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Introduction √

Momentum Measurements, Ion Optics, 
Spectrometers
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Heavy Ion Momentum Measurements

1. Time of flight measurement  
in a free drift space 

2. Magnetic Analysis 

3. Time of flight measurement  
in ion optical systems



I. Time-of-Flight Measurements
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1. Time of flight measurement  
in a free drift space 
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s = 30 m     ∆ t = 100 ps

E (MeV/u)         ∆p/p

100            5.26 E-4   
500            1.79 E-3

1500            6.28 E-3
5000            4.00 E-2 



Precision Momentum Measurements 
under the condition of an incident beam 

with large emittance
Solutions:

1. Coincidence Measurements in front
and behind the reaction target (event-by-event)

Detector

System 1

Detector

System 2

Reaction

Target

2. Special ion optical systems 
(Energy-loss spectrometer)



II. Double Time-of-Flight Measurements
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• Coincidence measurements (event-by-event)
allow precise velocity (e.g. energy-loss) determination
independent of the incident beam spread

•  Provides easy energy variation in front
of D-TOF (inhomogeneous degrader, angle scattering)

H. Geissel et al. Nucl. Instr. Meth. 170 (1980) 217



Motion of Charged Particles in 
Electromagnetic Fields 
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Lorentz Equation:
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0d/d =tpρLiouville's Theorem:

The particle density in phase space is invariant under the action of conservative forces.



Object plane Image plane

Ion Optical
System
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Ion optical Imaging with Matrix Description

The transfer function that images the initial phase space to any
desired position in the system can be represented by a Taylor 
series in matrix form.
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Matrix Elements in First and Second 
Order Approximation
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H. Wollnik, Optics of Charged Particles



Conventional Liouvillian
Dispersive Ion Optical System  
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instead of a time variable
the path length s is used
along the central trajectory

The phase-space volumes are constant
in the x- and y subspaces (Liouville theorem).
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Momentum Resolving Power

Magnetic

Electrostatic

Rigidities
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The optical resolving power is
determined by the area S used in the
dispersive Element. 
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R12 = 0      R11 = -1.37
R34 = 0      R33 =  0.90
R26 = 0      R16 =  3.91 m R12 = 0      R11 =  1.00

R34 = 0      R33 =  0.99
R26 = 0      R16 =  0.00 mPROJECTION IN X-PLANE

PROJECTION IN Y-PLANE

1m

Two-Stage Achromatic System



Image Aberrations
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Principle of an Energy-Loss Spectrometer

Point - to - point image condition: ( ( , ) )R x x12 0= ′ =
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Incident energy shifts do not show up
at the final focus

Target E1
E2
E3

The FRS as an Energy-Loss Spectrometer

E01,E02,E03

E01,E02,E03



Ion Interaction with Matter inside
Ion-Optical Systems

Non-Liouvillian Phase-Space Modelling
If e.g. matter is included in the ion optical system  we have to deal with 
non-Liouvillean systems
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H. Geissel et al. Nucl. Instr. Meth. A282 (1989) 247



Matter Paced Inside an Achromatic
Ion-Optical Systems

Separation of Projectile Fragments 

H. Geissel et al. Nucl. Instr. Meth. A282 (1989) 247



Shaped Matter as Ion-Optical Elements 
Matrix description 

The transformation of a beam matrix by an ion-optical system and a degrader:
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The degrader separates the ions according to the slowing down characteristics:
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H. Geissel et al. Nucl. Instr. Meth. A282 (1989) 247



Separation Performance of the FRS 

H. Geissel et al. Nucl. Instr. Meth. B70 (1992) 120



R. Anne et al. Nucl. Instr. Meth.34 (1988) 295
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