Direct CP Violation in Charm:
 Recent Results

Diego Guadagnoli
LPT Orsay, Université Paris-Sud

Short Outline

$\boxed{\square}$ Data news: evidence for direct CPV in charm

■ Interpretation:

- New physics?
- Or a hardly calculable SM contribution?

First Things First: Data!

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

- 3.5σ away from the hypothesis of CP conservation
- Based on 620/pb of analyzed data. LHCb has now almost $2 x$ on tape
$\square \operatorname{CDF}$ (1111.5023) measures separately
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)$and $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \%$

$$
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
$$

- Based on $5.9 / \mathrm{fb}$ of analyzed data.
- Most precise single-exp determinations
- Consistent with CP conservation

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

- 3.5σ away from the hypothesis of CP conservation
- Based on $620 / \mathrm{pb}$ of analyzed data. LHCb has now almost $2 x$ on tape

- CDF (1111.5023) measures separately

$A_{C P}\left(D^{0} \rightarrow K^{+} K\right)$ and $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \%
$$

$$
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
$$

- Based on $5.9 / \mathrm{fb}$ of analyzed data.
- Most precise single-exp determinations
- Consistent with CP conservation

Note that 3 asymmetries appear in the above discussion:

- $A_{\text {raw }}$: it is the experimental asymmetry.

Generally $A_{\text {raw }}=\{$ instrumental CP asymmetry $\}+\{$ physics CP asymmetry $\}$

The instrumental asymmetry is due to the detector response not being fully CP symmetric.

It needs to be subtracted away in order to isolate the physics CP asymmetry.

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

- 3.5σ away from the hypothesis of CP conservation
- Based on $620 /$ pb of analyzed data. LHCb has now almost $2 x$ on tape

- CDF (1111.5023) measures separately

$A_{C P}\left(D^{\circ} \rightarrow K^{+} K\right)$ and $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \%
$$

$$
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
$$

- Based on $5.9 / \mathrm{fb}$ of analyzed data.
- Most precise single-exp determinations
- Consistent with CP conservation

Note that 3 asymmetries appear in the above discussion:

- $A_{\text {raw }}$: it is the experimental asymmetry.

Generally $\mathrm{A}_{\text {raw }}=\{$ instrumental CP asymmetry $\}+\{$ physics CP asymmetry $\}$

- $A_{\mathrm{CP}}=$ \{physics CP asymmetry\}
$=\{$ asymmetry from indirect CPV $\}+$ asymmetry from direct CPV $\}$

The instrumental asymmetry is due to the detector response not being fully CP symmetric.

It needs to be subtracted away in order to isolate the physics CP asymmetry.

Short summary of data news: LHCb and CDF

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

- 3.5σ away from the hypothesis of CP conservation
- Based on $620 / p b$ of analyzed data. LHCb has now almost $2 x$ on tape

- CDF (1111.5023) measures separately

$A_{C P}\left(D^{\circ} \rightarrow K^{+} K\right)$ and $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \%
$$

$$
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
$$

- Based on $5.9 / \mathrm{fb}$ of analyzed data.
- Most precise single-exp determinations
- Consistent with CP conservation

Note that 3 asymmetries appear in the above discussion:

- $A_{\text {raw }}$: it is the experimental asymmetry.

Generally $\mathrm{A}_{\text {raw }}=\{$ instrumental CP asymmetry $\}+\{$ physics CP asymmetry $\}$

- $A_{\mathrm{CP}}=$ \{physics CP asymmetry\}
$=\{$ asymmetry from indirect CPV $\}+$ \{asymmetry from direct CPV $\}$
- $A_{\mathrm{CP}}^{\mathrm{dir}}=\{$ asymmetry from direct CPV $\}$

The instrumental asymmetry is due to the detector response not being fully CP symmetric.

It needs to be subtracted away in order to isolate the physics CP asymmetry.

This is the actual quantity of interest

More on the various asymmetries

\square For each final state f, the quantity $A_{\text {raw }}$ is defined as:

$$
A_{\text {raw }}\left(D^{0} \rightarrow f\right)=\frac{N_{\text {obs }}\left(D^{0} \rightarrow f\right)-N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}{N_{\text {obs }}\left(D^{0} \rightarrow f\right)+N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)} \quad \begin{aligned}
& \text { To get this number: } \\
& \text { - Identify a decay event, occurring at time } \mathrm{t} \text {, of a } \\
& \text { neutral } \mathrm{D} \text { meson, tagged at } \mathrm{t}=0 \text { (prod' } \mathrm{n} \text { to be a } \mathrm{D}^{0} \\
& \text { Sum over all } \mathrm{t} \text { (hence "time-integrated" asymmetry) }
\end{aligned}
$$

More on the various asymmetries

V For each final state f, the quantity $A_{\text {raw }}$ is defined as:
$A_{\text {raw }}\left(D^{0} \rightarrow f\right)=\frac{N_{\text {obs }}\left(D^{0} \rightarrow f\right)-N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}{N_{\text {obs }}\left(D^{0} \rightarrow f\right)+N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}$
To get this number:

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at $t=0(p r o d ' n)$ to be a D^{0}
- Sum over all t (hence "time-integrated" asymmetry)

Each $\mathrm{A}_{\mathrm{raw}}$ receives contributions from:
(1) any difference in $\Gamma\left(D^{0} \rightarrow f\right)$ vs. $\Gamma\left(\bar{D}^{0} \rightarrow f\right)$

Direct CPV (indicated by $\mathrm{A}^{\text {dir }}{ }_{\mathrm{CP}}$)

More on the various asymmetries

\square For each final state f, the quantity $A_{\text {raw }}$ is defined as:
$A_{\text {raw }}\left(D^{0} \rightarrow f\right)=\frac{N_{\text {obs }}\left(D^{0} \rightarrow f\right)-N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}{N_{\text {obs }}\left(D^{0} \rightarrow f\right)+N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}$
To get this number:

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at $t=0(p r o d ' n)$ to be a D^{0}
- Sum over all t (hence "time-integrated" asymmetry)

Each $\mathrm{A}_{\text {raw }}$ receives contributions from:
(1) any difference in $\Gamma\left(D^{0} \rightarrow f\right)$ vs. $\Gamma\left(\bar{D}^{0} \rightarrow f\right)$
(2) any difference in the probabilities $\mathrm{D}^{0} \rightarrow \overline{\mathrm{D}}^{0}$ vs. $\overline{\mathrm{D}}^{0} \rightarrow \mathrm{D}^{0}$ or in the interference between decays with and without a flavor oscillation.

