ATLAS Internal Note
ATL-D-ES-0004
Version 1.5

17 June 2002

VMEDbus Application Program Interface

Authors : R. Spiwoks, M. Joos, C. Parkman, J. Petersen

comments and queries to Ralf Spiwoks, CERN
+41 22 767 3871
Ralf.Spiwoks@cern.ch

Abstract

This note defines an application program interface (API) for the use of VMEbus in the Read-Out
Driver (ROD) system. The API will be used in the ROD Crate DAQ in order to communicate with
the ROD(s) and other equipment in the ROD crate which is also to be controlled. The API con-
tains functions related to the use of the VMEbus master mapping, the VMEbus errors, the VME-
bus slave mapping, the VM Ebus block transfers and the VMEbus interrupts.

Table of Contents

1 Introduction

1.1 Description of the API

1.2 Design Issues

1.3 Implementation Issues

1.4 Organization of this Document

2 Application Program Interface

2.1 Overview

2.2 Type Definitions

2.3 Functions for Return Codes

2.4 General Functions

2.5 VMEbus CR/CSR Access

2.6 VMEbus Master Mapping and Single Cycles
2.7 VMEDbus Error Handler

2.8 VMEDbus Slave Mapping

2.9 VMEDbus Block Transfers

2.10 VMEDbus Interrupts

3 Programming Examples

3.1 Example 1: Functions for Return Codes

3.2 Example 2: CR/CSR Space

3.3 Example 3: Master Mapping - Safe Access

3.4 Example 4: Master Mapping - Fast Access

3.5 Example 5: Master Mapping - Bus Error Handler
3.6 Example 6: Slave Mapping

3.7 Example 7: Block Transfer - Detailed Functions
3.8 Example 8: Block Transfer - Integrated Function
3.9 Example 9: Interrupts - Synchronous Method
3.10 Example 10: Interrupts - Asynchronous Method
3.11 Example 11: Interrupts - Generate Interrupts

4 VMEDbus Utility Programs
4.1 VMEbus Configuration Utility
4.2 VMEbus Test and Debug Utility
4.3 VMEbus Scanning Facility

5 Ideas for a C++ Binding

5.1 Types

5.2 VMEDbus library/driver
5.3 VMEbus Master Mapping
5.4 VMEDbus Slave Mapping
5.5 VMEDbus Block Transfer
5.6 VMEDbus Interrupts

O© 9 0 i AW W W

AW NN = ===
DN A O N 3 W WO

MU S e e e N e N Y, BV Y | |
AN O O O W = O o 1

=2 9 9
WL L L N

|
=)

O OO0 OO0 OO0 N
W N = O 0

1 Introduction

1.1 Description of the API

This note defines an application program interface (API) for the use of VMEDbus in the Read-
Out Driver (ROD) system. The APl will be used in the ROD Crate DAQ (see EDMS note
ATL-D-ES-0007) in order to communicate with the ROD(s) and other equipment in the ROD
crate which is also to be controlled.

The API contains functions related to the following uses of the VMEbus:
* master mappings and single cycles;
* buserror handling;
» slave mappings,

block transfers;

* interrupts.

The API further contains type definitions, functions to handle the return codes and general
functions for the use of the VMEbus.

The API assumes the presence of an operating system and of high-level language compilers on
the ROD Crate Processor.

1.2 Design Issues

A few notes on the design guidelines of the API:
1. Simplicity and uniformity
- The API was designed to be as simple as possible and only be as complicated as neces-
sary.
- The API provides general -purpose services to the application program.
- The API hides all differences of different hardware platforms. The functions of the API
are the same on all different platforms. The return codes can, however, be different.
2. Names
- The API uses readable and meaningful names for all of its functions, as well as the com-
mon prefix “VME_”.
3. ldentifiers

- The API usesidentifiers of type“int” for the following complex entities: master mapping,
slave mapping, block transfers and interrupts.

- There is one function for each type of entity which creates the corresponding entity and
returns the identifier.

- Theidentifier isto be used in subsequent function calls for this type of entity.

4. Return codes
- All functions of the API return an unambiguous return code.

- Thereturn codeisequal to O if the function has terminated without error. The return code
isdifferent from O in case the function terminated with an error.

- The return code is of a type compatible with “unsigned int”. It can be a complex data
type, if the VMEbus API isimplemented with libraries which use a complex type for the
return code.

- Thereturn code can betrandated into aflat “int” type (alaUNIX errno.h) for comparison
with meaningful symbols.

- A textua representation of the return code can be printed to “stdout” or to a string by the
application program.
5. Known limitations

- No Read-Modify-Write functions are defined in the API. Those can be added later if
needed.

- Each VMEDbus vector can only be used by one process.

- No functions are defined in the API to notify the application program of VMEbus fail-
ures, e.g. signalled by SY SFAIL or ACFAIL. Those can be added later if needed.

1.3 Implementation | ssues

The following issues are related to the implementation of the API:

1. Layered implementation

The implementation of the APl can use low-level libraries and/or system-level drivers if
necessary. The number of different libraries or drivers and the dependencies on other exter-
nal libraries shall, however, be minimised.

2. Utility programs

The implementation of the API can be accompanied by a utility program which is used to
configure the VM Ebus statically and by a utility program which allows to test and debug the
VMEDbus, see Section 4.

3. System-level services

The implementation of the API shall encapsulate all resource management related to the
VMEbus bridge, the DMA engine(s), the VMEbus error handling and the VM Ebus interrupt
handling. The application program shall not deal with those issues explicitly. All resources
shall either be allocated statically using the VMEbus configuration utility or dynamically
using the various functions of the API.

4. Bus error handling

The implementation of the API shall encapsulate, in particular, the VMEbus error handling.
At the level of single-word read and write access, the user shall have the choice to check the
bus error status or to ignoreit. In the latter case, a signal can be sent to the application pro-
gram to handle the bus error. Separate functions shall be provided for those cases. At the
level of VMEbus CR/CSR access and block transfers the bus error handling shall always be
included (see Sections 2.5 and 2.9).

5. Blocking functions

The API’s blocking functions, e.g. waiting for the end of a VMEbus block transfer or for a
VMEbus interrupt shall be implemented in an efficient way. The response time between the
external VMEDbus event and the return of the function in the application program shall be
minimised.

6. Interrupts

Since it is not known if the VMEbus interrupters in a system are of type Release-On-
Acknowledge (ROAK) or Release-On-Register-Access (RORA), the implementation of the
APl shall associate VMEDbus interrupt levels exclusively to either of the two types. When a
VMEbus interrupt from alevel associated to ROAK interruptersisreceived the implementa-
tion does not alter the state of the level. When aa VMEbus interrupt from alevel associated
to RORA interruptersis received, the implementation disables that level. The level must be
re-enabled by the application program using a function of the API. It is supposed that the
association of levels to interrupter types can statically be modified using the VM Ebus con-
figuration utility, see Section 4.1. The same utility will also be used to statically activate the
interrupt levels.

7. Multi-processing and multi-threading
The implementation of the API shall alow for several application programs and multiple
threads within the same application program to use all functions of the APl concurrently.
This might require the implementation of one or more drivers for al or parts of the AP!I.

8. Logging
The implementation of the API shall log serious errors with a central logging facility, e.g. a
global file or kernel messages. The implementation of the API shall also log events of the
VMEbus of general interest with the logging facility.

9. Language binding
C was chosen for the language binding of the APl as presented in Sections 2 and 3. Some
ideas on a possible C++ language binding or wrapping are presented in Section 5.

10.Data types

For passing data in and out of a VMEbus master mapping using single cycles, separate
functions are proposed for the following types, included from types.h (BSD), see
Section 2.6:

- “unsigned int” or “u_int” (32 hit),
- “unsigned short” or “u_short” (16 bit) and
- “unsigned char” or “u_char” (8 hit).

The user knows the types of values and defines them in the application program. The com-
piler shall be used to enforce type safety for the function calls. For the C++ binding or
wrapping, polymorphic class methods can be used.

1.4 Oraganization of this Document

Section 2 contains the definition of the API. For each function the section gives a detailed
description of all input and output parameters, a description of the functionality and the return
codes. The section contains sub-section for the type definitions used by the API, functions con-
cerning the return codes, general functions and functions for the CR/CSR access, master map-
ping, bus error handling, slave mapping, block transfers and interrupts.

Section 3 contains programming examples which show how the API is to be used. The exam-
ples cover al important cases for return codes, CR/CSR access, master mapping, bus error
handling, slave mapping, block transfers and interrupts.

Section 4 contains a description of the utility programs which accompany the APl implementa-
tion. Some implementations will require a VMEbus configuration utility. For all implementa-
tions there shall be atest and debugging, as well as a scanning utility.

Section 5 gives some ideas on a possible C++ language binding or wrapping of the API. The
public members of the classes are shown.

2 Application Program I nterface

2.1 Overview

Thefollowing list is an overview of all type and function definitionsin the VMEbus API:

Type Definitions
e u_int, u_short, u_char
* VME_ErrorCode t
* VME_BusErrorinfo_t
* VME_MasterMap t
* VME_SlaveMap t
 VME_BlockTransferltem t
 VME_BlockTransferList_t
* VME_Interruptitem_t
* VME_InterruptList_t
* VME_Interruptinfo_t

Functions for Return Codes
* VME_ErrorPrint
* VME_ErrorString
* VME_ErrorNumber

General Functions
* VME_Open
» VME_Close
CR/CSR Access
 VME_ReadCRCSR
« VME_WriteCRCSR

Bus Error Handling
* VME_BusErrorRegisterSignal
* VME_BusErrorlnfoGet

Master Mapping and Single Cycles
« VME_MasterMap
* VME_MasterMapVirtua Address
« VME_ReadSafeUInt, VME_ReadSafeUShort, VME_ReadSafeUChar
* VME_WriteSafeUlnt, VME_WriteSafeUShort, VME_WriteSafeUChar
* VME_ReadFastUInt, VME_ReadFastUShort, VME_ReadFastUChar
* VME_WriteFastUInt, VME_WriteFastUShort, VME_WriteFastUChar
« VME_MasterUnmap
* VME_MasterMapDump

Slave Mapping
« VME_SlaveMap

* VME_SlaveMapVmebusAddress
* VME_SlaveUnmap
 VME_SlaveMapDump

Block Transfer
* VME_BlockTransferlnit
* VME_BlockTransferStart
* VME_BlockTransferWait
* VME_BlockTransfereEnd
 VME_BlockTransfer
* VME_BlockTransferStatus
* VME_BlockTransferRemaining
* VME_BlockTransferDump

[nterrupts
* VME_InterruptLink

* VME_InterruptWait

* VME_InterruptRegisterSignal
* VME_InterruptinfoGet

* VME_lInteruptReenable

* VME_InterruptUnlink

* VME._InterruptGenerate

* VME_InterruptDump

The following remarks apply to al functions defined in the API:

* |If not stated otherwise, all functions of this API are non-blocking, i.e. they return immedi-
ately indicating an error code if necessary. Wherever functions are blocking, i.e. waiting on
external events, e.g. end of block transfer or VMEbus interrupt, thisis stated explicitly.

