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Nucleus as a many body problem
• Nucleus is made of quarks interacting by exchange of

gluons. We need to solve Quantum Chromodinamics.

• Nucleus is made of nucleons (neutrons and protons) that
interact by meson exchange. Interaction could be
described by a non-relativistic potential.

We need to solve the Schrödinger equation:

HΨ = EΨ

H =
A
∑

i=1

pi

2m
+

A
∑

i<j=1

Vij +
A
∑

i<j<k=1

Vijk
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Basic symmetries
• Invariance under translations. Potential depends only on

relative coordinates.

• Invariance under rotations (space, spin, isospin).

â States are eigenstates of total angular momentum
(J = L + S) and isospin.

â Tensor operators (multipole operators).

[J±, T k
q ] = ~

√

k(k + 1) − q(q ± 1)T k
q+1

[J0, T
k
q ] = ~q

• invariance under parity and time reversal
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Example of Potential
Potential consistent with two-nucleon scattering data and
deuteron structure
Potential AV8’:

V (r) = Vc(r) + Vτ (r)(τ1 · τ2) + Vσ(r)(σ1 · σ2)

+Vστ (r)(σ1 · σ2)(τ1 · τ2) + Vt(r)S12 + Vtτ (r)S12(τ1 · τ2)

+Vb(L · S) + Vbτ (r)(L · S)(τ1 · τ2)
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Solution only possible for light systems
Benchmark test calculations for 4He

[H. Kamada, et al., Phys. Rev. C 64, 044001 (2001)]

Eexp = 28.296 MeV

very different techniques and the complexity of the nuclear
force chosen. Except for NCSM and EIHH, the expectation
values of T and V also agree within three digits. The NCSM
results are, however, still within 1% and EIHH within 1.5%
of the others, but note that the EIHH results for T and V are
obtained with bare operators. The uncertainty in the NCSM
results is of the same size, i.e., 1 MeV, as that for the GFMC.
Finally, the given radii are also in very good agreement.

The HH calculation includes about 4500 states with L

5l11l21l3<6. The states with L56 give a contribution to
the binding energy of approximately 0.04 MeV. It is to be
noticed that the HH spin-isospin states Fm

(H) having L<6 but
constructed with the H-type Jacobi coordinates are linearly
dependent on those considered in the expansion and there-
fore it is unnecessary to include them. The contribution of
Fm

(K) ~and Fm
(H)) to the binding energy with L>8 has been

estimated to be approximately 0.01 MeV.
The errors quoted for the GFMC results are just the

Monte Carlo statistical errors. Various tests show that the
energy is converged to at least this accuracy for changes in
Dt or the maximum t . There should be no other sources of
systematic error in this simple test case.

The NCSM binding energy result is based on extrapola-
tion from calculations using the three-body effective interac-
tion in model spaces up to Nmax516 in the HO frequency
range \V516–43 MeV. The mean values of different opera-
tors, evaluated for Nmax516 consisting of 2775 basis states
and \V528 MeV, were computed using effective operators
as the use of bare operators is completely insufficient, in
particular for the Vc(r) and T. Note that we have here
^Teff&1^Veff& close, but not exactly equal to ^Heff& , due to
approximations used. Overall, the NCSM results are less ac-
curate than the other methods. The NCSM convergence rate
is rather slow for the AV88. However, the method is flexible
to handle also nonlocal realistic potentials like the CD-Bonn
with a faster convergence rate due to a softer repulsive core.
The advantage of the method is its applicability to the p-shell
nuclei.

The EIHH calculation is carried out with Kmax520 ~about
3000 HH states!. The error estimate is based on the conver-
gence with respect to Kmax , i.e., difference of results for
Kmax518 and 20. An inspection of Table I shows that Eb and
radius are converged to a very high precision (Eb : 0.04%;
radius: 0.007%, not shown in Table I!. On the contrary ^T&

and ^V& still change by about 1% from Kmax518 to Kmax

520. Of course, by construction of the EIHH method, also
^T& and ^V& have to converge to the true result. In order to
have a higher precision one can proceed in two ways: ~i!
increase of Kmax , ~ii! use of effective operators. Particularly
advantageous is the use of effective operators, since it allows
us to make rather precise calculations with a small number of
basis functions ~see discussion of EIHH result for Fig. 1!. As
Table I shows it is not necessary to use effective operators
for long-range observables like the radius, while observables
that contain short range information ~high momentum con-
tributions!, like ^T& and ^V&, should, in principle, be calcu-
lated with effective operators.

A more detailed test of the wave function is to evaluate
the expectation values of the eight individual potential en-
ergy operators in Eq. ~24!. The results are shown in Table II.
The agreement is, in general, rather good and well within

TABLE II. Expectation values of the eight potential operators in
Eq. ~24! in MeV.

Method ^Vc& ^Vt& ^Vs& ^Vst&

FY 16.54 25.038 29.217 257.55
CRCGV 16.54 25.035 29.215 257.51
SVM 16.54 25.036 29.213 257.51
HH 16.57 25.034 29.255 257.59
GFMC 16.5~5! 25.03~6! 29.21~7! 257.3~5!

