} = \begin{pmatrix} c_f & s_f e^{i\alpha_f} \\ -s_f e^{-i\alpha_f} & c_f \end{pmatrix}$$

 $x_f \to x_f e^{i\phi_f}$

 α_d

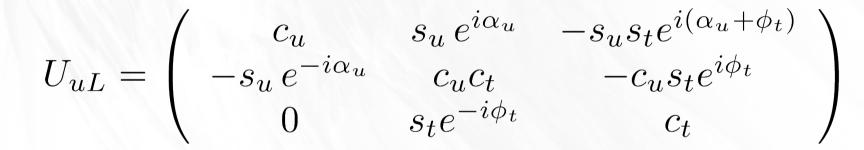
 ϕ_b

We have **three** independent phases, we shall write down four just to keep matrices symmetric.

 ϕ_t

 α_u

$$U_{fL}Y_f U_{fR}^{\dagger} = Y_f^{\text{diag}}$$



$$s_t/c_t = x_t\epsilon$$

$$U_{fL}Y_{f}U_{fR}^{\dagger} = Y_{f}^{\text{diag}}$$
$$U_{uL} = \begin{pmatrix} c_{u} & s_{u}e^{i\alpha_{u}} & -s_{u}s_{t}e^{i(\alpha_{u}+\phi_{t})} \\ -s_{u}e^{-i\alpha_{u}} & c_{u}c_{t} & -c_{u}s_{t}e^{i\phi_{t}} \\ 0 & s_{t}e^{-i\phi_{t}} & c_{t} \end{pmatrix}$$

$$s_t/c_t = x_t\epsilon$$

$$U_{fL}Y_{f}U_{fR}^{\dagger} = Y_{f}^{\text{diag}}$$
$$U_{uL} = \begin{pmatrix} c_{u} & s_{u}e^{i\alpha_{u}} & s_{u}s_{t}e^{i(\alpha_{u}+\phi_{t})} \\ -s_{u}e^{-i\alpha_{u}} & c_{u}c_{t} & -c_{u}s_{t}e^{i\phi_{t}} \\ 0 & s_{t}e^{-i\phi_{t}} & c_{t} \end{pmatrix}$$

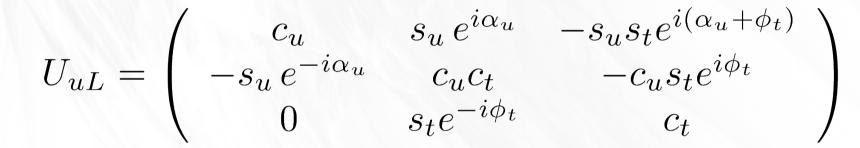
$$s_t/c_t = x_t\epsilon$$

$$U_{fL}Y_f U_{fR}^{\dagger} = Y_f^{\text{diag}}$$

$$s_t/c_t = x_t\epsilon$$

At the CKM level, we shall see that the hierarchy between V_{us} and V_{cs} is connected to the hierarchy between V_{ub} and V_{cb} .

$$U_{fL}Y_f U_{fR}^{\dagger} = Y_f^{\text{diag}}$$



$$U_{uR} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\lambda_{u2}s_t e^{i\phi_t} \\ 0 & \lambda_{u2}s_t e^{-i\phi_t} & 1 \end{pmatrix}$$

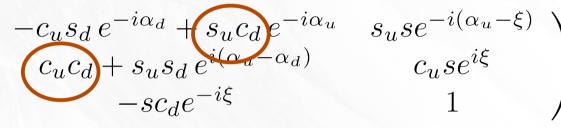
$$\begin{array}{cccc} c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{d} - \alpha_{u})} & -c_{u}s_{d} e^{-i\alpha_{d}} + s_{u}c_{d} e^{-i\alpha_{u}} & s_{u}se^{-i(\alpha_{u} - \xi)} \\ c_{u}s_{d} e^{i\alpha_{d}} - s_{u}c_{d} e^{i\alpha_{u}} & c_{u}c_{d} + s_{u}s_{d} e^{i(\alpha_{u} - \alpha_{d})} & c_{u}se^{i\xi} \\ -s_{d}s e^{i(\alpha_{d} - \xi)} & -sc_{d}e^{-i\xi} & 1 \end{array}$$

