# **FILAR**

# Quad HOLA S-LINK to 64-bit/66 MHz PCI Interface

**Users Guide** 

#### **Authors**

Erik van der Bij - CERN Geneva Wieslaw Iwanski - INP Cracow Markus Joos - CERN Geneva

#### Date

27 May 2002

#### **EDMS document ID**

337904

# **Revision History**

| Date        | Author | Modification                              |
|-------------|--------|-------------------------------------------|
| 2 May 2002  | EB     | First version                             |
| 17 May 2002 | EB     | Changed page sizes. Explanation disabling |
|             |        | temperature interrupt. REQFIFO W/O        |
| 27 May 2002 | EB     | Redone fig.1. Added MJ as author, Test    |
|             |        | Input Register and test bit in OPCTL      |

# **Table of Contents**

| FILAR                                      | 1  |
|--------------------------------------------|----|
| Introduction                               | 1  |
| Features                                   | 2  |
|                                            |    |
| PCI CONFIGURATION REGISTERS                | 3  |
| Vendor Identification Register (VID)       | 3  |
| Device Identification Register (DID)       | 3  |
| PCI Command Register (PCICMD)              | 3  |
| PCI Status Register (PCISTS)               | 4  |
| Revision Identification Register (RID)     | 4  |
| Class Code Register (CLCD)                 | 4  |
| Cache Line Size Register (CALN)            | 4  |
| Latency Timer Register (LAT)               | 5  |
| Header Type Register (HDR)                 |    |
| Built-in Self-test Register (BIST)         | 5  |
| Base Address Register 0 (BADR0)            | 5  |
| Base Address Register 1-5 (BADR1-BADR5)    | 6  |
| CardBus CIS Pointer                        |    |
| Subsystem Vendor ID                        | 6  |
| Subsystem Device ID                        |    |
| Expansion ROM Base Address Register (XROM) | 7  |
| Capabilities Pointer                       |    |
| Interrupt Line Register (INTLN)            | 8  |
| Interrupt Pin Register (INTPIN)            | 8  |
| Minimum Grant Register (MINGNT)            | 8  |
| Maximum Latency Register (MAXLAT)          | 8  |
|                                            |    |
| OPERATION REGISTERS                        |    |
| Memory map                                 |    |
| Operation Control Register (OPCTL)         |    |
| Operation Status Register (OPSTAT)         |    |
| Interrupt Mask Register (INTMASK)          |    |
| FIFO Status Register (FSTAT)               |    |
| Start Control Word Register (SCTL)         |    |
| End Control Word Register (ECTL)           | 17 |
| Test Input Register (TSTIN)                |    |
| Request FIFOs (REQFIFOx)                   | 19 |
| Acknowledge FIFOs (ACKFIFOx)               | 20 |
|                                            |    |

# **FILAR**

#### Introduction

The FILAR is a highly integrated PCI interface that can move data from up to four HOLA S-LINK channels to a 32-bit or 64-bit PCI bus that runs at 33 MHz or at 66 MHz. The interface can only be used in 3.3 Volt PCI slots.

Four HOLA Link Destinations are integrated on the FILAR. The channels are fully compatible to HOLA Link Source Cards and each can receive data at a speed of up to 160 MB/s. There are versions of the interface available in which not all channels are mounted. The Operation Status register will show which channels are not available.

For each channel, the host processor can set up the interface to receive up to fifteen S-LINK data blocks by writing the host memory addresses where the data has to be stored to the Request FIFO (figure 1). After this, the interface can receive data without needing any intervention of the processor. After reception of data, the host processor can read from the Acknowledge FIFO the S-LINK control words and the length of the data block received.

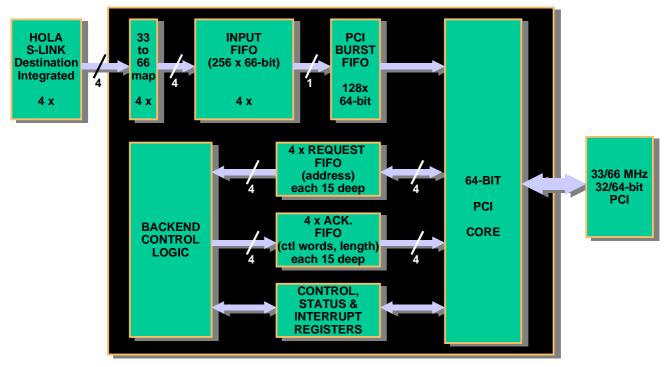



Figure 1: block diagram of the FILAR

#### Features

The main features of the interface are:

- highly autonomous data reception
- reception speed independent of interrupt or polling latency
- interrupt generation selectable on reception of one or several data blocks, link down, space available in Request FIFO and others.
- control words stored independently from data
- control words checked for known values, improving overhead
- programmable word and byte swapping of data words
- four integrated optical HOLA Destination input links
- throughput of each input link up to 160 MB/s
- card temperature readout
- 32-bit and 64-bit PCI bus (3.3V PCI bus only)
- 33 and 66 MHz MHz PCI clock speed
- 32-bit PCI-bus addressing

