

Particle and Astroparticle Physics in Spain

Antonio Ferrer
Past (2000-2003) HEP Spanish Committee chairman
IFIC-Universitat de València & CSIC

SPAIN

```
A total of 44,4 M hab. (8,75% foreign residents)
GNP 900.000 M€
R&D 9.000 M€ (~1%)
CERN Contribution ~80 MCHF (~8%)
          to be compared (G 20%)
                        (UK 17%)
                        (F 15%)
                        (I 12%)
```

Research groups in Spain

Research institutions in Spain

Particle & Astroparticle physics in the Vth National Plan (2004-2007)

One of the 23 National R&D Programs

Basic research:

Astronomy & Astrophysics,
Particle Physics,
Physics,
etc...

Priorities of the National Program

- 1. Particle Physics (CERN).
 - · Quarks & Leptons, Neutrino, Hadrons, Theory.
- 2. Astroparticle physics & Cosmology.

3. Experimental Nuclear Physics (N-TOF, ISOLDE, GSI).

4. GRID Technologies.

5. Detectors and Accelerators Tecnologies.

National Program of Particle Physics (2006)

A total of ~ 60 research projects

About 400 researchers, 62 technicians, 212 fellows & st.

11,8 M€ 2006 budget

Particle physics funding

6 questions* defining Particle physics

- 1. Which are the ultimate matter constituents?
- 2. Which are the forces that bind or break them?
- 3. By which mechanism do constituents get their masses? Does the Higgs boson exist?
- 4. What is the nature of neutrinos?
- 5. Is supersymmetry a valid theory?
- 6. Are there any hints of a GUT theory?

^{*&}quot;Science is the art of replacing unimportant questions that can be answered by important ones which cannot" Edward B. Ferguson Jr. 1976.

The Standard Model

Generation: I II III

Leptones

$$v_e$$
 e

$$oxed{
u_{\mu}}$$

Quarks

$$d \mid d \mid d$$

$$b$$
 b b

Bosones "Gauge"

$$Z^0$$
 W^+ γ

Spanish contributions to the LHC

ATLAS

IFIC-Valencia TiCal 315 submodules (50% of EB)

1500 PMs

ROD

IFIC-Valencia STC Barcelona IFAE

200 silicon modules (+IMB)

TiCal

315 submodules

Madrid UAM

IFCA Santander

Madrid UAM

65 modules (1 Extended Barrel)

Forward LAr Calorimeter

CMS

CIEMAT

Chambers MB2 (70)

Electronics

Alignment

Trigger, Electronics

LHCb

USC

UB-URL

Si Tracker

RICH (PM, Electronics)

LCG

All groups

Experimental projects at IFIC

Particle & Astroparticle

- **LHC-ATLAS:**
 - **TiCal**
 - **SCT**
 - **▶**GRID computing
 - **Software**
- K2K
- **Antares**
- B-Factory/BaBar
- ►LEP/Delphi
- > Accelerator Physics
- **▶**Detector R&D

Nuclear Physics

- >γ-Spectroscopy
 - **n**TOF
 - **>**ISOLDE
 - FAIR, ALBA
- **►** Nuclear Reactions
 - **Hades**
 - **TAPS**
- **►**Integral

Medical Applications

- Nuclear Medicine
- CIMA

LHC-ATLAS

Detector subsystems

Software and Simulation

Inner Detector Alignment
B-tagging techniques
Higgs in MSSM and Top quark
production

LHC Accelerator Physics:

Luminosity and Fwd Physics with ATLAS:

Optics design & Beam Dynamics simulation for an absolute Luminosity determination

LHC Injector (SPS)

Optics design, modelling of machine, study of non-linear resonance driving terms, localisation of sources of non-linearity

ATLAS-TiCal

Submodules Construction

315 iron submodules assembled (900 kg each),

half extended barrel

Photomultipliers Testbench

1750 (17.5%) of the Tilecal photomultipliers tes in test bench labyiew

Read Out Driver (ROD)

Design, assembly, test and commissioning of the 32 ROD electronic boards to calculate energy, time and quality information of the more than 10.000 channels

ATLAS-SCT

Characterization, assembly, metrology, bonding and test of 220 modules with 4 silicon wafers each and its corresponding read out electronics of the Atlas Forward Tracker

Forward outer module

TileCal Submodule

TileCal Module

Spain built 1 EB = 64 modules 640 Tons

50% submodules in Valencia (IFIC)
50% submodules in Barcelona (IFAE)

Extended Barrel mounted and instrumented in IFAE

SCT (Silicon inner tracker)

IFIC - Valencia CNM-Barcelona

2 Wheels

200 modules

Test, Microbonding, Mount

IFIC, SCT clean room

IFIC, clean room (SCT)

ATLAS-GRID GRID Infraestructure at IFIC

> 8 Intel servers

CPU:

> High availability GRID center for ATLAS (Tier 2)

- > Production of simulated data. Data Challenges
- Distributed analysis facility
- ➤ Support for 20 physics analysis (common effort of spanish groups in ATLAS)
- ➤ R&D in GRID technologies and e-Science

CPU:

▶67 Athlon K7 (a) 1.2 GHz

▶67 Athlon K7 @ 1.4 GHz

► RAM: 1 Gbytes

≥134 PC's en 6 racks

► HD: 40 Gbytes (~2 Gbytes Linux RH 7.3)

➤NIC: FastEthernet (100 Mps)

- >8 disc servers (8 TBytes),
- ➤ Robot de cintas 140 TBytes
 - >STK L700e
 - **≻**700 slots
 - >4 x drives HP LT02 (200 GB nativo, 400 GB comp.)

