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Orbiting charged particles induce a magnetic field 
���� orbital magnetic moment with strength gL

and proportional to orbital angular momentum l
protons : gL,ππππ = 1
neutrons have no charge ���� gL,ν,ν,ν,ν = 0

Introduction

The magnetic dipole moment

Intrinsic spin of the nucleons induces a magnetic field 
���� spin magnetic moment with a strength gS

and proportional to instrinsic spin s=1/2

protons : gS,ππππ = + 5.587
neutrons : gS,ν,ν,ν,ν    = - 3.826

µL= 2

Example: πd3/2

µµµµs,ππππ= +2.794 s

µµµµs,νννν= -1.913s

magnetic dipole operator :     µµµµ = gL L + gS S
Magnetic moment of a state with spin I

= expectation value of the z-component of the dipole operator

µ (I) = < I, m=I  | µµµµz | I, m=I >
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Magnetic moments of ground states in odd nuclei

Magnetic dipole operator(=vector):  a composed spherical tensor operator of rank 1 

µµµµz(L,S) acts on a state with spin j composed out of l and s:
L acts on  the orbital momentum l
S acts on the intrinsic spin s

In the extreme single particle shell model

• nucleons moving in a central potential induced by the other nucleons
• all nucleons are paired to spin zero
• the ground state is determined by the non-paired nucleon

the magnetic moment of an odd-proton (or an odd-neutron) nucleus with spin I is 
determined by the magnetic moment of the unpaired proton (or neutron) in 
orbital j(n,l)

µµµµ(I) = <(ls)jm | µµµµz | (ls)jm>m=j

j

�use angular momentum coupling algebra 
and properties of spherical tensor operators 
to calculate the magnetic moment of a
single nucleon

Ref: de-Shalit and Talmi in “Nuclear Shell Theory”
Brink and Shatchler in “Angular Momentum Algebra”
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���� Magnetic moment of a nucleon in a shell model orbit with spin j:

µ(j=l+½) = [ (j-½) gL + ½ gS ] µN

µ(j=l-½) =      [ (j+    ) gL - ½ gS ] µN

If gL and gS are the free-nucleon g-factors for protons or neutrons � Schmidt moments

j+1
j 3

2

Free g-factors: the Schmidt moments

Experimental magnetic moments deviate sometimes strongly from these 
Schmidt values (from 0.5 – 1.5 µµµµN) ���� mainly inwards

j= l-½ 

j= l+½ 

protons

µn
(free) = -1.913

j= l+½ 

j= l-½ 
neutrons
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Effective g-factors

* the magnetic dipole operator as defined above is an approximation:

� the unpaired nucleons in a nucleus are interacting with each other 
(e.g. through exchange of mesons: Meson Exchange Current correction 

to the dipole operator is needed, this is a small
two-body operator correction)

� the valence nucleons interact with the nucleons in the core 

effective g-factors should be used

typical values : gS
eff ~  0.7 gS (Correction ~ 30%)

gL
eff ~  gL (Correction less than 10%)

Effective moments

Schmidt moments
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Example: magnetic moments in Pb-region

Tl(π3s1/2)
I=1/2

j= l+½ 
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magnetic moments / g-factors (µµµµ = g.I) allow testing an assigned shell model configuration
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Ref: G. Neyens, Rep. Prog. Phys. 66Example: Pb-region (Z=82)
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2d3/2

Z=82

81Tl
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2d3/2

Z=82

79Au

3s1/2

1h9/2

2f7/2

2d3/2

Z=82

Intruder state

For a nucleon in orbital with spin j, 

and spin of the state is I � g(I) = g(j)

g-factor is a better indication to 
determine the occupied orbital 
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Consider two unpaired nucleons in a shell model orbital j, coupling to spin I.

The g-factor of this state g(I), in terms of the single-nucleon g-factor g(j), is 
derived easily using again angular momentum coupling rules:

g(I) = g(j)

This can be generalized: 

the g-factor of a n-nucleon configuration in an orbital j is equal to the 1-nucleon 
g-factor, independent on n and on I.

� in a series of isotopes or isotones, it allows to attribute a 
certain spin to a state, based on a g-factor measurement (exotic nuclei !).

