
D
R

A
FT

D
R

A
FT

D
R

A
FT

g at

ts are

ory.

 are
in

 DMA
The

vents

tailed
The DSP6202 Processor Board Software

S.Simion. CERN, 1 December 2000

1 The DSP Software

1.1 What you should know

From the TMS320C6000 Peripherals Reference Guide you should read: Chapter 3 (C6202 Pro-
gram and Data Memory), Chapter 5 (DMA), and Chapter 13 (Interrupts). From the
TMS320C6000 CPU and Instruction Set Reference Guide you should read: Chapter 2 (CPU
Data Paths and Control), Chapter 3 (C6202 Instruction Set), and Chapter 8 (Interrupts).

1.2 Data buffering and DMA scheduling logic

In the actual implementation, the data are transferred through four distinct buffers:

• The dual-port memory, accessible by the DSP as read-only external memory startin
address 0x01400000, is organized as a circular buffer of 128 events.

• A double buffer for the input data is implemented in the DSP data memory. The even
brought into data_in1 (or data_in2) by the DMA.

• Currently NBUFOUT=4 buffers for the output data are implemented in the DSP data mem
The DSP optimal filtering code loop26 reads directly from data_in2 (or data_in1) and
writes the output data to data_out[n] in a round-robin fashion.

• The output FIFO can hold up to 128 events, depending on the event size. The data
copied from data_out to the output FIFO by DMA, with write synchronization enabled
order not to write to an almost-full FIFO.

The main program manages the input and output data flow by scheduling the appropriate
transfers, calling the event processing routines, and raising the BUSY when necessary.
program acts as a state machine depending on:

• The number of events waiting in the dual-port memory.

• The states of the two input buffers, which can be:

– FREE: able to receive a new event from the dual-port memory;

– BUSY: an event is being copied from the dual-port memory to the buffer;

– READY: the buffer contains a complete event ready to be processed by the DSP.

• The states of the output buffers, which are determined indirectly from the number of e
which have been transferred to the output FIFO.

The simplified equations describing this state machine are shown in Figure 1. A more de
description of the actual implementation is shown in Figure 2.
1

http://www-s.ti.com/sc/psheets/spru190c/spru190c.pdf
http://www-s.ti.com/sc/psheets/spru189f/spru189f.pdf

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
Figure 1: Simplified conditions for the DMA scheduling.

Nevt(DPRAM) > 0 && IN == Free → Trigger Input DMA
→ IN = Busy

Input DMAC → Nevt(DPRAM) -= 1
→ IN = Ready

IN == Ready && OUT == Free → Begin event processing
→ OUT = Busy

End event processing → Trigger Output DMA
→ IN = Free

Output DMAC → OUT = Free
→ Nevt(Out) += 1

Figure 2: Implementation of the DMA scheduling logic in the main event loop.

loop:

/* --- Go ahead with the next output DMA if needed AND if DMA2 available */
if (Output_DMAC && nevt_out_next < nevt_out_rdy){

schedule output DMA;
nevt_out_next++;

}

/* --- Polling on the dual-port RAM counter */
nevt_input = RRAM[COUNTERS] & 0xffff;

/* --- Busy logic */
if (nevt_input - nevt_input_next > NEVT_BUSY_ON)

LVL2_BUSY_ON;

else if (nevt_input - nevt_input_next == NEVT_BUSY_OFF)
LVL2_BUSY_OFF;

if (nevt_input - nevt_input_next != 0 && IN1 == FREE){
Schedule Input DMA to Buffer1;
IN1 = BUSY;
nevt_input_next++;

}
else if (IN1 == BUSY && Input_DMAC)

IN1 = READY;

if (nevt_input - nevt_input_next != 0 && IN2 == FREE){
schedule input DMA to Buffer2;
IN2 = BUSY;
nevt_input_next++;

}

/* --- Ready input AND there is a free output buffer.
Note that the last output buffer is never used directly,
since the last DMA transfer may still be in progress */

if (IN1 == READY && nevt_out_rdy - nevt_out_next < NBUFOUT-1){

/* Process event */
process_event(IN1, OUT(nevt_out_rdy));

/* One more event waiting to be serviced by output DMA */
nevt_out_rdy++;

/* Input buffer becomes free */
IN1 = FREE;

Swap buffers 1 and 2;

}

goto loop;
2

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
Note that the LVL2 BUSY is only controlled by the number of events waiting in the dual-port
memory. However, if for some reason the output FIFO becomes almost full (e.g. due to the
ROB not ready to receive), then the output DMA cannot proceed, which may result in all four
DSP output buffers to be busy, which in turn will prevent the DSP to process any events, and so
the LVL2 BUSY will be turned on at some point, to avoid the dual-port RAM buffer to fill up.

