Different SO(10) **Paths to Fermion Masses** and **Mixings**

Based on: G.Altarelli, G.B. JHEP 1103:133,2011

Gianluca Blankenburg

Università degli Studi Roma Tre

FLASY 2011 - Valencia 11 - 14 July 2011

• □ > • □ > • □ > • □ > • □ > •

Outline

- Masses and mixings
 - Flavour structures
 - Neutrino sector

2 GUT

- SU(5)
- SO(10)
- A possible SO(10) strategyA class of models
 - Compared fit

伺下 イヨト イヨト

Flavour structures Neutrino sector

Beyond the Standard Model

Standard Model

$$\left(\overline{\psi}_{u}^{i}Y_{u}^{ij}\psi_{u}^{j} + \overline{\psi}_{d}^{i}Y_{d}^{ij}\psi_{d}^{j} + \overline{\psi}_{e}^{i}Y_{e}^{ij}\psi_{e}^{j}\right)\frac{\nu}{\sqrt{2}}$$
(1)

 $Y_{u,d,l}^{ij}$ are completely **free parameters** \rightarrow masses and mixings are not theoretically motivated Neutrino are massless

FLA vour SY mmetry \rightarrow a more foundamental theory explaining these patterns

Grand Unified Theory $\overline{\psi}_{\nu L}^{c \, i} g_{\nu}^{i j} \psi_{\nu L}^{j} \frac{\nu^{2}}{2\Lambda}$ (2) Neutrino masses point to a lepton number violating scale close to M_{GUT} where lepton number is naturally violated !!!

Flavour structures Neutrino sector

The observed flavour structures (May '11)

$$|V_{\rm CKM}| \sim \begin{pmatrix} 1 & 0.2 & 0.001\\ 0.2 & 1 & 0.01\\ 0.001 & 0.01 & 1 \end{pmatrix} \qquad |U_{\rm PMNS}| \sim \begin{pmatrix} 0.8 & 0.5 < 0.2\\ 0.4 & 0.6 & 0.7\\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

De Gouvea '08

イロト イポト イヨト イヨト

Flavour structures Neutrino sector

Possible patterns for leptons

The observed lepton mixings can be well reproduced with special and easy structures, including:

Tri-Bimaximal mixing

$$V_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

In charged leptons diagonal basis

$$m_{TBM} = \left(\begin{array}{ccc} f_2 & f_1 & f_1 \\ f_1 & f_2 + f_0 & f_1 - f_0 \\ f_1 & f_1 - f_0 & f_2 + f_0 \end{array} \right)$$

Usually $O(\theta_C^2)$ corrections from charged leptons

Bimaximal r	nixing		
$V_{BM} =$	$ \left(\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}\right) $	$-\frac{1}{\sqrt{2}}$ $\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{pmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$

In charged leptons diagonal basis

$$\mathfrak{m}_{BM} = \left(\begin{array}{ccc} f_2 & f_1 & f_1 \\ f_1 & f_0 & f_2 - f_0 \\ f_1 & f_2 - f_0 & f_0 \end{array} \right)$$

 $\begin{array}{ll} \mbox{Complementarity:} & \theta_C + \theta_{12} \sim \pi/4 \\ \rightarrow O(\theta_C) \mbox{ corrections} \end{array}$

Flavour structures Neutrino sector

Descrete symmetries

 m_{TB} and m_{BM} are symmetric under $m_{TB} = A_{23}^{T} m_{TB} A_{23}, \qquad m_{TB} = S_{TB}^{T} m_{TB} S_{TB}, \qquad m_{L} = T_{TB}^{T} m_{L} T_{TB}$ $A_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_{TB} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T_{TB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}$ $\mathfrak{m}_{BM} = A_{23}^{T}\mathfrak{m}_{BM}A_{23}, \qquad \mathfrak{m}_{BM} = S_{BM}^{T}\mathfrak{m}_{BM}S_{BM}, \qquad \mathfrak{m}_{l} = T_{BM}^{T}\mathfrak{m}_{l}T_{BM}$ $S_{BM} = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}, \quad T_{BM} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & i \end{pmatrix}$

If TB or BM are relevants the neutrino sector points to a **discrete flavour symmetry**, such as S_3 , A_4 , S_4 , T', ...

