Table of contents:

Introduction.

Basic principles to measure nuclear moments the angular distribution of radiation orientation of the nuclear spins: perturbation of spin-orientation by electromagnetic fields methods to measure nuclear moments

Moments of ground states: examples Moments of halo-nuclei

Moments of isomeric states: ps - ns - ms - ms - s ...

Static moments of exotic ground states: examples

Moments of halo nuclei

Questions:

which orbits are occupied by the loosely bound neutrons \rightarrow the magnetic moment do the the loosely bound neutrons induce deformation \rightarrow the quadrupole moment (core polarization or static deformed core ?) is there also a large charge radius \rightarrow indirectly (Q), directly (rms charge radius)

Ref: NPA 614 (1997) 44, PRC 49 (1994) 886, NPA 506 (1990) 271,

The halo neutrons: in which orbitals (p or sd)? Do they polarized the core?

COLLAPS (Collinear Laser Spectroscopy) setup

Halo Nuclei : how are they polarized

Excite an electron in the atom (or ion) from the $2s_{1/2}$ to the $2p_{1/2}$ orbit with circularly circularly polarized laser light \rightarrow produce a polarized atom (or ion) beam

Need good energy resolution of ion beam to resolve the hyperfine structure levels

NMR-magnets: strong magnetic field adiabatic rotation of the polarization axis using a small longitudinal magnetic field Weak and a strong vertical magnetic field magnetic field •implantation of the beam into a crystal coils with cubic lattice structure, to maintain spin-orientation Be single crystal Stopper crystal 1.0 N(0)/N(180) 0.6 0.6 **g** = - **3.3632(16)** (sign follows from the laser scan) 0.4 μ (¹¹Be, I= 1/2) = -1.6816(8) μ_N 7.82 7.84 7.83 7.85 7.86 7.88 7.87 rf [MHz]

Magnetic moment of ¹¹Be: the experiment

Method: β -NMR on laser polarized **ion** beam

B

RF-

Experimental set-up at COLLAPS

Magnetic moment of ¹¹Be : the result

 $\label{eq:constraint} Collective excitation of the 10Be \ core$

Magnetic moment of ¹¹Be : the result

Conclusion : only for Z=8 the neutron N=8 is a good shell closure as soon as proton holes or particles occur around Z=8, the neutron-proton interaction (particle-core) seems to modify the shell structure.

g-factor: no influence

Precision measurements of magnetic and quadrupole moments of Li-isotopes

Motivation 1: precision measurement of the ¹¹Li quadrupole moment \rightarrow study the influence of the halo neutrons on the nuclear deformation ?

Results from earlier work:

at COLLAPS (ISOLDE-CERN)

Improve error on ratio \rightarrow find crystal with narrower line width !

Preparation for precision measurements

- * find crystals with small line width (for NMR and NQR)
- * optimize the production of polarization (laser power, suitable crystal)
- * make precision measurement of Larmor frequency
 - → needed to perform a precision multiple rf measurement
- * study properties of NQR and multiple rf-NQR → influence on result ?

Beta-detection rates at ISOLDE:

⁸ Li : 500.000/s	$(T_{1/2} = 840 \text{ ms})$
⁹ Li : 200.000/s	$(T_{1/2} = 179 \text{ ms})$
¹¹ Li: 80/s	$(T_{1/2} = 8 \text{ ms !!!})$

Beta-asymmetries:

- ~ 8 % ~ 3 %
 - 5%
- ~ 5 %

 → Use ⁸Li for testing (find optimal crystal and polarization conditions) I = 2
→ Use ⁹Li as calibration for the Q-moment measurement I = 3/2 (same multiple rf spectrum as ¹¹Li)

* giving with small NMR line width

Si: nearly full destruction of P_0

CONCLUSION: Si best crystal for NMR on Li-isotopes → precision 0.005% reached on µ (see poster Magda Kowalska for results)

Preparation for NQR-precision measurement → find a crystal * with optimal production of polarization * with optimal destruction of P via NQR * giving with small NQR line width in Zn-crystal

$$v_{Q} = 2 \Delta \sim Q Vzz$$

Conclusion :

Large improvement on ratio of Q-moments ! ~ 3 % accuracy Absolute Q-moments more accurate (measured in several crystals) → error Q(⁹Li) ~ 1 % → error Q(¹¹Li) ~ 3 %

$$Q(^{11}Li) > Q(^{9}Li)$$

Magnetic moment of ¹¹Li : the PRELIMENARY result

N=8 \rightarrow still a good shell closure for B-isotopes (Z=5)

N=8 \rightarrow not good shell closure for Be-isotopes (Z=4)

N=8 \rightarrow not good shell closure for Li-isotopes (Z=3) or influence of halo neutrons occupying non-spherical orbits ???