NCSM 16.16 24.92 29.77 257.89

Method ^Vt& ^Vtt& ^Vb& ^Vbt&

FY 0.707 269.06 10.79 215.50
CRCGV 0.708 268.99 10.60 215.30
SVM 0.707 269.03 10.78 215.49
HH 0.702 269.03 10.76 215.46
GFMC 0.71~3! 268.8~5! 10.62~15! 215.40~15!

NCSM 0.68 269.13 11.23 215.80

TABLE I. The expectation values ^T& and ^V& of kinetic and
potential energies, the binding energies Eb in MeV, and the radius in
fm.

Method ^T& ^V& Eb A^r2&

FY 102.39~5! 2128.33~10! 225.94~5! 1.485~3!

CRCGV 102.30 2128.20 225.90 1.482
SVM 102.35 2128.27 225.92 1.486
HH 102.44 2128.34 225.90~1! 1.483
GFMC 102.3~1.0! 2128.25~1.0! 225.93~2! 1.490~5!

NCSM 103.35 2129.45 225.80~20! 1.485
EIHH 100.8~9! 2126.7~9! 225.944~10! 1.486

FIG. 1. Correlation functions in the different calculational
schemes: EIHH ~dashed-dotted curves!, FY, CRCGV, SVM, HH,
and NCSM ~overlapping curves!.
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GFMC calculations for light nuclei
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Theoretical models
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Figure 2:  Top: the nuclear landscape - the territory of RIA physics.  The black squares represent the stable 
nuclei and the nuclei with half-lives comparable to or longer than the age of the Earth (4.5 billion years).  
These nuclei form the "valley of stability".  The yellow region indicates shorter lived nuclei that have been 
produced and studied in laboratories.  By adding either protons or neutrons one moves away from the 
valley of stability, finally reaching the drip lines where the nuclear binding ends because the forces between 
neutrons and protons are no longer strong enough to hold these particles together.  Many thousands of 
radioactive nuclei with very small or very large N/Z ratios are yet to be explored.  In the (N,Z) landscape, 
they form the terra incognita indicated in green.  The proton drip line is already relatively well delineated 
experimentally up to Z=83.  In contrast, the neutron drip line is considerably further from the valley of 
stability and harder to approach.  Except for the lightest nuclei where it has been reached experimentally, 
the neutron drip line has to be estimated on the basis of nuclear models - hence it is very uncertain due to 
the dramatic extrapolations involved.  The red vertical and horizontal lines show the magic numbers around 
the valley of stability.  The anticipated paths of astrophysical processes (r-process, purple line; rp-process, 
turquoise line) are shown.  Bottom: various theoretical approaches to the nuclear many-body problem.  For 
the lightest nuclei, ab initio calculations (Green’s Function Monte Carlo, no-core shell model) based on the 
bare nucleon-nucleon interaction, are possible.  Medium-mass nuclei can be treated by the large-scale shell 
model.  For heavy nuclei, the density functional theory (based on selfconsistent mean field) is the tool of 
choice.  By investigating the intersections between these theoretical strategies, one aims at nothing less than 
developing the unified description of the nucleus. 
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Shell-Model basics
• Shell-Model assumes the existence of shells. Magic

numbers are obtained when a shell is completely fill.

• Shells results from the bunching (grouping) of levels
coming from a independent particle average potential.
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Independent-Particle Model
• Assume the existence of some single-particle wave

functions that are the solution of a Schrödinger equation

hφ(r) = {T + U}φa(r)} = εaφa(r)

The independent-particle motion hamiltonian is then:

H0 =
A
∑

k=1

T (k) + U(rk)

Eigenfunctions are the product of single-particle wave
functions:

Φa1a2...aA
(1, 2, . . . , A) =

A
∏

k=1

φak
(rk)
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System identical particles
Wave function should be antisymmetric. For two particles:

Φab(1, 2) =
1√
2
[φa(1)φb(2)−φa(2)φb(1)] =

1√
2

∣

∣

∣

∣

∣
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φa(2) φb(1)

∣
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(1, 2, ..., A) =

√
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Simple single-particle potential
Empirical construction based in an harmonic oscillator
potential plus a spin-orbit term to reproduce the magic
numbers (M. Goeppert-Mayer and H. Jensen)

U (r) =
1

2
mω2r2 + Dl2 + l · s

εnlj = ~ω[2(n−1)+l+3/2)]+Dl(l+1)+C

{

l + 1 j = l − 1/2

−l j = l + 1/2

~ω =
41

A1/3
MeV
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Spherical mean-field
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Solution to the many-nucleon problem

HΨ(1, 2, . . . , A) =

[

A
∑

k=1

T (k) +

A
∑

k<l=1

W (k, l)

]

Ψ(1, 2, . . . , A) = EΨ(1, 2, . . . , A)

Hamiltonian rewritted:

H =

A
∑

k=1

[T (k) + U(k)] +

[

A
∑

k<l=1

W (k, l) −
A
∑

k=1

U(k)

]

= H0 + Vres

Hartree-Fock theory provides method to derive single-particle potential. The criterium is
to search for the “best” A-particle slater determinant such us the value of H is
minimum. Next, one assumes that the resulting residual interaction is small and that:

