Different $\mathrm{SO}(10)$ Paths to Fermion Masses and Mixings
 Based on: G.Altarelli, G.B. JHEP 1103:133,2011

Gianluca Blankenburg

Università degli Studi Roma Tre

FLASY 2011 - Valencia 11-14 July 2011

Outline

(1) Masses and mixings

- Flavour structures
- Neutrino sector
(2) GUT
- SU(5)
- $\mathrm{SO}(10)$
(3) A possible $\mathrm{SO}(10)$ strategy
- A class of models
- Compared fit

Beyond the Standard Model

Standard Model

$$
\begin{equation*}
\left(\bar{\psi}_{u}^{i} Y_{u}^{i j} \psi_{u}^{j}+\bar{\psi}_{d}^{i} Y_{d}^{i j} \psi_{d}^{j}+\bar{\psi}_{e}^{i} Y_{e}^{i j} \psi_{e}^{j}\right) \frac{v}{\sqrt{2}} \tag{1}
\end{equation*}
$$

$Y_{u, \mathrm{~d}, \mathrm{l}}^{i j}$ are completely free parameters \rightarrow masses and mixings are not theoretically motivated
Neutrino are massless
FLAvour SYmmetry \rightarrow a more foundamental theory explaining these patterns

Grand Unified Theory

$$
\begin{equation*}
\bar{\psi}_{v \mathrm{~L}}^{c i} \mathrm{~g}_{v}^{i j} \psi_{v \mathrm{~L}}^{\mathrm{j}} \frac{v^{2}}{2 \Lambda} \tag{2}
\end{equation*}
$$

Neutrino masses point to a lepton number violating scale close to $M_{\text {Gut }}$ where lepton number is naturally violated !!!

The observed flavour structures (May '11)

$$
\left|V_{\text {CKM }}\right| \sim\left(\begin{array}{ccc}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{array}\right) \quad\left|U_{\text {PMNS }}\right| \sim\left(\begin{array}{ccc}
0.8 & 0.5 & <0.2 \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{array}\right)
$$

De Gouvea '08

Possible patterns for leptons

The observed lepton mixings can be well reproduced with special and easy structures, including:

Tri-Bimaximal mixing

$$
V_{T B M}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

In charged leptons diagonal basis

$$
m_{\text {TBM }}=\left(\begin{array}{ccc}
f_{2} & f_{1} & f_{1} \\
f_{1} & f_{2}+f_{0} & f_{1}-f_{0} \\
f_{1} & f_{1}-f_{0} & f_{2}+f_{0}
\end{array}\right)
$$

Usually $\mathrm{O}\left(\theta_{\mathrm{C}}^{2}\right)$ corrections from charged leptons

Bimaximal mixing

$$
V_{B M}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

In charged leptons diagonal basis

$$
m_{B M}=\left(\begin{array}{ccc}
f_{2} & f_{1} & f_{1} \\
f_{1} & f_{0} & f_{2}-f_{0} \\
f_{1} & f_{2}-f_{0} & f_{0}
\end{array}\right)
$$

Complementarity: $\quad \theta_{\mathrm{C}}+\theta_{12} \sim \pi / 4$
$\rightarrow \mathrm{O}\left(\theta_{\mathrm{C}}\right)$ corrections

Descrete symmetries

$m_{T B}$ and $m_{B M}$ are symmetric under

$$
\begin{aligned}
& m_{T B}=A_{23}^{\top} m_{T B} A_{23}, \quad m_{T B}=S_{T B}^{\top} m_{T B} S_{T B}, \quad m_{l}=T_{T B}^{\top} m_{l} T_{T B} \\
& A_{23}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{\mathrm{TB}}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad \mathrm{T}_{\mathrm{TB}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \\
& m_{B M}=A_{23}^{\top} m_{B M} A_{23}, \quad m_{B M}=S_{B M}^{\top} m_{B M} S_{B M}, \quad m_{l}=T_{B M}^{\top} m_{l} T_{B M} \\
& S_{B M}=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad T_{B M}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\mathfrak{i} & 0 \\
0 & 0 & \mathfrak{i}
\end{array}\right)
\end{aligned}
$$