# **PCI** Configuration registers

The PCI configuration registers are the standard registers that every PCI compatible card has. Detailed information on the usage of those registers can be found in the PCI Specification

#### Vendor Identification Register (VID)

| Register name  | Vendor Identification (VID) |
|----------------|-----------------------------|
| Address offset | 00-01h                      |
| Boot-load      | 10DCh (CERN)                |
| Attribute      | Read Only (RO)              |
| Size           | 16 bits                     |

#### **Device Identification Register (DID)**

| Register name  | Device Identification (DID)                             |
|----------------|---------------------------------------------------------|
| Address offset | 02-03h                                                  |
| Boot-load      | 0013h (FILAR, Quad ODIN S-LINK to 64-bit PCI interface) |
| Attribute      | Read Only (RO)                                          |
| Size           | 16 bits                                                 |

#### PCI Command Register (PCICMD)

| Register name  | PCI Command (PCICMD)                                |
|----------------|-----------------------------------------------------|
| Address offset | 04-05h                                              |
| Boot-load      | 0000h                                               |
| Attribute      | Read/Write (R/W on 6 bits, Read Only on all others) |
| Size           | 16 bits                                             |

### PCI Status Register (PCISTS)

| Register name  | PCI Status (PCISTS)                        |
|----------------|--------------------------------------------|
| Address offset | 06-07h                                     |
| Boot-load      | 0080h                                      |
| Attribute      | Read Only (RO), Read/Write Clear<br>(R/WC) |
| Size           | 16 bits                                    |

### **Revision Identification Register (RID)**

| Register name  | Revision Identification (RID)                                              |
|----------------|----------------------------------------------------------------------------|
| Address offset | 08h                                                                        |
| Boot-load      | 00h (version 0.0 - 2 May 2002).<br>Field will be updated with each version |
| Attribute      | Read Only (RO)                                                             |
| Size           | 8 bits                                                                     |

#### **Class Code Register (CLCD)**

| Register name  | Class Code (CLCD)                                                                       |
|----------------|-----------------------------------------------------------------------------------------|
| Address offset | 09-0Bh                                                                                  |
| Boot-load      | 028000h (network controller/other<br>communication device/programming<br>interface 00h) |
| Attribute      | Read Only (RO)                                                                          |
| Size           | 24 bits                                                                                 |

### Cache Line Size Register (CALN)

| Register name  | Cache Line Size |
|----------------|-----------------|
| Address offset | 0Ch             |
| Boot-load      | 00h             |
| Attribute      | Read Only (RO)  |
| Size           | 8 bits          |

### Latency Timer Register (LAT)

| Register name  | Latency Timer (LAT) |
|----------------|---------------------|
| Address offset | 0Dh                 |
| Boot-load      | FFh                 |
| Attribute      | Read/Write (R/W)    |
| Size           | 8 bits              |

### Header Type Register (HDR)

| Register name  | Header Type (HDR)                     |
|----------------|---------------------------------------|
| Address offset | 0Eh                                   |
| Boot-load      | 00h (Single function, Format field 0) |
| Attribute      | Read Only (RO)                        |
| Size           | 8 bits                                |

#### **Built-in Self-test Register (BIST)**

| Register name  | Built-in Self-test (BIST)                    |
|----------------|----------------------------------------------|
| Address offset | 0Fh                                          |
| Boot-load      | 00h                                          |
| Attribute      | D7, D5-0 Read Only, D6 as PCI bus write only |
| Size           | 8 bits                                       |

### Base Address Register 0 (BADR0)

| Register name  | Base Address 0 (BADR0)                   |  |
|----------------|------------------------------------------|--|
| Address offset | 10h                                      |  |
| Boot-load      | FFFFFC00h (1024 bytes in memory space)   |  |
| Attribute      | High bits Read/Write; low bits Read Only |  |
| Size           | 32 bits                                  |  |

### Base Address Register 1-5 (BADR1-BADR5)

| Register name  | Base Address 1-5 (BADR1-BADR5)           |  |
|----------------|------------------------------------------|--|
| Address offset | 14h, 18h, 1Ch, 20h, 24h                  |  |
| Boot-load      | 00000000h (disabled)                     |  |
| Attribute      | High bits Read/Write; low bits Read Only |  |
| Size           | 32 bits                                  |  |

#### CardBus CIS Pointer

| Register name  | CardBus CIS Pointer |
|----------------|---------------------|
| Address offset | 28h                 |
| Boot-load      | 00000000h           |
| Attribute      | Read Only           |
| Size           | 32 bits             |