� within one nucleus, the g-factor is a very sensitive tool to 
check whether the configuration within a sequence of spin-states 
(0,2,4,6,8,…) produced by the gradual alignment of two identical nucleons, 
is pure, down to the lowest excitation energy.
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magnetic dipole operator is assumed to be additive:     

the dipole operator acting on a nucleus of A nucleons 
= sum of individual nucleon dipole operators

µµµµ =    ( gL,i li + gS,i si )
i=1

A

Magnetic moments in odd-odd nuclei: additivity rule

The magnetic moment of an odd-odd nucleus with spin I, 

assuming it consists of a weak coupling between an odd proton (j1) and an odd neutron (j2), 

IN TERMS OF THE SINGLE NUCLEON MAGNETIC MOMENS µµµµ(j1) and µµµµ(j2)

is calculated using the decoupling rules for angular momenta

Ref: K. Heyde, The Nuclear Shell Model
I(I+1)

µ (I) = I  ½(    +    ) + ½(    - )                          j1
µµµµ1

j2
µµµµ2

j1
µµµµ1

j2
µµµµ2 j1(j1+1) j2(j2+1)-
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A more sophisticated calculation can be performed using a shell-model code, 
which calculates the wave function more accurately.

In regions where such calculations are reproducing well experimental values 
���� deviations from the calculated values can be used as an indication for 
changes in the shell structure.

Alternatively: using effective g-factors for the single nucleon values, and 
assuming a particular shell model configuration, allows to test the validity of 
an assumed configuration.

However, magnetic moments are not very sensitive
to deformation or collectivity

Knowing the experimental magnetic moments of nearby odd nuclei, one can calculate the 
magnetic moment of a nuclear state with unpaired nucleons, assuming a particular 
configuration.  

Deviations of the experimental value from this calculated value, are then an indication for 
the fact that the assumed configuration is probably not pure.
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Region of well-deformed nuclei
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|Q| > 1 eb

No signature in the 
magnetic moments !
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The electric quadrupole moment

The Spectroscopic Quadrupole Moment of a state with spin I
= expectation value of the z-component of the quadrupole operator

Q(I) = < Im | Qz | Im >m=I

or with spherical tensor notation:

Q(I) = <Im | Q2
0 | Im>m=I

The non-spherical distribution of the charges in a nucleus give rise to a quadrupole 
moment. The quadrupole moment operator is defined as:

Q = e     (3 zi
2 – ri2)

It is a spherical tensor of rank 2:

Q2 = e      rk2 Y2(θθθθk,φφφφk)     

i=1

A

rr

x

y

z

i=1

A
16π

5
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Quadrupole moments in odd nuclei

In a nucleus, due to the interaction of the 
valence nucleons with the core nucleons, the 
neutrons can induce a quadrupole moment.  

And also the proton quadrupole moment will 
be influenced by the interaction with the 
core nucleons.

One says that the valence neutrons and 
protons ‘polarize’ the core.

���� effective charges !

In the extreme single particle shell model

the quadrupole moment of an odd-proton (or an odd-neutron) nucleus with spin I is 
determined by the single particle moment of the unpaired proton (or neutron) in the 
orbital j.

If I=j, then Q(I) = -ej < rj2>     with ei the charge of the valence particle(2j-1)

2(j+1)

j

Polarization 
towards oblate deformation

j

Polarization 
towards oblate deformation

With free-nucleon charges:
eπ=+1 : proton has a negative quadrupole moment
eν= 0 : neutron has no quadrupole moment (only charged particles 

have a quadrupole moment)



14

Nuclei near shell closures are considered to be spherical: the wave function is 
described by individual nucleons moving in a spherical potential � the core does not 
contribute to the nuclear quadrupole moment. 

Due to particle-core interactions, the valence nucleon can polarize the core to small 
oblate or prolate shapes. This effect is taken into account by introducing an ‘effective 
charge’ for protons and neutrons. 

Qs(j) =  eeff/e  Qs.p.(j)free

Effective charges have been determined 
in several regions of the nuclear chart, 
and are found to be of the order 

eππππ
eff = 1.3 – 1.6 e

eνννν
eff = 0.1-0.95 e

Effective charges 100 efm2 = 1 eb
Single particle Q-moments are < 0.5 eb

N=126
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ν 2f5/2

ν 3p1/2

ν 3p3/2

Neutron orbits:

ν 1i13/2
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N=114

Proton orbits:

Z=82
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Orbitals in the Pb-region
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Core Polarization (sperical nuclei) / Prolate and oblate shapes (deformed nuclei)

j

1s1/2

1p3/2

1p1/2

particle in an orbit
j

hole in an orbit 

1s1/2

1p3/2

1p1/2

The valence neutrons and protons ‘polarize’ the core.  To minimize the energy of the 
nucleus, the valence nucleons try to overlap as much as possible with the core 

(the ‘strong interaction’ between nucleons is ‘attractive’).  

ei > 0    ���� Q < 0
a particle polarizes the core 
to oblate shape

Q(1p3/2) < 0 

Q > 0
a hole polarizes the core 
to prolate shape

���� eh = -ep

Q(1p3
3/2) = Q(1p-1

3/2) 
= - Q(1p3/2)