The configuration of the DMA transfers is explained in the DSP6202 board hardware reference.

In addition, the completion of the output DMA (referred to as Output_DMAC) is detected by
testing the DSP interrupt flag register as described in Section 8.3 of the TMS320C6000 CPU
and Instruction Set Reference Guide.

The output DMA is performed by DMA channel 2, which has been configured to interrupt the
CPU at the end of each event transfer. The interrupt is disabled: it does not trigger an interrupt
processing, has no associated interrupt service packet. The interrupt is processed manually by
polling the IFR register. Note that the DMA channel 2 interrupt, DMA_INT2, by default maps
to CPU INT11 as explained in Chapter 13 of the Peripherals Reference. In turn, CPU INT11 is
tested using Bit 11 of the IFR. INT11 is cleared (acknowledged) before starting a new DMA
transfer, by writing to the ICR.

The output DMA source address and word count are configured for each event. The destination
address is set to the XCE3 address 0x70000000 at initialization time. The output DMA second-
ary control register configuration is shown in Table 1, and the primary control register configu-
ration is shown in Table 2. Please refer to Section 5.2 of the Peripherals Reference.

Table 1: Output DMA Secondary Control Register Field description. All other fields are set to 0.

Field Description

RSPOL = 1 Polarity of the EXT_INT6.

FSIG = 1 Select level-triggered frame synchronization.

DMAC EN = 100b DMAC reflects FRAME COND.

FRAME IE = 1 DMA channel interrupt enabled at the end of the event transfer.

Table 2: Output DMA Primary Control Register Field Description. All other fields are set to 0.

Field Description

DST RELOAD = 00b No need to reload the destination register for FIFO writing.

SRC RELOAD = 00b The source address is loaded manually.

FS = 1 Frame synchronization is enabled.

TCINT = 1 Transfer controller interrupt is enabled.

WSYNC = 00000b WSYNC not applicable when FS = 1.
3

http://www-s.ti.com/sc/psheets/spru189f/spru189f.pdf
http://www-s.ti.com/sc/psheets/spru189f/spru189f.pdf
http://www.nevis.columbia.edu/~simion/NevisDSP.pdf
http://www-s.ti.com/sc/psheets/spru190c/spru190c.pdf
http://www-s.ti.com/sc/psheets/spru190c/spru190c.pdf

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
Currently the completion of the input DMA is detected by checking the STATUS field of the
corresponding DMA primary control register.

1.3 Initialization

On the DSP6202 board, upon reset, the DSP will transfer 64 kBytes of data from the dual-port
RAM to its internal data memory, then starts executing the code at address 0.

In the current implementation, the code at address 0 is a branch into the c_int00 routine,
which is the run-time initialization of the C environment. Then the user main() program is
called. The main() program calls periph_init() to configure the DSP peripherals (EMIF,
serial ports, XBUS) to conform to the actual hardware. The actual settings are shown in
Table 3.

The main() program then calls memcpy() to transfer the calibration constants from the second
half of the dual-port memory, to the data memory pointed to by cc_table.

Finally, the event loop is entered.

RSYNC = 00110b Frame synchronization on EXT_INT6.

DST DIR = 00b The destination address is fixed for FIFO writing.

SRC DIR = 01b The source address is incremented.

START = 01b Start the transfer without autoinitialization.

Table 3: Peripherals configuration in periph_init()

Register Value Description

EMIF CE1 Space Control 0xfff1 0220 Asynchronous memory timings
Read Setup=1, Strobe=2, Hold=0

Expansion Bus Global Control (XBGC) 0x0000 6000 Clock = CPU/4

McBSP0 Receive Control (RCR)
McBSP0 Transmit Control (XCR)

0x0001 00A0

McBSP0 Sample Rate Generator (SRGR) 0x2020 0008

McBSP0 Pin Control (PCR) 0x0000 0A02

McBSP0 Serial Port Control (SPCR) 0x00C1 0001

McBSP1 Pin Control (PCR) 0x3800

Interrupt Multiplexer High 0x0820 2d4d RINT0 replaces SD_INT as INT10 for
handling serial data from VME.