If TB or BM are relevants the neutrino sector points to a discrete flavour symmetry, such as $S_{3}, A_{4}, S_{4}, T^{\prime}, \ldots$

Then we have to spontaneously break the discrete group in the subgroups A_{23}, S in the neutrino sector and T in the lepton sector

Flavour in SU(5)

Matter content

$$
\begin{equation*}
d^{c}, e, v_{e} \supset \overline{5} \quad u, u^{c}, d, e^{c} \supset 10 \quad v_{e}^{c} \supset 1 \tag{3}
\end{equation*}
$$

Mass terms: minimal version

$$
\begin{equation*}
\overline{5} 10 \overline{5}_{\mathrm{H}}+10105_{\mathrm{H}} \tag{4}
\end{equation*}
$$

next to minimal

$$
\begin{equation*}
\overline{5} 10 \overline{45}_{\mathrm{H}}+101045_{\mathrm{H}} \tag{5}
\end{equation*}
$$

Flavour relations at $M_{G U T}$

$$
\begin{equation*}
M_{5}^{e}=M_{5}^{\mathrm{dT}} \quad M_{45}^{e}=-3 M_{45}^{\mathrm{dT}} \tag{6}
\end{equation*}
$$

How to obtain TB in $\mathrm{SU}(5)$?

In general different discrete group representations for $\overline{5}, 10$ and 1
For example: $\left(\operatorname{SU}(5), A_{4}\right)=(\overline{5}, 3),\left(10_{1}, 1^{\prime \prime}\right),\left(10_{2}, 1^{\prime}\right),\left(10_{3}, 1\right),(1,3)$
Altarelli, Feruglio, Hagedron '08

Flavour in SO (10)

All the SM particle $+\nu_{R}$ for each family in one irreduceble representation

$$
\begin{equation*}
16 \supset \overline{5}+10+1 \tag{7}
\end{equation*}
$$

Mass term in SO (10)

$$
\begin{equation*}
16 \times 16=10+126+120 \tag{8}
\end{equation*}
$$

(10 and 126 symmetric, 120 antisymmetric)

$$
\begin{equation*}
W_{Y}=h \psi \psi 10_{\mathrm{H}}+\mathrm{f} \psi \psi \overline{126}_{\mathrm{H}}+\mathrm{h}^{\prime} \psi \psi 120_{\mathrm{H}} \tag{9}
\end{equation*}
$$

To avoid large Higgs representations one can consider the above couplings as effective, ie coming from higher order operators as

$$
\begin{align*}
10 \times 45 & =10+120+320 \tag{10}\\
16_{\mathrm{H}} \times 16_{\mathrm{H}} & =10+126+120 \tag{11}
\end{align*}
$$

Neutrino masses are naturally generated (v_{R} is not a singlet)

See-saw 2 dominance

In a general renormalizable scheme, assuming two light Higgs doublets

$$
\begin{array}{ll}
Y_{u}=h+r_{2} f+r_{3} h^{\prime} & Y_{e}=r_{1}\left(h-3 f+c_{e} h^{\prime}\right) \\
Y_{d}=r_{1}\left(h+f+h^{\prime}\right) & Y_{v D}=h-3 r_{2} f+c_{v} h^{\prime} \tag{13}
\end{array}
$$

In the $\overline{126}$ both the SM singlet $\left(v_{\mathrm{R}}\right)$ and the $\mathrm{SU}(2)_{\mathrm{L}}$ triplet $\left(v_{\mathrm{L}}\right)$ can get vev \rightarrow type- 1 +type-2 see-saw (Dutta, Mimura, Mohapatra '10)

$$
m_{v}=f v_{L}-M_{D} \frac{1}{f v_{R}} M_{D}^{T} \simeq f v_{L} \quad \begin{align*}
& v_{L}: \text { vev of triplet in } \overline{126}_{H} \tag{14}\\
& v_{\mathrm{R}}: \text { Majorana mass for } v_{R}
\end{align*}
$$

assuming type 2 see-saw dominance (... Melfo '10)
In this way it possible to partially disentangle neutrino and quark sectors

Quarks, charged leptons and TB neutrinos

Taking f in the TB form, h dominantly 33 and hermitian matrices (see below) we get

