Physics with Exotic Nuclei and Exotic Atoms at Relativistic Energies

Hans Geissel

Euroschool Valencia, September 2003

- *Introduction $\sqrt{}$
- Momentum Measurements, Ion Optics, Spectrometers
- *Atomic Interaction of Heavy Ions $\sqrt{}$
- ✤Exotic Atoms √
- *****Production and Separation of Exotic Nuclei

Experimental Methods to separate and to detect Exotic Nuclei

G. Münzenberg Rep. Prog. Phys. 1988 51 57

Production and Separation Schemes

Ann. Rev. Nucl. Part. Sci. 45 (1995) 163

Production of Energetic Exotic Nuclei

 $\stackrel{\scriptstyle \scriptstyle \times}{\neg}$

Characterization of Nuclear Reactions

de Broglie wavelength:
$$\lambda = \frac{h}{p} = \frac{hc}{[2mc^2 E + E^2]^{1/2}} = \frac{1239.86 MeV fm}{[2mc^2 E + E^2]^{1/2}}$$

for	a proton:	E (MeV)	p(MeV/c)	λ (fm)
Nuclear radius: R=1.13 fm A ^{1/3}		1	43.2	28.7
		10	136.8	9.1
		100	443.0	2.8
		1000	1692.0	0.7

$\lambda \geq \mathbf{R}$:

Reactions determined by nuclear potential and binding energies Fusion, Fission

 $\lambda \leq$ range of nuclear force (≈ 1 fm): Collisions with individual nucleons ($t_{coll}=r/v\approx 10^{-23}$ s, v(1000MeV/u)=2.62 10⁸m/s) Fragmentation

The fusion cross section: two step process fusion-survival

The **production** of a certain isotope is

$$\sigma_{\rm ER} = \sigma_{\rm fus} \left(E_{\rm p} - E_{\rm B}, \ell \right)^* w_x(E^*, \ell)$$

The fusion cross section is

$$\sigma_{\rm fus} = \pi \lambda^2 \sum_{\ell=0}^{\ell_{\rm lim}} \left(2\ell + 1\right)^* T_\ell \left(E_{\rm p} - E_{\rm B}\right)$$

where $\lambda^2 = \hbar^2 / (2\mu E_p)$ denotes the reduced deBroglie wavelength

The **survival probability** is determined by the neutron evaporation-to-prompt-fission competition

$$w_{x}(E^{*},\ell) = \prod_{i=1}^{x} \frac{\Gamma_{n}(E^{*},\ell)}{\Gamma_{n}(E^{*},\ell) + \Gamma_{f}(E^{*},\ell)} \approx \left(\frac{\Gamma_{n}}{\Gamma_{f}}\right)^{x}$$

Fusion and Identifikation of Super-heavy Elements at SHIP

Measured Cross Sections for the Heaviest Elements

The even-even isotope ²⁷⁰110 and its decay products ²⁶⁶Hs and ²⁶²Sg

Principle of a Gas-filled Separator

Magnetic Rigidity:

$$B\rho = \frac{mv}{q} \quad (1)$$

Mean Bending Radius:

$$\overline{\rho} = \frac{mv_0}{B} Z_1^{1/3} \quad (3)$$

Mean Charge State:

Populated during atomic collisions in gases (Bohr Formula)

$$\overline{q} = \frac{Z^{1/3} v}{v_0} \quad (2)$$

Gassfilled Separator GFRS at JINR- FLNR in Dubna, Russia

Yu.Ts. Oganessian, Nature, vol. 400, July 1999

Production of Exotic Nuclei at relativistic Energies

Projectile Fragmentation

Nucleon-nucleon collisions, abrasion, ablation

$$\vec{V}_f \approx \vec{V}_p$$

Projectile Fission

Electromagnetic excitation, fission in flight

$$\vec{v}_{t} \approx \vec{v}_{p} + \vec{v}_{fission}$$

K.Sümmerer

The Fragment Separator FRS

$\mbox{B}\rho\mbox{-}\Delta\mbox{E}\mbox{-}\mbox{B}\rho$ Separation Method

H.G. 1.7.02

²³⁸U Fission In-flight

M. Bernas et al. Phys. Lett. B331(1994)331

Beta Decay of ¹⁰⁰Sn

Results from 7 decays of ¹⁰⁰Sn (6 atoms experiment '94, 1 atom experiment '98)

Half-life $T_{1/2} = 1.00 + 0.52_{-0.26} s$

Beta-Endpoint-Energy E_{β_0} = 3.8 $^{+0.7}_{-0.3}$ MeV