
ATLAS Internal Note
ATL-D-ES-0004

Version 1.5
17 June 2002
VMEbus Application Program Interface
Authors : R. Spiwoks, M. Joos, C. Parkman, J. Petersen

comments and queries to Ralf Spiwoks, CERN
+41 22 767 3871

Ralf.Spiwoks@cern.ch
Abstract

This note defines an application program interface (API) for the use of VMEbus in the Read-Out
Driver (ROD) system. The API will be used in the ROD Crate DAQ in order to communicate with
the ROD(s) and other equipment in the ROD crate which is also to be controlled. The API con-
tains functions related to the use of the VMEbus master mapping, the VMEbus errors, the VME-
bus slave mapping, the VMEbus block transfers and the VMEbus interrupts.



Table of Contents

1 Introduction 3
1.1 Description of the API 3

1.2 Design Issues 3

1.3 Implementation Issues 4

1.4 Organization of this Document 5

2 Application Program Interface 7
2.1 Overview 7

2.2 Type Definitions 9

2.3 Functions for Return Codes 10

2.4 General Functions 13

2.5 VMEbus CR/CSR Access 15

2.6 VMEbus Master Mapping and Single Cycles 17

2.7 VMEbus Error Handler 26

2.8 VMEbus Slave Mapping 29

2.9 VMEbus Block Transfers 34

2.10 VMEbus Interrupts 45

3 Programming Examples 57
3.1 Example 1: Functions for Return Codes 57

3.2 Example 2: CR/CSR Space 58

3.3 Example 3: Master Mapping - Safe Access 59

3.4 Example 4: Master Mapping - Fast Access 61

3.5 Example 5: Master Mapping - Bus Error Handler 63

3.6 Example 6: Slave Mapping 65

3.7 Example 7: Block Transfer - Detailed Functions 66

3.8 Example 8: Block Transfer - Integrated Function 68

3.9 Example 9: Interrupts - Synchronous Method 70

3.10 Example 10: Interrupts - Asynchronous Method 72

3.11 Example 11: Interrupts - Generate Interrupts 74

4 VMEbus Utility Programs 75
4.1 VMEbus Configuration Utility 75

4.2 VMEbus Test and Debug Utility 75

4.3 VMEbus Scanning Facility 75

5 Ideas for a C++ Binding 76
5.1 Types 77

5.2 VMEbus library/driver 78

5.3 VMEbus Master Mapping 80

5.4 VMEbus Slave Mapping 81

5.5 VMEbus Block Transfer 82

5.6 VMEbus Interrupts 83
- 2 -



1 Introduction

1.1 Description of the API

This note defines an application program interface (API) for the use of VMEbus in the Read-
Out Driver (ROD) system. The API will be used in the ROD Crate DAQ (see EDMS note
ATL-D-ES-0007) in order to communicate with the ROD(s) and other equipment in the ROD
crate which is also to be controlled.

The API contains functions related to the following uses of the VMEbus:

• master mappings and single cycles;

• bus error handling;

• slave mappings;

• block transfers;

• interrupts.

The API further contains type definitions, functions to handle the return codes and general
functions for the use of the VMEbus.

The API assumes the presence of an operating system and of high-level language compilers on
the ROD Crate Processor.

1.2 Design Issues

A few notes on the design guidelines of the API:

1. Simplicity and uniformity

- The API was designed to be as simple as possible and only be as complicated as neces-
sary.

- The API provides general-purpose services to the application program.

- The API hides all differences of different hardware platforms. The functions of the API
are the same on all different platforms. The return codes can, however, be different.

2. Names

- The API uses readable and meaningful names for all of its functions, as well as the com-
mon prefix “VME_”.

3. Identifiers

- The API uses identifiers of type “int” for the following complex entities: master mapping,
slave mapping, block transfers and interrupts.

- There is one function for each type of entity which creates the corresponding entity and
returns the identifier.

- The identifier is to be used in subsequent function calls for this type of entity.

4. Return codes

- All functions of the API return an unambiguous return code.
- 3 -



- The return code is equal to 0 if the function has terminated without error. The return code
is different from 0 in case the function terminated with an error.

- The return code is of a type compatible with “unsigned int”. It can be a complex data
type, if the VMEbus API is implemented with libraries which use a complex type for the
return code.

- The return code can be translated into a flat “int” type (à la UNIX errno.h) for comparison
with meaningful symbols.

- A textual representation of the return code can be printed to “stdout” or to a string by the
application program.

5. Known limitations

- No Read-Modify-Write functions are defined in the API. Those can be added later if
needed.

- Each VMEbus vector can only be used by one process.

- No functions are defined in the API to notify the application program of VMEbus fail-
ures, e.g. signalled by SYSFAIL or ACFAIL. Those can be added later if needed.

1.3 Implementation Issues

The following issues are related to the implementation of the API:

1. Layered implementation

The implementation of the API can use low-level libraries and/or system-level drivers if
necessary. The number of different libraries or drivers and the dependencies on other exter-
nal libraries shall, however, be minimised.

2. Utility programs

The implementation of the API can be accompanied by a utility program which is used to
configure the VMEbus statically and by a utility program which allows to test and debug the
VMEbus, see Section 4.

3. System-level services

The implementation of the API shall encapsulate all resource management related to the
VMEbus bridge, the DMA engine(s), the VMEbus error handling and the VMEbus interrupt
handling. The application program shall not deal with those issues explicitly. All resources
shall either be allocated statically using the VMEbus configuration utility or dynamically
using the various functions of the API.

4. Bus error handling

The implementation of the API shall encapsulate, in particular, the VMEbus error handling.
At the level of single-word read and write access, the user shall have the choice to check the
bus error status or to ignore it. In the latter case, a signal can be sent to the application pro-
gram to handle the bus error. Separate functions shall be provided for those cases. At the
level of VMEbus CR/CSR access and block transfers the bus error handling shall always be
included (see Sections 2.5 and 2.9).

5. Blocking functions
- 4 -



The API’s blocking functions, e.g. waiting for the end of a VMEbus block transfer or for a
VMEbus interrupt shall be implemented in an efficient way. The response time between the
external VMEbus event and the return of the function in the application program shall be
minimised.

6. Interrupts

Since it is not known if the VMEbus interrupters in a system are of type Release-On-
Acknowledge (ROAK) or Release-On-Register-Access (RORA), the implementation of the
API shall associate VMEbus interrupt levels exclusively to either of the two types. When a
VMEbus interrupt from a level associated to ROAK interrupters is received the implementa-
tion does not alter the state of the level. When a a VMEbus interrupt from a level associated
to RORA interrupters is received, the implementation disables that level. The level must be
re-enabled by the application program using a function of the API. It is supposed that the
association of levels to interrupter types can statically be modified using the VMEbus con-
figuration utility, see Section 4.1. The same utility will also be used to statically activate the
interrupt levels.

7. Multi-processing and multi-threading

The implementation of the API shall allow for several application programs and multiple
threads within the same application program to use all functions of the API concurrently.
This might require the implementation of one or more drivers for all or parts of the API.

8. Logging

The implementation of the API shall log serious errors with a central logging facility, e.g. a
global file or kernel messages. The implementation of the API shall also log events of the
VMEbus of general interest with the logging facility.

9. Language binding

C was chosen for the language binding of the API as presented in Sections 2 and 3. Some
ideas on a possible C++ language binding or wrapping are presented in Section 5.

10.Data types

For passing data in and out of a VMEbus master mapping using single cycles, separate
functions are proposed for the following types, included from types.h (BSD), see
Section 2.6:

- “unsigned int” or “u_int” (32 bit),

- “unsigned short” or “u_short” (16 bit) and

- “unsigned char” or “u_char” (8 bit).

The user knows the types of values and defines them in the application program. The com-
piler shall be used to enforce type safety for the function calls. For the C++ binding or
wrapping, polymorphic class methods can be used.

1.4 Organization of this Document

Section 2 contains the definition of the API. For each function the section gives a detailed
description of all input and output parameters, a description of the functionality and the return
codes. The section contains sub-section for the type definitions used by the API, functions con-
cerning the return codes, general functions and functions for the CR/CSR access, master map-
ping, bus error handling, slave mapping, block transfers and interrupts.
- 5 -



Section 3 contains programming examples which show how the API is to be used. The exam-
ples cover all important cases for return codes, CR/CSR access, master mapping, bus error
handling, slave mapping, block transfers and interrupts.

Section 4 contains a description of the utility programs which accompany the API implementa-
tion. Some implementations will require a VMEbus configuration utility. For all implementa-
tions there shall be a test and debugging, as well as a scanning utility.

Section 5 gives some ideas on a possible C++ language binding or wrapping of the API. The
public members of the classes are shown.
- 6 -



2 Application Program Interface

2.1 Overview

The following list is an overview of all type and function definitions in the VMEbus API:

Type Definitions

• u_int, u_short, u_char

• VME_ErrorCode_t

• VME_BusErrorInfo_t

• VME_MasterMap_t

• VME_SlaveMap_t

• VME_BlockTransferItem_t

• VME_BlockTransferList_t

• VME_InterruptItem_t

• VME_InterruptList_t

• VME_InterruptInfo_t

Functions for Return Codes

• VME_ErrorPrint

• VME_ErrorString

• VME_ErrorNumber

General Functions

• VME_Open

• VME_Close

CR/CSR Access

• VME_ReadCRCSR

• VME_WriteCRCSR

Bus Error Handling

• VME_BusErrorRegisterSignal

• VME_BusErrorInfoGet

Master Mapping and Single Cycles

• VME_MasterMap

• VME_MasterMapVirtualAddress

• VME_ReadSafeUInt, VME_ReadSafeUShort, VME_ReadSafeUChar

• VME_WriteSafeUInt, VME_WriteSafeUShort, VME_WriteSafeUChar

• VME_ReadFastUInt, VME_ReadFastUShort, VME_ReadFastUChar

• VME_WriteFastUInt, VME_WriteFastUShort, VME_WriteFastUChar

• VME_MasterUnmap

• VME_MasterMapDump
- 7 -



Slave Mapping

• VME_SlaveMap

• VME_SlaveMapVmebusAddress

• VME_SlaveUnmap

• VME_SlaveMapDump

Block Transfer

• VME_BlockTransferInit

• VME_BlockTransferStart

• VME_BlockTransferWait

• VME_BlockTransferEnd

• VME_BlockTransfer

• VME_BlockTransferStatus

• VME_BlockTransferRemaining

• VME_BlockTransferDump

Interrupts

• VME_InterruptLink

• VME_InterruptWait

• VME_InterruptRegisterSignal

• VME_InterruptInfoGet

• VME_InteruptReenable

• VME_InterruptUnlink

• VME_InterruptGenerate

• VME_InterruptDump

The following remarks apply to all functions defined in the API:

• If not stated otherwise, all functions of this API are non-blocking, i.e. they return immedi-
ately indicating an error code if necessary. Wherever functions are blocking, i.e. waiting on
external events, e.g. end of block transfer or VMEbus interrupt, this is stated explicitly.