- quark sector:
- heavy third generation masses from Y
- small first and second generations masses and small CKM from $h_{i j}, f, h^{\prime}$
- lepton sector:
- m_{v} TB from f
- corrections to TB from charged leptons mixing

$$
\begin{aligned}
h & =\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{12} & h_{22} & h_{23} \\
h_{13} & h_{23} & Y
\end{array}\right) \\
f & =\left(\begin{array}{lll}
f_{2} & f_{1} & f_{1} \\
f_{1} & f_{2}+f_{0} & f_{1}-f_{0} \\
f_{1} & f_{1}-f_{0} & f_{2}+f_{0}
\end{array}\right) \\
h^{\prime} & =i\left(\begin{array}{ccc}
0 & \sigma_{12} & \sigma_{13} \\
-\sigma_{12} & 0 & \sigma_{23} \\
-\sigma_{13} & -\sigma_{23} & 0
\end{array}\right)
\end{aligned}
$$

We assume an underlaying parity symmetry (Dutta '04)

- hermitian matrices \rightarrow less parameters
- the fit is still very good

TB, BM and general matrices

- Note that we can always go to a basis where f is TB

$$
\begin{equation*}
\mathrm{f}_{\mathrm{TB}}=\mathrm{V}_{\mathrm{TB}}^{*} \mathrm{f}_{\mathrm{diag}}^{\prime} \mathrm{V}_{\mathrm{TB}}^{\dagger}=\mathrm{V}_{\mathrm{TB}}^{*} \mathrm{~V}^{\top} \mathrm{f}^{\prime} \mathrm{VV}_{\mathrm{TB}}^{\dagger} \tag{15}
\end{equation*}
$$

rotating the 16 of fermions

- In the same way also $\mathbf{f} \mathbf{B M}$ or with other structures with three free parameters in \mathfrak{m}_{v} can be obtained by a rotation
- TB, BM, ... correspond to the same fit analysis

This analysis is general for $\mathrm{SO}(10)$ with $10_{\mathrm{H}}, 120_{\mathrm{H}}$ and $\overline{126}_{\mathrm{H}}$ and type 2 see-saw dominance

Fit results

We fitted the model on fermion masses and mixing angles evolved at the high scale $M_{\text {Gut }}$

Observable	Best fit value
$m_{u}[\mathrm{MeV}]$	0.553
$m_{c}[\mathrm{MeV}]$	210
$m_{t}[\mathrm{GeV}]$	82.6
$m_{d}[\mathrm{MeV}]$	1.15
$m_{s}[\mathrm{MeV}]$	22.4
$m_{b}[\mathrm{GeV}]$	1.08
$m_{e}[\mathrm{MeV}]$	0.3585
$m_{\mu}[\mathrm{MeV}]$	75.67
$m_{\tau}[\mathrm{GeV}]$	1.292
$V_{u s}$	0.224
$V_{c b}$	0.0351
$V_{u b}$	0.00320
$J \times 10^{-5}$	2.19
$\Delta m_{21}^{2} \times 10^{-5}\left[\mathrm{eV}^{2}\right]$	7.65
$\Delta m_{32}^{2} \times 10^{-3}\left[\mathrm{eV}^{2}\right]$	2.40
$\sin ^{2} \theta_{13}$	0.0126
$\sin ^{2} \theta_{12}$	0.305
$\sin ^{2} \theta_{23}$	0.499
χ^{2} quarik	0.0959
χ^{2} charged fermions	0.0959
χ^{2} neutrino	0.0316
χ^{2} totale	0.127
$\chi^{2} /$ dof 2 totale	0.127
$d_{F I}$	469777

