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Abstract

In this paper we present an Optimal Filtering algorithm to reconstruct the energy,
time and pedestal of a photomultiplier signal from its digital samples. The optimal
filter method is applied in multiply-sampled signals and improves the energy recon-
struction by minimizing the impact on resolution of both electronic noise, intrinsic
to the calorimeter, and the pile-up which depends on the luminosity. The OF im-
plementation and performance have been studied for the hadronic Tile Calorimeter
(TileCal) of the ATLAS detector. The algorithm is tested and compared with other
reconstruction algorithms from two different types of data: calibration runs com-
ing from the TileCal Charge Injection System and physics events - pions, electrons
and muons - acquired during the testbeam program of the TileCal detector. The
results are promising specially in the regions where the electronics noise contributes
significantly to the resolution.
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1 Introduction

Optimal Filtering (OF) is an algorithm which reconstructs the amplitude of an
analog signal from its digital samples. In the ATLAS hadronic Tile Calorimeter
(TileCal) the amplitude of the signal is proportional to the energy deposited
in the readout cell, therefore OF can be used as an energy reconstruction
algorithm. In addition it also reconstructs the time information of the signal
and provides a way to calculate the quality of the reconstructions.

The implementation of OF in calorimetry was originally proposed as a solution
to the problem of noise optimization in liquid ionization calorimeters working
in a high luminisity environment [1]. In this kind of calorimeters the signal
is of the order of hundreds of nanoseconds due to the drift velocity of the
charges in the active medium. In high luminosity accelerators (as the LHC)
the bunch crossing period is much shorter (25 ns for the LHC) than the signal
time domain. As a consequence the amount of pile up noise in the signal
forces the introduction of a cut on the recolection time of the charges, which
is hardwired in the front end electronics of the detector. However this time
must not be too short because the thermal noise to signal ratio increases as the
recolection time of the charges decreases. There is an optimal recolection time
which minimizes the contribution of both sources of noise. The problem arises
when this optimal time cannot be constant during the lifetime of the detector
due to updates in the luminosity or ageing in the electronics components. The
OF algorithm reduces the noise to the level of the optimal recolection time in
the cases where this time is not optimal in the hardware.

In TileCal, the readout is based on photomultipliers whose fast signal (~ 20
ns) avoids this problem [2]. However, after the shaper, the signal has also con-
tributions from the two noise sources considered in [1], pile up and electronics
noise. Therefore this algorithm is still useful in this type of calorimeters.

OF is envisaged to be implemented in the Read Out Driver (ROD) cards which
are part of the ATLAS DAQ electronics [3]. A ROD module reads optical
fibers from the front-end electronics. The fibers transmit all the information
of an event selected by the first level trigger in digital format. The ROD
motherboard is designed to hold mezzanine cards which are equipped with last
generation Digital Signal Processors (DSP). These DSPs can be programmed
to implement energy reconstruction algorithms. Once the energy is calculated
the information is sent to the second level trigger, the next step of the data
acquisition chain. The maximum allowed rate of the ATLAS first level trigger
(~ 100 kHz) and the computing power limitations of the DSPs impose severe
constraints to the complexity of the algorithms which may be implemented on
them. However a good performance of the second level trigger requires high
accuracy of the energy reconstruction. Therefore any algorithm implemented



in the DSPs should reach a compromise between simplicity and accuracy [4].

This note explains several aspects of the OF implementation in the TileCal
environment. The theoretical aspects of the algorithm are exposed in Sec. 2
and Appendix A. The calculation of the OF parameters is explained in Sec. 3.
The algorithm implementation in calibration runs and with real physics data
is shown in Sec 4. The results are given in Sec. 5 and finally the conclusions
are summarized in Sec. 6.

2 Signal reconstruction with OF

OF consists in a weighted sum of the signal samples to recover its parameters
(amplitude and time) while minimizing the noise impact. The method yields
the amplitude and time of a signal pulse given a finite number of sampled
signal values. The theoretical development described here is taken from [1].

Let’s define g(t) as the shape form function of the signal (noise free) normalized
in amplitude. The samples can thus be expressed as:

S(t) = Ag(t), 1)

where S(t) represents the time sampling function and A is the true amplitude
of the signal. The set of samples are taken from S(t) at regular time intervals
t; and are given by:

S; = Ag(t;) = Ag, . (2)

If we introduce imperfections due to real electronics the samples now become:

Si=Ag(ti— 1)+ n;, (3)

where 7 is the phase between the digitizer output and the g and n; is the noise
term. We want A and 7 to be output parameters of the algorithm. Therefore,
in order to linearize the dependence of S with those parameters, we make a
Taylor’s expansion at first order:

Si ~ Ag(t;) — Atg'(t;) + n; = Ag; — ATg. + n; . (4)
This aproximation introduces a dependence on the quality of the reconstruc-

tions with 7. If 7 is equal to zero the Taylor’s expansion is exact but with
increasing 7 the quality of the reconstruction decreases.