More on the various asymmetries

(7) For each final state f, the quantity $A_{\text {raw }}$ is defined as:
$A_{\text {raw }}\left(D^{0} \rightarrow f\right)=\frac{N_{\text {obs }}\left(D^{0} \rightarrow f\right)-N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}{N_{\text {obs }}\left(D^{0} \rightarrow f\right)+N_{\text {obs }}\left(\bar{D}^{0} \rightarrow f\right)}$
To get this number:

- Identify a decay event, occurring at time t, of a neutral D meson, tagged at $t=0(p r o d ' n)$ to be a D^{0}
- Sum over all t (hence "time-integrated" asymmetry)

Each $A_{\text {raw }}$ receives contributions from:
(1) any difference in $\Gamma\left(\mathrm{D}^{0} \rightarrow f\right)$ vs. $\Gamma\left(\overline{\mathrm{D}}^{0} \rightarrow f\right)$
(2) any difference in the probabilities $\mathrm{D}^{0} \rightarrow \overline{\mathrm{D}}^{0}$ vs. $\overline{\mathrm{D}}^{0} \rightarrow \mathrm{D}^{0}$ or in the interference between decays with and without a flavor oscillation.
(3) any detector effect not perfectly CP symmetric

Therefore the LHCb measurement is the first evidence of direct CPV in the charm sector.

Back to the summary of data news

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\text {raw }} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\text {raw }}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

Some comments for a comparison
(1) At CDF detector-induced asymmetries are subtracted in a data-driven way (use of $D \rightarrow K \pi$, Cabibbo-favored)
\square CDF (1111.5023) measures separately
$A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)$and $A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
\begin{aligned}
& A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \% \\
& A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
\end{aligned}
$$

Back to the summary of data news

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\text {raw }} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\text {raw }}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

\square CDF (1111.5023) measures separately
$A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)$and $A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
\begin{gathered}
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \% \\
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
\end{gathered}
$$

Some comments for a comparison
(1) At CDF detector-induced asymmetries are subtracted in a data-driven way (use of $D \rightarrow K_{\pi}$, Cabibbo-favored)
(2) As mentioned, A_{CP} from CDF includes direct and indirect CPV contributions.

In the limit of equal decay-time acceptance between the KK and $\pi \pi$ modes, the indirect CPV contribution cancels in the difference, also measured by LHCb.

Back to the summary of data news

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

\square CDF (1111.5023) measures separately
$A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)$and $A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
\begin{gathered}
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \% \\
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
\end{gathered}
$$

From CDF: 1111.5023

D. Guadagnoli, Direct CPV in Charm

Back to the summary of data news

LHCb (1112.0938) measures:

$$
\begin{aligned}
A_{\mathrm{raw}} & \left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{\mathrm{raw}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.82 \pm 0.21 \pm 0.11) \% \\
& \simeq A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)
\end{aligned}
$$

\square CDF (1111.5023) measures separately
$A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)$and $A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$, reporting

$$
\begin{gathered}
A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=(-0.24 \pm 0.22 \pm 0.09) \% \\
A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(+0.22 \pm 0.24 \pm 0.11) \%
\end{gathered}
$$

Some comments for a comparison
(1)

At CDF detector-induced asymmetries are subtracted in a data-driven way (use of $D \rightarrow K \pi$, Cabibbo-favored)As mentioned, $A_{C P}$ from CDF includes direct and indirect CPV contributions.

In the limit of equal decay-time acceptance between the KK and $\pi \pi$ modes, the indirect CPV contribution cancels in the difference, also measured by LHCb.

$$
\begin{aligned}
& \text { CDF quotes: } \\
& A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)= \\
& \qquad(-0.46 \pm 0.31 \pm 0.12) \%
\end{aligned}
$$

(3) Conclusion? We need more data. In particular we await the LHCb update based on the full 2011 dataset

From CDF: 1111.5023

Theory
 Implications

Direct CPV and Direct CP Asymmetries

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width $\propto \mid$ amplitude $\left.\right|^{2}$, for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.

Direct CPV and Direct CP Asymmetries

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width $\propto \mid$ amplitude $\left.\right|^{2}$, for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$.

It can be expanded into a leading + a sub-leading term as follows:

Direct CPV and Direct CP Asymmetries

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width $\propto \mid$ amplitude $\left.\right|^{2}$, for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$. It can be expanded into a leading + a sub-leading term as follows:

CPV in the decay $D \rightarrow f$ can be quantified by the direct CP asymmetry, defined as:

$$
A_{C P}^{\text {dir }}(D \rightarrow f)=\frac{\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}}{\left|A_{f}\right|^{2}+\left|\bar{A}_{\bar{f}}\right|^{2}} \quad \begin{aligned}
& \text { where } f=\bar{f} \text { because } \mathrm{K}^{+} \mathrm{K}^{-} \text {or } \pi^{+} \pi^{-} \text {are } \\
& \text { CP eigenstates. }
\end{aligned}
$$

Direct CPV and Direct CP Asymmetries

- CP violation in decay occurs when the decay rate $M \rightarrow f$ differs from the decay rate involving the CP-conjugate states.
- Since decay width $\propto \mid$ amplitude $\left.\right|^{2}$, for this to occur, the amplitude needs consist of at least two terms, with a relative (hence convention-independent) weak (hence CP-odd) phase.
- So let's consider the amplitude for $D \rightarrow f$, where $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$. It can be expanded into a leading + a sub-leading term as follows:

CPV in the decay $D \rightarrow f$ can be quantified by the direct CP asymmetry, defined as:

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f)=\frac{\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}}{\left|A_{f}\right|^{2}+\left|\bar{A}_{\bar{f}}\right|^{2}} \quad \begin{aligned}
& \text { where } f=\bar{f} \text { because } \mathrm{K}^{+} \mathrm{K}^{-} \text {or } \pi^{+} \pi^{-} \text {are } \\
& \text { CP eigenstates. }
\end{aligned}
$$

To leading order in $r_{f} \ll 1$, one gets:

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f) \simeq-2 r_{f} \sin \delta_{f} \sin \phi_{f}
$$

For large phases, the asymmetry goes down as the magnitude of the sub-leading / leading amplitude ratio.

Amplitude ratio: heuristic estimate

Let us take the $\mathrm{D} \rightarrow \mathrm{K}^{+} K^{-}$decay. At the level of dim- 6 operators, one can write down a tree (W-emission) amplitude, as well as a loop ("penguin") one.

$$
a_{K K}^{T} \sim V_{c s}^{*} V_{u s} T_{K K}
$$

Amplitude ratio: heuristic estimate

Let us take the $\mathrm{D} \rightarrow K^{+} K^{-}$decay. At the level of dim- 6 operators, one can write down a tree (W-emission) amplitude, as well as a loop ("penguin") one.

