

Nuevos retos de la astrofísica española

VII Reunión Científica de la SEA

Barcelona, 12-15 septiembre 2006

Review of Astroparticle Physics experiments (in Europe)

> Antonio Ferrer IFIC-Universitat de València

Particle Astrophysics

Particle Astrophysics is the field that uses high energy (particle) physics techniques to study astrophysical processes

. Astronomer:

. Extension of observation to all electromagnetic spectrum

. Astrophysicist:

. Explanation of astrophysical processes O(10²⁶ m) with particle physics phenomena O(10⁻¹⁷ m)

. Particle Physicist (& Cosmologist):

. Only possibility to access to extremely high energies (BigBang)

Particle Astrophysics ~ Cosmic Ray Physics

"Cosmic ray particles which we detect directly on earth, at the top of the atmosphere and in the interplanetary medium are the only high energy particles of genuinely cosmic origin which we can detect" M.S.Longair *High Energy Astrophysics*

Underground Physics

- Physics in Underground Labs. developed during last 20 years with discoveries of great scientific impact.
- screening of cosmic rays coming from space (one muon per cm² per minute in the earth surface).
- PROTON DECAY
- NEUTRINO PHYSICS
- DARK MATTER SEARCH

Underground Laboratories

K THE

IUS

Institute of Underground Science in Boulby mine.

European Underground Labs

CEA CNRS CLSM

Laboratoire Souterrain de Modane, France

Pyhäsalmi Mine

(plans...)

Laboratori Nazionali del Gran Sasso, Italy

Laboratorio Subterraneo de Canfranc, Spain

LSC

International Somport road tunnel

14

10-02

Laboratorio Subterráneo de Canfra

- Astroparticle Physics European Coordination
 - Steering Committee
 - Peer Review Committee
- Formed by large *funding agencies* for APP in Belgium, Germany, France, Greece, UK, Italy, Netherlands, Portugal, Switzerland and Spain
- Further countries joined or are going to join: Finland, Ireland, Poland, Slovenia, Tchechia, Sweden, ...

ILIAS Networks, JRAs, Transnational Access DUA

KM3

ASPERA (ERANET; as ASTRONET) Web page Database Roadmap

Integrated Large Infrastructures for Astroparticle Science

~1200 scientists, budget ~10 M€

(N2) Deep Underground science laboratories
(N3) Direct dark matter detection
(N4) Search on double beta decay
(N5) Gravitational wave research
(N6) Theoretical astroparticle physics

gravitational waves, dark matter double beta decay

(JRA1) Low background techniques underground (JRA2) Double beta decay European observatory (JRA3) Study of noise in gravitational wave detectors

(TA1) Access to the EU Deep Laboratories

www.ilias.in2p3/fr

- ERA-Net "Implementation of European Coordination in Astroparticle Physics"
- 2.8 M€, among others for:
 - Communication Structure
 - ApPEC secretariat
 - ApPEC web page
 - AppEC roadmap
 - Meetings
 - Support of bottom-up activities (like ILIAS)
 - Framework to direct part of the national rescources of the agencies to transnational reserach programs

Has just been approved !

