Note: ATL-COM-LARG-99-011
Version: 3.1

Created: 8 December 1998
Last Modified: 30 March 2000

The ROD Demonstrator for the
LArgon Calorimeter

Board Description Document

Document Info

Document Title: The ROD Demonstrator Board for the LArgon Calorimeter

Author: The LArgon ROD working group

C.Billat, J.Colas, N.Dumont, R.Lafaye, A.Masserot, G.Perrot, L.Poggioli, J.Prast (LAPP, Annecy)
W. Efthymiopoulos, D. La Marra, A. Leger (Uninversity of Geneva)
F. Henry-Couannier, B. Repetti (CPPM, Marceille)
J. Fent, L. Kurchaninov, H. Oberlack (MPI, Munich)
W. Cleland, R. Engelmann, D. Lissauer, J.Parsons (BNL, Navis, Pittsburg, Stony-Brook)

File Name: lardemorod_v3rl.doc

URL: http://atlasinfo.cern.ch/Atlas/GROUPS/LIQARGON/ROD/rod-docs.html

Release record

Version Revision Date Comments

1 0 11/12/1998 Creation date, first release.

2 0 19/2/1999 Update after first set of comments.
1 11/3/99 Update part with connector pin-out and TTC information.
2 15/3/99 Revise wording, add section with system architecture, new version for the

TTC distribution with TTCrx in the board.

3 11/5/99 Update for the May 99 LArgon week
4 2/7/99 Update for the July 99 LArgon week

. Modifications in the event format
. Summary table for PU-MB pinout
. Power distribution
. Board mechanics
5 30/9/99 » Various comments for the text (mainly grammar)

. Information for the MB « PU communication and the TTC distribution
added

. Pinout for the MB-PU connectors defined
. Update on the board mechanics and dimensions
. New P2/J2 and P3/J3 connector pinout
3 0 11/01/00 Final version corresponding to the board being produced

. TTCrx chip mezzanine board
. VME addressing schema for the motherboard components
. Update transition module pin definitions

1 30/03/00 Few text modifications to correct minor errors.

Table of Contents

DOCUMENT INFO ...ttt bbbttt b et b e et nr e 1
L INEFOTUCTION....c.eiuectiitie ettt bbbt b et b n et b e 3
11 Board Architecture - REQUIFEMENTS........ccccoiiiiiiire e 3
12 The DemONSHrator BOAIMccciiieiierieiieieesieeeie et er e 4
2 The MONEIDOAITccveierierreiereteer et 6
2.1 IMECNANICS.....c.erceiee et 6
2.2 1] o101 7@ 111 o T | ¢ 6
2.3 The TTC Information and BUSY Signal..........ccccvieririenenerieerenesese e eeeesee e s 7
2.4 The Data DiStrDULOLccoeiireieerees e 11
25 The OULPUL CONTOIEL.......cuiieeeeeeie et et 12
2.6 The VME INEEITACEcvieeieie ettt 15
2.7 The POWET DISHDULIONciveiiiieeeee e 18
3 The DSP ProCeSSING UNILcoiiiiiiieie ettt se e et s sbe s e e et e 19
31 Requirements for the PU DESIGN........ccuoiiiirieiinene et 19
3.2 Error NANAINGccveeeeeee e b e 20
3.3 Histograms — Data MONITONc.cceieeeereerereseese et e e s st e e eaenee e nees 21
34 0 1= o S 22
4 THE DA FOIMAL........cirereeiesreeresreere et r e n e r e en e enens 22
4.1 T oTU 1l = {01 0 - S 22
4.2 (O 101101010l D= 1= o] 1 01> 22
4.3 Calibration Data FOMAL.........ccoeveirrereierrnriineereesesree e 27
5 PINOUL AIOCALIONeviticiitieeese et bbb r e 28
51 MotherbOard CONNECIONScviveieierieiere ettt r et sr e e sresrenea 28
52 Mezzanine Board CONNECIONSccieererieeererieeete st st r e sre e sre e 30
5.3 TTCrX Mezzanine CONNECIONSccceerueirrereeesrereee st seee e seese st sbe et e sreneens 33
B VME INTEITACE. ...ttt bbbt nn e 34
A oo 7= o [T = 1 SRS 35
o 00 0 35
RETEIEINCES ...ttt b et rer e e e rer e e r e 35

1 Introduction

The goals of the demonstrator project

The main goal of the ROD demonstrator (RODDemo) board is to serve as an intermediate step
towards the construction of the full ROD module for the ATLAS LArgon calorimeter. It will be the
test-bed for the R&D work within the following 2.5 years, where all the functions foreseen for the
final ATLAS module could be developed and tested.

In this document a detailed description of the RODDemo board is given. This is a working
document, which will be continuously updated as the work advances, therefore the readers have
always to pay attention to the date and version number of the document in hand. . More information
about the board can be found in the LArgon Web pages.

This document is organised as follows: In the Introduction section a general description of the
demonstrator board and its basic components is given. In the following sections the board
components are described in detail, followed by the sections on the input/output interfaces
connector pinout allocation and output data format. The document ends with a discussion on the
points that the demonstrator program will not address as well as the upgrade path towards the final
ATLAS board.

1.1 Board Architecture - Requirements

The ROD board receives data from the Front-End Boards (FEB) via a set of optical (or copper)
links. It does the data processing to evaluate the quantities like energy and time for each channel
and outputs data to the ROB boards to be used first for the LVL2 and the DAQ[1]. For the
processing task the board has several DSP Processing Units (PU) into which the input data are
distributed.

The baseline architecture parameters for the ROD board as described in the TDR are shown in
Table 1 along with those foreseen for the ROD Demonstrator.

ROD Baseline ROD Demo
Input links (32 bits @ 40 MHz) 2 2
Number of channels per board 256 256
Number of DSP Processing Units 8 4
Number of channels / DSP PU 32 64
Output links (800 Mb/s) 1 1

Table 1 Main characteristics of the ROD Demonstrator board, compared to the baseline readout architecture as
described in the TDR.

The choice of RODDemo parameters is based on the following requirements:

Channel density: 64 channels per PU

Recent developments in the DSP processing power indicate that such a target is not far from what
can be achieved. If this is proven, it might be that for the final ROD module 8 PU can be used, thus
having double the density of that described in the TDR with important implications in the overall
design and cost of the system.

Input/Output Links: two input links and one output link

As described in the TDR baseline architecture. For the output, one link per 256 channels is
foreseen, since some data reduction is expected at the ROD level.

Test beam: test with the real calorimeter signals

It should be able to test the demonstrator board with the real calorimeter signals in the test beam.
This imposes some additional constraints to the board design such as:

» It should be able to analyse all the input channels without rejecting any,

» It should be able to have full readout by VME to be compatible with the DAQ system of the test
beam, and

« Itshould be able to analyse the calibration data as foreseen in ATLAS.
ATLAS tests: test with the LVL2 and DAQ-1 prototypes

It should be able to test the RODDemo with the prototypes of the ROB and DAQ systems when
they become available. Tests of the full readout chain of the detector from the FEB up to the
EF/DAQ should be possible to be made.

Modularity: evaluate different DSP technologies and board architectures

It is expected that within the following years the DSP technology will evolve quite fast, therefore we
should be able to profit the most of it. The same applies to all the peripheral components such as
memories, FPGAs, FIFOs used in many places in the board. Therefore a modular design for the
board has to be adopted, where the basic components can be easily modified or upgraded.

Full functionality: as in the final module

All the functions foreseen for the final ATLAS module should be implemented in the demonstrator
board. In particular the board should:

» issue the appropriate busy signals and do all the dead-time handling,
» issue error messages and monitoring information for its status and operation,

e use the TTC standard signals and information, including the global reset signal when an out-of-
sync condition is detected, and

» send an event with the defined ATLAS format for each trigger received.
This list is not exhaustive and is subject to change as the overall design of the system advances.

General constraints: Cost and form factor

It is probable that the cost for the prototype boards will be different than the one quoted for ATLAS.
Either because some of the components might be expensive today, in particular those at the
cutting-edge of the technology, or because some additional components -eg. additional memory-
might be needed to help for the testing and the R&D work. Nevertheless, some effort should be
made to keep the cost of the board at a reasonable level.

Also, for the first prototypes the requirements in terms of space might be somehow relaxed, but
eventually, it should be shown within the demonstrator program that all the foreseen input/output
links and PU boards can be accommodated within a 9U VME board in an optimal and cost efficient
way.

1.2 The Demonstrator Board
A block diagram of the demonstrator board is shown in Figure 1. It is a 9U VME board, which
consists of two parts:

 The motherboard, which has all the I/O connections and controls, and the VME interface,

» Four DSP Processing units (PU) mounted as mezzanine cards where all the data processing
is done.

The main characteristics of the demonstrator board are described in Table 2.

