
 

Decay Properties  
Near the Proton Drip Line  

 

Scientific Contents 
 
 

? Introduction: 
- recent results concerning nuclear structure and their 

relation to fundamental physics, astrophysics and 
“applications” 

- general remarks on decays of N ?  Z 
 

? Experimental Techniques: 
- “radioactive beams” from ISOL  versus those from in-

flight method 
- “isotope hunting” and mass measurement 

 

? Decay Spectroscopy 1: Direct Charged–Particle 
   Emission 

- direct a, proton and two-proton emission decay 
- direct a decay above 100Sn 
- direct proton and two-proton decay 
 

? Decay Spectroscopy 2: Beta Decay 
- Allowed (Fermi and Gamow–Teller) ß–decay 
- 0+ ?  0+  Fermi decay 
- ß decay near 100Sn 
- ß-delayed charged-particle emission 
 

? Gamma-delayed Proton Emission, 
   Isomer Spectroscopy 

 
? Summary and Outlook: from ISOLDE to REX ISOLDE 

and from GANIL to SPIRAL and on to EURISOL, from the 
UNILAC to SIS-ESR and on to the future GSI Project  



Properties of N ?  Z Nuclei  

 
 
 

? Nuclear--structure physics: Particularly 
interesting  phenomena, due to 

- vicinity of the proton drip–line, 
- occurrence of ls-open shell closures 

at 56Ni and 100Sn, 
- occupation of identical orbits by neutrons and protons: T=1 versus T=0 pairing, enhanced binding for N=Z (Wigner t erm) etc.  

 
 

? Fundamental physics: e.g. tests of the 
standard model of weak interaction by 
studying 0+ ?  0+ Fermi decays 
 
 

? Astrophysics: 
- rp–process 
 

- electron capture (EC) cooling of 
supernovae 

 
 
 

 ? ? ?    Multidisciplinary scientific 
interest 

 
 
 

? ? ?    Experimental techniques 
leaning heavily on the use of 
“exotic” (radioactive) beams 

 
 
 
 



 
 
 
 
 
 



Experimental techniques  

 
 

 

? Production by means of proton-induced 
spallation or heavy-ion induced fusion-
evaporation or fragmentation reactions 

 
 

? Separation of reaction residues from 
primary beam plus mass (and charge) 
separation required 

 
 

? Isotope Separation On-Line (ISOL): 
 

- „Ion sourcery“ ( = ms); 50 keV 
secondary 

   beam, point-like source 
 

- Example: ISOL, Darmstadt 
 
 

? In–Flight Separation: 
 

- Separation time = µs, ˜  1 MeV/u to 1 
GeV/u secondary beam, implantation 
into, e.g., silicon detector 

 

- Examples: Fragment Mass Analyser 
(FMA), Argonne; Recoil Mass Separator 
(RMS), Oak Ridge; Ligne d’Ions Super-
Épluchés (LISE-3), Caen; Projectile 
FRagment Separator (FRS), Darmstadt; 
A 1200 Separator, East Lansing 

 
 



Energy Loss versus Time-of-Flight Plots 
from In-Flight Separators  

 
 

70 MeV/u 78Kr on 9Be; R. Pfaff et al., Phys. Rev. C 53, 
1753 (1996): data taken at the A 1200 Separator 

 

 
 
 

Identification of new isotopes (“isotope hunting”) yields 
lower half-life limit. Shorter-lived resonances have to be 
studied by decay or reaction experiments.  

 
 



Principle Sketch of Decay Modes of N ?  Z 
Nuclei  

 
 

 
 

Note: The charged-particle emitting states 
can be very broad resonances, e.g. 6Be or 
6Be which decay by two-proton and two-a 
break-up, respectively.  

