""" Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from tensorflow import keras from .. import initializers from .. import layers from ..utils.anchors import AnchorParameters from . import assert_training_model def default_classification_model( num_classes, num_anchors, pyramid_feature_size=256, prior_probability=0.01, classification_feature_size=256, name='classification_submodel' ): """ Creates the default classification submodel. Args num_classes : Number of classes to predict a score for at each feature level. num_anchors : Number of anchors to predict classification scores for at each feature level. pyramid_feature_size : The number of filters to expect from the feature pyramid levels. classification_feature_size : The number of filters to use in the layers in the classification submodel. name : The name of the submodel. Returns A keras.models.Model that predicts classes for each anchor. """ options = { 'kernel_size' : 3, 'strides' : 1, 'padding' : 'same', } if keras.backend.image_data_format() == 'channels_first': inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None)) else: inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size)) outputs = inputs for i in range(4): outputs = keras.layers.Conv2D( filters=classification_feature_size, activation='relu', name='pyramid_classification_{}'.format(i), kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=1023), bias_initializer='zeros', **options )(outputs) outputs = keras.layers.Conv2D( filters=num_classes * num_anchors, kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=777), bias_initializer=initializers.PriorProbability(probability=prior_probability), name='pyramid_classification', **options )(outputs) # reshape output and apply sigmoid if keras.backend.image_data_format() == 'channels_first': outputs = keras.layers.Permute((2, 3, 1), name='pyramid_classification_permute')(outputs) outputs = keras.layers.Reshape((-1, num_classes), name='pyramid_classification_reshape')(outputs) outputs = keras.layers.Activation('sigmoid', name='pyramid_classification_sigmoid')(outputs) return keras.models.Model(inputs=inputs, outputs=outputs, name=name) def default_regression_model(num_values, num_anchors, pyramid_feature_size=256, regression_feature_size=256, name='regression_submodel'): """ Creates the default regression submodel. Args num_values : Number of values to regress. num_anchors : Number of anchors to regress for each feature level. pyramid_feature_size : The number of filters to expect from the feature pyramid levels. regression_feature_size : The number of filters to use in the layers in the regression submodel. name : The name of the submodel. Returns A keras.models.Model that predicts regression values for each anchor. """ # All new conv layers except the final one in the # RetinaNet (classification) subnets are initialized # with bias b = 0 and a Gaussian weight fill with stddev = 0.01. options = { 'kernel_size' : 3, 'strides' : 1, 'padding' : 'same', 'kernel_initializer' : keras.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=111), 'bias_initializer' : 'zeros' } if keras.backend.image_data_format() == 'channels_first': inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None)) else: inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size)) outputs = inputs for i in range(4): outputs = keras.layers.Conv2D( filters=regression_feature_size, activation='relu', name='pyramid_regression_{}'.format(i), **options )(outputs) outputs = keras.layers.Conv2D(num_anchors * num_values, name='pyramid_regression', **options)(outputs) if keras.backend.image_data_format() == 'channels_first': outputs = keras.layers.Permute((2, 3, 1), name='pyramid_regression_permute')(outputs) outputs = keras.layers.Reshape((-1, num_values), name='pyramid_regression_reshape')(outputs) return keras.models.Model(inputs=inputs, outputs=outputs, name=name) def __create_pyramid_features(backbone_layers, pyramid_levels, feature_size=256): """ Creates the FPN layers on top of the backbone features. Args backbone_layers: a dictionary containing feature stages C3, C4, C5 from the backbone. Also contains C2 if provided. pyramid_levels: Pyramid levels in use. feature_size : The feature size to use for the resulting feature levels. Returns output_layers : A dict of feature levels. P3, P4, P5, P6 are always included. P2, P6, P7 included if in use. """ output_layers = {} # upsample C5 to