Amplitude ratio: heuristic estimate

Let us take the $\mathrm{D} \rightarrow \mathrm{K}^{+} K^{-}$decay. At the level of dim- 6 operators, one can write down a tree (W-emission) amplitude, as well as a loop ("penguin") one.

$$
\begin{array}{cc}
a_{K K}^{P} \sim V_{c b}^{*} V_{u b} P_{K K}^{b}+V_{c s}^{*} V_{u s} P_{K K}^{s}+V_{c d}^{*} V_{u d} P_{K K}^{d} \\
\lambda_{c}^{2} \cdot \lambda_{c}^{3} & 1 \cdot \lambda_{c}
\end{array} \lambda_{c} \cdot 1
$$

Amplitude ratio: heuristic estimate

Let us take the $\mathrm{D} \rightarrow K^{+} K^{-}$decay. At the level of dim-6 operators, one can write down a tree (W-emission) amplitude, as well as a loop ("penguin") one.

$$
\begin{gathered}
a_{K K}^{P} \sim V_{c b}^{*} V_{u b} P_{K K}^{b}+V_{c s}^{*} V_{u s} P_{K K}^{s}+V_{c d}^{*} V_{u d} P_{K K}^{d} \\
\lambda_{c}^{2} \cdot \lambda_{c}^{3}
\end{gathered} 1 \cdot \lambda_{c} \quad \lambda_{c} \cdot 1 .
$$

- Using unitarity on the last term of the penguin amplitude, it follows:

$$
A_{K K}=a_{K K}^{T}+a_{K K}^{P}=\underbrace{V_{c s}^{*} V_{u s}\left(T_{K K}+P_{K K}^{s}-P_{K K}^{d}\right)}_{\boldsymbol{A}_{\boldsymbol{K K}}^{\boldsymbol{T}}}+\underbrace{V_{c b}^{*} V_{u b}\left(P_{K K}^{b}-P_{K K}^{d}\right)}_{\boldsymbol{A}_{\boldsymbol{K K}}^{P}}
$$

Amplitude ratio: heuristic estimate

Let us take the $\mathrm{D} \rightarrow K^{+} K^{-}$decay. At the level of dim-6 operators, one can write down a tree (W-emission) amplitude, as well as a loop ("penguin") one.

$$
\begin{gathered}
a_{K K}^{P} \sim V_{c b}^{*} V_{u b} P_{K K}^{b}+V_{c s}^{*} V_{u s} P_{K K}^{s}+V_{c d}^{*} V_{u d} P_{K K}^{d} \\
\lambda_{c}^{2} \cdot \lambda_{c}^{3}
\end{gathered} 1 \cdot \lambda_{C} \quad \lambda_{c} \cdot 1
$$

- Using unitarity on the last term of the penguin amplitude, it follows:

$$
A_{K K}=a_{K K}^{T}+a_{K K}^{P}=\underbrace{V_{c s}^{*} V_{u s}\left(T_{K K}+P_{K K}^{s}-P_{K K}^{d}\right)}_{\boldsymbol{A}_{K K}^{T}}+\underbrace{V_{c b}^{*} V_{u b}\left(P_{K K}^{b}-P_{K K}^{d}\right)}_{\boldsymbol{A}_{K K}^{P}}
$$

Hence the amplitude ratio estimate:

$$
r_{f} \sim A_{K K}^{P} / A_{K K}^{T} \sim \lambda_{C}^{4} \alpha_{S}\left(m_{c}\right) / \pi \sim 10^{-4}
$$

$\Delta A_{C P}$: heuristic estimate

- Now let us go back to the formula

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f) \simeq-2 r_{f} \sin \delta_{f} \sin \phi_{f} \quad \text { with } f=K^{+} K^{-} \text {or } \pi^{+} \pi^{-}
$$

- Recall that:
(1) The strong phase is expected to be large: $\sin \delta=\mathrm{O}(1)$
(2) The weak phase is minus $\gamma \simeq 67^{\circ}: \sin \gamma=O$ (1)
(3) In the U-spin symmetric limit ($\mathrm{s} \leftrightarrow d$ quarks), the only difference between the KK and the $\pi \pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$
r_{\pi^{+} \pi} \simeq-r_{K^{+} K}
$$

$\Delta A_{C P}$: heuristic estimate

- Now let us go back to the formula
$A_{C P}^{\mathrm{dir}}(D \rightarrow f) \simeq-2 r_{f} \sin \delta_{f} \sin \phi_{f} \quad$ with $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$
- Recall that:
(1) The strong phase is expected to be large: $\sin \delta=\mathrm{O}(1)$
(2) The weak phase is minus $\gamma \simeq 67^{\circ}: \sin \gamma=O(1)$

3 In the U-spin symmetric limit ($s \leftrightarrow d$ quarks), the only difference between the KK and the $\pi \pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$
r_{\pi^{+} \pi^{-}} \simeq-r_{K^{+} K^{-}}
$$

It follows:

$$
\left|A_{C P}^{\mathrm{dir}}\left(D \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D \rightarrow \pi^{+} \pi^{-}\right)\right| \approx-2\left(r_{K^{+} K^{-}}-r_{\pi^{+} \pi^{-}}\right) \approx-4 r_{K^{+} K^{-}} \sim 4 \cdot O\left(10^{-4}\right)
$$

Namely this (heuristic) estimate returns a figure about one order of magnitude below LHCb's measurement

$\Delta A_{C P}$: heuristic estimate

- Now let us go back to the formula
$A_{C P}^{\mathrm{dir}}(D \rightarrow f) \simeq-2 r_{f} \sin \delta_{f} \sin \phi_{f} \quad$ with $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$
- Recall that:
(1) The strong phase is expected to be large: $\sin \delta=\mathrm{O}(1)$
(2) The weak phase is minus $\gamma \simeq 67^{\circ}: \sin \gamma=O$ (1)
(3) In the U-spin symmetric limit ($\mathrm{s} \leftrightarrow d$ quarks), the only difference between the KK and the $\pi \pi$ amplitudes is the sign of the tree-level contribution. Hence:

$$
r_{\pi^{+} \pi} \simeq-r_{K^{+} K}
$$

It follows:

$$
\left|A_{C P}^{\mathrm{dir}}\left(D \rightarrow K^{+} K^{-}\right)-A_{C P}^{\mathrm{dir}}\left(D \rightarrow \pi^{+} \pi^{-}\right)\right| \approx-2\left(r_{K^{+} K^{-}}-r_{\pi^{+} \pi^{-}}\right) \approx-4 r_{K^{+} K^{-}} \sim 4 \cdot O\left(10^{-4}\right)
$$

Namely this (heuristic) estimate returns a figure about one order of magnitude below LHCb's measurement

Two main questions arise:
(a) Can this estimate be missing the actual SM order of magnitude? What enhancements are possible?
(b) How plausibly can non-SM physics explain this signal?