» Thereturn values of al function of this APl can be used for comparison, after the error code
has been converted to an error number. The return value VME_SUCCESS (= 0) can always
be used for comparison.

» The implementation of the API isin the following called the “VVMEbus library/driver”.

2.2 Type Definitions

The following types are defined in “vme _rcc.h” for general use throughout the API:

Data Transfer Types

t ypedef unsigned int u_int; (included fromtypes.h; 32 bit)

t ypedef unsigned short u_short; (included fromtypes.h; 16 bit)

typedef unsigned char u_char; (included fromtypes.h; 8 bit)

Return Code Type

t ypedef unsigned int VMVE_Er ror Code_t ;

Other Types

VME_Mast er Map_t see
VVE_BusErroriInfo_t see
VME_SI aveMap _t see

VME_Bl ockTransferltemt see
VME_Bl ockTransferList t see

VME Interruptltemt see
VME I nterruptList t see
VME_ I nterruptinfo_t see

Section

Section

Section

Section
Section

Section
Section
Section

.6, page 17;
.1, page 27;
.8, page 29;

.9, page 34;
.9, page 36;

.10, page 45;
.10, page 46;
.10, page 49;

2.3 Functions for Return Codes

VME_ErrorPrint()

Synopsis

#include “vme_rcc. h”
uint VME ErrorPrint(VME ErrorCode_t error_code);

Parameters

VME_ErrorCode t error_code | in error code to be printed

Description
The VME_ErrorPrint() function prints a textual representation of error_code to “stdout”.

Return Values

VME_SUCCESS The error code was successfully printed.

VME_NOTKNOWN The error code is not known.

Programming Example

For a programming example see Section 3.1.

Notes

none

-10-

VME_ErrorString()

Synopsis

#include “vme_rcc. h”

u_int VME ErrorString(VVE_ErrorCode_t error_code, char* error_string);

Parameters

VME_ErrorCode t error_code

error code to be converted to a character string

char* error_string

out

character string containing the textual representation of
the error code

Description

The VME_ErrorString() function returns a textual representation of error_code in the charac-
ter string error_string. error_string must contain space for at least VME_MAXSTRING
(defined in “vme _rcc.h”) characters.

Return Values

VME_SUCCESS

The error code was successfully converted to a textual representation.

VME_NOTKNOWN

The error code is not known.

Programming Example

For a programming example see Section 3.1.

Notes

none

-11-

VME_ErrorNumber()

Synopsis

#include “vme_rcc. h”
u_int VME_ErrorNunber (VME_ErrorCode_t error_code, int* error_nunber);

Parameters
VME._ErrorCode t error_code in error code to be converted to an error number
int* error_number out error number corresponding to the error code
Description

The VME_ErrorNumber() function converts the possibly complex error_code into aflat error
number error_number. The flat error number can then be used for comparison with the return
codes defined in this API. The return code VME_SUCCESS (= 0) can always be used for com-
parison.

Return Values

VME_SUCCESS The error code was successfully converted to an error number.

VME_NOTKNOWN The error code is not known.

Programming Example

For a programming example see Section 3.1.

Notes

none

-12 -

2.4 General Functions

VME_Open()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode t VME Open(void);

Parameters

none

Description

The VME_Open() function opens the VMEDbus library/driver and allocates the resources
required to use the VMEDbus. This function must be called prior to any other function of the
VMEbus API.

Return Values

VME_SUCCESS The VMEbus library/driver was successfully opened.

others specific to the implementation

Programming Example

For a programming example see Section 3.2.

Notes

none

-13-

VME_Close()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_O ose(void);

Parameters

none

Description

The VME_Close() releases all resources which were allocated in aVME_Open() function call
and closes the VMEDbus library/driver. This function is the last function of the API to be called
by the application program.

Return Values

VME_SUCCESS The VMEDbus library/driver was successfully closed.
VME_NOTOPEN The VMEbus library/driver was not opened.
others specific to the implementation

Programming Example
For a programming example see Section 3.2.
Notes

none

-14-

2.5 VMEbus CR/CSR Access

VME_ReadCRCSR()

Synopsis

#include “vme_rcc. h”
VME _ErrorCode_t VME ReadCRCSR(int slot_nunber, u_int crcsr_field,
u_int* value);

Parameters
int slot_number in number of VMEbus slot to be addressed (0 to 31)
u_int cresr_field in field name in the CR/CSR space; see description
u_int* value out value read from CR/CSR space

Description

The VME_ReadCRCSR() functions reads a value from the field at crcsr_field in the CR/CSR
space of the VMEbus dave at dot slot_number. The symbolic constant VME _MYSL.OT
(defined in“vme_rcc.h”) allows access of the CR/CSR space of the VMEbus slave the applica-
tion program runs on.

Symbolic constants for crcsr_field are provided in the “vme _rcc.h” file, see also the VME64
and VME64x standard. The VME_ReadCRCSR() function knows how many bytes, between 1
and 4, must be read for each value.

Return Values

VME_SUCCESS The value was successfully read from CR/CSR space.
VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOSLOT The slot number isinvalid.

VME_NOFIELD The CR/CSR field isinvalid.

VME_BUSERROR A VMEDbus error occurred during the read from CR/CSR space.
others specific to the implementation

Programming Example
For a programming example see Section 3.2.
Notes

The mapping of the CR/CSR space can be configured statically using the VMEbus configura-
tion utility, see Section 4.1.

-15-

VME_WriteCRCSR()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME WiteCRCSR(int slot_number, u_int crcsr_field,
u_int value);

Parameters
int slot_number in number of VMEbus slot to be addressed (0 to 31)
u_int cresr_field in field name in the CR/CSR space; see description
u_int value in value to be written to CR/CSR

Description

The VME_WriteCRCSR() functions writes a value to the field at crcsr_field in the CR/CSR
space of the VMEbus dave at dot slot_ number. The symbolic constant VME _MYSLOT
(defined in “vme _rcc.h™) allows access of the CR/CSR space of the VM Ebus slave the applica
tion program runs on.

Symbolic constants for crcsr_field are provided in the “vme _rcc.h” file, see also the VME64
and VME64x standard. The VME_WriteCRCSR() function knows how many bytes, between
1 and 4, must be written for each value.

Return Values

VME_SUCCESS The value was successfully written to CR/CSR space.
VME_NOTOPEN The VMEDbus library/driver was not opened.

VME_NOSLOT The slot number isinvalid.

VME_NOFIELD The CR/CSR field isinvalid.

VME_BUSERROR A VMEbus error occurred during the write to CR/CSR space.
others specific to the implementation

Programming Example
For a programming example see Section 3.2.
Notes

The mapping of the CR/CSR space can be configured statically using the VMEDbus configura-
tion utility, see Section 4.1.

-16 -

2.6 VMEbus Master Mapping and Single Cycles

VME_MasterMap_t

Synopsis
in vne_rcc.h:

typedef struct {

u_int virebus_addr ess;
u_int w ndow_si ze;
u_int address_nodifier;
u_int opti ons;

} VME_MasterMap_t;

Fields
u_int vmebus_address base address of the VM Ebus window
u_int window_size size of the VMEbus window in number of bytes
u_int address_modifier address modifier to be used when accessing the master mapping
u_int options other options, include read prefetching and write posting
Description

The VME_MasterMap _t typeis used to hold input information on a master mapping for usein
aVME_MasterMap() function call. The type definition is provided in the “vme_rcc.h” file.

address_modifier is one of the following parameters (defined in “vme_rcc.h”):

VME_AMO09 address mode 0x09

VME_AM39 address mode 0x39

options is a bit-wise combination of the following parameters and possibly some other imple-
mentation-specific ones (all defined in “vme_rcc.h”):

VME_RP read prefetching

VME_WP write posting

Programming Example

For a programming example see Section 3.3.

Notes

none

-17 -

VME_MasterMap()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_Mast er Map(VME_Master Map_t* naster_map, int*
mast er _mappi nQ) ;

Parameters
VME_MasterMap_t* in input information on the master mapping
master_map
int* master_mapping out identifier of the master mapping;
to be used in subsequent function calls
Description

The VME_MasterMap() function creates a VMEbus master mapping defined by master _map
and returns the identifier master_mapping which isto be used in subsequent function calls.

Return Values

VME_SUCCESS The master mapping was successfully created.
VME_NOTOPEN The VMEbus library/driver was not opened.
others specific to the implementation

Programming Example
For a programming example see Section 3.3.
Notes

Some parameters for the master mapping, e.g. for static mapping or for byte swapping, can be
configured statically using the VMEDbus configuration utility, see Section 4.1.

-18-

VME_MasterMapVirtualAddress()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_Master MapVi rtual Address(int naster_mapping, u_int*
virtual _address);

Parameters
int master_mapping in identifier of master mapping
obtained in call to VME_MasterMap()
u_int* virtual _address out virtual address associated to the master mapping
Description

The VME_MasterMapVirtualAddress() function returns the virtual address associated to
master _mapping obtained by a function call to VME_MasterMap(). This address can be used
for fast read and write methods ignoring VMEDbus errors, e.g.

value = *(u_int *)(virtual address + address_offset);
*(u_int *)(virtual address + address _offset) = data;

Return Values

VME_SUCCESS The virtual address was successfully returned.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The master mapping is not known.

Programming Example

For a programming example see Section 3.4.

Notes

none

-19-

VME_ReadSafe()

Synopsis

#include “vme_rcc. h”

VME_Error Code_t VME_ReadSafeU nt (int master_mapping, u_int
address_offset, u_int* value);

VME _Error Code_ t VME ReadSaf eUShort (int master _mapping, u_int
address_offset, u_short* val ue);

VME_Error Code_t VME ReadSaf eUChar (i nt naster_mappi ng, u_int
address_offset, u_char* val ue);

Parameters
int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()
u_int address_offset in address offset to be read from;
must be aligned according to type
u_int, u_short, u_char *value out value read from the master mapping
Description

The VME_ReadSafeXXX() functions reads safely an “unsigned int”, “unsigned short”, or
“unsigned char” value from master_mapping at address _offset. The functions check if aVME-
bus error occurred during the read cycle.