### Subsystem Vendor ID

| Register name  | Subsystem Vendor ID |
|----------------|---------------------|
| Address offset | 2Ch                 |
| Boot-load      | 0000h               |
| Attribute      | Read Only           |
| Size           | 16 bits             |

### Subsystem Device ID

| Register name  | Subsystem Device ID |  |
|----------------|---------------------|--|
| Address offset | 2Eh                 |  |
| Boot-load      | 00h                 |  |
| Attribute      | Read Only           |  |
| Size           | 16 bits             |  |

### Expansion ROM Base Address Register (XROM)

| Register name  | Expansion ROM Base Address (XROM)                    |  |
|----------------|------------------------------------------------------|--|
| Address offset | 30h                                                  |  |
| Boot-load      | 00000000h (disabled)                                 |  |
| Attribute      | bits 31:11, bit 0 Read/Write; bits 10:1<br>Read Only |  |
| Size           | 32 bits                                              |  |

### **Capabilities Pointer**

| Register name  | Capabilities Pointer |
|----------------|----------------------|
| Address offset | 34h                  |
| Boot-load      | 00h                  |
| Attribute      | Read Only            |
| Size           | 8 bits               |

### Interrupt Line Register (INTLN)

| Register name  | Interrupt Line (INTLN) |  |
|----------------|------------------------|--|
| Address offset | 3Ch                    |  |
| Boot-load      | FFh (unknown)          |  |
| Attribute      | Read/Write             |  |
| Size           | 8 bits                 |  |

### Interrupt Pin Register (INTPIN)

| Register name  | Interrupt Pin (INTPIN) |
|----------------|------------------------|
| Address offset | 3Dh                    |
| Boot-load      | 01h (INTA#)            |
| Attribute      | Read Only (RO)         |
| Size           | 8 bits                 |

#### **Minimum Grant Register (MINGNT)**

| Register name  | Minimum Grant (MINGNT)         |  |
|----------------|--------------------------------|--|
| Address offset | 3Eh                            |  |
| Boot-load      | 00h (no stringent requirement) |  |
| Attribute      | Read Only (RO)                 |  |
| Size           | 8 bits                         |  |

#### Maximum Latency Register (MAXLAT)

| Register name  | Maximum Latency (MAXLAT)       |  |
|----------------|--------------------------------|--|
| Address offset | 3Fh                            |  |
| Boot-load      | 00h (no stringent requirement) |  |
| Attribute      | Read Only (RO)                 |  |
| Size           | 8 bits                         |  |

# **Operation Registers**

#### Memory map

The operation registers are mapped into the PCI Memory Space. The base address can be found in Base Address Register 0 of the PCI Configuration Space. The interface occupies 1 KByte in Memory Space. There are no registers located in the PCI I/O Space.

You can access the registers with 32-bit PCI cycles only.

| Register                   | Address offset |
|----------------------------|----------------|
| Operation Control          | 000h           |
| Operation Status           | 004h           |
| Interrupt Mask             | 008h           |
| FIFO Status                | 00Ch           |
| Start Control Word         | 010h           |
| End Control Word           | 014h           |
| Test Input                 | 018h           |
| reserved                   | 01Ch-0FCh      |
| Channel 1 Request FIFO     | 100h           |
| Channel 1 Acknowledge FIFO | 104h           |
| reserved                   | 108h           |
| reserved                   | 10Ch           |
| Channel 2 Request FIFO     | 110h           |
| Channel 2 Acknowledge FIFO | 114h           |
| reserved                   | 118h           |
| reserved                   | 11Ch           |
| Channel 3 Request FIFO     | 120h           |
| Channel 3 Acknowledge FIFO | 124h           |
| reserved                   | 128h           |
| reserved                   | 12Ch           |
| Channel 4 Request FIFO     | 130h           |
| Channel 4 Acknowledge FIFO | 134h           |
| reserved                   | 138h           |
| reserved                   | 13Ch           |
| reserved                   | 140h-3FCh      |

### **Operation Control Register (OPCTL)**

| Register name  | Operation Control register (OPCTL) |
|----------------|------------------------------------|
| Address offset | 000h                               |
| Boot-load      | 00000000h                          |
| Attribute      | Read/Write                         |
| Size           | 32 bits                            |