First: An old observation to keep in mind

ENHANCED CP VIOLATIONS IN HADRONIC CHARM DECAYS

Michell GOLDEN and Benjamin GRINSTEIN
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 , USA
Received 6 March 1989

(Observation:

The CKM structure responsible for large CPV in the $|\triangle C|=1$ Hamiltonian ($V_{c b}{ }^{*} V_{u b}$) multiplies certain operators (transforming as triplets under $S U(3)_{\text {flavor }}$) whose matrix elements may be enhanced with respect to naïve expectations.

This resembles the " $\Delta I=1 / 2$ rule" in $K \rightarrow \pi \pi$ matrix elements, at work in $\epsilon^{\prime} / \epsilon$

First: An old observation to keep in mind

ENHANCED CP VIOLATIONS IN HADRONIC CHARM DECAYS

Michell GOLDEN and Benjamin GRINSTEIN
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 605 10, USA
Received 6 March 1989

(Observation:

The CKM structure responsible for large CPV in the $|\triangle C|=1$ Hamiltonian ($V_{c b}{ }^{*} V_{u b}$) multiplies certain operators (transforming as triplets under $S U(3)_{\text {flavor }}$) whose matrix elements may be enhanced with respect to naïve expectations.

This resembles the " $\Delta I=1 / 2$ rule" in $K \rightarrow \pi \pi$ matrix elements, at work in $\epsilon^{\prime} / \epsilon$

This observation warrants further investigation:

- on the Lattice QCD side: estimate of the triplet operators' matrix elements
- on the side of the assumptions specific to the Golden-Grinstein analysis.

Let's look closer at this issue

More on Golden-Grinstein

】 Aim: analysis of the amplitudes $\mathrm{D} \rightarrow 2$ pseudoscalars, focusing on CPV effects, and including QCD corrections (running)

More on Golden-Grinstein

∇
Aim: analysis of the amplitudes $D \rightarrow 2$ pseudoscalars, focusing on CPV effects, and including QCD corrections (running)

Method

(1)Write down the effective $|\Delta C|=1$ Hamiltonian at the W scale. To this end:

- Consider all the structures of the kind $\left(\bar{q}^{i} \Gamma_{1} c\right)\left(\bar{q}^{j} \Gamma_{2} q^{k}\right)$, with $i, j, k=\operatorname{SU}(3)_{\text {flavor }}$ indices.
- Classify these structures according to irreps of $S U(3)_{\text {flavor }}$. One arrives at $H_{|\Delta C|=1}\left(\mu=M_{w}\right)$.

More on Golden-Grinstein

Aim: analysis of the amplitudes $\mathrm{D} \rightarrow 2$ pseudoscalars, focusing on CPV effects, and including QCD corrections (running)

V
 Method

(1)Write down the effective $|\Delta \mathrm{C}|=1$ Hamiltonian at the W scale. To this end:

- Consider all the structures of the kind $\left(\bar{q}^{i} \Gamma_{1} c\right)\left(\bar{q}^{j} \Gamma_{2} q^{k}\right)$, with $i, j, k=S U(3)_{\text {favor }}$ indices.
- Classify these structures according to irreps of $\operatorname{SU}(3)_{\text {fiavor }}$. One arrives at $H_{|\Delta C|=1}\left(\mu=M_{w}\right)$.

2 QCD-run the Wilson coefficients down to $\mu=m_{b}$ and then down to $\mu=m_{c}$. The irreps will not mix with each other. One arrives at $H_{|\Delta c|=1}\left(\mu=m_{c}\right)$

More on Golden-Grinstein

Aim: analysis of the amplitudes $D \rightarrow 2$ pseudoscalars, focusing on CPV effects, and including QCD corrections (running)
\square
 Method

(1) Write down the effective $|\Delta C|=1$ Hamiltonian at the W scale. To this end:

- Consider all the structures of the kind $\left(\bar{q}^{i} \Gamma_{1} c\right)\left(\bar{q}^{j} \Gamma_{2} q^{k}\right)$, with $i, j, k=S U(3)_{\text {favor }}$ indices.
- Classify these structures according to irreps of $\operatorname{SU}(3)_{\text {fiavor }}$. One arrives at $H_{|\Delta C|=1}\left(\mu=M_{w}\right)$.

2 QCD-run the Wilson coefficients down to $\mu=m_{b}$ and then down to $\mu=m_{c}$. The irreps will not mix with each other. One arrives at $H_{|\Delta c|=1}\left(\mu=m_{c}\right)$

3 With this Hamiltonian, one can compute any amplitude of the kind

$$
\langle 2 \text { pseudoscalars }| H_{|\Delta c|=1}\left(\mu=m_{c}\right)|D\rangle
$$

Still assuming $\operatorname{SU}(3)_{\text {flavor }}$, this computation is pure group theory.

More on Golden-Grinstein

, Aim: analysis of the amplitudes $D \rightarrow 2$ pseudoscalars, focusing on CPV effects,
and including QCD corrections (running)

V
 Method

(1)Write down the effective $|\Delta \mathrm{C}|=1$ Hamiltonian at the W scale. To this end:

- Consider all the structures of the kind $\left(\bar{q}^{i} \Gamma_{1} c\right)\left(\bar{q}^{j} \Gamma_{2} q^{k}\right)$, with $i, j, k=\operatorname{SU}(3)_{\text {favor }}$ indices.
- Classify these structures according to irreps of $\operatorname{SU}(3)_{\text {faver }}$. One arrives at $H_{|\Delta C|=1}\left(\mu=M_{w}\right)$.

2 QCD-run the Wilson coefficients down to $\mu=m_{b}$ and then down to $\mu=m_{c}$. The irreps will not mix with each other. One arrives at $H_{|\Delta c|=1}\left(\mu=m_{c}\right)$

3 With this Hamiltonian, one can compute any amplitude of the kind

$$
\langle 2 \text { pseudoscalars }| H_{|\Delta C|=1}\left(\mu=m_{c}\right)|D\rangle
$$

Still assuming $\operatorname{SU}(3)_{\text {flavor }}$, this computation is pure group theory.