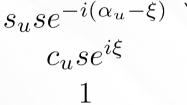
$$(s/c)e^{i\xi} = \epsilon \left(x_b e^{-i\phi_b} - x_t e^{-i\phi_t}\right)$$

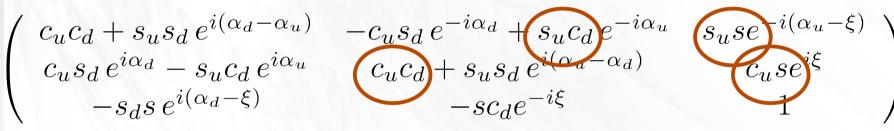
$$c_u c_d + s_u s_d e^{i(\alpha_d - \alpha_u)}$$

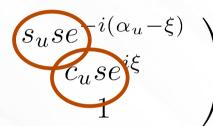
$$c_u s_d e^{i\alpha_d} - s_u c_d e^{i\alpha_u}$$

$$-s_d s e^{i(\alpha_d - \xi)}$$

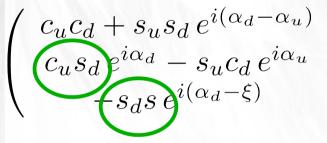


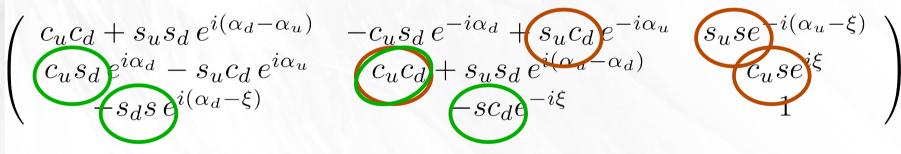


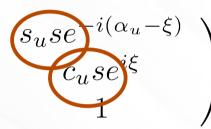


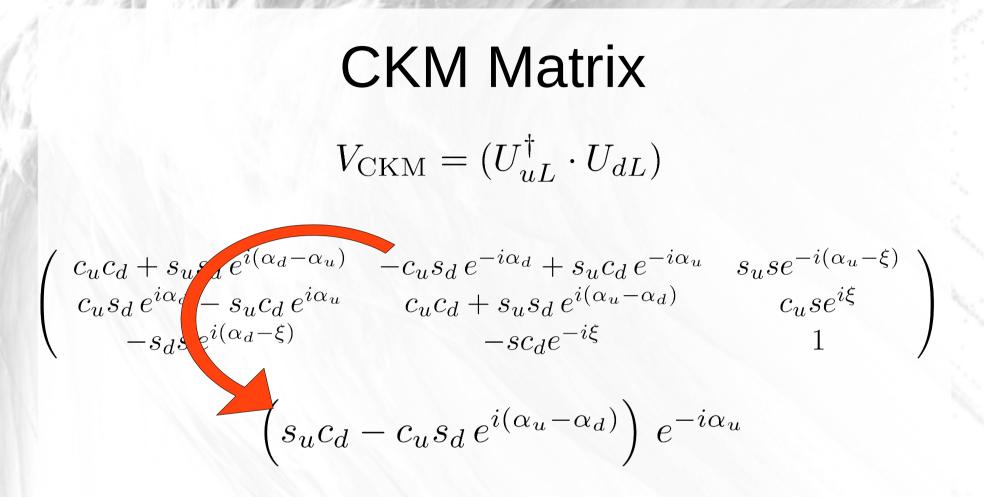


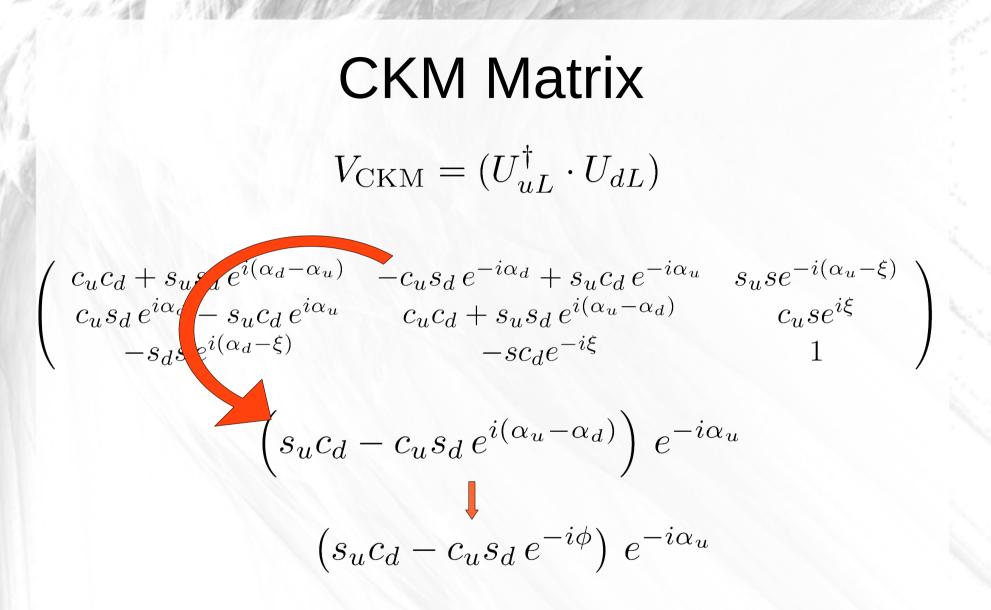
 $V_{\rm CKM} = (U_{uL}^{\dagger} \cdot U_{dL})$

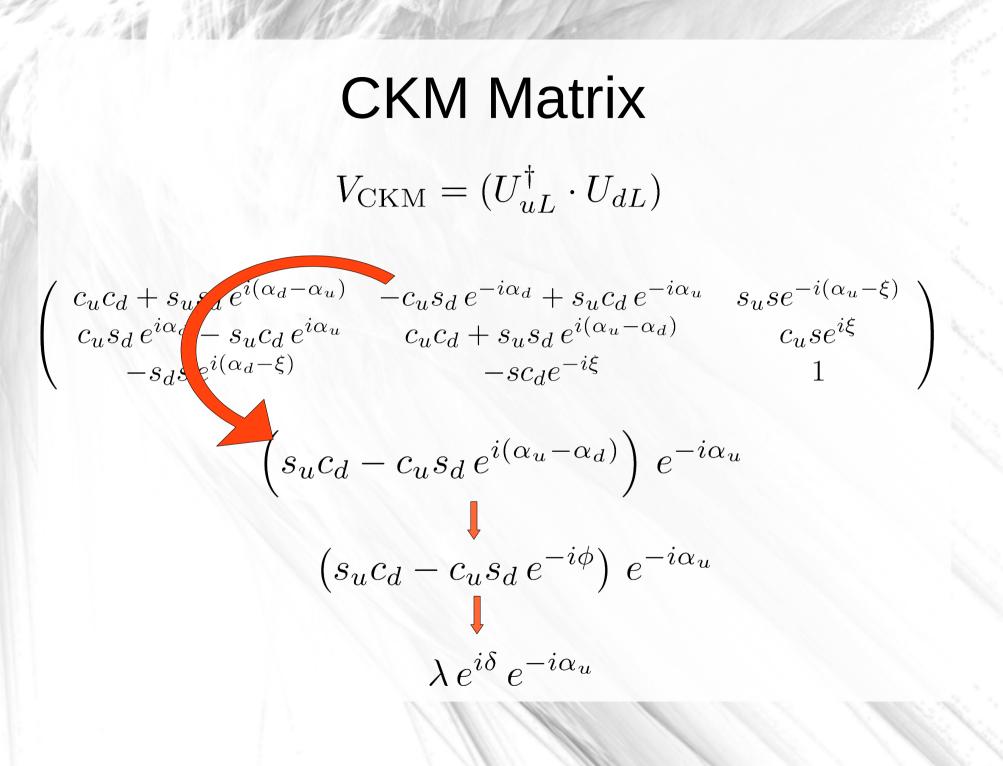


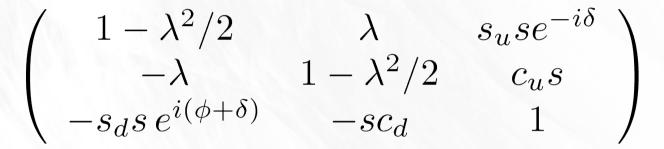












s	=	0.0410 ± 0.0004
s_u	=	0.0916 ± 0.005
s_d	=	-0.22 ± 0.02
$\cos\phi$	=	-0.13 ± 0.2

What about SUSY?