Return Values

VME_SUCCESS The value was read successfully from the master mapping.
VME_NOTOPEN The VMEDbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.

VME_RANGE The address offset is outside the window for the master mapping.
VME_ALIGN The address offset is not correctly aligned with respect to the type.
VME_BUSERROR A VMEDbus error occurred during the read cycle.

others specific to the implementation

Programming Example

For a programming example see Section 3.3.

Notes

none

-20-

VME_WriteSafe()

Synopsis

#include “vme_rcc. h”

VME_ErrorCode_t VME WiteSafeU nt(int naster_mapping, u_int
address_offset, u_int value);

VME _Error Code_t VME ReadSaf eUShort (int master _mapping, u_int
address_of fset, u_short val ue);

VME_Error Code_t VME ReadSaf eUChar (i nt naster_mapping, u_int
address_offset, u_char val ue);

Parameters
int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()
u_int address_offset in address offset to be written to;
must be aligned according to type
u_int, u_short, u_char value out value to be written to the master mapping
Description

The VME_WriteSafeX X X() functions write safely an “unsigned int”, “unsigned short”, or
“unsigned char” value to master_mapping at address _offset. The functions check if aVMEbus
error occurred during the write cycle.

Return Values

VME_SUCCESS The value was written successfully to the master mapping.
VME_NOTOPEN The VMEDbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.

VME_RANGE The address offset is outside the window for the master mapping.
VME_ALIGN The address offset is not correctly aligned with respect to the type.
VME_BUSERROR A VMEDbus error occurred during the write cycle.

others specific to the implementation

Programming Example

For a programming example see Section 3.3.

Notes

none

-21-

VME_ReadFast()

Synopsis

#include “vme_rcc. h”

voi d VME_ReadFast U nt (i nt master_mapping, u_int address_offset,
u_int* value);

voi d VME_ReadFast UShort (int master _mapping, u_int address_offset,
u_short* val ue);

voi d VME_ReadFast UChar (i nt master _mapping, u_int address_of fset,
u_char* val ue);

Parameters
int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()
u_int address_offset in address offset to be read from;
must be aligned according to type
u_int, u_short, u_char *value out value read from the master mapping
Description

The VME_ReadFastX X X() functions reads an “unsigned int”, “unsigned short”, or “unsigned
char” value from master_mapping at address offset. The functions ignore possible VMEbus
errors and return immediately. The application program can still receive asignal related to the
VMEDbus error, see Section 2.7.

The VME_ReadFastX XX () functions are identical to the following statements:

val ue u_int
val ue_u_short
val ue_u_char

*(u_int *)(virtual _address + address_offset);
*(u_short *)(virtual address + address_offset);
*(u_char *)(virtual address + address offset);

The virtual address can be obtained using the VME_MasterMapVirtual Address() function.
Return Values

none

Programming Example

For a programming example see Section 3.4.

Notes

The value read by the VME_ReadFastXXX() functions can be invalid, if a VMEDbus error
occurred.

-22-

VME_WriteFast()

Synopsis

#include “vme_rcc. h”

void VME WiteFastU nt(int master_mapping, u_int address_offset, u_int
val ue);

void VME WiteFastUShort(int master _mapping, u_int address_offset,
u_short val ue);

void VME WiteFastUChar(int master_mapping, u_int address_offset,
u_char val ue);

Parameters
int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()
u_int address_offset in address offset to be written to;
must be aligned according to type
u_int, u_short, u_char value out value to be written to the master mapping
Description

The VME_WriteFastXXX() functions write an “unsigned int”, “unsigned short”, or “unsigned
char” value to master_mapping at address offset. The functions ignore possible VMEbus
errors and return immediately. The application program can still receive asignal related to the
VMEDbus error, see Section 2.7.

The VME_Write FastX X X() functions are identical to the following statements:

*(u_int *)(virtual _address + address_offset)
*(u_short *)(virtual address + address_of fset)
*(u_char *)(virtual _address + address_offset)

val ue u_int;
val ue_u_short;
val ue_u_char;

The virtual address can be obtained using the VME_MasterMapVirtual Address() function.
Return Values

none

Programming Example

For a programming example see Section 3.4.

Notes

The value might not be written by the VME_WriteFastXXX() functions, if a VMEbus error
occurred.

-23-

VME_MasterUnmap()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_Mast er Unmap(i nt master_mappi ng);

Parameter
int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()
Description

The VME_MasterUnmap() function deletes the VMEbus master mapping associated to
master_mapping. The identifier master_mapping shall not be used after this function call.

Return Values

VME_SUCCESS The master mapping was successfully deleted.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The master mapping is not known.

others specific to the implementation

Programming Example

For a programming example see Section 3.3.

Notes

none

-24-

VME_MasterMapDump()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_Mast er MapDunp(voi d);

Parameter

none
Description

The VME_MasterMapDump() function dumps system parameters for all VMEbus master
mappings to “stdout”.

Return Values

VME_SUCCESS The master mappings were successfully dumped.

VME_NOTOPEN The VMEDbus library/driver was not opened.

Programming Example
For a programming example see Section 3.3.
Notes

none

.25

2.7 VMEbus Error Handler

VME_BusErrorRegisterSignal()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode t VME BusErrorRegisterSignal (int signal _nunber);

Parameters

int signal_number in signal number to be sent in case of VMEbus error

Description

The VME_BusErrorRegisterSignal() function registers signal signal_number with the VME-
bus library/driver. In case the VMEDbus library/driver detects aVVMEDbus error and the VMEbus
error did not occur during one of the following functions:

« VME_ReadCRCSR() or VME_WriteCRCSR(),
« VME_ReadSafeX XX () or VME_WriteSafeX XX (),

* VME_BlockTransferXXX(),
a signal with number signal_number will be sent to the process calling this function. If the
process wants to handle the signal it must install asignal handler. Installing asignal handler is

not part of this API. The value O for signal_number is used to “unregister” a signal from the
VMEbus library/driver.

Return Values

VME_SUCCESS The signal was successfully registered.
VME_NOTOPEN The VMEDbus library/driver was not opened.
others specific to the implementation

Programming Example

For a programming example see Section 3.5.

Notes

none

-26-

VME_BusErrorinfo_t

Synopsis
in vne_rcc.h:

typedef struct {

u_int virebus_addr ess;
u_int address_nodifier;
u_int mul tiple;

} VME BusErrorinfo_t;

Fields
u_int vmebus address address at which the VMEbus error occurred
u_int address_modifier address modifier at which the VMEbus error occurred
u_int multiple flag indicating if multiple VM Ebus errors occurred
Description

The VME_BusErrorinfo_t type is used to retrieve information on a VMEbus error. The type
definition is provided in the “vme_rcc.h” file.

Programming Example

For a programming example see Section 3.5.

Notes

none

-27-

VME_BusErrorinfoGet()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME _BusErrorlnfoGet (VME_BusErrorinfo_t*
bus_error _info);

Parameters

VME_BusErrorinfo_t* out information on VMEbus error
bus_error_info

Description

The VME_BusErrorinfoGet() function returns information on the VMEbus error received.
This function can be used in a bus error handler in order to determine where the bus error
occurred.

Return Values

VME_SUCCESS The bus error information was successfully returned.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_NOBUSERROR There has not been abus error; bus_error_info is empty.
others specific to the implementation

Programming Example
For a programming example see Section 3.5.
Notes

This function is intended for use in the bus error signal handling function, see
VME_BusErrorRegisterSignal().

-28-

2.8 VMEbus Slave Mapping

VME_SlaveMap _t

Synopsis
in vne_rcc.h:

typedef struct {

u_int
u_int
u_int
u_int

} VME_S| aveMap t;

Fields

system i obus_address;
W ndow si ze;
address_wi dt h;
options;

u_int system_iobus_address

(physical) base address of the user space to be mapped

u_int window_size

size of the user space in number of bytes

u_int address_width

address width to be used by the slave mapping

u_int options

other options, include read prefetching and write posting

Description

The VME_SlaveMap t type is used to input information on a slave mapping for use in a
VME_SlaveMap() function call. The type definition is provided in the “vme_rcc.h” file.

system iobus_address must point at contiguous, locked and properly aligned user space. The
user space can aso be a physical resource, e.g. FIFO of the VMEbus master. Obtaining

system iobus _address for user spaceis not part of this API.

address_width is one of the following parameters (defined in “vme_rcc.h”):

VME_A32 32-bit addressing
VME_A24 24-bit addressing

options 1s a bit-wise combination of the following parameters and possibly some other imple-

mentation-specific ones (all defined in “vme_rcc.h”):

VME_RP

read prefetching

VME_WP

write posting

Programming Example

For a programming example see Section 3.6.

Notes

none

-29.-

VME_SlaveMap()

Synopsis

#include “vme_rcc. h”

VME_Error Code_t VME_SI aveMap(VME_S| aveMap_t* sl ave_map,

sl ave_mappi ng) ;

Parameters
VME_SlaveMap_t* dave map |in information on the slave mapping
int* slave_mapping out identifier of the slave mapping;

to be used in subsequent function calls

Description

The VME_SlaveMap() function creates a slave mapping defined by slave_map and returns the

identifier slave_mapping which isto be used in subsequent function calls.

Return Values

VME_SUCCESS

The lave mapping was successfully created.

VME_NOTOPEN

The VMEbus library/driver was not opened.

others

specific to the implementation

Programming Example

For a programming example see Section 3.6.

Notes

Some parameters for the slave mapping, e.g. for static mapping or for byte swapping, can be

configured statically using the VMEDbus configuration utility, see Section 4.1.

The window size of the created slave mapping will be at least as large as the size requested; it

might be larger.

-30-

i nt*

VME_SlaveMapVmebusAddress()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_SI aveMapVnebusAddress(int slave_mapping, u_int*
vebus_address);

Parameters
int slave_mapping in identifier of the slave mapping
obtained in call to VME_SlaveMap()
u_int* vmebus address out VM Ebus address associated to the slave mapping
Description

The VME_SlaveMapVmebusAddress() function returns the VMEbus address associated to
slave_mapping. This address can be used by other VMEbus masters.