For the decays of interest to us, one arrives at the following amplitudes:
$\mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=\mathrm{a} \Sigma+\mathrm{b} \Delta$
$\mathrm{A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\mathrm{a} \Sigma+\mathrm{b} \Delta$

with:

$a, b=$ operator matrix elements
$\Sigma=\left(V_{c s}^{*} V_{u s}-V_{c d}^{*} V_{u d}\right) / 2$ approx. real
$\Delta=\left(V_{c s}^{*} V_{u s}+V_{c d}^{*} V_{u d}\right) / 2 \quad \begin{aligned} & \text { small in magnitude, } \\ & \text { but with large phase }\end{aligned}$

Golden-Grinstein: continued

, Main observation

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=\mathrm{a} \Sigma+\mathrm{b} \Delta \\
& \mathrm{~A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\mathrm{a} \Sigma+\mathrm{b} \Delta
\end{aligned}
$$

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b, not in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral- K case ($\Delta I=1 / 2$ rule).

Golden-Grinstein: continued
(7) Main observation
$\mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=\mathrm{a} \Sigma+\mathrm{b} \Delta$
$\mathrm{A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\mathrm{a} \Sigma+\mathrm{b} \Delta$

V
Conclusion

Since Δ has a large phase, and if b is indeed enhanced (say 10x)

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b , not in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral- K case ($\Delta I=1 / 2$ rule).
$A_{C P}$ may be large enough to be observable.
Ballpark: $A_{C P}=O\left(10^{-3}\right)$

Golden-Grinstein: continued

Main observation

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=\mathrm{a} \Sigma+\mathrm{b} \Delta \\
& \mathrm{~A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\mathrm{a} \Sigma+\mathrm{b} \Delta
\end{aligned}
$$

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b, not in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral- K case ($\Delta I=1 / 2$ rule).

V Conclusion

Since Δ has a large phase, and if b is indeed enhanced (say 10x)
$A_{C P}$ may be large enough to be observable.
Ballpark: $A_{C P}=O\left(10^{-3}\right)$

Problem

Since $|\Sigma| /|\Delta| \sim 3000$, the above amplitudes would predict $\Gamma\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right) \simeq \Gamma\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)$.
On the other hand, experimentally, one finds: $\Gamma\left(D^{0} \rightarrow K^{+} K^{-}\right) \simeq 2.8 \cdot \Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

Golden-Grinstein: continued
(7) Main observation

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=\mathrm{a} \Sigma+\mathrm{b} \Delta \\
& \mathrm{~A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\mathrm{a} \Sigma+\mathrm{b} \Delta
\end{aligned}
$$

- Matrix elements from the lowest-dim irreps (= operator triplets) enter only in b, not in a
- Such matrix elements may well be enhanced with respect to naïve expectations, in analogy with the neutral- K case ($\Delta I=1 / 2$ rule).

Conclusion

Since Δ has a large phase, and if b is indeed enhanced (say 10x)
$A_{C P}$ may be large enough to be observable.
Ballpark: $A_{C P}=O\left(10^{-3}\right)$

Problem

Since $|\Sigma| /|\Delta| \sim 3000$, the above amplitudes would predict $\Gamma\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right) \simeq \Gamma\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)$.
On the other hand, experimentally, one finds: $\Gamma\left(D^{0} \rightarrow K^{+} K^{-}\right) \simeq 2.8 \cdot \Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$

Expected solution: $\mathrm{SU}(3)_{\text {flavor }}$ - breaking effects may well be large, and need be incorporated in the above analysis

Pirtskhalava-Uttayarat follow-up (1112.5451):
Inclusion of the leading $S U(3)_{\text {flavor }}$ - breaking effects into the Golden-Grinstein analysis

Pirtskhalava-Uttayarat follow-up (1112.5451):
Inclusion of the leading $S U(3)_{\text {flavor }}$ - breaking effects into the Golden-Grinstein analysis

■ Main point
Under the assumptions (fairly general) that:
(1) only leading (= linear) $\operatorname{SU}(3)_{\text {favor }}$ - breaking effects need be retained
(2) operators belonging to lower $\operatorname{SU}(3)_{\text {fiavor }}$ representations have somewhat enhanced matrix elements the Golden-Grinstein amplitudes are modified as follows:

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{D}^{\circ} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}\right)=(\mathrm{a}+\mathrm{c}) \Sigma+\mathrm{b} \Delta \\
& \mathrm{~A}\left(\mathrm{D}^{\circ} \rightarrow \pi^{+} \pi^{-}\right)=(-\mathrm{a}+\mathrm{c}) \Sigma+\mathrm{b} \Delta
\end{aligned}
$$

Pirtskhalava-Uttayarat follow-up (1112.5451):
Inclusion of the leading $S U(3)_{\text {favor }}$ - breaking effects into the Golden-Grinstein analysis

【 Main point
Under the assumptions (fairly general) that:
(1) only leading (= linear) $S U(3)_{\text {flavor }}$ - breaking effects need be retained
(2) operators belonging to lower $\operatorname{SU}(3)_{\text {flavor }}$ representations have somewhat enhanced matrix elements the Golden-Grinstein amplitudes are modified as follows:

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=(\mathrm{a}+\mathrm{c}) \Sigma+\mathrm{b} \Delta \\
& \mathrm{~A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(-\mathrm{a}+\mathrm{c}) \Sigma+\mathrm{b} \Delta
\end{aligned}
$$

Note that:

$\operatorname{SU}(3)_{\text {flavor }}$ - breaking corrections (= c) affect only the CKM structure with large magnitude, Σ.
Hence, in order to explain the decay widths, the b Δ part is not required to play any role

Pirtskhalava-Uttayarat follow-up (1112.5451):
Inclusion of the leading $S U(3)_{\text {favor }}$ - breaking effects into the Golden-Grinstein analysis

V Main point
Under the assumptions (fairly general) that:
(1) only leading (= linear) $\operatorname{SU}(3)_{\text {favor }}$ - breaking effects need be retained
(2) operators belonging to lower $S U(3)_{\text {flavor }}$ representations have somewhat enhanced matrix elements the Golden-Grinstein amplitudes are modified as follows:

$$
\begin{aligned}
& A\left(D^{0} \rightarrow K^{+} K^{-}\right)=(a+c) \Sigma+b \Delta \\
& A\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=(-a+c) \Sigma+b \Delta
\end{aligned}
$$

Note that:

$\mathrm{SU}(3)_{\text {flavor }}$ - breaking corrections $(=c)$ affect only the CKM structure with large magnitude, Σ.
Hence, in order to explain the decay widths, the $b \Delta$ part is not required to play any role

