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Li Be

Static moments of exotic ground states: examples
Moments of halo nuclei

What are Halo Nuclei ? 
nuclei with an extended 
mass distribution (large rms mass radius)
(larger than ‘normal’).

Questions:
which orbits are occupied by the loosely bound neutrons � the magnetic moment
do the the loosely bound neutrons induce deformation � the quadrupole moment 

(core polarization or static deformed core ?)
is there also a large charge radius � indirectly (Q), directly (rms charge radius) 

Ref: NPA 614 (1997) 44, PRC 49 (1994) 886,  NPA 506 (1990) 271, 

11Li = 9Li + 2 loosely bound neutrons9Li

10Be 11Be = 10Be + 1 loosely bound neutron

Examples: 
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Halo Nuclei: where do they occur
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Blue=stable nuclei

Be-nuclei : Z = 4

11Be = 10Be  +   n 
=    0+ +   n 

Halo neutron determines the spin
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11Be: Iπ = ½+   

� neutron in intruder 2s1/2 orbit ?
or : 2+ x 1d5/2 ?

� g-factor can reveal information 
(unfortunately Qs = 0)

Li-nuclei : Z = 3

11Li =       9Li + 2n 
= (πp3/2 + 6n) + 2n
=  πp3/2 + 8n

Odd proton determines the spin

11Li: Iπ = 3/2-

The halo neutrons: in which orbitals (p or sd) ? Do they polarized the core ?
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Halo Nuclei : how are they produced and polarized (in this case) ? 

� using the ISOL method at ISOLDE-CERN : * high rates � 11Be : 5 105 /s
11Li : 2000 /s

*  polarization via Optical Pumping with laser

http://isolde.web.cern.ch/ISOLDE/

Proton beam  
@1GeV

COLLAPS
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Halo Nuclei : how are they produced (in this case) ? COLLAPS (Collinear Laser Spectroscopy) setup

http://is389-proj-collaps.web.cern.ch/is389-proj-collaps/

2s

Li+ Na

1s
2s

2p

1s

ions @ 60keV

Spin-polarized (atom or ion) 
beam
by interaction with circularly 
polarized laser light

Neutralize the ion beam 
via interaction with Na 
vapor

Polarize the Li-atom, not the ion

For Be: the ion is Li-like � polarize the Be-ion
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Halo Nuclei : how are they polarized

382 MHz5/2
3/2

Hyperfine structure
|I-J| ≤≤≤≤ F ≤≤≤≤ I+J

5/2
3/2 44 MHz

Excite an electron in the atom (or ion) from the 2s1/2 to the 2p1/2 orbit
with circularly circularly polarized laser light 

� produce a polarized atom (or ion) beam

680 nm for Li
313 nm for Be (frequency doubling)

The lower hyperfine levels 
can be resolved in the 
hyperfine scan 
� Choose transition with 
largest induced nuclear 
polarization

~ 106 GHz

Electron orbits
nl

1s
2s

2p

Fine structure
nlJ

2s1/2
1s1/2

~10GHz
2p1/2

2p3/2

Need good energy resolution of ion beam to resolve
the hyperfine structure levels

I=2  (8Li)
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5/2
3/2

Hyperfine structure
|I-J| ≤ F ≤ I+J

FOR I=2

5/2
3/2

Halo Nuclei : example of nuclear polarization induced in the 8Li atom beam

Fine structure
nlJ

2s1/2

1s1/2

2p1/2

2p3/2

Measure � β-asymmetry of the 8Li isotopes
N1/N2

polarized beam
Implanted into a crystal

B0

β-detector

β-detector
N1

N2

Fine structure levels p1/2 and p3/2 are scanned with different laser wavelengths (D1 and D2)

Excitation from the F=5/2 level gives the highest nuclear polarization !
fix laser to this frequency 

Only in the ground state 2s1/2 the hyperfine structure levels are resolved 

D1 line
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Magnetic moment of 11Be: the experiment Experimental set-up at COLLAPS

µµµµ    ((((11Be, I= 1/2 )))) = -1.6816(8) µµµµN

W. Geithner et al. , PRL 83 (1999) 3732

B
•implantation of the beam into a crystal 

with cubic lattice structure, to maintain
spin-orientation

Be single crystal

Method: β-NMR on laser polarized ion beam
N(

0)
/N

(1
80

)

g = - 3.3632(16)  (sign follows from the laser scan)

•adiabatic rotation of the polarization axis 
using a small longitudinal magnetic field 
and a strong vertical magnetic field

Zp
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Magnetic moment of 11Be : the result

Experiment

Schmidt moment νs1/2

additivity (geff)  100% s1/2

additivity (geff)  60% s1/2

Shell model (MK interaction, gfree) � 82% s1/2

Shell model (WBT interaction, gfree) � 74% s1/2

11Be: Iπ = ½+   Z=4,N=7
� neutron in intruder 2s1/2 orbit ? YES  (magnetic moment close to Schmidt value)

(p1/2 neutron has µschmidt = +0.64)
� admixture with ν(2+ x 1d5/2 )1/2+ ? YES, β2 is about 20%

Apply additivity rule for       |11Be, ½+> = α [ν2s1/2] + β [ ν(2+ ⊗ 1d5/2)1/2+]

Collective excitation of the 10Be core

1p3/2

20

8

1d3/22s1/2
1d5/2

1s1/2

1p1/2

2
666
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Magnetic moment of 11Be : the result

The ground state of 11Be
� a neutron in the s1/2 intruder orbit, not in the normal p1/2 orbit

� is N=8 a good shell closure ?
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p1/2p3/2 d5/2 s1/2

Conclusion : only for Z=8 the neutron N=8 is a good shell closure
as soon as proton holes or particles occur around Z=8, 

the neutron-proton interaction (particle-core)
seems to modify the shell structure.