Let’s define now two quantities:

u = Z a;S; , (5)
i=1
=1

where n is the number of samples and a and b are free parameters of the
algorithm called OF weights.

We require now the expected values of v and v ({(u) and (v)) for m events of
equal amplitude and time to be equal to A and A7 respectively:

A= (u) = <f21az-sz-> - ilaxs», (7)

n n

If we substitute S; by (4) in equations (7) and (8) and assume all parameters
to be constant except the noise, n, we get:

n

A= {u)= ;(Aaigi — Ata;g; + a;(n;)), (9)

We take the expected value of n;, (n;), as zero. This is the case for a Gaussian
distribution which is the aproximation of a model for thermal noise and used
also for pile up noise. Note that if this value is different from zero it can be ab-
sorbed into a pedestal. Therefore if we subtract this pedestal from the samples
or we introduce a third parameter defined as the pedestal (see Appendix A)
the algorithm is still valid. The important point is that the noise has to be
stationary, i.e., the statistical averages must be time independent [5]. With
this assumtion equations (9) and (10) become:

A= (u) =AY aigi — AT Y aig;, (11)
i=1 i=1

AT = (v) =AY bigi— AT big; . (12)
i=1 i=1



From (11) and (12) we set now the following four constraints for the weights:

n n
> aigi =1, > bigi=0,
=1 1=1

> aig; =0, > bigi = —
= =1

Note that we have defined m events with equal amplitude and time to calculate
(u) and (v). However the distribution of u and v values is broaded by the noise
contribution. In order to minimize this effect we require the parameters a and
b to be calculated such that they minimize the v and v variances.

The variances of v and v are given by:

Var(u) = Var( Zaz , (14)

Var(v) = Var(i b;S;) - (15)

=1

If we develop again equations (14) and (15) using (4) we have:

Var(u) = Var(A4 Z a;g; — AT Z a;g; + Z a;n;), (16)
~ & £

Var(v) = Var(A Z big; — AT Z big; + Z bin;) , (17)
i=1 — =1

where again all the parameters are constant except n.

Note that Var(a + x) = Var(z) if a is constant. With this, equations (16) and
(17) can be reduced to:

Var(u) = Var(zn; an;) (18)
Var(v) = Var(i bin;) . (19)

i=1
If we develop them we obtain:

Var(u Z a?Var(n;)

2
=1 m

> 3 a3 ()~ (), @0

10



Var(v Z:IbQVar n;) + %é -_f:lbibj i(nZ —(ny))(n; — (n;)), (21)

which can be expressed in a more compact way as:

Var(u) =

Sl-

3 iy (i = () (). )

3

Var(v) =

3=

J

S

Again we suppose that (n;) = 0 and then:

Var(u) = % Z a;a; Z nin;) Z a;a;{n;n;) (24)
i,j=1 i,j=1
1 n m n
Var(v) = E Z i Y (ning) = > bibj{niny) . (25)

ij=1

“k)
I |

Our goal is to find expresions for @ and b which minimize the variance and
fulfill the constraints of (13). We use thus the Lagrange multipliers method
by constructing the following two functions:

n
Z a;aj nlnj Z a;g; — — K Z a’igz{ ’ (26)
=1

1,j=1

Z bibj(n;n;) Z bigi) — (Z bigi + 1), (27)

1,j=1 =1

where A, k, 4 and p are the Lagrange multipliers.

Next we partial derivate I, and I, with respect to a; and b; and equal them
to zero:

L & ,

o Y_aj{ning) — Agi — kg; = 0, (28)
da; j=1

o1, o ,

. = 22 bi{ning) — pgi — pgi = 0. (29)

Equations (28) and (29) define two sets of n equations. Together with the two
sets of two equations in (13) we have now two systems of n + 2 equations and
n + 2 unknows.
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We can substitute (n;n;) by R;; in (28) and (29) which represents an element
of the noise autocorrelation matrix defined as:

S — ) — () (0= o) — )y g

R, = -
¢z<ni — () S (ny — (ny))? \/Var(n;)Var(n;)

By hypotheses (n;) = 0 and Var(n;) = Var(n;) as n; and n; are samples of the
same noise distribution. Therefore the denominator in (30) is absorbed in the
Lagrange multipliers of (28) and (29).