• The return values of all function of this API can be used for comparison, after the error code
has been converted to an error number. The return value VME_SUCCESS (≡ 0) can always
be used for comparison.

• The implementation of the API is in the following called the “VMEbus library/driver”.
- 8 -



2.2 Type Definitions

The following types are defined in “vme_rcc.h” for general use throughout the API:

Data Transfer Types

typedef unsigned int u_int; (included from types.h; 32 bit)

typedef unsigned short u_short; (included from types.h; 16 bit)

typedef unsigned char u_char; (included from types.h; 8 bit)

Return Code Type

typedef unsigned int VME_ErrorCode_t;

Other Types

VME_MasterMap_t see Section 2.6, page 17;

VME_BusErrorInfo_t see Section 2.7, page 27;

VME_SlaveMap_t see Section 2.8, page 29;

VME_BlockTransferItem_t see Section 2.9, page 34;
VME_BlockTransferList_t see Section 2.9, page 36;

VME_InterruptItem_t see Section 2.10, page 45;
VME_InterruptList_t see Section 2.10, page 46;
VME_InterruptInfo_t see Section 2.10, page 49;
- 9 -



2.3 Functions for Return Codes

VME_ErrorPrint()

Synopsis

#include “vme_rcc.h”
u_int VME_ErrorPrint(VME_ErrorCode_t error_code);

Parameters

Description

The VME_ErrorPrint() function prints a textual representation of error_code to “stdout”.

Return Values

Programming Example

For a programming example see Section 3.1.

Notes

none

VME_ErrorCode_t error_code in error code to be printed

VME_SUCCESS The error code was successfully printed.

VME_NOTKNOWN The error code is not known.
- 10 -



VME_ErrorString()

Synopsis

#include “vme_rcc.h”
u_int VME_ErrorString(VME_ErrorCode_t error_code, char* error_string);

Parameters

Description

The VME_ErrorString() function returns a textual representation of error_code in the charac-
ter string error_string. error_string must contain space for at least VME_MAXSTRING
(defined in “vme_rcc.h”) characters.

Return Values

Programming Example

For a programming example see Section 3.1.

Notes

none

VME_ErrorCode_t error_code in error code to be converted to a character string

char* error_string out character string containing the textual representation of
the error code

VME_SUCCESS The error code was successfully converted to a textual representation.

VME_NOTKNOWN The error code is not known.
- 11 -



VME_ErrorNumber()

Synopsis

#include “vme_rcc.h”
u_int VME_ErrorNumber(VME_ErrorCode_t error_code, int* error_number);

Parameters

Description

The VME_ErrorNumber() function converts the possibly complex error_code into a flat error
number error_number. The flat error number can then be used for comparison with the return
codes defined in this API. The return code VME_SUCCESS (≡ 0) can always be used for com-
parison.

Return Values

Programming Example

For a programming example see Section 3.1.

Notes

none

VME_ErrorCode_t error_code in error code to be converted to an error number

int* error_number out error number corresponding to the error code

VME_SUCCESS The error code was successfully converted to an error number.

VME_NOTKNOWN The error code is not known.
- 12 -



2.4 General Functions

VME_Open()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_Open(void);

Parameters

none

Description

The VME_Open() function opens the VMEbus library/driver and allocates the resources
required to use the VMEbus. This function must be called prior to any other function of the
VMEbus API.

Return Values

Programming Example

For a programming example see Section 3.2.

Notes

none

VME_SUCCESS The VMEbus library/driver was successfully opened.

others specific to the implementation
- 13 -



VME_Close()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_Close(void);

Parameters

none

Description

The VME_Close() releases all resources which were allocated in a VME_Open() function call
and closes the VMEbus library/driver. This function is the last function of the API to be called
by the application program.

Return Values

Programming Example

For a programming example see Section 3.2.

Notes

none

VME_SUCCESS The VMEbus library/driver was successfully closed.

VME_NOTOPEN The VMEbus library/driver was not opened.

others specific to the implementation
- 14 -



2.5 VMEbus CR/CSR Access

VME_ReadCRCSR()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_ReadCRCSR(int slot_number, u_int crcsr_field,
u_int* value);

Parameters

Description

The VME_ReadCRCSR() functions reads a value from the field at crcsr_field in the CR/CSR
space of the VMEbus slave at slot slot_number. The symbolic constant VME_MYSLOT
(defined in “vme_rcc.h”) allows access of the CR/CSR space of the VMEbus slave the applica-
tion program runs on.

Symbolic constants for crcsr_field are provided in the “vme_rcc.h” file, see also the VME64
and VME64x standard. The VME_ReadCRCSR() function knows how many bytes, between 1
and 4, must be read for each value.

Return Values

Programming Example

For a programming example see Section 3.2.

Notes

The mapping of the CR/CSR space can be configured statically using the VMEbus configura-
tion utility, see Section 4.1.

int slot_number in number of VMEbus slot to be addressed (0 to 31)

u_int crcsr_field in field name in the CR/CSR space; see description

u_int* value out value read from CR/CSR space

VME_SUCCESS The value was successfully read from CR/CSR space.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOSLOT The slot number is invalid.

VME_NOFIELD The CR/CSR field is invalid.

VME_BUSERROR A VMEbus error occurred during the read from CR/CSR space.

others specific to the implementation
- 15 -



VME_WriteCRCSR()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_WriteCRCSR(int slot_number, u_int crcsr_field,
u_int value);

Parameters

Description

The VME_WriteCRCSR() functions writes a value to the field at crcsr_field in the CR/CSR
space of the VMEbus slave at slot slot_number. The symbolic constant VME_MYSLOT
(defined in “vme_rcc.h”) allows access of the CR/CSR space of the VMEbus slave the applica-
tion program runs on.

Symbolic constants for crcsr_field are provided in the “vme_rcc.h” file, see also the VME64
and VME64x standard. The VME_WriteCRCSR() function knows how many bytes, between
1 and 4, must be written for each value.

Return Values

Programming Example

For a programming example see Section 3.2.

Notes

The mapping of the CR/CSR space can be configured statically using the VMEbus configura-
tion utility, see Section 4.1.

int slot_number in number of VMEbus slot to be addressed (0 to 31)

u_int crcsr_field in field name in the CR/CSR space; see description

u_int value in value to be written to CR/CSR

VME_SUCCESS The value was successfully written to CR/CSR space.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOSLOT The slot number is invalid.

VME_NOFIELD The CR/CSR field is invalid.

VME_BUSERROR A VMEbus error occurred during the write to CR/CSR space.

others specific to the implementation
- 16 -



2.6 VMEbus Master Mapping and Single Cycles

VME_MasterMap_t

Synopsis

in vme_rcc.h:

typedef struct {
u_int vmebus_address;
u_int window_size;
u_int address_modifier;
u_int options;

} VME_MasterMap_t;

Fields

Description

The VME_MasterMap_t type is used to hold input information on a master mapping for use in
a VME_MasterMap() function call. The type definition is provided in the “vme_rcc.h” file.

address_modifier is one of the following parameters (defined in “vme_rcc.h”):

options is a bit-wise combination of the following parameters and possibly some other imple-

mentation-specific ones (all defined in “vme_rcc.h”):

Programming Example

For a programming example see Section 3.3.

Notes

none

u_int vmebus_address base address of the VMEbus window

u_int window_size size of the VMEbus window in number of bytes

u_int address_modifier address modifier to be used when accessing the master mapping

u_int options other options, include read prefetching and write posting

VME_AM09 address mode 0x09

... ...

VME_AM39 address mode 0x39

VME_RP read prefetching

VME_WP write posting
- 17 -



VME_MasterMap()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMap(VME_MasterMap_t* master_map, int*
master_mapping);

Parameters

Description

The VME_MasterMap() function creates a VMEbus master mapping defined by master_map
and returns the identifier master_mapping which is to be used in subsequent function calls.

Return Values

Programming Example

For a programming example see Section 3.3.

Notes

Some parameters for the master mapping, e.g. for static mapping or for byte swapping, can be
configured statically using the VMEbus configuration utility, see Section 4.1.

VME_MasterMap_t*
master_map

in input information on the master mapping

int* master_mapping out identifier of the master mapping;
to be used in subsequent function calls

VME_SUCCESS The master mapping was successfully created.

VME_NOTOPEN The VMEbus library/driver was not opened.

others specific to the implementation
- 18 -



VME_MasterMapVirtualAddress()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMapVirtualAddress(int master_mapping, u_int*
virtual_address);

Parameters

Description

The VME_MasterMapVirtualAddress() function returns the virtual address associated to
master_mapping obtained by a function call to VME_MasterMap(). This address can be used
for fast read and write methods ignoring VMEbus errors, e.g.

value = *(u_int *)(virtual_address + address_offset);
*(u_int *)(virtual_address + address_offset) = data;

Return Values

Programming Example

For a programming example see Section 3.4.

