

Outline

- Observations
- General comments on the flavor symmetry G_F properties, possible symmetries
- Examples
 - A_4 and S_4 : tri-bimaximal mixing
 - Dihedral groups in general, θ_C and $\mu\tau$ symmetry
- Conclusions

	Mass at M_Z	In units of m_t	(M_Z)
u	$(1.7\pm0.4){ m MeV}$	λ^8	
c	$(0.62\pm0.03){\rm GeV}$	λ^4	
t	$(171\pm3){ m GeV}$	1	
	Mass at M_Z	in units of m_b	(M_Z)
d	$(3.0\pm0.6){ m MeV}$	λ^4	
S	$(54\pm8)\mathrm{MeV}$	λ^2	
b	$(2.87\pm0.03){\rm GeV}$	1	
	Mass	at M_Z in un	its of $m_{\tau}(M_Z)$
e (0.4865	570161 ± 0.000000042	$2)\mathrm{MeV}$	$\lambda^{4\div5}$
1100			12

Observations: Neutrino Masses

- Mass hierarchy in ν sector is mild compared to charged fermions
- We know two mass squared differences (at 2σ) (Fogli et al. ('11))

$$\delta m^2 \equiv \Delta m_{\rm sol}^2 \equiv m_2^2 - m_1^2 = (7.58^{+0.41}_{-0.42}) \times 10^{-5} \text{ eV}^2$$
$$\Delta m^2 \equiv m_3^2 - \frac{m_2^2 + m_1^2}{2} = (2.35^{+0.22}_{-0.18}) \times 10^{-3} \text{ eV}^2$$

• However $m_1 < m_3$ and $m_3 < m_1$ is possible due to $\Delta m^2 \leq 0$

Observations: Neutrino Masses

- Mass hierarchy in ν sector is mild compared to charged fermions
- We know two mass squared differences (at 2σ) (Fogli et al. ('11))

$$\delta m^2 \equiv \Delta m_{\rm sol}^2 \equiv m_2^2 - m_1^2 = (7.58^{+0.41}_{-0.42}) \times 10^{-5} \text{ eV}^2$$
$$\Delta m^2 \equiv m_3^2 - \frac{m_2^2 + m_1^2}{2} = (2.35^{+0.22}_{-0.18}) \times 10^{-3} \text{ eV}^2$$

- However $m_1 < m_3$ and $m_3 < m_1$ is possible due to $\Delta m^2 \leq 0$
- Also unknown: the absolute mass scale m_0

 $\sum m_{\nu} \le 0.7 \,\mathrm{eV}$ (WMAP+LSS) $m_{\beta} < 2.2 \,\mathrm{eV}$ (Mainz) $|m_{ee}| < (0.2...1) \,\mathrm{eV}$ (Heidelberg-Moscow, IGEX, NEMO)

Observations: Fermion Masses and Mixings The mixing pattern is very peculiar (Fogli et al. ('11)) $\sin^2(\theta_{12}^l) = 0.306^{+0.036}_{-0.031}$, $\sin^2(\theta_{23}^l) = 0.42^{+0.18}_{-0.06}$ and $\sin^2(\theta_{13}^l) = 0.021^{+0.015}_{-0.013}$ $\theta_{12}^l = (33.6^{+2.2}_{-2.0})^\circ$, $\theta_{23}^l = (40.4^{+10.4}_{-3.5})^\circ$ and $\theta_{13}^l = (8.3^{+2.6}_{-3.2})^\circ$ (2σ) compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$

Observations: Fermion Masses and Mixings The mixing pattern is very peculiar (Fogli et al. ('11)) $\sin^2(\theta_{12}^l) = 0.306^{+0.036}_{-0.031}$, $\sin^2(\theta_{23}^l) = 0.42^{+0.18}_{-0.06}$ and $\sin^2(\theta_{13}^l) = 0.021^{+0.015}_{-0.013}$ $\theta_{12}^l = (33.6^{+2.2}_{-2.0})^\circ, \ \theta_{23}^l = (40.4^{+10.4}_{-3.5})^\circ \text{ and } \theta_{13}^l = (8.3^{+2.6}_{-3.2})^\circ (2\,\sigma)$ compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$ (Still) Hint at a Flavor Symmetry !?!

Special Patterns for Lepton Mixings - Before T2K

• $\mu \tau$ Symmetry

 $\sin^2(\theta_{23}^l) = \frac{1}{2}$, $\sin^2(\theta_{13}^l) = 0$

$$|U_{PMNS}| = \begin{pmatrix} \cos(\theta_{12}^l) & \sin(\theta_{12}^l) & 0\\ \frac{\sin(\theta_{12}^l)}{\sqrt{2}} & \frac{\cos(\theta_{12}^l)}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin(\theta_{12}^l)}{\sqrt{2}} & \frac{\cos(\theta_{12}^l)}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

• Tri-Bimaximal mixing (TB mixing)

$$\sin^{2}(\theta_{12}^{l}) = \frac{1}{3} , \quad \sin^{2}(\theta_{23}^{l}) = \frac{1}{2} , \quad \sin^{2}(\theta_{13}^{l}) = 0$$
$$|U_{PMNS}| = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Special Patterns for Lepton Mixings -Before T2K

Further patterns which might be realized

• Golden ratio $(\phi = \frac{1}{2} (1 + \sqrt{5}))$

 $\sin^2(\theta_{12}^l) = \frac{1}{\sqrt{5}\phi} \approx 0.276 , \ \sin^2(\theta_{23}^l) = \frac{1}{2} , \ \sin^2(\theta_{13}^l) = 0$

$$|U_{PMNS}| = \begin{pmatrix} \sqrt{\frac{1}{10}(5+\sqrt{5})} & \sqrt{\frac{2}{5+\sqrt{5}}} & 0\\ \frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Are these still reasonable Leading Order Patterns ?!