Soft Masses: Unbroken Limit:

$$m_{\tilde{f}}^2 = \begin{pmatrix} m_{f_h}^2 & 0 & 0 \\ 0 & m_{f_h}^2 & 0 \\ 0 & 0 & m_{f_l}^2 \end{pmatrix}$$

Same spurions that generated the Yukawa structure shall generate the soft mass structure.

Soft Masses

4. 11. 14

$$m_{\tilde{u}}^2 = m_{u_h}^2 \begin{pmatrix} 1 + c_{uu} \Delta Y_u^T \Delta Y_u^* & x_u e^{-i\phi_u} \Delta Y_u^T V^* \\ x_u e^{i\phi_u} V^T \Delta Y_u^* & m_{u_l}^2 / m_{u_h}^2 \end{pmatrix}$$

Soft Masses

$$m_{\tilde{u}}^2 = m_{u_h}^2 \begin{pmatrix} 1 + c_{uu} \Delta Y_u^T \Delta Y_u^* & x_u e^{-i\phi_u} \Delta Y_u^T V^* \\ x_u e^{i\phi_u} V^T \Delta Y_u^* & m_{u_l}^2 / m_{u_h}^2 \end{pmatrix}$$

$$m_{\tilde{d}}^2 = m_{d_h}^2 \begin{pmatrix} 1 + c_{dd} \Delta Y_d^T \Delta Y_d^* & x_d e^{-i\phi_d} \Delta Y_d^T V^* \\ x_d e^{i\phi_d} V^T \Delta Y_d^* & m_{d_l}^2 / m_{d_h}^2 \end{pmatrix}$$

Soft Masses

$$m_{\tilde{u}}^2 = m_{u_h}^2 \begin{pmatrix} 1 + c_{uu} \Delta Y_u^T \Delta Y_u^* & x_u e^{-i\phi_u} \Delta Y_u^T V^* \\ x_u e^{i\phi_u} V^T \Delta Y_u^* & m_{u_l}^2 / m_{u_h}^2 \end{pmatrix}$$

$$m_{\tilde{d}}^2 = m_{d_h}^2 \begin{pmatrix} 1 + c_{dd} \Delta Y_d^T \Delta Y_d^* & x_d e^{-i\phi_d} \Delta Y_d^T V^* \\ x_d e^{i\phi_d} V^T \Delta Y_d^* & m_{d_l}^2 / m_{d_h}^2 \end{pmatrix}$$

$$m_{\tilde{Q}}^{2} = m_{Q_{h}}^{2} \begin{pmatrix} 1 + c_{Qv}V^{*}V^{T} + c_{Qu}\Delta Y_{u}^{*}\Delta Y_{u}^{T} + c_{Qd}\Delta Y_{d}^{*}\Delta Y_{d}^{T} & x_{Q}e^{-i\phi_{Q}}V^{*} \\ x_{Q}e^{i\phi_{Q}}V^{T} & m_{Q_{l}}^{2}/m_{Q_{h}}^{2} \end{pmatrix}$$

Squark Mixing Matrices

$$W_L^{d\dagger} m_{\tilde{Q}}^2 W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$$
$$W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix}$$

--d+

$$W_L^{d\dagger} m_{\tilde{Q}}^2 W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$$

$$W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix}$$

 $\kappa = c_d V_{td} / V_{ts}$

No new phases on the (1-2) sector!

$$W_L^{d\dagger} m_{\tilde{Q}}^2 W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$$

$$W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix}$$

 $\kappa = c_d V_{td} / V_{ts} \qquad \text{No new phases on the (1-2) sector!}$ $s_L e^{i\gamma} = e^{-i\xi} (s_{x_b} e^{-i\phi_b} + s_Q e^{-i\phi_Q})$

New phase on the (1-3) and (2-3) sectors!

 $W_L^{d\dagger} m_{\tilde{O}}^2 W_L^d = (m_{\tilde{O}}^2)^{\text{diag}}$

 $W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix} \xrightarrow{\text{New CPV in (1-3)} \text{sector is connected to} CPV in (2-3) \text{ sector!}}$

 $\kappa = c_d V_{td} / V_{ts} \qquad \text{No new phases on the (1-2) sector!}$ $s_L e^{i\gamma} = e^{-i\xi} (s_{x_b} e^{-i\phi_b} + s_Q e^{-i\phi_Q})$

New phase on the (1-3) and (2-3) sectors!