Notes

none

int master_mapping in identifier of master mapping
obtained in call to VME_MasterMap()

u_int* virtual_address out virtual address associated to the master mapping

VME_SUCCESS The virtual address was successfully returned.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.
- 19 -



VME_ReadSafe()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_ReadSafeUInt(int master_mapping, u_int
address_offset, u_int* value);
VME_ErrorCode_t VME_ReadSafeUShort(int master_mapping, u_int
address_offset, u_short* value);
VME_ErrorCode_t VME_ReadSafeUChar(int master_mapping, u_int
address_offset, u_char* value);

Parameters

Description

The VME_ReadSafeXXX() functions reads safely an “unsigned int”, “unsigned short”, or
“unsigned char” value from master_mapping at address_offset. The functions check if a VME-
bus error occurred during the read cycle.

Return Values

Programming Example

For a programming example see Section 3.3.

Notes

none

int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()

u_int address_offset in address offset to be read from;
must be aligned according to type

u_int, u_short, u_char *value out value read from the master mapping

VME_SUCCESS The value was read successfully from the master mapping.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.

VME_RANGE The address offset is outside the window for the master mapping.

VME_ALIGN The address offset is not correctly aligned with respect to the type.

VME_BUSERROR A VMEbus error occurred during the read cycle.

others specific to the implementation
- 20 -



VME_WriteSafe()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_WriteSafeUInt(int master_mapping, u_int
address_offset, u_int value);
VME_ErrorCode_t VME_ReadSafeUShort(int master_mapping, u_int
address_offset, u_short value);
VME_ErrorCode_t VME_ReadSafeUChar(int master_mapping, u_int
address_offset, u_char value);

Parameters

Description

The VME_WriteSafeXXX() functions write safely an “unsigned int”, “unsigned short”, or
“unsigned char” value to master_mapping at address_offset. The functions check if a VMEbus
error occurred during the write cycle.

Return Values

Programming Example

For a programming example see Section 3.3.

Notes

none

int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()

u_int address_offset in address offset to be written to;
must be aligned according to type

u_int, u_short, u_char value out value to be written to the master mapping

VME_SUCCESS The value was written successfully to the master mapping.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.

VME_RANGE The address offset is outside the window for the master mapping.

VME_ALIGN The address offset is not correctly aligned with respect to the type.

VME_BUSERROR A VMEbus error occurred during the write cycle.

others specific to the implementation
- 21 -



VME_ReadFast()

Synopsis

#include “vme_rcc.h”
void VME_ReadFastUInt(int master_mapping, u_int address_offset,
u_int* value);
void VME_ReadFastUShort(int master_mapping, u_int address_offset,
u_short* value);
void VME_ReadFastUChar(int master_mapping, u_int address_offset,
u_char* value);

Parameters

Description

The VME_ReadFastXXX() functions reads an “unsigned int”, “unsigned short”, or “unsigned
char” value from master_mapping at address_offset. The functions ignore possible VMEbus
errors and return immediately. The application program can still receive a signal related to the
VMEbus error, see Section 2.7.

The VME_ReadFastXXX() functions are identical to the following statements:

value_u_int = *(u_int *)(virtual_address + address_offset);
value_u_short= *(u_short *)(virtual_address + address_offset);
value_u_char = *(u_char *)(virtual_address + address_offset);

The virtual address can be obtained using the VME_MasterMapVirtualAddress() function.

Return Values

none

Programming Example

For a programming example see Section 3.4.

Notes

The value read by the VME_ReadFastXXX() functions can be invalid, if a VMEbus error
occurred.

int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()

u_int address_offset in address offset to be read from;
must be aligned according to type

u_int, u_short, u_char *value out value read from the master mapping
- 22 -



VME_WriteFast()

Synopsis

#include “vme_rcc.h”
void VME_WriteFastUInt(int master_mapping, u_int address_offset, u_int
value);
void VME_WriteFastUShort(int master_mapping, u_int address_offset,
u_short value);
void VME_WriteFastUChar(int master_mapping, u_int address_offset,
u_char value);

Parameters

Description

The VME_WriteFastXXX() functions write an “unsigned int”, “unsigned short”, or “unsigned
char” value to master_mapping at address_offset. The functions ignore possible VMEbus
errors and return immediately. The application program can still receive a signal related to the
VMEbus error, see Section 2.7.

The VME_Write FastXXX() functions are identical to the following statements:

*(u_int *)(virtual_address + address_offset) = value_u_int;
*(u_short *)(virtual_address + address_offset) = value_u_short;
*(u_char *)(virtual_address + address_offset) = value_u_char;

The virtual address can be obtained using the VME_MasterMapVirtualAddress() function.

Return Values

none

Programming Example

For a programming example see Section 3.4.

Notes

The value might not be written by the VME_WriteFastXXX() functions, if a VMEbus error
occurred.

int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()

u_int address_offset in address offset to be written to;
must be aligned according to type

u_int, u_short, u_char value out value to be written to the master mapping
- 23 -



VME_MasterUnmap()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterUnmap(int master_mapping);

Parameter

Description

The VME_MasterUnmap() function deletes the VMEbus master mapping associated to
master_mapping. The identifier master_mapping shall not be used after this function call.

Return Values

Programming Example

For a programming example see Section 3.3.

Notes

none

int master_mapping in identifier of master mapping;
obtained in call to VME_MasterMap()

VME_SUCCESS The master mapping was successfully deleted.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The master mapping is not known.

others specific to the implementation
- 24 -



VME_MasterMapDump()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMapDump(void);

Parameter

none

Description

The VME_MasterMapDump() function dumps system parameters for all VMEbus master
mappings to “stdout”.

Return Values

Programming Example

For a programming example see Section 3.3.

Notes

none

VME_SUCCESS The master mappings were successfully dumped.

VME_NOTOPEN The VMEbus library/driver was not opened.
- 25 -



2.7 VMEbus Error Handler

VME_BusErrorRegisterSignal()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BusErrorRegisterSignal(int signal_number);

Parameters

Description

The VME_BusErrorRegisterSignal() function registers signal signal_number with the VME-
bus library/driver. In case the VMEbus library/driver detects a VMEbus error and the VMEbus
error did not occur during one of the following functions:

• VME_ReadCRCSR() or VME_WriteCRCSR(),

• VME_ReadSafeXXX() or VME_WriteSafeXXX(),

• VME_BlockTransferXXX(),

a signal with number signal_number will be sent to the process calling this function. If the
process wants to handle the signal it must install a signal handler. Installing a signal handler is
not part of this API. The value 0 for signal_number is used to “unregister” a signal from the
VMEbus library/driver.

Return Values

Programming Example

For a programming example see Section 3.5.

Notes

none

int signal_number in signal number to be sent in case of VMEbus error

VME_SUCCESS The signal was successfully registered.

VME_NOTOPEN The VMEbus library/driver was not opened.

others specific to the implementation
- 26 -



VME_BusErrorInfo_t

Synopsis

in vme_rcc.h:

typedef struct {
u_int vmebus_address;
u_int address_modifier;
u_int multiple;

} VME_BusErrorInfo_t;

Fields

Description

The VME_BusErrorInfo_t type is used to retrieve information on a VMEbus error. The type
definition is provided in the “vme_rcc.h” file.

Programming Example

For a programming example see Section 3.5.

Notes

none

u_int vmebus_address address at which the VMEbus error occurred

u_int address_modifier address modifier at which the VMEbus error occurred

u_int multiple flag indicating if multiple VMEbus errors occurred
- 27 -



VME_BusErrorInfoGet()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BusErrorInfoGet(VME_BusErrorInfo_t*
bus_error_info);

Parameters

Description

The VME_BusErrorInfoGet() function returns information on the VMEbus error received.
This function can be used in a bus error handler in order to determine where the bus error
occurred.

Return Values

Programming Example

For a programming example see Section 3.5.

Notes

This function is intended for use in the bus error signal handling function, see
VME_BusErrorRegisterSignal().

VME_BusErrorInfo_t*
bus_error_info

out information on VMEbus error

VME_SUCCESS The bus error information was successfully returned.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOBUSERROR There has not been a bus error; bus_error_info is empty.

others specific to the implementation
- 28 -



2.8 VMEbus Slave Mapping

VME_SlaveMap_t

Synopsis

in vme_rcc.h:

typedef struct {
u_int system_iobus_address;
u_int window_size;
u_int address_width;
u_int options;

} VME_SlaveMap_t;

Fields

Description

The VME_SlaveMap_t type is used to input information on a slave mapping for use in a
VME_SlaveMap() function call. The type definition is provided in the “vme_rcc.h” file.

system_iobus_address must point at contiguous, locked and properly aligned user space. The
user space can also be a physical resource, e.g. FIFO of the VMEbus master. Obtaining
system_iobus_address for user space is not part of this API.

address_width is one of the following parameters (defined in “vme_rcc.h”):

options is a bit-wise combination of the following parameters and possibly some other imple-

mentation-specific ones (all defined in “vme_rcc.h”):

Programming Example

For a programming example see Section 3.6.

Notes

none

u_int system_iobus_address (physical) base address of the user space to be mapped

u_int window_size size of the user space in number of bytes

u_int address_width address width to be used by the slave mapping

u_int options other options, include read prefetching and write posting

VME_A32 32-bit addressing

VME_A24 24-bit addressing

VME_RP read prefetching

VME_WP write posting
- 29 -



VME_SlaveMap()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMap(VME_SlaveMap_t* slave_map, int*
slave_mapping);

Parameters

Description

The VME_SlaveMap() function creates a slave mapping defined by slave_map and returns the
identifier slave_mapping which is to be used in subsequent function calls.

Return Values

Programming Example

For a programming example see Section 3.6.

Notes

Some parameters for the slave mapping, e.g. for static mapping or for byte swapping, can be
configured statically using the VMEbus configuration utility, see Section 4.1.