Table 2: Output DMA Primary Control Register Field Description. All other fields are set to 0.

Field Description
4

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
testSysCall Subroutine

Purpose
To intercept and process messages sent to the DSP serial port.

Syntax
void testSysCall()

Description
In between event processing, the DSP main program checks for any serial data sent via
VME by calling the testSysCall subroutine. Currently the following values are recognized:

0 Write the contents of the energy histograms to the FPGA histogram FIFO.
1 Write the contents of the time histograms to the FPGA histogram FIFO.
2 Enter PD3 power-down mode.

If no serial data is present, the testSysCall subroutine returns after 8 cycles.

If the energy or time histograms are requested, their addresses are taken from the global
symbols _ehist and _thist respectively; the size is hard-coded to 4096 words. The DMA
transfer is scheduled only if the DMA3 channel is not busy with a previous request; other-
wise the subroutine has no effect. In either case, the subroutine returns after 14 cycles.

If the power-down mode is entered, the subroutine never returns. A complete reset is then
needed to reboot the DSP.

Developers are encouraged to extend the functionality of this service subroutine, according
to their needs.

Implementation details
The testSysCall subroutine checks for serial data by polling Bit 10 of the IFR. This inter-
rupt was mapped to RINT0 and is associated with one 32-bit serial word available for read-
ing in the McBSP0 receive register. Once detected, the interrupt flag is cleared manually by
writing to the ICR. The scheduled assembler code is shown in Table 4.
5

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
Table 4: testSysCall.asm scheduled assembler flow

.S2 .S1
MVC IFR, B0 MVKL DRR_0, A3

EXTU B0, 21, 31, B0 MVKH DRR_0, A3

[!B0] B B3 MVKL DMA_3, A3 [B0] LDW *A3, B1

[B0] MVK 0x400, B0 MVKH DMA_3, A3

[B0] LDW *A3, A1

MVKL _ehist, B4 MVKL 0x00180008, A4

MVKH _ehist, B4 MVKH 0x00180008, A4

[B0] MVC B0, ICR CMPGT B1,1, A2a

[!A2] B B3b

[B1] MVKL _thist, B4 [!A2] EXTU A1, 28, 30, A2c

[B1] MVKH _thist, B4 MVK 256, A5 [!A2] STW A4, *+A3[2]d

MVKL 0x04015011, B5 MVKLH 16, A5 [!A2] STW B4,*+A3[4]e

MVKH 0x04015011, B5 [!A2] STW A5,*+A3[8]f

[!A2] STW B5, *A3g

MVK 0x7000, B4

MVC B4, CSRh

IDLE

a. Here A2=1 means not a DMA request.
b. Final return, after a DMA request.
c. Check if DMA3 is busy.
d. Write secondary control register
e. Write the source address
f. Write frame and word count
g. Trigger the transfer
h. Power-down.
6

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
process_event Subroutine (evtproc26.asm implementation)

Purpose
To compute the energy, time, and pulse quality for all channels, by using the optimal filter-
ing.

Syntax
void process_event(data_in, data_out)
const void *data_in;
void *data_out;

Description
The process_event routine is called by the main event loop whenever there is a full input
buffer data_in and a free output buffer data_out. The current implementation is based
upon the loop26 optimal filtering code. In addition to its arguments, this routine also uses
the _div_table and _cc_table global symbols, which refer to the division table and
respectively the calibration constants table, in the format needed by loop26.

In particular, the loop26 program imposes the following constraints concerning the mem-
ory organization. The calibration constants shall be aligned on a 0x4000-word boundary.
For performance reasons (access to the data memory), the input data, output data, and the
division table shall reside in memory block 1. The calibration constants shall reside in
memory block 0.

These constraints are fulfilled by the main program in conjunction with the linker, by using
the following directives and declarations:

#pragma DATA_SECTION(".febdata")
unsigned int data_in1[512];

#pragma DATA_SECTION(".febdata")
unsigned int data_in2[512];

#pragma DATA_SECTION(".febdata")
unsigned int data_out[NBUFOUT][300];

#pragma DATA_ALIGN(0x4000)
unsigned int cc_table[4096];
7

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
process_event Subroutine (evtproc26_mask.asm implementation)

Purpose
To compute the energy, time, and pulse quality for all channels, by using the optimal filter-
ing; to flag the channels above a given energy threshold.