Then we have to **spontaneously break** the discrete group in the subgroups A_{23} , S in the neutrino sector and T in the lepton sector

SU(5) SO(10

Flavour in SU(5)

Matter content

$$d^{c}, e, \nu_{e} \supset \overline{5} \qquad u, u^{c}, d, e^{c} \supset 10 \qquad \nu_{e}^{c} \supset 1$$
(3)

Mass terms: minimal version

$$\overline{5}10\overline{5}_{H} + 10105_{H}$$
 (4)

next to minimal

$$\overline{5} 10 \overline{45}_{H} + 10 10 45_{H}$$
 (5)

Flavour relations at MGUT

$$M_5^e = M_5^{dT} \qquad M_{45}^e = -3M_{45}^{dT}$$
 (6)

How to obtain TB in SU(5)?

In general different discrete group representations for $\overline{5}$, 10 and 1 For example: $(SU(5), A_4) = (\overline{5}, 3), (10_1, 1''), (10_2, 1'), (10_3, 1), (1, 3)$ Altarelli, Feruglio, Hagedron '08

SU(5) SO(10)

Flavour in SO(10)

All the SM particle + ν_R for each family in **one irreduceble representation**

$$16 \supset \overline{5} + 10 + 1 \tag{7}$$

Mass term in SO(10)

$$16 \times 16 = 10 + 126 + 120 \tag{8}$$

(10 and 126 symmetric, 120 antisymmetric)

$$W_{\rm Y} = h \psi \psi 10_{\rm H} + f \psi \psi \overline{126}_{\rm H} + h' \psi \psi 120_{\rm H}$$
(9)

To avoid large Higgs representations one can consider the above couplings as effective, ie coming from **higher order operators** as

$$10 \times 45 = 10 + 120 + 320 \tag{10}$$

$$16_{\rm H} \times 16_{\rm H} = 10 + 126 + 120 \tag{11}$$

Neutrino masses are naturally generated (v_R is not a singlet)

See-saw 2 dominance

In a general **renormalizable** scheme, assuming two light Higgs doublets

$$Y_u = h + r_2 f + r_3 h'$$
 $Y_e = r_1 (h - 3f + c_e h')$ (12)

$$Y_d = r_1(h + f + h')$$
 $Y_{v^D} = h - 3r_2f + c_vh'$ (13)

In the $\overline{126}$ both the SM singlet (ν_R) and the $SU(2)_L$ triplet (ν_L) can get vev \rightarrow type-1 +type-2 see-saw (Dutta, Mimura, Mohapatra '10)

$$m_{\nu} = f\nu_{L} - M_{D} \frac{1}{f\nu_{R}} M_{D}^{T} \simeq f\nu_{L} \qquad \begin{array}{c} \nu_{L}: \text{ vev of triplet in } \overline{126}_{H} \\ \nu_{R}: \text{ Majorana mass for } \nu_{R} \end{array}$$
(14)

assuming type 2 see-saw dominance (... Melfo '10)

In this way it possible to partially **disentangle neutrino and quark** sectors

イロト イポト イヨト イヨト

Quarks, charged leptons and TB neutrinos

Taking f in the TB form, h dominantly 33 and hermitian matrices (see below) we get

- quark sector:
 - heavy third generation masses from Y
 - small first and second generations masses and small CKM from h_{ij}, f, h'
- lepton sector:
 - \mathfrak{m}_{ν} TB from f
 - corrections to TB from charged leptons mixing

We assume an underlaying parity symmetry (Dutta '04)

- hermitian matrices \rightarrow less parameters
- the fit is still very good

 $h = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{12} & h_{22} & h_{23} \\ h_{13} & h_{23} & Y \end{pmatrix}$ $f = \begin{pmatrix} f_2 & f_1 & f_1 \\ f_1 & f_2 + f_0 & f_1 - f_0 \\ f_1 & f_1 - f_0 & f_2 + f_0 \end{pmatrix}$ $h' = i \begin{pmatrix} 0 & \sigma_{12} & \sigma_{13} \\ -\sigma_{12} & 0 & \sigma_{23} \\ -\sigma_{13} & -\sigma_{23} & 0 \end{pmatrix}$