Programs running or in construction European leadership

NAME	TYPE	COST	AUTHORS	STATUS	START	ASPERA MEMBER:	OTHERS
DAMA/LIBR.	darkmatter	6,5	20	running	1990	IT	CHINA
Baikal	Neutrino Telescopes	2,5	55	running	1998	DE	RU
LVD	Low energy Neutrine	0	71	running	2001	IT	US,RU,BRA,JA
AURIGA	Gravitational waves	7	23	running	2003	IT	
PVLAS	darkmatter	3,2	13	running	2003	IT	
NEMO3	doublebeta	2,5	48	running	2003	FR,CZ,UK	US,RU,JP
CTF	Low energy Neutrin	2	65	running	2003	IT,FR,DE,PO	RU,HUN,US
HDMS	darkmatter	1,5	6	running	2003	DE	RU
Kascade-Gran	Cosmic Ray HE	15	60	running	2004	DE,IT,PO	ROM
CRESST	darkmatter	8	30	running	2004	DE.UK.IT	
HESS	Gamma Telescopes	8	100	running	2004	DE.FR.UK.IR.CZ	AR,SAF,NAM
ROG	Gravitational waves	5	30	running	2004	IT.CH	
CAST	darkmatter	3	62	running	2004	FR,DE,GR,ES,CH	CA,CR,RU,TU,US
CUORICINO	doublebeta	1	43	running	2004	IT,NL,ES	US
VIRGO	Gravitational waves	85	120	running	2005	FR,IT	
GEO 600	Gravitational waves	10	85	running	2005	DE,UK,ES	
ZEPLIN I-III	darkmatter	3	30	running	2005	PT,UK	RU,US
MAGIC	Gamma Telescopes	3	130	running	2005	DE,ES,IT,CH,PO,FI	US,UKR,AR,BU
GENIUS-TF	darkmatter	2,1	6	running	2005	DE	RU
TGV	doublebeta	1	15	running	2005	FR,CZ	RU,SL
DRIFT	darkmatter	1	30	R&D	2005	UK	US
DUAL R&D	Gravitational waves	0,6	21	R&D	2005	IT	
LOPES	Cosmic Ray HE	0,5	76	R&D	2005	DE,NE,PO,IT	ROM
CODALEMA	Cosmic Ray HE	0,1	15	R&D	2005	FR.	
NuMoon	Cosmic Ray HE		15	running	2005	NE	
AGILE	Gamma Telescopes	40	44	construction	2006	IT	
BOREXINO	Low energy Neutrin	40	65	construction	2006	IT.FR.DE.PO	RU,HUN,US
PAMELA	Cosmic ray LE	21	63	construction	2006	IT.DE.SW	RU,US,IN
ARGO-YBJ	Gamma Telescopes	12	100	construction	2006	IT	CHINA
EDELWEISS	darkmatter	6	45	construction	2006	FR.DE	RU
WARP	darkmatter	2,5	27	R&D	2006	IT	US
MiniGRAIL	Gravitational waves	1	12	R&D	2006	NE,IT,CH	
MANU2	singlebeta	0,65	8	R&D	2006	IT	
RODEBUD	darkmatter		22	construction	2006	FR,ES	
ANAIS	darkmatter		18	construction	2006	ES	
ANTARES	Neutrino Telescopes	20	150	construction	2007	FR.DE.IT.NE.SP	RU
ICARUS	Low energy Neutrin	20	25	construction	2007	CH_FR_IT_PO_ES_UK	RU
NEMO	Neutrino Telescopes	13	70	R&D	2007	IT	
GERDA	doublebeta	10	70	construction	2007	DE,IT,BE	PO,RU
NESTOR	Neutrino Telescopes	7	30	construction	2007	GR_DE_CH	RUJUS
Totals		364,65	1918				

Table of European lead astroparticle programs whose funding is almost complete. The table contains the name of the program, its type, its cost in million Euros, the number of authors signing the publications, starting date, the aspera partners participating in it and the non-aspera partners

350M€/5 years investments and 2000 physicists

6 questions* (Astroparticle physics)

- 1. What is the Universe made of ?
- 2. Do protons have a finite life time ?
- 3. What are the properties of neutrinos ? What is their role in cosmic evolution ?
- 4. What do neutrinos tell us about the interior of Sun and Earth, and about Supernova explosions ?
- 5. What is the origin of cosmic rays ? What is the view of the sky at extreme energies ?
- 6. What is the nature of gravity ? Can we detect gravitational waves ? What will they tell us about violent cosmic processes ?

*"Science is the art of replacing unimportant questions that can be answered by important ones which cannot" Edward B. Ferguson Jr. 1976.

1) What is the Universe made of?

