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Flavor Puzzle
which symmetry ? (if any...)

which scale ?



SM contributions
to FCNC

other flavons to develop vev in the desired directions following the principle of
minimizing the potential.

Another possibility to get the correct neutrino mass matrix structure could
be invoking/using a particular Friedberg-Lee symmetry but I should better un-
derstood the implication of such a symmetry.
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other flavons to develop vev in the desired directions following the principle of
minimizing the potential.

Another possibility to get the correct neutrino mass matrix structure could
be invoking/using a particular Friedberg-Lee symmetry but I should better un-
derstood the implication of such a symmetry.
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problems!



moreover ....







TBM may not be the 
correct
 starting point !!!!



low  scale Flavor Symmetry

SM higgs charged under the flavor symmetry,
h is also an A4 (DFS) triplet 

Φ ∼ (φ1, φ2, φ3)

breaking in one direction 



low  scale Flavor Symmetry

SM higgs charged under the flavor symmetry,
h is also an A4 (DFS) triplet 

EW- Flavor unification
Φ ∼ (φ1, φ2, φ3)

breaking in one direction 



low  scale Flavor Symmetry

SM higgs charged under the flavor symmetry,
h is also an A4 (DFS) triplet 

EW- Flavor unification
•more minimal  (less new degrees of 
freedom)
•more interesting (possible signatures)
•no exact TBM
•phenomenologically more constrained
•may have useful different applications 
(DDM)

in literature.... �Φ� ∼ (vr, ve−iω , veiω)

Φ ∼ (φ1, φ2, φ3)

breaking in one direction 



low  scale Flavor Symmetry

SM higgs charged under the flavor symmetry,
h is also an A4 (DFS) triplet 

EW- Flavor unification
•more minimal  (less new degrees of 
freedom)
•more interesting (possible signatures)
•no exact TBM
•phenomenologically more constrained
•may have useful different applications 
(DDM)

BUT.. ALLOWED?

in literature.... �Φ� ∼ (vr, ve−iω , veiω)

Φ ∼ (φ1, φ2, φ3)

breaking in one direction 



Lavoura-Kuhbock model
(0711.0670[hep-ph]

Morisi-Peinado model
0910.4389[hep-ph]

3 Charged leptons

With the vevs in eq. (17), the charged lepton mass matrix in eq. (8) takes the form

Ml =







0 aeiα be−iα

beiα 0 ar

ae−iα br 0






, (18)

with the parameters in the matrix (18) defined by a = y1v, b = y2v and r = v1/v. Notice

that in a matrix with this form, all the phases in the entries can be absorbed in the fields,

hence we can write the charged lepton matrix as

Ml =







0 a b

b 0 ar

a br 0






, (19)

with a, b and r real parameters. We write the symmetric matrix, MlMT
l

MlM
T
l =







a2 + b2 abr abr

abr b2 + a2r2 ab

abr ab a2 + b2r2






, (20)

which is diagonalized by an orthogonal matrix Ol. It is straightforward to obtain the ana-

lytical expressions for a, b and r as function of the charged lepton masses, it can be written

as

r ≈ mτ√
memµ

√

1 − m2
em2

µ

m4
τ

,

a ≈ mµ

mτ

√
memµ

[

1 + 1
2

m2
µ

m2
τ

]

,

b ≈ √
memµ

[

1 − 1
2

m2
µ

m2
τ

]

.

(21)

With

me = 0.511006 MeV mµ = 105.656 MeV mτ = 1776.96 MeV.

we have a = 0.43474, b = 7.3471 and r = 241.8582. Note that a < b $ r thus the orthogonal

matrix Ol diagonalizing MlMT
l is approximatively

Ol12 ≈
b

a
r−1, Ol13 ≈

a

b
r−1, Ol23 ≈

a

b
r−2. (22)

The element, Ol12 , give a contribution to the reactor mixing angle, θ13, see section 5.1. The

analytical expression for this element is given as

Ol12 ≈
√

me

mµ

[

1 −
(

mµ

mτ

)2
]

. (23)

5

The numerical expression for the matrix Ol is

Ol =







0.997 0.069 2.44 × 10−4

−0.069 0.997 1.075 × 10−6

−2.439 × 10−4 −1.800 × 10−5 0.999






. (24)

4 Neutrinos

The mass matrix for the neutrinos in eq. (10) with the vevs in eq. (17) takes the form

Mν =







xr2 + ye−2iα + ze2iα κre−iα κreiα

κre−iα zr2 + xe−2iα + ye2iα κ

κreiα κ yr2 + ze−2iα + xe2iα






. (25)