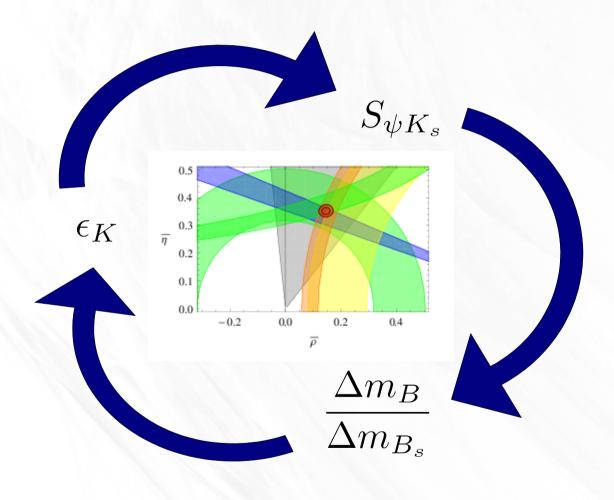
 $W_L^{d\dagger} m_{\tilde{Q}}^2 W_L^d = (m_{\tilde{Q}}^2)^{\text{diag}}$

$$W_L^d = \begin{pmatrix} c_d & \kappa^* & -\kappa^* s_L e^{i\gamma} \\ -\kappa & c_d & -c_d s_L e^{i\gamma} \\ 0 & s_L e^{-i\gamma} & 1 \end{pmatrix}$$

$$W_{R}^{d} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda_{d2} s_{R}^{d} e^{i\gamma_{d}} \\ 0 & -\lambda_{d2} s_{R}^{d} e^{-i\gamma_{d}} & 1 \end{pmatrix}$$

No large RR mixings

Flavour Tension in the SM



New SUSY Contributions

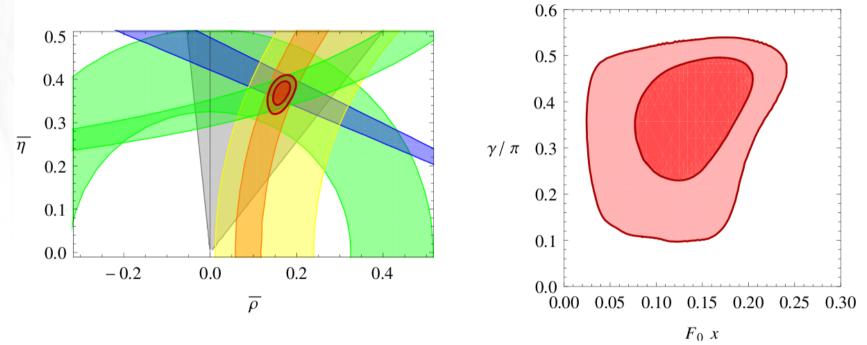
 $\epsilon_{K} = \epsilon_{K}^{\mathrm{SM(tt)}} \times (1 + x^{2}F_{0}) + \epsilon_{K}^{\mathrm{SM(tc+cc)}}$ $S_{\psi K_{S}} = \sin \left(2\beta + \arg \left(1 + xF_{0}e^{-2i\gamma}\right)\right)$ $\frac{\Delta M_{d}}{\Delta M_{s}} = \frac{\Delta M_{d}^{\mathrm{SM}}}{\Delta M_{s}^{\mathrm{SM}}}$

New SUSY Contributions

 $\epsilon_{K} = \epsilon_{K}^{\mathrm{SM(tt)}} \times (1 + x^{2}F_{0}) + \epsilon_{K}^{\mathrm{SM(tc+cc)}}$ $S_{\psi K_{S}} = \sin \left(2\beta + \arg \left(1 + xF_{0}e^{-2i\gamma}\right)\right)$ $\frac{\Delta M_{d}}{\Delta M_{s}} = \frac{\Delta M_{d}^{\mathrm{SM}}}{\Delta M_{s}^{\mathrm{SM}}}$

