Symmetries of the nuclear shell model

P. Van Isacker, GANIL, France

Racah's SU(2) pairing model Wigner's SU(4) symmetry Elliott's SU(3) model of rotation Generalized pairing models* Generalized SU(3) models*

Nuclear shell model

• Many-body quantum mechanical problem:

$$H = \sum_{k=l}^{A} \frac{p_k^2}{2m_k} + \sum_{k
$$= \sum_{k=l}^{A} \left[\frac{p_k^2}{2m_k} + V(\xi_k)\right] + \left[\sum_{k
$$\underset{\text{mean field}}{\text{residual interaction}}$$$$$$

• Independent-particle assumption. Choose *V* and neglect residual interaction:

$$H \approx H_{\mathrm{IP}} = \sum_{k=1}^{A} \left[\frac{p_k^2}{2m_k} + V(\xi_k) \right]$$

Independent-particle shell model

• Solution for one particle:

$$\left[\frac{p_k^2}{2m_k} + V(\xi_k)\right]\phi_i(k) = E_i\phi_i(k) \qquad \left[\phi_i(k) = \phi_i(\vec{r}_k, \vec{s}_k, \vec{t}_k)\right]$$

• Solution for many particles:

$$\Phi_{i_{1}i_{2}...i_{A}}(1,2,...,A) = \prod_{k=1}^{A} \phi_{i_{k}}(k)$$

$$H_{\mathrm{IP}}\Phi_{i_{1}i_{2}...i_{A}}(1,2,...,A) = \left(\sum_{k=1}^{A} E_{i_{k}}\right) \Phi_{i_{1}i_{2}...i_{A}}(1,2,...,A)$$

Independent-particle shell model

• Antisymmetric solution for many fermions (**Slater** determinant):

$$\Psi_{i_{1}i_{2}...i_{A}}(1,2,...,A) = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_{i_{1}}(1) & \phi_{i_{1}}(2) & \dots & \phi_{i_{1}}(A) \\ \phi_{i_{2}}(1) & \phi_{i_{2}}(2) & \dots & \phi_{i_{2}}(A) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{i_{A}}(1) & \phi_{i_{A}}(2) & \dots & \phi_{i_{A}}(A) \end{vmatrix}$$

• Example for *A*=2 fermions:

$$\Psi_{i_1i_2}(1,2) = \frac{1}{\sqrt{2}} \Big[\phi_{i_1}(1)\phi_{i_2}(2) - \phi_{i_1}(2)\phi_{i_2}(1) \Big]$$

Hartree-Fock approximation

Vary φ_i (*i.e.* V) to minize the expectation value of H in a Slater determinant:

$$\delta \frac{\int \Psi_{i_{1}i_{2}...i_{A}}^{*}(1,2,...,A)H\Psi_{i_{1}i_{2}...i_{A}}(1,2,...,A)d\xi_{1}d\xi_{2}...d\xi_{A}}{\int \Psi_{i_{1}i_{2}...i_{A}}^{*}(1,2,...,A)\Psi_{i_{1}i_{2}...i_{A}}(1,2,...,A)d\xi_{1}d\xi_{2}...d\xi_{A}} = 0$$

• Application requires choice of *H*. Many global parametrizations (Skyrme, Gogny,...) have been developed.

Poor man's Hartree-Fock

• Choose a simple, analytically solvable *V* that approximates the microscopic HF potential:

$$H_{\rm IP} = \sum_{k=1}^{A} \left[\frac{p_k^2}{2m} + \frac{1}{2} m \omega^2 r_k^2 - \zeta_{\rm 1s} \vec{l}_k \cdot \vec{s}_k - \zeta_{\rm 1l} l_k^2 \right]$$

- Contains
 - Harmonic oscillator potential with constant ω .
 - Spin-orbit term with strength ζ_{ls} .
 - Orbit-orbit term with strength ζ_{ll} .
- Adjust ω , ζ_{ls} and ζ_{ll} to best reproduce HF.