- 3 main experimental questions of today:
 - What is the mechanism of inflation?
 - From WMAP to PLANCK(2008) and beyond ex. SAMPAN(2020)
 - What is the equation of state of dark energy?
 - From a ground program to space ex.SNAP/DUNE(2015)
 - What is the nature of dark matter particles?
 - One ton observatory of dark matter particles based on bolometers or noble liquids (2011)

+Of the 3 questions

- $\ensuremath{\oplus}$ The last is definitively included in the roadmap
- $\oplus\,\mbox{The}$ inclusion of the second is under discussion in ApPEC and in the CERN Strategy group
- \oplus The first is considered in other roadmaps (ASTRONET) with participation of the astroparticle community

Detection of Dark Matter

- Direct detection
- CDMS-II, Edelweiss, DAMA,

- Indirect detection
- SuperK, AMANDA, ICECUBE, Antares, etc

complementary techniques are getting into the interesting region of parameter space

Dark matter, Detection methods

Nuclear (vs. electronic) recoil discrimination: event by event or statistical WIMP signal Radioactive background

NaI scintillation experiments

EXPERIMENT AND SITE	M (Kg)	E _{Thr} (KeV)	B (c/KeV Kg day) (Average) Before PSD	OBSERVATIONS
DAMA LNGS	9 x 9.70	2	1~1.5 (at 2-3 KeV) 1.5~2 (at 3-6 KeV) 0.5 (at 2.5 KeV) BEST <i>C</i> RYSTAL	Annual modulation effect reported along four annual cycles (4s) 5 th and 6 th cycles soon Phys. Lett. B450 (99)448, ibid B480 (2000) 23 COMPLETED
ELEGANT Oto Cosmo	670	4-5	8-10 (at Threshold)	Old set-up upgraded. Large BKG from ²¹⁰ Pb (10 mB/Kg)
ANAIS LSC, Canfranc Prototype running	PROTOTYPE 10.7 FINAL SET 10 × 10.7	2	~1.5 (at 4-10 KeV)	107 Kg intended for ann. mod. search. Old set upgraded plus new radiopure crystals. Preliminary 1200 Kg day. R+D in course In operation Phase I.
NAIAD (Boulby)	SET OF 48→56kg (8 crystals)	2	~6-10 (4-20 keV)	Set of NaI encapsulated and unencapsulated In operation.
LIBRA IN DAMA LNGS	250			Set of NaI crystals. R+D on detector radiopurity crystals from ultrapure powders (DAMA-ST.GOBAIN). In operation.

DAMA: Final results

Exposure 107731 Kg day (approx. 300 Kg year)

ANNUAL MODULATION MODEL INDEPENDENT RESULT

Residual of the rate versus time, for the energy interval 2 to 6 keV A cos ω (t - t_o), t_o=152.5 d, T=1 y (continuous line) Fitted (all parameters free): A = (0.0200+/-0.0032) counts/keV/kg/day

 $t_0 = (140 + /-22) d T = (1.00 + /-0.01) y$

Annual modulation effect

Model for Neutralino Galactic Halo:

Dark matter search limits

Detect Dark Matter to see *it is there*.

Produce Dark Matter in accelerator experiments to see what it is.

2) Proton decay & next generation large underground detectors

Higher dimension models (eg. 6D SO(10)) not included Definitively not exhaustive neither p channels nor n decay...

3) ¿Qué sabemos de los neutrinos?

- **K** Existen 3 neutrinos ligeros (LEP): N_v =2.994 ± 0.012
- Son mucho más ligeros que sus compañeros leptónicos cargados (¿por qué?):

Ð	511 keV	ve	< 3 eV
μ	106 MeV	v_{μ}	<0.19 MeV
τ	1.78 GeV	ντ	<18.2 MeV

- Existe un déficit de neutrinos solares, atmosféricos, reactores y aceleradores: evidencia de oscilación de neutrinos son masivos
- ✗ Los autoestados de masa y débiles son diferentes ➡ oscilaciones
- Scilaciones de neutrinos es la primera indicación de física más allá del Modelo Estándar

The Neutrino mass

Experimental detection of neutrino oscillations

Neutrinos have got mass

How large is $m(v_e)$, what is the mass hierarchy?