From the charged lepton sector we know that r is fixed as shown in eq. (21), and r # 1, then

we can neglect in the diagonal the terms not proportional to r2. With this the mass matrix

in eq. (25) can be written as

Mν =







xr2 κre−iα κreiα

κre−iα zr2 κ

κreiα κ yr2






. (26)

Note that there are 4 complex free parameters, x, y, z, κ and one extra phase α coming

from the Higgs sector. We can absorb two phases in the fields, then it remains 7 free

parameters in the neutrino mass matrix. Neutrino oscillation experiments determine two

mass square difference ∆m2
12 ≡ m2

2 − m2
1 and ∆m2

13 ≡ |m2
3 − m2

1| with the corresponding

three mixing angle [10]. If θ13 is different from zero, the Dirac phases could be probed in

future experiments [11]. The absolute neutrino mass scale can be probed in future tritium

beta decay [12] and neutrinoless double beta decay [13] experiments. While it will be hard

to measure the two Majorana phase. There are seven measurable physical observable plus

two Majorana physical phases.

Since the charged lepton mass matrix is close to be diagonal, see eq. (24), we already

know that in order to be consistent with current experimental data, the neutrino mass

matrix should be approximately µ ↔ τ invariant [14, 15, 16] in order to give a nearly

maximal atmospheric angle and small reactor angle θ13. Thus we expect α small and y ≈ z

(a moderate fine tuning is required between y and z) and we set z ≡ y(1 + δ).

6

are

Mn = D






y1v1 y2v1 y3v1

y1v2 ωy2v2 ω2y3v2

y1v3 ω2y2v3 ωy3v3




 , (8)

Mp = D∗






y4v1 y5v1 y6v1

y4v2 ωy5v2 ω2y6v2

y4v3 ω2y5v3 ωy6v3




 , (9)

where
D ≡ diag

(
e−iα/2, eiβ/2, 1

)
. (10)

The quark mass matrices in equations (8) and (9) are identical to the mass matrix for
the charged leptons in the original A4 model of Ma and Rajasekaran (MR) [6]. Indeed,
we have adopted in our model the same A4 representations for the quarks as MR did in
their paper for the leptons. The crucial difference between the two models is that, while
MR have assumed a vacuum state characterized by v1 = v2 = v3 and α = β = 0, we shall
demonstrate the existence of, and employ, a vacuum state with different features.

Let the unitary matrices Un,p
L,R satisfy

Un
L
†






y1v1 y2v1 y3v1

y1v2 ωy2v2 ω2y3v2

y1v3 ω2y2v3 ωy3v3




 Un

R = diag (md, ms, mb) , (11)

Up
L
†






y4v1 y5v1 y6v1

y4v2 ωy5v2 ω2y6v2

y4v3 ω2y5v3 ωy6v3




 Up

R = diag (mu, mc, mt) . (12)

Then, the quark mixing (CKM) matrix is

V = Up
L
†D2 Un

L . (13)

One may absorb the phases of y1,2,3 in the overall phases of the three rows of Un
R,

and similarly absorb the phases of y4,5,6 in the matrix Up
R. Those six phases are therefore

unphysical. Thus, this model for the quark masses and mixings has ten parameters: the
two phases α and β in the diagonal matrix D2, and the eight real quantities

|y1|v3,

∣∣∣∣∣
y2

y1

∣∣∣∣∣ ,

∣∣∣∣∣
y3

y1

∣∣∣∣∣ , |y4|v3,

∣∣∣∣∣
y5

y4

∣∣∣∣∣ ,

∣∣∣∣∣
y6

y4

∣∣∣∣∣ ,
v2

v3

,
v1

v3

. (14)

As we shall see in the next section, the A4-symmetric scalar potential is so constrained
that these ten parameters reduce to only eight.

3 The scalar potential

The most general renormalizable scalar potential invariant under the symmetry A4 is

V = µ
(
φ†

1φ1 + φ†
2φ2 + φ†

3φ3

)
+ λ1

(
φ†

1φ1 + φ†
2φ2 + φ†

3φ3

)2
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quarks

leptons

Discrete DM model
Hirsh et al. Phys.Rev.D82, 
[hep-ph] 1104.5676

3

the quarks (with mu ≈ 10−5
mt), we assume an hierarchy in the Yukawa couplings, with most Yukawa coupling being

small to very small.
As discussed in more detail in [1], the EW symmetry is broken by the vacuum configuration

�
H

0
�
= v,

�
η01
�
= (vη, 0, 0) . (3)

vη breaks the A4 group into its subgroup Z2, generated by the diagonal A4 generator S = Diag(1,−1,−1). The Z2

symmetry acts on the A4 triples fields in the following way:

Z2 :
N2 → −N2 , h2 → −h2 , A2 → −A2 ,

N3 → −N3 , h3 → −h3 , A3 → −A3 ,
(4)

where N2,3 are the component of the triplet NT and h2,3 and A2,3 are respectively the CP-odd and CP-even component
of the Higgs doublet η2,3.