Item

Crate type VMEG64x standard, with custom P3 back-plane
Board type U

Board dimensions 366.7 x 400 mm

DSP Processing Units 4

Mezzanine board dimensions 85 x 185 mm

Number of channels in the board 256

Number of channels per PU 64

Inputs

FEB links 2 (32-bits @ 40 MHz + clock)

TTC input CLCK, BCRST, BCID, EVID, EVCRST, Ttype, Reset...
Outputs

ROB links 1.28 Ghit/s (32-bits @ 40 MHz)

VME bus Full readout and board control

BUSY signal Asynchronous

Table 2 The basic characteristics of the ROD demonstrator board

From the motherboard point of view the PU is seen as FIFOs, where the data are continuously
clocked-in using the clock from each link. All the data handling and decoding is done in the PU.

A similar solution is adopted for the output data stream from the PU cards. The Output Controller
(OC) "pulls" the data from the mezzanine board using its own clock, adds the event header and
trailer and sends the data either to the output link or to the Output Buffer to be read asynchronously
by the VME, or to both.

Input =
Input =
_ T Controller [E
Serial - Parallel buffer - ; g;‘-\
""""""""" DSP(s) + (&7
Memory E =
""""""" 1 DSP Processing Unit
H 64 channels
o
3 1
= DSP Processing Unit
§ 2 64 charmels
-
=
Output
: [Buffer
— [T _ - full events
HE e DSP Processing Unit
: 64 channels &
TTC Tnfo + <3
40 MHz clk 2E
= o
| 1 = 53
DSP Processing Unit] H
64 chanmels
>
> ROB link
32 bits@ 40 MHz

Figure 1 Block diagram of the ROD Demonstrator Board.

The TTC information is received from the back plane and it is treated by the motherboard (using the
TTCrx chip), before being distributed to the PU boards and the OC.

In the following sections a detailed description of each of the components is given.

2 The Motherboard

The motherboard is a full size 9U VME module able to carry four mezzanine boards, which span
the full board height.

21 Mechanics

The board dimensions according to the VMEG64x standard are:

¢ Motherboard: H366.7 x W400 x D2.4 (mm)
e Transition module (back of VME crate): H120(or 160) x W400 x D2.4 (mm)

e Processing unit mezzanine: H85 x W185 x D1.6 (mm)

The clearance between the two mezzanines is 4mm, increasing to 7.3mm at each side of the board
in order not to interfere with the guiding rails in the crate. Figure 2 shows the cross-section of the
board. The connector height is chosen such that SMD components can be placed on the
motherboard and the inside face of the PU as well.

Figure 2 RODDemo board cross-section.

The final board width will depend on the size of the actual components used and it might overpass
the allowed single slot width.

The connectors used and their topology is discussed in Section 5.1.
2.2 Input/Output Links
All the I/O links for the card are from the P2 and P3 VME connectors. The input (output) link

receiver (transmitter) are housed in a special "Transition Module" which mounts at the back of the
VME crate as shown in Figure 3.

Bmm width

M otherboard Transient M odule

Input From FEB
(optical or Cu)
Input From FEB
(optical or Cu)

Outputto ROB
(S-link,....

Figure 3 A schematic diagram of the motherboard and the Transition Module used for the input/ouput links.

The actual links can be either optical or from copper cable, but the pinout arrangement to the ROD
remains the same. With respect to the ROD, the input (output) data are sent (received) as 3.3V
TTL signals via the P2 and P3 connectors. Detailed information for the Transition Module design
can be found in [2].

Using the proposed VMEG64x standard, in each of the P2/J2 & P3/J3 connectors we will have 160
pins, which is considered as sufficient for this case. The exact pin-out diagram for the input and
output connectors can be found in Section 5.1.2.

2.3 The TTC Information and BUSY Signal

The TTC and BUSY signal distribution in the ROD crate is done using a special module called TTC
Interface and Busy Module (TBM) as seen in Figure 4. The TBM module receives the TTC
signals from the trigger system, does the optical to electrical conversion and then sends them
through the VME back plane in all the ROD boards in the crate. Through the back plane it also
collects the BUSY signals from all the RODs and provides the crate BUSY as well as dead-time
monitoring information to the local CPU.

TTC signals from CTP

A

E/O
conversion

1l

TBM Bus (VME P3 connector)

Ndd @3e1D aoy

anpoly WALl

L# 3Inpol AOH
Z# 3Inpoly oy
9L# NpoA AOY

% [19llo4u0D ovds

T

Crate BU:;

Figure 4 The TTC signal distribution in the ROD crate.
2.3.1 The TBM bus

The TBM bus in the VME back plane consists of the following signals:

e TTC_BO0O0, TTC_BO01: two lines to send the TTC information. More details for the TTC signals
and the TTCrx chip functions can be found in [3].

« BUSY_B#: which is the BUSY signal from each ROD module.

The pinout allocation in the P3 VME connector can be found in Section 5.1.3
2.3.2 TTC signal distribution in the ROD

At the input of each ROD the TTC data are recovered by the TTC Controller, which distributes them
in the motherboard, and in the PU as schematically shown in Figure 5.

Apart from the TTC_clock, the TTC controller provides

¢ The BCID(12-bits) and TriggerType (8-bits) to each PU
» The BCID(12-bits), EventID(24-bits) and Ttype(8-bits) to the Output Controller

A common 8-bit bus is used, and the data are maintained for two clock cycles and the TTC
controller provides the necessary write signals: TTC_BCIDWr, TTC_TtypeWr.

In each PU the BCID and Ttype data are stored in separate synchronous FIFOs. To get the full
BCID two consecutive readings are needed. The Output Controller needs two FIFOs: one for
storing the BCID and EventID, and the other for the Ttype information. To get the BCID again two
readings are needed, and three for the EventID, as show in Figure 6.

At each L1A receipt, the BCID and EVID information is directly available, while the Ttype
information arrives later, without a fixed latency, but the order is maintained. The timing for the TTC
signals will be made such that the BCID information is available in the PU before the data from the
FEB. The Trigger Type information should be available before the end of the event, so the
algorithm in the DSP can use it.

TTC Fifo PU 1
BCID (12-bits) OQutput
Ttype (8-bits) Controller
EvID (24-bits)
TTC Fifo PU 2 2i
o g T !
BCID (12-bits) | 228
Ttype (8-bits) E 8 = g
EVID (24-bits) R
TTC Fifo PU 3 :
BCID (12-bits)
Ttype (8-bits)
EvID (24-bits)
TTC Fifo PU 4] | 53k
BCID (12-bits) ‘
Ttype (8-bits) TTC
EVID (24-bits) Contrl
FPGA
(.) ‘-I—VME

local counters
Dfr-ont pannel input {L14, clk, BCRST, EVERST, Reset, BUSY) A

Figure 5 The TTC and BUSY signal distribution into the ROD module.

cegen] L L] LT L LT L LML L L L L T LT L LT

TTC bos [0-7] ... < BCID

Processing Linit

TTC_BCIDWL |

Owtput Controller

TTC_OCIDW ! |

TTC_OCTiypeWi

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
TTC_TiypeWt .
1
1
1
1
T
1
1
1
1
1
1
h
1
1
1
1
1

Figure 6 Timing of the TTC distributor signals.
Local mode

This to operate without the TBM signals but taking the necessary input from a front panel
connector. The front panel pins are shown in Table 3.

Signal Direction (from ROD) # Pins Level

Clock Input 2 LVDS
L1A Input 2 LVDS
BCRst Input 2 LVDS
ECRst Input 2 LVDS
BUSY Output 2 LVDS
Reset Input 2 LVDS

Table 3 Front panel signals.

In this case the BCID and EventID information is generated from internal counters. These counters
are reset by the BCRst and ECRst signals. The Ttype information is loaded by VME.

VME mode

There is also the possibility to generate a complete sequence only by VME. In this case the
sequence of VME write should be: Trigger-Type, Event-ID, BunchCrossing-ID. The data are send
to the PU and the OC only when the BCID is received.

TTCrx mode

This is the configuration for the final board, where a TTCrx chip is mounted in a special mezzanine
board on the motherboard which takes the TTC signals from the TBM bus. The schematics of this
mezzanine board are shown in Figure 7.

]

0000000000
O agacocooo o
0000000000
Qoo0o0000 o]
=]

o
=]
o
=]

0a0nunennononandnaoaCamRoononanon
(0000000000o0oodooOoCoODCOOCoOCG

Figure 7 Bottom layer of the TTCrx mezzanine board seen by transparency from the top of the board.

The TTCrx mezzanine board incorporates a TTCrx chip with capacitive coupling on the input. It
doesn't use a PROM to configure the chip and therefore must be initialised either by the 12C
interface (SDA, SCL) of by the TTC input itself. The differential TTC input signal (in, in_b) can have
an amplitude from 20mV up to 1V pp. The TTCrx identification number (ID) is set by resistors
connected to GND or VDD. Due to space constraints only 8 of the 14 bits for ID can be set with a
dip switch.