Syntax
double process_event(data_in, data_out, threshold)
const void *data_in;
void *data_out;
float threshold;

Description
This version of the process_event routine combines the evtproc26.asm and emask.asm
functionality. It is more efficient than the two parts used separately, because it eliminates
one subroutine call and allows better pipelining. Please refer to the evtproc26.asm descrip-
tion and to the emask subroutine for more information.
8

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT

 are per-
ory
emask Subroutine (emask.asm implementation)

Purpose
To flag the channels above some energy threshold.

Syntax
double emask(data, threshold)
const float *data;
float threshold;

Description
The loop26 implementation of the optimal filtering computes the time and pulse shape
quality for all channels. The emask subroutine is designed to flag the channels above the
specified energy threshold. The data parameter points to the beginning of the energy
data block, which must contain (at least) 64 floating-point data words. The emask subrou-
tine returns a 64-bit channel mask in big-endian order: the MSB refers to channel 0, while
the LSB refers to channel 63.

The bit ordering is chosen to allow further processing by using the bit search forward (left
to right) opcodes available on many processors: LMBD for the ‘C6000 architecture,
CNTLZ on PowerPC, BSR on Intel. See also the LEADZ Fortran90 intrinsic.

Implementation details
The emask.asm implementation needs 32 cycles to process 64 channels. Two loads
formed every cycle, so the corresponding energy words must reside in different mem
banks. This is done by processing channels 31→0 in parallel with channels 32→63. The
emask.asm does not modify the A10..A15 or B10..B15 registers.
9

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT

y be
f his-

-
s 0 to

han-
s
eter.

sfy-
ed
filterHisto Subroutine (filterHisto.asm implementation)

Purpose
To remove the time/chi2 information for specified channels; to fill the energy and time his-
tograms; to flag channels for monitoring purposes.

Syntax
int filterHisto(data, mask, ecut2, ecut3, chi2cut, Offset)
unsigned int *data;
double mask;
float ecut2;
float ecut3;
int chi2cut;
float Offset;

Description
The data parameter points to the beginning of the energy data block, immediately followed
by the time/chi2 data block. The filterHisto subroutine modifies the time/chi2 data block
by preserving only the time/chi2 information for those channels which are flagged by
mask. The subroutine returns the number of channels with time/chi2 information.

In parallel, for the channels which are flagged, the filterHisto subroutine fills the energy
and time histograms. The base address of the energy histograms is taken from the _ehist
global symbol, and the base address of the time histograms is taken from _thist.

For every channel, there are three energy histograms and three time histograms, one for
each gain. All bins are 32-bits, with saturation at 232–1 in case of overflow. All histograms
have overflow and underflow bins. The number of bins must be a power of 2, and ma
defined separately for the energy and for the time histograms. Currently both types o
tograms have 16 bins.

The energy histograms are logarithmic. The Offset parameter contains the biasing expo
nent used to fill the energy histograms, and must be a power of 2, i.e. its fraction (bit
22 of the IEEE floating-point format) must be zero. The quantity histogrammed is log2(E/
Offset).

The time histograms are linear, centered around zero. They are filled only for those c
nels flagged in the input mask, and satisfying E >ecut2. The range of the time histogram
is hard-coded in filterHisto.asm. Please refer to Table 5 in order to modify this param

In addition, the filterHisto subroutine fills a new channel mask for those channels sati
ing E >ecut3 or χ2 > chi2cut. In the current C linkage, this second mask is not return
to the caller.
10

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
Implementation details
The time histograms shall reside in memory block 1. The energy histograms shall reside in
memory block 0. The filterHisto.asm implementation needs 6 CPU cycles for each channel
flagged in the input mask, plus a small overhead.
11