Ψ(1, 2, . . . , A) = Φa1a2...aA
(1, 2, . . . , A)
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Validity shell structure

V. R. Pandharipande, I. Sick and P. K.

A. deWitt Huberts, Rev. mod. Phys.

69, 981 (1997)
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Limits of the IPM
Example 16O
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Two-particle wave function
Let’s consider the possible isospin values for two nucleons:

|T = 1, Tz = 1〉 = |n〉|n〉, |1,−1〉 = |p〉|p〉
|1, 0〉 = 1√

2
[|n〉|p〉 + |p〉|n〉]

|0, 0〉 = 1√
2
[|n〉|p〉 − |p〉|n〉]

q

N-particle system: T = odd (symmetric), T = even
(antisymmetric).
We can also couple the angular momentum:

|JM〉 =
∑

m1m2

〈j1m1j2m2|JM〉|j1m1〉|j2m2〉

In N = Z nuclei protons and neutrons occupy the same
orbits. Low lying states fulfill (J + T = odd number).
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Example 6Li
posible two-particle states (j1j2)

JT

(p3/2p3/2)
J=1,3,5;T=0, (p3/2p3/2)

J=2,4,6;T=1

(p3/2p1/2)
J=1,2;T=0 (p3/2p1/2)

J=1,2;T=1

(p1/2p1/2)
J=1;T=0 (p1/2p1/2)

J=0;T=1

He

p3/2

νΠ

p1/2 p1/2

4

p3/2

νΠ

p1/2 p1/2

4
He

p3/2p3/2

��������

����� �����

6
Li

1+ T=0 0

3+ T=0 2.185

0+ T=1 3.562

2+ T=0 4.31

2+ T=1 5.37

1+ T=0 5.7
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Correlations (residual interaction)
In order to incorporate the correlations, one has to go beyond
mean-field

Spherical mean-field

breaking symmetries
of the system

mixing
different mean-field

configurations

• Hartree-Fock Bogoliubov

• Nilsson

• Deformed Hartree-Fock

• Tamm-Dancoff

• RPA

• Interacting shell-model
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Possible solution
• Take the basics formed by the A-particle Slater

determinants:

Φa = Φa1a2...aA
(1, 2, . . . , A)

• build the (infinite) matrix:

〈Φb|H|Φa〉

• diagonalize
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Shell-Model approximation
The space of orbits generated by the mean-field potential are
grouped in three blocks

• Inner core: orbits that are always
full.

• Valence space: orbits that
contain the physical degrees of
freedom relevant to a given
property. The distribution of the
valence particles among these
orbitals is governed by the
interaction.

• External space: all the remaining
orbits that are always empty.

CORE

Shell-Model Applications in nuclear physics and astrophysics – p. 20



10th Euro Summer School on Exotic Beams

Shell-Model approximation
The exact solution on the infinite Hilbert space spanned by
the mean field orbits is approximated in the large scale
shell-model calculation by the solution of the Schrödinger
equation in the valence space using an effective interaction.

HΨ = EΨ → HeffΨeff = EΨeff

In general, effective operators have to be introduced to
account for the restrictions of the Hilbert space

〈Ψ|O|Ψ〉 = 〈Ψeff|Oeff|Ψeff〉
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Shell-Model calculation
A shell model calculation needs the following ingredients:

• A valence space

• An effective interaction

• A code to build and diagonalize the hamiltonian matrix.
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Valence space
The choice of the valence space:

• In light nuclei the harmonic oscillator closures determine
the natural valence spaces.

4He −→ 16O −→ 40Ca −→ 80Zr

p shell sd shell pf shell ↑
Cohen/ Brown/ Deformed

Kurath Wildenthal
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Valence space
• In heavier nuclei:

−→ jj closures due to the spin-orbit term show up

N=28, 50, 82, 126

• the transition HO −→ jj: occurs between 40Ca and 100Sn
where the protagonism shifts from the 1f7/2 to the 1g9/2

• A valence space can be adequate to describe some
properties and completely wrong for others

48Cr (f 7

2

)8 (f 7

2

p 3

2

)8 (fp)8

Q(2+) (e.fm2) 0.0 -23.3 -23.8

E(2+) (MeV ) 0.63 0.44 0.80

E(4+)/E(2+) 1.94 2.52 2.26

BE2(2+ → 0+) (e2.fm4) 77 150 216

B(GT) 0.90 0.95 3.88
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Second quantization
• Creation and destruction operators:

a†
k|0〉 = |k〉, ak|k〉 = |0〉

vacuum |0〉, such ak|0〉 ∀k.
For fermions antisymmetry given by anti-commutation
rules

{a†
i , a

†
j} = {ai, aj} = 0, {a†

i , aj} = δij

• Slater determinant:

Φα1α2...αA
(1, 2, . . . , A) = a†

αA
· · · a†

α2
a†

α1
|0〉

Shell-Model Applications in nuclear physics and astrophysics – p. 24



10th Euro Summer School on Exotic Beams

Second quantization
• One body operators:

O =
A
∑

k=1

O(k) → O =
∑

αβ

〈α|O|β〉a†
αaβ

number of particles N =
∑

α nα =
∑

α a†
αaα

• Two-body operators:

O =
A
∑

i<j=1

O(i, j) → O =
∑

αβγδ

〈αβ|O|γδ〉a†
αa†

βaδaγ
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The interaction in second quantization

H =
∑

α

εαa†
αaα +

1

4

∑

αβγδ

〈αβ|V |γδ〉a†
αa†

βaδaγ = H0 + Vres
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The interaction in second quantization
In general it is convenient to work in a couple basis:
Defining ãjm = (−1)j+maj−m, and the coupling:

[a†
j1

a†
j2

]JM =
∑

m1m2

〈j1m1j2m2|JM〉a†
j1m1

a†
j2m2

H =
∑

α

εαnα − 1

4

∑

j1j2j3j4JT

〈j1j2|V |j3j4〉JT

√

(2J + 1)(2T + 1)(1 + δ12)(1 + δ23)
[

[a†
j1

a†
j2

]JT × [ãj3 ãj4]
JT
]00
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The shell-model interaction
All the information needed for a shell-model calculation are
the independent particle energies (εα) and the two-body
matrix elements 〈j1j2; JT |V |j3j4; JT 〉
Example USD interaction (d5/2, s1/2, d3/2)
USD

3 205 1001 203
-3.94780 -3.16354 1.64658
0 205 205 205 205 0 5
0.0000 -1.6321 0.0000 -1.5012 0.0000 -4.2256

-2.8197 0.0000 -1.0020 0.0000 -0.1641 0.0000
0 205 1001 205 1001 2 3

-1.4474 -3.8598
-0.8183 0.7626
0 205 203 205 203 1 4
-6.5058 -3.8253 -0.5377 -4.5062
1.0334 -0.3248 0.5894 -1.4497
0 1001 1001 1001 1001 0 1
0.0000 -3.2628

-2.1246 0.0000
0 1001 203 1001 203 1 2

-4.2930 -1.8194
0.6066 -0.4064
0 203 203 203 203 0 3
0.0000 -1.4151 0.0000 -2.8842

-2.1845 0.0000 -0.0665 0.0000
........................
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Application
Spectrum of 0+ states in 18O
we build a 3 × 3 matrix:

(d 5
2
)2 (d 3

2
)2 (s 1

2
)2



















−3.9478 × 2 −3.1856 −.13247

+(−2.8197)

−3.1856 1.64658 × 2 −1.0835

+(−2.1845)

−1.3247 −1.0835 −3.1654 × 2

+(−2.1246)



















whose eigenvalues produce the spectrum:

0+
3 14.1

0+
2 4.3

0+
1 0.0
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Large scale Shell-Model basis and codes
pf -shell valence space: 1f7/2, 2p3/2, 2p1/2, 1f5/2

nucleus m-scheme jj-scheme

(ANTOINE) (NATHAN)
48Cr 1,963,461 41,355
54Fe 345,400,174 5,220,621
56Fe 501,113,392 7,413,488
56Ni 1,087,455,228 15,443,684

Impossible to store Hamiltonian matrix!
Still possible to compute HΨ.
Diagonalization using an iterative algorithm.
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Shell-Model code ANTOINE
http://sbgat194.in2p3.fr/~theory/antoine/
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Lanczos algorithm
Construction of a orthonormal basis:
Initial vector |1〉.

E12|2〉 = (H − E11)|1〉
E23|3〉 = (H − E22)|2〉 − E12|1〉
. . .

ENN+1|N + 1〉 = (H − ENN)|N〉 − EN−1N |N − 1〉

where
ENN = 〈N|H|N〉, ENN+1 = EN+1N















E11 E12 0 0 . . . 0

E12 E22 E23 0 . . . 0

0 E23 E33 E34 . . . 0















• Diagonalize and obtain an approximation to the energy
and wave function.

• Do a few more iterations

• Diagonalize again and check that ∆E = EN+k − EN < ε
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Lanczos convergence
RANDOM STARTING VECTOR

3
-6.345165 11.335118 29.120687

6
-21.344259 -7.802025 4.637278 16.927858 29.308309

9
-30.092574 -19.653950 -9.343311 0.467972 10.265731

12
-32.722076 -24.462806 -17.104890 -9.353111 -1.628857

15
-32.930624 -26.709841 -22.335011 -15.957805 -9.401645

18
-32.952147 -28.028244 -24.233122 -19.625844 -14.772679

21
-32.953570 -28.413699 -25.350732 -22.676041 -18.180356

24
-32.953655 -28.537584 -26.244093 -23.883982 -20.534298

27
-32.953658 -28.559930 -26.542899 -24.362551 -22.197866

30
-32.953658 -28.563001 -26.646165 -24.887184 -23.559799

33
-32.953658 -28.564277 -26.912739 -26.199181 -24.299165

36
-32.953658 -28.564535 -27.102898 -26.382496 -24.409357

39
-32.953658 -28.564567 -27.148522 -26.416873 -24.529055

42
-32.953658 -28.564570 -27.156735 -26.425250 -24.724078

45
-32.953658 -28.564570 -27.158085 -26.427319 -24.910915

48
-32.953658 -28.564570 -27.158371 -26.428021 -25.107898
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Lanczos convergence