¢ Master mode is set to 00 (= no test mode and serial to parallel conversion on channel B
enabled).

¢ The ID addresses are configured using an 8-bit switch. 256 TTC addresses (bits 3:10) and 8
I12C addresses (bits 2:5) can be configured. This also means that it is possible to have up to 32
TTCrx chips using the same 12C address.

e There is only one power supply which can be 3.3V or 5V.

e The part numbers for the connectors used are: SAMTEC CLM136-02-LD, SAMTEC CLM105-
02-LD.

In Table 4 the signals used by the TTC Controller are listed:

Signals Description #Pins

Input Signals to the TTC Controller

Configuration From VME Interface

Config_TTCrx_Local 1=local or VME mode, O=TTCrx mode. 1
Config_VME 1=VME mode, O=local mode. 1
Local Mode From Front Panel

LV1A LV1 used for BCID and EvtID local counters. 1
BCRst Reset BCID counter. 1
EvtRst Reset EvtID counter. 1
Reset Resynchronisation reset 1

10

TTCrx Mode From TTCrx
EvtCntHStr High to validate the 12 bits MSB of the BCIDon BCnt bus. 1
EvtCntLStr High to validate 12 bits LSB of the EvtID on BCnt bus. 1
BCntStr High to validate 12 bits MSB of the EvtlD on BCnt bus. 1
BCnt 12 bit data bus. 12
SubAdr 8 bit sub-address bus (‘00000000’ for Ttype). 8
DoutStr High to validate sub-address and data on Dout bus. 1
Dout 8 bit data bus for the TTYPE. 8
Brcst 6 bit broadcast bus (used to generate the synchronisation reset) 6
BrcstSTrl High to validate data on Brcst bus 1
VME Mode From VME Interface
BCID_VME BCID 12 bits register written by VME. 12
EvtiD_VME EvtID 24 bits register written by VME. 24
LV1A VME BCID and EwtID registers transferred to PU and OC on Clk_General rising edge when 1
high.
Dout_VME TTYPE 8 bits register written by VME. 8
DoutStr_VME TTYPE registers transferred to PU and OC on Clk_General rising edge when high. 1
Anothers Common to the Mother Board
Reset Reset the chip. 1
Clk_General General clock of the mother board. 1
Total
Output Signals from the TTC Controller
To P.U
TTC_BCIDWTr High on Clk_General to write BCID in PU BCID fifo. 1
TTC_TTypeWr High on Clk_General to write TTYPE in PU TTYPE fifo. 1
ToO.C
TTC_BCIDWrOC High on CIk_General to write BCID+EvtID in OC BCID+EwtID fifo. 1
TTC_TTypeWrOC High on Clk_General to write TTYPE in OC TTYPE fifo. 1
To P.Uand O.C
TTC_Data 8 bits data bus for BCID, EvtID and TTYPE. 8
TTC_Rst To reset the TTC counters (needs to be defined further) 1
Total

Table 4 Input signals to the TTC Controller.

2.4 The Data Distributor

The Data Distributor is a multiplexer, which selects between the FEB and VME data stream to send
to the PU. The input data are distributed equally with 8 ADCs per PU, as shown in Table 5. The
virtue of the FEB data transmission is that the data from a single ADC (8 channels) are send using
only two lines of the link, therefore 16 lines of data are connected for each PU. The clock and the
additional bit with the error flag received by the input link are send as well.

ADC a,b,cdefgh Ljk 1, mmnop
FEB Link #1 PU1 PU2
FEB Link #2 PU3 PU4
VME PU1, PU2 PU3, PU4

Table 5 The ADC distribution from the input links into the four PU.

For the case of the VME data injection, the same 32-bits is used for simulating both the FEB links.
In this case PU1 and PU2 (PU3 and PU4) will get the same data.

11

2.5 The Output Controller

The main functions of the Output Controller (OC) are listed below:

Further details for the Output Controller design can be found in [4].

Receives and stores the TTC information send from the TTC Controller.

Reads the event fragments from the four PU output buffers.

Builds and Formats the complete ROD event fragments.

Outputs the data either to the VME or to the ROD-ROB link or in both, according to its

configuration.

Outputs periodically or by trigger type the data into the spy buffer, according to its configuration.

2.5.1 Block diagram

The block diagram of the output controller is shown in Figure 8. As seen there, it must be able to

Data Bus{

Figure 8 Schematic drawing of the output controller.

manage three kinds of control bus:

In Table 6 a list of the signals needed are shown. The PU output is considered as a synchronous
FIFO, which can be read with a clock of 40MHz in a data driven mode. When the signal for an

5-link Control Bug i
. Data Bus o %
Processing = > £ 9
Unit 1 S
S
Processing 1 ‘
Unit 2 . v
Processing g Board. “* SDRAM
Unit 3 Memory Memor'y_
Read-Out Controller |22 o 4M X 16-bit
Processing Chip
Unit 4 4
A) -
Configuration T
Register SDRAM
T Memory
| L L] 4m x16-bit
VME 7
Interface
> L A0MHz
VME i clock

the four PU Board Control Bus: a 5-line buts which controls the output of each PU board,

the S-link Control Bus, which allows the OC to control the data, which is send to the ROB via

the S-link [5].

the local memory control bus.

12

event is set from the PU, the controller reads the first word in the FIFO, which indicates the number
of words for the event, and sets a countdown counter. The PU design should handle error cases
due to wrong assignment of the number of words in the event. All PU designs should comply with
these requirements, as well as with the event format as defined in Section 4.2.1.

For the local memory, the MT48LC4M16A2-10 chip from Micron is chosen. It is a Synchronous
Dynamic RAM with a configuration of 4 Meg x 16 bit. Only two chips are needed to reach 16MB.

Name Origin Function

PU board control bus

Evnt_ready PU when high, indicates that the PU Board has one complete event

Read_ck ROD Read synchronous clock input, 40 MHz

Oecmd_b ocC When low, the 32-bit output is enabled.
When high, the output bus must be in high impedance state.

Read_en b ocC When low indicates to the PU that it must give the next data on the bus, at least 10ns after
the low-to-high transition of the Read_ck signal.

Evnt_end ocC This 25ns signal indicates to the PU that the entire event is read.

The S-link control bus

Uwen_b ocC User Write Enable. When low enables data to be transferred to the S-link on the low-to-
high transition of the clock.

Uctrl_b ocC User Control line. When low indicates that the data transmitted is a control word

Udw<1:0> Not Used User Data Width line. Define the data width the S-link is to be operated in. This two lines
are connected to the ground, which defines 32 bit width

Utest_b ocC User Test line. When low switches the S-link in test mode

Ureset_b ocC User Reset line. When low initiates a reset cycle

Ldown_b SHink Link Down. When low indicates that the S-link is not operational

Lff b SHink Link Full Flag. After it goes low, up to two more words may be written

Lrl<3:0> Notused Driven by the S-link. Link Return lines

The memory control bus

Cke ocC Clock enable. When high the clock input on the memory chip is enabled

Cs b ocC Chip select. When low the memory’s command decoder is enabled

Ras_b, Ras_b, ocC Command input. These three lines define the command being entered

We_b

Dgm<1:0> Notused These two lines are connected to the ground, which allows 16-bit bus width on each
memory chip

Addr<11:0> ocC These lines can be the Row address (addr<11:0>) or the Column address (addr<9:0>)
depending of the command

Ba<1:0> ocC These two lines are used to select the bank. There is 4 banks in each chip. Each bank is

1Meg x 16 bit

Table 6 The output controller signals.

For the controller configuration, a 32-bit read-write register is used loaded by the VME interface as

shown in Table 7.

Bit Name Function
0-11 Rowmax<11:0> Used only when the S-link is disabled and local memory mode enabled, to indicate the
12-13 Bankmax<1:0> maximum memory address for the data. When reached, the current event is readout and then
the controller stops.
14-15 Reserved
16-23 Mask<1-8> To mask (disable) single PU boards from the readout.

24 EnLink Enable the output data stream to the ROB link.

25 EnSpy Enable the spy mode. Only relevant if the EnLink bit is set, otherwise ignored. In this case a
complete event is copied in the local memory to be readout by VME. A refresh mechanism is
also set if the event is not read within a time window.

26 Dtm Enable local data taking mode. Only relevant when the EnLink is not set. When is set the local
memory is used to continuously store events. When is not set, a single event is read and then
the controller stops.

27 EnTstLink Enable test link. When set, the Utest_b line in the S-link control bus is activated to put the S-

link in the test mode.

13

28-31 Reserved

Table 7 The output controller configuration register.

The output controller also receives and stores the TTC signals for each event into FIFOs, as
shown in Figure 5. There are three FIFOs, which are used: one for the BCID, one for the EventlD
and one for the Trigger Type. In principle for each trigger received a PU event fragment should be
found.