.L1 (t, mask’) .M
MV SP, A0

[m0] MPY 4, n, N

ZERO hptWR

t ZERO mask

CMPGT x, xcut, k MPY C48, N, jmpt

AND 3, g, g MPYHL C48, N, jmpe

:t0 [!k] CMPGT e, thr4, k

SADD 1, binT, binT

CMPGT e, thr_th, hptWR

[k] ADD bit, mask, mask

SADD 1, binT, binT

ZERO hptWR

ZERO mask

CMPGT x, xcut, k MPY C48, N, jmpt

AND 3, g, g MPYHL C48, N, jmpe

:t0 [!k] CMPGT e, thr4, k

SADD 1, binT, binT

CMPGT e, thr_th, hptWR

[k] ADD bit, mask, mask

MV SP, A0

SADD 1, binT, binT

MV m0, A4
Table 5: filterHisto.asm scheduled assembler flow

.D2 (I/O, E) .S2 (E) .L2 (E) .D1 (t) .S1 (t)
MV B4, B0 (m0) MV A4, B4 (eIn) MV B5, B1 (m1) ADDK 256, A4

Lo
ad

 0

PUSH A13 MV A4, B5 (xIn) LMBD 1, m0, n PUSH B3 [!m0] B epilog0

LDW *++xIn[n], x SHL m0, n, bit ZERO N PUSH B14

LDW *++eIn[n], e CLR bit, 31, 31, m0 PUSH B13 MVK 48, C48

PUSH A12 MVK _ehist, hpe PUSH B12 MVKLH 48, C48

PUSH A11 MVKH _ehist, hpe XOR bit, m0, bit PUSH B11 MVK _thist, hpt

PUSH A10 SHRU bit, n, bit ZERO hpeWR PUSH B10 MVKH _thist, hp

L
oa

d
 j

Sa
ve

 j–
1

L
oa

d
 h

is
to

 j–
1

Sa
ve

 h
is

to
 j–

2

STW x, *xOut++ [m0] B here LMBD 1, m0, n SHL x, 18, g:t0

LDW *++xIn[n], x SHL m0, n, m0 SUB e, Offset, e0 SSHL t0, 10, t0

LDW *++eIn[n], e SSHL e0, 5, e0 MV g, g’ ADD hpt, jmpt, hptRD SHRU g:t0, 28, g

[m0] ADDAW N, n, N SHRU g’:e0, 28, g’:e0 ADD hpe, jmpe, hpeRD LDW *++hptRD[t0], binT

LDW *++hpeRD[e0], binE CLR m0, 31, 31, m0 SADD 1, binE, binE [hptWR] STW binT, *hptWR

[hpeWR] STW binE, *hpeWR SHRU bit, n, bit MV hpeRD, hpeWR [hptWR] MV hptRD, hptWR

ep
il

og
0:

Sa
ve

 la
st

 h
is

to
L

oa
d

 3
2

SUB xIn, N, xIn SUB eIn, N, eIn LMBD 1, m1, n [!m1] B epilog1

LDW *++xIn[n], x SHL m1, n, bit

LDW *++eIn[n], e MVK 128, N

[m1] ADDAW N, n, N CLR bit, 31, 31, m1 SADD 1, binE, binE [hptWR] STW binT, *hptWR

[hpeWR] STW binE, *hpeWR MV mask, m0 XOR bit, m1, bit

SHRU bit, n, bit ZERO hpeWR

L
oa

d
 j

Sa
ve

 j–
1

L
oa

d
 h

is
to

 j–
1

Sa
ve

 h
is

to
 j–

2

STW x, *xOut++ [m1] B here LMBD 1, m1, n SHL x, 18, g:t0

LDW *++xIn[n], x SHL m1, n, m1 SUB e, Offset, e0 SSHL t0, 10, t0

LDW *++eIn[n], e SSHL e0, 5, e0 MV g, g’ ADD hpt, jmpt, hptRD SHRU g:t0, 28, g

[m1] ADDAW N, n, N SHRU g’:e0, 28, g’:e0 ADD hpe, jmpe, hpeRD LDW *++hptRD[t0], binT

LDW *++hpeRD[e0], binE CLR m1, 31, 31, m1 SADD 1, binE, binE [hptWR] STW binT, *hptWR

[hpeWR] STW binE, *hpeWR SHRU bit, n, bit MV hpeRD, hpeWR [hptWR] MV hptRD, hptWR

ep
il

og
1:

Sa
ve

 la
st

 h
is

to
R

es
to

re
 r

eg
is

te
rs

R
et

ur
n

to
 c

al
le

r

Restore B3

Restore B14

Restore B13 Restore A13

Restore B12 SADD 1, binE, binE Restore A12

[hpeWR] STW binE, *hpeWR [hptWR] STW binT, *hptWR

Restore B11 B B3 Restore A11

Restore B10 Restore A10 MV mask, A5

NOP 4

ls 0..31 (from 2nd input argument)

ls 32..63 (from 2nd input argument)

togram (or 0)

tput mask, initially 0x8000 0000

rom 1st input argument)

 (initially eIN + 64 words)

mples (input, 4th argument, floating-point constant)

ding to the input mask

ing exponent to be subtracted (6th argument?)