Summary of Observations

- Three families of elementary particles observed
- Strong hierarchy among charged fermions
- Mass hierarchy in the ν sector is much milder, ordering and m_0 unknown
- Only θ_C is sizable in the quark sector
- Special lepton mixing pattern could be realized? Which one?
- No excessive flavor violation observed, all in accordance with Standard Model

Necessity of Constraints on Couplings y_{ij}^u , y_{ij}^l , etc.

Summary of Observations

- Three families of elementary particles observed
- Strong hierarchy among charged fermions
- Mass hierarchy in the ν sector is much milder, ordering and m_0 unknown
- Only θ_C is sizable in the quark sector
- Special lepton mixing pattern could be realized? Which one?
- No excessive flavor violation observed, all in accordance with Standard Model

Necessity of Flavor Symmetry G_F ?!

Effect of Flavor Symmetry G_F

Yukawa couplings in the SM

$$y_{ij}^u Q_i H^c u_j^c$$
 or $y_{ij}^d Q_i H d_j^c$
with $y_{ij}^{u,d} \in \mathbb{C}$

• Enforce invariance under G_F

$$\hookrightarrow$$
 Constraints on $y_{ij}^{u,c}$

 \hookrightarrow Extension of scalar sector needed

 $\begin{array}{lll} H \to H_k & \text{or} & H \to H \, \phi_k / (M, \Lambda) \\ \text{multi-Higgs doublets} & \text{or} & \text{flavon fields} \\ y_{ij,k}^d \, Q_i \, H_k \, d_j^c & \text{or} & y_{ij,k}^d \, Q_i \, H \, d_j^c \, \left(\frac{\phi_k}{(M,\Lambda)} \right) \\ \text{renormalizable couplings} & \text{or} & \text{in general non-renormalizable} \\ & \text{but in both cases alignment is needed} \end{array}$

Choice of Flavor Symmetry G _F
The symmetry G_F could
 be abelian or non-abelian
· · · · · · · · · · · · · · · · · · ·

• •

Its maximal possible size depends on the gauge group.

Possible Symmetries

Continuous Groups

SU(2), U(2), SO(3), SU(3), U(3)

Discrete Groups

- Permutation symmetries, S_N and A_N with $N \in \mathbb{N}$
- Dihedral symmetries, D_n and D'_n with $n \in \mathbb{N}$
- Further double-valued groups: T', O', I', ...
- Subgroups of SU(3), series of $\Delta(3n^2)$ and $\Delta(6n^2)$ groups with $n \in \mathbb{N}$, as well as finite number of Σ groups
- Additional groups such as subgroups of the mentioned groups, e.g. $T_7 \cong Z_7 \rtimes Z_3 \subset \Delta(147)$, subgroups of U(3), e.g. $\Sigma(81)$

Models with Continuous G_F

The group U(2) (Barbieri/Hall ('96), Barbieri et al. ('96, '97, '99))

- $\underline{2} + \underline{1}$ structure explains heaviness of the third generation
- Framework of the models: supersymmetric SU(5) (SO(10)) GUT
- Symmetry is broken in steps: $U(2) \rightarrow U(1) \rightarrow$ nothing
- $\underline{2} + \underline{1}$ also appropriate for solving the SUSY flavor problem
- Nine relations among fermion masses and mixings
- However, only θ_{23} large in lepton sector and θ_{12} , θ_{13} small

	(King ($^{\prime}$ 05) King/Ross ($^{\prime}$ 01) $^{\prime}$ 03) de Medeiros Varzielas/Ross ($^{\prime}$ 05))
	• since they allow to unify all three generation (in $SO(3)$ only left-handed ones)
ctor	 since the largeness of two mixing angles i indicates that not only two generations are cl
ct	 since the largeness of two mixing angles i indicates that not only two generations are cl

Models with Continuous G_F

General characteristics of SO(3) & SU(3) flavor models

- Hierarchical breaking
 - $SO(3) \rightarrow SO(2) \rightarrow \text{nothing} \quad \text{and} \quad SU(3) \rightarrow SU(2) \rightarrow \text{nothing}$
- SUSY models with SM, PS or (in EDs) SO(10) gauge group
- Masses of SM fermions arise from non-renorm. operators only
- Additionally symmetries (Z_n factors and U(1)) to forbid operators
- Different messenger scales allow different expansion parameters in up quark, down quark and charged lepton sector
- Specific vacuum structure necessary to predict TB mixing
- Vacuum alignment achieved by *F* or *D*-terms

Models with Continuous G_F Lepton mixing in the SO(3) & SU(3) flavor models TB mixing is achieved through CSD (King ('05)) Corrections from charged lepton sector are small Discrete "spin-offs" of the SO(3) & SU(3) models (de Medeiros Varzielas et al. ('05, '06), King/Malinsky ('06)) Use A_4 , $\Delta(27)$, $\Delta(108)$ as flavor group Very similar results compared to the models with continuous symmetries In general the vacuum alignment is simpler No *D*-terms arise from discrete flavor symmetry

Possible Discrete Symmetries

- Permutation symmetries: symmetric groups S_N and alternating groups A_N with $N \in \mathbb{N}$
- Dihedral symmetries: single-valued groups D_n and double-valued groups D'_n with $n \in \mathbb{N}$
- Further double-valued groups: T', O', I', ...
- Subgroups of SU(3): series of $\Delta(3n^2)$ and $\Delta(6n^2)$ groups with $n \in \mathbb{N}$, as well as finite number of Σ groups
- Subgroups of U(3) such as $\Sigma(81)$ and subgroups of the listed groups such as $T_7 \cong Z_7 \rtimes Z_3 \subset \Delta(147)$

TB Mixing from Non-Trivial A₄ Breaking (Altarelli/Feruglio ('05), de Medeiros Varzielas et al. ('05), He et al. ('06))