Symmetries of the shell model

- Three bench-mark solutions:
 - No residual interaction \Rightarrow IP shell model.
 - Pairing (in *jj* coupling) \Rightarrow **Racah**'s SU(2).
 - Quadrupole (in *LS* coupling) \Rightarrow Elliott's SU(3).
- Symmetry triangle: $H_{\text{IP}} = \sum_{k=1}^{A} \left[\frac{p_k^2}{2m} + \frac{1}{2} m \omega^2 r_k^2 - \xi_{\text{Is}} \vec{l}_k \cdot \vec{s}_k - \xi_{\text{II}} l_k^2 \right]^{\text{shell model}}$ $+ \sum_{k<l}^{A} V_{\text{RI}}(\xi_k, \xi_l)$ $SU(2) \text{ pairing in } il \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation in } LS \text{ coupling } SU(3) \text{ rotation } SU(3) \text{ rotation$

Symmetries in N~Z nuclei (II), Valencia, September 2003

Racah's SU(2) pairing model

- Assume large spin-orbit splitting ζ_{ls} which implies a *jj* coupling scheme.
- Assume pairing interaction in a single-*j* shell:

$$\left\langle j^{2} J M_{J} \middle| V_{\text{pairing}} \middle| j^{2} J M_{J} \right\rangle = \begin{cases} -\frac{1}{2} (2j+1)g, & J=0\\ 0, & J\neq 0 \end{cases}$$

• Spectrum of ²¹⁰Pb:

Symmetries in N~Z nuclei (II), Valencia, September 2003

SU(2) quasi-spin formalism

- The pairing hamiltonian,
 - $H = E_0 gS_+ \cdot S_-, \quad S_+ = \frac{1}{2}\sqrt{2j+1} \left(a_j^+ \times a_j^+\right)_0^{(0)}, \quad S_- = \left(S_+\right)^+$
- ...has a *quasi-spin* SU(2) algebraic structure: $\begin{bmatrix} S_{+}, S_{-} \end{bmatrix} = \frac{1}{2} (2n_{j} - 2j - 1) \equiv -2S_{z}, \quad \begin{bmatrix} S_{z}, S_{\pm} \end{bmatrix} = \pm S_{\pm}$
- *H* has SU(2) \supset SO(2) dynamical symmetry: $-gS_+ \cdot S_- = -g(S^2 - S_z^2 + S_z)$
- Eigensolutions of pairing hamiltonian: $-gS_{+} \cdot S_{-} |SM_{S}\rangle = -g(S(S+1) - M_{S}(M_{S}-1))|SM_{S}\rangle$

A. Kerman, Ann. Phys. (NY) 12 (1961) 300

Interpretation of pairing solution

- Quasi-spin labels *S* and *M_S* are related to nucleon number n_j and seniority v: $S = \frac{1}{4}(2j - v + 1), \quad M_S = \frac{1}{4}(2n_j - 2j - 1)$
- Energy eigenvalues in terms of n_j and v: $\left\langle j^{n_j} \upsilon J M_J \right| - g S_+ \cdot S_- \left| j^{n_j} \upsilon J M_J \right\rangle = -\frac{1}{4} g (n_j - \upsilon) (2j - n_j + \upsilon + 3)$
- Eigenstates have an *S*-pair character: $|j^{n_j} \upsilon J M_J\rangle \propto (S_+)^{(n_j - \upsilon)/2} |j^{\upsilon} \upsilon J M_J\rangle$
- Seniority v is the number of nucleons not in S pairs (pairs coupled to J=0).

G. Racah, Phys. Rev. 63 (1943) 367

Pairing and superfluidity

- Ground states of a pairing hamiltonian have *superfluid* character:
 - Even-even nucleus ($\upsilon = 0$): $(S_{+})^{n_{j}/2} | o \rangle$
 - Odd-mass nucleus $(\upsilon = 1)$: $a_j^+(S_+)^{n_j/2}|o\rangle$
- Nuclear superfluidity leads to
 - Constant energy of first 2⁺ in even-even nuclei.
 - Odd-even staggering in masses.
 - Two-particle (2n or 2p) transfer enhancement.

Superfluidity in semi-magic nuclei

Shell structure of nuclei

• Direct evidence for nuclear shell structure is obtained from $E_x(2^+)$ (here scaled by $A^{1/3}$):

Superfluidity versus magicity

- Two-nucleon separation energies S_{2n} :
 - (a) Shell splitting dominates over interaction.
 (b) Interaction dominates over shell splitting.
 (c) S_{2n} in tin isotopes.