O-isotopes (Z=8) : all g-factors close to Schmidt value

Ne-isotopes (Z=10): N=9 g-factor � s1/2 orbit !!!

C-isotopes (Z=6): N=9 g-factor suggests mixed 
s1/2 – d5/2 configuration

Be-isotopes (Z=4): N=7 g-factor in agreement 
with s1/2-d5/2 admixture

gfree νp3/2

gfree νp1/2

gfree νd5/2

gfree νs1/2
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vice-versa: is the disappearance of the N=8 shell closure also visibly through 
the static dipole and quadrupole moments of odd-proton states ???
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3Li, Iπ=3/2-  

5B, Iπ=3/2-  

Schmidt value  ππππp3/2

N=8

Magnetic moment of odd-proton states

g-factor: no influence

Q-moment: decrease at shell closure
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3Li 5B

Conclusion: only for Z=8 nuclei, 
the N=8 is a good neutron shell closure

as soon as proton holes or particles occur around Z=8, 
the residual interaction of the valence neutron with 
these proton particles/holes 
seems to modify the NEUTRON shell structure

� visible in the magnetic moments of odd-neutron states
� shift of the neutron single particle energies as a function of proton 
number   εn ≠ constant    BUT εn(Z)   !
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|Q(9Li)|  = 27.4(1.0)
|Q(11Li)| = 31.2(4.5)

Within (15%) error
same value 
(even maybe smaller)

E.Arnold et al.;Phys. LettersB 281 (1992)16-19

9Li 11Li
Crystal : LiNbO3

Precision measurements of magnetic and quadrupole moments of Li-isotopes

Motivation 1: precision measurement of the 11Li quadrupole moment
� study the influence of the halo neutrons on the nuclear deformation ? 

Results from earlier work: at COLLAPS (ISOLDE-CERN)

∆Q(kHz) ∆Q (kHz)

Improve error on ratio  � find crystal with narrower line width !

I=3/2

m=-3/2

m=-1/2

m=1/2

m=3/2

νL-∆Q

νL

νL+ ∆Q

Multiple rf
NQR
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Preparation for precision measurements
* find crystals with small line width (for NMR and NQR)
* optimize the production of polarization (laser power, suitable crystal)
* make precision measurement of Larmor frequency 

���� needed to perform a precision multiple rf measurement
* study properties of NQR and multiple rf-NQR ���� influence on result ?

Beta-detection rates at ISOLDE: Beta-asymmetries:
8Li : 500.000/s   (T1/2 = 840 ms) ~ 8 %
9Li : 200.000/s (T1/2 = 179 ms) ~ 3 %
11Li: 80/s     (T1/2 = 8 ms !!!) ~ 5 %

� Use 8Li for testing (find optimal crystal and polarization conditions) I = 2

� Use 9Li as calibration for the Q-moment measurement 
I = 3/2 (same multiple rf spectrum as 11Li)
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Laser scan of the hyperfine spectrum
Measurement of produced polarization

Laser frequency            

Preparation for NMR-precision measurement
� find a crystal

* which maintains the produced polarization P0
* with optimal destruction of P via NMR
* giving with small NMR line width

~P0

NMR scan:
Amount of destroyed polarization

~P0~P

Aim: maximize P0 AND Ps1/2

p1/2

F=3/2
F=5/2
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Hyperfine scans and NMR scans for 8Li in     LiF,     Si,    Au

LiF: highest P0 produced
Si: good as well

laser power (mW)

Produced/maintained Polarization

LiF and Si: nearly full destruction 
(P ~ P0)

Au: bad (impurities)

Destroyed Polarization

RF-field B1 (Gauss)
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Line width of NMR scans for 8Li in     LiF,     Si,    Au

Si: good P0

Si: nearly full destruction of P0

Line width (kHz)
LiF: very high line width

Au: medium

Si: very narrow line width  !!!!

CONCLUSION: 
Si best crystal  for NMR on Li-isotopes  � precision 0.005% reached on µ

(see poster Magda Kowalska for results)
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Conclusion :

Large improvement on ratio of Q-moments !
~ 3 % accuracy

Absolute Q-moments more accurate
(measured in several crystals)
� error Q(9Li) ~ 1 %
� error Q(11Li) ~ 3 %

Q(11Li) > Q(9Li)
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Preparation for NQR-precision measurement
� find a crystal * with optimal production of polarization

* with optimal destruction of P via NQR
* giving with small NQR line width
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Magnetic moment of 11Li : the PRELIMENARY result

B

Li

N=8 � still a good shell closure for B-isotopes (Z=5)

N=8 � not good shell closure for Be-isotopes (Z=4)

N=8 � not good shell closure for Li-isotopes (Z=3)
or influence of halo neutrons occupying non-spherical orbits ???