The n + 2 equations for a are given by:

n

2 aigi=1,

=1

n

21 aig; =0, (31)
1=

n
ZajRij—)\gi—/{gg:O V’l,,
7=1

which can be written in matrix format as:

Ry Ry ... Ry, ¢n 9'1 a1 0
Ry Ry ... Rop g2 g a2 0
= (32)
Rnl Rn2 s Rnn gn g;L Qnp 0
g 92 -.. g, 00 A 1
g 95 ... g, 00 K 0
The n + 2 equations for b are given by:
Xn: bigi =0,
i=1
> bigi = -1, (33)
i=1

ZlbjRij —pngi —pgi =0 Vi,
]:

12



In matrix format (33) reads:

Riy Ryp ... Rin ¢ 91 by 0
Roy1 Ry ... Rop g2 gb by 0
= (34)
Ry Rys ... Ry g0 9., b, 0
g 92 - gn 00 Iz 0
gogoegn00)\p) \1

Equations (32) and (34) are used to calculate @ and b. In the next sections the
calculation of R, g and g’ for the TileCal environment will be shown as well
as the effect of the amplitude/energy and time reconstruction in calibration
and physics data.

3 Calculation of OF weights in the TileCal enviroment

8.1 Pedestal

Note that equation (3) assumes that the signal lays in a zero baseline. This
is not the case for the TileCal electronics where the baseline of the signal
(pedestal) is above zero. Figure 1 shows the average and standard deviation
of the pedestal (in ADC counts) versus the channel number for a standard
TileCal electronics drawer (45 channels). The pedestal average varies between
35 and 65 counts whereas the standard deviation remains constant to about
1 count.

One solution to this problem, studied in Appendix A, is to modify the algo-
rithm by defining a new set of weights which calculate the pedestal as another
parameter in addition to amplitude and time. This solution has an important
advantage as it avoids the necessity of pedestal treatment in the samples. How-
ever it introduces one additional constraint in the calculation of the @ and b
components which makes the weights less optimal than in the case considered
here.

The solution taken here consists in subtracting the pedestal event by event
from the samples. The pedestal is calculated in two different ways: if it is a
pedestal event (only used in the R calculation) the pedestal is calculated as
the average of all the samples; if it is a signal event the pedestal is defined as
the average of the first and last samples. This approach is valid as the time

13



domain of the signal is smaller than the number of samples times the period
between samples (25 ns) and then the first and last samples contain no signal.
However when the event comes in advance or delayed, the first or last samples
could contain signal and this method would overestimate the pedestal. Fur-
thermore pedestal calculation and later subtraction from the samples increases
the computing time of the algorithm which would limit the performance of the
DSPs at the ROD level.

The optimal solution to the pedestal problem requires a detailed study in-
cluding the performance at the DSP level as computing time or number of
bits in the operations and external factors as number of samples or beam
synchronyzation would affect the results.

3.2 The R matriz

The noise autocorrelation matrix, R, can be calculated in three different ways:

A: Considering the only source of noise as thermal and using the thermal noise
autocorrelation matrix.

B: Computed from pedestal data using equation (30).

C: Assuming that there is no correlation and then R is equal to the identity
matrix.

The OF weights related to R calculated from type B or type C above are
very similar whereas those calculated from type A are different [6]. Option
A is ruled out as it ignores the presence of any other source of noise appart
from thermal. We chose option C as it is simpler and sets a lower limit for
OF improvement. In this case the vector a is just proportional to g and the
vector b is essentially g’. Any other proper determination of R would improve
noise reduction. In anycase the present studies of noise correlation in the
TileCal electronics do not show a strong correlation between samples [7,8].
This situation could change when noise coming from minimum bias events is
included in the samples. In this case the noise autocorrelation function can be
calculated from the waveform and its derivative. Note that, the noise has two
components, one due to thermal noise and the other to pileup noise and, both
would have to be weighted according to the luminosity but otherwise totally
determined from the waveform [1]. Another way to obtain the matrix is from
special runs with random triggers from LHC data [9] although one would have
to be sure that there are not real events mixed in with the samples which would
distort the average values. The OF results are not very sensitive to the exact
value of that matrix and then an analytical approach is perfectly adequate [5].
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Fig. 2. Left: signal shape form reconstructed with CIS data for a fixed amount of
injected charge. Right: resulting function of the CIS data fit.

3.3 The shape form function

In order to calculate the g and g’ components defined in (4) it is necessary to
determine the Shape Form Function (SFF) of the signal.

The TileCal electronics has a Charge Injection calibration System (CIS) which
tests the performance of each readout channel over its full dynamic range [10].
The system is able to inject charge at all time phases relative to the digitizer
clock in steps of 0.728 ns. Therefore we fix the injected charge and sweep all
phases in order to reconstruct the shape form of all channels of each drawer.
The reconstructed shape form for a typical channel is shown in Fig. 2 left.