- $G_F = A_4$ spontaneously broken at high energies
- Low energy effective theory: MSSM
- Breaking of G_F is induced by VEVs of flavon fields which are singlets under the SM gauge group
- (MS)SM fermions transform non-trivially under G_F
- MSSM Higgs doublets $h_{u,d}$ are singlets under G_F
- Elaborate construction of scalar sector needed to ensure vacuum alignment

Particle Content

	Y)	LEPTONS FLAVONS							
	θ	$\xi, ilde{\xi}$	$arphi_S$	$arphi_T$	$ au_L^c$	μ_L^c	e_L^c	L	Field
family dependent	1	1	3	3	1'	1''	1	3	A_4
family independent	1	ω	ω	1	ω^2	ω^2	ω^2	ω	Z_3
family dependent	-1	0	0	0	0	1	2	0	$U(1)_{FN}$

Additionally needed

- Z_3 symmetry to separate charged lepton and neutrino sector
- $U(1)_{FN}$ for hierarchy $m_e \ll m_\mu \ll m_\tau$

Group Theory of A_4

- The group A_4 is the symmetry group of a regular tetrahedron, group of even permutations of four objects
- Order of the group is 12
- Irred reps are 1, 1', 1'' and 3
- Kronecker products

 $1 \times \mu = \mu \quad \forall \quad \mu ,$ $1' \times 1' = 1'' , \quad 1'' \times 1'' = 1' , \quad 1' \times 1'' = 1$ $1 \times 3 = 1' \times 3 = 1'' \times 3 = 3$ $3 \times 3 = 1 + 1' + 1'' + 3 + 3$

Group Theory of A_4

- The group A_4 is the symmetry group of a regular tetrahedron, group of even permutations of four objects
- Order of the group is 12
- Irred reps are $1, 1^{\prime}, 1^{\prime\prime}$ and 3
- Generator relations $S^2 = 1$, $T^3 = 1$, $(ST)^3 = 1$

Fermion Masses at LO

Assume vacuum

$$G_S : \langle \varphi_S \rangle = (v_S, v_S, v_S) , \quad \langle \xi \rangle = u , \quad \langle \tilde{\xi} \rangle = 0 ,$$

$$G_T : \langle \varphi_T \rangle = (v_T, 0, 0) .$$

Charged lepton sector

$$\mathcal{M}_l = \frac{v_T}{\Lambda} v_d \operatorname{diag}\left(y_e \, \frac{\langle \theta \rangle^2}{\Lambda^2}, y_\mu \, \frac{\langle \theta \rangle}{\Lambda}, y_\tau\right)$$

• Neutrino sector

$$M_{\nu} = \frac{v_{u}^{2}}{\Lambda} \begin{pmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{pmatrix} \Rightarrow \boxed{\mathsf{TB mixing!}}$$
with $\frac{v_{u}^{2}}{\Lambda} \operatorname{diag}(a+b,a,-a+b) \text{ and } a = x_{a} \frac{u}{\Lambda}, b = x_{b} \frac{v_{S}}{\Lambda}$

Non-Trivial A₄ Breaking

Observation

 $\begin{array}{ll} \langle \varphi_{S} \rangle = (v_{S}, v_{S}, v_{S}) , \ \langle \boldsymbol{\xi} \rangle = u & \text{breaks} & A_{4} \to \boldsymbol{G}_{S} \cong Z_{2} & \text{in } \nu \text{ sector} \\ \langle \boldsymbol{\varphi}_{T} \rangle = (v_{T}, 0, 0) & \text{breaks} & A_{4} \to \boldsymbol{G}_{T} \cong Z_{3} & \text{in } l \text{ sector} \end{array}$

 A_4 completely broken in the whole theory

Non-Trivial A₄ **Breaking**
• **Observation**

$$\langle \varphi_S \rangle = (v_S, v_S, v_S), \langle \xi \rangle = u$$
 breaks $A_4 \to G_S \cong Z_2$ in ν sector
 $\langle \varphi_T \rangle = (v_T, 0, 0)$ breaks $A_4 \to G_T \cong Z_3$ in l sector
 A_4 completely broken in the whole theory
In detail: Z_2 symmetry is generated by the element S of A_4
Since for 1, 1' and 1" $S = 1$, VEV $\langle \xi \rangle$ preserves S .
For $\langle \varphi_S \rangle$ the vector has to fulfill
 $\langle \varphi_S \rangle \propto v_{+1}$ with $S v_{+1} = +1 v_{+1}$
i.e. $\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

•

• • • •

. .

• •

.

•

Non-Trivial A₄ Breaking
• Observation

$$\langle \varphi_S \rangle = (v_S, v_S, v_S), \langle \xi \rangle = u$$
 breaks $A_4 \to G_S \cong Z_2$ in ν sector
 $\langle \varphi_T \rangle = (v_T, 0, 0)$ breaks $A_4 \to G_T \cong Z_3$ in l sector
 A_4 completely broken in the whole theory
In detail: Z_3 symmetry is generated by the element T of A_4
For $\langle \varphi_T \rangle$ the vector has to fulfill
 $\langle \varphi_T \rangle \propto v_{+1}$ with $T v_{+1} = +1 v_{+1}$
i.e. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

• • •

. . .

•

Non-Trivial A₄ Breaking

Observation

 $\begin{array}{ll} \langle \varphi_{S} \rangle = (v_{S}, v_{S}, v_{S}) \ , \ \langle \xi \rangle = u & \text{breaks} & A_{4} \to G_{S} \cong Z_{2} & \text{in } \nu \text{ sector} \\ \langle \varphi_{T} \rangle = (v_{T}, 0, 0) & \text{breaks} & A_{4} \to G_{T} \cong Z_{3} & \text{in } l \text{ sector} \end{array}$

 A_4 completely broken in the whole theory

A_4	D_2	Z_3	Z_2
1	1	1	1
1′	1		1
1''	1		1
3		1 +	1 +

with 1 being a total singlet of the subgroup

Non-Trivial A₄ Breaking

Observation

 $\langle \varphi_S \rangle = (v_S, v_S, v_S), \ \langle \xi \rangle = u$ breaks $A_4 \to G_S \cong Z_2$ in ν sector $\langle \varphi_T \rangle = (v_T, 0, 0)$ breaks $A_4 \to G_T \cong Z_3$ in l sector A_4 completely broken in the whole theory

Mismatch of different subgroups generates non-trivial (large) mixing and even more predicts exact values of mixing angles (TB mixing) (independent of choice of parameters, apart from order of eigenvalues)

\Downarrow

Interpretation of Mixing

Note:

- In the T' extension of this model small quark mixings are explained
- through the breaking to the same subgroup in up and down quark

(Feruglio et al. ('07))

sector.
Is S₄ better for TB Mixing?