Return Values

VME_SUCCESS The VMEDbus address was successfully returned.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The slave mapping is not known.

Programming Example

For a programming example see Section 3.6.

Notes

none

-31-

VME_SlaveUnmap()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_S| aveUnmap(int sl ave_mappi ng);

Parameters
int slave_mapping in identifier of the slave mapping
obtained in call to VME_SlaveMap()
Description

The VME_SlaveUnmap() function deletes the VMEbus slave mapping associated to
slave_mapping. The identifier slave_mapping shall not be used after this function call.

Return Values

VME_SUCCESS The dlave mapping was successfully deleted.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The dlave mapping is not known.

others specific to the implementation

Programming Example

For a programming example see Section 3.6.

Notes

none

-32-

VME_SlaveMapDump()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_SI aveMapDunp(voi d);

Parameters

none
Description

The VME_SlaveMapDump() function dumps system parameters for all VMEbus slave map-
pingsto “stdout”.

Return Values

VME_SUCCESS The dlave mappings were successfully dumped.

VME_NOTOPEN The VMEDbus library/driver was not opened.

Programming Example
For a programming example see Section 3.6.
Notes

none

-33-

2.9 VMEbus Block Transfers

VME_BIlockTransferltem_t

Synopsis
in vne_rcc.h:

typedef struct {

u_int virebus_addr ess;

u_int system i obus_address;
u_int Si ze_request ed,;

u_int control _word;

u_int Si ze_renmai ni ng;

u_int stat us_word;

} VME_Bl ockTransferltemt;

Fields
u_int vmebus_address VMEDbus address
u_int system_iobus address system 1/O bus address
u_int size_requested size of requested transfer in number of bytes
u_int control_word direction and type of block transfer; the type includes address
mode and specifies possibly enhanced transfer protocols
u_int size_remaining size of remaining transfer in number of bytes
u_int status_word status of the block transfer
Description

The VME_BlockTransferltem t type is used to describe a single block transfer in a block
transfer list. Thisis arequested block transfer which might be split by the subsequent function
callsinto one or more actual VMEDbus block transfers, e.g. for alignment and size reasons.

system iobus_address must point to contiguous, locked and properly aligned memory. The
memory management is not part of thisAPI.

control_word specifies the direction and type of block transfer. The type includes the address
mode and specifies possibly enhanced transfer protocols. control_word contains one of the fol-
lowing parameters (defined in “vme_rcc.h”):

VME_DMA_D32W transfer data from system 1/0 busto VMEDbus using 32-bit words
VME_DMA_D32R transfer data from VMEDbus to system /O bus using 32-bit words
VME_DMA_D64W transfer data from system 1/O bus to VMEbus using 64-bit words
VME_DMA_D64R transfer data from VMEbus to system I/O bus using 64bit words

VME_DMA_2EVMER transfer data from system /O bus to VMEDbus using 2eVME mode

VME_DMA_2EVMEW transfer data from VMEDbus to system 1/0 bus using 2eVME mode
VME_DMA_2ESSTR transfer data from system 1/0 busto VMEDbus using 2eSST mode
VME_DMA_2ESSTW transfer data from VMEbus to system 1/0 bus using 2eSST mode

control_word must be ORed bit-wise with one of the following address modes:

VME_A32 transfer data using 32-bit addressing
VME_A24 transfer data using 64-bit addressing

status word and size remaining are filled by the function VME_BlockTransferWait(). They
indicate the status of each block in the block transfer list. The fields can be interpreted with the
help of the VME_BIlockTransferStatus() and VME_BIlockTransferRemaining()functions.

Programming Example

For a programming example see Section 3.7.

Notes

The block transfer list used by the application program can be independent of an another block
transfer list used by the VMEbus library/driver internally. This is because the actual block
transfers carried out by the VMEbus library/driver might differ from the requested ones due to
boundary and alignment restrictions.

On the Tundra Universe II VMEbus bridge chip, the PCI and VMEbus addresses must be
aligned on a 4-byte boundary. In addition, the difference between the PCI and the VMEbus
addresses must be a multiple of 8 byte.

-35-

VME_BIlockTransferList_t

Synopsis
in vne_rcc.h:

typedef struct {
i nt nunber _of _itens;
VME_Bl ockTransferltemt list_of items [VME_MAXBLOCK];

} VME_Bl ockTransferlList_t;

Fields
int number_of_items number of items used in the block transfer list
VME_BlockTransferltem t list of block transfer items
list_of_items[VME_MAXBLOCK]

Description
The VME_BlockTransferList_t typeis used to define VMEbus block transfers. The type defi-

nition and the maximum number of blocks VME _MAXBLOCK are provided in the
“vme_rcc.h” file.

Programming Example
For a programming example see Section 3.7.

Notes

A single block transfer must use a block transfer list with only one VME_BlockTransferltem t
at list_of items[0] and number_of items=1.

-36-

VME_BIlockTransferlnit()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME Bl ockTransferlnit(VME_ Bl ockTransferList _t*
bl ock_transfer _list, int* block transfer);

Parameters

VME_BlockTransferList_t* in list of block transfers
block transfer list

int* block_transfer out identifier of the block transfer;
to be used in subsequent function calls

Description

The VME_BlockTransferInit() function allocates resources for the VME_BlockTransferList_t
block transfer_list and returns the identifier block_transfer which is to be used in subsequent
function calls. It might actually break up the block transfersinto an internal list of actual VME-
bus block transfers, e.g. for aignment and size reasons.

Return Values

VME_SUCCESS The block transfer was successfully initialised.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOMEM There is not enough memory to allocate the resources for the
required block transfer list.

VME_TOOLONG Theinternally generated block transfer list istoo long.

VME_NOSIZE The requested sizeisinvalid.

VME_ALIGN The addresses are not correctly aligned.

others specific to the implementation

Programming Example

For a programming example see Section 3.7.

Notes

none

-37-

VME_BIlockTransferStart()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME Bl ockTransferStart (int block _transfer);

Parameters
int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferlnit()
Description

The VME_BlockTransferStart() function starts the block transfer associated to block_transfer
obtained by acall to VME_BIlockTransferInit().

Return Values

VME_SUCCESS The block transfer was successfully started.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The block transfer is not known.
VME_DMABUSY The DMA engine(s) are busy.

others specific to the implementation

Programming Example

For a programming example see Section 3.7.
Notes
This function shall not be blocking. The implementation of this function shall return immedi-

ately, either indicating that the resources of the DMA engine(s) are not available at the moment
(VME_DMABUSY), or by using internal queuing of tasks.

-38-

VME_BIlockTransferWait()

Synopsis

#include “vme_rcc.h”

VME_Error Code_t VME Bl ockTransferWait(int block transfer, int
time_out, VME BlockTransferList t* block transfer |ist);

Parameters
int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferInit()
int time_out in time-out parameter, see description
VME_BlockTransferList_t* out list of block transfers
block_transfer list

Description

The VME_BlockTransferWait() function waits until the block transfer associated to

block _transfer isfinished or until the time-out has elapsed, whichever occurs first.

time_out is an estimate for the time-out period in milliseconds. The value O is used to bypass
the time-out mechanism and to return immediately, indicating the status of the block transfer.
The value -1 is used to bypass the time-out mechanism and to wait until the end of the block

transfer.

The return code contains general status information of the whole block transfer; the individual
status of a single block transfer can be checked using block transfer_list and the

VME_BlockTransferStatus() and the VME_BlockTransferRemaining() functions.

Return Values

VME_SUCCESS

The block transfer was successfully started.

VME_NOTOPEN

The VMEbus library/driver was not opened.

VME_NOTKNOWN

The block transfer is not known.

VME_INVALIDTO

Thetime-out isinvalid.

VME_TIMEOUT

A time-out occurred (if time_out > 0).

VME_DMABUSY

The block transfer is busy (if time_out = 0).

others

specific to the implementation

Programming Example

For a programming example see Section 3.7.

Notes

This function is generally blocking, except for time_out = 0.

-39-

VME_BIlockTransferEnd()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_BI ockTransferEnd(int block transfer);

Parameters
int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferlnit()
Description

The VME_BlockTransferEnd() function releases the resources allocated for the block transfer
associated to block transfer. It must be called at the end of a block transfer. The identifier
block transfer shall not be used after this function call.

Return Values

VME_SUCCESS The block transfer was successfully ended.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_NOTKNOWN The block transfer is not known.

others specific to the implementation

Programming Example
For a programming example see Section 3.7.
Notes

none

- 40 -

VME_BIlockTransfer()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME Bl ockTransfer (VVE_ Bl ockTransferList _t*
bl ock transfer_list, int tine_out);

Parameters

VME_BlockTransferList_t* infout | list of block transfers

block transfer list

int time_out in time-out parameter, see description
Description

The VME_BlockTransfer() function uses the VME_BlockTransferList_t block transfer list
and calls the following functionsin the order shown:

1. VME_BIlockTransferlnit(),

2. VME_BlockTransferStart(),

3. VME_BlockTransferWait() and
4. VME_BIlockTransferEnd().

time_out is the parameter for the VME_BlockTransferWait() function call.

Return Values

VME_SUCCESS The block transfer was successfully started.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_INVALIDTO Thetime-out isinvalid.

VME_TIMEOUT A time-out occurred (if time_out > 0).
others specific to the implementation

Programming Example
For a programming example see Section 3.8.
Notes

Thisfunction is generally blocking. The value O for time_out in this function shall not be used
because the VME_BlockTransferWait() function will return immediately and the
VME_BlockTransferEnd() function will be called regardless of the state of the transfer.

-41 -

VME_BIlockTransferStatus()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_BI ockTransfer Stat us(VME_Bl ockTransferList_t*
bl ock_transfer _list, int position_of block, VME ErrorCode t* status);

Parameters

VME_BlockTransferList_t* in list of block transfers

block transfer list

int position_of block in position of block in block transfer list
VME_ErrorCode t* status out status of block transfer at position position_of _block
Description

The VME_BlockTransferStatus() function returns the status code for the block transfer at
position_of block in block transfer_list. This function is added for convenience, the function
is equivalent to the following statement:

status = block transfer list.list _of items[position_of block].status_ word;

Return Values

VME_SUCCESS The status was successfully returned.

VME_RANGE The position is outside the range of the block transfer list.

Programming Example

For a programming example see Section 3.7.

