The challenge of low scale flavor

Federica Bazzocchi, Sissa & INFN Trieste

R. de Adelhart Toorop, FB, L.Merlo, A.Paris JHEP 1103:035,040,2011 R. de Adelhart Toorop, FB, S.Morisi 1104.5676

Flasy2011, Valencia, 11/07/2011

Flavor Puzzle

FERMIONS Leptons spin = 1/2			matter constituents spin = 1/2, 3/2, 5/2, Quarks spin = 1/2		
Ve electron	<7 x 10 ⁻⁹	0	U up	0.005	2/3
e electron	0.000511	-1	d down	0.01	-1/3
Uneutrino	< 0.0003	0	C charm	1.5	2/3
µ muon	0.106	-1	S strange	0.2	-1/3
$ u_{\mathcal{T}\mathrm{neutrino}}^{\mathrm{tau}}$	< 0.03	0	t top (initial ex	170 idence)	2/3
au tau	1.7771	-1	b bottom	4.7	-1/3

Flavor Puzzle

FERMIONS Leptons spin = 1/2			matter constituents spin = 1/2, 3/2, 5/2, Quarks spin = 1/2		
Ve electron	<7 x 10 ⁻⁹	0	U up	0.005	2/3
e electron	0.000511	-1	d down	0.01	-1/3
Uneutrino	< 0.0003	0	C charm	1.5	2/3
µ muon	0.106	-1	S strange	0.2	-1/3
$ u_{\mathcal{T}\mathrm{neutrino}}^{\mathrm{tau}}$	< 0.03	0	t top (initial ex	170 idence)	2/3
au tau	1.7771	-1	b bottom	4.7	-1/3

Flavor Puzzle

which symmetry ? (if any...) which scale ?

 $\frac{G_F^2}{16\pi^2} (V_{di}^{\dagger} V_{is})^2 m_i^2$

fix a flavor scale lower bound

 $\frac{1}{\Lambda_F^2} \sim \frac{G_F}{16\pi^2}$

d

ŝ

W

Yukawa couplings

 $\Lambda_F \geq 1 \,\mathrm{TeV}$

 $\frac{G_F^2}{16\pi^2} (V_{di}^{\dagger} V_{is})^2 m_i^2$

fix a flavor scale lower bound

 $\frac{1}{\Lambda_F^2} \sim \frac{G_F}{16\pi^2}$

Yukawa couplings

 $\Lambda_F \geq 1 \,\mathrm{TeV}$

gauge couplings

 $\frac{g_F^2}{\Lambda_F^2} \sim \frac{G_F^2}{16\pi^2} (V_{di}^{\dagger} V_{is})^2 m_i^2$

 $\Lambda_F > 10^6 \,\mathrm{TeV}$

1 0 ¹⁹ GeV	Planck scale
1 0 ¹⁷ GeV	GUT
1 0 12 GeV	
1 0º GeV	See-Saw,Leptogenesis (gauge)
1 0 ³ GeV	(global)
1 0³ GeV	DW
10 ² GeV 1 GeV	EW, SM late decaying DM
10 ⁻¹⁰ GeV	neutrino masses

1 0 ¹⁹ GeV	Planck scale	Flavons (higher order operators)
10 ¹⁷ GeV	GUT	
1 012 GeV		ž
1 0º GeV	See-Saw,Leptogenesis	l (gauge)
1 03 GeV	SUSY,2HDM,UED,LH	I (global)
1 0³ GeV	DM	5
10 ² GeV 1 GeV	EW, SM late decaying DM	
10 ⁻¹⁰ GeV	neutrino masses	

	Fla	avons
U ¹⁹ GeV	Planck scale (higher ord	er operators)
0 ¹⁷ GeV	GUT	
1012 GeV	See-Saw Lentogenesis	Ž
1 0º GeV	(gauge)	
1 0³ GeV	(global) SUSY,2HDM,UED,LH	K
	low scale FS	2
O ³ GeV	DM	
O ² GeV	EW, SM	
	inin descript DEA	

Adhikary; Altarelli; Babu; B.; Brahmachari; Chen; Choubey; Ciafaloni; Csaki; Delaunay; Feruglio; Frampton; Frigerio; Ghosal; Grimus; Grojean; Grossmann; Hagedorn; He; Hirsh; Ghosal; Grimus; Grojean; Grossmann; Hagedorn; He; Hirsch; Honda; Joshipura; Kaneko; Keum; King; Kuhbock; Lavoura; Lin; Ma; Malinsky; Matsuzaki; LM; Mitra; Morisi; Parida; Picariello; Rajasekaran; Romao; Skadhauge; Tanimoto; Torrente-Lujan; Urbano; Valle; Villanova del Moral; Volkas; Zee; ...