2.5.2 The readout sequence

The readout sequence is data driven, and initiates from the L1A information in the TTC FIFO. This
way it is guaranteed that for each L1A there will be an event send to the ROB as required. Since
the processing time in the events has large fluctuations, it is expected that the PU output buffer is
large enough to compensate for this. The OC starts reconstructing an event once all the PU Event
Fragments become available.

The readout sequence consists of the following steps:

e Step 0: The sequence starts when all the non masked PU have sent the Evnt_ready signal
e Step 1: The event fragment header is constructed, using the TTC information

e Step 2: The first word in the FIFO of the first PU is read, and a countdown counter is set

e Step 3: The rest of the words for the event are read

e Step 4: The controller checks that the last word is the EventMarker (Oxffff).

e Step 5: Steps 2 - 4 are repeated for all the PU

e Step 6: The event fragment trailer is constructed.

The complete output data format is found in Section 4.2.2 .

2.5.3 Output

At the output, the data go either into the ROD-ROB link or into the VME interface.
ROD-ROB link

In Table 8 the available bandwidth for different LVL1 trigger rates is shown as well as the expected
typical size of an event.

Event size
LVL1 rate Link speed Max. # words to transfer
Typical Margin
75 KHz 40 MHz 533/13.3us 389(38.8%) 27%
100 KHz 40 MHz 400/10 ps 389(4.1%) 2.7%
66 MHz 660/10 ps 389(71.8%) 41%

Table 8 The bandwidth margin for the output link for the different LVL1 trigger rates and link speed.
VME interface

In the test beam it is required that the DAQ runs at about 1KHz rate, which implies that about 2000
events will be taken at each SPS burst with a timing as shown in the diagram below:

237s SPS cycle
4% 144s ——p
2370 events

(1KH2)

14

Using the maximum event size" of 1453 words or ~5.67KB, it means that in the output a large
buffer of ~13.1MB should be available. In addition, the VME readout should be fast enough to
empty the buffer before the next spill. Assuming that there will be 7 boards to be read out each
time” this means that the VME and subsequently the DAQ should be able to handle more than
9.1MB/s sustained rate, which should be feasible with today’s computers.

2.6 The VME Interface

In general the ROD module is considered as a slave module. All the actions and commands are
controlled by the local CPU. The ROD module can issue interrupts to cause certain actions to
happen. In general, the VME interface on the motherboard has to allow the following actions:

Load and configure the motherboard and the PU components

The ROD receives commands and executes certain actions. In this case a general broadcast is
needed so that the code or parameters can be loaded simultaneously in all the boards and PU as
fast as possible.

Select operating mode

There will be many modes of running: normal data taking, calibration, debugging with data injected
by VME. Switching from one mode to the other requires global or partial re-configuration of the
ROD and it's PU. It might be that switching from one mode to the other will require a certain number
of steps which the VME interface should handle.

Get the calibration or physics data

When the boards are configured for calibration, the data should be send via the VME interface to
the host. Also in the test beam the main data flow goes through the VME bus.

Get error messages and flags

The ROD modules will produce various error messages and flags. The VME interface should be
able to send these to the host where appropriate actions should take place: board reset, force a

busy signal etc. The error messages and flags should be classified in terms of severity and there
should be VME Host interrupts on fatal errors.

Get additional monitoring information

The VME interface should allow to read by the VME host the monitoring histograms or counters in
the PU.

Mask malfunctioning boards of PU or single ADCs or FEBs

Malfunctioning PU or single ADCs in the data stream should be able to be masked via the VME
interface. In this case the masked elements should be properly flagged in the data.

2.6.1 Implementation
There are two components for the VME interface implementation: the main component, which is

located in the motherboard and the one in each PU. The block diagram of these components is
shown in Figure 9.

! In the test beam it is probable that we would like to have both the raw data as well as the calculated quantities for all the
events, at least during a debugging phase.
2 Corresponding to 14 FEBs, enough to cover a large area of the detector

15

[oLels

MEEPAI

—

0| el prErepnd

EIEpAAES
JMETERA BLED
ndpeyo
d
I ——
RUEIERI0|

ElEpu

— upgp
Am - PREA LT[S E—
OZLppEAl 2 SE £ uumb_H VRGP e
a wsyTwsg BLIA e
m APEA0 e a0pEy0
8 M A T B P N Tppee]
o : 20IPEY O 0PI uoﬁmx%
3 PIEIERDG rdpEyo " S (0 LE] pPESLLA
PeEn (DENPPEY P progyo — PECG{D
5w apoyl UElS ST T 20 UES pEogy Fspese
- - ug D—E—< UB uM 000
l P IEs oo Lt .
" = (DEL]PRBRA .
il w\|oE oo lases 200 \ URIG e TR -
Lt =] Ewcc _ ooy SoTuT LG Rl IS
- P LIES o0 ﬂlﬂ”%.m“ﬁﬂh) SIS Haq) T '
.] —— a0 YES
pTeS oo S
- I JuDT o iy -
- uaoeRgq aoEgE
Tt us = PRER 4
X P LME" S WP "l _D”nm PPRER
4 - 4
e e WO —= i R
FE] pEERD iU LUpsp |-|l%l
.y
i L T s i e
puES pUES G EIPEEA p S5p UPIOM| S
PVES [N—— 1.1 Assp oMy
pispnd 15ipuly iy uppEaD
%m||-|n. 19p UES] Up|
- LU M =P UEs ASpESE 0— ASPESE | PESLUA +
TS :
JMELE| , voduy Toduy e = A_umml e Sm_rﬂuummEb.ﬂmmugm“E:
EE : od] = > od] F
~ " ;..mm___.:._; hu_cz 1ElS v wod ms WE TAD|A“£ —
] ! JMETER] My U R
L TS s T 1858 #— E@:hu.m
.) ApEa yod™ vms| - ,._To_o O4YCa3s
— pEa) Y013 H—s §IOD
(b Apea) <t

Figure 9 Block diagram for the VME interface implementation.

The communication towards the VME master follows exactly the VME64x standard. For the PU a

protocol has been defined as described bellow.

2.6.2 Communication protocol between the motherboard and the PU

For the communication with the PU an 8-bit data bus running at 40MHz is used. The signals
between the motherboard and the PU are show in Table 9, followed by example read/write cycles.

16

Bits Direction Polarity Name Mode Function

8 Mb - PU Normal Data Sync Data multiplexed in 4 bytes. The data are present
during 2 clock cycles (50 ns). The PU_Dsn is sent
during the 2" clock when the data are stable. The
MSB containing byte is sent first.

1 Mb - PU Inversed Data Strobe Sync Is a clock enable and must have a front edge of of the
clock (TTC_CIk) during its validity.

1 Mb = PU Inversed Chip Select Sync Is sent by the motherboard to initiate a read or write
cycle

1 Mb < PU Normal Ready Sync Is sent by the PU to indicate that the reception register

is free. At the beginning of the cycle it says that a
transaction is possible (from MB to PU), while at the
end of a transaction it indicates that a new word can be
send. In this way a FIFO is not necessary between the
communication port and the DSP. The motherboard
waits until the PU drives the ready

1 Mb > PU Normal Read/Write Image of VME write signal

5 Mb > PU Normal Internal VME Image of VME Add(bits 2:6)
Address

2 Mb < PU Hi Interrupt To be sent to VME Interrupt

1 Mb < PU Hi Busy To be sent to the BUSY OR

1 Mb > PU Hi Reset General reset of PU

5 Mb ~ PU Hi JTAG Programming pins of FPGA or DSP

26 Total

Table 9 Communication signals between the PU and the Mother board VME modules.

VME Master Comm. Port (MB) Processing Unit
Initiate VME cycle
|

v
Initiate cycle to PU
- present PU_IVAddr and PU_RdWr
- drive PU_Csn
- use PU_Dsn and 4 consecutive PU_Data

v

Respond to MB

- drive PU_Rdy low

- store the 4 consecutive PU_Data in a
register

- drive PU_Rdy high when the register
has been freed (the data have been
send somewhere in the PU: DSP or 52P
ete..)

|

v
Terminate cycle to PU
+ wait for PU_Rdy to go high
» release PU_Csn

v
Terminate cycle to VME
- send ACK to VME
|

¥
Terminate cycle to VME

Figure 10. Typical VME write cycle to the PU.

17

VME Master Comm. Port (MB) Processing Unit
Initiate VME cycle
|

¥

Initiate cycle to PU
- present PU_IVAddr and PU_RdWr
- drive PU_Csn

|

v

Respond to MB

» drive PU_Rdy low

+ prepare the data

- drive the 4 consecutive PU_Data and
PU_Dsn

- drive PU_Rdy high

|

¥
Terminate cycle to PU
+ wait for PU_Dsn to go low
 store the 4 consecutive PU_Data
in a register
- release PU_Csn

v

Terminate cycle to VME
- send ACK to VME

v
Terminate cycle to VME

Figure 11 Typical VME read cycle from the PU.
2.6.3 VME address mode

The VME address (A24) has 32 bits (VMEADD 0-31) and the general addressing schema is shown
in Table 10. Bits <23:31> are used for the geographical address and ROD identification. For all the
components of the board bits <2:6> are reserved for the internal function implementation. The
exact implementation depens on the particular PU design.