48Cr

Dim (t=2) = 6 × 105

Dim (full space) = 2 × 106

Ca
40

f7/2 f7/2

Π ν

f5/2
p1/2
p3/2

f5/2
p1/2
p3/2

		
	�


��

��
 ��

��
����

��
����

��
����

��
�� ��

��
����

��
��

STARTING VECTOR :EIGENVECTOR OF A SMALLER SPACE
ITER= 1 DIA= -31.105920 NONDIA= 4.642871

3
-32.578285 -21.260843 5.090417

6
-32.929531 -27.208522 -16.116780 -1.200061 14.816894

9
-32.952149 -28.024347 -22.702052 -13.782511 -3.514506

12
-32.953553 -28.345536 -25.965169 -20.636169 -12.806719

15
-32.953655 -28.528301 -26.951521 -22.532438 -18.004439
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Isospin symmetry
Nuclear spectra are almost unchanged under the exchange of
neutrons and protons.

0

765

1852

0+ 0

2+ 783

4+ 1881

6+ 3163

8+ 4744

10+ 6339

11+ 6949

12+ 7611

50Fe
26      24

3159

4786

6367

0+

2+

4++

6+

8+

10+

11+ 6994

50Cr
24      26

1087

1308

1627

1581

1581

627 610

662

1595

1282

1098

783765
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Isospin representation
Neutron and proton are considered different states of the same particle:
the nucleon

|n〉 =

(

1

0

)

, |p〉 =

(

0

1

)

Isospin operators:
t =

1

2
τ , t± = t1 ± t2

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i

i 0

)

, τ3 =

(

1 0

0 −1

)

States are eigenstates of total isospin (T =
∑A

i=1 ti)

T 2 = T (T + 1)|T, Tz〉, Tz|T, Tz〉

T ≥ Tz =
|N − Z|

2 ´
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Realistic interactions

Exp. KB KLS Bonn A Bonn B Bonn C

2+
1 excitation energy

44Ca 1.16 1.45 1.43 1.31 1.25 1.26
46Ca 1.35 1.45 1.42 1.26 1.22 1.23
48Ca 3.83 1.80 1.60 1.23 1.30 1.41
50Ca 1.03 1.41 1.35 1.27 1.10 1.17

〈(f7/2)8|ΨGS〉 0.468 0.381 0.214 0.345 0.437

56Ni model space (f 7

2

p 3

2

)16

56Ni 2.70 0.39 0.31 0.43 0.42 0.42

〈(f 7

2

)16|ΨGS〉 0.04 0.015 0.018 0.011 0.019

〈np3/2
〉 4.5 5.2 5.7 5.2 5.0

The realistic interactions do not reproduce the shell closure
N or Z=28

Why?
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The structure of the Hamiltonian
From the work of M. Dufour and A. Zuker (PRC 54 1996 1641)
Separation theorem:
Any effective interaction can be split in two parts:

H = Hm(monopole) + HM(multipole)

Hm contains all the terms that are affected by a spherical
Hartree-Fock variatition, hence reponsible of the global
saturation properties and of the evolution of the spherical
single particle field.
Important property:

〈CS ± 1|H|CS ± 1〉 = 〈CS ± 1|Hm|CS ± 1〉
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The structure of the Hamiltonian
For all the realistic G-matrices,

• Hm is not accurate enough.

• HM is almost the same.

The monopole part has to be empirically corrected to
reproduce the structure of the “simple” nuclei |CS ± 1〉
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Multipole Hamiltonian
Can be characterized as the sum of simple terms:

• L = 0 isovector and isoscalar pairing

• Elliot’s quadrupole-quadrupole force.

• (σ1 · σ2)(τ1 · τ2)

• Octupole and hexadecapole terms rλYλ · rλYλ

All the interactions contains similar terms:

Interaction JT = 01 JT = 10 λτ = 20 λτ = 40 λτ = 11

KB3 -4.75 -4.46 -2.79 -1.39 +2.46

FPD6 -5.06 -5.08 -3.11 -1.67 +3.17

GOGNY -4.07 -5.74 -3.23 -1.77 +2.46
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The Monopole Hamiltonian
Hm contains terms that depend in n and T . Assume that we
have a constant potential and single particle energy:

E = nε +
n(n − 1)

2
V

If we consider also the fact that we have isospin:

Hm =
∑

i

εini+
∑

ij

[

1

1 + δij
aijni(nj − δij) +

1

1 + δij
bij

(

Ti · Tj − 3ni

4
δij

))

Where a and b are defined from the centroids (average
interaction):

V T
ij =

∑

J(2J + 1)W JT
ijij

∑

J(2J + 1)

aij =
3V 1

ij + V 0
ij

4
, bij = V 1

ij − V 0
ij
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The Monopole Hamiltonian
If we consider also isospin:

E = nε +
n(n − 1)

2
V + bT (T + 1)

If we consider also the fact that we have isospin:

Hm =
∑

i

εini+
∑

ij

[

1

1 + δij
aijni(nj − δij) +

1

1 + δij
bij

(

Ti · Tj − 3ni

4
δij

))

Where a and b are defined from the centroids (average
interaction):