Note: core polarization is mainly important in near-spherical nuclei
In deformed nuclei the nuclear core itself is deformed

Q = Qsp (< 0.5 eb) + Qcore (> 0.5 eb)
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112   114   114  116  118  120   122  124  126 
Neutron number    

Po, 8+

11-

Pb, 11-

Core polarization in near-sperical nuclei: examples from the Pb-region

(1) Quadrupole moment increases (modulus)
when moving away from shell closure

(2) Quadrupole moments of intruder states are
factor 2 larger than for normal states 

(3) Quadrupole moment increases 
when there are holes in the Z=82 shell

Q(Hg) >> Q(Pb)

Ref: G. Neyens, Rep. Prog. Phys. 66 (2003) 

The core-polarization and  intruder deformations 
� can be fully attributed to the interaction of the 

single particle (spherical) orbits with a collective
quadrupole excitation of the core (particle-core coupling).

Ref. K. Vyvey et al., Phys. Lett. B 538(2002)33
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Nuclei in-between shell closures are often well deformed: there properties can be 
described, assuming that the nucleus is a deformed liquid drop. Assuming that the liquid 
drop has an axially symmetric deformation (elipsoidal shape), it’s radius can be expanded 
in spherical harmonics:

R(θ) = R0 [ 1 + β Y2
0(θ) ]

β is called the deformation parameter.
R0 is chosen such that the nuclear volume is independent of the nuclear deformation.  In a 
first approximation, the radius can be calculated as 

R0 = 1.2 A1/3

Quadrupole moment and deformation: collective models

In this same context, the intrinsic quadrupole moment of a deformed elipsoidal charge 
distribution, can be calculated as:

Q0 =           eZR2 β (1 + 0.36 β + …) 
5π
3
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The spectroscopic quadrupole moment is the experimental observable, which in case of 
axially deformed nuclei, can be related to the intrinsic quadrupole moment, and thus to 
the nuclear charge deformation parameter β

In the ROTATIONAL MODEL, assuming axially symmetric deformation:

Q =                        Q0

Zint = intrinsic axis of axial symmetry
K =projection of spin onto this symmetry axis
M = projection of the spin onto the laboratory axis

Intrinsic and spectroscopic quadrupole moments

3K2 – I(I+1)
(I+1)(2I+3)

If the nuclear spin is along the axial symmetry axis, then K=I and:

Q =                      Q0

This relation can be used to deduce and intrinsic quadrupole moment from a measured quadrupole 
moment, and from that a nuclear charge deformation.

IZint

Zlab

K
m

I(2I-1)
(I+1)(2I+3)
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Deformations deduced form experimental data: examples for near-spherical nuclei

Pb, Iππππ=11-, ππππ(3s-2
1/2 1h9/2 1i13/2)

In the neutron deficient Pb-region, intruder 
states (proton 2p-2h excitations) occur. 
Intruder states are deformed (β~ 0.15-0.2) 
contrary to the quasi-spherical neutron states.

102 104 106 108 110 112 114 116 118

+0, 05

-0,25

-0,20

-0,15

-0,10

-0,05

0,00β

N

Pb, Iππππ=12+, νννν(1i-213/2)

The holes in Z=82 induce large deformation, due to additional 
degrees of freedom (increased Q-Q interaction between protons and 
neutrons). (Calculation: HFB, N.A. Smirnova, PLB 2003, accepted)

In the Pb-region, an increase of the core 
deformation (due to core polarization) is found 
with increasing single particle Q-moments.  
This is visualized by plotting βcore versus Qsp, 
where βcore is deduced from Qexp  by taking out 
the single particle contribution.
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Ref. G. Scheveneels, Ph.D. Thesis, K.U. Leuven
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Consider two unpaired nucleons in a shell model orbital j, coupling to spin I.

The quadrupole moment Qs(I), in terms of the single particle Q-moment Qs.p.(j), 

is derived easily using angular momentum coupling rules.  
For 2 particles in an orbit: use the Clebsch-Gordon coefficients  (or 3J-symbols) 

Q((j)2;I) =                 (-1)I+1 j  I  j  
I  j 2 Qs.p.(j)

I  2  I
-I 0  I
j  2  j
-j 0  j

Ref: de-Shalit and Talmi in “Nuclear Shell Theory”
Ref: K. Heyde, “The Nuclear Shell Model”

I
j

j

Quadrupole moment for 2 identical particles
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Consider n nucleons in a shell model orbital j, of which αααα    are unpaired (αααα=seniority) 
and coupling to a spin I.