 
 
 
 
 
 
 
 
 



Direct charged-particle decay 

 
 

 

? Alpha decay: theory, definitions etc. 
    Becquerel, Paris, 1895 

 
 

? Cluster (14C, 12C) decay 
    Rose and Jones, Oxford, 1984 
 

 

? Proton decay 
    Jackson et al., Oxford, 1970: isomeric decay 

Hofmann et al., Klepper et al., Darmstadt,    
1981: ground-state decay 

 
 

? Direct charged-particle decay yields a line 
spectrum (ground state to ground state, 
ground state to excited state(s) = „fine 
structure“), whereas ß-delayed particle 
decay of heavy nuclei generally yields a 
continuous spectrum 

 
 
 
 
 
 
 
 
 
 
 
 



Experimental observables from ?  decay 

 
 

? Alpha-particle energy E?  ?  recoil corr. ?  Q?  
 
 

? Q?  values represent „mass links“: 
    Q?  = ME(Z,N) – ME(Z-2,N-2) – ME(4He) 
 

 

? Total half-life T1/2
(tot.)

 
 
 

? Alpha-decay branching ratio b?  
 
 

? Alpha-decay constant ? ?  = (b?  x ln2)/T1/2
(tot.) 

= (ln2)/T1/2
(a, exp.) 

 
 
 

Semi-empirical Gamow theory of ?  decay 
 
 
 

? ? ?  = (v? /2Ri)P = (ln2)/T1/2
(a, theor.) 

- preformation probability = 1 
- v?  = {2(U0 + Q?  + ?Escr.)/M? }1/2 
- P = barrier transmission 

 
 

? P = exp{-2Ri?
Ra[2M? /?(U(R) + Q?  + ?Escr.)]}

1/2 
One-dimensional barrier for s-wave a particles, 
plus l-dependent term for higher-l waves  
(J.O. Rasmussen, Phys. Rev. 113, 1593 (1959)) 

 
 
 

Alpha-decay drip line: 
defined by Q?  > 0  or  T1/2

(a) < T1/2
(a, limit) 



Alpha-decay parameters to be discussed 

 
 

 

? „Spectroscopic factor“, defined as  
     S(a)

exp. = T1/2
(a, theor.)/T1/2

(a, exp.) 
- S(a)

exp. = 4 x 10-3 
- S(cluster)

exp. = small 
- S(p)

exp. = 1 ? 
 
 

 

? „Reduced widths“, defined as  
- W?  a ? ?  /P, given relative to W? (212Po), or 
- d2 = (? ?  x h)/P in MeV: 
 

Wide variation of Q?  

(exp.) and T1/2
(a, exp.) 

reduced to W?  variations of a factor of ~ 60 ! 
 
 
 

? „Hindrance factor“, defined as 
     HF = d2

g.st./ d
2
exc.st. 

 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Alpha decay of 114Ba 
 
 

C. Mazzocchi et al., Phys. Lett. B 532 (2002) 29 
 
 

T1/2  ?   0.43 s, 4 114Ba19F+ molecules/min 
 

 

Technique: implantation of  GSI–ISOL beam in foils 
viewed by silicon-silicon telecopes 
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Alpha decay of 114Ba (continued) 
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12C decay of 114Ba? 
 
 

C. Mazzocchi et al., Phys. Lett. B 532 (2002) 29 
 

 

 

Q(12C, exp.)  from this work 
 

T1/2
(12C, exp.) limit from previous ISOL work  (A. 

Guglielmetti et al., Phys. Rev. C 52, 740 (1997)) 
 
 

[8] S.G. Kadmenski et al., Izv. Akad. Nauk. Rossii 
57, 12 (1993);  [16] S. Kumar and R.K. Gupta, 
Phys. Rev. C 49, 1922 (1994);  [10] D.N. Poenaru 
et al., Phys. Rev. C 47, 2030 (1993) 



Fine structure in the a decay of 107Te: 
Experimental data  

 

 
 

 
 

D. Seweryniak et al., Phys. Rev. C 66, 051307(R) (2002): 
data taken at the FMA of Argonne Nat. Lab. 

 



The nuclear shell model 
 

Goeppert Mayer (1949); Haxel, Jensen & Suess (1949) 

? (empirical…realistic) interaction  
? model space 
? number of particle-hole excitations 
? computer  code 
Single particle (hole) energies in 56Ni and 100Sn 

(H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001)) 
 



 

Fine structure in the a decay of 
107

Te: 

Identification of the first excited g7/2 state 

at 168 keV in 
103

Sn 
 

 

    Shell structure near 100Sn (Z = N = 50) 
 

  Mother (107Te)   ?  a ?  Daughter (103Sn) 
g7/2 

______   ----------                   g7/2 
______   ----------             

d5/2 
______   ----------                   d5/2 

______   ----------
 

 
 

 

      Z=50    N=50                     Z=50   N=50 
 
 

g9/2 
______   ---------                g9/2 

______   ---------
 

     p          ?                            p         ?  
 