(Lam ('06,'07,'08))

- TB mixing only results from A_4 , if two flavons ξ' , ξ'' in 1' and 1'' are not present in the neutrino sector
- However: $\langle \xi' \rangle \neq 0$, $\langle \xi'' \rangle \neq 0$ leave $Z_2 \subset A_4$ invariant
- Matrix M_{ν}

$$M_{\nu} = \frac{v_u^2}{\Lambda} \begin{pmatrix} a + 2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a - b/3 \\ -b/3 & a - b/3 & 2b/3 \end{pmatrix}$$

is not only invariant under S

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad \text{i.e.} \quad S^T M_{\nu} S = M_{\nu}$$

Is S₄ better for TB Mixing?

- TB mixing only results from A_4 , if two flavons ξ' , ξ'' in 1' and 1'' are not present in the neutrino sector
- However: $\langle \xi' \rangle \neq 0$, $\langle \xi'' \rangle \neq 0$ leave $Z_2 \subset A_4$ invariant
- Matrix M_{ν}

$$M_{\nu} = \frac{v_u^2}{\Lambda} \begin{pmatrix} a + 2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a - b/3 \\ -b/3 & a - b/3 & 2b/3 \end{pmatrix}$$

but also under P_{23}

$$P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \text{i.e.} \quad P_{23}^T M_{\nu} P_{23} = M_{\nu}$$

Is S₄ better for TB Mixing?

- TB mixing only results from A_4 , if two flavons ξ' , ξ'' in 1' and 1'' are not present in the neutrino sector
- However: $\langle \xi' \rangle \neq 0$, $\langle \xi'' \rangle \neq 0$ leave $Z_2 \subset A_4$ invariant
- Matrix M_{ν} is invariant under S and P_{23}

```
\downarrow M_{\nu} \text{ is invariant under } Z_2 \times Z_2
But only S is an element of A_4 and not P_{23}
\downarrow \downarrow
The actual symmetry must be larger: S_4
S_4 \rightarrow Z_2 \times Z_2 in \nu sector
S_4 \rightarrow Z_3 in l sector
S_4 completely broken in the whole theory
```

Probably the best is $S_4 \times Z_3$ (H/Serone ('11)) **Problem:** Whether the charged lepton masses can still be *naturally* generated by, e.g. a $U(1)_{FN}$, is not obvious. $S_4 \times Z_3$ Solution: The additional Z_3 factor solves the problem of the charged lepton mass hierarchy, because now the S_4 breaking is $S_4 \times Z_3 \quad \rightarrow \quad Z_2 \times Z_2 \times Z_3 \quad \text{ in } \nu \text{ sector}$ $S_4 \times Z_3 \rightarrow Z_3^{(D)}$ in *l* sector $S_4 \times Z_3$ completely broken in the whole theory **Details**: Field L e_R au_R μ_R ν_R S_4 3 1 1 3 1 ω^2 Z_3 1 1 1 ω

 $S_4 imes Z_3 \ o \ Z_3^{(D)}$

• Take the generator T of S_4 for 3

$$T = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{array} \right)$$

and break it together with Z_3 to their diagonal subgroup $Z_3^{(D)}$

• Leptons transform under the remnant $Z_3^{(D)}$ as

$$L_1 \sim 1 \quad L_2 \sim \omega^2 \quad L_3 \sim \omega$$
$$e_R \sim 1 \quad \mu_R \sim \omega^2 \quad \tau_R \sim \omega$$

As consequence, the charged lepton mass matrix is diagonal.

Should we throw this away in light of T2K?

- In all models TB mixing holds only at LO and gets corrected
- For protecting θ_{12} corrections should be $\delta \lesssim 0.05$
- In most models (but not all!) then also $\sin \theta_{13} \sim \delta \approx 0.05$.
- However, usually

$$\sin\theta_{13} \approx c \times \delta$$

with c a complex number. c largish still saves most models. Early exception: *Lin ('09)*

- If you do not like this, maybe you like models with bimaximal mixing at LO, because then $\delta \sim 0.2$ also for θ_{12} , but tricks needed for keeping $\delta_{\theta_{23}}$ smaller. (Altarelli/Feruglio/Merlo ('09), Meloni ('11))
- T2K signal has to be confirmed by others/more statistics!

It has been shown in a study on the general properties of dihedral groups used as flavor symmetries that in case of a non-trivial breaking one element of the mixing matrix is given only in terms of group theoretical quantities. *(Blum et al. ('07))*

The element of the mixing matrix $|V_{\alpha\beta}|$ is

$$|V_{\alpha\beta}| = \left|\cos\left(\frac{\pi \left(k_1 - k_2\right)j}{n}\right)\right|$$

for

n being the index of the dihedral group D_n

j being the index of the representation $\underline{2}_{\bm{j}}$ under which two of the three generations of left-handed fermion fields transform

 k_1 and k_2 being two integers which specify the different subgroups $Z_2 = \langle \mathbf{P} \mathbf{A}^{k_{1,2}} \rangle$ preserved in the two different sectors

Step 1:

Take a dihedral group D_n generated by A and B and break it to $Z_2 = \langle BA^{k_1} \rangle$ in fermion sector 1 and to $Z_2 = \langle BA^{k_2} \rangle$ in fermion sector 2 Step 2:

Assign left-handed fields $L \sim \underline{\mathbf{1}}_{\mathbf{S}} + \underline{\mathbf{2}}_{\mathbf{j}}$ and right-handed ones are either in singlet representations $L^c \sim \underline{\mathbf{1}}_{\mathbf{j}_p}$ or also $L^c \sim \underline{\mathbf{1}}_{\mathbf{l}} + \underline{\mathbf{2}}_{\mathbf{m}}$ Step 3:

Consider a generic model in which you have two sets of scalars Φ_1 and Φ_2 (for fermion sector 1 and sector 2) in all representations μ of D_n and allow non-zero VEVs only for those which leave invariant $Z_2 = \langle BA^{k_1} \rangle$ and $Z_2 = \langle BA^{k_2} \rangle$, respectively, i.e.

sector 1 : $D_n \xrightarrow{\langle \Phi_1 \rangle} Z_2 = \langle BA^{k_1} \rangle$

sector 2 : $D_n \stackrel{\langle \Phi_2 \rangle}{\longrightarrow} Z_2 = \langle \mathrm{BA}^{k_2} \rangle$

Step 4:

Mass matrices \mathcal{M}_i have the form (i = 1, 2)

$$\mathcal{M}_{i} = \begin{pmatrix} 0 & A_{i} & B_{i} \\ C_{i} & D_{i} & E_{i} \\ -C_{i} \mathrm{e}^{-i\varphi_{i}\mathrm{j}} & D_{i} \mathrm{e}^{-i\varphi_{i}\mathrm{j}} & E_{i} \mathrm{e}^{-i\varphi_{i}\mathrm{j}} \end{pmatrix} \text{ with } \varphi_{i} = \frac{2\pi k_{i}}{n}$$

Step 4:

Mass matrices \mathcal{M}_i have the form (i = 1, 2)

or
$$\mathcal{M}_{i} = \begin{pmatrix} A_{i} & C_{i} & C_{i}e^{-i\varphi_{i}m} \\ B_{i} & D_{i} & E_{i} \\ B_{i}e^{-i\varphi_{i}j} & E_{i}e^{-i\varphi_{i}(j-m)} & D_{i}e^{-i\varphi_{i}(j+m)} \end{pmatrix}$$
 with $\varphi_{i} = \frac{2\pi k_{i}}{n}$

Step 4:

Mass matrices \mathcal{M}_i have the form (i = 1, 2)

or $\mathcal{M}_i = \begin{pmatrix} A_i & C_i & C_i e^{-i\varphi_i m} \\ B_i & D_i & E_i \\ B_i e^{-i\varphi_i j} & E_i e^{-i\varphi_i (j-m)} & D_i e^{-i\varphi_i (j+m)} \end{pmatrix}$ with $\varphi_i = \frac{2\pi k_i}{n}$

Step 5:

Such matrices have $\mathcal{M}_i \mathcal{M}_i^\dagger$ of the form

$$\mathcal{M}_{i}\mathcal{M}_{i}^{\dagger} = \begin{pmatrix} a_{i} & b_{i}\mathrm{e}^{i\zeta_{i}} & b_{i}\mathrm{e}^{i(\zeta_{i}+\varphi_{i}\mathbf{j})} \\ b_{i}\mathrm{e}^{-i\zeta_{i}} & c_{i} & d_{i}\mathrm{e}^{i\varphi_{i}\mathbf{j}} \\ b_{i}\mathrm{e}^{-i(\zeta_{i}+\varphi_{i}\mathbf{j})} & d_{i}\mathrm{e}^{-i\varphi_{i}\mathbf{j}} & c_{i} \end{pmatrix}$$

Step 6:

Mixing matrices U_i are

$$U_{i} = \begin{pmatrix} 0 & \cos \theta_{i} e^{i\zeta_{i}} & \sin \theta_{i} e^{i\zeta_{i}} \\ -\frac{1}{\sqrt{2}} e^{i\varphi_{i}j} & -\frac{\sin \theta_{i}}{\sqrt{2}} & \frac{\cos \theta_{i}}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{\sin \theta_{i}}{\sqrt{2}} e^{-i\varphi_{i}j} & \frac{\cos \theta_{i}}{\sqrt{2}} e^{-i\varphi_{i}j} \end{pmatrix} \text{ with } \varphi_{i} = \frac{2\pi k_{i}}{n}$$

Step 7:

Physical mixings arise from $V = U_1^t U_2^*$. You can check that one element is of the form

$$|V_{\alpha\beta}| = \frac{1}{2} \left| 1 + e^{i(\varphi_1 - \varphi_2)j} \right| = \left| \cos\left((\varphi_1 - \varphi_2)\frac{j}{2} \right) \right| = \left| \cos\left(\frac{\pi \left(k_1 - k_2 \right)j}{n} \right) \right|$$

Rest of elements depends also on $\theta_{1,2}$ and $\zeta_{1,2}$.

D_4 Model for μau Symmetry

(H/Ziegler ('10))

It has been shown in a study on the general properties of dihedral groups used as flavor symmetries that in case of a non-trivial breaking one element of the mixing matrix is given only in terms of group theoretical quantities.

In this model this is true for the PMNS matrix element $|U_{\mu3}|$ which is

$$|U_{\mu3}| = \left|\cos\left(\frac{\pi\left((0,2) - (1,3)\right)1}{4}\right)\right| = \left|\cos\left(\frac{\pi}{4}\right)\right| = 1/\sqrt{2}$$

n = 4, since G_F contains D_4

j = 1, since $L_D \sim \underline{2}$

 $k_1 = 0, 2$: $Z_2 = \langle B \rangle$ or $Z_2 = \langle B A^2 \rangle$ in neutrino sector

 $k_2 = 1, 3$: $Z_2 = \langle B A \rangle$ or $Z_2 = \langle B A^3 \rangle$ in charged lepton sector

D_{14} Model: Idea of the Prediction

(Blum/H ('09))

It has been shown in a study on the general properties of dihedral groups used as flavor symmetries that in case of a non-trivial breaking one element of the mixing matrix is given only in terms of group theoretical quantities.