The quadrupole moment Qs(I), in terms of the single particle Q-moment Qs.p.(j), 

is derived again using angular momentum coupling rules.  For n particles in an orbit, the 
Coefficients of Fractional Parentage (CFP-coefficients) need to be used

Ref: de-Shalit and Talmi in “Nuclear Shell Theory”
Iαααα

jn

j
Jαααα

jn J1αααα
jn-1

Sum over all possible J1, α

Quadrupole moments of multi-particle configurations

Q(jn,α;I) =                 Q(j2;I)
2j+1-2n

2j+1-2α

Q is a linear function of n, with Q(j2,I) determining the slope
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Ref: G. Neyens, Rep. Prog. Phys. 66 (2003) 

Quadrupole moments of states with n nucleons in an orbital j: example

Additivity rule:

Qadd(i13/2
-n,α=2;12+, N=118-n) =                 Q(i13/2

-2;12+;N=118)
2j+1-2n

2j+1-2α

In the neutron deficient Pb-nuclei (Z=82), isomeric states appear at low energy :
I=13/2+  (an unpaired neutron hole in ν1i13/2 orbit)
I=12+ (2 unpaired neutron holes in ν1i13/2 orbit)

The first such isomers appears at N=118
Similar isomers appear in Hg (Z=80) N=126

ν2g9/2

ν 2f5/2

ν 3p1/2

ν 3p3/2

Neutron orbits:

ν 1i13/2

ν1i11/2

N=124
N=118
N=114

An additional core-quadrupole moment is needed 
to reproduce the experimental values also qualitatively

Qexp = Qadd + Qcore

Q(12+,n=2) chosen to reproduce the slope of the 
experimental data points � quantitative agreement

Qc= 36 efm2

Qc= 94 efm2
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Quadrupole moments of multi-particle configurations

Q(I) =                 (-1)j1+j2+I (2I+1) I  2  I
-I 0  I

j1 I  j2
I  j2 2

j1 I  j2
I  j1 2

Q(j1)
j1 2  j1
-j1 0  j1

j2 2  j2
-j2 0  j2

Q(j2)+X

The quadrupole moment of an odd-odd nucleus with spin I, assuming it consists 

of a weak coupling between the odd proton (in orbital j1) and the odd neutron (in orbital j2),  
is calculated 

IN TERMS OF THE SINGLE-NUCLEON QUADRUPOLE MOMENTS Q(j1) AND Q(j2), 

using the decoupling rules for angular momenta and tensor algebra:

Ref: K. Heyde, “The Nuclear Shell Model”

3J-symbol
~ Clebs-Gordon coeffient

6J-symbol
~ Racah coeffient

Similarly, this can be used to calculate the 
Q-moment of a configuration containing 
valence neutrons with total spin In that 
are weakly interacting with valence protons 
coupled to spin Ip.

I j2

j1
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Quadrupole moment of a composed state

Suppose a nuclear state with spin I, described by a configuration consisting of 
neutrons coupled to spin Ip and protons coupled to spin In:

|Ψ> = |(Ip,In) IM>

The quadrupole moment of this state is defined as: Q(I) = <IM | Q2
0 | IM>M=I

with Q2
0 the additive one-body quadrupole operator.  The quadrupole operator is thus 

supposed to act either on the protons or on the neutrons:
Q2

0 = Q2
0(π) + Q2

0(ν)

The state I can be decomposed into it’s proton and neutron part:

Mp,Mn
Mp+Mn=M

|(Ip,In)IM> =         <IpMp, InMn|IM>   |IpMp> |InMn>

The Q-moment in terms of it’s proton and neutron Q-moments Q(π) and Q(ν) is then:

Q(I) = <(IpIn)IM|Q2
0(π)|(IpIn)IM> + <(IpIn)IM|Q2

0(ν)|(IpIn)IM> 

=                    < (IpIn)I || Q2(π)|| (IpIn)I >  + < (IpIn) I || Q2(ν) || (IpIn) I >

=                     fπ(Ip,In,I)  Q(Ip)  + fν(Ip,In,I) Q(In)

I  2  I
-I 0  I

W.-E.