BaBar: Asymmetric B-Factory at SLAC

- Very rich B, charm and tau physics program
- Search for CP Violation in B meson decays and test at this low energy scale the SM
- CP violation established in 2001
- Direct CP violation established in August 2004
- > Try to open windows on new Physics
- Since 1999, recorded ~260 M BB pairs. ~4-8 times more by end of decade

BaBar: Asymmetric B-Factory at SLAC

Silicon Vertex Tracker (SVT) reconstruction software

Feasibility studies to use and increase IFIC computing resource for official Monte Carlo productions (also being negociated)

BaBar/PEP-II Long Term Planning Task Force. Evaluation of Physics impact of increased PEP-II luminosity and possible BaBar dectector upgrades (DOE report)

- CP violation measurements of the 3rd CKM weak angle γ in B⁻ $\rightarrow D_0^*K^-$ decays
- Precision CP Violation measurements with charmonium events and mixing studies with fully reconstructed hadronic decays
- Detailed studies of Quantum Mechanics of the BB System at the Y(4S): simultaneous and precision test of all discrete symmetries, as a probe for New Physics

CMS A Compact Solenoidal Detector for LHC

Muon chambers construction at CIEMAT

First MB2 Chamber Assembled at CIEMAT

El espectrómetro LHCb

6 questions* defining Astroparticle physics

- 1. What is the Universe made of?
- 2. Do protons have a finite life time?
- 3. What are the properties of neutrinos? What is their role in cosmic evolution?
- 4. What do neutrinos tell us about the interior of Sun and Earth, and about Supernova explosions?
- 5. What is the origin of cosmic rays? What is the view of the sky at extreme energies?
- 6. What is the nature of gravity? Can we detect gravitational waves? What will they tell us about violent cosmic processes?

^{*&}quot;Science is the art of replacing unimportant questions that can be answered by important ones which cannot" Edward B. Ferguson Jr. 1976.

Astroparticles (+ neutrinos) in Spain

1. LSC CANFRANC & CAST

UZ

2. MAGIC

IFAE - UAB - UCM

3. ANTARES

IFIC

4. AMS

CIEMAT

5. AUGER

USC-UCM-UAH

6. K2K

IFAE+IFIC

7. ICARUS

UGR - CIEMAT

8. CHOOZ

CIEMAT

What is the Universe made of?

Stars and planets account only for a small fraction of the Universe!

Proof of existence of « dark matter»

Rotational curves

(velocity of peripheral stars, too large)

Dark Matter

Detection of Dark Matter

- Direct detection
- CDMS-II, Cuore,
 DAMA, ANAIS, etc

- Indirect detection
- SuperK, AMANDA,
 ICECUBE, Antares, etc

complementary techniques are getting into the interesting region of parameter space

IUS

Institute of Underground Science in Boulby mine,

Pyhäsalmi Mine

(plans...)

Laboratoire Souterrain de Modane, France

LNGS

Laboratori Nazionali del Gran Sasso, Italy

LSC

Laboratorio Subterraneo de Canfranc, Spain

Underground Laboratories

THE CANFRANC UNDERGROUND LABORATORY

PHYSICS RESEARCH PROGRAM STATUS, RESULTS AND PROSPECTS

Laboratory of Nuclear and High Energy Physics University of Zaragoza

L S C LABORATORIO SUBTERBÁNEO DE CANFRANC

CANFRANC UNDERGROUND ASTROPARTICLE LABORATORY SPAM

Spanish Pyrenees

Railway tunnel (not in use)

Canfranc Underground Laboratory

ICARUS in LNGS Hall B

Origin & properties of Cosmic Rays

- 1. Neutrinos (Antares)
- 2. Gamma rays (Magic)
- 3. Charged particles (Auger)
- 4. Antimatter? (AMS)

^{*&}quot;Science is the art of replacing unimportant questions that can be answered by important ones which cannot" Edward B. Ferguson Jr. 1976.

ANTARES 0.1 km² detector

ANTARES

Photomultiplier to detect Cherenkov light

ANTARES

Low Energy

 $10 \text{ GeV} < E_{v} < 100 \text{ GeV}$

Medium Energy

 $10 \text{ GeV} < E_v < 1 \text{ TeV}$

High Energy

 $E_{\nu} > 1 \text{ TeV}$

v oscillations

oscillation minimum)

Neutralino search

(Observation of first Self-annihilation at center of Earth, Sun, Galaxy

$$\chi\chi \to X \to \nu$$

v from (extra-) galactic sources SN remnants, AGN, GRB, ...