Symmetries in N~Z nuclei (II), Valencia, September 2003

Generalized pairing models

• Trivial generalization from a single-*j* shell to several degenerate *j* shells:

 $S_+ \propto \frac{1}{2} \sum_j \sqrt{2j+l} \left(a_j^+ \times a_j^+ \right)_0^{(0)}$

- Pairing with neutrons and protons:
 - -T=1 pairing: SO(5).
 - -T=0 & T=1 pairing: SO(8).
- Non-degenerate shells:
 - **Talmi**'s generalized seniority.
 - Richardson's integrable pairing model.

Pairing with neutrons and protons

• For neutrons and protons *two* pairs and hence *two* pairing interactions are possible:

Symmetries in N~Z nuclei (II), Valencia, September 2003

Neutron-proton pairing hamiltonian

• A hamiltonian with two pairing terms,

$$H = -g_0 S_+^{10} \cdot S_-^{10} - g_1 S_+^{01} \cdot S_-^{01}$$

- ...has an SO(8) algebraic structure.
- *H* is solvable (or has dynamical symmetries) for g₀=0, g₁=0 and g₀=g₁.

SO(8) 'quasi-spin' formalism

• A closed algebra is obtained with the pair operators S_{\pm} with in addition $n = 2\sqrt{2l+1} \left(a_{l\frac{1}{22}}^{+} \times a_{l\frac{1}{22}}^{+} \right)_{000}^{(000)}, \quad Y_{\mu\nu} = \sqrt{2l+1} \left(a_{l\frac{1}{22}}^{+} \times a_{l\frac{1}{22}}^{+} \right)_{0\mu\nu}^{(011)}$

$$S_{\mu} = \sqrt{2l+l} \left(a_{l\frac{1}{2}\frac{1}{2}}^{+} \times a_{l\frac{1}{2}\frac{1}{2}}^{+} \right)_{0\mu0}^{(-)}, \quad T_{\nu} = \sqrt{2l+l} \left(a_{l\frac{1}{2}\frac{1}{2}}^{+} \times a_{l\frac{1}{2}\frac{1}{2}}^{+} \right)_{00\nu}^{(-)}$$

• This set of 28 operators forms the Lie algebra SO(8) with subalgebras $SO(6) \approx SU(4) = \{S, T, Y\}, SO_{S}(5) = \{n, S, S_{\pm}^{10}\},$ $SO_{T}(5) = \{n, T, S_{\pm}^{01}\}, SO_{S}(3) = \{S\}, SO_{T}(3) = \{T\}$

B.H. Flowers & S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673

Solvable limits of the SO(8) model

- Pairing interactions can expressed as follows: $S_{+}^{01} \cdot S_{-}^{01} = \frac{1}{2}C_{2}[SO_{T}(5)] - \frac{1}{2}C_{2}[SO_{T}(3)] - \frac{1}{8}(2l - n + 1)(2l - n + 7)$ $S_{+}^{01} \cdot S_{-}^{01} + S_{+}^{10} \cdot S_{-}^{10} = \frac{1}{2}C_{2}[SO(8)] - \frac{1}{2}C_{2}[SO(6)] - \frac{1}{8}(2l - n + 1)(2l - n + 13)$ $S_{+}^{10} \cdot S_{-}^{10} = \frac{1}{2}C_{2}[SO_{S}(5)] - \frac{1}{2}C_{2}[SO_{S}(3)] - \frac{1}{8}(2l - n + 1)(2l - n + 7)$
- Symmetry *lattice* of the SO(8) model: $SO(8) \supset \begin{cases} SO_s(5) \otimes SO_T(3) \\ SO(6) \approx SU(4) \\ SO_T(5) \otimes SO_S(3) \end{cases} \supset SO_s(3) \otimes SO_T(3)$
- \Rightarrow Analytic solutions for $g_0 = 0, g_1 = 0$ and $g_0 = g_1$.