1. Tritium β-decay

 $m(v_e)^2 = -0.6 \pm 2.2 \pm 2.1 \text{ eV}^2$ Mainz $\Rightarrow m(v_e) \le 2.3 \text{eV} (95\%)$

2. 0νββ-decay

 $\langle m(v_e) \rangle \approx 0.4 \text{ eV}$ to be confirmed

3. v-Oscillations

 $7,3.10^{-5}eV^2 < \Delta m_{12}^2 < 9.3.10^{-5}eV^2$ solar

1,6·10⁻³eV² < Δm_{23}^2 < 3.6·10⁻³eV² atm. ⇒ There is a v with $m_{vi} \ge 0,009$ eV and one with $m_{vi} \ge 0,05$ eV

4. Cosmology

 $\sum m_{vi} \leq 0,7 eV$

Tritium β -decay

Tritium β Decay: ${}^{3}H \rightarrow {}^{3}He^{+} + e^{-} + v_{e}$

Superallowed E₀ = 18.6 keV † _{1/2} = 12.3 a

 $dN/dE = K F(E,Z) p E_{tot} (E_0 - E_e) \Sigma |U_{ei}|^2 [(E_0 - E_e)^2 - m(v_i)^2]^{1/2}$ $m(
u_e)^2 = \sum |U_{ei}|^2 m(
u_i)^2$ i=11.2 10 const. offset $\sim m^2(v_p)$ 8 [... 0.8 [g. n $:= \sum_{i} |U_{ei}|^2 m_i^2$ 6 N [a.u.] eount rate 0.0 $m_v = 0 eV$ 4 ~2*10⁻¹³ 2 0.2 $m_{\nu} = 1 \text{ eV}$ 0 0 **H**20 0.5 0.5 -2.55 10 15 -21.5 \bigcirc 3 energy E [keV] $E-E_{0}$ [eV]

Double beta decay

- Large number of even-even nuclei undergo double-beta decay, but not single-beta decay
- Standard Model process of 2νββ is also allowed of course
- Enrichment procedure in place for about 10 isotopes
- You do not search for peaks in unknown places: you always know where to look
- Q value of the decay is well known (difference in mass between two isotopes)

$$\langle m_{\nu} \rangle = c_{3}^{2} c_{2}^{2} m_{1} + s_{3}^{2} c_{2}^{2} e^{i\phi_{2}} m_{2} + s_{2}^{2} e^{i\phi_{3}} m_{3}$$

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + e^- + e^- + (v + v)$

Double beta decay

Ultra-high energy cosmic ray

10日本 241月1

high energy photons

the the

11

Gravitational waves

Neutrino Sources

There are many sources of neutrinos, "natural" and "artificial":

- 1) "Fission neutrinos": bombs and reactors. (~ 10^{11} cm⁻²s⁻¹)
- Accelerator neutrinos. (~10⁶ cm⁻²s⁻¹)
 These have been the standard HEP v-sources since the 60's:
 - a) "Classical" (K, π decay)
 - b) Beam Dump (v_{τ} just discovered)
 - c) Future Hadron Machines
 - d) Future Muon-Colliders (v-factories)
- 3) Solar neutrinos. (~ 10^{11} cm⁻²s⁻¹)
- 4) Atmospheric neutrinos. (~ 10 cm⁻²s⁻¹)
- 5) Supernova neutrinos.
- 6) Other astrophysical sources.
- 7) Big-bang neutrinos (the ultimate chalenge).