VMEADD |31|30|29]28]27] 26/ 25] 24] 23] 2

2|21]20]10]18]17]1615|14]13]12]11]10] 9| 8] 7] 6] 5| 4| 3| 2] 1] 0
General Geogr. address ROD ID Component Address space
Proc. Unit 1 PUID Address space
4 321

Data Distr. 1 Address space
Output 1 Y] RAM Memory address Address space
Controller j§>

[TTC Citrlr. 1 Address space
Misc, 1 Address space
Local 1 Address space

Table 10 The VME addressing schema for the various components.
Each PU is identified using a PU id field (bits <7:10>). A broadcast mode is also possible when the

PU id field is set to 0. As an example such a mode will be particular useful when loading the code
for the DSPs or other FPGAs.

2.7 The Power Distribution
2.7.1 Motherboard

For the components in the motherboard +3.3V power foreseen in VME64x standard will be used. In
the cases where additional power is needed it will be made with local regulators starting from the
+3.3V.

18

2.7.2 Processing Units
For the PU, a dedicated power will be provided.

It is estimated that each PU will need about 2-3A @ 3.3V. A DC-DC converter in the motherboard
will provide either +3.3V or +5V starting from the +48V available as auxiliary power in the VME64x
standard.

A front panel switch is foreseen to cut the power to all the PU, thus allowing fast exchange of the
daughter cards without having to shutdown the whole crate.

3 The DSP Processing Unit

In this document no exact description of the PU is given since its design depends on the choice of
the DSP processor. However, some basic functions and requirements are described which all
designs should follow.

3.1 Requirements for the PU Design

[11 Buffer the data in both the input and the output. To absorb the fluctuations due to different
event sizes and algorithms used, it is estimated that a buffer of about 100 events of the
average size (see Table 13) would be needed in both cases.

[2] Evaluate the energy, time and quality of fit for all the channels. It is possible that for the
channels with low energy the time or the quality of fit are calculated using simple algorithm
while for the channels above a threshold more complicated algorithms might be used.

[31 Comply with the data format as defined in Section 4.2. All the word counting should be used in
32-bit words.

[4]1 Monitor the data and the hardware using simple histograms as defined in 4.2.1.

[51 Do the first step in the analysis of the calibration data.

[61 The PU design should comply with all the requirements defined for the input/output and VME
interfaces with the motherboard. In particular it should be able to receive and store the TTC
information without any possible loss.

[71 Should be able to produce the BUSY signal when the buffers are almost full (using a
programmable value, which needs to be tuned for the BUSY latency), or by software as
required for the calibration.

[81 Handle parity or synchronisation errors in the data and issue the appropriate signals.

As shown in Figure 1 the basic design, for the PU contains three major components:
» the serial to parallel converter (S2P) which reads and checks the input FEB data and sends
them to the DSP,

» the DSP chip with it's local memory (internal and/or external), connected to the input/output
FIFOs,

» the VME interface through which all the control of the board is done. It is also used to send
monitoring or debugging information or histograms to the local CPU (via the VME interface on
the motherboard).

19

The exact implementation of these depends on the choice of the DSP and the way the data are
treated. The RODDemo motherboard design has clear and rather general interfaces with the PU
thus allowing maximum flexibility for the developers. In the following paragraphs some basic
functions for the PU are presented in order to have some degree of uniformity.

3.2 Ermor handling

There are basically two types of errors in the ROD board:

» Errors in the data flow: either in the data format or synchronisation errors
» Hardware or software errors of the board: corrupted memory or program, etc...

The PU should be able to handle both types of errors. As a general rule, for any error an interrupt
followed with a status word describing the error should be generated. In addition, dataflow errors
should be properly flagged in the data using specific bits as foreseen in the data format. The local
ROD CPU will take the interrupt and trigger the corresponding actions.

3.2.1 Data flow errors

Parity Check

At the input stage the parity of each data word should be checked. If an error is found, then bit 15
(MSB) of the word should be set to 1 (hormally set to 0 from the FEB). A total count of the parity
errors of the event should be made and if non-zero, a flag should be set.

Given that the parity errors in the experiment should be rather small as a first step it's suggested
that no analysis is made for those events, but an empty output event is send to the output. As a
second step the parity errors in the control words and in the data can be separated thus recovering
some of the events.

A monitoring of the parity errors should be made (see section bellow).

Synchronisation

The data flow in the PU follows two general guidelines/constraints:

 The TTC information received is the reference. For each TTC trigger information that the
PU receives it has to output an event fragment either complete or just the header in the case of
errors.

« The TTC information for an event arrives before the FEB data: It is expected that the path
TTC - FEB - ROD will take 1ms more than the TTC > ROD®.

These two guidelines are followed in the board design.

Each PU receives data from one FEB link as well as the TTC information. There are several
possible error conditions that can cause synchronisation loss in this case:

» the FEB board has missed a trigger, therefore no data will be available,

» the ROD has received a fake trigger,

. due to parity errors in the links, the beginning of the event word is missed or the BCID word
in either the FEB data or the TTC data is corrupted.

As general rule the PU board will take the TTC information that it receives as reference and will try
to match it with the incoming FEB data by comparing the BCID numbers. In the case where the

® This is most probably correct, but depends on the actual location of the ROD crates. In any case it can be made as such by
adjusting the cables or delays.

20

comparison fails, the data should be properly flagged, an interrupt in the local CPU should be made
to indicate the type of error, but the dataflow should continue. It's up to the design of the PU if such
data will be analysed but in any case an event should be produced in the output.

Since there is not a simple way to recover from synchronisation errors, it is foreseen that a periodic
(or on request) reset will be available in ATLAS to avoid loosing too many data. This reset signal

will clear all the buffers in the FEB system as well as the TTC FIFO’s in the PU. The PU design
should be able to receive this and perform the appropriate actions.

3.2.2 Hardware errors
If hardware or software errors in the PU are identified, an interrupt should be generated followed

with the appropriate status to the local CPU. The exact type of errors depends on the design of the
PU.

3.3 Histograms - Data monitor

To monitor the data flow in the PU some histograms should be booked and filled. A proposed list is
shown bellow:

100% of the events

» Parity errors per event: 3 bins (1,2, >2) x 32-bits = 12 Bytes
(BER of 10™ in the link corresponds to 1 error per 156Mevents, or ~0.5 hour)
e Gain of each channel: 2 bins (med, low) x 16-bits x 64 channels = 256 Bytes
(with 10% of the channels in medium gain, the histogram will be filled every ~6 s)

~1% of the events

» Baseline monitoring (high gain): 128 bins x 16-bits x 64 channels = 16 KB
(atleast 65 s to be filled in one word)

Channel activity histograms

Presumably there will be two thresholds for the energy and time calculation. One where the energy
and coarse time are calculated and one where precise time and quality of fit are calculated. In each
case the following histograms should be filled:

Above first threshold (10% of the channels)

» Proportion: 1 bin x 16-bits x 64 channels = 128 Bytes
» Baseline monitoring: 128 bins x 16-bits x 64 channels = 16 KB
* Amplitude, time calculation: 2 x 128 bins x 16-bits x 64 channels = 32 KB

Above second threshold (1% of the channels)

» Proportion: 1 bin x 16-bits x 64 channels = 128 Bytes

» Baseline monitoring: 128 bins x 16-bits x 64 channels = 16 KB

* Amplitude, time, quality of fit: 3 x 128 bins x 16-bits x 64 channels = 48 KB

In the worse case the histograms can be read every ~65s before being in overflow.

In summary, for this basic set a total memory of ~129 KB is required for the histograms which can

be emptied with a frequency of 0.2 Hz. Assuming an VME bus bandwidth of 10 MB, the read cycle
will require ~13ms.

21

3.4 PU design
There are currently undergoing two separate designs for the PU, one based on the Analog Devices

SHARC DSP and one with the Texas Instruments C6x DSP family. Details of their designs will be
available in separate documents and in the Largon web pages.

4 The Data Format

4.1 Input Data format

The data from the FEB link are organised per ADC (there are 16 ADCs per FEB board) in 16-bit
words[6]. For the default case where 5 samples are read per channel, 50 words are sent per event
per ADC.

For more details please refer to [6].

4.2 Output Data Format

For the output there are two formats that need to be defined:

» The Intermediate Data Format at the output of each PU.

e The ROD Data Format for the data send to the ROB.

4.2.1 Intermediate data format — PU event fragment

Each PU formats the data into four 32-bit word blocks as sown bellow, framed with one header
word which contains the total size of the event* and an end of event marker word which has a fixed
value OXOEOE.