V T
ij =

∑

J(2J + 1)W JT
ijij

∑

J(2J + 1)

aij =
3V 1

ij + V 0
ij

4
, bij = V 1

ij − V 0
ij
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The Monopole Hamiltonian
In general we have different orbits each with different average
interactions:

E =
∑

i

niεi +
∑

i

ni(ni − 1)

2
Vii +

∑

i6=j

ninjVij

If we consider also the fact that we have isospin:

Hm =
∑

i

εini+
∑

ij

[

1

1 + δij
aijni(nj − δij) +

1

1 + δij
bij

(

Ti · Tj − 3ni

4
δij

))

Where a and b are defined from the centroids (average
interaction):

V T
ij =

∑

J(2J + 1)W JT
ijij

∑

J(2J + 1)

aij =
3V 1

ij + V 0
ij

4
, bij = V 1

ij − V 0
ij
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Influence of monopole hamiltonian
The evolution of effective spherical single particle energies with
the number of particles in the valence space can be extracted
from Hm. In the case of identical particles the expresion is:

εj(n) = εj(n = 1) +
∑

i

Vijni

The monopole hamiltonian Hm also governs the relative
position of the various T-values in the same nucleus, via the
terms:

bijTi · Tj

Even small defects in the centroids can produce large changes
in the relative position of the different configurations due to
the appearance of quadratic terms involving the number of
particles in the different orbits
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Effect of monopole corrections
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Evolution SPE
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Limits of IPM
Example 16O
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Limits of IPM
Example 16O
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Limits of IPM
Example 16O
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Monopole explanation
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E0ph = 12εp +
12 · 11

2
Vpp

E1ph = 11εp + εr + 55Vpp + 11Vpr

E2ph = 10εp + 2εr + 45Vpp + 20Vpr + Vrr

E4ph = 8εp + 4εr + 28Vpp + 32Vpr + 6Vrr

∆1ph = εr − εp + 11(Vpr − Vpp)

∆2ph = 2(εr − εp) + Vpp + 20(Vpr − Vpp) + (Vrr − Vpp)

∆4ph = 4(εr − εp) + 32(Vpr − Vpp) + 6(Vrr − Vpp)
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Monopole explanation
νΠ

1p3/2

1p1/2

1d5/2
2s1/2

1d3/2

νΠ

1p3/2

1p1/2

1d5/2
2s1/2

1d3/2

∆1ph = εr − εp + 11(Vpr − Vpp)

∆2ph = 2(εr − εp) + Vpp + 20(Vpr − Vpp) + (Vrr − Vpp)

∆4ph = 4(εr − εp) + 32(Vpr − Vpp) + 6(Vrr − Vpp)

Shell-Model Applications in nuclear physics and astrophysics – p. 46



10th Euro Summer School on Exotic Beams

Evolution SPE far off stability
Given Hm, the effective single particle energies [from Otsuka
et al, Phys. Rev. Lett. 87, 82502 (2001)],
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Evolution SPE far off stability
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Vanishing of shell closure at N=20
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Computation of transition operators
Given a one-body transition operator O, how do we compute

〈Ψf |O|Ψi〉

here Ψi and Ψf are many-body wave functions obtained from
shell-model diagonalization

• One body operators:

O =
∑A

i=1 o(r(i)) −→ O =
∑

i,j〈i|O|j〉a†
iaj

• We need to know
â the value of our one body operator between single

particle wave functions 〈i|O|j〉
â the one body density matrix elements 〈Ψf |a†

iaj|Ψi〉
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Computation of transition operators
• for 〈i|O|j〉, one needs (eventually) to know the radial part

of the wave function: usually harmonic oscillator,
sometimes wood-saxon.

〈i|O|j〉 =

∫

d3r φ∗
i (r)O(r)φj(r)

• for the one body density matrix elements (same
procedure as for the hamiltonian):

a†
5a2|001011〉 = |011001〉

now we know the procedure to compute:
• EL transitions: rLYL0

• β decay :
â Fermi decay : τ±
â Gamow-Teller decay: στ±
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Example calculation
β decay half-life calculation

• Determine initial state |Ψi〉.
• Determine all posible final states |Ψf〉.
• Compute matrix elements 〈Ψf |O|Ψi〉

λf =
ln 2

K
f(Z, W f

0 )[Bf (F ) + Bf (GT )]

• Determine total decay rate:

λ =
ln 2

T1/2

=
∑

f

λf
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Lanczos Strength Functions
• |Ψ〉 ground state given nucleus.

• Sum rule state (or doorway): |Ω〉 = Ω|Ψ〉.
• Total sum rule (sum over all final states of the matrix

element squared) is the norm of state |Ω〉:

〈Ω|Ω〉 = 〈Ψ|Ω†
Ω|Ψ〉 =

∑

i

|〈i|Ω|Ψ〉|2

• We can think of the state |Ω〉 as a (probability)
distribution over the eigenvalues |i〉 of H with values
|〈i|Ω〉|2 = |〈i|Ω|Ψ〉|2
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Lanczos Strength Functions
Any distribution can be characterized by the moments of the
distribution.