Superfluidity of *N*=*Z* nuclei

- Ground state of a T=1 pairing hamiltonian for identical nucleons is superfluid, $(S_+)^{n/2} | o \rangle$.
- Ground state of a T=0 & T=1 pairing hamiltonian with equal number of neutrons and protons has *different* superfluid character: $(\cos\theta S_{+}^{10} \cdot S_{+}^{10} - \sin\theta S_{+}^{01} \cdot S_{+}^{01})^{n/4} |o\rangle$
- \Rightarrow Condensate of α 's (θ depends on g_0/g_1).
- Observations:
 - Isoscalar component in condensate survives only in *N*~*Z* nuclei, if anywhere at all.
 - Spin-orbit term *reduces* isoscalar component.

Superfluidity versus magicity

• Superfluid ground state for degenerate shells:

$$\left(\sum_{j}S_{+}(j)\right)^{n/2}|\mathbf{o}\rangle$$

• 'Superfluid' ground state for non-degenerate shells (Richardson-Gaudin-Dukelsky):

$$\prod_{\alpha=1}^{n/2} \left(\sum_{j=1}^{n/2} \frac{1}{2\varepsilon_{j} - e_{\alpha}} S_{+}(j) \right) | \mathbf{o} \rangle$$

$$1 - g \sum_{j=1}^{n/2} \frac{2j+1}{2\varepsilon_{j} - e_{\alpha}} - 4g \sum_{\beta(\neq\alpha)} \frac{1}{e_{\alpha} - e_{\beta}} = 0, \quad \alpha = 1, 2, \dots, n/2$$

R.W. Richardson, Phys. Lett. 5 (1963) 82

Wigner's SU(4) symmetry

• Assume the nuclear hamiltonian is invariant under spin *and* isospin rotations:

$$\begin{bmatrix} H_{\text{nucl}}, S_{\mu} \end{bmatrix} = \begin{bmatrix} H_{\text{nucl}}, T_{\nu} \end{bmatrix} = \begin{bmatrix} H_{\text{nucl}}, Y_{\mu\nu} \end{bmatrix} = 0$$
$$S_{\mu} = \sum_{k=1}^{A} s_{\mu}(k), \quad T_{\nu} = \sum_{k=1}^{A} t_{\nu}(k), \quad Y_{\mu\nu} = \sum_{k=1}^{A} s_{\mu}(k) t_{\nu}(k)$$

- Since $\{S_{\mu}, T_{\nu}, Y_{\mu\nu}\}$ form an SU(4) algebra:
 - $-H_{nucl}$ has SU(4) symmetry.
 - Total spin *S*, total orbital angular momentum *L*, total isospin *T* and SU(4) labels ($\lambda \mu \nu$) are conserved quantum numbers.

E.P. Wigner, Phys. Rev. **51** (1937) 106 F. Hund, Z. Phys. **105** (1937) 202

Physical origin of SU(4) symmetry

• SU(4) labels specify the separate spatial and spin-isospin symmetry of the wavefunction:

particle number	spatial symmetry	L	spin–isospin symmetry	$(\lambda\mu u)$	(S,T)
1		0, 2		(100)	$(\tfrac{1}{2}, \tfrac{1}{2})$
2	$ \overset{\Box\Box}{=} (S) \\ \overset{\Box}{=} (A) $	$0^2, 2^2, 4$ 1, 2, 3		(010) (200)	$(0,1)\ (1,0)\ (0,0)\ (1,1)$

Note: S stands for symmetric, A for antisymmetric.

• Nuclear interaction is short-range attractive and hence *favours maximal spatial symmetry*.

Breaking of SU(4) symmetry

- *Non-dynamical* breaking of SU(4) symmetry as a consequence of
 - Spin-orbit term in nuclear mean field.
 - Coulomb interaction.
 - Spin-dependence of residual interaction.
- Evidence for SU(4) symmetry breaking from
 - Masses: rough estimate of nuclear BE from
 - $B(N, Z) \propto a + bg(\lambda \mu \nu) = a + b\langle \lambda \mu \nu | C_2[SU(4)] | \lambda \mu \nu \rangle$
 - β decay: **Gamow-Teller** operator $Y_{\mu,\pm l}$ is a generator of SU(4) \Rightarrow selection rule in $(\lambda \mu \nu)$.