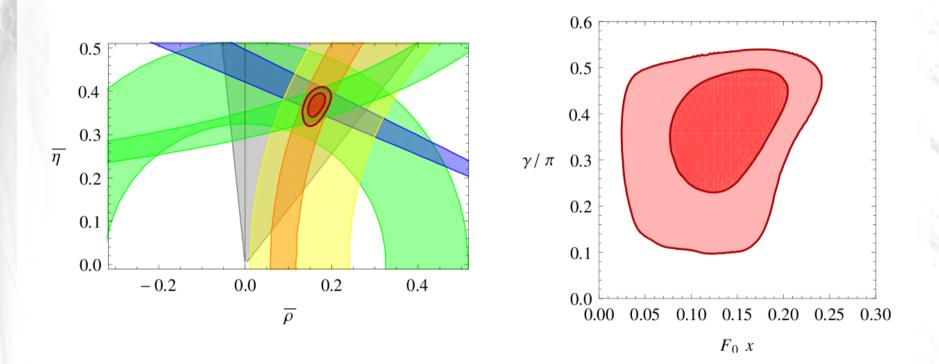
 $F_{0} = \frac{2}{3} \left(\frac{g_{s}}{g}\right)^{4} \frac{m_{W}^{2}}{m_{Q_{2}}^{2}} \frac{1}{S_{0}(x_{t})} \left| f_{0}(x_{g}) + \mathcal{O}\left(\frac{m_{Q_{l}}^{2}}{m_{Q_{h}}^{2}}\right) \right|$ $x_g = \frac{m_{\tilde{g}}^2}{m_{Q_2}^2}$ $x = \frac{c_d^2 s_L^2}{|V_{ts}|^2}$

Fit with SUSY Contribution



0.

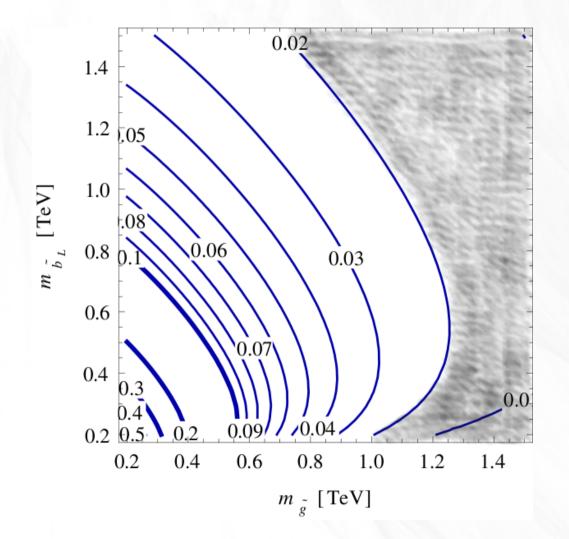
Fit with SUSY Contribution



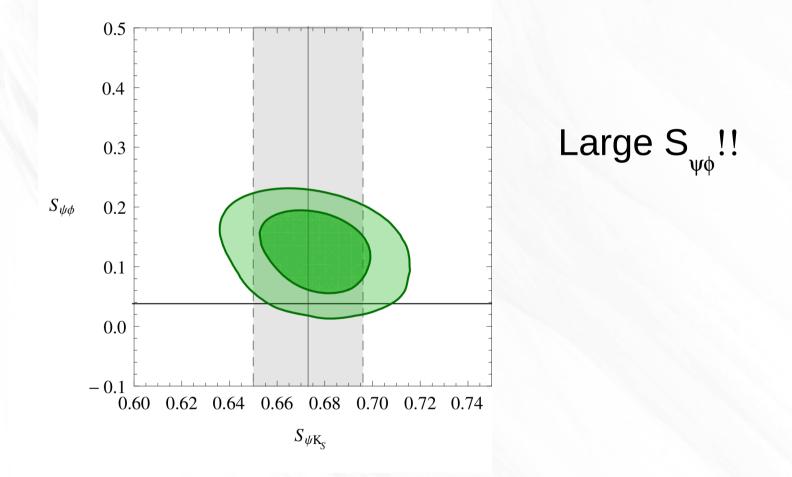
 $(\chi^2/N_{\rm d.o.f.})_{\rm SM} = 9.8/5$

 $(\chi^2/N_{\rm d.o.f.})_{\rm SUSY} = 0.7/2$

Predictions from Fit



Light spectrum for third generation sfermions! **Predictions from Fit**



Conclusions

- U(2)-based MFV is a new framework capable of building the Yukawa matrices.
- Allows more freedom than MFV at the moment of calculating the SUSY contributions.
- Freedom is not absolute: there exist correlations between contributions to different observables.