, or Sum(n)

gram

ams (initialized from global symbol)
Table 6: filterHisto.asm register allocation

Reg A side B side
0 e = energy loaded m0 = input channel mask for channe

1 x = time/chi2 loaded,
k = condition to dump samples for this channel

m1 = input channel mask for channe

2 hptWR = condition to fill time histogram and write pointer to histogram contents hpeWR = write pointer to energy his

3 mask = output mask for dumping samples bit = running bitmask to build the ou

4 xOut = pointer to filtered output time/chi2 (initially xIn) eIN = read pointer to energy block (f

5 hpt = base pointer for time histograms (initialized from global symbol) xIN = read pointer to time/chi2 block

6 thr_th = energy threshold to fill time histogram (input, 3rd argument, floating-point constant) thr4 (ecut4) = energy cut to dump sa

7 Nbins (C48) = number of bins per channel in energy histogram (16..31) and in time histogram
(0..15)

n = number of channels to skip accor

8 xcut (chi2cut) = chi2 cut to dump samples (input, 5th argument, integer constant) Offset = constant containing the bias

9 jmpe, jmpt = offset to e/t histograms N = current channel being processed

10 binT = time histogram channel content binE = energy histogram channel

11 hptRD = read pointer to time histogram hpeRD = read pointer to energy histo

12 t0 = time extracted from time/chi2 e0 = log2(energy) extracted from e

13 g2 = gain extracted from time/chi2 g1 = copy of g2

14 hpe = base pointer for energy histogr

15 SP

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
2 The DSP6202 Host Software

A set of C functions are available for communicating with the DSP6202 board from a VME
CPU. These functions allow to configure the input FPGA; download the DSP code and boot the
DSP; send and receive data by using the DSP serial port etc.

Currently these functions are grouped in the libti.a library. Communication with VME is done
via 5 well-defined low-level functions, which may be modified to comply with the actual CPU
and VME environment (Figure 3).

Figure 3: Structure of the DSP6202 Host Software

libti.a Library

ti_vme.c

User’s Application

Host VME interface
14

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_boot Subroutine

Purpose
Full initialization of the DSP6202 board.

Syntax
#include “ti_dsp.h”
ti_boot(dsp, file1, file2)
ti_dsp_p dsp;
const char *file1, *file2;

Description
The ti_boot subroutine configures the DSP6202 board input FPGA, then downloads the
contents of the two files to the dual-port memory.

The dsp input argument is a pointer to a ti_dsp_t data structure, with the rodid and puid
fields properly initiaized. The puid field is the slot number of the PU to configure.

The binary file ALTERA.dat is used to configure the input FPGA. This file can be obtained
directly from an ALTERA .ttf file by using the ttf2bin program.

The file1 and file2 input arguments specifiy two .x0 files in Tektronix format. file1
contains the DSP object file produced by the TI Compiler and Linker, followed by the TI
Hex Conversion Utility (see Chapter 10 and Section 10.9.5 of the TMS320 C6000 Assem-
bly Language Tools User’s Guide). file2 contains the calibration constants for optimal fil-
tering. Either file1 or file2 may be NULL pointers, in which case nothing is loaded.

Once the DSP object file has been downloaded, the ti_boot subroutine releases the DSP
RESET. The DSP should respond by sending a serial data word. The ti_boot subroutine
completes the initialization by clearing the output FPGA buffer and event counter, and
sending the INT7 interrupt to the DSP which then enters the main event loop.
15

http://www-s.ti.com/sc/psheets/spru186g/spru186g.pdf
http://www-s.ti.com/sc/psheets/spru186g/spru186g.pdf

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_altera_cfg Subroutine

Purpose
To configure the DSP6202 input FPGA

Syntax
#include “ti_dsp.h”
ti_altera_cfg(dsp)
ti_dsp_p dsp;

Description
The ti_altera_cfg subroutine is used internally by ti_boot to configure the input FPGA. It
uses the binary file ALTERA.dat, which can be obtained from an ALTERA .ttf file by
using the ttf2bin program.
16

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_dpcpy Subroutine

Purpose
Data transfer from the host CPU to the DSP6202 input FPGA or dual-port memory.