The SM fermions, both quarks and leptons, are Z2 even because transform as one of the A4 singlets. In particular
they transform not trivially under the other abelian A4 subgroup, Z3. Clearly Z3 is broken by the vev configuration
given in eq. (3) but at tree level quark and charged lepton masses preserves the Z3 invariance thanks to the scalar
charge assignments. As we will see in the next sections Z3 breaking effects appear at next to leading order (NLO)
level giving rise to the quark mixing matrix.

The residual Z2 symmetry is responsible for the stability of the lightest combination of h2, h3, A2 and A3 which
is the dark matter candidate. (?? In the original discrete dama article, this was assumed to be one of the hs ??).
Indeed the Z2 odd candidate may couple only to heavy right-handed neutrinos and not to the SM charged fermions,
that as already explained are Z2 even. Such a scalar dark matter candidate is potentially detectable in nuclear recoil
experiments [? ? ].

BRIEF COMMENTS ON PREVIOUS RESULTS
>> In the neutrino sector only inverse mass hierarchy is possible with zero reactor angle at tree-level and solar and

atmospheric angles unpreidcted, see [1].

III. QUARK MIXING

The vacuum expectation value structures of H and η allow the construction of dimension six couplings of the form

� fij

Λ2
FLiHfRj(η

†η)a. (5)

Here FLi stands for the quark- or leptondoublet of the i
th generation and fRj refers to the righthanded uptypequark,

downtypequark or charged lepton of the j
th generation. The index a = 1, 1�, 1��, since the product (A3) of two A4

triplets η† and η can give a 1, 1’ or 1” singlet. Λ is the cut-off scale, up to which we accept the theory to be valid
and the fij lastly, are dimensionless couplings.

The massterm Lagrangian (2) and the effective couplings (5) generate the effective mass matrix for downtype quarks

Md =




md 0 0

0 ms 0

0 0 mb



+
vHv

2
η

Λ2




fdd fds fdb

fsd fss fsb

fbd fbs fbb



+O(1/Λ4) (6)

and analogous for up-type quarks and charged leptons.
The off-diagonal terms in this matrix are responsible for generating the quark mixing as parameterized by the CKM

matrix. As we don’t have information about the size of the dimensionless parameters fij , we assume them to be of
order 1, which can be seen as the most natural assumption for dimensionless parameters.

Under this assumption, the absolute values of the corrections to the leading order elements of the mass matrix are
of the same order for the up-type quark matrix and the downtype quark matrix. However, due to the much larger
elements of the leading order up-type quark mass matrix, the effects on quark mixing are dominated by the down-type
quark contributions. This allows us to estimate the order of magnitude of the cut-off scale.

We write the ratio between the vev of H and η as tan β̃ and note that they satisfy

v
2
H
+ v

2
η = v

2
ew

= 246GeV
2

leptons & quarks



Constraints on  the higgs-flavons...

model dependent

model independent higgs-guage bosons

higgs-fermions

•  unitarity
•  Z,W decays
•   h-> 2 W decay
•   STU

•   Rare decays
•   Meson oscillations



the scalar potential

minima classification

The most general potential V [Φa] can be written as
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in agreement with the usual notation adopted in the two Higgs Doublet Models (2HDM)

(for a review on this topic see [16]). The parameter µ2
is typically negative in order to have

a stable minimum away from the origin. All the other parameters, λi, are real parameters

which must undergo to the condition for a potential bounded from below: this forces λ1

and the combination λ1+λ3+λ4+λ5 cos � to be positive. Lastly, notice that we explicitly

show the only phases, � ∈ [0, 2π], allowed in this scalar potential.

It is interesting to notice that, contrary to other multi Higgs (MH) scenarios, here we

can not recover the SM limit, with one light scalar and all the other decoupled and very

heavy. The flavour symmetry constrains the potential parameters in such a way that the

scalar masses are never independent from each other. This can be easily understood by a

parameter counting: the scalar potential in eq. (2) presents 6 independent parameters and

the number of the physical quantities is 8, i.e. the electroweak (EW) vev and the seven

masses for the massive scalar fields.