Ē = 〈Ω|H|Ω〉 =
∑

i

Ei|〈i|Ω|Ψ〉|2

mn = 〈Ω|(H − Ē)n|Ω〉 =
∑

i

(Ei − Ē)n|〈i|Ω|Ψ〉|2

Gaussian distribution characterized by two
moments (Ē, σ2 = m2)

g(E) = 1

σ
√

2π
exp(− (E−Ē)2

2σ2 )

E

g(
E

)

2σ
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Lanczos Strength Functions
In general we only need a finite number of momenta. We can
define a basis of |α〉 states.

mn = 〈Ω|(H−Ē)n|Ω〉 =
N
∑

α

(Eα−Ē)n|〈α|Ω|Ψ〉|2 (∀n ≤ M)

Eα ≈ 〈α|H|α〉
With N states we can reproduce 2N moments of the
distribution.
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Lanczos Strength Functions
Example: Beta half-life

λ ∼
∑

i

f(Z, W i
0)|〈i|Ω|Ψ〉|2

f(Z, W i
0) ≈

∫ W i
0

1

W 2(W i
0 − 1)2dW ≈ (W i

0)
5

30
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Lanczos Strength Functions
Lanczos method provides a natural way of determining the
basis |α〉.
Initial vector |1〉 = |Ω〉√

〈Ω|Ω〉
.

E12|2〉 = (H − E11)|1〉
E23|3〉 = (H − E22)|2〉 − E12|1〉
. . .

ENN+1|N + 1〉 = (H − ENN )|N〉
−EN−1N |N − 1〉

where
ENN = 〈N|H|N〉, ENN+1 = EN+1N

Each Lanczos iteration gives information
about two new moments of the distribu-
tion.

E11 = 〈1|H|1〉 = Ē

E2
12 = 〈Ω|(H − E11)2|Ω〉 = m2

E22 =
m3

m2

+ Ē

E2
23 =

m4

m2

− m2
3

m2
2

− m2

Diagonalizing Lanczos matrix after N iterations gives an approximation to the

distribution with the same lowest 2N moments.

Shell-Model Applications in nuclear physics and astrophysics – p. 52



10th Euro Summer School on Exotic Beams

Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe

0 5 10 15 20
E (MeV)

0.0

0.5

1.0

1.5

2.0

B
(M

1)
 (µ

N2 )
100 Iterations

Shell-Model Applications in nuclear physics and astrophysics – p. 53



10th Euro Summer School on Exotic Beams

Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution Strength Distribution
M1 Strength on 56Fe
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Evolution of Strength Distribution
GT Strength on 48Sc
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Evolution of Strength Distribution
GT Strength on 48Sc
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Fermi matrix elements

B(F ) =
1

2Ji + 1

∑

Mi,Mf

|〈JfMf ; TfTzf
|

A
∑

k=1

tk
±|JiMi; TiTzi

〉|2

B(F ) = [Ti(Ti + 1) − Tzi
(Tzi

± 1)]δJi,Jf
δTi,Tf

δTzf
,Tzi

±1

Energetics:

EIAS = Qβ + sign(Tzi
)[EC(Z + 1) − EC(Z) − (mn − mH)]

Selection rule:

∆J = 0 ∆T = 0 πi = πf

Sum rule (sum over all the final states):

S(F ) = S−(F ) − S+(F ) = 2Tzi
= (N − Z)
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Fermi matrix elements
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Gamow-Teller matrix elements
back

B(GT ) =
g2

A

2Ji + 1
|〈Jf ; TfTzf

||
A
∑

k=1

σktk±||Ji; TiTzi
〉|2

gA = −1.2720 ± 0.0018

Selection rule:

∆J = 0, 1 (no Ji = 0 → Jf = 0) ∆T = 0, 1 πi = πf

Ikeda sum rule:

S(GT ) = S−(GT ) − S+(GT ) = 3(N − Z)
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SN1987A
Type II supernova in LMC (∼ 55 kpc)

• Egrav ≈ 1053 erg

• Erad ≈ 8 × 1049 erg

• Ekin ≈ 1051 erg = 1 foe

neutrinos from SN1987A
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Evolution Massive Stars
Evolution 20 solar mass star
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Late stages core evolution
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Semileptonic Weak Processes in Stars

ν

νe

k
e−

e−

eν−
e−

k ν

e−

eν
e+

k ν

e−eν k

ν

k

ν
νl

l+l−

νl

k

ν

νl

ν

k

l−

k

ν

l+

νl

ν
ν

ν′l
ν′

ν
ν

ν′

ν′l

λ

λ

� � � �� � � �� � � �� � � �

� � �� � �� � �� � �

λq λkνλ=      −
e−orbital     capture

λ
λ

� � �� � �� � �� � �

� � �� � �� � �� � �

λq λkνλ=      +
β− decay

λq λkνλ=      +
β+ decay

λ
λ

� � �� � �� � �� � �

� � �� � �� � �� � �

− λ

λ

            

! ! !! ! !! ! !

