Decay Properties Near the Proton Drip Line

Scientific Contents

? Introduction:

- recent results concerning nuclear structure and their relation to fundamental physics, astrophysics and "applications"
- general remarks on decays of N?Z

? Experimental Techniques:

- "radioactive beams" from ISOL versus those from inflight method
- "isotope hunting" and mass measurement

? Decay Spectroscopy 1: Direct Charged–Particle Emission

- direct a, proton and two-proton emission decay
- direct a decay above ¹⁰⁰Sn
- direct proton and two-proton decay

? Decay Spectroscopy 2: Beta Decay

- Allowed (Fermi and Gamow–Teller) ß–decay
- 0⁺? 0⁺ Fermi decay
- ß decay near ¹⁰⁰Sn
- ß-delayed charged-particle emission

? Gamma-delayed Proton Emission, Isomer Spectroscopy

? **Summary and Outlook:** from ISOLDE to REX ISOLDE and from GANIL to SPIRAL and on to EURISOL, from the UNILAC to SIS-ESR and on to the future GSI Project

Properties of N? Z Nuclei

? Nuclear--structure physics: Particularly interesting phenomena, due to

- vicinity of the proton drip-line,
- occurrence of <u>Is-open</u> shell closures at ⁵⁶Ni and ¹⁰⁰Sn,

- occupation of identical orbits by neutrons and protons: T=1 versus T=0 pairing, enhanced binding for N=Z (Wigner t erm) etc.

? Fundamental physics: e.g. tests of the standard model of weak interaction by studying 0⁺? 0⁺ Fermi decays

? Astrophysics:

- rp-process
- electron capture (EC) cooling of supernovae
- ??? Multidisciplinary scientific interest
- ??? Experimental techniques leaning heavily on the use of "exotic" (radioactive) beams

Experimental techniques

- ? Production by means of proton-induced spallation or heavy-ion induced fusionevaporation or fragmentation reactions
- ? Separation of reaction residues from primary beam plus mass (and charge) separation required
- ? Isotope Separation On-Line (ISOL):
 - "lon sourcery" (= ms); 50 keV secondary beam, point-like source
 - Example: ISOL, Darmstadt
- ? In–Flight Separation:
 - Separation time = µs, ~ 1 MeV/u to 1 GeV/u secondary beam, implantation into, e.g., silicon detector
 - Examples: Fragment Mass Analyser (FMA), Argonne; Recoil Mass Separator (RMS), Oak Ridge; Ligne d'Ions Super-Épluchés (LISE-3), Caen; Projectile FRagment Separator (FRS), Darmstadt; A 1200 Separator, East Lansing

Energy Loss versus Time-of-Flight Plots from In-Flight Separators

70 MeV/u⁷⁸Kr on ⁹Be; R. Pfaff et al., Phys. Rev. C 53, 1753 (1996): data taken at the A 1200 Separator

Time of Flight

Identification of new isotopes ("isotope hunting") yields lower half-life limit. Shorter-lived resonances have to be studied by decay or reaction experiments.

Principle Sketch of Decay Modes of N? Z Nuclei

Note: The charged-particle emitting states can be very broad resonances, e.g. ⁶Be or ⁶Be which decay by two-proton and two-a break-up, respectively.

Direct charged-particle decay

- ? Alpha decay: theory, definitions etc. Becquerel, Paris, **1895**
- ? Cluster (¹⁴C, ¹²C) decay
 Rose and Jones, Oxford, 1984
- Proton decay
 Jackson et al., Oxford, 1970: isomeric decay
 Hofmann et al., Klepper et al., Darmstadt,

 1981: ground-state decay
- ? Direct charged-particle decay yields a line spectrum (ground state to ground state, ground state to excited state(s) = "fine structure"), whereas ß-delayed particle decay of heavy nuclei generally yields a continuous spectrum

- ? Alpha-particle energy E? recoil corr. ? Q?
- ? Q? values represent "mass links": Q? = $ME(Z,N) - ME(Z-2,N-2) - ME(^{4}He)$
- ? Total half-life T_{1/2} (tot.)
- ? Alpha-decay branching ratio b?
- ? Alpha-decay constant $?_{?} = (b_{?} \times \ln 2)/T_{1/2}^{(tot.)}$ = $(\ln 2)/T_{1/2}^{(a, exp.)}$

Semi-empirical Gamow theory of ? decay

- ? $?_{?} = (v_{?}/2R_{i})P = (ln2)/T_{1/2}^{(a, theor.)}$
 - preformation probability = 1
 - $V_? = \{2(U_0 + Q_? + ?E_{scr.})/M_?\}^{1/2}$
 - P = barrier transmission
- ? P = exp{-2_{Ri}?^a[2M_?/?(U(R) + Q_? + ?E_{scr.})]}^{1/2} One-dimensional barrier for s-wave a particles, plus *I*-dependent term for higher-*I* waves (J.O. Rasmussen, Phys. Rev. 113, 1593 (1959))

Alpha-decay drip line: defined by Q_? > 0 or T_{1/2}^(a) < T_{1/2}^(a, limit)

Alpha-decay parameters to be discussed

? "Spectroscopic factor", defined as

$$S^{(a)}_{exp.} = T_{1/2}^{(a, theor.)}/T_{1/2}^{(a, exp.)}$$

 $- S^{(a)}_{exp.} = 4 \times 10^{-3}$
 $- S^{(cluster)}_{exp.} = small$
 $- S^{(p)}_{exp.} = 1$?