Parameter	Best fit value
$h_{11} v_{u}[\mathrm{GeV}]$	0.808
$h_{12} v_{u}[\mathrm{GeV}]$	1.17
$h_{13} v_{u}[\mathrm{GeV}]$	6.06
$h_{22} v_{u}[\mathrm{GeV}]$	5.37
$h_{23} v_{u}[\mathrm{GeV}]$	5.64
$Y_{v_{u}}[\mathrm{GeV}]$	85.0
$f_{0} v_{u}[\mathrm{GeV}]$	-2.20
$f_{1} v_{u}[\mathrm{GeV}]$	-0.276
$f_{2} v_{u}[\mathrm{GeV}]$	-0.228
$\sigma_{12} v_{u}[\mathrm{GeV}]$	-0.270
$\sigma_{13} v_{u}[\mathrm{GeV}]$	2.27
$\sigma_{23} v_{u}[\mathrm{GeV}]$	6.37
$r_{1} / \tan \beta$	0.0129
r_{2}	1.66
r_{3}	0.612
c_{e}	3.85
$v_{L} / v_{u} \times 10^{-9}$	0.0112

Comparation with other models

Comparing with other realistic $\mathbf{S O}(\mathbf{1 0)}$ models without TB, on the same set of data

Model	d.o.f.	χ^{2}	$\chi^{2} /$ d.o.f.	$d_{F T}$	$d_{\text {Data }}$
DR [14]	4	0.41	0.10	$7.0 \quad 10^{3}$	1.310^{3}
ABB [16-18]	6	2.8	0.47	$8.1 \quad 10^{3}$	3.810^{3}
JLM [19]	4	2.9	0.74	9.410^{3}	3.810^{3}
BSV [33]	<0	6.9	-	2.010^{5}	3.810^{3}
JK2 [38]	3	3.4	1.1	4.710^{5}	3.810^{3}
GK [40]	0	0.15	-	1.510^{5}	3.810^{3}
T-IID	1	0.13	0.13	4.710^{5}	3.810^{3}

- DR: Dermisek, Raby '06
- ABB: Albright, Babu, Barr '01
- JLM: Ji, Li, Mohapatra '05
- BSV: Bajc, Senjanovic, Vissani ’02
- JK2: Joshipura, Kodrani '09
- GK: Grimus, Kuhbock '06
- T-IID: this model

Degree of fine-tuning $\rightarrow d_{\mathrm{FT}}=\sum\left|\frac{\text { par }_{i}}{\text { err }_{i}}\right|$

Excellent fit of this model but large fine-tuning

Why the fine-tuning? $f_{1} / f_{0} \sim \sqrt{r}$ gives $m_{\text {Igen }} / m_{\text {IIgen }}$ and $\delta T B$ too big without any cancellation

Latest news (June '11)

$2 \sin ^{2}\left(20_{18}\right) \sin ^{2} \theta_{2 n}$

T2K and MINOS announced strong hints for $\theta_{13} \neq 0$ in the neutrino sector

$$
\begin{aligned}
& \text { T2K } \rightarrow 0.03(0.04)<\sin ^{2} 2 \theta_{13}<0.28(0.34) \\
& \text { at } 90 \% \text { C.L.(16) } \\
& \text { MINOS } \rightarrow 0<2 \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}<0.12(0.19)
\end{aligned} \text { at } 90 \% \text { C.L.(17) }
$$

New analysis performed on these new data

New analysis

We fitted the model T-IID on the new T2K data

T-IID TB

Model	d.o.f.	χ^{2}	$\chi^{2} /$ d.o.f.	d_{FT}	$\mathrm{d}_{\text {Data }}$
T-IID	1	0.13	0.13	3.410^{5}	3.810^{3}
T-IID (old data)	1	0.13	0.13	4.710^{5}	3.810^{3}

\rightarrow very good fit again
We considered also the same model with $\mathbf{f} \mathbf{B M}$ with the new data

T-IID BM

Model	d.o.f.	χ^{2}	$\chi^{2} /$ d.o.f.	d_{FT}	$\mathrm{d}_{\text {Data }}$
T-IID BM	1	0.13	0.13	3.110^{5}	3.810^{3}

\rightarrow consistency check (TB and BM differs by a 16 rotation \rightarrow same fit)

Conclusions

- If TB (or BM ...) mixing is realized, the neutrino sector points to a discrete flavour group
- Quark sector is gerarchic and with no indication of such a discrete group
- Even if Grand Unified Theories connect the two sectors, it is possible to explain the two different patterns in a unified theory (SU(5) $\times \mathrm{A}_{4}$ for example)
- The case of $\mathbf{S O}(\mathbf{1 0})$ is more difficult \rightarrow every particle of each family must be in the same flavour group rapresentation
- $\mathrm{SO}(10)$ + type-2 see-saw offers a viable solution but more work has to be done (ig Dutta, Mimura, Mohapatra '09)