 
 

Experimental results (D. Seweryniak et al., 
Phys. Rev. C 66, 051307(R) (2002)): 
 

b?
(exp.)

  = 0.47(9) % for 168 keV state 
(Q?

(exp.)
 = 4012(10) keV, T1/2

(a, exp.) = 3.1(0.1) 
ms previously known) 
 

? W?  (g.st./?d5/2 ? g.st./?d5/2)            = 2.0 

? W?  (g.st./?d5/2 ? exc.st./?g7/2) = 0.15 
?   HF = 6.5  ?   „re-arrangement of single-   particle structure“ 



 
 
Conclusions from the experiment of 

Seweryniak et al.  
 

      
 

? Alpha decay is an excellent tool for 
identifying single-particle states near 
100Sn (and to speculate about the 
configuration of the mother state) 

 
 
 

? However, the first excited (168 keV) 
state was already known from in-beam 
spectroscopy 

   
 

? … towards  105Te  ?   a  ?  101Sn … 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Direct Proton Radioactivity 
 
 

 
 

Contour plot of the quadrupole deformation parameter ? 2 [1]. 
Filled circles mark known proton emitters, while the predicted 
is drawn as a solid line. Stable isotopes are indicated by full 
squares. The data concerning the proton drip-line [2] and the  
? 2 data are taken from ref. [2].  

 
[1]  P.J. Woods and C.N. Davids, Ann. Rev. Nucl. Part. Sci. 47 

(1997) 541 
 
[2] P. Möller et al., At. Data Nucl. Data Tab. 59 (1995) 189 
 
 
 



Fine structure in direct proton emission 
 

Example: 
145

Tm 
 

M. Karny et al., Phys. Rev. Lett. 90, 012502 (2003): 
data taken at the FMA of Argonne Nat. Lab. 

 
 

 

T1/2 (1.73 MeV) = 3.1(3) µs 

T1/2 (1.40 MeV) = 2.7(10) µs 
 
 

“…nuclear life beyond the limits…” (K. Rykaczewski) 
 



 

Results obtained by Karny et al.  
 
 

 
? Fine-structure decay of 145Tm observed to 

have T1/2
(a, exp.) = 3.1(0.3) µs and b?

(exp.)
  

=  9.6(1.5) % determined (Q?
(g.st., exp.) 

previously known) 
 
 

? First experimental evidence for first 
excited state (330(10) keV, 2+) in 144Er 
 
 

? Conclusions drawn on the configuration of 
the 144Er mother state 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Two-Proton Decay of 45Fe, Observed 

in 58Ni–Fragmentation Reactions  
 

M. Pfützner et al., Eur. Phys. J. A 14, 279 (2002): 
data taken at the FRS 
 

 
 

 

J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 
(2002): data taken at LISE-3 
 

 
 

?   Experimental results agree (Qp ?  1.14 MeV, T1/2 ?  3.8 ms) but decay process  –  
2

He “radioactvity” or three-body break-up  –  remains to be clarified! 