| Bit 31-28 | CH4 URL3-0 User Return Lines                                                                                                                                                                 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 27    | CH4 DISABLE<br>0=normal operation 1=disable channel                                                                                                                                          |
| Bit 26    | CH4 URESET<br>0=normal operation 1=reset S-LINK<br>See protocol with LDOWN#. This bit is<br>inverted from the signal to the S-LINK.                                                          |
| Bit 25-22 | CH3 URL3-0                                                                                                                                                                                   |
| Bit 21    | CH3 DISABLE                                                                                                                                                                                  |
| Bit 20    | CH3 URESET                                                                                                                                                                                   |
| Bit 19-16 | CH2 URL3-0                                                                                                                                                                                   |
| Bit 15    | CH2 DISABLE                                                                                                                                                                                  |
| Bit 14    | CH2 URESET                                                                                                                                                                                   |
| Bit 13-10 | CH1 URL3-0                                                                                                                                                                                   |
| Bit 9     | CH1 DISABLE                                                                                                                                                                                  |
| Bit 8     | CH1 URESET                                                                                                                                                                                   |
| Bit 7     | reserved, write as 0, ignore on read                                                                                                                                                         |
| Bit 6     | TSTMODE: testmode<br>0=normal operation 1=test mode<br>In test mode data is taken from the Test<br>Input register.                                                                           |
| Bit 5-3   | $\begin{array}{l} \text{PAGE\_SIZE [Bytes]} \\ 000 = & 256 & 100 = & 16384 \\ 001 = & 1024 & 101 = & 65536 \\ 010 = & 2048 & 110 = & 262144 \\ 011 = & 4096 & & 111 = & 4194296 \end{array}$ |
| Bit 2     | SWAP_WORD<br>0=no swap of 32-bit data words<br>1=swap of 32-bit data words<br>E.g. 0xAABBCCDD_EEFF0011 becomes<br>0xEEFF0011_AABBCCDD                                                        |
| Bit 1     | SWAP_BYTE<br>0=no byte swap of data words                                                                                                                                                    |

|       | 1=byte swap of all data words<br>E.g. 0x11223344 becomes 0x44332211 |
|-------|---------------------------------------------------------------------|
| Bit 0 | RESET_IF<br>0=normal operation 1=reset interface                    |

#### Description

The URL bits of this register are connected to the User Return Lines of the S-LINK interface and have the functionality as described in the S-LINK specification.

The DISABLE bits are used to disable individual channels. A channel may be disabled because a channel is not connected or if a channel is not presenting valid information. If the optical transceiver of a channel is not mounted, the FILAR will automatically disable that channel.

The URESET bits are used to reset the S-LINK interface. Note that the value in this bit has the inverted level of the URESET# signal to the S-LINK. To reset an S-LINK interface, the sequence as described in the S-LINK specification has to be followed with the LDOWN# signal. The status of LDOWN# can be read in the Operation Status Register.

The UTDO# lines of the S-LINK interfaces are fixed to 0, meaning that the FILAR will always receive test data when the link is put in test mode. Also the UDW (User DataWidth) lines are fixed to 0.

TSTMODE (bit 6) tells the interface to go into test mode. In this case the Test Input Register is used to feed data into the interface and data coming from the input links is discarded.

The PAGE\_SIZE field (bits 5 to 3) sets the maximum amount of data that the FILAR will write to the host memory area that is pointed to by a Request FIFO entry. If more data is received than set by the PAGE\_SIZE, a second Request FIFO entry will be used to store the remaining data. The PAGE\_SIZE includes only the count of data words and does not include the control words. Note that the setting "111" gives a page size of 4 MByte-8 (and not exactly 4 MByte) which is the maximum length that can be shown by the 20-bit received length field (in words) in the Acknowledge FIFOs.

When bit 2 (SWAP\_WORD) is set, the two 32-bit words in all received data words will be swapped. E.g. data received as 0xAABBCCDD\_EEFF0011 becomes 0xEEFF0011\_AABBCCDD. When set, the swap will be made only on data words. Control words will not be swapped. The swap mode used is the same for all channels.

When bit 1 (SWAP\_BYTE) is set, the bytes in all received data words will be swapped so that words received in little endian format will be transformed into big endian or vice versa. E.g. the received word 0x11223344 becomes 0x44332211. When set, the swap will be made only on data words. Control words will not be swapped. The swap mode used is the same for all channels.

Bit 0, RESET\_IF will reset the complete interface. It will reset all internal FIFOs, state machines and the DMA engine. After writing a 1 to this register, it may take up to one microsecond before the interface is operational again. To operate, the bit has to be reset to 0. To reset the interface it is possible to write a 1, immediately followed by a write of a 0. RESET\_IF will not reset the HOLA S-LINK channels; they have to be reset separately with the URESET bits.