- ? "Reduced widths", defined as
 - $W_{?} a ?_{?} /P$, given relative to $W_{?} (^{212}Po)$, or
 - $d^2 = (?, x h)/P$ in MeV:

<u>Wide variation of Q</u>? ^(exp.) and T_{1/2} ^(a, exp.) reduced to W? variations of a factor of ~ 60!

? "Hindrance factor", defined as $HF = d_{g.st.}^2 / d_{exc.st.}^2$

Alpha decay of ¹¹⁴Ba

C. Mazzocchi et al., Phys. Lett. B 532 (2002) 29

 $T_{1/2}$? 0.43 s, 4 ¹¹⁴Ba¹⁹F⁺molecules/min

Technique: implantation of GSI–ISOL beam in foils viewed by silicon-silicon telecopes

Alpha decay of ¹¹⁴Ba (continued)

¹²C decay of ¹¹⁴Ba?

C. Mazzocchi et al., Phys. Lett. B 532 (2002) 29

Q^(12C, exp.) from this work

T_{1/2}^(12C, exp.) limit from previous ISOL work (A. Guglielmetti et al., Phys. Rev. C **52**, 740 (1997))

[8] S.G. Kadmenski et al., Izv. Akad. Nauk. Rossii
57, 12 (1993); [16] S. Kumar and R.K. Gupta,
Phys. Rev. C 49, 1922 (1994); [10] D.N. Poenaru et al., Phys. Rev. C 47, 2030 (1993)

Fine structure in the a decay of ¹⁰⁷Te: Experimental data

D. Seweryniak et al., Phys. Rev. C **66**, 051307(R) (2002): data taken at the FMA of Argonne Nat. Lab.

The nuclear shell model

Goeppert Mayer (1949); Haxel, Jensen & Suess (1949)

- ? (empirical...realistic) interaction
- ? model space
- ? number of particle-hole excitations
- ? computer code

Single particle (hole) energies in ⁵⁶Ni and ¹⁰⁰Sn H. Grawe and M. Lewitowicz, Nucl. Phys. A **693**, 116 (2001))

Experimental results (D. Seweryniak et al., Phys. Rev. C 66, 051307(R) (2002)): $b_{?}^{(exp.)} = 0.47(9)$ % for 168 keV state $(Q_{?}^{(exp.)} = 4012(10)$ keV, $T_{1/2}^{(a, exp.)} = 3.1(0.1)$ ms previously known)

 $? W_{?} (g.st./?d_{5/2}? g.st./?d_{5/2}) = 2.0$

- ? W? $(g.st./?d_{5/2}? exc.st./?g_{7/2}) = 0.15$
- ? HF = 6.5 ? ,,re-arrangement of single- particle structure"

Conclusions from the experiment of Seweryniak et al.

- ? Alpha decay is an excellent tool for identifying single-particle states near ¹⁰⁰Sn (and to speculate about the configuration of the mother state)
- ? However, the first excited (168 keV) state was already known from in-beam spectroscopy
- ? ... towards ¹⁰⁵Te ? a ? ¹⁰¹Sn ...

Direct Proton Radioactivity

Contour plot of the quadrupole deformation parameter $?_2$ [1]. Filled circles mark known proton emitters, while the predicted is drawn as a solid line. Stable isotopes are indicated by full squares. The data concerning the proton drip-line [2] and the $?_2$ data are taken from ref. [2].

- [1] P.J. Woods and C.N. Davids, Ann. Rev. Nucl. Part. Sci. 47 (1997) 541
- [2] P. Möller et al., At. Data Nucl. Data Tab. 59 (1995) 189

Fine structure in direct proton emission 145 Example: Tm

M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003): data taken at the FMA of Argonne Nat. Lab.

 $T_{1/2}(1.73 \text{ MeV}) = 3.1(3) \ \mu \text{s}$ $T_{1/2}(1.40 \text{ MeV}) = 2.7(10) \ \mu \text{s}$

"...nuclear life beyond the limits..." (K. Rykaczewski)

Results obtained by Karny et al.