In this model this is true for the CKM matrix element $|V_{ud}|$ which is

$$|V_{ud}| = \left|\cos\left(\frac{\pi\left(0-1\right)1}{14}\right)\right| = \left|\cos\left(\frac{\pi}{14}\right)\right| \approx 0.97493$$

for

n = 14, since G_F contains D_{14}

 $\mathbf{j} = \mathbf{1}$, since $Q_D \sim \mathbf{\underline{2}_1}$

 $k_1 = 0$ and $k_2 = 1$ or $k_2 = 13$ so that $Z_2 = \langle B \rangle$ is conserved in the up and $Z_2 = \langle B A \rangle$ or $Z_2 = \langle B A^{13} \rangle$ in the down quark sector

Group Theory of D_{14}

- D₁₄ belongs to the dihedral groups and is the symmetry group of a regular planar 14-gon
- Its order is 28, i.e. it has 28 distinct elements
- It has 4 + 6 real irred. reps., $\underline{1}_i$, i = 1, ..., 4 and $\underline{2}_i$, j = 1, ..., 6
- Generator relations of D₁₄

$$\mathbf{A}^{14} = \mathbb{1} \ , \ \mathbf{B}^2 = \mathbb{1} \ , \ \mathbf{A} \mathbf{B} \mathbf{A} = \mathbf{B}$$

Generators

 $\begin{array}{rll} \underline{1}_{1} & : & A = 1 , & B = 1 \\ \underline{1}_{2} & : & A = 1 , & B = -1 \\ \underline{1}_{3} & : & A = -1 , & B = 1 \\ \underline{1}_{4} & : & A = -1 , & B = -1 \end{array}$

Group Theory of D_{14}

- D₁₄ belongs to the dihedral groups and is the symmetry group of a regular planar 14-gon
- Its order is 28, i.e. it has 28 distinct elements
- It has 4 + 6 real irred. reps., $\underline{1}_i$, i = 1, ..., 4 and $\underline{2}_i$, j = 1, ..., 6
- Generator relations of *D*₁₄

$$\mathbf{A}^{14} = \mathbb{1} \ , \ \mathbf{B}^2 = \mathbb{1} \ , \ \mathbf{A} \mathbf{B} \mathbf{A} = \mathbf{B}$$

Generators

$$A = \begin{pmatrix} e^{\left(\frac{\pi i}{7}\right)j} & 0\\ 0 & e^{-\left(\frac{\pi i}{7}\right)j} \end{pmatrix}, B = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, j = 1, ..., 6$$

Z_2 Subgroups of D_{14}

One type of Z_2 subgroup is generated by the element $B A^k$ with k = 0, ..., 13

 $\begin{array}{rcl} \mathbf{1_1} & : & \mathrm{B}\,\mathrm{A}^k = 1 & \sqrt{} \\ \mathbf{1_2} & : & \mathrm{B}\,\mathrm{A}^k = -1 & - \\ \mathbf{1_3} & : & \mathrm{B}\,\mathrm{A}^k = (-1)^k & \sqrt{} \text{ for } k \text{ even} \\ \mathbf{1_4} & : & \mathrm{B}\,\mathrm{A}^k = (-1)^{k+1} & \sqrt{} \text{ for } k \text{ odd} \end{array}$

Scalars $\varphi_{1,2}$ forming a $\underline{2}_i$ under D_{14} leave a Z_2 invariant, if

 $\begin{pmatrix} \langle \varphi_1 \rangle \\ \langle \varphi_2 \rangle \end{pmatrix} \propto \begin{pmatrix} e^{-\frac{\pi i \rfloor k}{7}} \\ 1 \end{pmatrix} \Rightarrow \begin{bmatrix} Z_2 \text{ group in up quark sector with } k_1 = 0 \\ \text{and in down quark sector with } k_2 \neq 0 \text{ odd} \end{bmatrix}$

D₁₄ Quark Model

- Flavor group $G_F = D_{14} \times Z_3 \times U(1)_{FN}$
- Framework: MSSM
- Quarks transform non-trivially under G_F
- MSSM Higgs doublets $h_{u,d}$ are singlets under G_F
- Necessity of gauge singlets (flavons) transforming under G_F

 $\{\psi^u_{1,2}, \chi^u_{1,2}, \xi^u_{1,2}, \eta^u\}$ and $\{\psi^d_{1,2}, \chi^d_{1,2}, \xi^d_{1,2}, \eta^d, \sigma\}$

- FN field θ is only charged under $U(1)_{FN}$
- Structure of Yukawa couplings

$$\frac{\theta^2}{\Lambda^4}(Q_D u^c \boldsymbol{\chi^u \xi^u}) h_u \quad \text{and} \quad \frac{1}{\Lambda}Q_3(b^c \eta^d) h_d$$

Field	Q_D	Q_3	u^c	c^{c}	t^c	d^c	s^c	b^c	$h_{u,d}$
D_{14}	<u>2</u> 1	<u>1</u> 1	<u>1</u> 4	<u>1</u> 3	<u>1</u> 1	<u>1</u> 3	<u>1</u> 1	<u>1</u> 4	<u>1</u> 1
Z_3	1	1	1	1	1	ω^2	ω^2	ω^2	1
$U(1)_{FN}$	0	0	2	0	0	1	1	0	0