Detection principle

$$c(t_{j} - t_{0}) = l_{j} + d_{j} \tan(\theta_{c})$$
medium properties
$$\delta x = 20 \text{ cm}$$

$$\delta t = 1 \text{ ns}$$

$$\delta \theta = 0.2 \text{ deg.}$$

$$v_{\mu} + N \rightarrow \mu + X$$

Neutrino detection (ANTARES)

~100 kHz

μs clock
5
1
2

 $\sim 1 v / hour$

Gamma-ray galactic sources

El Roque de los Muchachos (MAGIC)

Magic, the inauguration day

Microquasar (MAGIC)

AUGER

Purpose: Detect & discover the origin of cosmic rays with

 $E > 10^{19} \text{ eV}$

2 deployments (each cost 50 M\$)

In each hemisphere:

1600 detectors (surface) + 30 fluorescence telescopes in

3000 km²

South: Provincia de Mendoza, Argentina

North: ?

Cosmic Rays Spectrum

- High energy cosmic rays consist of protons, nuclei, gammas,...
- Measured flux extends to $s^{1/2} \sim 400 \text{ TeV}$
- Highest energy particles are extremely rare
- Supernova shock fronts can accelerate particles upto 10¹⁵ eV
- Above $\sim 10^{15}$ eV, presumably acceleration is in AGNs (?)
- How do UHECR protons evade the GZK cut-off at ~7 x 10¹⁹ eV (if source is >100Mps away)?
- UHECR manifest themselves as extended air showers (EAS) -- an indirect way of measuring CRs

Misteries of the Spectrum

- Protons are trapped in our Galaxy (μ G B-fields) up to ~ 10^{17} 10^{18} eV
- Protons can travel straight above ~10²⁰eV
- Supernova shockwave acceleration up to ~10¹⁵ eV
- Above the knee the acceleration mechanism is essentially unknown: active galaxies, massive black holes systems, gamma ray bursts?

Extended Air Showers

There are many ways of detecting cosmic rays

EAS properties can be used to estimate the mass & energy of the incident particle using MC

The Atmosphere as a Calorimeter

Transverse profile

Longitudinal profile

- Fluorescence Detectors
 - Atmosphere is sensing calorimeter
 - Measure the longitudinal distribution
- Ground Arrays
 - Technique developed in the 50's
 - Measure the lateral distribution at ground

Auger - Measuring transverse and Longitudinal shower profiles

Auger observatory in the south Hemisphere

AUGER

AUGER

Spanish Contribution:

Solar panels (1000) at surface detectors (Cerenkov)

Shower simulation

AMS-02 sensitivity to Antimatter

In 3 years AMS Will detect 10^9 He with E $\lesssim 1$ TeV

AMS-02 Ring Imaging Cerenkov Counter 3 cm silica aerogel (n=1.05) radiator

680 multianode (4x4) PMTs

$$\sigma(\beta)/\beta = 0.1\%$$
 @ $\beta = 1$ (protons)

The Neutrino mass

Experimental detection of neutrino oscillations

Neutrinos have got mass

How large is $m(v_e)$, what is the mass hierarchy?

1. Tritium b-decay

$$m(v_e)^2 = -0.6 \pm 2.2 \pm 2.1 \text{ eV}^2$$
 Mainz $P(v_e) \le 2.3 \text{ eV}$ (95%)

2. Ovbb-decay

$$\langle m(v_e) \rangle \gg 0.4 \text{ eV}$$

to be confirmed

3. v-Oscillations

$$\begin{array}{c} 7,3\times 10^{-5} eV^2 \; < \; \Delta m_{12}{}^2 \; < \; 9.3\times 10^{-5} eV^2 \quad \text{solar} \\ 1,6\times 10^{-3} eV^2 \; < \; \Delta m_{23}{}^2 \; < \; 3.6\times 10^{-3} eV^2 \quad \text{atm.} \\ \Rightarrow \text{There is a ν with $m_{\nu i} \geq 0$,009eV and one with $m_{\nu j} \geq 0$,05eV} \end{array}$$

4. Cosmology

$$\sum m_{vi} \leq 0.7eV$$

Double-CHOOZ (France)

Neutrino Oscillations-K2K

KEK to SuperKamiokande:

- Confirm the evidence of oscillations observed by Super-Kamiokande
- Measure the disappearance of muonic neutrinos in a beam that is produced in KEK and detected in Super-Kamiokande

Two major contributions:

- Extrapolation of the neutrino flux measured in the near detector to the far detector (from Harp data)
- Contribution to the reconstruction of the new SciBar detector (in collaboration with IFAE)

CERN neutrinos to Gran Sasso (CNGS)

Conclusions

- 1. Spain is very active in
 - Particle & Astroparticle physics and in a continuous growth.
- 2. We are deeply involved in the CERN program, and more modestly with DESY, Fermilab, SLAC, KEK programs.
- 3. There are two important infraestructures for Astroparticle Physics: the Canfranc underground lab and El Roque de los Muchachos observatory.
- 4. My best wishes for a very nice workshop!