### **Operation Status Register (OPSTAT)**

| Register name  | Operation Status register (OPSTAT) |
|----------------|------------------------------------|
| Address offset | 004h                               |
| Attribute      | Read Only (RO)                     |
| Size           | 32 bits                            |

| Bit 31 | CH4 NOT_PRESENT<br>0=normal operation of channel<br>1=channel logic not implemented or not<br>connected                                                                                                                                                          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 30 | CH4 UXOFF<br>0=normal S-LINK activity<br>1=S-LINK transfer has been suspended<br>since last read of the OPSTAT register.<br>Note that this bit is inverted from the<br>signal to the S-LINK. Bit is reset<br>automatically after read of the<br>OPSTAT register. |
| Bit 29 | CH4 OVFLW<br>0=normal S-LINK activity<br>1=overflow occurred since last read of the<br>OPSTAT register. Bit is reset automatic-<br>ally after read of the OPSTAT register.                                                                                       |
| Bit 28 | CH4 LDOWN<br>0=link is up<br>1=link is down<br>Note that this bit is inverted from the<br>signal to the S-LINK                                                                                                                                                   |
| Bit 27 | CH3 NOT_PRESENT                                                                                                                                                                                                                                                  |
| Bit 26 | CH3 UXOFF                                                                                                                                                                                                                                                        |
| Bit 25 | CH3 OVFLW                                                                                                                                                                                                                                                        |
| Bit 24 | CH3 LDOWN                                                                                                                                                                                                                                                        |
| Bit 23 | CH2 NOT_PRESENT                                                                                                                                                                                                                                                  |
| Bit 22 | CH2 UXOFF                                                                                                                                                                                                                                                        |
| Bit 21 | CH2 OVFLW                                                                                                                                                                                                                                                        |
| Bit 20 | CH2 LDOWN                                                                                                                                                                                                                                                        |
| Bit 19 | CH1 NOT_PRESENT                                                                                                                                                                                                                                                  |
| Bit 18 | CH1 UXOFF                                                                                                                                                                                                                                                        |
| Bit 17 | CH1 OVFLW                                                                                                                                                                                                                                                        |
| Bit 16 | CH1 URESET                                                                                                                                                                                                                                                       |

| Bit 15-8 | TEMPERATURE<br>Temperature of card in degrees C (0-255)                               |
|----------|---------------------------------------------------------------------------------------|
| Bit 7-2  | reserved, ignore value                                                                |
| Bit 1    | ACK_AVAILABLE<br>0=no ACK_FIFO entries filled<br>1=at least one ACK_FIFO entry filled |
| Bit 0    | REQ_AVAILABLE<br>0=no REQ_FIFO entries free<br>1=at least one REQ_FIFO entry free     |

#### Description

A FILAR may be delivered in a configuration in which not all channels are present. The NOT\_PRESENT bits show for each channel if it is not functional because the optical transceiver or other logic is not mounted.

The UXOFF bit of each channel shows that the S-LINK flow control signal UXOFF# has been active since last read of the Operation Status Register. That is, the data transfer has been suspended for a period of time because the interface could not move the data fast enough out of its internal buffers to the main memory. E.g. the PCI bus was used by other masters, there were no outstanding REQ\_FIFO entries or the ACK\_FIFO was full. Once set, the bit will be reset automatically after the read of the Operation Status Register. There is no possibility to read the actual state of the UXOFF signal. When UXOFF has been active, it only means that the data transfer has temporary been interrupted, but no data will be lost because of this.

The OVFLW bit of each channel will be set when the internal input buffer FIFO is overflown. This is an error condition that may never happen as the S-LINK provides flow control. When an OVFLW bit is set, the interface will continue to work, but data may be lost. Once set, the bit will be reset automatically after the read of the Operation Status Register.

The LDOWN bit of each channel shows the current state of the S-LINK LDOWN# line. If the bit is 1, it means that the link is down. To get the link up again, a reset of the link is required. To reset an S-LINK interface, the protocol between the URESET# and LDOWN# signals as described in the S-LINK specification has to be followed.

The ACK\_AVAILABLE bit shows if there is any Acknowledge FIFO entry available to be read. You must read the FIFO Status Register to find out which Acknowledge FIFO may be read from.

The REQ\_AVAILABLE bits shows if there is any Request FIFO entry available to be written. You must read the FIFO Status Register to find out which Request FIFO may be written to.

### Interrupt Mask Register (INTMASK)

| Register name  | Interrupt Mask register (INTMASK) |
|----------------|-----------------------------------|
| Address offset | 008h                              |
| Boot-load      | 00000000h                         |
| Attribute      | Read/Write                        |
| Size           | 32 bits                           |

| Bit 31   | reserved, write as 0, ignore on read                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 30   | CH4 UXOFF<br>1=interupt when UXOFF is 1                                                                                                                                    |
| Bit 29   | CH4 OVFLW<br>1=interrupt when FIFO is overflown                                                                                                                            |
| Bit 28   | CH4 LDOWN<br>1=interrupt when link is down                                                                                                                                 |
| Bit 27   | reserved, write as 0, ignore on read                                                                                                                                       |
| Bit 26   | CH3 UXOFF                                                                                                                                                                  |
| Bit 25   | CH3 OVFLW                                                                                                                                                                  |
| Bit 24   | CH3 LDOWN                                                                                                                                                                  |
| Bit 23   | reserved, write as 0, ignore on read                                                                                                                                       |
| Bit 22   | CH2 UXOFF                                                                                                                                                                  |
| Bit 21   | CH2 OVFLW                                                                                                                                                                  |
| Bit 20   | CH2 LDOWN                                                                                                                                                                  |
| Bit 19   | reserved, write as 0, ignore on read                                                                                                                                       |
| Bit 18   | CH1 UXOFF                                                                                                                                                                  |
| Bit 17   | CH1 OVFLW                                                                                                                                                                  |
| Bit 16   | CH1 LDOWN                                                                                                                                                                  |
| Bit 15-8 | MAX_TEMP<br>Interrupt when the temperature of the card<br>is equal or above the value written in this<br>field in degrees C (1-255).<br>0=disable interrupt on temperature |