SU(4) breaking from masses

- Double binding energy difference δV_{np} $\delta V_{np}(N,Z) = \frac{1}{4} \Big[B(N,Z) - B(N-2,Z) - B(N,Z-2) + B(N-2,Z-2) \Big]$
- δV_{np} in *sd*-shell nuclei:

P. Van Isacker et al., Phys. Rev. Lett. 74 (1995) 4607

SU(4) breaking from β decay

• Gamow-Teller decay into odd-odd or eveneven *N*=*Z* nuclei:

Symmetries in N~Z nuclei (II), Valencia, September 2003

Elliott's SU(3) model of rotation

• Harmonic oscillator mean field (*no* spin-orbit) with residual interaction of quadrupole type: $H = \sum_{k=1}^{A} \left[\frac{p_k^2}{2m} + \frac{1}{2} m \omega^2 r_k^2 \right] - \kappa Q \cdot Q,$

$$Q_{\mu} = \sqrt{\frac{4\pi}{5}} \left(\sum_{k=1}^{A} r_k^2 Y_{2\mu}(\hat{r}_k) + \sum_{k=1}^{A} p_k^2 Y_{2\mu}(\hat{p}_k) \right)$$

• State labelling in *LS* coupling: $U(4\omega) \begin{pmatrix} U_{L}(\omega) \supset SU_{L}(3) \supset SO_{L}(3) \\ \downarrow & \supset \downarrow & \downarrow & \downarrow & \downarrow \\ I^{M} \end{bmatrix} \otimes \begin{pmatrix} U_{L}(\omega) \supset SU_{L}(3) \supset SO_{L}(3) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ (\overline{\lambda}\overline{\mu}\overline{\nu}) & (\overline{\lambda}\overline{\mu}) & L \end{pmatrix} \otimes \begin{pmatrix} SU_{ST}(4) \supset SU_{S}(2) \otimes SU_{T}(2) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ (\lambda\mu\nu) & S & T \end{pmatrix}$

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

Importance and limitations of SU(3)

- Historical importance:
 - Bridge between the spherical shell model and the liquid droplet model through mixing of orbits.
 - Spectrum generating algebra of Wigner's SU(4) supermultiplet.
- Limitations:
 - *LS* (Russell-Saunders) coupling, *not jj* coupling (zero spin-orbit splitting) \Rightarrow beginning of *sd* shell.
 - Q is the *algebraic* quadrupole operator \Rightarrow no major-shell mixing.

Generalized SU(3) models

- How to obtain rotational features in a *jj*-coupling limit of the nuclear shell model?
- Several efforts since Elliott:
 - Pseudo-spin symmetry.
 - Quasi-SU(3) symmetry (Zuker).
 - Effective symmetries (Rowe).
 - FDSM: fermion dynamical symmetry model.

Pseudo-spin symmetry

• Apply a *helicity* transformation to the spinorbit + orbit-orbit nuclear mean field:

$$u_{k}^{-l} \Big(\zeta_{1s} \vec{l}_{k} \cdot \vec{s}_{k} + \zeta_{1l} l_{k}^{2} \Big) u_{k} = \Big(4 \zeta_{1l} - \zeta_{1s} \Big) \vec{l}_{k} \cdot \vec{s}_{k} + \zeta_{1l} l_{k}^{2} + c^{\text{te}}$$

Pseudo-SU(4) symmetry

• Assume the nuclear hamiltonian is invariant under *pseudo*-spin and isospin rotations:

$$\begin{bmatrix} H_{\text{nucl}}, \tilde{S}_{\mu} \end{bmatrix} = \begin{bmatrix} H_{\text{nucl}}, T_{\nu} \end{bmatrix} = \begin{bmatrix} H_{\text{nucl}}, \tilde{Y}_{\mu\nu} \end{bmatrix} = 0$$
$$\tilde{S}_{\mu} = \sum_{k=1}^{A} \tilde{S}_{\mu}(k), \quad T_{\nu} = \sum_{k=1}^{A} t_{\nu}(k), \quad \tilde{Y}_{\mu\nu} = \sum_{k=1}^{A} \tilde{S}_{\mu}(k) t_{\nu}(k)$$

- Consequences:
 - Hamiltonian has pseudo-SU(4) symmetry.
 - Total pseudo-spin, total pseudo-orbital angular momentum, total isospin and pseudo-SU(4) labels are conserved quantum numbers.