Neutrino sources

Solar Neutrinos

•The flux of solar neutrinos is calculated in the framework of the Standard Solar Model, J. Bahcall et al. The model assumes hydrostatic and thermal equilibrium luminosity = rate of energy production:

 $\cdot L = 3.846 \times 10^{26}$ watts

•L °is directly related to the total v_e flux. There are several fusion reaction chains, but they all amount to:

 $\cdot 4p \rightarrow ^{4}He + 2e^{+} + 2v_{e}$ (Q=24.68 MeV)

•e⁺s (with e⁻) give $\gamma\gamma$. Assuming that γ 's and kinetic energy (except that of the v's) go to heat, the heat production per reaction is $W = Q + 4m_ec^2 - \langle Ev's \rangle = 26.1 \text{ MeV}$

•The total number of v_e 's produced by the Sun is then:

 $\cdot N_v = 2 \ f \ /W = 1.8 \times 30^{38} v_e \ . \ s^{-1}$

•Flux on Earth surface = $6.4 \times 10^{10} v_e / \text{cm}^2 \text{s} \parallel \text{l}$

•(day and night)

A) The pp cycle Solar Fusion Reactions

B) The Carbon-Nitrogen-Oxygen Cycle (CNO-cycle)

$$\begin{array}{rcl} p + {}^{15}N \rightarrow {}^{12}C + {}^{4}He & p + {}^{15}N \rightarrow {}^{16}O + \gamma \\ p + {}^{12}C \rightarrow {}^{13}N + \gamma & p + {}^{16}O \rightarrow {}^{17}F + \gamma \\ {}^{13}N \rightarrow {}^{13}C + e^{+} + \nu_{e} & {}^{17}F \rightarrow {}^{17}O + e^{+} + \nu_{e} \\ p + {}^{13}C \rightarrow {}^{14}N + \gamma & p + {}^{17}O \rightarrow {}^{14}N + {}^{4}He \\ p + {}^{15}N \rightarrow {}^{16}O + \gamma \\ {}^{15}O \rightarrow {}^{15}N + e^{+} + \nu_{e} \end{array}$$

Solar Neutrino Flux

Solar Neutrino Experiments

GALLEX RESULTS

Solar Neutrino Experiments

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Simple algebraic equations can be set to obtain independently the different contributions to the solar neutrino flux.

SNO (Canadá)

SNO: Sudbury neutrino observatory (Canadá)

- 1 KT D₂0
- 9500 PMT's
- 12 m diámetro (bola ext.)
- 1.7 KT H₂O tanque interno⁰
- 5.4 KT H₂O tangue externo

Atmospheric Neutrinos

ATMOSPHERIC NEUTRINOS

Máxima oscilación

Oscilaciones (v-solares)

Oscilaciones (v-atmosféricos)

Supernova Neutrinos

Neutrinos are responsible for the core cooling and, ultimately, for the supernova explosion.

Actually detected in 1987 by the Kamiokande-II and IMB detectors from Supernova 1987A.

SN1987 A neutrinos

ANTARES 0.1 km² detector

Antares: Scientific scope

v oscillationsNeutralino searchv from (extra-)(Observation of first Self-annihilation at center
oscillation minimum)of Earth, Sun, Galaxygalactic sources $\chi\chi \rightarrow X \rightarrow v$ $\chi\chi \rightarrow X \rightarrow v$ AGN, GRB, ...

Pointlike sources

Wide range of predictions of neutrino fluxes for pointlike sources

EGRET source	# of sources	ANTARES	AMANDA
		43°N	S Pole
All	271	89%	43%
AGN	94	86%	52%
Pulsars	5	100%	40%
Unidentified:			
Gal. Plane	55	93%	36%
Off Gal. Plane	116	90%	40%
Observ.		source dep.	100%
		•	

GRB's

ANTARES will keep all its data within ±100 secs of a GRB warning signal.