THANK YOU FOR THE ATTENTION

backup

New analysis results for T-IID TB

Observable	Best fit value
$m_{u}[\mathrm{MeV}]$	0.551
$m_{e}[\mathrm{MeV}]$	210
$m_{ \pm}[\mathrm{GeV}]$	82.5
$m_{a}[\mathrm{MeV}]$	1.22
$m_{2}[\mathrm{MeV}]$	21.4
$m_{s}[\mathrm{GeV}]$	1.05
$m_{=}[\mathrm{MeV}]$	0.3585
$m_{\mu}[\mathrm{MeV}]$	75.67
$m_{\sim}[\mathrm{GeV}]$	1.292
$V_{u s}$	0.224
$V_{\text {cb }}$	0.0351
$V_{u b}$	0.00313
$J \times 10^{-5}$	2.34
$\Delta m_{21}^{2} \times 10^{-5}\left[\mathrm{cV}^{2}\right]$	7.65
$\Delta m_{32}^{2} \times 10^{-3}\left[\mathrm{eV}^{2}\right]$	2.40
$\sin ^{2} \theta_{13}$	0.0363
$\sin ^{2} \theta_{12}$	0.303
$\sin ^{2} \theta_{23}$	0.498
χ^{2} Quark	0.0921
χ^{2} charged fermions	0.0921
χ^{2} neutrino	0.0360
χ^{2} totale	0.128
$\chi^{2} /$ dof totale	0.128
$d_{F T}$	344802

Parsmeter	Best fit value
$h_{12} v_{w}[\mathrm{GeV}]$	1.42
$h_{12} v_{u}[\mathrm{GeV}]$	-0.723
$h_{13} v_{6}[G e V]$	-9.84
$h_{22} v_{ \pm}[\mathrm{GeV}]$	7.49
$h_{23} v_{=}[\mathrm{GeV}]$	8.49
$Y v_{u}[\mathrm{GeV}]$	82.9
form[GeV]	-3.04
$f_{1} v_{u}[\mathrm{GeV}]$	-0.603
$\mathrm{f}_{2} \mathrm{~V}_{0}[\mathrm{GeV}]$	0.0452
$\sigma_{12} v_{2}[\mathrm{GeV}]$	1.43
$\sigma_{13} v_{4}[\mathrm{GeV}]$	0.764
$\sigma_{23} v_{4}[\mathrm{GeV}]$	9.88
$r_{2} / \tan \beta$	0.0125
r_{2}	1.55
r_{3}	0.751
C_{e}	3.08
$v_{L} / v_{u} \times 10^{-2}$	0.00909

backup

New analysis results for T-IID BM

Observable	Best fit value
$m_{u}[\mathrm{McV}]$	0.550
$m_{c}[\mathrm{MeV}]$	210
$m_{t}[\mathrm{GeV}]$	81.6
$m_{d}[\mathrm{MeV}]$	1.26
$m_{a}[\mathrm{MeV}]$	21.7
$m_{6}[\mathrm{GeV}]$	1.10
$m_{s}[\mathrm{MeV}]$	0.3585
$m_{\mu}[\mathrm{MeV}]$	75.67
$m_{\mathrm{r}}[\mathrm{GeV}]$	1.292
$V_{\text {cos }}$	0.224
Vab	0.0351
V_{ω}	0.00318
$J \times 10^{-8}$	2.31
$\Delta m_{21}^{2} \times 10^{-5}\left[\mathrm{cV}^{2}\right]$	7.65
$\Delta m_{32}^{2} \times 10^{-3}\left[\mathrm{eV}^{2}\right]$	2.40
$\sin ^{2} \theta_{13}$	0.0417
$\sin ^{2} \theta_{12}$	0.305
$\sin ^{2} \theta_{23}$	0.493
χ^{2} Quark	0.107
χ^{2} charged fermions	0.107
χ^{2} neutrino	0.0186
χ^{2} totale	0.126
$X^{2} /$ dof totale	0.126
$d_{\text {FT }}$	344802