The window size of the created slave mapping will be at least as large as the size requested; it
might be larger.

VME_SlaveMap_t* slave_map in information on the slave mapping

int* slave_mapping out identifier of the slave mapping;
to be used in subsequent function calls

VME_SUCCESS The slave mapping was successfully created.

VME_NOTOPEN The VMEbus library/driver was not opened.

others specific to the implementation
- 30 -



VME_SlaveMapVmebusAddress()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMapVmebusAddress(int slave_mapping, u_int*
vmebus_address);

Parameters

Description

The VME_SlaveMapVmebusAddress() function returns the VMEbus address associated to
slave_mapping. This address can be used by other VMEbus masters.

Return Values

Programming Example

For a programming example see Section 3.6.

Notes

none

int slave_mapping in identifier of the slave mapping
obtained in call to VME_SlaveMap()

u_int* vmebus_address out VMEbus address associated to the slave mapping

VME_SUCCESS The VMEbus address was successfully returned.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The slave mapping is not known.
- 31 -



VME_SlaveUnmap()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveUnmap(int slave_mapping);

Parameters

Description

The VME_SlaveUnmap() function deletes the VMEbus slave mapping associated to
slave_mapping. The identifier slave_mapping shall not be used after this function call.

Return Values

Programming Example

For a programming example see Section 3.6.

Notes

none

int slave_mapping in identifier of the slave mapping
obtained in call to VME_SlaveMap()

VME_SUCCESS The slave mapping was successfully deleted.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The slave mapping is not known.

others specific to the implementation
- 32 -



VME_SlaveMapDump()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMapDump(void);

Parameters

none

Description

The VME_SlaveMapDump() function dumps system parameters for all VMEbus slave map-
pings to “stdout”.

Return Values

Programming Example

For a programming example see Section 3.6.

Notes

none

VME_SUCCESS The slave mappings were successfully dumped.

VME_NOTOPEN The VMEbus library/driver was not opened.
- 33 -



2.9 VMEbus Block Transfers

VME_BlockTransferItem_t

Synopsis

in vme_rcc.h:

typedef struct {
u_int vmebus_address;
u_int system_iobus_address;
u_int size_requested;
u_int control_word;
u_int size_remaining;
u_int status_word;

} VME_BlockTransferItem_t;

Fields

Description

The VME_BlockTransferItem_t type is used to describe a single block transfer in a block
transfer list. This is a requested block transfer which might be split by the subsequent function
calls into one or more actual VMEbus block transfers, e.g. for alignment and size reasons.

system_iobus_address must point to contiguous, locked and properly aligned memory. The
memory management is not part of this API.

control_word specifies the direction and type of block transfer. The type includes the address
mode and specifies possibly enhanced transfer protocols. control_word contains one of the fol-
lowing parameters (defined in “vme_rcc.h”):

u_int vmebus_address VMEbus address

u_int system_iobus_address system I/O bus address

u_int size_requested size of requested transfer in number of bytes

u_int control_word direction and type of block transfer; the type includes address
mode and specifies possibly enhanced transfer protocols

u_int size_remaining size of remaining transfer in number of bytes

u_int status_word status of the block transfer

VME_DMA_D32W transfer data from system I/O bus to VMEbus using 32-bit words

VME_DMA_D32R transfer data from VMEbus to system I/O bus using 32-bit words

VME_DMA_D64W transfer data from system I/O bus to VMEbus using 64-bit words

VME_DMA_D64R transfer data from VMEbus to system I/O bus using 64bit words
- 34 -



control_word must be ORed bit-wise with one of the following address modes:

status_word and size_remaining are filled by the function VME_BlockTransferWait(). They
indicate the status of each block in the block transfer list. The fields can be interpreted with the
help of the VME_BlockTransferStatus() and VME_BlockTransferRemaining()functions.

Programming Example

For a programming example see Section 3.7.

Notes

The block transfer list used by the application program can be independent of an another block
transfer list used by the VMEbus library/driver internally. This is because the actual block
transfers carried out by the VMEbus library/driver might differ from the requested ones due to
boundary and alignment restrictions.

On the Tundra Universe II VMEbus bridge chip, the PCI and VMEbus addresses must be
aligned on a 4-byte boundary. In addition, the difference between the PCI and the VMEbus
addresses must be a multiple of 8 byte.

VME_DMA_2EVMER transfer data from system I/O bus to VMEbus using 2eVME mode

VME_DMA_2EVMEW transfer data from VMEbus to system I/O bus using 2eVME mode

VME_DMA_2ESSTR transfer data from system I/O bus to VMEbus using 2eSST mode

VME_DMA_2ESSTW transfer data from VMEbus to system I/O bus using 2eSST mode

VME_A32 transfer data using 32-bit addressing

VME_A24 transfer data using 64-bit addressing
- 35 -



VME_BlockTransferList_t

Synopsis

in vme_rcc.h:

typedef struct {
int number_of_items;
VME_BlockTransferItem_t list_of_items [VME_MAXBLOCK];

} VME_BlockTransferList_t;

Fields

Description

The VME_BlockTransferList_t type is used to define VMEbus block transfers. The type defi-
nition and the maximum number of blocks VME_MAXBLOCK are provided in the
“vme_rcc.h” file.

Programming Example

For a programming example see Section 3.7.

Notes

A single block transfer must use a block transfer list with only one VME_BlockTransferItem_t
at list_of_items[0] and number_of_items = 1.

int number_of_items number of items used in the block transfer list

VME_BlockTransferItem_t
list_of_items [VME_MAXBLOCK]

list of block transfer items
- 36 -



VME_BlockTransferInit()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferInit(VME_BlockTransferList_t*
block_transfer_list, int* block_transfer);

Parameters

Description

The VME_BlockTransferInit() function allocates resources for the VME_BlockTransferList_t
block_transfer_list and returns the identifier block_transfer which is to be used in subsequent
function calls. It might actually break up the block transfers into an internal list of actual VME-
bus block transfers, e.g. for alignment and size reasons.

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

none

VME_BlockTransferList_t*
block_transfer_list

in list of block transfers

int* block_transfer out identifier of the block transfer;
to be used in subsequent function calls

VME_SUCCESS The block transfer was successfully initialised.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOMEM There is not enough memory to allocate the resources for the
required block transfer list.

VME_TOOLONG The internally generated block transfer list is too long.

VME_NOSIZE The requested size is invalid.

VME_ALIGN The addresses are not correctly aligned.

others specific to the implementation
- 37 -



VME_BlockTransferStart()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferStart(int block_transfer);

Parameters

Description

The VME_BlockTransferStart() function starts the block transfer associated to block_transfer
obtained by a call to VME_BlockTransferInit().

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

This function shall not be blocking. The implementation of this function shall return immedi-
ately, either indicating that the resources of the DMA engine(s) are not available at the moment
(VME_DMABUSY), or by using internal queuing of tasks.

int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferInit()

VME_SUCCESS The block transfer was successfully started.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The block transfer is not known.

VME_DMABUSY The DMA engine(s) are busy.

others specific to the implementation
- 38 -



VME_BlockTransferWait()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferWait(int block_transfer, int
time_out, VME_BlockTransferList_t* block_transfer_list);

Parameters

Description

The VME_BlockTransferWait() function waits until the block transfer associated to
block_transfer is finished or until the time-out has elapsed, whichever occurs first.

time_out is an estimate for the time-out period in milliseconds. The value 0 is used to bypass
the time-out mechanism and to return immediately, indicating the status of the block transfer.
The value -1 is used to bypass the time-out mechanism and to wait until the end of the block
transfer.

The return code contains general status information of the whole block transfer; the individual
status of a single block transfer can be checked using block_transfer_list and the
VME_BlockTransferStatus() and the VME_BlockTransferRemaining() functions.

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

This function is generally blocking, except for time_out ≡ 0.

int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferInit()

int time_out in time-out parameter, see description

VME_BlockTransferList_t*
block_transfer_list

out list of block transfers

VME_SUCCESS The block transfer was successfully started.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The block transfer is not known.

VME_INVALIDTO The time-out is invalid.

VME_TIMEOUT A time-out occurred (if time_out > 0).

VME_DMABUSY The block transfer is busy (if time_out = 0).

others specific to the implementation
- 39 -



VME_BlockTransferEnd()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferEnd(int block_transfer);

Parameters

Description

The VME_BlockTransferEnd() function releases the resources allocated for the block transfer
associated to block_transfer. It must be called at the end of a block transfer. The identifier
block_transfer shall not be used after this function call.

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

none

int block_transfer in identifier of the block transfer
obtained in call to VME_BlockTransferInit()

VME_SUCCESS The block transfer was successfully ended.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The block transfer is not known.

others specific to the implementation
- 40 -



VME_BlockTransfer()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransfer(VME_BlockTransferList_t*
block_transfer_list, int time_out);

Parameters

Description

The VME_BlockTransfer() function uses the VME_BlockTransferList_t block_transfer_list
and calls the following functions in the order shown:

1. VME_BlockTransferInit(),

2. VME_BlockTransferStart(),

3. VME_BlockTransferWait() and

4. VME_BlockTransferEnd().

time_out is the parameter for the VME_BlockTransferWait() function call.

Return Values

Programming Example

For a programming example see Section 3.8.

Notes

This function is generally blocking. The value 0 for time_out in this function shall not be used
because the VME_BlockTransferWait() function will return immediately and the
VME_BlockTransferEnd() function will be called regardless of the state of the transfer.

VME_BlockTransferList_t*
block_transfer_list

in/out list of block transfers

int time_out in time-out parameter, see description

VME_SUCCESS The block transfer was successfully started.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_INVALIDTO The time-out is invalid.