Bottom line

By inclusion of the leading $\operatorname{SU}(3)_{\text {flavor }}$ corrections, the $\Delta \mathrm{A}_{\mathrm{CP}}$ measurement by LHCb \& the observed partial-widths' ratio can be simultaneously explained with an enhancement of triplet operators' matrix elements of $O(10)$, i.e. a reasonable one

Selected Theory Work after LHCb results

(Apologies for the not represented work)

(Instant) paper 1: "On the size of direct CPV in Singly Cabibbo-Suppressed decays"

Main observation to get to their point:

Besides the tree amplitude seen before, namely:

there are further topologies, formally $1 / m_{c}$ suppressed, but in practice known to be sizable.
For example, topologies known as " W-exchange annihilation".
(Instant) paper 1: "On the size of direct CPV in Singly Cabibbo-Suppressed decays"
SM Brod, Kagan, Zupan (1111.5000)

Main observation to get to their point:

Besides the tree amplitude seen before, namely:

there are further topologies, formally $1 / m_{c}$ suppressed, but in practice known to be sizable.
For example, topologies known as " W-exchange annihilation".

【 What does sizable mean in practice? Example.
The $B R\left(D^{0} \rightarrow K^{0} \bar{K}^{0}\right)$ vanishes to leading power. Its amplitude receives two sub-leading contributions from W-exchange annihilation.

$\left\{\begin{array}{c}\text { diagram } \\ \text { with } s \leftrightarrow d\end{array}\right\}$

$$
\begin{aligned}
& =V_{c s}^{*} V_{u s} E_{K K}^{s}+V_{c d}^{*} V_{u d} E_{K K}^{d} \\
& \simeq \lambda_{C}\left(E_{K K}^{s}-E_{K K}^{d}\right)
\end{aligned}
$$

(Instant) paper 1: "On the size of direct CPV in Singly Cabibbo-Suppressed decays"
SM Brod, Sagan, Zupan (1111.5000)

Main observation to get to their point:

Besides the tree amplitude seen before, namely:

there are further topologies, formally $1 / m_{c}$ suppressed, but in practice known to be sizable.
For example, topologies known as " W-exchange annihilation".
(What does sizable mean in practice? Example.
The $B R\left(D^{0} \rightarrow K^{0} \bar{K}^{0}\right)$ vanishes to leading power. Its amplitude receives two sub-leading contributions from W-exchange annihilation.

$\left\{\begin{array}{c}\text { diagram } \\ \text { with } s \leftrightarrow d\end{array}\right\}$

$$
=V_{c s}^{*} V_{u s} E_{K K}^{s}+V_{c d}^{*} V_{u d} E_{K K}^{d}
$$

$$
\simeq \lambda_{C}\left(E_{K K}^{s}-E_{K K}^{d}\right)
$$

Data (PDG)
$\mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{0} \overline{\mathrm{~K}}^{0}\right)=0.69(12) \times 10^{-3} \quad$ vs. $\quad \mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=3.96(8) \times 10^{-3}$

$$
\frac{\operatorname{Ampl}\left(D^{0} \rightarrow K^{0} \bar{K}^{0}\right)}{\operatorname{Ampl}\left(D^{0} \rightarrow K^{+} K^{-}\right)} \sim \sqrt{\frac{0.69}{3.96}} \simeq 0.4
$$

(Instant) paper 1: "On the size of direct CPV in Singly Cabibbo-Suppressed decays"
SM Brod, Kagan, Zupan (1111.5000)

Main observation to get to their point:

Besides the tree amplitude seen before, namely:

there are further topologies, formally $1 / m_{c}$ suppressed, but in practice known to be sizable.
For example, topologies known as " W-exchange annihilation".
(What does sizable mean in practice? Example.
The $\mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{0} \overline{\mathrm{~K}}^{0}\right)$ vanishes to leading power. Its amplitude receives two sub-leading contributions from W-exchange annihilation.

$\left\{\begin{array}{c}\text { diagram } \\ \text { with } s \leftrightarrow d\end{array}\right\}$

$$
\begin{aligned}
& =V_{c s}^{*} V_{u s} E_{K K}^{s}+V_{c d}^{*} V_{u d} E_{K K}^{d} \\
& \simeq \lambda_{C}\left(E_{K K}^{s}-E_{K K}^{d}\right)
\end{aligned}
$$

Data (PDG)
$B R\left(D^{0} \rightarrow \mathrm{~K}^{0} \overline{\mathrm{~K}}^{0}\right)=0.69(12) \times 10^{-3} \quad$ vs. $\quad \mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=3.96(8) \times 10^{-3}$

$$
\frac{\operatorname{Ampl}\left(D^{0} \rightarrow K^{0} \bar{K}^{0}\right)}{\operatorname{Ampl}\left(D^{0} \rightarrow K^{+} K^{-}\right)} \sim \sqrt{\frac{0.69}{3.96}} \simeq 0.4
$$

This suggests that:

■ the W-exchange amplitude is about $1 / 2$ of the W -emission one (hence not so suppressed)
\square the $\mathrm{SU}(3)$ symmetry may not be working so well here

```
Brod, Kagan, Zupan: continued
```


V Results

The previous observations can be made more quantitative, and used to give an estimate of:
(1) The (formally) leading-power penguin amplitudes
(2) The (formally) power-suppressed annihilation amplitudes
for the $D \rightarrow K^{+} K^{-}$and $D \rightarrow \pi^{+} \pi^{-}$decays

```
Brod, Kagan, Zupan: continued
```


V Results

The previous observations can be made more quantitative, and used to give an estimate of:
(1) The (formally) leading-power penguin amplitudes
(2) The (formally) power-suppressed annihilation amplitudes
for the $D \rightarrow K^{+} K^{-}$and $D \rightarrow \pi^{+} \pi^{-}$decays
(1) The (formally) leading-power penguin amplitudes

Use of:

- the $\Delta C=1$ effective Hamiltonian at NLO within the SM
- "naïve" factorization $+\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ corrections

Including renorm. scale variation, they get:
$r_{K^{+} K^{-}} \approx(0.01-0.02) \%$
$r_{\pi^{+} \pi} \approx(0.015-0.028) \%$
consistent with the heuristic estimate seen before

\square Results

The previous observations can be made more quantitative, and used to give an estimate of:
(1) The (formally) leading-power penguin amplitudes
(2) The (formally) power-suppressed annihilation amplitudes
for the $D \rightarrow K^{+} K^{-}$and $D \rightarrow \pi^{+} \pi^{-}$decays
(1) The (formally) leading-power penguin amplitudes

Use of:

- the $\Delta C=1$ effective Hamiltonian at NLO within the SM
- "naïve" factorization $+\mathrm{O}\left(\alpha_{s}\right)$ corrections

Including renorm. scale variation, they get:

$$
r_{K^{+} K^{-}} \approx(0.01-0.02) \%
$$

$$
r_{\pi^{+} \pi} \approx(0.015-0.028) \%
$$

consistent with the heuristic estimate seen before

Beware:

- It is well known that the charm mass is too light for factorization theorems to hold (and much too heavy for chiral symmetry). Therefore, the $1 / \mathrm{m}_{\mathrm{c}}$ expansion and factorization are, here and below, mostly used as guidance.
\square The corresponding results require of course plenty of assumptions (e.g. on the matrix elements). Results should be taken with relative errors of $\mathrm{O}(1)$.