Tensor reduction rules 
(weak interaction)

I  2  I
-I 0  I
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Quadrupole moments of composed states: an example

High-spin isomeric states in the Pb-region

Fr (Z=86) : n=5 � mid shell

N=126

ν2g9/2

ν 2f5/2

ν 3p1/2

ν 3p3/2

Neutron orbits:

ν 1i13/2

ν1i11/2

86Rn

Proton orbits:

Z=82
π1h9/2

π1i13/2

π2f7/2

π2d3/2

π3s1/2

π1h11/2

Rn (Z=86) : n=4
At (Z=85) : n=3

Neutrons: core excited states (intruders)
1p1h  in N=125
2p2h in N=124,126

26

87Fr

(πh9/2
n-1i13/2)

(πh9/2
n-2i13/2

2)
(νg9/2i13/2)
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85At

(πh9/2
n)

(πh9/2
n-1i13/2)

(πh9/2
n-1i13/2) (νg9/2)

N   123 124  125 126

Dots: experimental data
Squares: additivity rule

The fact that also the intruder state 
Q-moments are well-reproduced by 
the additivity rule, 
is an indication that neutron core-
excitations induce not much 
additional core polarization.

Ref: G. Neyens, Rep. Prog. Phys. 66 (2003) 
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Conclusion: why measure nuclear moments ?

chartnucl

pr
ot
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s

neutrons

N=Z

K isomers

Proton-neutron
pairing

78Ni

Doubly magic nuclei

126
82

82
50

50
28

20

20
28

Mirror nuclei

Magnetic Rotation

Vanishing shell gaps

Investigate properties of exotic nuclei …
� study influence of the N/Z degree of freedom

on the strong nuclear force

Shell ordering ?
New / disappearing shell gaps ?
New quantal rotation ?

… nuclear moments  � magnetic moment µµµµ    single particle configurations (mixing)
� the quadrupole moment Q            collective properties   

(deformation, core polarization) 

complementary information is needed to understand changes in shell structure !
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Clebsch-Gordon coefficients – 3J-symbols:

m1,m2
m1+m2=M

|(j1,j2)JM> =         <j1m1, j2m2|JM> |j1m1> |j2m2>

Needed Impulsmoment Algebra
Ref: de-Shalit and Talmi in “Nuclear Shell Theory”

Ref: K. Heyde, “The Nuclear Shell Model”

j1 j2 J
m1 m2 -M

2J+1(-1)M-j1-j2

decoupling of two angular momenta |j1m1> , |j2m2> coupled to a state |JM>

j1

j2
J
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Clebsch-Gordon coefficients – 3J-symbols:

decoupling of two angular momenta |j1m1> , |j2m2> coupled to a state |JM>

Some Impulsmoment Algebra

j1

j2
J

j1 j2 J
m1 m2 -M

2J+1(-1)M-j1-j2

Ref: de-Shalit and Talmi in “Nuclear Shell Theory”

Ref: K. Heyde, “The Nuclear Shell Model”

decoupling of a state |JM>, composed of n particles in orbit j with seniority α
into two components |jm> , |J1m1>

J1,α1

Coefficients of Fractional Parentage

j

m1,m2
m1+m2=M

|(j1,j2)JM> =         <j1m1, j2m2|JM> |j1m1> |j2m2>

|(jn)αJM> =      [jn-1(α1J1),j;J|  (jn)αJ ] |jn-1(J1),j;JM> Jαααα

jn J1αααα jn-1
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Tensor reduction rules

The Wigner-Eckard Theorem:

Reduction of an expectation value:

< jm| Tk
n |j’m’>  =  (-1)j-m <j || Tk || j>

reduced matrix element

j   k  j’
-m n  m’

Expectation value of a 1-body operator acting on a composed state |(j1 j2) JM> :

< (j1j2)JM|  Tk
n(1) | (j1’j2’)J’M’ >  =  

2J+1    2J’+1                 (-1)j1+j2+J’+k <j1 || Tk(1) || j1’> δj2,j2’
J  j1 j2
j1’ J’ k

< (j1j2)JM|  Tk
n(2) | (j1’j2’)J’M’ >  =  

2J+1    2J’+1                 (-1)j1+j2’+J+k <j2 || Tk(2) || j2’> δj1,j1’
j1 j2 J
k  J’ j2’
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Go to the reduced matrix element (W-E-theorem)
� then the spectroscopic quadrupole moment Qs becomes:

Q(I) = <Im | Q2
0 | Im>m=I =                       < I ||      ek rk2 Y2(θθθθk,φφφφk) || I >

Qs = Q(I) = < I ||      ek rk2 Y2(θθθθk,φφφφk) || I >
I(2I-1)

(I+1)(2I+3)(2I+1)
k=1

A
16π

5

I  2  I
-I 0  I

16π
5

k=1

A

Remark: different conventions related to the Wigner-
Eckhart theorem and reduced matrix elements,
lead to a factor     2I+1 difference in above expression.  

Intrinsic quadrupole moment

For a single nucleon in an orbital with angular momentum j:

evaluate  < j || Y2 || j > and < r2 >