VME_TIMEOUT A time-out occurred (if time_out > 0).

others specific to the implementation
- 41 -



VME_BlockTransferStatus()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferStatus(VME_BlockTransferList_t*
block_transfer_list, int position_of_block, VME_ErrorCode_t* status);

Parameters

Description

The VME_BlockTransferStatus() function returns the status code for the block transfer at
position_of_block in block_transfer_list. This function is added for convenience, the function
is equivalent to the following statement:

status = block_transfer_list.list_of_items[position_of_block].status_word;

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

none

VME_BlockTransferList_t*
block_transfer_list

in list of block transfers

int position_of_block in position of block in block transfer list

VME_ErrorCode_t* status out status of block transfer at position position_of_block

VME_SUCCESS The status was successfully returned.

VME_RANGE The position is outside the range of the block transfer list.
- 42 -



VME_BlockTransferRemaining()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferRemaining(VME_BlockTransferList_t
block_transfer_list, int position_of_block, u_int* remaining);

Parameters

Description

The VME_BlockTransferRemaining () function returns the number of bytes remaining to be
transferred for the block transfer at position_of_block in block_transfer_list. After successful
transfer this value shall be equal to 0. This function is added for convenience, it is equivalent to
the following statement:

remaining = block_transfer_list.list_of_items[position_of_block].size_remaining;

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

none

VME_BlockTransferList_t*
block_transfer_list

in list of block transfers

int position_of_block in position of block in block transfer list

u_int* remaining out number of bytes remaining to be transferred at position
position_of_block

VME_SUCCESS The byte number remaining was successfully returned.

VME_RANGE The position is outside the range of the block transfer list.
- 43 -



VME_BlockTransferDump()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferDump(void);

Parameters

none

Description

The VME_BlockTransferDump() function dumps the status of the DMA engine(s) to “stdout”.

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

none

VME_SUCCESS The status of the DMA engine(s) was successfully dumped.

VME_NOTOPEN The VMEbus library/driver was not opened.
- 44 -



2.10 VMEbus Interrupts

VME_InterruptItem_t

Synopsis

in vme_rcc.h:

typedef struct {
u_char vector;
u_int level;
u_int type;

} VME_InterruptItem_t;

Fields

Description

The VME_InterruptItem_t type is used to describe a single interrupt in a list of interrupts. Each
interrupt is defined by the vector, the level and the type of the VMEbus interrupt that the appli-
cation program requests to be linked to.

type specifies the interrupt handling to be used for the interrupt. The following types are
defined (in “vme_rcc.h”):

Programming Example

For a programming example see Section 3.9.

Notes

The interrupt handling type is required in order to distinguish VMEbus interrupters of RORA
and ROAK type. The interrupt handling type can be configured statically using the VMEbus
configuration utility, see Section 4.1. Usually, the type will be allowed to be configured indi-
vidually for each VMEbus interrupt level. A given level must therefore only be used by VME-
bus interrupts of the associated type.

u_char vector VMEbus interrupt vector

u_int level VMEbus interrupt level

u_int type flag indicating the type of interrupt handling to be used
(see description)

VME_INT_ROAK “Release-On-Acknowledge”

VME_INT_RORA “Release-On-Register-Access”
- 45 -



VME_InterruptList_t

Synopsis

in vme_rcc.h:

typedef struct {
int number_of_items;
VME_InterruptItem_t list_of_items [VME_MAXINTERRUPT];

} VME_InterruptList_t;

Fields

Description

The VME_InterruptList_t type is used to define a list of interrupts. The type definition and the
maximum number of interrupts VME_MAXINTERRUPT are provided in the “vme_rcc.h” file.

Programming Example

For a programming example see Section 3.9.

Notes

A single interrupt must use an interrupt list with only one VME_InterruptItem_t at
list_of_items[0] with number_of_items = 1.

int number_of_items number of items used in the interrupt list

VME_InterruptItem_t
list_of_items[VME_MAXINTERRUPT]

list of interrupt items
- 46 -



VME_InterruptLink()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptLink(VME_InterruptList*
vmebus_interrupt_list, int* interrupt);

Parameters

Description

The VME_InterruptLink() function creates a link between a list of VMEbus interrupts and the
application program. It returns the identifier interrupt which is to be used in subsequent func-
tion calls.

By default, after creation of the interrupt link, the application program applies a synchronous
method waiting for interrupts using the VME_InterruptWait() function. If the application pro-
gram wants to apply an asynchronous method, the VME_InterruptRegisterSignal() function
must be used.

Return Values

Programming Example

For a programming example see Section 3.9.

Notes

A ROAK (“Release-On-AcKnowledge”) type of VMEbus interrupter releases the interrupt

VME_InterruptList*
vmebus_interrupt_list

in list of VMEbus interrupts

int* interrupt out identifier of the interrupt;
to be used in subsequent function calls

VME_SUCCESS The link to the VMEbus interrupt was successfully created.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_TOOMANYINT The list of interrupts requested is too long.

VME_ILLINTLEVEL The interrupt level is illegal.

VME_ILLINTTYPE The interrupt type is illegal.

VME_INTCONF The list of interrupts was not linked to the application program
because an interrupt is in conflict with the static configuration.

VME_INTUSED The list of interrupts cannot be linked to the application program
because an interrupt is already being used.

others specific to the implementation
- 47 -



after the VMEbus Acknowledge cycle; the VMEbus driver therefore does not disable reception of
subsequent interrupts. A RORA (“Release-On-Register-Access”) type of VMEbus interrupter
releases the interrupt only after access to a register of the VMEbus module; the VMEbus driver
therefore disables reception of subsequent interrupts on the same VMEbus interrupt level.

Some parameters for the VMEbus interrupts, e.g. for interrupt levels and the interrupt handling
types, can be configured statically using the VMEbus configuration utility, see Section 4.1. The
VME_InterruptLink() function checks if the requested VMEbus interrupt level has been enabled
and configured for the requested type. A given VMEbus vector can only be used by one process.
- 48 -



VME_InterruptInfo_t

Synopsis

in vme_rcc.h:

typedef struct {
u_char vector;
u_int level;
u_int type;
u_int multiple;

} VME_InterruptInfo_t;

Fields

Description

The VME_InterruptInfo_t type is used to retrieve information on a VMEbus interrupt. The
type definition is provided in the “vme_rcc.h” file.

Programming Example

For a programming example see Section 3.10.

Notes

none

u_char vector VMEbus interrupt vector

u_int level VMEbus interrupt level

u_int type type of VMEbus interrupter (ROAK or RORA)

u_int multiple flag indicating if the VMEbus interrupt occurred multiple times
- 49 -



VME_InterruptWait()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptWait(int interrupt, int time_out,
VME_InterruptInfo_t* interrupt_info);

Parameters

Description

The VME_InterruptWait() function waits until an interrupt associated to interrupt is received
or until the time-out has elapsed, whichever occurs first.

time_out is an estimate for the time-out period in milliseconds. The value 0 is used to bypass
the time-out mechanism and to return immediately, indicating the status of the interrupt. The
value -1 is used to bypass the time-out mechanism and to wait until an interrupt is received.

After a VMEbus interrupt has been received interrupt_info contains the information on the
VMEbus interrupt actually received. Depending on time_out and on the return code,
interrupt_info might be empty.

Return Values

Programming Example

For a programming example see Section 3.9.

Notes

This function is generally blocking, except for time_out ≡ 0.

int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()

int time_out in time-out parameter, see description

VME_InterruptInfo_t*
interrupt_info

out information on VMEbus interrupts

VME_SUCCESS A VMEbus interrupt was successfully received.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The interrupt is not known.

VME_TIMEOUT A time-out occurred (if time_out > 0).

VME_NOINTERRUPT No interrupt has been received (if time_out = 0).

VME_INTBYSIGNAL The function returned because a signal was received.

others specific to the implementation
- 50 -



VME_InterruptRegisterSignal()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptRegisterSignal(int interrupt, int
signal_number);

Parameters

Description

The VME_InterruptRegisterSignal() function registers signal signal_number with the VME-
bus library/driver. In case the VMEbus library/driver receives a VMEbus interrupt of type
interrupt, a signal with number signal_number will be sent to the process calling this function.
If the process wants to handle the signal it must install a signal handler. Installing a signal han-
dler is not part of this API. The value 0 for signal_number is used to “unregister” a signal from
the VMEbus library/driver.

Return Values

Programming Example

For a programming example see Section 3.10.

Notes

none

int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()

int signal_number in signal number to be sent in case of VMEbus interrupt

VME_SUCCESS A signal was successfully registered.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The interrupt is not known.

others specific to the implementation
- 51 -



VME_InterruptInfoGet()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptInfoGet(int interrupt,
VME_InterruptInfo_t* interrupt_info);

Parameters

Description

The VME_InterrupInfotGet() function returns information on the VMEbus interrupt received.
The function can be called at any time. It returns VME_NOINTERRUPT if no interrupt has
been received.

The VME_InterruptInfoGet() function must be called for each interrupt, either after a
VME_InterruptWait() function or in a signal handler associated to that interrupt using the
VME_InterruptRegisterSignal() function.

Return Values

Programming Example

For a programming example see Section 3.10.

Notes

none

int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()

VME_InterruptInfo_t*
interrupt_info

out information on VMEbus interrupts

VME_SUCCESS The interrupt information was successfully returned.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The interrupt is not known.

VME_NOINTERRUPT There has not been an interrupt; interrupt_info is empty.

others specific to the implementation
- 52 -



VME_InterruptReenable()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptReenable(int interrupt);

Parameters

Description

The VME_InterruptRenable() function re-enables the interrupt associated to interrupt, if the
interrupt received came from a “Release-On-Register-Access” (RORA) interrupter.

The VME_InterruptReenable() function must be called in case the interrupt received came
from a RORA interrupter. If it came from a ROAK interrupter the interrupt will be automati-
cally be re-enabled by the VMEbus library/driver.

Return Values

Programming Example

For a programming example see Section 3.7.