Adhikary; Altarelli; Babu; B.; Brahmachari; Chen; Choubey; Ciafaloni; Csaki; Pelaunay; Feruglio; Frampton; Frigerio; Ghosal; Grimus; Grojean; Grossmann; Hagedorn; He; Hirsh; Ghosal; Grimus; Grojean; Grossmann; Hagedorn; He; Hirsch; Honda; Joshipura; Kaneko; Keum; King; Kuhbock; Lavoura; Lin; Ma; Malinsky; Matsuzaki; LM; Mitra; Morisi; Parida; Picariello; Rajasekaran; Romao; Skadhauge; Tanimoto; Torrente-Lujan; Urbano; Valle; Villanova del Moral; Volkas; Zee; ...

d Contraction of the second seco

Kamioka

VD280

okai

Kamioka

12:280

okai

Kamioka

TBM may not be the correct starting point !!!!

okai

SM higgs charged under the flavor symmetry, h is also an A4 (DFS) triplet

 $\Phi \sim (\phi_1, \phi_2, \phi_3)$

SM higgs charged under the flavor symmetry, h is also an A4 (DFS) triplet

$\Phi \sim (\phi_1, \phi_2, \phi_3)$

EW-Flavor unification

breaking in one direction

SM higgs charged under the flavor symmetry, h is also an A4 (DFS) triplet

 $\Phi \sim (\phi_1, \phi_2, \phi_3)$

- •more minimal (less new degrees of freedom)
- more interesting (possible signatures)
 no exact TBM
- phenomenologically more constrained
 may have useful different applications (DDM)

EW-Flavor unification

breaking in one direction

in literature....

 $\langle \Phi \rangle \sim (vr, ve^{-i\omega}, ve^{i\omega})$

SM higgs charged under the flavor symmetry, h is also an A4 (DFS) triplet

 $\Phi \sim (\phi_1, \phi_2, \phi_3)$

- •more minimal (less new degrees of freedom)
- more interesting (possible signatures)
 no exact TBM
- phenomenologically more constrained
 may have useful different applications (DDM)

EW-Flavor unification

breaking in one direction

in literature....

 $\langle \Phi \rangle \sim (vr, ve^{-i\omega}, ve^{i\omega})$

BUT..

ALLOWED?

Lavoura-Kuhbock model 10711.0670[hep-ph]	quarks
$M_{n} = D \begin{pmatrix} y_{1}v_{1} & y_{2}v_{1} \\ y_{1}v_{2} & \omega y_{2}v_{2} \\ y_{1}v_{3} & \omega^{2}y_{2}v_{3} \end{pmatrix}$	$\begin{pmatrix} y_{3}v_{1} \\ \omega^{2}y_{3}v_{2} \\ \omega y_{3}v_{3} \end{pmatrix}, M_{p} = D^{*} \begin{pmatrix} y_{4}v_{1} & y_{5}v_{1} & y_{6}v_{1} \\ y_{4}v_{2} & \omega y_{5}v_{2} & \omega^{2}y_{6}v_{2} \\ y_{4}v_{3} & \omega^{2}y_{5}v_{3} & \omega y_{6}v_{3} \end{pmatrix}$
Morisi-Peinado model 0910.4389[hep-ph]	leptons
$M_{l} = \begin{pmatrix} 0 & ae^{i\alpha} & be^{-i\alpha} \\ be^{i\alpha} & 0 & ar \\ ae^{-i\alpha} & br & 0 \end{pmatrix}$	$\left. \begin{array}{ccc} \\ \end{array} \right), M_{\nu} = \left(\begin{array}{ccc} xr^2 & \kappa r e^{-i\alpha} & \kappa r e^{i\alpha} \\ \kappa r e^{-i\alpha} & zr^2 & \kappa \\ \kappa r e^{i\alpha} & \kappa & yr^2 \end{array} \right).$
Discrete DM model Hirsh et al. Phys.Rev.D82, Lhep-ph] 1104.5676	leptons & quarks
$M_d = \begin{pmatrix} m_d & 0 & 0 \\ 0 & m_s & 0 \\ 0 & 0 & m_d \end{pmatrix}$	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

the scalar potential

$$\begin{split} V[\Phi_{a}] &= \mu^{2}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3}) + \lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3})L^{2} & \text{parameters} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1}\Phi_{2}^{\dagger}\Phi_{2} + \Phi_{1}^{\dagger}\Phi_{1}\Phi_{3}^{\dagger}\Phi_{3} + \Phi_{2}^{\dagger}\Phi_{2}\Phi_{3}^{\dagger}\Phi_{3}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) \\ &+ \frac{\lambda_{5}}{2} \Big[e^{i\epsilon} [(\Phi_{1}^{\dagger}\Phi_{2})^{2} + (\Phi_{2}^{\dagger}\Phi_{3})^{2} + (\Phi_{3}^{\dagger}\Phi_{1})^{2}] + e^{-i\epsilon} [(\Phi_{2}^{\dagger}\Phi_{1})^{2} + (\Phi_{3}^{\dagger}\Phi_{2})^{2} + (\Phi_{1}^{\dagger}\Phi_{3})^{2}] \Big], \end{split}$$

minima classification

$$\Phi_a = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_a^{1R} + i\Phi_a^{1I} \\ \Phi_a^{0R} + i\Phi_a^{0I} \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} \operatorname{Re} \phi_a^1 + i\operatorname{Im} \phi_a^1 \\ v_a e^{i\omega_a} + \operatorname{Re} \phi_a^0 + i\operatorname{Im} \phi_a^0 \end{pmatrix}$$