Notes

none

-42-

VME_BIlockTransferRemaining()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_BI ockTransf er Remai ni ng(VVE_BI ockTr ansf erLi st _t
bl ock_transfer _list, int position_of _block, u_int* renaining);

Parameters
VME_BlockTransferList_t* in list of block transfers
block transfer list
int position_of block in position of block in block transfer list
u_int* remaining out number of bytes remaining to be transferred at position

position_of block

Description

The VME_BlockTransferRemaining () function returns the number of bytes remaining to be
transferred for the block transfer at position_of block in block transfer_list. After successful
transfer this value shall be equal to 0. Thisfunction is added for convenience, it is equivalent to
the following statement:

remaining = block transfer list.list_of items[position_of block].size remaining;

Return Values

VME_SUCCESS The byte number remaining was successfully returned.

VME_RANGE The position is outside the range of the block transfer list.

Programming Example

For a programming example see Section 3.7.

Notes

none

-43-

VME_BlockTransferDump()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_BI ockTransf er Dunp(voi d);

Parameters

none

Description

The VME_BIlockTransferDump() function dumps the status of the DMA engine(s) to “stdout”.

Return Values

VME_SUCCESS The status of the DMA engine(s) was successfully dumped.

VME_NOTOPEN The VMEbus library/driver was not opened.

Programming Example
For a programming example see Section 3.7.
Notes

none

2.10 VMEDbus Interrupts

VME_Interruptitem_t

Synopsis
in vne_rcc.h:

typedef struct {

u_char vector;
u_int | evel ;
u_int type;

} VME Interruptltemt;

Fields
u_char vector VMEDbus interrupt vector
u_int level VMEDbus interrupt level
u_int type flag indicating the type of interrupt handling to be used
(see description)
Description

The VME_Interruptitem_t typeisused to describe asingle interrupt in alist of interrupts. Each
interrupt is defined by the vector, the level and the type of the VMEbus interrupt that the appli-
cation program requests to be linked to.

type specifies the interrupt handling to be used for the interrupt. The following types are
defined (in “vme_rcc.h”):

VME_INT_ROAK “ Release-On-Acknowledge”

VME_INT_RORA “Release-On-Register-Access’

Programming Example

For a programming example see Section 3.9.

Notes

The interrupt handling type is required in order to distinguish VMEbus interrupters of RORA
and ROAK type. The interrupt handling type can be configured statically using the VMEbus
configuration utility, see Section 4.1. Usually, the type will be allowed to be configured indi-
vidually for each VMEDbus interrupt level. A given level must therefore only be used by VME-
bus interrupts of the associated type.

-45-

VME_InterruptList_t

Synopsis
in vne_rcc.h:

typedef struct {
i nt nunber _of _itens;
VME Interruptltemt list_of itens [VME_MAXI NTERRUPT];

} VME Interruptlist _t;

Fields
int number_of_items number of items used in the interrupt list
VME_Interruptitem t list of interrupt items
list_of_itemgVME_MAXINTERRUPT]

Description

The VME _InterruptList_t typeisused to define alist of interrupts. The type definition and the
maximum number of interrupts VME_MAXINTERRUPT are provided in the “vme_rcc.h” file.

Programming Example
For a programming example see Section 3.9.
Notes

A single interrupt must use an interrupt list with only one VME_Interruptitem t at
list_of itemg 0] with number_of items=1.

- 46 -

VME_InterruptLink()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME InterruptLink(VVE_InterruptList*
vmebus_interrupt list, int* interrupt);

Parameters

VME_InterruptList* in list of VMEbus interrupts
vmebus _interrupt_list

int* interrupt out identifier of the interrupt;
to be used in subsequent function calls

Description

The VME_InterruptLink() function creates alink between alist of VMEDbus interrupts and the
application program. It returns the identifier interrupt which is to be used in subsequent func-
tion calls.

By default, after creation of the interrupt link, the application program applies a synchronous
method waiting for interrupts using the VME_InterruptWait() function. If the application pro-
gram wants to apply an asynchronous method, the VME_InterruptRegisterSignal() function
must be used.

Return Values

VME_SUCCESS Thelink to the VMEbus interrupt was successfully created.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_TOOMANYINT The list of interrupts requested is too long.

VME_ILLINTLEVEL The interrupt level isillegal.

VME_ILLINTTYPE Theinterrupt typeisillegal.

VME_INTCONF The list of interrupts was not linked to the application program
because an interrupt is in conflict with the static configuration.

VME_INTUSED The list of interrupts cannot be linked to the application program
because an interrupt is already being used.

others specific to the implementation

Programming Example

For a programming example see Section 3.9.
Notes

A ROAK (*Release-On-AcKnowledge”) type of VMEDbus interrupter releases the interrupt

- 47 -

after the VMEbus Acknowledge cycle; the VMEbus driver therefore does not disable reception of
subsequent interrupts. A RORA (*Release-On-Register-Access’) type of VMEDbus interrupter
releases the interrupt only after accessto aregister of the VM Ebus module; the VMEbus driver
therefore disables reception of subsequent interrupts on the same VMEbus interrupt level.

Some parameters for the VMEDbus interrupts, e.g. for interrupt levels and the interrupt handling
types, can be configured statically using the VMEbus configuration utility, see Section 4.1. The
VME_InterruptLink() function checksiif the requested VMEbus interrupt level has been enabled
and configured for the requested type. A given VMEbus vector can only be used by one process.

-48-

VME_Interruptinfo_t

Synopsis
in vne_rcc.h:

typedef struct {

u_char vector;
u_int | evel ;
u_int type;
u_int mul tiple;

} VME Interruptinfo t;

Fields

u_char vector VMEDbus interrupt vector

u_int level VMEDbus interrupt level

u_int type type of VMEDbus interrupter (ROAK or RORA)

u_int multiple flag indicating if the VM Ebus interrupt occurred multiple times
Description

The VME_Interruptinfo_t type is used to retrieve information on a VMEDbus interrupt. The
type definition is provided in the “vme_rcc.h” file.

Programming Example

For a programming example see Section 3.10.

Notes

none

-49-

VME_InterruptWait()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME InterruptVWait(int interrupt, int time_out,
VME Interruptinfo_t* interrupt_info);

Parameters
int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()
int time_out in time-out parameter, see description
VME _Interruptinfo_t* out information on VMEbus interrupts
interrupt_info

Description

The VME_InterruptWait() function waits until an interrupt associated to interrupt is received
or until the time-out has elapsed, whichever occursfirst.

time_out is an estimate for the time-out period in milliseconds. The value 0 is used to bypass
the time-out mechanism and to return immediately, indicating the status of the interrupt. The
value -1 is used to bypass the time-out mechanism and to wait until an interrupt is received.

After a VMEbus interrupt has been received interrupt_info contains the information on the
VMEbus interrupt actually received. Depending on time out and on the return code,
interrupt_info might be empty.

Return Values

VME_SUCCESS A VMEDbusinterrupt was successfully received.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_NOTKNOWN Theinterrupt is not known.

VME_TIMEOUT A time-out occurred (if time_out > 0).
VME_NOINTERRUPT No interrupt has been received (if time_out = 0).
VME_INTBYSIGNAL The function returned because a signal was received.
others specific to the implementation

Programming Example

For a programming example see Section 3.9.

Notes

Thisfunction is generally blocking, except for time_out = 0.

-50-

VME_InterruptRegisterSignal()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME_ InterruptRegisterSignal (int interrupt, int
si gnal _nunber);

Parameters
int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()
int signal_number in signal number to be sent in case of VMEbus interrupt
Description

The VME_InterruptRegisterSignal() function registers signal signal_number with the VME-
bus library/driver. In case the VMEDbus library/driver receives a VMEbus interrupt of type
interrupt, asignal with number signal_number will be sent to the process calling this function.
If the process wantsto handle the signal it must install asignal handler. Installing a signal han-
dler isnot part of thisAPI. The value O for signal_number isused to “unregister” asignal from
the VMEDus library/driver.

Return Values

VME_SUCCESS A signal was successfully registered.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_NOTKNOWN The interrupt is not known.

others specific to the implementation

Programming Example
For a programming example see Section 3.10.
Notes

none

-51-

VME_InterruptinfoGet()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME InterruptinfoGet(int interrupt,
VME Interruptinfo_t* interrupt_info);

Parameters
int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()
VME_Interruptinfo_t* out information on VMEbus interrupts
interrupt_info

Description

The VME_InterruplnfotGet() function returns information on the VMEDbus interrupt received.
The function can be called at any time. It returns VME_NOINTERRUPT if no interrupt has
been received.

The VME_InterruptinfoGet() function must be called for each interrupt, either after a
VME_InterruptWait() function or in a signal handler associated to that interrupt using the
VME_InterruptRegisterSignal () function.

Return Values

VME_SUCCESS The interrupt information was successfully returned.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN The interrupt is not known.

VME_NOINTERRUPT There has not been an interrupt; interrupt_info is empty.
others specific to the implementation

Programming Example

For a programming example see Section 3.10.

Notes

none

-B2-

VME_InterruptReenable()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME_InterruptReenabl e(int interrupt);

Parameters
int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()
Description

The VME_InterruptRenable() function re-enables the interrupt associated to interrupt, if the
interrupt received came from a* Release-On-Register-Access’ (RORA) interrupter.

The VME_InterruptReenable() function must be called in case the interrupt received came
from a RORA interrupter. If it came from a ROAK interrupter the interrupt will be automati-
cally be re-enabled by the VMEDbus library/driver.

Return Values

VME_SUCCESS The VMEDbus interrupt was successfully enabled.
VME_NOTOPEN The VMEbus library/driver was not opened.
VME_NOTKNOWN Theinterrupt is not known.

others specific to the implementation

Programming Example

For a programming example see Section 3.7.

Notes

The VMEDbus configuration utility is used to associate VMEbus interrupt levelsto either of the
two different types of VMEbus interrupters. When the VMEbus library/driver receives an
interrupt from a level which has been associated to RORA interrupters it disables that level.
The application program will receive the interrupt after a cal to the VME_InterruptWait()
function or using a signa handler previoudy installed with the VME_InterruptSignal-
Register() function. After handling the interrupt, the application program must call the
VME_InterruptReenable() function in order to re-enable the associated VMEbus level.

Enabling VMEbus interrupts generated by a VMEbus interrupter is independent of this func-
tion and not part of thisAPI.