Notes

The VMEbus configuration utility is used to associate VMEbus interrupt levels to either of the
two different types of VMEbus interrupters. When the VMEbus library/driver receives an
interrupt from a level which has been associated to RORA interrupters it disables that level.
The application program will receive the interrupt after a call to the VME_InterruptWait()
function or using a signal handler previously installed with the VME_InterruptSignal-
Register() function. After handling the interrupt, the application program must call the
VME_InterruptReenable() function in order to re-enable the associated VMEbus level.

Enabling VMEbus interrupts generated by a VMEbus interrupter is independent of this func-
tion and not part of this API.

int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()

VME_SUCCESS The VMEbus interrupt was successfully enabled.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The interrupt is not known.

others specific to the implementation
- 53 -



VME_InterruptUnlink()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptUnlink(int interrupt);

Parameters

Description

The VME_InterruptUnlink() function deletes the link between the VMEbus interrupts associ-
ated to interrupt and the application program. The identifier interrupt shall not be used after
this function call.

Return Values

Programming Example

For a programming example see Section 3.9.

Notes

none

int interrupt in identifier of the interrupt
obtained in call to VME_InterruptLink()

VME_SUCCESS The link to the interrupt was successfully deleted.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_NOTKNOWN The interrupt is not known.

others specific to the implementation
- 54 -



VME_InterruptGenerate()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptGenerate(u_char vector, u_int level);

Parameters

Description

The VME_InterruptGenerate() function generates a VMEbus interrupt at level level with vec-
tor vector. This function can be used in order to send an interrupt to another VMEbus interrupt
handler.

Return Values

Programming Example

For a programming example see Section 3.11.

Notes

Some parameters for VMEbus interrupt generation, e.g. for the interrupt level, can be config-
ured statically using the VMEbus configuration utility, see Section 4.1.

u_char vector in VMEbus interrupt vector

u_int level in VMEbus interrupt level

VME_SUCCESS The interrupt was successfully generated.

VME_NOTOPEN The VMEbus library/driver was not opened.

VME_IRGBUSY The VMEbus interrupter is busy.

others specific to the implementation
- 55 -



VME_InterruptDump()

Synopsis

#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptDump(void);

Parameters

none

Description

The VME_InterruptDump() function dumps system parameters associated to interrupt han-
dling and generation to “stdout”.

Return Values

Programming Example

For a programming example see Section 3.9.

Notes

none

VME_SUCCESS The status of the interrupt handling was successfully dumped.

VME_NOTOPEN The VMEbus library/driver was not opened.
- 56 -



3 Programming Examples

3.1 Example 1: Functions for Return Codes

#include “vme_rcc.h”
...

VME_ErrorCode_t error_code;
char error_string[VME_MAXSTRING];
u_int error_number;
...

error_code = VME_Open();
if(error_code != VME_SUCCESS) {

/* compare error code to VME_SUCCESS */

VME_ErrorPrint(error_code);
/* print error code to stdout */

return(error_code);
}
...

error_code = VME_Close();
if(error_code != VME_SUCCESS) {

/* compare error code to VME_SUCCESS */

VME_ErrorString(error_code,error_string);
/* print error code to char string */

printf(“ERROR in example program: %s\n”,error_string);
return(error_code);

}
...

error_code = VME_Close();
VME_ErrorNumber(error_code,error_number);

/* convert error code to error number */

if(error_number == VME_NOTOPEN) {
/* compare error number to return value */

printf(“ERROR in example program: already closed\n”);
return(error_code);

}

- 57 -



3.2 Example 2: CR/CSR Space

#include “vme_rcc.h”
...

int slot_number = 5;
u_int module_identifier;
u_int vmebus_address = 0x22000000;

VME_ErrorCode_t error_code;
...

if(error_code = VME_ReadCRCSR(slot_number, VME_CR_MODULEID,
&module_identifier)) {

/* read from the CR/CSR space: e.g. module identifier */

VME_ErrorPrint(error_code);
return(error_code);

}
...

if(error_code = VME_WriteCRCSR(slot_number, VME_CSR_ADER0,
vmebus_address)) {

/* write to CR/CSR space:
e.g. base address to address decode comparator */

VME_ErrorPrint(error_code);
return(error_code);

}

- 58 -



3.3 Example 3: Master Mapping - Safe Access

#include “vme_rcc.h”
...

VME_MasterMap_t master_map;
int master_mapping;
u_int value_u_int;
u_int address_offset = 0x200;

VME_ErrorCode_t error_code;
u_int error_number;
...

master_map.vmebus_address = 0x22000000;
master_map.window_size = 0x00800000;
master_map.address_modifier = VME_AM09;
master_map.options = 0;

/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
/* create a new master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}
...

if(error_code = VME_ReadSafeUInt(master_mapping, address_offest,
&value_u_int)) {

/* read safely from the master mapping */

VME_ErrorNumber(error_code, &erorr_number);
if(error_number != VME_BUSERROR) {

printf(“ERROR in example program: bus error\n”);
}
return(error_code);

}
...

/* continued on next page */
- 59 -



value_u_int = 0xFFFFFFFF;
if(error_code = VME_WriteSafeUInt(master_mapping, address_offset,
value_u_int)) {

/* write safely to the master mapping */

VME_ErrorNumber(error_code, &erorr_number);
if(error_number != VME_BUSERROR) {

printf(“ERROR in example program: bus error\n”);
}
return(error_code);

}
...

VME_MasterMapDump();
/* dump system parameters for all master mappings */

...

if(error_code = VME_MasterUnmap(master_mapping)) {
/* delete the master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}

- 60 -



3.4 Example 4: Master Mapping - Fast Access

#include “vme_rcc.h”
...

VME_MasterMap_t master_map;
int master_mapping;
u_int virtual_address;
u_int value_u_int;
u_int address_offset = 0x200;

VME_ErrorCode_t error_code;
...

master_map.vmebus_address = 0x22000000;
master_map.window_size = 0x00800000;
master_map.address_modifier = VME_AM09;
master_map.options = 0;

/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
/* create a new master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}

VME_MasterMapVirtualAddress(master_mapping, &virtual_address);
/* get virtual address for the master mapping */

...

VME_ReadFastUInt(master_mapping, address_offset, &value_u_int);
/* read fast from the master mapping, ignore bus error */
/* alternatively use */

value_u_int = *(u_int *)(virtual_address + address_offset);
...

value_u_int = 0xFFFFFFFF;
VME_WriteSafeUInt(master_mapping, address_offset, value_u_int);

/* write fast to the master mapping, ignore bus error */
/* alternatively use */

*(u_int *)(virtual_address + address_offset) = 0xFFFFFFFF;
...

/* continued on next page */
- 61 -



if(error_code = VME_MasterUnmap(master_mapping)) {
/* delete the master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}

- 62 -



3.5 Example 5: Master Mapping - Bus Error Handler

#include “vme_rcc.h”
#include <signal.h>
...

void my_bus_error_handler(int sig) {
/* bus error handler function */

static VME_BusErrorInfo_t bus_error_info;
static u_int error_code;

if(error_code = VME_BusErrorInfoGet(&bus_error_info) {
/* get information on bus error */

VME_ErrorPrint(error_code);
return(error_code);

}

printf(“ERROR in example program: bus error at address = %08x,
am = %02x\n”,bus_error_info.vmebus_address,

bus_error_info.address_modifier);
}
...

VME_MasterMap_t master_map;
int master_mapping;
u_int value_u_int;
u_int address_offset = 0x200;

VME_ErrorCode_t error_code;
...

master_map.vmebus_address = 0x22000000;
master_map.window_size = 0x00800000;
master_map.address_offset = VME_AM09;
master_map.options = 0;

/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
/* create a new master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}
...

/* continued on next page */
- 63 -



/* install bus error handler for signal,
not part of this API, see function sigaction() */

...

if(error_code = VME_BusErrorRegisterSignal(SIGBUS)) {
/* register signal for bus error handling */

VME_ErrorPrint(error_code);
return(error_code);

}
...

VME_ReadFastUInt(master_mapping, address_offset, &value_u_int);
/* read fast from the master mapping,

bus error will be caught by example bus error handler */
...

if(error_code = VME_BusErrorRegisterSignal(0)) {
/* un-register signal for bus error handling */

VME_ErrorPrint(error_code);
return(error_code);

}
...

if(error_code = VME_MasterUnmap(master_mapping)) {
/* delete the master mapping */

VME_ErrorPrint(error_code);
return(error_code);

}

- 64 -



3.6 Example 6: Slave Mapping

#include “vme_rcc.h”
...

VME_SlaveMap_t slave_map;
int slave_mapping;
u_int vmebus_address;

VME_ErrorCode_t error_code;
...

slave_map.window_size = 0x00800000;
slave_map.address_modifier = VME_AM09;
slave_map.options = 0;

/* fill master mapping input information */

/* obtain contiguous, memory-locked and aligned user_space,
not part of this API */

slave_map.system_iobus_address = my_pci_allocate();

if(error_code = VME_SlaveMap(&slave_map, &slave_mapping)) {
/* create a new slave mapping */

VME_ErrorPrint(error_code);
return(error_code);

}
...

VME_SlaveMapVmebusAddress(slave_mapping, &vmebus_address);
/* get VMEbus address for the slave mapping,

to be used by a VMEbus master */
...

/* read from and write to user space,
not part of this API */

...

VME_SlaveMapDump();
/* dump system parameters for all slave mappings */

...

if(error_code = VME_SlaveUnmap(slave_mapping)) {
/* delete the slave mapping */

VME_ErrorPrint(error_code);
return(error_code);

}

- 65 -



3.7 Example 7: Block Transfer - Detailed Functions

#include “vme_rcc.h”
...

u_int pci_address;
VME_BlockTransferList_t block_transfer_list;
int block_transfer;
VME_ErrorCode_t status;
int remaining;
int time_out = 10;

/* time-out about 10 msec */

VME_ErrorCode_t error_code;
char error_string[VME_MAXSTRING];
...