get P5 from the FPN paper P5 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C5_reduced')(backbone_layers['C5']) P5_upsampled = layers.UpsampleLike(name='P5_upsampled')([P5, backbone_layers['C4']]) P5 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P5')(P5) output_layers["P5"] = P5 # add P5 elementwise to C4 P4 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C4_reduced')(backbone_layers['C4']) P4 = keras.layers.Add(name='P4_merged')([P5_upsampled, P4]) P4_upsampled = layers.UpsampleLike(name='P4_upsampled')([P4, backbone_layers['C3']]) P4 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P4')(P4) output_layers["P4"] = P4 # add P4 elementwise to C3 P3 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C3_reduced')(backbone_layers['C3']) P3 = keras.layers.Add(name='P3_merged')([P4_upsampled, P3]) if 'C2' in backbone_layers and 2 in pyramid_levels: P3_upsampled = layers.UpsampleLike(name='P3_upsampled')([P3, backbone_layers['C2']]) P3 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P3')(P3) output_layers["P3"] = P3 if 'C2' in backbone_layers and 2 in pyramid_levels: P2 = keras.layers.Conv2D(feature_size, kernel_size=1, strides=1, padding='same', name='C2_reduced')(backbone_layers['C2']) P2 = keras.layers.Add(name='P2_merged')([P3_upsampled, P2]) P2 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=1, padding='same', name='P2')(P2) output_layers["P2"] = P2 # "P6 is obtained via a 3x3 stride-2 conv on C5" if 6 in pyramid_levels: P6 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P6')(backbone_layers['C5']) output_layers["P6"] = P6 # "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6" if 7 in pyramid_levels: if 6 not in pyramid_levels: raise ValueError("P6 is required to use P7") P7 = keras.layers.Activation('relu', name='C6_relu')(P6) P7 = keras.layers.Conv2D(feature_size, kernel_size=3, strides=2, padding='same', name='P7')(P7) output_layers["P7"] = P7 return output_layers def default_submodels(num_classes, num_anchors): """ Create a list of default submodels used for object detection. The default submodels contains a regression submodel and a classification submodel. Args num_classes : Number of classes to use. num_anchors : Number of base anchors. Returns A list of tuple, where the first element is the name of the submodel and the second element is the submodel itself. """ return [ ('regression', default_regression_model(4, num_anchors)), ('classification', default_classification_model(num_classes, num_anchors)) ] def __build_model_pyramid(name, model, features): """ Applies a single submodel to each FPN level. Args name : Name of the submodel. model : The submodel to evaluate. features : The FPN features. Returns A tensor containing the response from the submodel on the FPN features. """ return keras.layers.Concatenate(axis=1, name=name)([model(f) for f in features]) def __build_pyramid(models, features): """ Applies all submodels to each FPN level. Args models : List of submodels to run on each pyramid level (by default only regression, classifcation). features : The FPN features. Returns A list of tensors, one for each submodel. """ return [__build_model_pyramid(n, m, features) for n, m in models] def __build_anchors(anchor_parameters, features): """ Builds anchors for the shape of the features from FPN. Args anchor_parameters : Parameteres that determine how anchors are generated. features : The FPN features. Returns A tensor containing the anchors for the FPN features. The shape is: ``` (batch_size, num_anchors, 4) ``` """ anchors = [ layers.Anchors( size=anchor_parameters.sizes[i], stride=anchor_parameters.strides[i], ratios=anchor_parameters.ratios, scales=anchor_parameters.scales, name='anchors_{}'.format(i) )(f) for i, f in enumerate(features) ] return keras.layers.Concatenate(axis=1, name='anchors')(anchors) def retinanet( inputs, backbone_layers, num_classes, num_anchors = None, create_pyramid_features = __create_pyramid_features, pyramid_levels = None, submodels = None, name = 'retinanet' ): """ Construct a RetinaNet model on top of a backbone. This model is the minimum model necessary for training (with the unfortunate exception of anchors as output). Args inputs : keras.layers.Input (or list of) for the input to the model. num_classes : Number of classes to classify. num_anchors : Number of base anchors. create_pyramid_features : Functor for creating pyramid features given the