-B3-

VME_InterruptUnlink()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME InterruptUnlink(int interrupt);

Parameters
int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()
Description

The VME_InterruptUnlink() function deletes the link between the VMEDbus interrupts associ-
ated to interrupt and the application program. The identifier interrupt shall not be used after
this function call.

Return Values

VME_SUCCESS The link to the interrupt was successfully deleted.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_NOTKNOWN The interrupt is not known.

others specific to the implementation

Programming Example
For a programming example see Section 3.9.
Notes

none

VME_InterruptGenerate()

Synopsis

#include “vme_rcc. h”
VME_ErrorCode_t VME InterruptCGenerate(u_char vector, u_int |evel);

Parameters
u_char vector in VMEDbus interrupt vector
u_int level in VMEbus interrupt level
Description

The VME_InterruptGenerate() function generates a VMEbus interrupt at level level with vec-
tor vector. This function can be used in order to send an interrupt to another VM Ebus interrupt
handler.

Return Values

VME_SUCCESS The interrupt was successfully generated.
VME_NOTOPEN The VMEDbus library/driver was not opened.
VME_IRGBUSY The VMEbus interrupter is busy.

others specific to the implementation

Programming Example
For a programming example see Section 3.11.
Notes

Some parameters for VMEDus interrupt generation, e.g. for the interrupt level, can be config-
ured statically using the VM Ebus configuration utility, see Section 4.1.

-55-

VME_InterruptDump()

Synopsis

#include “vme_rcc. h”
VME_Error Code_t VME_InterruptDunp(void);

Parameters
none

Description

The VME_InterruptDump() function dumps system parameters associated to interrupt han-
dling and generation to “stdout”.

Return Values

VME_SUCCESS The status of the interrupt handling was successfully dumped.

VME_NOTOPEN The VMEDbus library/driver was not opened.

Programming Example
For a programming example see Section 3.9.
Notes

none

-56 -

3 Programming Examples

3.1 Example l: Functionsfor Return Codes

#include “vme_rcc.h”

VME ErrorCode t error_code;
char error_string[VWNE_MAXSTRI NG ;
u_int error_nunber;

error_code = VME Qpen();
if(error_code != VME SUCCESS) {
/* conpare error code to VME _SUCCESS */

VME_ErrorPrint(error_code);
[* print error code to stdout */

return(error_code);

error_code = VME O ose();
if(error_code != VME _SUCCESS) {
/* conpare error code to VME SUCCESS */

VME ErrorString(error_code, error_string);
[* print error code to char string */

printf(“ERROR in exanple program 9%\n”,error_string);
return(error_code);

error_code = VME C ose();
VME_Err or Nunber (error _code, error_nunber);
/* convert error code to error number */

i f(error_number == VME_NOTOPEN) {
/* conpare error nunber to return value */

printf(“ERROR in exanple program already closed\n”);
return(error_code);

-57-

3.2 Example2: CR/CSR Space

#include “vme_rcc. h”

i nt sl ot _nunber = b;
u_int modul e_identifier;
u_int vmebus_addr ess = 0x22000000;

VME ErrorCode t error_code;

if(error_code = VME ReadCRCSR(sl| ot _nunber, VME CR MODULEI D,
&modul e_identifier)) {
/* read fromthe CR/CSR space: e.g. module identifier */

VME_ErrorPrint(error_code);
return(error_code);

if(error_code = VME_WiteCRCSR(sl ot _nunber, VME_CSR_ADERO,
vnebus_address)) {
/[* wite to CR/ICSR space:
e.g. base address to address decode conparator */

VMVE_ErrorPrint(error_code);
return(error_code);

-58-

3.3 Example 3: Master M apping - Safe Access

#include “vme_rcc. h”

VME _MasterMap_t master_nmap;

i nt mast er _nmappi ng;
u_int val ue u_int;
u_int address_of f set = 0x200;
VME ErrorCode t error_code;
u_int error_nunber;
mast er _nmap. vhebus_addr ess = 0x22000000;
mast er _map. w ndow _si ze = 0x00800000;
mast er _map. address_nodi fier = VME_AM)9;
mast er _nmap. opti ons = 0;
[* fill master mapping input information */

if(error_code = VME_Master Map(&raster _map, &nmaster_mappi ng)) {
/* create a new master nmapping */

VME_ErrorPrint(error_code);
return(error_code);

if(error_code = VME ReadSaf eUl nt (nast er _nappi ng, address_of fest,
&alue_u_int)) {
/* read safely fromthe master napping */
VME_Error Nunber (error_code, &erorr_nunber);
if(error_number !'= VME BUSERROR) ({
printf(“ERROR in exanple program bus error\n”);
}

return(error_code);

/* continued on next page */

-K9-

val ue_u_int = OxFFFFFFFF
if(error_code = VME WiteSafeU nt(nmaster_mappi ng, address_offset,
value u_int)) {

/[* wite safely to the master napping */

VME_Error Nunber (error_code, &erorr_nunber);
i f(error_nunber !'= VME BUSERROR) {

printf(“ERROR in exanple program bus error\n”);
}

return(error_code);

VMVE_Mast er MapDunp() ;
[* dunp system paraneters for all master mappings */

if(error_code = VME_Mast er Unmap(mast er _mappi ng)) {
/* delete the master nmapping */

VME_ErrorPrint(error_code);
return(error_code);

-60 -

3.4 Example4: Master Mapping - Fast Access

#include “vme_rcc. h”

VME _MasterMap_t master_nmap;

i nt mast er _nmappi ng;
u_int virtual address;
u_int val ue_u_int;
u_int address_of f set = 0x200;
VME _ErrorCode_t error_code;
mast er _map. virebus_addr ess = 0x22000000;
mast er _map. wi ndow_si ze = 0x00800000;
mast er _map. address_nodi fier = VME_AM)9;
mast er _map. opti ons = 0;
[* fill master mapping input information */

if(error_code = VME Master Map(&master _map, &nmaster_mappi ng)) {
/* create a new master mapping */

VMVE_ErrorPrint(error_code);
return(error_code);

}

VMVE_Mast er MapVi rt ual Addr ess(mast er _mappi ng, &virtual address);
/* get virtual address for the naster mapping */

VME_ReadFast Ul nt (mast er _mappi ng, address_offset, &value u_int);
/* read fast fromthe naster mapping, ignore bus error */
/* alternatively use */

value u_int = *(u_int *)(virtual address + address_offset);

val ue_u_int = OxFFFFFFFF

VME_W it eSaf eUl nt (mast er _mappi ng, address_offset, value u_int);
/[* wite fast to the naster mapping, ignore bus error */
[* alternatively use */

*(u_int *)(virtual _address + address_offset) = OxFFFFFFFF

/* continued on next page */

-61-

if(error_code = VME_Mast er Unmap(mast er _mappi ng)) {
/* delete the master nmapping */

VME_ErrorPrint(error_code);
return(error_code);

-62-

3.5 Example5: Master Mapping - BusError Handler

#include “vme_rcc. h”
#incl ude <signal . h>

void nmy_bus_error_handler(int sig) {
/* bus error handler function */

static VME_BusErrorinfo_t bus_error _info;
static u_int error_code;

if(error_code = VME BusErrorlnfoGet(&bus error_info) {
/* get information on bus error */

VME_ErrorPrint(error_code);
return(error_code);

}

printf(“ERROR in exanple program bus error at address = %08x,
am = %92x\n”, bus_error _i nfo. vnebus_addr ess,
bus_error_info.address_nodifier);

}
VME_MasterMap_t master_nap;
i nt mast er _mappi ng;
u_int val ue_u_int;
u_int address_of f set = 0x200;
VME ErrorCode t error_code;
mast er _map. virebus_addr ess = 0x22000000;
mast er _map. Wi ndow _si ze = 0x00800000;
mast er _nmap. addr ess_of f set = VME_AM)9;
mast er _map. opti ons = 0;
[* fill master mapping input information */

if(error_code = VME_Master Map(&master _map, &master_nmapping)) {
/* create a new master napping */

VME_ErrorPrint(error_code);
return(error_code);

/* continued on next page */

-63-

/* install bus error handler for signal,
not part of this API, see function sigaction() */

if(error_code = VME BusErrorRegi sterSignal (SIGUS)) {
/* register signal for bus error handling */

VMVE_ErrorPrint(error_code);
return(error_code);

VME_ReadFast Ul nt (mast er _mappi ng, address_offset, &value u_int);
/* read fast fromthe naster mapping,
bus error will be caught by exanple bus error handler */

if(error_code = VME BusErrorRegisterSignal (0)) {
/* un-register signal for bus error handling */

VMVE_ErrorPrint(error_code);
return(error_code);

if(error_code = VME Mast er Unmap(mast er _mappi ng)) {
/* delete the master nmapping */

VMVE_ErrorPrint(error_code);
return(error_code);

3.6 Example 6: Slave M apping

#include “vme_rcc. h”

VME_SI| aveMap _t sl ave_map;
i nt sl ave_mappi ng;
u_int virebus_addr ess;

VME ErrorCode t error_code;

sl ave_map. w ndow_si ze = 0x00800000;
sl ave_map. address_nodi fi er = VME_AM)9;
sl ave_map. opti ons = 0;
[* fill master mapping input information */

/* obtain contiguous, nenory-|locked and aligned user_space,
not part of this APl */
sl ave_map. system i obus_address = ny_pci _al | ocate();

if(error_code = VME_S| aveMap(&sl ave_nap, &slave_mapping)) {
/* create a new slave napping */

VME_ErrorPrint(error_code);
return(error_code);

VME_S| aveMapViebusAddr ess(sl ave _mappi ng, &vnebus_address);
/* get VMEbus address for the slave mapping,
to be used by a VMEbus naster */

/* read fromand wite to user space,
not part of this APl */

VME_SI aveMapDunp() ;
[* dunp system paraneters for all slave nmappings */

if(error_code = VME_Sl aveUnnap(sl ave_nmapping)) {
/* delete the slave mapping */

VMVE_ErrorPrint(error_code);
return(error_code);

-65-

3.7 Example7: Block Transfer - Detailed Functions

#include “vme_rcc. h”

u_int pci _address;

VME_Bl ockTransferList _t bl ock_transfer_list;

i nt bl ock _transfer;

VME_Er r or Code_t st at us;

i nt r enai ni ng;

i nt time_out = 10;

/* time-out about 10 nsec */

VME_Er r or Code_t error_code;
char error_string[VWNE_MAXSTRI NG ;