We will study the minima of the potential in eq. (2) under electromagnetism conserving

vevs as specified in eq. (1) by studying the first derivative system

∂V [Φ]

∂φsX
a

= 0 , (3)

with s = 0, 1 and X = R, I, and by requiring that the Hessian

∂2V [Φ]

∂φsX
a ∂φtY

b

(4)

has non negative eigenvalues, or in other words that all the physical masses are positive

except those ones corresponding to the Goldstone Bosons (GBs) that vanish.

In sections 4 and 5 we will verify that this potential presents two natural vacuum

solutions and two interesting but fined-tuned ones. We refer to the first two as natural

because they do not require ad hoc values of the potential parameters, that are only

constrained by requiring the boundness at infinity and the positivity of all the physical

4

of the Higgses are real or not. In section 4 we will discuss the cases that do not violate

the CP symmetry, while in section 5 we discuss CP breaking minima.

Section 6 we will discuss bounds on the allowed parameters using respectively unitarity

constraints, decays of the Z and W± bosons and constraints by oblique corrections. We

note that all these bounds are rather model independent. Further bounds can be derived

from fermion decays and meson oscillations, but these bounds are always model dependent.

We will present some of these in an accompanying paper.

Finally, in section 7 we present the results of our analysis and in section 8 we conclude.

In the appendix A we report useful formulae for the analysis of the TSU parameters.

2 The A4 Scalar Potential

We consider the Standard Model gauge group SU(3)c×SU(2)L×U(1)Y with the addition

of a global flavour symmetry A4 [14, 15]. We consider three copies Φa, a = 1, 2, 3, of

the conventional SM Higgs field (i.e. a singlet of SU(3)c, doublet of SU(2)L and with

hypercharge Y = 1/2) such that the three Higgses are in a triplet of the flavour group A4.

Once the flavour structure of the quarks and leptons is specified, each Φa will couple to

the three fermion families according to the group theory rules.

Below, we will write down the most general scalar potential for the three Higgses that is

invariant under the flavour and gauge symmetries of the model. After the fields occupy one

of the minima of the potential, electroweak symmetry gets broken (while electromagnetism

is conserved) and we can develop the fields around their vacuum expectation values as

Φa =
1√
2



Φ1R
a + iΦ1I

a

Φ0R
a + iΦ0I

a



 → 1√
2



 Re φ1
a + i Im φ1

a

vaeiωa + Re φ0
a + i Imφ0

a



 . (1)

Here vaeiωa is the vacuum expectation value of the ath Higgs field. One or two of the va can

be zero, implying that the corresponding Higgs field does not develop a vev. Furthermore,

if all vevs are real (so if all ωa are zero) CP is conserved, while if one or more ωas are

nonzero, CP is broken. Note that in general, there is the freedom to put one of the phases

to zero by a global rotation.
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CP conserving

CP breaking

•  (v,v,v)
•  (v,0,0)
•   (v1, v2, v3)

•  (v exp[i a] ,v,0)
•  (v exp[i a] ,v exp[-i a],  r v)

parameters
more 

constrained
(fl sym)
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except those ones corresponding to the Goldstone Bosons (GBs) that vanish.

In sections 4 and 5 we will verify that this potential presents two natural vacuum

solutions and two interesting but fined-tuned ones. We refer to the first two as natural

because they do not require ad hoc values of the potential parameters, that are only

constrained by requiring the boundness at infinity and the positivity of all the physical
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of the Higgses are real or not. In section 4 we will discuss the cases that do not violate

the CP symmetry, while in section 5 we discuss CP breaking minima.

Section 6 we will discuss bounds on the allowed parameters using respectively unitarity

constraints, decays of the Z and W± bosons and constraints by oblique corrections. We

note that all these bounds are rather model independent. Further bounds can be derived

from fermion decays and meson oscillations, but these bounds are always model dependent.

We will present some of these in an accompanying paper.

Finally, in section 7 we present the results of our analysis and in section 8 we conclude.
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except those ones corresponding to the Goldstone Bosons (GBs) that vanish.
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W decays



CP breaking  (v e^(i a) ,v, 0)

W decays
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Conclusions
★ Charging the SM higgs under a discrete flavor symmetry (A4) is quite appealing

★ Models more phenomenological interesting, theta13 starts different from zero, but...

★More constrained!
★ Even with a model independent approach higgs-gauge bosons constraints may rule out 
configurations already used

★Bounds arising from the fermion sector are even stronger 

★A lesson for model builders: good alignment for mass matrices maybe disfavored/ruled out by 
phenomenology

★ Not addressed in this talk: possible signatures at LHC, effects of CP violation arising by the 
vev alignments?
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