features C3, C4, C5, and possibly C2 from the backbone. pyramid_levels : pyramid levels to use. submodels : Submodels to run on each feature map (default is regression and classification submodels). name : Name of the model. Returns A keras.models.Model which takes an image as input and outputs generated anchors and the result from each submodel on every pyramid level. The order of the outputs is as defined in submodels: ``` [ regression, classification, other[0], other[1], ... ] ``` """ if num_anchors is None: num_anchors = AnchorParameters.default.num_anchors() if submodels is None: submodels = default_submodels(num_classes, num_anchors) if pyramid_levels is None: pyramid_levels = [3, 4, 5, 6, 7] if 2 in pyramid_levels and 'C2' not in backbone_layers: raise ValueError("C2 not provided by backbone model. Cannot create P2 layers.") if 3 not in pyramid_levels or 4 not in pyramid_levels or 5 not in pyramid_levels: raise ValueError("pyramid levels 3, 4, and 5 required for functionality") # compute pyramid features as per https://arxiv.org/abs/1708.02002 features = create_pyramid_features(backbone_layers, pyramid_levels) feature_list = [features['P{}'.format(p)] for p in pyramid_levels] # for all pyramid levels, run available submodels pyramids = __build_pyramid(submodels, feature_list) return keras.models.Model(inputs=inputs, outputs=pyramids, name=name) def retinanet_bbox( model = None, nms = True, class_specific_filter = True, name = 'retinanet-bbox', anchor_params = None, pyramid_levels = None, nms_threshold = 0.5, score_threshold = 0.05, max_detections = 300, parallel_iterations = 32, **kwargs ): """ Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly. This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph. These layers include applying the regression values to the anchors and performing NMS. Args model : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs. nms : Whether to use non-maximum suppression for the filtering step. class_specific_filter : Whether to use class specific filtering or filter for the best scoring class only. name : Name of the model. anchor_params : Struct containing anchor parameters. If None, default values are used. pyramid_levels : pyramid levels to use. nms_threshold : Threshold for the IoU value to determine when a box should be suppressed. score_threshold : Threshold used to prefilter the boxes with. max_detections : Maximum number of detections to keep. parallel_iterations : Number of batch items to process in parallel. **kwargs : Additional kwargs to pass to the minimal retinanet model. Returns A keras.models.Model which takes an image as input and outputs the detections on the image. The order is defined as follows: ``` [ boxes, scores, labels, other[0], other[1], ... ] ``` """ # if no anchor parameters are passed, use default values if anchor_params is None: anchor_params = AnchorParameters.default # create RetinaNet model if model is None: model = retinanet(num_anchors=anchor_params.num_anchors(), **kwargs) else: assert_training_model(model) if pyramid_levels is None: pyramid_levels = [3, 4, 5, 6, 7] assert len(pyramid_levels) == len(anchor_params.sizes), \ "number of pyramid levels {} should match number of anchor parameter sizes {}".format(len(pyramid_levels), len(anchor_params.sizes)) pyramid_layer_names = ['P{}'.format(p) for p in pyramid_levels] # compute the anchors features = [model.get_layer(p_name).output for p_name in pyramid_layer_names] anchors = __build_anchors(anchor_params, features) # we expect the anchors, regression and classification values as first output regression = model.outputs[0] classification = model.outputs[1] # "other" can be any additional output from custom submodels, by default this will be [] other = model.outputs[2:] # apply predicted regression to anchors boxes = layers.RegressBoxes(name='boxes')([anchors, regression]) boxes = layers.ClipBoxes(name='clipped_boxes')([model.inputs[0], boxes]) # filter detections (apply NMS / score threshold / select top-k) detections = layers.FilterDetections( nms = nms, class_specific_filter = class_specific_filter, name = 'filtered_detections', nms_threshold = nms_threshold, score_threshold = score_threshold, max_detections = max_detections, parallel_iterations = parallel_iterations )([boxes, classification] + other) # construct the model return keras.models.Model(inputs=model.inputs, outputs=detections, name=name)