/* get contiguous, nenory-locked and aligned user space,
not part of this APl */
sys_address = ny_pci _all ocate();

bl ock transfer list.list _of itens[0Q].vnebus_address = 0x22000200;
bl ock transfer list.list of items[0].systemiobus address = pci_address;
block transfer list.list_of itens[0].size_requested = 0x100;
bl ock transfer list.list of itens[0Q].control word = VME_DVA D32R
[* fill paraneters for first block transfer */
bl ock transfer list.list _of itens[1].vnebus_address = 0x23000200;
bl ock transfer list.list _of itens[1l].system.iobus address= pci_address + 0x100;
block transfer list.list_of itens[1].size_requested = 0x100;
bl ock transfer list.list of itens[1].control word = VME_DVA D32R
[* fill parameters for second block transfer */

bl ock _transfer |ist.nunber_of itens = 2;
/* total nunber of Dblock transfers */

if(error_code = VME Bl ockTransferlnit(&block transfer |ist,
&bl ock transfer) {
/* initialise block transfer */

VME_ErrorPrint(error_code);
return(error_code);

/* continued on next page */

- 66 -

if(error_code = VME Bl ockTransferStart (bl ock transfer) {
/* start block transfer */

VME_ErrorPrint(error_code);
return(error_code);

if(error_code = VME Bl ockTransferWit (bl ock transfer, tine_out,
&l ock_transfer _list) {
[* wait for block transfer */

for(i=0; i< block_transfer_list.nunmber_of items; i++) {

i f(!'VME Bl ockTransferStatus(block transfer list,i,&tatus)) {
/* check status of each block transfer */

VME_ErrorString(status,error_string);
printf(“ERROR in exanpl e program block = %, status = %\n”,
i,error_string);

}

i f(!'VME_BI ockTransfer Remai ni ng(bl ock_transfer_list,i, & emaining)) {
/* check remmining words of each block transfer */

printf(“ERROR in exanple program block = %, remaining = %l\n",
i, remaining);

}
}

return(error_code);

VME_Bl ockTr ansf er Dunp() ;
[* dunp system paraneters for all DMA engines */

if(error_code = VME Bl ockTransfer End(bl ock transfer) {
/* end block transfer */

VME_ErrorPrint(error_code);
return(error_code);

-67-

3.8 Example 8: Block Transfer - Integrated Function

#include “vme_rcc. h”

u_int
VME_Bl ockTransferList _t
i nt
VME_Er r or Code_t
i nt
i nt
[* time-out about

VME_Er r or Code_t
char

/* get contiguous,

pci _address;

bl ock transfer list;

bl ock _transfer;

st at us;

r enai ni ng;

time_out = 10;
10 nsec */

error_code;
error_string[VWNE_MAXSTRI NG ;

menory-| ocked and al i gned user space,

not part of this APl */
sys_address = ny_pci _all ocate();

bl ock transfer list.list _of itens[0Q].vnebus_address
bl ock transfer list.list of items[0].systemiobus address
block transfer list.list_of itens[0].size_requested
bl ock transfer list.list of itens[0Q].control word
[* fill paraneters for first block transfer

bl ock transfer list.list _of itens[1].vnebus_address
bl ock transfer |ist.list _of itens[1l].system.iobus_address

0x22000200;
pci _address;
0x100;

VME_DVA D32R

I Y |

/

0x23000200;

block transfer list.list_of itens[1].size_requested 0x100;
bl ock transfer list.list of itens[1].control word VME_DVA D32R
[* fill paraneters for second block transfer */

bl ock _transfer |ist.nunber_of itens = 2;
/* total nunber of Dblock transfers */

/* continued on next page */

- 68 -

pci _address + 0x100;

if(error_code = VME Bl ockTransfer (&bl ock transfer list, time_out) {
/* integrated function for block transfer */

for(i=0; i< block_transfer_list.nunmber_of itens; i++) {

i f(!'VME_Bl ockTransferStatus(bl ock transfer list,i,&status)) {
/* check status of each block transfer */

VME ErrorString(status,error_string);
printf(“ERROR in exanpl e program block = %, status = %\n",
i,error_string);

}

i f(!'VME_BI ockTransfer Remai ni ng(bl ock_transfer_list,i, & emaining)) {
/* check renmmining words of each block transfer */

printf(“ERROR in exanple program block = %l, remaining = %\n",
i, remaining);

}
}

return(error_code);

- 69 -

3.9 Example9: Interrupts- Synchronous Method

#include “vme_rcc. h”

VME | nterruptList t interrupt |ist;

i nt i nterrupt;

VME I nterruptinfo_t i nterrupt _info;

i nt ti me_out = 100000;
/* time-out about 100 sec */

VME_Er r or Code_t error_code;

u_int error_nunber;

interrupt _list.list_of itenms[0].vector = 0x11

interrupt list.list _of itens[0].level =1

interrupt _list.list_of itens[0].type = VME_I NT_RORA!
[* fill parameters for first interrupt */

interrupt _list.list_of items[1].vector = 0x22;

interrupt list.list_of items[1].Ievel =2

interrupt _list.list_of itens[1l].type = VME_I NT_RQAK;

[* fill paraneters for second interrupt */
interrupt _|ist.nunber_of itens = 2
[* total nunber of interrupts */
if(error_code = VME InterruptLink(& nterrupt list, & nterrupt) {

[* link VMEbus interrupt list to application program */

VME_ErrorPrint(error_code);
return(error_code);

/* continued on next page */

-70-

if(error_code = VME InterruptVait(interrupt, time_out, & nterrupt_info){
[* wait for interrupt */

VMVE_Er r or Nunber (error_code, error_nunber);
/* convert error code to error nunber */

i f(error_nunber == VME_TI MEQUT) {
/* conpare error nunber to return value */

printf(“ERROR in exanple program no interrupt in 100 sec\n”);

}

el se {
VME_ErrorPrint(error_code);

}

return(error_code);

}

if(error_code = VME InterruptlnfoGet(& nterrupt_info) {
/* get information on interrupt */

VMVE_ErrorPrint(error_code);
return(error_code);

}
if(interrupt_info.level == 1) {
[* interrupt froma |level assigned to RORA interrupters? */
if(error_code = VME_InterruptRenabl e(interrupt) {
/* re-enable interrupt => can wait again on interrupt */
VME_ErrorPrint(error_code);
return(error_code);
}

VME_I nt errupt Dunp();
[* dunp system paraneters for all VMEbus interrupts */

if(error_code = VME InterruptUnlink(interrupt) {
[* unlink VMEbus interrupt list fromapplication program*/

VME_ErrorPrint(error_code);
return(error_code);

-71-

3.10 Example 10: I nterrupts - Asynchronous M ethod

#include “vme_rcc. h”
#incl ude <signal . h>

i nt gl obal _interrupt;
void nmy_interrupt_handler(int sig) {

[* interrupt handler function */

static VME_Interruptinfo_t i nterrupt _info;
static u_int errod_code;

if(error_code = VME InterruptlnfoCet(& nterrupt_info) {
/* get information on interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}
printf(*“1INTERRUPT in exanple program vector =%2x, multiple =
%d\ n”, i nterrupt _info.vector
interrupt.mltiple);
if(interrupt _info.level == 1) {
[* interrupt froma level assigned to RORAinterrupters? */
if(error_code = VME Interrupt Renabl e(gl obal _interrupt) {
/* re-enable interrupt => can wait again on interrupt */
VME_ErrorPrint(error_code);
return(error_code);
}
}
}
VME | nterruptList t interrupt |ist;
VME_Interruptinfo_t I nterrupt _info;
i nt time_out = 100000;
/* time-out about 100 sec */
VME_Er r or Code _t error _code;
u_int error_nunber

/* continued on next page */

-72-

interrupt _list.list_of itens[0].vector = 0x11

interrupt _|ist.list_of itenms[0].level =1,

interrupt list.list of itens[0].type = VME_| NT_RORA
[* fill paraneters for first interrupt */

interrupt list.list of items[1].vector = 0x22;

interrupt _list.list_of itens[1].Ievel =2

interrupt list.list_of itens[1].type = VME_|I NT_RQAK;

[* fill paraneters for second interrupt */

interrupt |ist.nunber_of itens = 2
[* total nunber of interrupts */

if(error_code = VME InterruptLink(& nterrupt _list, &global interrupt) {
[* link VMEbus interrupt list to application program */

VME_ErrorPrint(error_code);
return(error_code);

if(error_code = VME_ I nterruptRegi sterSignal (gl obal interrupt, SIGUS) {
/* register SIGBUS signal for VMEbus interrupt list */

VME_ErrorPrint(error_code);
return(error_code);

/* install exanple interrupt handler for SIGBUS signal,
not part of this API, see function sigaction() */

/* VMEbus interrupts will be caught asynchronously by
exanpl e interrupt handler */

if(error_code = VME InterruptRegisterSignal (global _interrupt,0) {
/* (un-)register signal for VMEbus interrupt list */

VME_ErrorPrint(error_code);
return(error_code);

}

if(error_code = VME InterruptUnlink(global interrupt) {
[* unlink VMEbus interrupt list fromapplication program*/

VMVE_ErrorPrint(error_code);
return(error_code);

-73-

3.11 Example 11: Interrupts - Generate I nterrupts

#include “vme_rcc. h”
#incl ude <signal . h>

u_int l evel = 1;
u_int vector = Ox11;

VME_Er r or Code_t error_code;

if(error_code = VME InterruptGenerate(level, vector) {
/* generate VMEbus interrupt */

VME_ErrorPrint(error_code);
return(error_code);

-74-

4 VMEbus Utility Programs

Two utility programs can accompany the APl implementation: a utility program to configure
the VMEDbus statically must accompany the VMEbus API, if the implementation requires this.
A utility program to test and debug the VM EDbus (and the APl implementation) and afacility to
scan the VM Ebus address space shall always accompany the VMEbus API.

4.1 VMEbus Configuration Utility

The VMEDbus configuration utility (“vmeconfig”), if required by the APl implementation, is
used to configure some static parameters necessary to use the VMEbus. It isused, in particular,
to configure the following parameters:

* static mapping parameters for VMEbus CR/CSR space;
* static mapping parameters for VM Ebus master and slave mappings,
* byte swapping capabilities of the VMEbus bridge;

 enabling and disabling of VMEDbus interrupt levels, specifying of the associated VMEbus
interrupter types (ROAK or RORA), required for handling of VMEDbus interrupts.