The calibration shape form is later fit by the following analytical function [11]:

SF(t)=p+ A (?)Mexp (—ut — A) . (35)

T

The variables p, A, A\, 7, and p are parameters of the fit. The presence of u
in the exponent makes the fit highly non linear. In order to simplify the fit
we fix the coordinates of the maximum in the fit. The maximum of the shape
form and its time position are related to the parameters 7, A, A and p by the
expressions:

tmax =T + A, (36)
SF(tmaX) = Aexp (_M) . (37)
We set the position of the maximum to zero (tmax = Ons) and we make

SF (tmax) equal to the maximum value of the reconstructed shape form. These
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two settings establish two bounds in the parameters, one between 7 and A in
(36) and the other between A and p in (37), which simplifies the fit. The result
of the fit with these two bounds is shown in Fig. 2 right. Note that we must
subtract the pedestal in the function SF(t) and normalize it in amplitude to
one in order to calculate g and g’:

SE(t) —p
-

SFy(t) = SF(t

(38)

The components of g are then calculated from SF,(¢) in (38). The times
at which the elements of g are calculated are free parameters, however as
the time distance of two consecutive elements of g must be the sampling
period it remains only one free parameter which sets the reference in the
time reconstruction. Moreover the position of the g elements in the shape
form should be as close as possible as the samples position as, due to (4),
the algorithm is able to reconstruct the time distance between the g elements
and the samples. This is only the case as a first order approximation and the
closer this distance the more accurate the reconstruction. This time distance
is provided by the algorithm from equation (8) as 7. The g’ components are
calculated from the derivative of SF4(¢) at the same time position as the g
components.

This procedure of shape form reconstruction assumes that the shape form in
physics events is the same as in CIS events. This is not strictly true as the
shape form area in physics events is 10% larger than in CIS data [12]. The effect
of this difference in the reconstructions is difficult to evaluate. The solution
is to calculate the g and g’ parameters from a fit to a physics shape form.
A new method of physics shape form reconstruction was developed within
the TileCal group [12]. This method reconstructs the shape form from physics
events using the data obtained in the Test Beam setup of the TileCal detector.
However the computing time for the reconstruction is longer, which is not a
serious problem as in principle it is steady and it has not to be calculated very
often.

As a consequence different OF weights have been calculated for physics events.
For CIS events the OF weights are calculated from the CIS shape form recon-
struction whereas in physics events the OF weights are calculated from the
physics shape form reconstruction.

3.4 Calculation of weights

The OF weights depend on the noise and shape forms of each particular chan-
nel. In principle each channel needs a different set of OF weights as both the
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noise and the shape form is different from channel to channel. In addition
each channel has two readout gains (high and low gain) and the shape form
from each one is slightly different. Therefore every channel needs two sets of
weights, one for low gain and the other for high gain. In order to fulfill this
requirement the CIS shape form is reconstructed and fitted for every channel
and for the two gains. For the physics one only two averaged shape forms
were available (one for high and one for low gain) and then only two sets of
weights were calculated to reconstruct physics events. The noise variations
from channel to channel are not reflected in the calculation of weights as in
the present study we equal the R matrix to the identity matrix. We calculate
all the weights for 25 reference times between —12ns to 12 ns in steps of 1 ns,
as explained in the next section.

Figure 3 shows the distribution of the amplitude weights, a, for 9 samples
and for 171 channels corresponding to four electronic drawers of TileCal. All
weights are calculated for a fixed reference time corresponding to a central
weight set at the peak of the shape form. In our time convention this corre-
sponds to time equal to 0 ns. For the most significative weights (a4, as, ag) the
variations are of the order of 1% which would be within the error of the shape
form fit. Figure 4 shows the same distribution for the time weights b. The
most significative weights in this case (b4, bs) do not show variations greater
than 1%.

Figure 5 shows the weights corresponding to the central sample (as and bs)
versus the reference time. In both plots 0 ns means the weight is calculated for
a sample in the peak of the shape form. The amplitude weight plot shows how
the weight follows the shape form function. This means that equation (5) is a
weighted sum where the weights reflect the position of the sample in the shape
form. This is more remarkable in our case as we neglect the noise correlation
although even when it is included this point should not change significantly.
Figure 5 shows also this dependency for high and low gain weights. The differ-
ence is of the order of 1% which is a lower limit regarding that only variations
in the shape form are included. Recently new results point out to differences
in the noise correlation for high and low gain noise samples [7]. By including
these correlations in the calculation of weights the difference between high and
low gain weights would be larger.

Therefore if we take into account only the shape form, the weights do not
have significant variations from channel to channel and for the two gains. This
situation would change if we include the noise correlation in the calculation of
weights. In this way the thermal noise correlation would increase the difference
of high and low gain weights within the same channel. On the other hand
the dependence of minimum bias energy deposition with pseudorapidity and
distance to the interaction point would also introduce variations of weights
from channel to channel.
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Fig. 3. Distribution of amplitude weights for 171 working channels of 4 electronic
drawers.