/* get contiguous, memory-locked and aligned user space,
not part of this API */

sys_address = my_pci_allocate();
...

block_transfer_list.list_of_items[0].vmebus_address = 0x22000200;
block_transfer_list.list_of_items[0].system_iobus_address = pci_address;
block_transfer_list.list_of_items[0].size_requested = 0x100;
block_transfer_list.list_of_items[0].control_word = VME_DMA_D32R;

/* fill parameters for first block transfer */

block_transfer_list.list_of_items[1].vmebus_address = 0x23000200;
block_transfer_list.list_of_items[1].system_iobus_address= pci_address + 0x100;
block_transfer_list.list_of_items[1].size_requested = 0x100;
block_transfer_list.list_of_items[1].control_word = VME_DMA_D32R;

/* fill parameters for second block transfer */

block_transfer_list.number_of_items = 2;
/* total number of block transfers */

if(error_code = VME_BlockTransferInit(&block_transfer_list,
&block_transfer) {

/* initialise block transfer */

VME_ErrorPrint(error_code);
return(error_code);

}
...

/* continued on next page */
- 66 -



if(error_code = VME_BlockTransferStart(block_transfer) {
/* start block transfer */

VME_ErrorPrint(error_code);
return(error_code);

}
...

if(error_code = VME_BlockTransferWait(block_transfer, time_out,
&block_transfer_list) {

/* wait for block transfer */

for(i=0; i< block_transfer_list.number_of_items; i++) {

if(!VME_BlockTransferStatus(block_transfer_list,i,&status)) {
/* check status of each block transfer */

VME_ErrorString(status,error_string);
printf(“ERROR in example program: block = %d, status = %s\n”,

i,error_string);
}
if(!VME_BlockTransferRemaining(block_transfer_list,i,&remaining)) {
/* check remaining words of each block transfer */

printf(“ERROR in example program: block = %d, remaining = %d\n”,
i,remaining);

}
}
return(error_code);

}
...

VME_BlockTransferDump();
/* dump system parameters for all DMA engines */

...

if(error_code = VME_BlockTransferEnd(block_transfer) {
/* end block transfer */

VME_ErrorPrint(error_code);
return(error_code);

}

- 67 -



3.8 Example 8: Block Transfer - Integrated Function

#include “vme_rcc.h”
...

u_int pci_address;
VME_BlockTransferList_t block_transfer_list;
int block_transfer;
VME_ErrorCode_t status;
int remaining;
int time_out = 10;

/* time-out about 10 msec */

VME_ErrorCode_t error_code;
char error_string[VME_MAXSTRING];
...

/* get contiguous, memory-locked and aligned user space,
not part of this API */

sys_address = my_pci_allocate();
...

block_transfer_list.list_of_items[0].vmebus_address = 0x22000200;
block_transfer_list.list_of_items[0].system_iobus_address = pci_address;
block_transfer_list.list_of_items[0].size_requested = 0x100;
block_transfer_list.list_of_items[0].control_word = VME_DMA_D32R;

/* fill parameters for first block transfer */

block_transfer_list.list_of_items[1].vmebus_address = 0x23000200;
block_transfer_list.list_of_items[1].system_iobus_address= pci_address + 0x100;
block_transfer_list.list_of_items[1].size_requested = 0x100;
block_transfer_list.list_of_items[1].control_word = VME_DMA_D32R;

/* fill parameters for second block transfer */

block_transfer_list.number_of_items = 2;
/* total number of block transfers */

/* continued on next page */
- 68 -



if(error_code = VME_BlockTransfer(&block_transfer_list, time_out) {
/* integrated function for block transfer */

for(i=0; i< block_transfer_list.number_of_items; i++) {

if(!VME_BlockTransferStatus(block_transfer_list,i,&status)) {
/* check status of each block transfer */

VME_ErrorString(status,error_string);
printf(“ERROR in example program: block = %d, status = %s\n”,

i,error_string);
}

if(!VME_BlockTransferRemaining(block_transfer_list,i,&remaining)) {
/* check remaining words of each block transfer */

printf(“ERROR in example program: block = %d, remaining = %d\n”,
i,remaining);

}
}
return(error_code);

}

- 69 -



3.9 Example 9: Interrupts - Synchronous Method

#include “vme_rcc.h”
...

VME_InterruptList_t interrupt_list;
int interrupt;
VME_InterruptInfo_t interrupt_info;
int time_out = 100000;

/* time-out about 100 sec */

VME_ErrorCode_t error_code;
u_int error_number;
...

interrupt_list.list_of_items[0].vector = 0x11;
interrupt_list.list_of_items[0].level = 1;
interrupt_list.list_of_items[0].type = VME_INT_RORA;

/* fill parameters for first interrupt */

interrupt_list.list_of_items[1].vector = 0x22;
interrupt_list.list_of_items[1].level = 2;
interrupt_list.list_of_items[1].type = VME_INT_ROAK;

/* fill parameters for second interrupt */

interrupt_list.number_of_items = 2;
/* total number of interrupts */

if(error_code = VME_InterruptLink(&interrupt_list, &interrupt) {
/* link VMEbus interrupt list to application program */

VME_ErrorPrint(error_code);
return(error_code);

}
...

/* continued on next page */
- 70 -



if(error_code = VME_InterruptWait(interrupt, time_out, &interrupt_info){
/* wait for interrupt */

VME_ErrorNumber(error_code,error_number);
/* convert error code to error number */

if(error_number == VME_TIMEOUT) {
/* compare error number to return value */

printf(“ERROR in example program: no interrupt in 100 sec\n”);
}
else {

VME_ErrorPrint(error_code);
}
return(error_code);

}

if(error_code = VME_InterruptInfoGet(&interrupt_info) {
/* get information on interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}

if(interrupt_info.level == 1) {
/* interrupt from a level assigned to RORA interrupters? */

if(error_code = VME_InterruptRenable(interrupt) {
/* re-enable interrupt => can wait again on interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}
}
...

VME_InterruptDump();
/* dump system parameters for all VMEbus interrupts */

...

if(error_code = VME_InterruptUnlink(interrupt) {
/* unlink VMEbus interrupt list from application program */

VME_ErrorPrint(error_code);
return(error_code);

}

- 71 -



3.10 Example 10: Interrupts - Asynchronous Method

#include “vme_rcc.h”
#include <signal.h>
...

int global_interrupt;
...

void my_interrupt_handler(int sig) {
/* interrupt handler function */

static VME_InterruptInfo_t interrupt_info;
static u_int errod_code;

if(error_code = VME_InterruptInfoGet(&interrupt_info) {
/* get information on interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}

printf(“INTERRUPT in example program: vector =%02x, multiple =
%d\n”, interrupt_info.vector,

interrupt.multiple);

if(interrupt_info.level == 1) {
/* interrupt from a level assigned to RORA interrupters? */

if(error_code = VME_InterruptRenable(global_interrupt) {
/* re-enable interrupt => can wait again on interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}
}

...

}
...

VME_InterruptList_t interrupt_list;
VME_InterruptInfo_t interrupt_info;
int time_out = 100000;

/* time-out about 100 sec */

VME_ErrorCode_t error_code;
u_int error_number;
...

/* continued on next page */
- 72 -



interrupt_list.list_of_items[0].vector = 0x11;
interrupt_list.list_of_items[0].level = 1;
interrupt_list.list_of_items[0].type = VME_INT_RORA;

/* fill parameters for first interrupt */

interrupt_list.list_of_items[1].vector = 0x22;
interrupt_list.list_of_items[1].level = 2;
interrupt_list.list_of_items[1].type = VME_INT_ROAK;

/* fill parameters for second interrupt */

interrupt_list.number_of_items = 2;
/* total number of interrupts */

if(error_code = VME_InterruptLink(&interrupt_list, &global_interrupt) {
/* link VMEbus interrupt list to application program */

VME_ErrorPrint(error_code);
return(error_code);

}
...

if(error_code = VME_InterruptRegisterSignal(global_interrupt,SIGBUS) {
/* register SIGBUS signal for VMEbus interrupt list */

VME_ErrorPrint(error_code);
return(error_code);

}
...

/* install example interrupt handler for SIGBUS signal,
not part of this API, see function sigaction() */

/* VMEbus interrupts will be caught asynchronously by
example interrupt handler */

...

if(error_code = VME_InterruptRegisterSignal(global_interrupt,0) {
/* (un-)register signal for VMEbus interrupt list */

VME_ErrorPrint(error_code);
return(error_code);

}

if(error_code = VME_InterruptUnlink(global_interrupt) {
/* unlink VMEbus interrupt list from application program */

VME_ErrorPrint(error_code);
return(error_code);

}

- 73 -



3.11 Example 11: Interrupts - Generate Interrupts

#include “vme_rcc.h”
#include <signal.h>
...

u_int level = 1;
u_int vector = 0x11;

VME_ErrorCode_t error_code;
...

if(error_code = VME_InterruptGenerate(level, vector) {
/* generate VMEbus interrupt */

VME_ErrorPrint(error_code);
return(error_code);

}

- 74 -



4 VMEbus Utility Programs

Two utility programs can accompany the API implementation: a utility program to configure
the VMEbus statically must accompany the VMEbus API, if the implementation requires this.
A utility program to test and debug the VMEbus (and the API implementation) and a facility to
scan the VMEbus address space shall always accompany the VMEbus API.

4.1 VMEbus Configuration Utility

The VMEbus configuration utility (“vmeconfig”), if required by the API implementation, is
used to configure some static parameters necessary to use the VMEbus. It is used, in particular,
to configure the following parameters:

• static mapping parameters for VMEbus CR/CSR space;

• static mapping parameters for VMEbus master and slave mappings;

• byte swapping capabilities of the VMEbus bridge;

• enabling and disabling of VMEbus interrupt levels, specifying of the associated VMEbus
interrupter types (ROAK or RORA), required for handling of VMEbus interrupts.

The VMEbus configuration utility is intended to be run at boot time when the ROD Crate
Processor is started.