| Bit 7-2 | reserved, write as 0, ignore on read                                       |
|---------|----------------------------------------------------------------------------|
| Bit 1   | ACK_AVAILABLE<br>1=interrupt when at least one ACK_FIFO<br>entry is filled |
| Bit 0   | REQ_AVAILABLE<br>1=interrupt when at least one REQ_FIFO<br>entry is free   |

#### Description

The Interrupt Mask Register is used to enable interrupts on certain events in the Operation Status Register. If a bit in the Interrupt Mask is set to 1, and the corresponding bit in the Operation Status Register is set to 1, a PCI interrupt will be generated.

The interrupt will stay active until the reason for the it has been removed or that the interrupt is masked. The MAX\_TEMP interrupt normally will be deactivated by masking the it.

#### **FIFO Status Register (FSTAT)**

| Register name  | FIFO Status Register (FSTAT) |
|----------------|------------------------------|
| Address offset | 00Ch                         |
| Attribute      | Read Only                    |
| Size           | 32 bits                      |

| Bit 31-28 | CH4 REQ_AVAILABLE<br>Number of entries that can be written to<br>the Request FIFO    |
|-----------|--------------------------------------------------------------------------------------|
| Bit 27-24 | CH4 ACK_AVAILABLE<br>Number of entries that can be read from<br>the Acknowledge FIFO |
| Bit 23-20 | CH3 REQ_AVAILABLE                                                                    |
| Bit 19-16 | CH3 ACK_AVAILABLE                                                                    |
| Bit 15-12 | CH2 REQ_AVAILABLE                                                                    |
| Bit 11-8  | CH2 ACK_AVAILABLE                                                                    |
| Bit 7-4   | CH1 REQ_AVAILABLE                                                                    |
| Bit 3-0   | CH1 ACK_AVAILABLE                                                                    |

#### Description

The FIFO Status Register shows in a single register the status of the FIFOs of all four channels.

The REQ\_AVAILABLE bits give a total count of the number of entries that may be written to the Request FIFO before it will be filled. E.g. if the number is three, up to three entries may be written.

The ACK\_AVAILABLE bits give a total count of the number of entries that are available to read from the Acknowledge FIFO. E.g. if the number is three, up to three entries may be read.

#### Start Control Word Register (SCTL)

| Register name  | Start Control Word Register (SCTL) |
|----------------|------------------------------------|
| Address offset | 010h                               |
| Attribute      | Read Only                          |
| Size           | 32 bits                            |

| Bit 31-0 | Start Control Word |
|----------|--------------------|
|----------|--------------------|

#### Description

The Start Control Word register gives the start control word that belongs to the last ACKFIFO entry read. It is a single register that is shared between the different channels. So if an Acknowledge FIFO entry of Channel 2 is read, this register will give the Start Control Word (if present) of the last entry read of Channel 2.

#### End Control Word Register (ECTL)

| Register name  | End Control Word Register (ECTL) |
|----------------|----------------------------------|
| Address offset | 014h                             |
| Attribute      | Read Only                        |
| Size           | 32 bits                          |

| Bit 31-0 | End Control Word |
|----------|------------------|
|----------|------------------|

#### Description

The End Control Word register gives the end control word that belongs to the last ACKFIFO entry read. It is a single register that is shared between the different channels. So if an Acknowledge FIFO entry of Channel 2 is read, this register will give the End Control Word (if present) of the last entry read of Channel 2.

#### **Test Input Register (TSTIN)**

| Register name  | Test Input Register (TSTIN) |
|----------------|-----------------------------|
| Address offset | 018h                        |
| Attribute      | Read/Write                  |
| Size           | 32 bits                     |

| Bit 31-5 | reserved, write as 0, ignore on read                       |
|----------|------------------------------------------------------------|
| Bit 4    | CH4 TST Write a word to channel 4                          |
| Bit 3    | CH3 TST Write a word to channel 3                          |
| Bit 2    | CH2 TST Write a word to channel 2                          |
| Bit 1    | CH1 TST Write a word to channel 1                          |
| Bit 0    | TSTCNTL<br>0=write as data word<br>1=write as control word |

#### Description

This register is used for testing purposes only.

