Physics with Exotic Nuclei and Exotic Atoms at Relativistic Energies

Hans Geissel

Euroschool Valencia, September 2003

*Introduction $\sqrt{}$

Momentum Measurements, Ion Optics, Spectrometers

*Atomic Interaction of Heavy Ions $\sqrt{}$

***Exotic Atoms**

Discovery of Deeply Bound Pionic States in Heavy Atom

•Deeply Bound Pionic States in Pb

•Deeply Bound Pionic States in Sn

•Study of pion mass modification in nuclei

• Future experiments

GSI 2002-1 April 2002 ISSN 0174-0814 SCIENTIFIC REPORT 2001

Gesellschaft für Schwerionenforschung mbH Darmstadt

Spectroscopy of 1s Pionic States in Pb and Sn Isotopes

M. Fujita, H. Geissel, H. Gilg, A. Gillitzer, **R.S. Hayano**, S. Hirenzaki, K. Itahashi, M. Iwasaki, P. Kienle, L. Maier, M. Matos, G. Münzenberg, T. Ohtsubo, M. Sato, M. Shindo, K. Suzuki, T. Suzuki, H. Weick, M. Winkler, T. Yamazaki, T. Yoneyama.

Pionic States

Repulsive s-wave interaction causes:

- binding energy reduced in 2p and 1s states
- width significantly reduced
- nuclear-pionic halo states

- E. Friedman and G. Soff, J. Phys. G 11 (1985) L37
- H. Toki and T. Yamazaki, Phys. Lett. B 213 (1988) 129

Discovery of Deeply-Bound Pionic States in Heavy Atoms (²⁰⁷Pb)

 $^{208}\text{Pb}(d,^{3}\text{He}) \rightarrow ^{207}\text{Pb}_{\pi}$

T. Yamazaki et al.

Z. Phys. A355 (1996) 219

The ²⁰⁶Pb experiment

n-holes: $3p_{3/2}$, $3p_{1/2}$, $2f_{5/2}$

→ $B_{2p} = 5.110 \pm 0.045$ MeV → $\Gamma_{2p} = 0.321^{+0.060}_{-0.062}$ MeV

 $\rightarrow B_{1s} = 6.762 \pm 0.061 \text{ MeV}$

 $(2p)_{\pi} \otimes (f_{5/2}, p_{1/2}, p_{3/2})_{n}^{-1}$

 $(3p, 3d, 4p, ...)_{\pi}$

138

136

 $\rightarrow \Gamma_{1s} = 0.764^{+0.171}_{-0.062} \text{ MeV}$

132

134

Interpreted spectrum:

- discrete bound states
- nuclear background
- \rightarrow free π^- production
- $\rightarrow p(d,^{3}\text{He})\pi^{0}$ peak

Pionic States in ²⁰⁵Pb PRL82(2002)02501

$$B_{1s}(^{205} \text{Pb}) = 6762 \pm 45(stat) \pm 41(sys)$$

$$\Gamma_{1s}(^{205} \text{Pb}) = 764^{+161}_{-141}(stat)^{+55}_{-61}(sys)$$

$$B_{2p}(^{205} \text{Pb}) = 5110 \pm 16(stat) \pm 42(sys)$$

$$\Gamma_{2p}(^{205} \text{Pb}) = 764 \pm 16(stat)^{+45}_{-49}(sys)$$

in keV

 $B_{2p}(^{207} \text{Pb}) = 5110 \pm 16(stat) \pm 42(sys)$ $\Gamma_{2p}(^{207} \text{Pb}) = 764 \pm 16(stat)_{-49}^{+45}(sys)$

Measured Energy Spectra K. Suzuki et al. 2002

- Deeply bound pionic 1s states in ^{123,119,115}Sn are clearly observed
- Monotonic shift in binding due to isotopes
- Absolute energy calibration from Mylar backing targets p(d,³He)π⁰
 - Background slope from pure Sn targets

Conclusion

$$b_1(\rho)(\rho_n - \rho_p) = \frac{b_1^{\text{free}}}{1 - \alpha \rho(r)}(\rho_n - \rho_p)$$