Total number of words in the event (=sum of all blocks)
Block #0 Control and status word (fixed length)
Block #1 Energy sums (fixed length)
Block #2 Energy per channel (fixed length)
Block #3 Time and quality of fit information (variable length)
Block #4 Raw data (variable length)
Block #5 RADD words (variable length)

End of event marker (0XOO000EOE)

Table 11 Intermediate (PU — MB) ROD event data format.
In the following a detailed description of each data block is given.
In case of errors it is sufficient that the PU sends only the first block with the appropriate flags.

Fixed block #0

It contains the header and control word information and will be present in all the events.

31 15
1 No words in block #0 No words in block #1
2 No words in block #2 No words in block #3
No words in block #4 No words in block #5

“ Only the data words should be counted, without including the trailer OXEOE word.

22

4 Mask | FEB Number TTC_BCID

5 CTL3 (ADC 2) CTL3 (ADC1)

6 CTL3 (ADC 4) CTL3 (ADC3)

7 CTL3 (ADC 6) CTL3 (ADC 5)

8 CTL3 (ADC 8) CTL3 (ADC 7)

9 | Control Bits (ADC 4) | Control Bits (ADC 3) Control Bits (ADC 2) Control Bits (ADC 1)
10 | Control Bits (ADC 8) | Control Bits (ADC 7) Control Bits (ADC 6) Control Bits (ADC 5)
11 Status Flags Number of channels
12 Extra info in block #3
13 Extra info in block #3
13 Extra info in block #4
15 Extra info in block #4

Note:

e The Mask bit field indicates which of the ADCs for the PU are masked from the readout.
¢ The Control Bits words correspond to bits 7-11 in the CTRL1 word at the input data.
¢ The meaning of the StatusFlags bit-field needs to be defined.

e Setting a bit to 1 in the words 12-15, indicates that additional information for that channel in the
specified block is provided.

Fixed block #1

It contains the energy sum information, present for all the events

31

Energy sum 1

Energy sum 2

Energy sum 3

Energy sum 4

a b~ W N P

Energy sum 5

Fixed block #2

It contains the energy information, and will be present for all the events.

31

Energy Channel 1

Energy Channel 2

64 Energy Channel 64

Note:

¢ The energy for each channel will be a 32-bit IEEE floating point word.

Variable block #3

It contains the time and quality of fit information, and will be present only in the case there are
channels with energy above threshold.

31 15 9

23

Time Channel 1 Sflag 1 Fit Channel 1
Time Channel 2 Sflag 2 Fit Channel 2
63 Time Channel 63 Sflag 63 Fit Channel 63
64 Time Channel 64 Sflag 64 Fit Channel 64

Note:

¢ The maximum total length of this block is 64.

« The time here is a 16 bit signed integer with LSB corresponding to 5ps. This gives a range of
+160ns, which is much more than needed.

« The fit will be a 9-bit integer (always positive).

e The flag bits are described below:

Bit0 the energy is over threshold for this channel
Bit 1 the fit is out of range

Bit 2 the baseline is out of range

Bit3-4 the gain of the channel

Bit5 reserved

Variable block #4

31 15
1 Channel 1 Sample 2 Channel 1 Sample 1
2 Channel 1 Sample 4 Channel 1 Sample 3
3 XXOOOKKKXXX Channel 1 Sample 5
4 Channel 2 Sample 2 Channel 2 Sample 1
5 Channel 2 Sample 4 Channel 2 Sample 3
6 XXOOOKKKKXXX Channel 2 Sample 5
190 Channel 64 Sample 2 Channel 64 Sample 1
191 Channel 64 Sample 4 Channel 64 Sample 3
192 XXOOKXIIOKRKIHKHXXXXX Channel 64 Sample 5

Note:

¢ The maximum length of this block is 192 words in the case of 5 samples.

Fixed block #5

31 16
1 RADD (ADC 1. Sampl 2) RADD(ADC 1 Sampl 1)
2 RADD (ADC 1. Sampl 4) RADD(ADC 1 Sampl 3)
3 RADD (ADC 2. Sampl 1) RADD(ADC 1 Sampl 5)
4 RADD (ADC 2. Sampl 3) RADD(ADC 2 Sampl 2)
5 RADD (ADC 2. Sampl 5) RADD(ADC 2 Sampl 4)
6 RADD (ADC 3. Sampl 2) RADD(ADC 3 Sampl 1)
7 RADD (ADC 3. Sampl 4) RADD(ADC 3 Sampl 3)
8 RADD (ADC 4. Sampl 1) RADD(ADC 3 Sampl 5)
9 RADD (ADC 4. Sampl 3) RADD(ADC 4 Sampl 2)
10 RADD (ADC 4. Sampl 5) RADD(ADC 4 Sampl 4)
11 RADD (ADC 5. Sampl 2) RADD(ADC 5 Sampl 1)
12 RADD (ADC 5. Sampl 4) RADD(ADC 5 Sampl 3)
13 RADD (ADC 6. Sampl 1) RADD(ADC 5 Sampl 5)
14 RADD (ADC 6. Sampl 3) RADD(ADC 6 Sampl 2)

24

15
16
17
18
19
20

RADD (ADC 6. Sampl 5)

RADD(ADC 6 Sampl 4)

RADD (ADC 7. Sampl 2)

RADD(ADC 7 Sampl 1)

RADD (ADC 7. Sampl 4)

RADD(ADC 7 Sampl 3)

RADD (ADC 8. Sampl 1)

RADD(ADC 7 Sampl 5)

RADD (ADC 8. Sampl 3)

RADD(ADC 8 Sampl 2)

RADD (ADC 8. Sampl 5)

RADD(ADC 8 Sampl 4)

In the table below the size of the different data blocks in the PU event fragment.

Block Detector Block Length Maximum Size Typical Size

- Header - 1 1
#0 Control Words Fixed 15 15
#1 Energy sums Fixed 5 5
#2 Energy Fixed 64 64
#3 Time, Status & Quiality of Fit Variable 64 7
#4 Raw Data Information Variable 192 3
#5 Read Addresses Variable 20 0

- End of event marker - 1 1

Total 362(360) 96(94)

Table 12 The maximum and typical event size of the Intermediate Data Format for one PU in units of 32-bit words.
Note:

The typical size is calculated assuming that ~10% of the channels have energy above threshold for
which the precise time needs to be calculated, ~1% of the channels have high energy for which the
raw data need to be available, and no RADD words are send. The header and end of event marker
words won't be transmitted in the output

4.2.2 ROD event fragment format

The output controller has to construct complete event fragments, according to the ATLAS DAQ/EF
Prototype —1, event format [7]:

w
N

31

Beginning of fragment (0x00000BOF)
Start of header marker (OXEEEEEEEE)
Header size (0x08)

Format version number

Source Identifier
Level 11D
Bunch crossing ID
Level 1 Trigger Type
Detector Event Type

PU Mask Detector Format VVersion Number
Fixed Block #0
Fixed Block #1
Fixed Block #2

Variable Block #3
Variable Block #4
Variable Block #5
Fixed Block #0
Fixed Block #1
Fixed Block #2
Variable Block #3

Header

0 a

Status word No of PU

Processing Unit 1

Processing Unit 2

[N N N N N R G G L e e e T T N o)

25

Variable Block #4
Variable Block #5
Fixed Block #0
Fixed Block #1
Fixed Block #2
Variable Block #3
Variable Block #4
Variable Block #5
Fixed Block #0
Fixed Block #1
Fixed Block #2
Variable Block #3
Variable Block #4
Variable Block #5
Status flag from Output Controller
Number of Status Elements

Processing Unit 3

Processing Unit 4

Status Word

Number of Data Elements

Trailer

Status Block Position
End of Fragment (OXOEOF)

OlRr|lkrlRPlIFPIRPIRPRIRPIPIPIPIPIFP[IRP|RP|FP|FP|FP|F

Note:

e The Format Version number is a 32-bit integer number loaded by VME at configuration time. It
defines the version of the ROD data fragment header NOT the format version of the detector
data.

¢ The Source Identifier is the word that defines the fragment. It is sub-divided as sown below:

32 24 16 8
1/0 Module Id I/0O Module Type |ROC Id Sub-Detector Id |
\j i EM Barrel 0x40
l EMEC Left 0x41
Implementation dependent | EMEC Right 0x42
EMFWD Left 0x43
EMFWD Right 0x44
HEC Left 0x51
HEC Right 0x52

The exact implementation of these words will depend on the detector readout organisation.

e« The Level 1 ID, Bunch Crossing ID, Level 1 Trigger Type are delivered by the TTC system.

* The Detector Event Type this is a sub-detector specific event type flag. It will be send by VME
at configuration time.

¢ NoPU indicates the number of PU present in the data.

* PU Mask is the 8-bit pattern with defines which of the PU of the ROD board is read out. The
Pus are numbered from 1 to N with #1 the one on the top of the ROD board.