5) Cosmic Rays Spectrum

- >12 orders in Energy
- >30 orders in Flux
- Power Law $\Phi = \Phi_0 E^{-\gamma}$ $E < 10^{15} \gamma \sim 2.7$ *Galactic* $10^{15} < E < 10^{19} \gamma \sim 3.0$ $E > 10^{19} \gamma \sim 2.8$ *Extragalactic*

Cosmic Ray Spectrum - Ankle

Cosmic Ray Composition

- .98% nuclei
 - .87% protons
 - .12% He
 - .1% heavier elements
- . All elements present up to Uranium
- . Atoms reach heliosphere fully ionized
- .2% electrons and positrons
 - . Steeper spectra at top of the atmosphe
 - e⁺/(e⁺+e⁻) ~0.2 (<1 GeV) ~0.1(2 GeV)

Cosmic Ray Composition

- CR chemical composition similar to Solar system abundances
 - . Li,Be,B,F enriched
 - . Sc, Ti, V, Cr, Mn enriched
- Apart from Li, these ions are not primordial nor produced in stars
 - Produced by spallation reactions in interstellar medium
- . Composition points to stellar origin
 - Odd products more frequent in thermonuclear reactions in stars
 - C,N,O and Fe peaks compatible with thermonuclear chains in stars
- . Li,Be,B energy spectra steeper than C or O
 - . At higher energies less fragmentation

GCR.			
Data taken at	Solar minim	um Aug 1997-Apr 1998	
H-He	BESS	170 MeV/nuc	
³ Li- ²⁸ Ni	CRIS	170 MeV/nuc	
²⁹ Cu- ³⁰ Zn	CRIS	150-550 MeV/nuc	

K.Lodders Ap.J., 591 (2003) 1220

Solar system. Photospheric spectroscopy CI Chondritic meteorites

Exp. techniques in HE cosmic rays

Pier re Auger Obs envatory

How UHE CR are accelerated? •Why are they not attenuated by CMB? •What is their composition?

Are they decay products of new particles?

Detection of ground particles by an array 1600 Cherenkov water tanks with spacing 1.5 km, (total surface of 3000 km²) Detection of fluorescence light induced by the shower in the atmosphere. Currently 2/3 deployed, end 2007. First conclusive results mid-2007

The riddle

Pierre Auger Observatory

• Apparatus

- -Total surface 3000 km²
- -1600 round Water-Cerenkov detectors
 - •11.3m²×1.2m in a 1.5 km array
- -24 fluorescence detectors in 4 stations
 - •12 m² mirrors
 - •440 PM
- -Combines strengths of both techniques

Physics

- -UHECR spectra and composition E>10¹⁹ eV
 - Independent measurement techniques allow control of systematic
 - Reliable energy and angle measurement
 - Primary mass measured in complementary

water

HE Cosmic Rays

HiRes AGASA AUGER

Second generation y telescopes

CANGAROO-III (2004)

VERITAS (2006)

Microquasar (MAGIC)

	1204
Dimensions	

VO1KC

AMS

NASDA

AMS-02 Spectrometer

Superconducting Magnet

Silicon Tracker

- Scintillator System
- Transition Radiation
 Detector
- •Ring Imaging Cerenkov
- •Electromagnetic Calorimeter

AMS/y Sky Survey

AMS-02 (2009?)

 10^{-1} 10^{-1}

- Understand the spectra and composition of cosmic ray particles,
- Are there cosmic antiparticles?
- Are there dark matter decay products?
- In order to search for new physics one must first understand the CR in our galaxy

Figure 1 - Rapport B/C en fonction de l'énergie en GeV/nucleon. Les courbes correspondent aux différentes valeurs compatibles avec les données à basse énergie de l'indice spectral du coefficient de diffusion, de haut en bas δ =0.3-0.46-0.6-0.7-0.85. Les symboles sont le résultat d'une simulation basée sur les statistiques de comptage attendues (voir texte).

6) What is the nature of Gravity? Can we detect gravitational waves? What will they tell us about violent cosmic processes

Now: GEO-600, VIRGO (+ upgrades)
> 2010: Adv VIRGO (within budget), Adv LIGO
> 2014 LISA in space
> 2015: Large underground interferometer

Understand mergers, pulsars, supernova, stochastic background
Move from astrophysics to cosmology
Tests of General relativity

ApPEC Roadmap (GW Detectors Summary)

Astroparticle Physics is becoming an attractive discipline in Science

ApPEC coordination fruitful

Lot of experiments in progress

Lot of work to do

Still many important questions to be answered