Parameter	Best fit value
$h_{11} v_{u}[\mathrm{GeV}]$	0.396
$h_{12} v_{2}[\mathrm{GeV}]$	0.773
$h_{13} v_{=}[\mathrm{GeV}]$	-1.67
$h_{22} v_{\square}[\mathrm{GeV}]$	5.99
$h_{23} v_{6}[\mathrm{GeV}]$	7.19
$Y v_{u}[G e V]$	82.8
$\mathrm{fov}_{\sim}[\mathrm{GeV}]$	-2.19
$f_{1} v_{*}[\mathrm{GeV}]$	-0.598
$f_{2} v_{0}[\mathrm{GeV}]$	-0.164
$\sigma_{12} v_{2}[\mathrm{GeV}]$	0.515
$\sigma_{13} v_{4}[\mathrm{GeV}]$	1.76
$\sigma_{23} v_{4}[\mathrm{GeV}]$	9.43
$r_{2} / \tan \beta$	0.0133
r_{2}	1.70
r_{3}	0.747
c_{e}	2.66
$v_{L} / v_{L} \times 10^{-2}$	-0.0117

$$
\begin{aligned}
h & =\left(\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{12} & h_{22} & h_{23} \\
h_{13} & h_{23} & Y
\end{array}\right) \\
f & =\left(\begin{array}{ccc}
f_{2} & f_{1} & f_{1} \\
f_{1} & f_{2}+f_{0} & f_{1}-f_{0} \\
f_{1} & f_{1}-f_{0} & f_{2}+f_{0}
\end{array}\right) \\
h^{\prime}= & i\left(\begin{array}{ccc}
0 & \sigma_{12} & \sigma_{13} \\
-\sigma_{12} & 0 & \sigma_{23} \\
-\sigma_{13} & -\sigma_{23} & 0
\end{array}\right)
\end{aligned}
$$

backup

Some analytic approximate relations for leptons

$$
\begin{align*}
m_{\tau} & \approx k\left[Y-3\left(f_{0}+f_{2}\right)\right] \quad k=\frac{r_{1} v_{u}}{\tan \beta} \tag{18}\\
m_{\mu} & \approx k\left[h_{22}-3\left(f_{0}+f_{2}\right)\right]-m_{\tau} s_{23}^{e 2} \tag{19}\\
s_{23}^{e} e^{i \phi_{2}^{e}} & \approx \frac{k}{m_{\tau}}\left[h_{23}+3\left(f_{0}-f_{1}\right)+i c_{e} \sigma_{23}\right] \tag{20}\\
s_{13}^{e} e^{i\left(\delta^{e}+\phi_{1}^{e}+\phi_{2}^{e}\right)} & \approx \frac{k}{m_{\tau}}\left[h_{13}-3 f_{1}+i c_{e} \sigma_{13}\right] \tag{21}\\
s_{12}^{e} & \approx \sqrt{\frac{k}{m_{\mu}}\left(h_{11}-3 f_{2}\right)-\frac{m_{\tau}}{m_{\mu}} s_{13}^{e 2}} \tag{22}\\
\left(m_{\mu} s_{12}^{e}+m_{\tau} s_{13}^{e} s_{23}^{e} e^{i \delta^{e}}\right) e^{i \phi_{1}^{e}} & \approx \frac{k\left(h_{12}-3 f_{1}+i c_{e} \sigma_{12}\right)}{U_{12}} \tag{23}\\
& \approx \frac{1}{\sqrt{3}}\left(1-s_{12}^{e} e^{i \phi_{1}^{e}}-s_{13}^{e} e^{i\left(\delta^{e}+\phi_{1}^{e}+\phi_{2}^{e}\right)}\right) \tag{24}\\
U_{13} & \approx \frac{1}{\sqrt{2}}\left(s_{12}^{e}-s_{13}^{e} e^{i\left(\delta^{e}+\phi_{2}^{e}\right)}\right) \tag{25}\\
U_{23} & \approx \frac{-1}{\sqrt{2}}\left(1+s_{23}^{e} e^{i \phi_{2}^{e}}\right) \tag{26}
\end{align*}
$$