Conclusions

 Fit on flavoured CPV observables give two main predictions:

- Masses of third generation squarks should be light.
- Large deviation to $S_{_{\psi\varphi}}$ should be observed.

Backup Slides

11.14

$U(2)^3$ Framework for Small tan β

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d \otimes U(1)_b$

 $\begin{array}{rccc} d_R^{c(2)} & \to & e^{i\beta} \, d_R^{c(2)} \\ b_R^c & \to & e^{i\beta} \, b_R^c \end{array}$

$U(2)^3$ Framework for Small tan β

 $U(2)_Q \otimes U(2)_u \otimes U(2)_d \otimes U(1)_b$

$$\begin{array}{ccc} d_R^{c(2)} & \to & e^{i\beta} \, d_R^{c(2)} \\ b_R^c & \to & e^{i\beta} \, b_R^c \end{array}$$

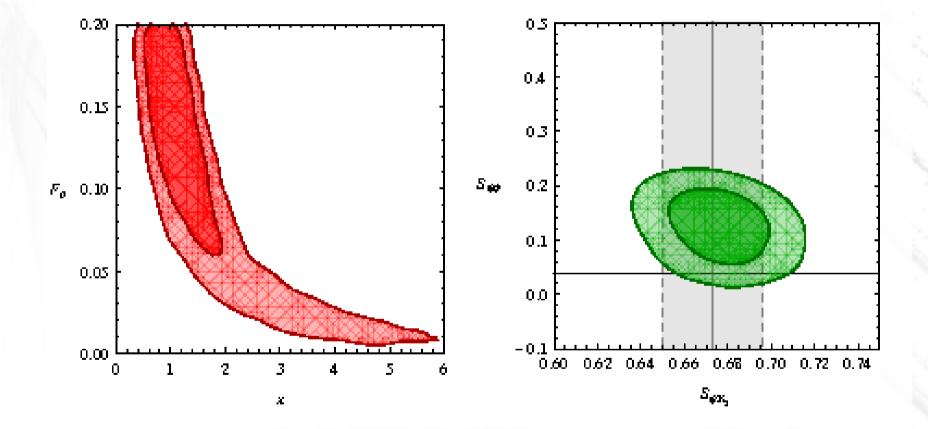
$$y_b \to e^{-i\beta} y_b$$

Small Spurion

Input to CKM Fit

$ V_{ud} $	0.97425(22)	f_K	$(155.8 \pm 1.7) \text{ MeV}$
$ V_{us} $	0.2254(13)	\hat{B}_K	0.724 ± 0.030
$ V_{cb} $	$(40.89 \pm 0.70) \times 10^{-3}$	κ_ϵ	0.94 ± 0.02
$ V_{ub} $	$(3.97 \pm 0.45) \times 10^{-3}$	$f_{B_s}\sqrt{\hat{B}_s}$	$(291 \pm 16) \text{ MeV}$
$\gamma_{ m CKM}$	$(74 \pm 11)^{\circ}$	ξ	1.23 ± 0.04
$ \epsilon_K $	$(2.229 \pm 0.010) \times 10^{-3}$		
$S_{\psi K_S}$	0.673 ± 0.023		
ΔM_d	$(0.507 \pm 0.004) \mathrm{ps}^{-1}$		
ΔM_s	$(17.77 \pm 0.12) \mathrm{ps}^{-1}$		

Fit to F_0 and x



Dynamical Two-Site Model

Third generation Higgs

First + second generation

U(2) symmetry

Dynamical Two-Site Model

Chiral field	G_1^{SM}	G_2^{SM}
χ_h	$(3, 2, \frac{1}{6})$	$(\overline{3},2,-\frac{1}{6})$
$ ilde{\chi}_h$	$(\overline{3},2,-\frac{1}{6})$	$(3,2,rac{1}{6})$
χ_ℓ	$(1, 2, \frac{1}{2})$	$(1, 2, -\frac{1}{2})$
$ ilde{\chi}_\ell$	$(1,2,-\frac{1}{2})$	$(1, 2, \frac{1}{2})$

$$Y_u, Y_d \sim \begin{pmatrix} \epsilon_{\ell} & \epsilon_{\ell} & \epsilon_{h} \\ \epsilon_{\ell} & \epsilon_{\ell} & \epsilon_{h} \\ \epsilon_{\ell}\epsilon_{h} & \epsilon_{\ell}\epsilon_{h} & 1 \end{pmatrix}$$