* Detector Format Version Number indicates the format version for the detector data block.

= Number of status elements, which gives the total length of the detector status block.

= Number of data elements, which gives the sum of the detector blocks #1 to #5.

m Status block position, which is set to 0, to indicate that the status block precedes the data, as it
is in this case.

26

m The Status flag from Output Controller is used to mark events where the data from the PU are
not read correctly. For example when there is a mismatch between the number of words to
read from a PU and the end of event marker.

Event Fragment Block Length Maximum Typical
Fragment Header - 8 8
Status word - 1 1
Detector Block #0 (control) Fixed 60 (4x 15) 60 (4% 15)
Detector Block #1 Fixed 20 (4x 5) 20 (4x 5)
Detector Block #2 Variable 256 (4% 64) 256 (4% 64)
Detector Block #3 Variable 256 (4% 64) 28 (4x7)
Detector Block #4 Variable 768 (4% 192) 12 (4x 3)
Detector Block #5 Variable 80 (4% 20) 0 (4% 0)
Status word - 1 1
Trailer - 3 3
Total 1453 389

Table 13 The ROD Event Fragment size in units of 32-bit words.
4.3 Calibration Data Format
In the case of calibration events the ROD board will do the first step in the data analysis and then
send the results in the local CPU for further treatment. In this case, each PU will have to send the

mean, rms and number of events read for each channel for each step in the calibration processS.

In this case the proposed format per PU is shown in Table 14.

32 15
0 | No of events ‘ No Step Status Flags PU ID
1 | Sum E Channel 1 Sample 1 Sum E® Channel 1 Sample 1
2 | Sum E Channel 1 Sample 2 Sum E® Channel 1 Sample 2
3 | Sum E Channel 1 Sample 3 Sum E? Channel 1 Sample 3
4 | Sum E Channel 1 Sample 4 Sum E? Channel 1 Sample 4
5 | Sum E Channel 1 Sample 5 Sum E? Channel 1 Sample 5
6 | Sum E Channel 2 Sample 1 Sum E? Channel 2 Sample 1
7 | Sum E Channel 2 Sample 2 Sum E? Channel 2 Sample 2
8 | Sum E Channel 2 Sample 3 Sum E? Channel 2 Sample 3
9 | Sum E Channel 2 Sample 4 Sum E® Channel 2 Sample 4
10 | Sum E Channel 2 Sample 5 Sum E® Channel 2 Sample 5
316 | Sum E Channel 64 Sample 1 | Sum E® Channel 64 Sample 1
317 | Sum E Channel 64 Sample 2 | Sum E® Channel 64 Sample 2
318 | Sum E Channel 64 Sample 3 | Sum E? Channel 64 Sample 3
319 | Sum E Channel 64 Sample 4 | Sum E? Channel 64 Sample 4
320 | Sum E Channel 64 Sample 5 | Sum E? Channel 64 Sample 5

Table 14 The PU event fragment for the calibration events.

In this case the Output controller will read the data from each PU and send them via the VME
interface into the local CPU.

The event fragment size per PU in the case of 5 samples will be 321 32-bit words corresponding to
1.25 KB. Assuming a VME bus speed of 10 MB/s this will require 0.1ms, which is sufficient.

® A "step" is defined with a set of parameters, which are loaded in the calibration board. The ROD will know at boot time how
many events are expected per step and should calculate the mean and rms of the channels for this number of events.

27

5 Pinout Allocation
5.1 Motherboard Connectors

5.1.1 VME interface (connector P1)

raw z a b [d
1 MPR(* D00 BBSY*(*) D08 VPC(@) (*
) o1 sty e NG
3 D02 ACFAIL*(¥) D10 +V1
4 D03 BGOIN*(*) D11 +V2
5 D04 BGOOUT*(*) D12 RsvU(*)
6 D05 BG1IN*(*) D13 V1
7 D06 BG1OUT*() D14 V2
8 D07 BG2IN*(*) D15 RsvU()
o BG20UT() | GND.__ | GAPY)
10 BG3IN'(Y) SYSFAIL*() GAO*
1 BG30UT*(*) BERR* GAL*
12 DS1* BRO*(*) SYSRESET* +33V
13 DSO* BRL*(*) LWORD* GA2*
14 WRITE* BR2*(%) AM5 +3,3V
15 BR3*(*) A23 GA3*
16 AMO A22 +33V
17 AM1 A21 GA4*
18 AS* AM2 A20 +3,3V
19 AM3 Al9 RsvBus(*)
20 IACK* A18 +3,3V
21 IACKIN* SERA() AL7 RsvBUS(*)
22 IACKOUT* SERB(* Al6 +3,3V
24 AO7 IRQ7*(") Al4 +33v
25 A06 IRQ6* A13 RsvBus(*)
26 A05 IRQ5* Al2 +3,3V
27 AO4 IRQ4* Al1 LUI(Y)
28 A03 IRQ3* A10 +3,3V
29 AO2 IRQ2* A09 LIO*()
30 A01 IRQ1* A08 +3,3V
31 12v() +5VSTDBY() +12v() !
32 +5V +5V +5V VPC(1) (*)

The pins marked with (1) are MFBL (mate-first-break-last) pins. Pins marked with (*) are not

connected in the motherboard.

5.1.2 Input links (connector P2)

FEBL D7

row z a b c d
FEB1 D3 FEB1 D2 FEB1 D1 FEB1 DO
FEB1 D5 FEB1 D4

28

RETRY* FEB1_D6
FEB1_D10 A24 FEB1_D9 FEB1_D8
FEB1 D13 A25 FEB1 D12 FEB1 D11
| FEBL D17 A26 FEB1 D16 FEB1 D15
FEB1_D20 FEB1 D19 A27 FEB1_D18

8 FEBL D23 A28 FEBL D22 FEBL D21
9 A29 FEBL D24 !
10 FEBL D28 A30 FEBL D27 FEBL D26
11 FEBL D31 A3L FEBL D30 FEBL D29
12 FLAGL INT FLAGL(4)
13 +5V(*) FLAG1(0) FLAGL(5)
14 GOODL_DATA D16 FLAGL(1) #RSTL RXBR
15 RSTL TXGLA D17 FLAGL(2)
16 | RSTL TXGLB D18 FLAGL(3)
17 FEB2 D2 D19 FEB2 D1 FEB2 DO
18 | FEB2 D5 D20 FEB2 D4
19 D21 FEB2 D6
20 | FEB2 D10 D22 FEB2 D9 FEB2 D8
21 FEB2 D13 D23 FEB2 D12 FEB2 D11
2 FEB2 D17 FEB2 D16 FEB2 D15
23 FEB2_ D19 D24 FEB2 D18
24 FEB2 D23 D25 FEB2 D22 FEB2 D21
25 D26 FEB2 D24
26 FEB2 D28 D27 FEB2 D27 FEB2 D26
27 FEB2 D31 D28 FEB2 D30 FEB2 D29
28 | FLAG2 INT D29 FLAG2(4)
29 D30 FLAG2(0) FLAG2(5)
30 | GooD2 DATA D31 FLAG2(1) #RSTL RXBR
RST2_TXGLA FLAG2(2)
2 | RST2 TXGLB +5V(") FLAG2(3) VPC() (%)

Note that data pins in row b are not available on the transition module, but the +5V and GND pins

are.

The pins marked with (#) are output towards the transition module.

The pins marked with (*) are not connected in the motherboard.

5.1.3 Output Links (connector P3)

g
N

d

@0

+5V(*

2 £3

@0

| TcPus |

@0

@0

@0

2 £3

@0

@0

. o

@0

@0

@0

@0

© |0 |N O |0 W IN|F

[any
o

@0

e

=

2 %

@0

@0

@0

@0
@0
2 %

@0

[EN
[N

@0 @0

2 £3

= e
w N

[uy
S

20

@0

@0
@0
@0

=
a1

=
()

[
~

N (2 e
o |© |

. ew

@ () BUSY3 @0
@ () BUSY4 @0
@ () BUSY5 @0
uD2 BUSY6 uD1
uD5 BUSY7

BUSY8
uD10 BUSY9

29

21 uD14 uUD13 BUSY10 UD12 uD11
22 GND uD17 GND uD16 uD15
23 UD20 uD19 BUSY11 GND uD18
24 GND uD23 BUSY12 uD22 uD21
25 UD25 GND BUSY13 uD24 GND
26 GND uD28 BUSY14 uD27 UD26
27 UCTRL# uD31 BUSY15 UD30 uD29
28 GND UWEN# BUSY16 GND UDWO
29 UCLK GND BUSY17 UDW1 UTEST#
30 GND LDOWN# BUSY18 LFF# URESET#
31 LRL1 NC (3) (%) GND LRLO GND
32 GND LRL3 +5V(%) LRL2 VPC(*)

Note: This assumes that we use a P2 type backplane will be used the P3 position. In this case, raw
b will be used to send the TTC signals and the BUSY. For each ROD module the BUSY will be
assigned a particular pin according to its geographical address.