4.2 VMEbus Test and Debug Utility

The VMEbus test and debug facility (“vmescope”) must allow to test and debug the VMEbus
(and the API implementation). It has, in particular, to provide means to perform the following
functions:

• dump system parameters of the VMEbus bridge;

• create VMEbus master and slave mapping and read and write single values;

• perform VMEbus block transfers;

• receive VMEbus interrupts.

4.3 VMEbus Scanning Facility

The VMEbus scanning facility (“vmescan”) must allow to scan the VMEbus and to report any
found VMEbus modules. It has, in particular, to perform the following functions:

• scan the whole VMEbus address space;

• scan the whole VMEbus CR/CSR space.
- 75 -



5 Ideas for a C++ Binding

This section presents some first ideas on a possible C++ binding or wrapping of the VMEbus
API. It shows the public members of the classes along with some of the private members.

There are two levels of VMEbus related classes:

1. VME class:

The VME class is a singleton which is generated and deleted using static methods. It con-
tains some members for return codes, CR/CSR access, bus error handling and printing of
general information. The VME class is used to generate and delete all other VMEbus
related classes; in that sense it is a factory of the other VMebus related classes.

2. VMEMasterMap, VMESlaveMap, VMEBlockTransfer and VMEInterrupt classes:

Those classes are used for master mappings and single cycles, slave mappings, block trans-
fers and interrupts, respectively. They correspond to the identifiers used in the C binding,
i.e. master_mapping, slave_mapping, block_transfer and interrupt. Their constructors cor-
respond to the functions returning an identifier, their destructors to those invalidating the
identifier.
- 76 -



5.1 Types

// bus error information
typedef VME_BusErrorInfo_t VMEBusErrorInfo;

// VMEbus interrupt information
typedef VME_InterruptList_t VMEInterruptList;
typedef VME_InterruptInfo_t VMEInterruptInfo;

// block transfer
typedef VME_BlockTransferItem_t VMEBlockTransferItem;
typedef VME_BlockTransferList_t VMEBlockTransferList;
typedef VME_BlockTransferInfo_t VMEBlockTransferInfo;
- 77 -



5.2 VMEbus library/driver

class VME {

public:
// singleton members
static VME* Open();
static u_int Close();

// members for return codes
static int ErrorPrint(u_int error_code);
static int ErrorString(u_int error_code, string* error_string);
static int ErrorNumber(u_int erro_code, u_int* error_number);

// members for CR/CSR access
u_int ReadCRCSR(int slot, u_int crcsr_field, u_int* value);
u_int WriteCRCSR(int slot, u_int crcsr_field, u_int data);

// members for bus error handling
u_int BusErrorRegisterSignal(int signal_number);
u_int BusErrorInfoGet(VME_BusErrorInfo& bus_error_info);

// factory members
VMEMasterMap* MasterMap(u_int vmebus_address, u_int window_size

u_int address_modifier, u_int options);
u_int MasterUnmap(VME_MasterMap* master_map);

VMESlaveMap* SlaveMap(u_int system_iobus_address, u_int window_size,
address_width, u_int options);

u_int SlaveUnmap(VME_SlaveMap*slave_map);

VMEBlockTransfer* BlockTransfer(const VMEBlockTransferList&
block_transfer_list);

u_int BlockTransferDelete(VME_BlockTransfer* block_transfer);

VMEInterrupt* Interrupt(const VMEInterruptList&
interrupt_list);

u_int InterruptDelete(VMEInterrupt* interrupt);

u_int InterruptGenerate(u_char vector, u_int level);

// status dumps
u_int MasterMapDump() const;
u_int SlaveMapDump() const;
u_int BlockTransferDump() const;
u_int InterruptDump() const;

// continued on next page
- 78 -



private:
VME();
~VME();

static VME* my_instance;
static int my_users;

// internals
...

};
- 79 -



5.3 VMEbus Master Mapping

class VMEMasterMap {

public:
// members for safe access
u_int ReadSafe(u_int address_offset, u_int* value);
u_int WriteSafe(u_int address_offset, u_int data);

u_int ReadSafe(u_int address_offset, u_short* value);
u_int WriteSafe(u_int address_offset, u_short data);

u_int ReadSafe(u_int address_offset, u_char* value);
u_int WriteSafe(u_int address_offset, u_char data);

// members for fast access
inline void ReadFast(u_int address_offset, u_int* value);
inline void WriteFast(u_int address_offset, u_int data);

inline void ReadFast(u_int address_offset, u_short* value);
inline void WriteFast(u_int address_offset, u_short data);

inline void ReadFast(u_int address_offset, u_char* value);
inline void WriteFast(u_int address_offset, u_char data);

// helpers
u_int VirtualAddress(u_int* virtual_address) const;
u_int Dump() const;

// operator to return status of object
u_int operator()();

// friends
friend class VME;

private:
VME_MasterMap(u_int vmebus_address, u_int window_size,

u_int address_modifier, u_int options);
~VME_MasterMap();

int my_identifier;
VME_MasterMap_t my_master_map;
int my_status;

// internals
...

};
- 80 -



5.4 VMEbus Slave Mapping

class VMESlaveMap {

public:
// helpers
u_int VmebusAddress(u_int* vmebus_address) const;
u_int Dump() const;

// operator to return status of object
u_int operator()();

// friend
friend class VME;

private:
VME_SlaveMap(u_int system_iobus_address, u_int window_size,

u_int address_width, u_int options);
~VME_SlaveMap();

int my_identifier;
VME_SlaveMap_t my_slave_map;
u_int my_status;

// internals
...

};
- 81 -



5.5 VMEbus Block Transfer

class VMEBlockTransfer {

public:
// main members
u_int Start();
u_int Wait(int time_out);

// helpers
u_int Status(int position_of_block, u_int* status);
u_int Remaining(int position_of_block, int* remaining);
u_int Dump() const;

// operator to return status of object
u_int operator()();

// friend
friend class VME;

private:
VME_BlockTransfer(const VMEBlockTransferList&

block_transfer_list);
~VME_BlockTransfer();

int my_identifier;
VMEBlockTransferList my_block_transfer_list;
u_int my_status;

// internals
...

};
- 82 -



5.6 VMEbus Interrupts

class VMEInterrupt {

public:
// main members
u_int Wait(int time_out, VMEInterruptInfo& interrupt_info);
u_int SignalRegister(int signal_number);
u_int InfoGet(VMEInterruptInfo& interrupt_info);
u_int Reenable();

// helper
u_int Dump() const;

// operator to return status of object
u_int operator()();

// friend
friend class VME;

private:
VME_Interrupt(const VMEinterruptList& interrupt_list);
~VME_Interrupt();

int my_identifier;
VMEInterruptListt my_interrupt_list;
u_int my_status;

// internals
...

};
- 83 -


	VMEbus Application Program Interface
	Authors : R. Spiwoks, M. Joos, C. Parkman, J. Petersen
	comments and queries to Ralf Spiwoks, CERN +41 22 767 3871 Ralf.Spiwoks@cern.ch

	Abstract
	This note defines an application program interface (API) for the use of VMEbus in the Read-Out Dr...
	Table of Contents
	1 Introduction
	1.1 Description of the API
	1.2 Design Issues
	1. Simplicity and uniformity
	2. Names
	3. Identifiers
	4. Return codes
	5. Known limitations

	1.3 Implementation Issues
	1. Layered implementation
	2. Utility programs
	3. System-level services
	4. Bus error handling
	5. Blocking functions
	6. Interrupts
	7. Multi-processing and multi-threading
	8. Logging
	9. Language binding
	10. Data types

	1.4 Organization of this Document
	2 Application Program Interface

	2.1 Overview
	Type Definitions
	Functions for Return Codes
	General Functions
	CR/CSR Access
	Bus Error Handling
	Master Mapping and Single Cycles
	Slave Mapping
	Block Transfer
	Interrupts

	2.2 Type Definitions
	2.3 Functions for Return Codes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.4 General Functions
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.5 VMEbus CR/CSR Access
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.6 VMEbus Master Mapping and Single Cycles
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	none

	Programming Example
	Notes
	Synopsis
	Parameter
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameter
	none

	Description
	Return Values
	Programming Example
	Notes

	2.7 VMEbus Error Handler
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes

	2.8 VMEbus Slave Mapping
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.9 VMEbus Block Transfers
	Synopsis
	Fields
	Description
	control_word must be ORed bit-wise with one of the following address modes:

	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	1. VME_BlockTransferInit(),
	2. VME_Block�Trans�fer�Start(),
	3. VME_BlockTransferWait() and
	4. VME_BlockTransfer�End().

	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes

	2.10 VMEbus Interrupts
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Fields
	Description
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	Description
	Return Values
	Programming Example
	Notes
	Synopsis
	Parameters
	none

	Description
	Return Values
	Programming Example
	Notes
	3 Programming Examples


	3.1 Example�1: Functions for Return Codes
	3.2 Example�2: CR/CSR Space
	3.3 Example�3: Master Mapping - Safe Access
	3.4 Example�4: Master Mapping - Fast Access
	3.5 Example�5: Master Mapping - Bus Error Handler
	3.6 Example�6: Slave Mapping
	3.7 Example�7: Block Transfer - Detailed Functions
	3.8 Example�8: Block Transfer - Integrated Function
	3.9 Example�9: Interrupts - Synchronous Method
	3.10 Example�10: Interrupts - Asynchronous Method
	3.11 Example�11: Interrupts - Generate Interrupts
	4 VMEbus Utility Programs

	4.1 VMEbus Configuration Utility
	4.2 VMEbus Test and Debug Utility
	4.3 VMEbus Scanning Facility
	5 Ideas for a C++ Binding
	1. VME class:
	2. VMEMasterMap, VMESlaveMap, VMEBlockTransfer and VMEInterrupt classes:


	5.1 Types
	5.2 VMEbus library/driver
	5.3 VMEbus Master Mapping
	5.4 VMEbus Slave Mapping
	5.5 VMEbus Block Transfer
	5.6 VMEbus Interrupts