β−bound-state     decay
λq λkνλ=      +

λ

λ
−

λ

λ

λq λkνλ=      −
continuum charged (anti)lepton capture

λ

λ

λ

λ

−

λq λk νλ=      −
(anti)neutrino capture

λ

l

λ

l
−

λ

λ
−

λq λν′ νλ=      −
(anti)neutrino scattering

" " "" " "" " "

# # ## # ## # #

$ $ $$ $ $$ $ $

% % %% % %% % %

& & && & && & && & &

' ' '' ' '' ' '

( ( ( (( ( ( (( ( ( (

) ) )) ) )) ) )

* * * ** * * ** * * *

+ + ++ + ++ + +

, , , ,, , , ,, , , ,, , , ,

- - -- - -- - -

OF ∼ eiqrτ OGT ∼ eiqrστ

Shell-Model Applications in nuclear physics and astrophysics – p. 60



10th Euro Summer School on Exotic Beams

Presupernova evolution
• T = 0.1–0.8 MeV, ρ = 107–1010 g cm−3.

Composition of iron group nuclei

(A = 45–65)

• Important processes:

â electron capture:

e− + (N, Z) → (N + 1, Z − 1) + νe

â β− decay:
(N, Z) → (N − 1, Z + 1) + e− + ν̄e

• Dominated by allowed transitions (Fermi and
Gamow-Teller)

• Evolution decreases number of elec-
trons (Ye) and Chandrasekar mass
(MCh ≈ 1.4(2Ye)2 M�)
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• Fenomenological model
(Fuller, Fowler, Newman, 1985)

• Charge exchange reactions (n, p),

(d, 2He)

• Microscopic model (Shell-Model)

(Langanke & Martínez-Pinedo, 2001)
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GT in charge exchange reactions
GT strength could be measured in CE reactions:

• GT− proved in (p, n), (3He, t).

• GT+ proved in (n, p), (t, 3He), (d, 2He).

Mathematical relationship (Ep ≥ 100 MeV/nucleon):

dσ

dΩdE
(0◦) ≈ S(Ex)B(GT )

B(GT ) =

(

gA

gV

)2 〈f ||∑k σktk
±||i〉2

2Ji + 1

Ikeda sum rule:

S− − S+ = 3(N − Z)
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Independent Particle Model
GT+ strength in 58Ni measured in (n, p).
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Gamow-Teller strength
GT+ strength measured in charge-exchange (n, p) experiments (TRIUMF).
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GT+ strength measured in (d,2He)
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Shell-model (LMP) vs FFN rates
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Most important nuclei
Most important nuclei to determine the electron capture rate
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Collapse phase
Important processes:

• Neutrino transport (Boltzman
equation):
ν + A � ν + A (trapping)

ν + e− � ν + e− (thermalization)

cross sections ∼ E2
ν

• electron capture on protons:

e− + p � n + νe

What is the role of electron capture on nuclei?

e− + (N, Z) � (N + 1, Z − 1) + νe

What is the role of inelastic neutrino-nucleus scattering?

ν + A � ν + A∗
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Collapse abundances
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(Un)blocking electron capture at N=40
Independent particle treatment
(Bruenn)
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Electron capture: nuclei vs protons
Electron capture rates
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Reaction rates
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Consequences
With Rampp & Janka (General Relativic model)
15 M� presupernova model from A. Heger & S. Woosley
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Consequences
With Hix, Liebendörfer, Mezzacappa, Messer
(Newtonian Gravity)
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Shock evolution
With Rampp & Janka (General Relativic model)
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Neutrino interactions in the collapse

Bruenn and Haxton (1991)

Based on results for 56Fe

• Elastic scattering:
ν + A � ν + A (trapping)

• Absorption:
νe +(N, Z) � e−+(N −1, Z +1)

• ν-e scattering:
ν + e− � ν + e−

• Inelastic ν-nuclei
scattering:
ν + A � ν + A∗
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νe absorption cross section on 56Fe
56Fe(νe, e

−)56Co measured by KARMEN collaboration:
σexp = 2.56 ± 1.08(stat) ± 0.43(syst) × 10−40 cm2

σth = 2.38 × 10−40 cm2
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Neutrino nucleosynthesis

Neutrinos interact with abundant
nuclear species

• Neutral current (ν, ν′): Nucleus
excited to particle unbound
states that decay by particle
emission.

• Charged current (νe, e−) and

(ν̄e, e+).

4 4 4 44 4 4 45 5 5 55 5 5 5
Neutron−rich matter
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ν− ν

νx (E ~ 25 MeV)
−

eν (E ~ 16 MeV)

νe (E ~ 11 MeV)

νe+ n          p + e−

νe+ p          n + e− +
R ~ 1/T

Product Parent Reaction
11B 12C (ν, ν′n), (ν, ν′p)
15N 16O (ν, ν′n), (ν, ν′p)
19F 20Ne (ν, ν′n), (ν, ν′p)

138La 138Ba (ν, e−)
139La (ν, ν′n)

180Ta 180Hf (ν, e−)
181Ta (ν, ν′n)

11B/10B traces galactic evolution:

• Big ratio ( 100) predicted by ν-process.

• Cosmic rays spallation reactions on C
give a ratio of 2.

• Solar system ratio is 4.

138La, 180Ta production is sensitive to neutrino
oscillations.
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Nucleosynthesis with and without ν
With Heger (Los Alamos)
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The production of 138La
Produced by 139La(γ, n), 138Ba(νe, e

−)
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The production of 180Ta
Produced by 181Ta(γ, n), 180Hf(νe, e

−)
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Presupernova abundances
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