Brod, Kagan, Zupan: continued

The (formally) power-suppressed amplitudes
Estimate of:
(a) Annihilation topologies with insertions of QCD penguins. Example:
penguins here

The (formally) power-suppressed amplitudes
Estimate of:
(a) Annihilation topologies with insertions
(b) Penguin contractions of of QCD penguins. Example: current-current operators. Example:

The (formally) power-suppressed amplitudes
Estimate of:
(a) Annihilation topologies with insertions of QCD penguins. Example:
(b) Penguin contractions of current-current operators. Example:

V Conclusions

(T $\left|\frac{\text { Each of the above amplitudes }}{\text { Leading-power amplitude }}\right| \sim(0.02 \div 0.08) \% \quad \| \square$

A contribution to $\Delta \mathrm{A}_{\mathrm{CP}}$ from each of these amplitudes of:
$\Delta \mathrm{A}_{\mathrm{cP}}$ (single ampl.) \sim few $\times 0.1 \%$

It follows that the LHCb measurement can plausibly be saturated by the SM contributions

The (formally) power-suppressed amplitudes
Estimate of:
(a) Annihilation topologies with insertions of QCD penguins. Example:

(b) Penguin contractions of current-current operators. Example:
currentcurrent here

A contribution to $\Delta A_{C P}$ from each of these amplitudes of:
$\Delta A_{C P}($ single ampl. $) \sim$ few $\times 0.1 \%$
It follows that the LHCb measurement can plausibly be saturated by the SM contributions

2 The whole approach is testable in two ways:

- Similarly large SM effects should be visible in $\mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0}$ and in $\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \pi^{+} \mathrm{K}^{0}$, that differ from the $\mathrm{K}^{+} \mathrm{K}^{-}$ and $\pi^{+} \pi^{-}$decays only in the spectator quark
- The modes $\mathrm{D}^{+} \rightarrow \pi^{+} \pi^{0}$ and $\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}^{+} \pi^{0}$ are not polluted by QCD penguins, hence they are suited for non-SM searches

V Main idea

Write down the most general $|\Delta \mathrm{C}|=1$ effective Hamiltonian (including non-SM operators).
Address the question of what operators may plausibly generate the LHCb signal,
taking into account the relevant constraints ($D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$)
(Instant) paper 2: mostly beyond SM
"Implications of the LHCb Evidence for Charm CPV" Isidori, Kamenik, Ligeti, Perez (1111.4987)

Main idea

Write down the most general $|\Delta C|=1$ effective Hamiltonian (including non-SM operators).
Address the question of what operators may plausibly generate the LHCb signal,
taking into account the relevant constraints ($D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$)

Parameterizing non-SM contributions

Recall again the direct CP asymmetry formula for the channel $D \rightarrow f$, where $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$:

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f)=-2 r_{f} \sin \phi_{f} \sin \delta_{f}
$$

Main idea

Write down the most general $|\Delta C|=1$ effective Hamiltonian (including non-SM operators).
Address the question of what operators may plausibly generate the LHCb signal, taking into account the relevant constraints ($D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$)

Parameterizing non-SM contributions

Recall again the direct CP asymmetry formula for the channel $D \rightarrow f$, where $f=K^{+} K^{-}$or $\pi^{+} \pi^{-}$:

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f)=-2 r_{f} \sin \phi_{f} \sin \delta_{f}
$$

magnitude of the

sub-leading to leading

 relative CP-odd phasesub-leading to leading relative strong phase

This formula can be generalized to include the case of contributions from non-SM operators:

$$
A_{C P}^{\mathrm{dir}}(D \rightarrow f)=2\left[\xi_{f} \operatorname{Im}\left(R_{f}^{S M}\right)+\frac{1}{\lambda_{C}} \sum_{i} \operatorname{Im}\left(C_{i}^{\mathrm{NP}}\right) \operatorname{Im}\left(R_{f, i}^{\mathrm{NP}}\right)\right]
$$

Here "ratio" means between the sub-leading and the leading amplitude
ratio of CKM factors
non-SM Wilson coefficients (normalized to the tree amplitude CKM suppression)

Isidori et al.: continued

V Constraint equation

The previous relation, written down explicitly for the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$decays, and after use of the $\Delta A_{c P}$ measurement, leads to the following equation:

$$
\operatorname{Im}\left(C_{\mathrm{NDA}}\right) \frac{(10 \mathrm{TeV})^{2}}{\Lambda_{\mathrm{NDA}}^{2}}=\frac{(0.61 \pm 0.17)-0.12 \operatorname{Im}\left(\Delta R^{\mathrm{SM}}\right)}{\mathrm{E}_{\mathrm{N}}} \operatorname{Im}\left(\Delta R^{\mathrm{NP}}\right)\langle\ldots \ldots
$$

hadronic amplitudes ratio for the difference between the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi+\pi^{-}$channels

New world average (HFAG) for $\Delta A_{C P}=-(0.65 \pm 0.18) \%$ (rescaled by a numerical factor)

Isidori et al.: continued

V Constraint equation

The previous relation, written down explicitly for the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$decays, and after use of the $\Delta \mathrm{A}_{\mathrm{cp}}$ measurement, leads to the following equation:

New world average (HFAG) for $\Delta \mathrm{A}_{\mathrm{CP}}=-(0.65 \pm 0.18) \%$
(rescaled by a numerical factor)

Note

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:

$$
C^{\mathrm{NP}}=C^{\mathrm{NP}} \frac{G_{F} \Lambda_{\mathrm{NDA}}^{2}}{\sqrt{2}} \frac{\sqrt{2}}{G_{F} \Lambda_{\mathrm{NDA}}^{2}}
$$

Isidori et al.: continued

V Constraint equation

The previous relation, written down explicitly for the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$decays, and after use of the $\Delta \mathrm{A}_{\mathrm{CP}}$ measurement, leads to the following equation:

Note

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:

$$
C^{\mathrm{NP}}=C^{\mathrm{NP}} \frac{G_{F} \Lambda_{\mathrm{NDA}}^{2}}{\sqrt{2}} \frac{\sqrt{2}}{G_{F} \Lambda_{\mathrm{NDA}}^{2}} \quad \text { 微 }
$$

Isidori et al.: continued

V Constraint equation

The previous relation, written down explicitly for the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$decays, and after use of the $\Delta A_{c p}$ measurement, leads to the following equation:

hadronic amplitudes ratio for the difference between the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi+\pi^{-}$channels

New world average (HFAG) for $\Delta \mathrm{A}_{\mathrm{cP}}=-(0.65 \pm 0.18) \%$ (rescaled by a numerical factor)

Note

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:

It follows that:

- If $\left\{\operatorname{lm} \Delta R^{N P} \sim 1,\left|\Delta R^{S M}\right|\right.$ negligible; $\left.C_{\text {NDA }} \sim 1\right\} \quad \Rightarrow \quad \Lambda_{\text {NDA }} \sim 13 \mathrm{TeV}$

Isidori et al.: continued

『 Constraint equation

The previous relation, written down explicitly for the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi^{+} \pi^{-}$decays, and after use of the $\Delta A_{c p}$ measurement, leads to the following equation:

hadronic amplitudes ratio for the difference between the $\mathrm{K}^{+} \mathrm{K}^{-}$and $\pi+\pi^{-}$channels

New world average (HFAG) for $\Delta \mathrm{A}_{\mathrm{CP}}=-(0.65 \pm 0.18) \%$ (rescaled by a numerical factor)

Note

The Wilson coefficients have been traded for the naïve dimensional analysis ones by writing the following identity:

It follows that:

- If $\left\{\operatorname{lm} \Delta R^{N P} \sim 1,\left|\Delta R^{S M}\right|\right.$ negligible; $\left.C_{\text {NDA }} \sim 1\right\} \quad \Rightarrow \quad \Lambda_{\text {NDA }} \sim 13 \mathrm{TeV}$
- If instead $\left\{\Lambda_{\text {NDA }} \sim\right.$ Fermi scale $\} \quad \Rightarrow \quad \operatorname{lm~C} C_{\text {NDA }} \sim 7 \cdot 10^{-4}$

These bounds hold before including any other constraint, in particular from $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$

Isidori et al.: continued

V Full analysis

(a) Write down the most general $|\Delta \mathrm{C}|=1$ effective Hamiltonian for non-SM contributions: $H_{|\Delta C|=1}^{\text {efff, NP }}$
(b) Include constraints from $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$

Isidori et al.: continued

V Full analysis

(a) Write down the most general $|\Delta C|=1$ effective Hamiltonian for non-SM contributions: $H_{|\Delta C|=1}^{\text {efff, NP }}$
(b) Include constraints from $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$
(b1) The double insertion $T\left\{H_{|\Delta C|=1}^{\text {eff, NP }}(x) H_{|\Delta F|=1}^{\text {eff, SM }}(0)\right\}$ generates an effective $|\Delta \mathrm{C}|=2$ Hamiltonian. It is constrained by $D^{0}-\bar{D}^{0}$ mixing

Isidori et al.: continued

V Full analysis

(a) Write down the most general $|\Delta \mathrm{C}|=1$ effective Hamiltonian for non-SM contributions: $H_{|\Delta C|=1}^{\text {efff, nP }}$
(b) Include constraints from $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$
\int (b1) The double insertion $T\left\{H_{|\Delta C|=1}^{\text {eff, NP }}(x) H_{|\Delta F|=1}^{\text {efff SM }}(0)\right\}$ generates an effective $|\Delta \mathrm{C}|=2$ Hamiltonian. It is constrained by $D^{0}-\bar{D}^{0}$ mixing
(b2) It likewise generates an effective $|\Delta C|=0$ but $|\Delta S|=1$ Hamiltonian, constrained by $\epsilon^{\prime} / \epsilon$

(Full analysis

(a) Write down the most general $|\Delta C|=1$ effective Hamiltonian for non-SM contributions: $H_{|\Delta C|=1}^{\text {efff, nP }}$
(b) Include constraints from $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$
(b1) The double insertion $T\left\{H_{|\Delta C|=1}^{\mathrm{efff}, \mathrm{NP}}(x) H_{|\Delta F|=1}^{\mathrm{eff}, \mathrm{SM}}(0)\right\}$ generates an effective $|\Delta \mathrm{C}|=2$ Hamiltonian. It is constrained by $D^{0}-\bar{D}^{0}$ mixing
(b2) It likewise generates an effective $|\Delta C|=0$ but $|\Delta S|=1$ Hamiltonian, constrained by $\epsilon^{\prime} / \epsilon$

Conclusions

- Operators where the bilinear containing the charm quark is of $\mathrm{V}-\mathrm{A}$ structure are severely constrained by $D^{0}-\bar{D}^{0}$ mixing and $\epsilon^{\prime} / \epsilon$.
- In cases where non-SM contributions are allowed to be large, one expects correspondingly large contributions to CPV in $D^{0}-\bar{D}^{0}$ mixing and/or $\epsilon^{\prime} / \epsilon$.

Outlook: we need more data and more theory work
(V) Data 1

LHCb update on $\Delta A_{\text {cp }}$ with full 2011 dataset

Outlook: we need more data and more theory work
, Data 1
LHCb update on $\Delta A_{C P}$ with full 2011 dataset

Theory

More into the question: can this be sheer SM?
Classification of other decay modes where similar enhancements would be expected.
Can Lattice QCD help here?
D. Guadagnoli, Direct CPV in Charm

Outlook: we need more data and more theory work
(V) Data 1

LHCb update on $\Delta A_{C P}$ with full 2011 dataset

Theory

More into the question: can this be sheer SM?
Classification of other decay modes where similar enhancements would be expected.
Can Lattice QCD help here?
And into the other question: may this be beyond SM?
Classification of the "cleanest" modes, e.g. those that are less polluted by QCD penguins

Outlook: we need more data and more theory work
(V) Data 1

LHCb update on $\Delta A_{C P}$ with full 2011 dataset

Theory

More into the question: can this be sheer SM?
Classification of other decay modes where similar enhancements would be expected.
Can Lattice QCD help here?
And into the other question: may this be beyond SM?
Classification of the "cleanest" modes, e.g. those that are less polluted by QCD penguins

Data 2

Data on these modes