Field	$\psi^u_{1,2}$	$\chi^u_{1,2}$	$\xi^u_{1,2}$	η^u	$\psi^d_{1,2}$	$\chi^d_{1,2}$	$\xi^d_{1,2}$	η^d	σ	θ
D_{14}	<u>2</u> 1	<u>2</u> 2	<u>2</u> 4	<u>1</u> 3	<u>2</u> 1	<u>2</u> 2	<u>2</u> 4	<u>1</u> 4	<u>1</u> 1	<u>1</u> 1
Z_3	1	1	1	1	ω	ω	ω	ω	ω	1
$U(1)_{FN}$	0	0	0	0	0	0	0	0	0	-1

Leading Order in Up Quark Sector

$$\begin{array}{c}
 & no \phi \\
 & (33) & Q_3 t^c h_u \\
\hline
 & 1 \phi \\
 & (13), (23) & \frac{1}{\Lambda} (Q_D \psi^u) t^c h_u \\
 & (32) & \frac{1}{\Lambda} Q_3 (c^c \eta^u) h_u \\
\hline
 & 2 \phi \\
 & (11), (21) & \frac{\theta^2}{\Lambda^4} (Q_D u^c \chi^u \xi^u) h_u + \frac{\theta^2}{\Lambda^4} (Q_D u^c (\xi^u)^2) h_u + \frac{\theta^2}{\Lambda^4} (Q_D \psi^u \eta^u u^c) h_u \\
 & (12), (22) & \frac{1}{\Lambda^2} (Q_D c^c \chi^u \xi^u) h_u + \frac{1}{\Lambda^2} (Q_D c^c (\xi^u)^2) h_u + \frac{1}{\Lambda^2} (Q_D \psi^u) (\eta^u c^c) h_u
\end{array}$$

.

• • • • • •

. •

. .

 Leading Order in Down Quark Sector

$$\begin{array}{c}
1\phi\\
(33) \quad \frac{1}{\Lambda}Q_3(b^c\eta^d)h_d\\
(32) \quad \frac{\theta}{\Lambda^2}Q_3s^c\sigma h_d\\
(12), (22) \quad \frac{\theta}{\Lambda^2}(Q_D\psi^d)s^ch_d
\end{array}$$

Vacuum Structure

Up quark sector $\langle \eta^u \rangle \neq 0$

$$\begin{pmatrix} \langle \psi_1^u \rangle \\ \langle \psi_2^u \rangle \end{pmatrix} = v^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \langle \chi_1^u \rangle \\ \langle \chi_2^u \rangle \end{pmatrix} = w^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \langle \xi_1^u \rangle \\ \langle \xi_2^u \rangle \end{pmatrix} = z^u \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Down quark sector $\langle \eta^d \rangle \neq 0$ and $\langle \sigma \rangle \neq 0$

$$\begin{pmatrix} \langle \psi_1^d \rangle \\ \langle \psi_2^d \rangle \end{pmatrix} = v^d \begin{pmatrix} e^{-\frac{\pi ik}{7}} \\ 1 \end{pmatrix}, \quad \begin{pmatrix} \langle \chi_1^d \rangle \\ \langle \chi_2^d \rangle \end{pmatrix} = w^d e^{\frac{\pi ik}{7}} \begin{pmatrix} e^{-\frac{2\pi ik}{7}} \\ 1 \end{pmatrix},$$
$$\begin{pmatrix} \langle \xi_1^d \rangle \\ \langle \xi_2^d \rangle \end{pmatrix} = z^d e^{\frac{2\pi ik}{7}} \begin{pmatrix} e^{-\frac{4\pi ik}{7}} \\ 1 \end{pmatrix}$$

Results for Quarks at Leading Order
Assume
$$\frac{\langle \Phi^{u} \rangle}{\Lambda} \approx \epsilon$$
, $\frac{\langle \Phi^{d} \rangle}{\Lambda} \approx \epsilon$, $t = \frac{\langle \theta \rangle}{\Lambda} \approx \epsilon \approx \lambda^{2} \approx 0.04$
then \mathcal{M}_{u} and \mathcal{M}_{d} read

$$\mathcal{M}_{u} = \begin{pmatrix} -\alpha_{1}^{u} t^{2} \epsilon^{2} & \alpha_{2}^{u} \epsilon^{2} & \alpha_{3}^{u} \epsilon \\ \alpha_{1}^{u} t^{2} \epsilon^{2} & \alpha_{2}^{u} \epsilon^{2} & \alpha_{3}^{u} \epsilon \\ 0 & \alpha_{4}^{u} \epsilon & y_{t} \end{pmatrix} \langle h_{u} \rangle$$

$$\mathcal{M}_{d} = \begin{pmatrix} 0 & \alpha_{1}^{d} t \epsilon & 0 \\ 0 & \alpha_{1}^{d} e^{-\pi i k/7} t \epsilon & 0 \\ 0 & \alpha_{2}^{d} t \epsilon & y_{b} \epsilon \end{pmatrix} \langle h_{d} \rangle$$

.

• •

•

.

•••

•

Results for Quarks at Leading OrderQuark Masses
$$m_u^2: m_c^2: m_t^2 \sim \epsilon^8: \epsilon^4: 1, m_d^2: m_s^2: m_b^2 \sim 0: \epsilon^2: 1, m_b^2: m_t^2 \sim \epsilon^2: 1$$
 for small $\tan \beta$ CKM matrix $|V_{CKM}| = \begin{pmatrix} |\cos(\frac{k\pi}{14})| & |\sin(\frac{k\pi}{14})| & 0\\ |\sin(\frac{k\pi}{14})| & |\cos(\frac{k\pi}{14})| & 0\\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & \mathcal{O}(\epsilon^4) & \mathcal{O}(\epsilon^2)\\ \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon)\\ \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon^2) \end{pmatrix}$ \downarrow $k = 1$ or $k = 13$ leads to $|V_{ud}| \approx 0.97493$ Experimental value: $|V_{ud}|_{exp} = 0.97419^{+0.00022}_{-0.00022}$

• •

•

Completion: Add Leptons (H/Meloni (to appear))	
<u>Goals</u> :	
 Add leptons in minimal way 	
• Predict μau symmetry in the lepton sector	•
 Do not disturb quark sector 	
	•
	•
	•