The VMEbus configuration utility is intended to be run at boot time when the ROD Crate
Processor is started.

4.2 VMEDbus Test and Debug Utility

The VMEDbus test and debug facility (“vmescope’) must allow to test and debug the VMEbus
(and the API implementation). It has, in particular, to provide means to perform the following
functions:

 dump system parameters of the VM Ebus bridge;

* create VMEbus master and slave mapping and read and write single values,
» perform VMEbus block transfers;

* receive VMEDbus interrupts.

4.3 VMEDbus Scanning Facility

The VMEDbus scanning facility (“vmescan”) must allow to scan the VMEbus and to report any
found VM Ebus modules. It has, in particular, to perform the following functions:

* scan the whole VM Ebus address space;
* scan the whole VMEbus CR/CSR space.

-75-

5 ldeasfor a C++ Binding

This section presents some first ideas on a possible C++ binding or wrapping of the VMEbus
API. It shows the public members of the classes along with some of the private members.

There are two levels of VMEDbus related classes:

1.VME class:

The VME class is a singleton which is generated and deleted using static methods. It con-
tains some members for return codes, CR/CSR access, bus error handling and printing of
genera information. The VME class is used to generate and delete all other VMEbus
related classes; in that sense it is afactory of the other VMebus related classes.

2. VMEMasterMap, VM ESlaveM ap, VM EBIlock Transfer and VM EInterrupt classes:

Those classes are used for master mappings and single cycles, slave mappings, block trans-
fers and interrupts, respectively. They correspond to the identifiers used in the C binding,
i.e. master_mapping, slave_mapping, block transfer and interrupt. Their constructors cor-
respond to the functions returning an identifier, their destructors to those invalidating the
identifier.

-76-

5.1 Types

/'l bus error information
t ypedef VME_BusErrorinfo_t VMEBuUsErrorlnfo;

/1 VMEbus interrupt information
typedef VME_InterruptlList_t VMEInterruptlList;
typedef VME Interruptinfo_t VMElInterruptlnfo;

/'l block transfer

typedef VME Bl ockTransferltemt VMEBI ockTransferltem
t ypedef VME Bl ockTransferList t VMEBI ockTransferlList;
t ypedef VME_Bl ockTransferlnfo_t VMEBI ockTransferl nfo;

-77-

5.2 VMEbuslibrary/driver

class VME {

public:
/'l singleton nembers
static VME* Qpen();
static u_int Cose();

/'l menbers for return codes

static int ErrorPrint(u_int error_code);

static int ErrorString(u_int error_code, string* error_string);
static int ErrorNunmber(u_int erro_code, u_int* error_nunber);

/'l members for CR/CSR access
u_int ReadCRCSR(int slot, u_int crcsr_field, u_int* value);
u_int WiteCRCSR(int slot, u_int crcsr_field, u_int data);

Il menmbers for bus error handling
u_int BusErrorRegisterSignal (int signal _nunber);
u_int BusErrorlnfoGet(VME BusErrorlnfo& bus error_info);

Il factory nenbers

VMEMast er Map* Mast er Map(u_i nt vrmebus_address, u_int w ndow size
u_int address_nodifier, u_int options);

u_int MasterUnmap(VME_Mast er Map* mast er _map);

VMES| aveMap* Sl aveMap(u_int system.iobus_address, u_int w ndow size,
address_wi dth, u_int options);
u_int Sl aveUnmap(VME_SI aveMap*sl ave _nap) ;

VMEBI ockTr ansfer* Bl ockTransfer(const VMEB| ockTransferListé&
bl ock _transfer list);
u_int Bl ockTransferDel et e(VME_Bl ockTransfer* bl ock_transfer);

VMEI nterrupt* Interrupt(const VMEInterruptListé&
interrupt _list);
u_int InterruptDel ete(VMEINterrupt* interrupt);

u_int InterruptGenerate(u_char vector, u_int level);
/'l status dunps

u_int MasterMapDunp() const;

u_int SlaveMapDunp() const;

u_int BlockTransferDunmp() const;
u_int InterruptDunp() const;

/'l continued on next page

-78-

private:
VIVE() ;
~VME()

static VME* ny_instance;
static int my_users;

[l internals

-79-

5.3 VMEbusMaster Mapping

cl ass VMEMast er Map {

public:
Il members for safe access
u_int ReadSafe(u_int address_offset, u_int* value);
u_int WiteSafe(u_int address_offset, u_int data);

u_int ReadSafe(u_int address_offset, u_short* value);
u_int WiteSafe(u_int address_offset, u_short data);

u_int ReadSafe(u_int address offset, u_char* value);
u_int WiteSafe(u_int address_offset, u_char data);

Il members for fast access
inline void ReadFast(u_int address_offset, u_int* value);
inline void WiteFast(u_int address offset, u_int data);

inline void ReadFast (u_int address_offset, u_short* value);
inline void WiteFast(u_int address_offset, u short data);

inline void ReadFast (u_int address_offset, u_char* value);
inline void WiteFast(u_int address offset, u _char data);

I'l hel pers
u_int Virtual Address(u_int* virtual address) const;
u_int Dunp() const;

Il operator to return status of object
u_int operator()();

[l friends
friend class VM

private:
VME_Mast er Map(u_i nt vnebus_address, u_int w ndow Si ze,
u_int address_modifier, u_int options);
~VME_Mast er Map() ;

i nt my_identifier;
VME_Mast er Map_t ny_master _map;
i nt my_st at us;

[l internals

-80-

5.4 VMEDbus Slave Mapping

class VMES|I aveMap {

public:
I'l hel pers
u_int VnebusAddress(u_int* vnebus_address) const;
u_int Dunp() const;

Il operator to return status of object
u_int operator()();

[l friend
friend class VME

private:
VME_S| aveMap(u_i nt system iobus_address, u_int w ndow size,
u_int address_w dth, u_int options);
~VME_S| aveMap() ;

i nt my_identifier;
VME_S| aveMap _t my_sl ave_nap;
u_int ny_stat us;

[l internals

-81-

5.5 VMEbusBlock Transfer

cl ass VMEBI ockTransfer {

public:
/1 main menbers
u_int Start();
u_int Wait(int tine_out);

I'l hel pers

u_int Status(int position_of block, u_int* status);
u_int Remaining(int position_of block, int* remaining);
u_int Dunp() const;

/'l operator to return status of object
u_int operator()();

/[l friend
friend class VME

private:
VME_BI ockTr ansfer(const VMEBI ockTransferlList&
bl ock _transfer list);
~VME_Bl ockTransfer();

i nt ny _identifier;
VMEBI ockTr ansf er Li st nmy_bl ock _transfer |ist;
u_int nmy_stat us;

[l internals

-82-

5.6 VMEbusInterrupts

class VMEInterrupt {

public:
/'l main menbers
u_int Wait(int tine_out, VMEInterruptlnfo& interrupt_info);
u_int Signal Register(int signal_nunber);
u_int InfoGet(VMEINnterruptinfo& interrupt_info);
u_int Reenable();

I'l hel per
u_int Dunp() const;

/'l operator to return status of object
u_int operator()();

/[l friend
friend class VME

private:
VME_ I nterrupt(const VMEinterruptList& interrupt list);
~VME Interrupt();

i nt my_identifier;
VMEI nt errupt Li stt my_interrupt |ist;
u_int ny_status;

/1 internals

-83-

	VMEbus Application Program Interface
	Authors : R. Spiwoks, M. Joos, C. Parkman, J. Petersen
	comments and queries to Ralf Spiwoks, CERN +41 22 767 3871 Ralf.Spiwoks@cern.ch

	Abstract
	This note defines an application program interface (API) for the use of VMEbus in the Read-Out Dr...
	Table of Contents
	1 Introduction
	1.1 Description of the API
	1.2 Design Issues
	1. Simplicity and uniformity
	2. Names
	3. Identifiers
	4. Return codes
	5. Known limitations

	1.3 Implementation Issues
	1. Layered implementation
	2. Utility programs
	3. System-level services
	4. Bus error handling
	5. Blocking functions
	6. Interrupts
	7. Multi-processing and multi-threading
	8. Logging
	9. Language binding
	10. Data types

	1.4 Organization of this Document
	2 Application Program Interface

	2.1 Overview
	Type Definitions
	Functions for Return Codes
	General Functions
	CR/CSR Access
	Bus Error Handling
	Master Mapping and Single Cycles
	Slave Mapping
	Block Transfer
	Interrupts

	2.2 Type Definitions
	2.3 Functions for Return Codes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.4 General Functions
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.5 VMEbus CR/CSR Access
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.6 VMEbus Master Mapping and Single Cycles
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	none

	Programming Example
	Notes
	Synopsis
	Parameter
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameter
	none

	Description
	Return Values
	Programming Example
	Notes

	2.7 VMEbus Error Handler
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.8 VMEbus Slave Mapping
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.9 VMEbus Block Transfers
	Synopsis
	Fields
	Description
	control_word must be ORed bit-wise with one of the following address modes:

	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	1. VME_BlockTransferInit(),
	2. VME_Block�Trans�fer�Start(),
	3. VME_BlockTransferWait() and
	4. VME_BlockTransfer�End().

	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.10 VMEbus Interrupts
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes
	3 Programming Examples

	3.1 Example�1: Functions for Return Codes
	3.2 Example�2: CR/CSR Space
	3.3 Example�3: Master Mapping - Safe Access
	3.4 Example�4: Master Mapping - Fast Access
	3.5 Example�5: Master Mapping - Bus Error Handler
	3.6 Example�6: Slave Mapping
	3.7 Example�7: Block Transfer - Detailed Functions
	3.8 Example�8: Block Transfer - Integrated Function
	3.9 Example�9: Interrupts - Synchronous Method
	3.10 Example�10: Interrupts - Asynchronous Method
	3.11 Example�11: Interrupts - Generate Interrupts
	4 VMEbus Utility Programs

	4.1 VMEbus Configuration Utility
	4.2 VMEbus Test and Debug Utility
	4.3 VMEbus Scanning Facility
	5 Ideas for a C++ Binding
	1. VME class:
	2. VMEMasterMap, VMESlaveMap, VMEBlockTransfer and VMEInterrupt classes:

	5.1 Types
	5.2 VMEbus library/driver
	5.3 VMEbus Master Mapping
	5.4 VMEbus Slave Mapping
	5.5 VMEbus Block Transfer
	5.6 VMEbus Interrupts