 
 
 

6 events  
of 

45
Fe 

664 events triggered 
by other ions  



 
 
 
 
 
 



Odd-odd N = Z Nuclei: Ground–States 
Versus Isomers, 

F Versus GT Decay  

See also occurrence of   Ip   = 7+ and I = 17 isomers in 
94Ag, discussed later 

 
 
 
 
 
 
 
 
 



 
Definition of Ft as the “corrected” ft value: 
 

Ft = ft(1 + dR)(1 – dC) = K{2GV
2(1 + ?R

(V))} 
 

f  =  statistical rate function = f(Z,QEC), 
 

Z =  charge of daughter nucleus, 
 

t  =  partial half-life = T1/2/b(0
+? 0

+
), 

 

b(0
+? 0

+
)  =  branching ratio for 0

+? 0
+
 decay, 

 

dC  =  isospin-symmetry-breaking correction 
(nuclear-structure dependent) 

 

dR  =  transition-dependent part of radiative correction 
(contains nuclear-structure independent part 
(Z,QEC) and nuclear-structure dependent part) 

 

K  =  fundamental constant, 
 

GV  =  vector-coupling constant 
 

?R
(V)  =  transition-independent part of radiative 

correction 
 
 
 
 
 
 
 

Precision measurements of superallowed 

0+ ?  0+ ß-decay (between T=1 states) 



Precision measurement of the half- life of  62Ga  
 

62Ga (T1/2 = 116.12(23) ms, 1.7x103 62Ga atoms/s) 
 

 

Technique: detection of positrons by  proportional counter (Argonne); GSI-
IOSL experiment: 1.2x105 cycles of  0.35 s collection, 0.1 s transport, 1.6 s 
counting 
 

 
 
 

Part of raw data from 1800 cycles 
 

 
 

Physics: Precision half-life data (116.19(4) ms, i.e. 3 parts 
in 104) for a superallowed  0+

 ?  0+  ?  - transition    

 

B. Blank et al., submitted to Phys. Rev. C (July 2003) 
 
 
 



 



Beta–Decay Studies in the 
100

Sn Region  
 

? Motivation: tests of nuclear models  based on (i) the “Super GT 
Resonance” of 100Sn, (ii) the GT resonance of neighbouring 
nuclei, (iii) single-particle states near 100Sn 

 

? 100Sn identified by experiments at the FRS (R. Schneider et al., 
Z. Phys. A 348, 241 (1994)) and LISE-3 (M. Lewitowicz et al., 
Phys. Lett. B 332, 20 (1994)), but information insufficient 
concerning Super GT Resonance 

 

? GSI–ISOL Experiments: 
- Unambigious identification of GT resonance for 97Ag: 

experiment (? –)  versus SNB shell–model prediction (----), 
the latter being reduced by factor 4.3. 

 
 

 
 

- Recent development of SnS technique: ß–decay studies of light 
tin isotopes down to 101Sn and maybe even 101Sn (?) 

 
 



 
 

“Gamma-delayed” proton emission 
 
 
 

D. Rudolph, Eur. Phys. J. A 15, 281 (2002) 

 
 
 
 
 



 
 

(a) proton spectrum,  (b) ?-? coincidence spectrum (“sum gate”) 
 
 

 

 
 

  



Spin-gap isomers  (foil prepared by C.Plettner) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Beta decay of the (I >17) isomer of 94Ag 
 

 

? The highest spin ever observed for a ß-decaying 
nucleus 

? High-spin proton spectroscopy!! 
 

 

? GSI-SOL: M. La Commara et al., Nucl. 
Phys. A 708, 167 (2002); C. Plettner et al., 
contr. to Hirschegg Workshop (2003); I. 
Mukha et al., Contr. to PROCON Conf. 

 

 



 

Summary 
 
 
 

? Triple ? –chain 114Ba ?  102Sn  
 

? Fine structure of a decay of 107Te and for proton 
decay of 145Tm 

 

? Direct two-proton decay of 45Fe 
 

? Precision measurements of 0+ ?  0+ Fermi decays: 
New physics beyond the Standard Model!? 
 

? Gamow-Teller resonance below 100Sn  
 

? etc. 
 

 

Outlook 
 
 

(even more biased by my personal judgement 
than the rest of the lecture) 

 
 

? Exciting new results have been obtained on 
N ?  Z nuclei recently 

 
 

? New (European) facilities on the horizon:  from ISOLDE to REX ISOLDE and from 
GANIL to SPIRAL and on to EURISOL, from the UNILAC to SIS-ESR and on to the 
future GSI Project  

 
 
 