Completion: Add Leptons (H/Meloni (to appear)) Goals : Add leptons in minimal way Predict $\mu\tau$ symmetry in the lepton sector Do not disturb quark sector **Solution** au^c Field ν_D^c L_1 L_D e^{c} μ^{c} ν_1^c $\chi^e_{1,2}$ D_{14} <u>1</u>2 <u>2</u>3 <u>2</u>2 <u>2</u>2 <u>1</u>3 <u>1</u>1 <u>1</u>1 <u>1</u>1 ω_7^2 ω_7^5 ω_7^5 Z_7 ω_7^5 ω_7^4 ω_7^4 1 1

Neutrino Sector

Dirac neutrino mass matrix

$$\frac{1 \phi}{12}, (13) \qquad \frac{1}{\Lambda} (L_1 \nu_D^c \boldsymbol{\xi^u}) h_u$$

$$21), (31) \qquad \frac{1}{\Lambda} (L_D \nu_1^c \boldsymbol{\chi^u}) h_u$$

$$23), (32) \qquad \frac{1}{\Lambda} (L_D \nu_D^c \boldsymbol{\psi^u}) h_u$$

leads to

$$\mathcal{M}_{\nu}^{D} = \begin{pmatrix} 0 & \alpha_{1}^{D} & \alpha_{1}^{D} \\ \alpha_{2}^{D} & 0 & \alpha_{3}^{D} \\ -\alpha_{2}^{D} & \alpha_{3}^{D} & 0 \end{pmatrix} \epsilon \langle h_{u} \rangle$$

Neutrino Sector

Light neutrino mass matrix

$$\mathcal{M}_{\nu} = \begin{pmatrix} 2x^2/v & x & x \\ x & z & v-z \\ x & v-z & z \end{pmatrix} \epsilon \langle h_u \rangle^2 / \Lambda$$

• $\mu\tau$ symmetric neutrino mixing

- θ_{12}^{ν} is given by $\tan(\theta_{12}^{\nu}) = \sqrt{2} \left| \frac{x}{v} \right|$
- Normal ordering with $m_1 = 0$ is predicted and

$$m_2^2 = \frac{(|v|^2 + 2|x|^2)^2}{|v|^2} \left(\frac{\epsilon \langle h_u \rangle^2}{\Lambda}\right)^2 \quad , \quad m_3^2 = |v - 2z|^2 \left(\frac{\epsilon \langle h_u \rangle^2}{\Lambda}\right)^2$$

• Additional relation $|m_{ee}| = m_2 \sin^2(\theta_{12}^{\nu}) = \sqrt{\delta m^2} \sin^2(\theta_{12}^{\nu})$

Charged Lepton Sector

Alignment of new flavon $\chi^e_{1,2}$

$$\left(\begin{array}{c} \langle \chi_1^e \rangle \\ \langle \chi_2^e \rangle \end{array}\right) = v^e \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$$

for which just one additional driving field σ^{0e} is needed

$$w_{f,l} = a_l \,\sigma^{0e} \,\chi_1^e \,\chi_2^e$$

Nota bene: Also this alignment preserves a Z_2 subgroup of D_{14} , because $\underline{2}_2$ is unfaithful.

Yukawa Operators for Charged Leptons 1ϕ $(3\alpha) \qquad \frac{1}{\Lambda} (L_D \chi^e) \, \alpha^c \, h_d$ 2ϕ $(2\alpha) \qquad \frac{1}{\Lambda^2} (L_D \chi^e \boldsymbol{\xi^u}) \, \alpha^c \, h_d$ 3ϕ (1 α) $\frac{1}{\Lambda^3} (L_1 \chi^e \psi^u \xi^u) \alpha^c h_d$ $(1\alpha) \qquad \frac{1}{\Lambda^3} (L_1 \eta^u) (\chi^e \chi^u) \alpha^c h_d$

Charged Lepton Mass Matrix

For $\frac{v^e}{\Lambda} \approx \epsilon \approx \lambda^2$ we get

$$\mathcal{M}_{e} = \begin{pmatrix} \alpha_{1}^{e} \epsilon^{3} & \alpha_{2}^{e} \epsilon^{3} & \alpha_{3}^{e} \epsilon^{3} \\ \alpha_{4}^{e} \epsilon^{2} & \alpha_{5}^{e} \epsilon^{2} & \alpha_{6}^{e} \epsilon^{2} \\ \alpha_{7}^{e} \epsilon & \alpha_{8}^{e} \epsilon & \alpha_{9}^{e} \epsilon \end{pmatrix} \langle h_{d} \rangle$$

- Charged lepton masses $m_e: m_\mu: m_\tau \sim \epsilon^2: \epsilon: 1$
- Charged lepton mixing angles $\theta_{12}^e \sim \epsilon$, $\theta_{13}^e \sim \epsilon^2$, $\theta_{23}^e \sim \epsilon$

Lepton mixings are nearly $\mu\tau$ symmetric

$$\sin^2(\theta_{23}^l) = \frac{1}{2} + \mathcal{O}(\epsilon) , \ \sin(\theta_{13}^l) = \mathcal{O}(\epsilon) , \ \sin^2(\theta_{12}^l) = \mathcal{O}(1)$$
Conclusions

- There are many hints at a flavor symmetry: existence of three generations, fermion mass hierarchies, mixing patterns, no excessive flavor violation observed
- Discrete symmetries are very useful to understand fermion mixing, especially if non-trivially broken in different sectors of the theory
- Impact of T2K?! ... one might argue that many mixing patterns/models are now disfavored
 - ... but: in all models corrections exist,

T2K results need to be confirmed by others/more statistics

• Still we should search for new symmetries giving easily rise to $\theta_{13} \neq 0$ at LO, not giving up the non-trivial breaking pattern of the flavor group!