4 Implementation

In this study we apply the OF algorithm to two types of events. The first
type are calibration events coming from the CIS system. The second type are
real physics events from the TileCal testbeam setup data corresponding to the
years 2002 and 2003.
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The CIS system in TileCal is designed to emulate the photomultiplier current
released by a capacitor discharge. Its electronics is placed within the front-end
electronics of the TileCal detector. It has two capacitors, one of 5.1 pF and
the other of 100 pF. Both capacitors are charged with a 10-bit DAC system.
The 5 pF capacitor discharges from 0 pC to 40 pC in steps of 0.64 pC and the
100 pF discharges from 0 pC to 800 pC in steps of 12.8 pC. This allows to fully
test the high gain range, from 0 pC to 12.5 pC, and the low gain range, from
12.5 pC to 800 pC. As said before, the CIS system discharges the current within
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Fig. 6. Left: the testbeam setup in August 2003. Right: testbeam setup for all the
other testbeam periods.

a configurable phase range which goes from —12ns to 12 ns with respect to the
digitizer clock. Both characteristics make the CIS system perfectly suitable to
test ROD algorithms for different charge ranges and for signals coming with
all the possible phases.

4.2 Physics events

The TileCal group started a testbeam program in 1993. Prototypes and final
modules have been tested and calibrated in the H8 beam line at the SPS at
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Fig. 7. Left: beam direction for pions. Right: beam direction for muons and electrons.

CERN. Data were taken with muons, pions and electrons between 10 and 400
GeV. In August 2003, a very low energy beam was also set up to cover energies
down to 1 GeV. To test the performance of the OF algorithm under physics
events we use pions and electrons of several energies and a single run of muons.
The data correspond mainly to the summer 2003 testbeam period with two
different geometrical setups. These are shown in Figure 6 right (two Central
Barrels CB and two Extended Barrels EB) and left (three CBs). The modules
are placed in a movable table which allows the beam to impinge the detector
at any point and incident angle. This allows to perform different types of scans
along the modules, like cell scans by redirecting the beam at the centers of
the front face cells at a fixed angle of 20°, 7 scans and tilerow scans where the
beam impinges perpendicular to the lateral side of the module.

As we are interested in the performance of the energy reconstruction algo-
rithms as a function of energy more than its uniformity response, we choose
data from tilerow scans (corresponding to the tilerow 5 scan point) for elec-
trons and muons (Figure 7 right) and n = 0.35 for pions (Figure 7 left). In all
cases the beam impinges in the middle central module as shown in Figure 7.
These configurations correspond to those for which most of the energies were
available. All data shown in this paper correspond to the CB modules JINR12,
JINRS5, JINR27 and JINRG3.

Due to the importance of the performance under physics events two different
OF algorithms are applied. OF1 is the same algorithm as in CIS events with
the only difference being the use of a physics shape form for the weights
calculation. Therefore the same weights are used for all the channels. The
OF2 algorithm is shown in Appendix A. It avoids the pedestal calculation by
the introduction of a new output parameter, the pedestal itself. This fact is
important as the available computing time for the online reconstruction at the
ROD level is only 10 us. This new implementation of the algorithm saves the
time of the pedestal calculation and its substraction from the samples.
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4.8 Iteration procedure

The OF algorithm needs the samples to come within a narrow time interval
from the OF weights reference time. The time distance between the samples
and the reference time of the weights (called phase) should be thus as small as
possible in order to maximize the precision on the reconstructed energy and
time. This is the case for CIS events where all the phases are available and
one can always choose events with the proper phase.

However this is not the case for physics events at the testbeam where most of
them are taken with an asynchronous beam. For this type of data the posi-
tion of the samples along the SFF change event by event following a uniform
distribution. The solution to the problem is to apply the proper weights for
each event according to the position of the samples in the SFF. In order to
do that we calculate 25 sets of weights, one for each reference time between
—25 and 25ns in steps of 1ns sweeping all the SFF. The problem becomes
thus to find out the position of the samples in the SFF in order to choose
the appropiate weights. We use the phase information provided by the OF
algorithm and design an iteration process which is described below.

The first step of the iteration process is to check the position of the maximum
sample and to detect if there is signal in the samples or, on the contrary, they
belong to a pedestal event. This last case is important as pedestal events do
not converge in an iteration process. The algorithm flags an event as pedestal
if neither the maximum sample is the central sample nor the two samples next
to it (one 25ns before and the other 25ns after). The algorithm also flags a
pedestal event if the difference of the maximum sample with the first or the
last samples is smaller than 4 counts. When the event is flag as pedestal the
equations applied to the samples are:

n

=1
i=1

where the @ and b weights are taken from a reference time equal to zero, i.e.,
the weights are calculated to have a central sample in the peak of the SFF.