Syntax
#include “ti_dsp.h”
ti_dpcpy(dsp, s1, s2, wc)
ti_dsp_p dsp;
unsigned int s1;
unsigned int *s2;
int wc;

Description
The ti_dpcpy subroutine copies 32-bit words from memory area s2 into the input FPGA
starting at offset s1 words, stopping after wc words have been copied. This routine is also
used to send data to the dual-port RAM. The input FPGA DP_OFFLINE flag is set high by
this routine. Clearing the DP_OFFLINE flag is caller’s responsibility.

The ti_dpcpy subroutine relies on the output FPGA to increment the target address and
serialize each data and address words which are sent to the input FPGA using the DP_DMS,
DP_DLS, DP_ADD, and DP_FRM signals. The input FPGA decodes the address and uses the
data to either configure its own registers and/or memory, or write the data to the dual-port
memory.

In the present configuration of the input FPGA, the memory map is shown in Table 7.

Table 7: Input FPGA memory map

Address Range (Hex Words) Size
Words

Description

0000–7FFF 32K Dual-port RAM.

8000 (ADD_MODE in ti_dsp.h) 1 Input FPGA Mode Register.

9000 (ADD_NSAMP in ti_dsp.h) 1 Input FPGA Register (Number of samples).

A000 (ADD_NGAIN in ti_dsp.h) 1 Input FPGA Register (Number of gains).

B000–B1FF (ADD_MAP in ti.dsp.h) 512 Input FPGA LPM RAM. Used to rearrange the FEB
data words.

C000 (ADD_SHFT in ti_dsp.h) 1 Input FPGA Register. Left shift of FEB ADC words.
17

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_dpset Subroutine

Purpose
To initialize the DSP6202 input FPGA or dual-port memory

Syntax
#include “ti_dsp.h”
ti_dpset(dsp, s, c, wc)
ti_dsp_p dsp;
unsigned int s;
unsigned int c;
int wc;

Description
The ti_dpset subroutine sets the first wc words in the input FPGA area starting at offset s
to the value of c. It may be used to initialize the input FPGA registers or the dual-port
memory with a given value. The input FPGA DP_OFFLINE flag is set high by this routine.
Clearing the DP_OFFLINE flag is caller’s responsibility.

The current input FPGA memory map is shown in Table 7.
18

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_dpsend_xfile Subroutine

Purpose
To load a DSP object file in Tektronix format

Syntax
#include “ti_dsp.h”
ti_dpsend_xfile(dsp, file)
ti_dsp_p dsp;
const char *file;

Description
The file argument is the name of a .x0 file in Tektronix format, to be loaded to the DSP
via the dual-port memory. The input FPGA DP_OFFLINE flag is set high by this routine.
Clearing the DP_OFFLINE flag is caller’s responsibility.

It is caller’s responsibility to maintain the DSP RESET active during the transfer. Usually
the ti_dpsend_xfile subroutine is called by ti_boot.
19

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_status and ti_pstatus Subroutines

Purpose
To read and print the DSP6202 output FPGA status register.

Syntax
#include “ti_dsp.h”
(void) ti_pstatus (ist)
int ti_status (dsp)
ti_dsp_p dsp;
unsigned int ist;

Description
The ti_pstatus subroutine produces a message on the standard error output, describing the
contents of the DSP6202 status register which is taken from the ist argument.

The ti_status subroutine reads the DSP6202 status register via VME, and produces a mes-
sage on the standard error output, describing the contents of the status register. The dsp
argument is a pointer to a ti_dsp_t data structure properly initialized.
20

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_interrupt Subroutine

Purpose
To send the INT7 external interrupt to the DSP.

Syntax
#include “ti_dsp.h”
ti_interrupt(dsp);
ti_dsp_t dsp;

Description
The ti_interrupt subroutine issues two VME write cycles to the DSP6202 control word, to
assert and then deassert the DSP EXT_INT7 interrupt signal.
21

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
ti_syscall Subroutine

Syntax
#include “ti_dsp.h”
ti_syscall(dsp, c)
ti_dsp_t dsp;
unsigned int c;

Description
The 32-bit value c is sent to the DSP McBSP0 serial port.
22

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
fpga_map Subroutine

Purpose
Initialization of the input FPGA LPM RAM used for FEB data rearrangement.