- ? Fine-structure decay of ¹⁴⁵Tm observed to have $T_{1/2}^{(a, exp.)} = 3.1(0.3) \ \mu s$ and $b_{?}^{(exp.)}$ = 9.6(1.5) % determined (Q_? (g.st., exp.) previously known)
- ? First experimental evidence for first excited state (330(10) keV, 2⁺) in ¹⁴⁴Er
- ? Conclusions drawn on the configuration of the ¹⁴⁴Er mother state

Two-Proton Decay of ⁴⁵Fe, Observed

in ⁵⁸Ni–Fragmentation Reactions

M. Pfützner et al., Eur. Phys. J. A 14, 279 (2002): data taken at the FRS

J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002): data taken at LISE-3

? Experimental results agree (Q_D ? 1.14 MeV, $T_{1/2}$? 3.8 ms) but decay process – 2 He "radioactvity" or three-body break-up – remains to be clarified!

Odd-odd N = Z Nuclei: Ground–States Versus Isomers, F Versus GT Decay

Neutron Number

See also occurrence of $I^{p} = 7^{+}$ and I = 17 isomers in 94 Ag, discussed later

Precision measurements of superallowed 0⁺? 0⁺ ß-decay (between T=1 states)

Definition of Ft as the "corrected" ft value:

$$=t = \frac{ft}{ft}(1 + d_R)(1 - d_C) = K\{2\frac{G_V}{2}(1 + ?_R^{(V)})\}$$

 $f = statistical rate function = f(Z, Q_{EC}),$

t = partial half-life = T_{1/2}/b(0⁺? 0⁺),

b(0⁺? 0⁺) = branching ratio for 0⁺? 0⁺ decay,

- dc = isospin-symmetry-breaking correction (<u>nuclear-structure dependent</u>)
- d_R = transition-dependent part of radiative correctio (contains nuclear-structure independent part (Z,Q_{EC}) and <u>nuclear-structure dependent</u> part)

K = fundamental constant,

Gv = vector-coupling constant

?_R^(V) = transition-independent part of radiative correction

Precision measurement of the half-life of ⁶²Ga

62 Ga (T_{1/2} = 116.12(23) ms, 1.7x10³ 62 Ga atoms/s)

Technique: detection of positrons by proportional counter (Argonne); GSI-IOSL experiment: 1.2x10⁵ cycles of 0.35 s collection, 0.1 s transport, 1.6 s counting

Part of raw data from 1800 cycles

Physics: Precision half-life data (116.19(4) ms, i.e. 3 parts in 10⁴) for a superallowed 0⁺? 0⁺? - transition
B. Blank et al., submitted to Phys. Rev. C (July 2003)

Fermi and Gamow-Teller β decay

 57 Zn (T_{1/2} = 38(4) ms, 2 atoms/min)

A. Jokinen et al., EPJdirect 4, A3 (2002) 1

Fermi decay \rightarrow isospin mixing, comparison of exp. Gamow-Teller strength with shell-model predictions

Beta–Decay Studies in the ¹⁰⁰Sn Region

- ? Motivation: tests of nuclear models based on (i) the "Super GT Resonance" of ¹⁰⁰Sn, (ii) the GT resonance of neighbouring nuclei, (iii) single-particle states near ¹⁰⁰Sn
- ? ¹⁰⁰Sn identified by experiments at the FRS (R. Schneider et al., Z. Phys. A **348**, 241 (1994)) and LISE-3 (M. Lewitowicz et al., Phys. Lett. B **332**, 20 (1994)), but information insufficient concerning Super GT Resonance

? **GSI–ISOL Experiments:**

 Unambigious identification of GT resonance for ⁹⁷Ag: experiment (? –) versus SNB shell–model prediction (----), the latter being reduced by factor 4.3.

Recent development of SnS technique:
 ß–decay studies of light
 tin isotopes down to
 ¹⁰¹Sn and maybe even
 ¹⁰¹Sn (?)

"Gamma-delayed" proton emission

D. Rudolph, Eur. Phys. J. A 15, 281 (2002)

(a) proton spectrum, (b) ?-? coincidence spectrum ("sum gate")

Spin-gap isomers (foil prepared by C.Plettner)

Beta decay of the (I>17) isomer of ⁹⁴Ag

- ? The highest spin ever observed for a ß-decaying nucleus
- ? High-spin proton spectroscopy!!
- ? GSI-SOL: M. La Commara et al., Nucl. Phys. A 708, 167 (2002); C. Plettner et al., contr. to Hirschegg Workshop (2003); I. Mukha et al., Contr. to PROCON Conf.

Summary

- ? Triple ? -- chain ¹¹⁴Ba ? ¹⁰²Sn
- ? Fine structure of a decay of ¹⁰⁷Te and for proton decay of ¹⁴⁵Tm
- ? Direct two-proton decay of ⁴⁵Fe
- ? Precision measurements of 0⁺? 0⁺ Fermi decays: New physics beyond the Standard Model!?
- ? Gamow-Teller resonance below ¹⁰⁰Sn
- ? etc.

<mark>Outlook</mark>

(even more biased by my personal judgement than the rest of the lecture)

Exciting new results have been obtained on N? Z nuclei recently

New (European) facilities on the horizon: from ISOLDE to REX ISOLDE and from GANIL to SPIRAL and on to EURISOL, from the UNILAC to SIS-ESR and on to the future GSI Project