If the event is not flag as pedestal the iteration process starts. If the maximum
sample is not placed in the central sample the samples are shifted a proper
number of positions to set it in the middle. This last point is a requirement of
the algorithm to work due to the range of calculated OF weights, from —12ns
to 12ns. It could be avoided by increasing this range, e.g., from —37ns to
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37 ns, although there are just few events whose maximum sample is not in the
middle, and this solution increases the total number of weights by a factor of
three.

Once the maximum sample is in the middle, equations (39) and (40) are
applied in order to reconstruct the energy and the phase. This is iteration
number zero. The weights of this iteration are the weights corresponding to
0 ns reference time. If the reconstructed phase in this iteration is within —0.5 ns
and 0.5 ns the process stops and these are considered the final values of energy
and time. If this is not the case the process is repeated with the weights of
the closest reference time to the reconstructed phase in the previous iteration.
If the reconstructed phase in each iteration is within —0.5ns and 0.5 ns the
process stops. The phase is always reconstructed relative to the reference time
of the weights. This is a correct convergence criteria but in order to choose
the weights for the next iteration, or to give a final reconstruction phase, this
phase must be converted in a total phase by adding the reference time of the
weights used.

Once the iterations are finished the total phase should be adjusted again to
take into account the shift of the samples. The number of shifts, with the
corresponding sign times 25 ns should added to the total reconstructed phase
in order to have the final phase. The energy does not need any adjustment
and the reconstructed one in the last iteration is the final energy.

4.4 Flat filtering

The TileCal testbeam program uses a different algorithm to reconstruct the
energy, the so called Flat Filtering (FF) method. This algorithm consists of a
plain sum of the samples once the pedestal, defined as the signal at the first
sample, has been subtracted from all other samples. The FF algorithm of the
testbeam program does not include all samples in the sum but only the five
consecutive samples which maximize the signal out of the total 9 available
samples. The reconstructed energy given by the FF method is thus given by:

]Z (Si = S1)

i=j

E = max j=1,...,5. (41)

4.5  Fit method

Two years ago a new method was developed to reconstruct the energy and time
information from the samples, the so called Fit Method (FM) [12]. The FM
develops linear equations for the calculation of energy, time and pedestal by
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the minimization of the x2. Those reconstructions are available as part of the
testbeam data. We use this algorithm to compare its energy resolution with
that obtained from the OF method in physics events. However the differences
should not be significant as this method and the OF technique are equivalent
to first order [1].

5 Results

5.1 CIS: Calibration constants

The FF and OF algorithms provide both an output energy although they quite
differ in the way this energy is reconstructed. While the OF algorithm recon-
structs the amplitude of the signal, the FF method computes a magnitude
which is proportional to its area. Both magnitudes are though proportional
to the deposited energy in the module cell. In order to perform a consistent
comparison between both algorithms we calibrate its output (ADC counts) to
provide the same physical magnitude, i.e., the charge released by the capacitor
in CIS events (in pC), and the photomultiplier current in physics events (also
in pC). Each channel is calibrated independently by computing calibration
factors for the two gains. The data to calibrate the algorithms is taken from
CIS runs. The injected charge (in pC) is given by:

4.096 Npac

=2
@ ¢ 1023’

(42)

where C' is the capacitor value (5 or 100 pF) and Npac is the DAC value. The
capacitor is charged at a voltage set by this DAC which has a high precision
reference voltage of 2 times 4.096 V [13]. We use only runs which involve the
100 pF' capacitor as it reaches both the high and the low gain scale and its
nominal value is more precise [14]. Charges between 0 and 12 pC are used for
the high gain calibration and charges between 13 and 800 pC for the low gain
one.

The CIS data also includes a variable with the phase between the start time
of the discharge and the digitizer. This phase ranges from —12ns to 12 ns. We
use phases within the whole range in the calibration in order to reproduce the
physics data conditions which come within the whole range of phases. Only
few phases are eliminated from the calibration as they produce double peaks
in the amplitude reconstruction. For each charge we average the output (in
ADC counts) of the algorithms for all the phases and make a linear fit of the
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injected charge versus the averaged output:

Orrjor = mQ , (43)

where () represents the injected charge in pC, m the calibration factor and
Orr/or the averaged output of the algorithms in ADC counts. Figure 8 shows
the distribution of the calibration factors for all the channels of the 3 modules
used at the August 2003 testbeam period. The slope, m, has a relative variation
of about 2% in both gains and both algorithms, which agrees with [14]. The
averaged ratio between high and low gain calibrations is 61 for OF and 62 for
FF with a RMS of 3 for both algorithms. The nominal value between the high
gain and the low gain is 64 [15] which lays whitin the error of our result. The
intercept is forced to be zero but if set free the variation in the slope value is
of the order of few per mil. This result also agrees with [14].