If enabled in the Operation Control Register by setting bit 6 (TSTMODE), a write to the TSTIN register will behave as if a single S-LINK word has been received. Bits 1 to 4 determine to which channel the data gets written; several bits may be set. Bit 0 (TSTCNTL) determines if the test word is received as an S-LINK control word or as a normal data word.

After a reset, the test data is 0x0000\_0001. Every word written afterwards will be shifted and left rotated. I.e. the first word will be 0x0000\_0001, the second one 0x0000\_0002. After 0x8000\_0000 it will start over with 0x000\_0001.

#### **Request FIFOs (REQFIFOx)**

| Register name  | Request FIFO x (REQFIFOx)                                                |
|----------------|--------------------------------------------------------------------------|
| Address offset | Channel 1: 100h<br>Channel 2: 110h<br>Channel 3: 120h<br>Channel 4: 130h |
| Attribute      | Write Only                                                               |
| Size           | 32 bits                                                                  |

| Bit 31-0 | START_ADDRESS                              |
|----------|--------------------------------------------|
|          | Start Address. Must be on a 64-bit address |
|          | boundary.                                  |

#### Description

The Request FIFOs are used to tell the interface where to store the data received from the S-LINK. Each channel has its own Request FIFO. The Start Address must be on a 64-bit address boundary, i.e. bits 2 to 0 must be set to 0.

When a channel receives data, it will store the received start control word in the Acknowledge FIFO and the data in the host memory starting from the Start Address. Data will be transferred to the host memory until either a second control word is received or that the Page Size as set in the Operation Control register is reached. If a second control word is received before the Page Size is reached, the control word and the length of the received block are put in the Acknowledge FIFO. If the Maximum Block Length is reached before receiving a control word, the data that follows will be put in the memory starting from the Start Address from the next Request FIFO entry.

Request FIFO entries are handled in the order that they are written to the FIFO. The interface will continue to receive data until all requests are handled or that the Acknowledge FIFO is full.

Before writing to the Request FIFO address, you should check the REQ\_AVAILABLE field in the FIFO Status Register to verify that there is still space available or else requests may be lost. In total up to fifteen receive requests may be outstanding for each channel.

#### Acknowledge FIFOs (ACKFIFOx)

| Register name  | Acknowledge FIFO x (ACKFIFOx)                                            |
|----------------|--------------------------------------------------------------------------|
| Address offset | Channel 1: 104h<br>Channel 2: 114h<br>Channel 3: 124h<br>Channel 4: 134h |
| Attribute      | Read Only                                                                |
| Size           | 32 bits                                                                  |

| Bit 31    | S_CNTL_ABSNT<br>Start Control Word absent<br>0: Start control word present<br>1: Start control word absent. I.e. the<br>transfer started without a control word.<br>Ignore Start Control Word register and<br>S_CNTL_WRONG bit.                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 30    | S_CNTL_WRONG<br>0: Start Control Word is B0F0xxx0h<br>1: Start Control Word is not B0F0xxx0h                                                                                                                                                            |
| Bit 29    | E_CNTL_ABSNT<br>End Control Word not present<br>0: End control word present<br>1: End control word not absent. I.e. the<br>Page Size as set in the Operation Control<br>register was reached. Ignore End Control<br>Word register and E_CNTL_WRONG bit. |
| Bit 28    | E_CNTL_WRONG<br>0: End Control Word is E0F0xxx0h<br>1: End Control Word is not E0F0xxx0h                                                                                                                                                                |
| Bit 27-20 | reserved, ignore value                                                                                                                                                                                                                                  |
| Bit 19-0  | RX_BLOCK_LENGTH<br>Received Block Length in 32-bit words                                                                                                                                                                                                |

#### Description

The interface writes to the Acknowledge FIFO whenever an S-LINK block of data is received. Each channel has its own Acknowledge FIFO.

Normally data is sent in between two control words:

| Start control word |  |
|--------------------|--|
| Data               |  |
| End control word   |  |

The interface will store the control words that encapsulate the S-LINK data and the length of the received block in the Acknowledge FIFO. If the starting or ending control word is not present, it will be shown by bits 31 and 29 respectively. The actual data is stored in the host memory starting from the address as it was given by the first available entry in the Request FIFO. Entries in the Request FIFO will be handled on a First In, First Out basis.

After the read of an Acknowledge FIFO entry, a read of the Start Control Word register (address offset 010h) will return the Start Control word, while a read of the End Control Word register (address offset 014h) will return the End Control word. If the S\_CNTL\_ABSNT or E\_CNTL\_ABSNT bits of an entry is 1, the Start Control Word register or End Control Word register contents should be ignored.

Received Start and End control words are checked against the values BOF0xxx0h and EOF0xxx0h respectively. The upper part (BOF0h and EOF0h) are values used in the ATLAS data acquisition system. The lowest 0h will check for the error detection field in the control word, as a 0h represents no error in the control word nor in the datablock received before the control word. In applications where the transmitter sends the given control words, there is no need to read the control words from the Start and End Control Word registers, so the overhead gets reduced. Only in case of errors the Control Word registers need to be read. Applications that use other values will always need to read the Start and End Control Word registers and will have a slightly larger overhead.