TB, BM and general matrices

Note that we can always go to a basis where f is TB

$$f_{TB} = V_{TB}^* f'_{diag} V_{TB}^{\dagger} = V_{TB}^* V^T f' V V_{TB}^{\dagger}$$
(15)

rotating the 16 of fermions

- In the same way also f BM or with other structures with three free parameters in m_ν can be obtained by a rotation
- ► TB, BM, ... correspond to the **same fit** analysis

This analysis is **general** for SO(10) with 10_H , 120_H and $\overline{126}_H$ and type 2 see-saw dominance

• □ > • □ > • □ > • □ > • □ >

A class of models Compared fit

Fit results

We fitted the model on fermion masses and mixing angles evolved at the high scale M_{GUT}

Observable	Best fit value
$m_u[MeV]$	0.553
$m_c[MeV]$	210
$m_t[GeV]$	82.6
$m_d[MeV]$	1.15
$m_s[MeV]$	22.4
$m_b[GeV]$	1.08
$m_e[MeV]$	0.3585
$m_{\mu}[MeV]$	75.67
$m_{\tau}[GeV]$	1.292
Vus	0.224
Vcb	0.0351
Vub	0.00320
$J \times 10^{-5}$	2.19
$\Delta m_{21}^2 \times 10^{-5} [eV^2]$	7.65
$\Delta m_{32}^2 \times 10^{-3} [eV^2]$	2.40
$sin^2\theta_{13}$	0.0126
$sin^2\theta_{12}$	0.305
$sin^2\theta_{23}$	0.499
χ^2 quark	0.0959
χ^2 charged fermions	0.0959
χ^2 neutrino	0.0316
χ^2 totale	0.127
χ^2/dof totale	0.127
d_{FT}	469777

Parameter	Best fit value
$h_{11}v_u[GeV]$	0.808
$h_{12}v_u[GeV]$	1.17
$h_{13}v_u[GeV]$	6.06
$h_{22}v_u[GeV]$	5.37
$h_{23}v_u[GeV]$	5.64
$Yv_u[GeV]$	85.0
$f_0 v_u [GeV]$	-2.20
$f_1v_u[GeV]$	-0.276
$f_2 v_u [GeV]$	-0.228
$\sigma_{12}v_u[GeV]$	-0.270
$\sigma_{13}v_u[GeV]$	2.27
$\sigma_{23}v_u[GeV]$	6.37
$r_1 / \tan \beta$	0.0129
r_2	1.66
r_3	0.612
Ce	3.85
$v_L / v_u \times 10^{-9}$	0.0112

イロト イヨト イヨト イヨト

3

Comparation with other models

Comparing with other **realistic SO(10) models** without TB, on the same set of data

Model	d.o.f.	χ^2	$\chi^2/d.o.f.$	d_{FT}	d_{Data}
DR [14]	4	0.41	0.10	$7.0 \ 10^3$	$1.3 \ 10^3$
ABB [16–18]	6	2.8	0.47	$8.1 \ 10^3$	$3.8 \ 10^3$
JLM [19]	4	2.9	0.74	$9.4 \ 10^3$	$3.8 \ 10^3$
BSV [33]	< 0	6.9	-	$2.0 \ 10^5$	$3.8 \ 10^3$
JK2 [38]	3	3.4	1.1	$4.7 \ 10^5$	$3.8 \ 10^3$
GK [40]	0	0.15	-	$1.5 \ 10^5$	$3.8 \ 10^3$
T-IID	1	0.13	0.13	$4.7 \ 10^5$	$3.8 \ 10^3$

Degree of fine-tuning $\rightarrow d_{FT} = \sum \mid \frac{p \, a r_i}{e r r_i} \mid$

- DR: Dermisek, Raby '06
- ABB: Albright, Babu, Barr '01
- JLM: Ji, Li, Mohapatra '05
- ▶ BSV: Bajc, Senjanovic, Vissani '02
- JK2: Joshipura, Kodrani '09
- ▶ GK: Grimus, Kuhbock '06
- ► T-IID: this model

Excellent fit of this model but large fine-tuning

Why the fine-tuning? $f_1/f_0\sim \sqrt{r}$ gives m_{Igen}/m_{IIgen} and δTB too big without any cancellation

A class of models Compared fit

Latest news (June '11)

T2K and **MINOS** announced strong hints for $\theta_{13} \neq 0$ in the neutrino sector