5.2  CIS: Charge reconstruction

By reconstructing the injected charge with the CIS system one can check
whether the calibration factors are properly calculated and the effect of the
algorithms in the resolution. Figure 9 shows the amplitude reconstruction dis-
tributions for high gain data. The top plot shows the injected charge versus the
reconstructed charge (Qrrc), where the diagonal corresponds to Qrrc = Q1ny-
All points lay over the line, which proves the correct calculation of the cali-
bration factors. The middle plot shows the residual versus the injected charge.
The residual is calculated as the difference between the injected charge and
the reconstructed charge divided by the injected charge. This plot corrobo-
rates the calibration factors and shows a good linearity of both the electronics
and the algorithms. The bottom plot shows the resolution versus the injected
charge. For each injected charge there are 34 phases and for each phase there
are 8 events; therefore there are a total of 272 events for each injected charge.
We define the resolution as the RMS divided by the mean of the reconstructed
charge for a particular injected charge. The OF resolution is better than the
FF one by a factor which increases as the charge decreases. This is the ex-
pected result as the OF algorithm is designed to minimize the noise impact
in the resolution, which increases as the charge decreases. This result is con-
firmed in Figure 10 which shows the same plots for the low gain range. The
only difference is a small non linearity in the low charge region, which agrees
with [16]. As the non linearity is shared by both algorithms its origin must be
in the electronics.
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5.8 CIS: Phase reconstruction

The OF algorithm reconstructs the phase of the event. This phase is defined
as the difference in time between the event samples and the reference time of
the OF weights. The CIS system is able to discharge the capacitor within the
whole phase range with respect to the digitizer clock. This phase is externaly
configurable through the standard online DAQ software. In a CIS run every
charge is discharged in 34 phases sweeping all the phase range, and each phase
is repeated during 8 events. The phase information is available in the CIS data
which allows to select only events with a fixed phase. Figures 11 and 12 show
the reconstructed phase of the OF algorithm versus the injected charge for
a fixed phase according to the CIS information, (the 3-in-1 phase shift value
equal to 35 and 84 respectively). The dependence is strong for low charges
and becomes smaller, but not negligible, as the charge increases. The low gain
distributions follow the same behaviour as the high gain ones with no shift in
the reconstructed time (apart from that due to the loss of algorithm resolu-
tion). The information of the CIS data is thus not exactly our phase definition
but instead a magnitude which is related with it. This relation depends on
the charge but is constant for a fixed charge. Figures 11 and 12 show also
the RMS of the reconstructed time distributions versus the injected charge.
There are only 8 events per charge and phase and the RMS of them gives
an idea of the error in the time reconstruction which should be taken merely
as an estimation due to the lack of statistics. The RMS increases strongly as
the charge decreases for both high and low gain data. This is due as the time
reconstruction involves a division by the amplitude (see equation (40)) which
emphasizes the loss of phase resolution as the amplitude decreases.

5.4 CIS: Quality factor

We define a quality factor, y, as:

YE = 3" ABS((S; — p) — Egi(r)), (44)

=1

where n is the number of samples, S; are the different samples of the event,
E is the reconstructed amplitude in (39) and the g; correspond to the shape
form factors defined in (2). We choose an absolute value instead of a square
in the x definition as it is envisaged to be implemented in the DSPs where
an absolute value calculation is faster than a square function. The x is an
indicator of the quality of both time and energy reconstructions. It helps to
flag events whose shape form does not fit the shape form defined by g. This is
the case of events with pile up or satutared samples which would have a bad x
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and the ROD could take specific actions for a detailed offline reconstruction.

Figure 13 shows the x versus the injected charge in CIS runs. The quality
factor increases smoothly as the charge decreases until it reaches the low charge
region where the increase in y is boosted. This result reproduces the increase
of the RM S of the time reconstruction and the loss of resolution in the energy
reconstruction as the charge decreases.