The received number of S-LINK words is counted in 32-bit word quantities. Although the maximum block length value in the Request FIFO must be an even number of 32-bit words, the interface can receive an odd number of 32-bit S-LINK words and will correctly show the number in the RX\_BLOCK\_LENGTH field. The Received Block Length field is 20 bits wide, but its value will never exceed the value as set by the PAGE\_SIZE field in the Operation Control register.

The interface ignores the value of the LDERR# signal of S-LINK, which can be done as every type of S-LINK makes the error detection information also available in the two least significant bits of control words. For applications that would use S-LINK data words only and no control words, there is no possibility to receive link error detection information. Therefore the use of data formats without control words is strongly discouraged.

The following examples show the contents of the Acknowledge FIFO for five possible cases: the block of data received is smaller, the same size, up to twice the size, exactly twice the size and more than twice the size of MAX\_BLOCK\_LENGTH that was set in the Request FIFO.

In the cases that the size of a block is exactly the same as requested in the Request FIFO or a multiple of it, the end control word will be put in a separate Acknowledge FIFO entry with the RX\_BLOCK\_LENGTH set to 0. The reason for this is that the interface will already fill the Acknowledge FIFO when the requested amount of data is received. It will not wait for the end control word. In fact those cases are similar to the ones where the amount of received data did not fit in a single entry, but just with zero extra data words received. Therefore the driver software should not have to consider those as special cases.

Example 1: reception of a 1000 32-bit words packet encapsulated in between control words, with PAGE\_SIZE set to 1024.

| S_CNTL_ABSNT    | 0 (start control word present) |
|-----------------|--------------------------------|
| E_CNTL_ABSNT    | 0 (end control word present)   |
| RX_BLOCK_LENGTH | 1000                           |

between control words, with PAGE\_SIZE set to 1024. In this case two Request FIFO entries are used.

 S\_CNTL\_ABSNT
 0 (start control word present)

 E\_CNTL\_ABSNT
 1 (end control word absent)

Example 2: reception of a 1024 32-bit words packet encapsulated in

| S_CNTL_ABSNT    | 0 (start control word present) |
|-----------------|--------------------------------|
| E_CNTL_ABSNT    | 1 (end control word absent)    |
| RX_BLOCK_LENGTH | 1024                           |
| S_CNTL_ABSNT    | 1 (start control word absent)  |
| E_CNTL_ABSNT    | 0 (end control word present)   |
| RX_BLOCK_LENGTH | 0                              |

Example 3: reception of a 2000 32-bit words packet encapsulated in between control words, with PAGE\_SIZE set to 1024.

| S_CNTL_ABSNT                 | 0 (start control word present)                            |
|------------------------------|-----------------------------------------------------------|
| E_CNTL_ABSNT                 | 1 (end control word absent)                               |
| RX_BLOCK_LENGTH              | 1024                                                      |
|                              |                                                           |
| S_CNTL_ABSNT                 | 1 (start control word absent)                             |
| S_CNTL_ABSNT<br>E_CNTL_ABSNT | 1 (start control word absent)0 (end control word present) |

Example 4: reception of a 2048 32-bit words packet encapsulated in between control words, with PAGE\_SIZE set to 1024. In this case three Request FIFO entries are used

| S_CNTL_ABSNT    | 0 (start control word present) |
|-----------------|--------------------------------|
| E_CNTL_ABSNT    | 1 (end control word absent)    |
| RX_BLOCK_LENGTH | 1024                           |
| S_CNTL_ABSNT    | 1 (start control word absent)  |
| E_CNTL_ABSNT    | 1 (end control word absent)    |
| RX_BLOCK_LENGTH | 1024                           |
| S_CNTL_ABSNT    | 1 (start control word absent)  |
| E_CNTL_ABSNT    | 0 (end control word present)   |
| RX_BLOCK_LENGTH | 0                              |

Example 5: reception of a 2100 32-bit words packet encapsulated in between control words, with PAGE\_SIZE set to 1024.

| S_CNTL_ABSNT    | 0 (start control word present) |
|-----------------|--------------------------------|
| E_CNTL_ABSNT    | 1 (end control word absent)    |
| RX_BLOCK_LENGTH | 1024                           |
| S_CNTL_ABSNT    | 1 (start control word absent)  |
| E_CNTL_ABSNT    | 1 (end control word absent)    |
| RX_BLOCK_LENGTH | 1024                           |
| S_CNTL_ABSNT    | 1 (start control word absent)  |
| E_CNTL_ABSNT    | 0 (end control word present)   |
| RX_BLOCK_LENGTH | 52                             |