(2) Reserved for an additional input or output link. Are not connected normally.

(3) NC: do not connect.

Pins marked with (*) are not connected in the motherboard.

5.2 Mezzanine Board Connectors

The list of signals between the motherboard and the PU is show in Table 15.

Line Name No of pins
Input data
Data FEB_Data 16
Clock FEB_Clk 1
Link Error status FEB_LnkSt 1
Link reset FEB_LnkRst 1
Total 19
TTC Information
Clock TTC_Clock 1
Data (BCID, Trigger Type) TTC_Data 8
Write for BCID TTC_BCIDWr 1
Write for Trigger Type TTC_TtypeWr 1
Reset TTC_Rstn 1
Total 12
PU Control
Data PU_Data 8
Register address PU_IVAddr 5
Read/Write PU_RdWr 1
Data strobe PU_Dsn 1
PU ready PU_Rdy 1
PU reset PU_Rstn 1
PU chip select PU_Csn 1
Total 18
Miscellaneous
BUSY BUSY 1
Interrupt request 1 PU_Irgl 1
Interrupt request 2 PU_Irg2 1
Total 3
Output
Data FIFO Data 32

30

Read enable FIFO_Rdenn 1
Clock FIFO_RdClk 1
Output enable FIFO_Oen 1
Event ready FIFO_EvtRdy 1
Event end OC_EvtEnd 1
Total 37
JTAG
Test data input TDI 1
Test data output TDO 1
Test clock TCK 1
Test mode select TMS 1
Test reset TRST 1
Total 5
Reserved for test purposes 16
Total number of signal pins 110
Power
Ground GND 40
+3.3 V (regulated from 48V) +3.3V 18
Total 58
Total number of pins 168

Table 15 List of signals between the motherboard and the PU.

The signals are transferred in the PU through two 84-pin connectors. The pinout allocation is shown
bellow. Pin #1 corresponds to the top left pin of the connector in the motherboard.

Connector A (left side)

21 PU Irgl

PU Irg2
TCK(®) +3.3V
TDO(*) BUSY

31

61

81

. ew

FEB D6

FEB_D9

FEB D10 70

FEB_D12

FEB D11

FEB_D13

FEB D14

+3.3V

+3.3V
FEB_LnkSt

FEB_LnkRst

| FBOk

FEB D15

(*) For the first version of the demonstrator, the JTAG pins are not connected.

Connector B (right side)
1 +3.3V PU_Dsn 2
PU_Rdwr +3.3V
. ow PU_DO
PU D1 PU D2
PU D3 PU D4 10
11 &_T
PU D6
PU_Rdy PU D7
PU_Rstn PU Csn
PU_IvAdr0 . ew o
21 PU_IvAddrl PU_IvAddr2 22
PU_IVAddr3 PU_IvAddr4
+33V OC_EvtEnd
FIFO_RdCIk -
+3.3V FIFO_EvtRdy 30
31 FIFO Rdenn FIFO D31
| FIFO_D30
133V
FIFO_D28
FIFO_D27 40
41 FIFO_D25
FIFO_D23
FIFO_D22
FIFO_D20 50
51 FIFO D19 +3.3V
+3.3V FIFO D18
FIFO D16 FIFO D17

61

71

FIFO_D15

FIFO_D13

FIFO_D12

FIFO D11
FIFO_D9

FIFO_D10

FIFO_D8 70

FIFO_D7

FIFO_D6

FIFO_D4

32

FIFO D5

- ew] FIFO_D3

FIFO_D1 FIFO_D2 80
81 +3.3V FIFO_DO
FIFO_Oen +3.3V 84

5.3 TTCrx mezzanine connectors

The list of signals between the motherboard and the TTCrx mezzanine board are listed bellow. The

connectors are as seen from the top of the motherboard.

Connector A
2 EVTCNTLSTR EVCNTHSTR 1
BCNTSTR
BCNT<1> BCNT<0>
BCNT<3> BCNT<2>
10 9
BCNT<5> BCNT<4>
BCNT<7> BCNT<6>
BCNT<9> BCNT<8>
BCNT<11> BCNT<10>
20 19
DOUT<1> DOUTSTR
DOUT<3> DOUT<0>
DOUT<5> DOUT<2>
DOUT<7> DOUT<4>
30 SDA DOUT<6> 29
SCL VDD
VDD
. ew | ciockopest |
VDD
40 VDD BCNTRES 39
L1ACCEPT EVCNTRES
SUBADDR<0> SUBADDR<2>
SUBADDR<1> SUBADDR<4>
50 SUBADDR<3> SUBADDR<6> 49
SUBADDR<5>
BRCSTSTR1
SUBADDR<7> BRCST<2>
BRCST<3> BRCST<4>
60 BRCST<5> BRCST<6> 59
P
TTCREADY
RESET B(*) DBERRSTR
SINERRSTR JTAGTDI
70 JTAGTDO JTAGMS 69
72 JTAGCK JTAGRST_B(*) 71

(*)RESET_B and JTAGRST _B are active low signals.

Connector B

. ow

33

GND
GND

TTC_MINUS
GND 9

10

6 VME interface

Addressing schema for the motherboard components

The VME addresses for the motherboard components are shown bellow. The R\W direction is with
respect to the crate CPU: R=the CPU reads, W=the CPU writes the command/data.

Address ‘ RW ‘ Function VME Data

Component: Local (VMEADD: bit <21>=1, bit<6:2>=Address)

0 R Status <3:.0> PU ready signal
1 W Reset
3 W/R | Configure <0> 1=VME simulates TTC and FEB data, 0=
<1> TTC Information from: 1=front panel, 0=TTCrx
Component: MISC (VMEADD: bit <20>=1, bit<6:2>=Address)
0 R Status
1 W/R | Enable <0> BUSY: 1=enabled, O=dissabled
<1> Interrupts: 1=enabled, O=dissabled
2 R FEB Link status
XXXX W/R | Interrupt module x ID <31.0> ID
XXXX W/R | Mask interrupt x <11> status: O=masked, 1=active
<10:8> value of bits <1:7> in binary
<7> 1=connected to VME interrupt 7, 0=masked
<6> 1=connected to VME interrupt 6, 0=masked
<5> 1=connected to VME interrupt 5, 0=masked
<4> 1=connected to VME interrupt 4, 0=masked
<3> 1=connected to VME interrupt 3, 0=masked
<2> 1=connected to VME interrupt 2, 0=masked
<1> 1=connected to VME interrupt 1, 0=masked

Component: TTC Controller (VMEADD: bit <19>=1, bit<6:2>=Address)

0 R Status
1 W Clear Status
2 W Event ID Write <23:0> value
3 W BCID Write <11:0> value
4 W Ttype Write <7.0> value
Component: Output Controller (VMEADD: bit <18>=1, bit<6:2>=Address)
0 R Status
1 W Reset
2 W/R | Configure
4 w Format Version No <15:0> value
8 W Source identifier
10 W Detector event type
12 W Detector format version No
Component: RAM (VMEADD: bit <18:15>=1001, bit<14:7>=RAM address, bit<6:2>=Address)
0 R ‘ Read RAM ‘ <31:0> RAM memory value

Component: Data Distributer (VMEADD: bit <17>=1, bit<6:2>=Address)

0

R | VME datatoPU | <310

data value: <31:16> to PU #2,4 and <15:0>to PU 1,3

7 Upgrade Path

There are several points that need to be further looked at before the final ROD boards are made,
but it will depend on the performance of the first prototypes.

Acronyms
BCID Bunch Counter Identification
DSP Digital Signal Processor
FEB Front-End Board
ocC Output Controller
PU DSP Processing Unit
ROB Readout Buffer
ROD Readout Driver
TTC Trigger Timing Control
TBM Trigger BUSY Module
References

[11 The ATLAS Liquid Argon Calorimeter Technical Design Report
(http:/Ammww.cern.ch/Atlas/GROUPS/LIQARGON/TDRY/)

[2] A 9U Transition Module for the ROD Demonstrator
(http:/iww.particle.kth.se/~stefan/ROD_TM)

[31 The TTCrx Reference Manual
(http:/imww.cern.ch/Atlas/:GROUPS/FRONTEND/Ttc1.htm)

[4]1 The Output Controller for the ROD Demonstrator board.
(http://atlasinfo.cern.ch/Atlas/GROUPS/LIQARGON/ROD/docs/OutputController_v1.0.doc)

[5]1 The S-link interface for the ROD-ROB links in ATLAS.
(http:/iww.cern.ch/HSI/s-link/)

[6] Format for the Data read out from the front-end boards, Note ATL-LAL-ES-1.0.
(http://Amww.phys.ualberta.ca/~electronics/DataFormat/index.html)

[71 The event format in the ATLAS DAQ/EF Prototype -1, ATL-DAQ-98-129

35