 $\begin{array}{rrrr} {\sf T2K} & \to & 0.03(0.04) < {sin}^2 2 \theta_{13} < 0.28(0.34) & \mbox{at } 90\% \mbox{ C.L.(16)} \\ {\sf MINOS} & \to & 0 < 2 {sin}^2 2 \theta_{13} {sin}^2 \theta_{23} < 0.12(0.19) & \mbox{at } 90\% \mbox{ C.L.(17)} \end{array}$

New analysis performed on these new data

New analysis

We fitted the model T-IID on the new T2K data

ſ-IID) TB					
	Model	d.o.f.	χ^2	$\chi^2/d.o.f.$	d _{FT}	d _{Data}
	T-IID	1	0.13	0.13	3.4 10 ⁵	$3.8 \ 10^3$
	T-IID (old data)	1	0.13	0.13	$4.7 \ 10^5$	3.8 10 ³

\rightarrow very good fit again

We considered also the same model with f BM with the new data

T-IID E	3M						
	Model	d.o.f.	χ^2	$\chi^2/d.o.f.$	d _{FT}	d_{Data}	
	T-IID BM	1	0.13	0.13	$3.1\ 10^5$	3.8 10 ³	
\rightarrow consistency check (TB and BM differs by a 16 rotation \rightarrow same fit)							

Conclusions

- If TB (or BM ...) mixing is realized, the neutrino sector points to a discrete flavour group
- Quark sector is gerarchic and with no indication of such a discrete group
- ► Even if Grand Unified Theories connect the two sectors, it is possible to explain the two different patterns in a unified theory (SU(5) × A₄ for example)
- ► The case of SO(10) is more difficult → every particle of each family must be in the same flavour group rapresentation
- SO(10) + type-2 see-saw offers a viable solution but more work has to be done (ig Dutta, Mimura, Mohapatra '09)

THANK YOU FOR THE ATTENTION

• □ • • □ • • □ • • □ •

backup

New analysis results for T-IID TB

Observable	Best fit value
$m_u[MeV]$	0.551
$m_e[MeV]$	210
$m_{i}[GeV]$	82.5
$m_d[MeV]$	1.22
$m_s[MeV]$	21.4
$m_b[GeV]$	1.05
$m_{e}[MeV]$	0.3585
$m_{\mu}[MeV]$	75.67
$m_{\pi}[GeV]$	1.292
Vus	0.224
Vab	0.0351
Vub	0.00313
$J \times 10^{-5}$	2.34
$\Delta m_{21}^2 \times 10^{-5} [eV^2]$	7.65
$\Delta m_{32}^2 \times 10^{-3} [eV^2]$	2.40
$sin^2\theta_{13}$	0.0363
$sin^2\theta_{12}$	0.303
$sin^2\theta_{23}$	0.498
χ^2 quark	0.0921
χ^{2} charged fermions	0.0921
χ^2 neutrino	0.0360
χ^2 totale	0.128
χ^2/dof totale	0.128
dft	344802

Parameter	Best fit value
$h_{11}v_u[GeV]$	1.42
$h_{12}v_u[GeV]$	-0.723
$h_{13}v_u[GeV]$	-9.84
$h_{22}v_u[GeV]$	7.49
$h_{23}v_u[GeV]$	8.49
$Yv_u[GeV]$	82.9
$f_0 v_u [GeV]$	-3.04
$f_1v_a[GeV]$	-0.603
$f_2 v_u [GeV]$	0.0452
$\sigma_{12}v_u[GeV]$	1.43
$\sigma_{13}v_u[GeV]$	0.764
$\sigma_{23}v_u[GeV]$	9.88
$r_1/\tan\beta$	0.0125
r_2	1.55
r_3	0.751
C _c	3.08
$v_L/v_u \times 10^{-9}$	0.00909

イロト イヨト イヨト イヨト

æ

Compared fit

backup

New analysis results for T-IID BM

Observable	Best fit value
$m_u[MeV]$	0.550
$m_e[MeV]$	210
$m_t[GeV]$	81.6
$m_d[MeV]$	1.26
$m_s[MeV]$	21.7
$m_{\mathfrak{b}}[GeV]$	1.10
$m_{a}[MeV]$	0.3585
$m_{\mu}[MeV]$	75.67
$m_{\tau}[GeV]$	1.292
Vus	0.224
Vab	0.0351
Vus	0.00318
$J \times 10^{-8}$	2.31
$\Delta m_{21}^2 \times 10^{-5} [eV^2]$	7.65
$\Delta m_{32}^2 \times 10^{-3} [eV^2]$	2.40
$sin^2\theta_{13}$	0.0417
$sin^2\theta_{12}$	0.305
$sin^2\theta_{23}$	0.493
χ^2 quark	0.107
χ^2 charged fermions	0.107
χ^2 neutrino	0.0186
χ^2 totale	0.126
χ^2/dof totale	0.126
det	344802