D. Strottman., Nucl. Phys. A 188 (1971) 488

Test of pseudo-SU(4) symmetry

- Shell-model test of pseudo-SU(4).
- Realistic interaction in $pf_{5/2}g_{9/2}$ space.
- Example: ⁵⁸Cu.

P. Van Isacker et al., Phys. Rev. Lett. 82 (1999) 2060

Pseudo-SU(4) and β decay

• Pseudo-spin transformed Gamow-Teller operator is *deformation dependent*:

$$\tilde{s}_{\mu}t_{\nu} \equiv u^{-1}s_{\mu}t_{\nu}u = -\frac{1}{3}s_{\mu}t_{\nu} + \sqrt{\frac{20}{3}}\frac{1}{r^{2}}\left[\left(\vec{r}\times\vec{r}\right)^{(2)}\times\vec{s}\right]_{\mu}^{(1)}t_{\nu}$$

Test: β decay of
^{0⁺ $\frac{1}{10}Ne_{8}$}
^{0⁺ $\frac{1}{10}Ne_{8}$}

A. Jokinen et al., Eur. Phys. A. 3 (1998) 271

Quasi-SU(3) symmetry

• Similar matrix elements of *Q* in *LS* and *jj* coupling lead to approximate decoupling of j=l-1/2 and j=l+1/2 spaces.

LS coupling			$l \gg m $	SU(3)	quasi SU(3)		
$\langle lm \hat{Q}_{20} lm angle$	=	$\frac{l(l+1) - 3m^2}{(2l-1)(2l+3)}$	\rightarrow	$\frac{1}{4}$	$3s_{1/2}$	$ 3s_{1/2}$	
$\langle lm \hat{Q}_{20} l + 2 \ m \rangle$	=	$\frac{3[(l+1)^2 - m^2]^{1/2}[(l+2)^2 - m^2]^{1/2}}{2(2l+1)^{1/2}(2l+3)(2l+5)^{1/2}}$	\rightarrow	$\frac{3}{8}$	$= \frac{2d_{3/2}}{2d}$		$2d_{3/2}$
		jj coupling		$j \gg m $	$2a_{5/2}$	$2d_{5/2}$	
$\langle jm \hat{Q}_{20} jm angle$	=	$\frac{j(j+1)-3m^2}{4j(j+1)}$		$\frac{1}{4}$			$ $ $1g_{7/2}$
$\langle jm \tilde{Q}_{20} j + 1 m \rangle$	=	$\frac{3m[(j+1)^2 - m^2]^{1/2}}{4j(j-1)(j+2)}$	\rightarrow	$\frac{3m}{4j} \sim 0$	$=$ $\frac{1g_{7/2}}{1g_{9/2}}$		
$\langle jm \ddot{Q}_{20} j + 2 m \rangle$	=	$\frac{3[(j+1)^2 - m^2]^{1/2}[(j+2)^2 - m^2]^{1/2}}{8(j+1)(j+2)}$	\rightarrow	$\frac{3}{8}$		$1g_{9/2}$	

A. Zuker et al., Phys. Rev. C 52 (1995) R1741

Symmetries in N~Z nuclei (II), Valencia, September 2003

Fermion dynamical symmetry model

- Construct shell-model hamiltonian in terms of *S* and *D* pairs such that the *S*,*D*-space decouples from the full shell-model space.
- Generalization of pseudo-spin (j=k+i):

$$a_{km_k im_i}^{+} = \sum_{jm_i} \langle km_k im_i | jm_j \rangle a_{l\frac{1}{2}, jm}^{+}$$

- Many possible combinations of single-particle orbits via an appropriate choice of *k* and *i*.
- Limitation: structure of pairs is algebraically imposed.

J.N. Ginocchio, Ann. Phys. (NY) **126** (1980) 234 C.L. Wu *et al.*, Phys. Rev. C **36** (1987) 1157