Syntax
fpga_map_(nsamp, ngains, map)
int *nsamp;
int *ngains;
unsigned int map[512];

Description
The fpga_map user routine is called by ti_boot once, at initialization time. It must fill the
map array with the address offsets, in the dual-port RAM event block, where the FEB data
are to be written. The ti_boot subroutine then copies the contents of map to the input FPGA
LPM RAM. The *nsamp and *ngains arguments are inputs to the fpga_map subroutine.

The current implementation of fpga_map is written in Fortran. The order of the FEB data
building blocks after rearrangement, is specified using the following statement:

C==
C Put your code below
C==

WRITE(LUN,’(I6)’)
$ GAIN(0,0), ((ADC1(i,isamp),isamp=0,NSAMP-1),i=0,7),
$ GAIN(1,0), ((ADC1(i,isamp),isamp=0,NSAMP-1),i=8,15),
$ GAIN(2,0), ((ADC1(i,isamp),isamp=0,NSAMP-1),i=16,23),
$ GAIN(3,0), ((ADC1(i,isamp),isamp=0,NSAMP-1),i=24,31),
$ (ADDR(0,isamp),isamp=0,NSAMP-1),
$ CTL1(0),CTL2(0),CTL3(0),ERR_FLAG
23

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
vme_dsp_write and vme_dsp_read Subroutines

Purpose
To interface the ti_ subroutines with the host VME

Syntax
#include “ti_dsp.h”
void vme_dsp_write(dsp, addr, data)
int vme_dsp_read(dsp, addr)
ti_dsp_t dsp;
ti_addr_t addr;
unsigned int data;

Description
The vme_dsp_write subroutine writes one 32-bit word specified by data to the PU speci-
fied by dsp at the PU address addr.

The vme_dsp_read subroutine reads one 32-bit word from the PU specified by dsp at the
PU address addr.

These subroutines know about the PU address to VME address mapping as implemented
by the motherboard.
24

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
vme_dsp_writeblk and vme_dsp_readblk Subroutines

Purpose
To interface the ti_ subroutines with the host VME

Syntax
#include “ti_dsp.h”
void vme_dsp_writeblk(dsp, addr, nw, data)
void vme_dsp_readblk (dsp, addr, nw, data)
ti_dsp_t dsp;
ti_addr_t addr;
int size;
unsigned int *data;

Description
The vme_dsp_writeblk subroutine copies nw 32-bit words from the data array, via VME,
to the PU specified by dsp at the PU address specified by addr. The destination address is
left unchanged (FIFO mode).

The vme_dsp_readblk subroutine copies nw 32-bit words from the PU specified by dsp
and from the PU address specified by addr, via VME, to the data array. The source
address is left unchanged (FIFO mode).

These subroutines know about the PU address to VME address mapping as implemented
by the motherboard.
25

The DSP6202 Software

D
R

A
FT

D
R

A
FT

D
R

A
FT
vme_check Subroutine

Purpose
To test if any errors have occured during the VME transfers

Syntax
#include “ti_dsp.h”
void vme_check()

Description
If an error occured during the VME transfers, the vme_check subroutine prints the details
of the error to the standard error output, and then clears the error.
26

	1 The DSP Software
	Table 1: Output DMA Secondary Control Register Field description. All other fields are set to 0.
	Table 2: Output DMA Primary Control Register Field Description. All other fields are set to 0.
	Table 3: Peripherals configuration in periph_init()
	testSysCall Subroutine
	Table 4: testSysCall.asm scheduled assembler flow
	process_event Subroutine (evtproc26.asm implementation)
	process_event Subroutine (evtproc26_mask.asm implementation)
	emask Subroutine (emask.asm implementation)
	filterHisto Subroutine (filterHisto.asm implementation)
	Table 5: filterHisto.asm scheduled assembler flow
	Table 6: filterHisto.asm register allocation
	2 The DSP6202 Host Software
	ti_boot Subroutine
	ti_altera_cfg Subroutine
	ti_dpcpy Subroutine
	Table 7: Input FPGA memory map
	ti_dpset Subroutine
	ti_dpsend_xfile Subroutine
	ti_status and ti_pstatus Subroutines
	ti_interrupt Subroutine
	ti_syscall Subroutine
	fpga_map Subroutine
	vme_dsp_write and vme_dsp_read Subroutines
	vme_dsp_writeblk and vme_dsp_readblk Subroutines
	vme_check Subroutine