Parameter	Best fit value
$h_{11}v_u[GeV]$	0.396
$h_{12}v_u[GeV]$	0.773
$h_{13}v_u[GeV]$	-1.67
$h_{22}v_{u}[GeV]$	5.99
$h_{23}v_u[GeV]$	7.19
$Yv_{u}[GeV]$	82.8
$f_0 v_u [GeV]$	-2.19
$f_1v_u[GeV]$	-0.598
$f_2 v_u [GeV]$	-0.164
$\sigma_{12}v_u[GeV]$	0.515
$\sigma_{13}v_u[GeV]$	1.76
$\sigma_{23}v_u[GeV]$	9.43
$r_1/\tan\beta$	0.0133
r_2	1.70
r3	0.747
Ce	2.66
$v_L/v_u \times 10^{-9}$	-0.0117

h	=	$\left(\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{12} & h_{22} & h_{23} \\ h_{13} & h_{23} & Y \end{array}\right)$
f	=	$\left(\begin{array}{ccc} f_2 & f_1 & f_1 \\ f_1 & f_2 + f_0 & f_1 - f_0 \\ f_1 & f_1 - f_0 & f_2 + f_0 \end{array}\right)$
h′	=	$i \begin{pmatrix} 0 & \sigma_{12} & \sigma_{13} \\ -\sigma_{12} & 0 & \sigma_{23} \\ -\sigma_{13} & -\sigma_{23} & 0 \end{pmatrix}$

イロト イヨト イヨト イヨト

æ

Different S O (10) Paths to Fermion Masses and Mixings

Gianluca Blankenburg

A class of models Compared fit

backup

Some analytic approximate relations for leptons

$$m_{\tau} \approx k[Y - 3(f_0 + f_2)] \qquad k = \frac{r_1 \nu_u}{\tan \beta}$$
(18)

$$m_{\mu} \approx k[h_{22} - 3(f_0 + f_2)] - m_{\tau} s_{23}^{e2}$$
 (19)

$$s_{23}^{e}e^{i\phi_{2}^{e}} \approx \frac{k}{m_{\tau}}[h_{23} + 3(f_{0} - f_{1}) + ic_{e}\sigma_{23}]$$
 (20)

$$s_{13}^{e}e^{i(\delta^{e}+\phi_{1}^{e}+\phi_{2}^{e})} \approx \frac{k}{m_{\tau}}[h_{13}-3f_{1}+ic_{e}\sigma_{13}]$$
 (21)

$$s_{12}^e \approx \sqrt{\frac{k}{m_{\mu}}(h_{11} - 3f_2) - \frac{m_{\tau}}{m_{\mu}}s_{13}^{e2}}$$
 (22)

$$(\mathfrak{m}_{\mu}\mathfrak{s}_{12}^{e} + \mathfrak{m}_{\tau}\mathfrak{s}_{13}^{e}\mathfrak{s}_{23}^{e}e^{i\delta^{e}})e^{i\phi_{1}^{e}} \approx k(\mathfrak{h}_{12} - 3\mathfrak{f}_{1} + i\mathfrak{c}_{e}\sigma_{12})$$
(23)

$$U_{12} \approx \frac{1}{\sqrt{3}} (1 - s_{12}^{e} e^{i\Phi_{1}^{e}} - s_{13}^{e} e^{i(\delta^{e} + \Phi_{1}^{e} + \Phi_{2}^{e})})$$
(24)

$$U_{13} \approx \frac{1}{\sqrt{2}} (s_{12}^e - s_{13}^e e^{i(\delta^e + \Phi_2^e)})$$
(25)

$$U_{23} \approx \frac{-1}{\sqrt{2}} (1 + s_{23}^{e} e^{i\Phi_{2}^{e}})$$