CP conserving	 (v,v,v) (v,0,0)
	• (V1, V2, V3)
CP breaking	 (v exp[i a] ,v,0) (v exp[i a] ,v exp[-i a], r v)

the scalar potential

$$\begin{split} V[\Phi_{a}] &= \mu^{2}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3}) + \lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3})L^{2} & \text{parameters} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1}\Phi_{2}^{\dagger}\Phi_{2} + \Phi_{1}^{\dagger}\Phi_{1}\Phi_{3}^{\dagger}\Phi_{3} + \Phi_{2}^{\dagger}\Phi_{2}\Phi_{3}^{\dagger}\Phi_{3}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2} + \Phi_{4}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2} + \Phi_{4}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) & & \text{parameters} \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{3} + \Phi_{4}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2} + \Phi_{4}^{\dagger}\Phi_{3}\Phi_$$

minima classification

$$\Phi_a = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_a^{1R} + i\Phi_a^{1I} \\ \Phi_a^{0R} + i\Phi_a^{0I} \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} \operatorname{Re} \phi_a^1 + i\operatorname{Im} \phi_a^1 \\ v_a e^{i\omega_a} + \operatorname{Re} \phi_a^0 + i\operatorname{Im} \phi_a^0 \end{pmatrix}$$

up to indeces permutation

• (v,v,v) • (v,0,0) **CP** conserving • (V1, V2, V3) CP breaking (v exp[i a],v,0)
(v exp[i a], v exp[-i a], r v)

the scalar potential

$$\begin{split} V[\Phi_{a}] &= \mu^{2}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3}) + \lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} + \Phi_{3}^{\dagger}\Phi_{3})L^{2} & \text{parameters} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1}\Phi_{2}^{\dagger}\Phi_{2} + \Phi_{1}^{\dagger}\Phi_{1}\Phi_{3}^{\dagger}\Phi_{3} + \Phi_{2}^{\dagger}\Phi_{2}\Phi_{3}^{\dagger}\Phi_{3}) \\ &+ \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} + \Phi_{1}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{3}\Phi_{3}^{\dagger}\Phi_{2}) \\ &+ \lambda_{5} \left[e^{i\epsilon} [(\Phi_{1}^{\dagger}\Phi_{2})^{2} + (\Phi_{2}^{\dagger}\Phi_{3})^{2} + (\Phi_{3}^{\dagger}\Phi_{1})^{2}] + e^{-i\epsilon} [(\Phi_{2}^{\dagger}\Phi_{1})^{2} + (\Phi_{3}^{\dagger}\Phi_{2})^{2} + (\Phi_{1}^{\dagger}\Phi_{3})^{2}] \right], \end{split}$$

minima classification

$$\Phi_a = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_a^{1R} + i\Phi_a^{1I} \\ \Phi_a^{0R} + i\Phi_a^{0I} \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} \operatorname{Re} \phi_a^1 + i\operatorname{Im} \phi_a^1 \\ v_a e^{i\omega_a} + \operatorname{Re} \phi_a^0 + i\operatorname{Im} \phi_a^0 \end{pmatrix}$$

CP conserving(v,v,v)
(v,0,0)
 (v_1, v_2, v_3) up to indeces permutationCP breaking(v exp[i a], v,0)
(v exp[i a], v exp[-i a], r v)used in literature

model independent approach

Morisi-Peinado

Lavoura-Kuhbock

Lavoura-Kuhbock

DDM extended to quarks R. de Adelhart Toorop, FB, S.Morisi 11045676

Conclusions

- \star Charging the SM higgs under a discrete flavor symmetry (A4) is quite appealing
- \star Models more phenomenological interesting, thetal 3 starts different from zero, but...
- \star More constrained!
- * Even with a model independent approach higgs-gauge bosons constraints may rule out configurations already used
- \star Bounds arising from the fermion sector are even stronger

 \star A lesson for model builders: good alignment for mass matrices maybe disfavored/ruled out by phenomenology

 \star Not addressed in this talk: possible signatures at LHC, effects of CP violation arising by the vev alignments?

Conclusions

- \star Charging the SM higgs under a discrete flavor symmetry (A4) is quite appealing
- \star Models more phenomenological interesting, thetal 3 starts different from zero, but...
- \star More constrained!
- \bigstar Even with a model independent approach higgs-gauge bosons constraints may rule out configurations already used
- \star Bounds arising from the fermion sector are even stronger

 \star A lesson for model builders: good alignment for mass matrices maybe disfavored/ruled out by phenomenology

 \star Not addressed in this talk: possible signatures at LHC, effects of CP violation arising by the vev alignments?