29



g 10- /,/'/{
G i g 1
DGZJ 75 C /I//’ 7
5 ot * FF.
S 5¢ v ]
O - e 1
. i e 1
T /;//' v OF:
’/‘/‘/ ! ! ! ! Ll ]

00 2 4 6 8 10
Charge Inj. (pC)
< 01 | | | I B
o} L J
] i ]
$0.05 - ]
oy ]
L S e e e S
0.05 - .
n4 L \ \ \ \ L]

01 0 2 4 6 8 10
Charge Inj. (pC)
? 10 L \ ‘ ‘ ‘ T T T ‘ T ]
N i 1
T I 1
o 8 B
5 I 1
26 :
o . ]
i . 1
4 i ] 1
L v ° i
2 L v [ ] ° _
L v [} ° ° i
0 : ‘ " ' ' | v\ \v | \' | :\ ; | :\ ]

0 2 4 6 8 10

Charge Inj. (pC)

Fig. 9. CIS amplitude reconstruction (high gain). Top: reconstructed vs injected
charge (both in pC). Middle: residual distribution vs injected charge (in pC). Bot-
tom: reconstructed charge resolution vs injected charge (in pC). In all cases dots
correspond to FF results and triangles to OF.

30



6800 7\ T T T 1 T 7T T 1 T 7T T T T T T T T T T 1 T 7T T 1 T 7T T T T L/7
2
$600 - .
m |
0]
s | )
g400 1 * FF |
O i 1
200 - -
v OF |
7/\ [ ‘ I I | ‘ I I | ‘ Il 1 Il ‘ Il 1 Il ‘ I I | ‘ I I | ‘ L1 \7
100 200 300 400 500 600 700 800
Charge Inj. (pC)
B 0.1 7\ T T ‘ T 1 T 7T ‘ T 1 T 7T ‘ T T T T ‘ T T T T ‘ T 1 T 7T ‘ T 1 1 7T ‘ T T T \7
o} L J
ke]
$0.05 - ]
o E
i

o 7\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
0. 100 200 300 400 500 600 700 800

F RS

8 - .

Resolution(%)
[ ]

) i v 000,

vy ...."000 .
0L \TVTVYT'77'7Y'??’?’?Y"?’??’?!’?’!Y’?Y’?ﬂ’?vﬁ?vﬁ!v?ﬁOP;
100 200 300 400 500 600 700 800

Charge Inj. (pC)

Fig. 10. CIS amplitude reconstruction (low gain). Top: reconstructed vs injected
charge (in pC). Middle: residual distribution vs injected charge (in pC). Bottom:
reconstructed charge resolution vs injected charge (in pC). In all cases dots corre-
spond to FF results and triangles to OF.

31



Phase Reconstructed (ns)

RMS(ns)

04

0.3

0.2

0.1

Phase Reconstructed (ns)

2 4 6 8 10 12

100 200 300

400

500

600 700 800

e ‘Cha‘rge‘:lr‘\je‘ct‘ed‘(gC)

<
<
<

<
<
k.|

RMS(ns)

0.4

0.3

0.2

0.1

v

i w
vy

v Yy |
Yvy v vw
AL TR

Shege njectd ()

\

v

L R L L R PRI R
2 4 6 8 10 12
Charge Injected (pC)

P T I I I A IR AR
100 200 300 400 500 600 700 800

Charge Injected (pC)

Fig. 11. CIS phase reconstruction (top, in ns) and its RMS (bottom) as a function
of the injected charge (pC). Left: high gain. Right: low gain. The 3-in-1 phase shift
value is fixed to 35.

20

Phase Reconstructed (ns)

RMS(ns)

0.4

0.3

02

0.1

v
yvVVV'V
vv?y

Phase Reconstructed (ns)

P I
10 12

P P AN BN AN A AU I
100 200 300 400 500 600 700 800

‘Cha‘rge‘ Injgctgd‘(gC)

e |

RMS(ns)

0.4

0.3

0.2

0.1

\

LY A4

v wvv'
A\

v
Vv

\Ad

v
v
'Vw"'vv va'vvvw'
v Yy

Charge Inected (C)

v o™
A TALE

vy

P R
10 12
Charge Injected (pC)

Fig. 12. CIS phase reconstruction (top,

P P A BN AN A AU I
100 200 300 400 500 600 700 800

Charge Injected (pC)

in ns) and its RMS (bottom) as a function
of the injected charge (pC). Left: high gain. Right: low gain. The 3-in-1 phase shift
value is fixed to 84.

32



§0,5 T — T T —— T ‘E :0:0,5‘”HHHHHHHHHHHHHHE

8045 F 1 R045F b
2 ] 2

ﬁ 04F E ﬁ 0.4 L |

C0.35 & 3 Cossp E

03F - E 03F E

v E

025F —+ E 025 F E

0.15 F ilevv , ; 0.155,;%v :

oi b YVvyyvyvyy 01 ] Yo ]

] Sai i ]

0.05 F E 0.05 F ¢

P R R BN BRI B B P R S B B B IR e

% 2 4 6 8 10 12 0™"(00 200 300 400 500 600 700 800

.05 Charge Injected (pC) 005 pyrr e Charge Injected (pC)

s E - i

045 - 1 mods L 1

004 | . 004 | ]

0.035 | 1 o0%sF E

] w ]

0.03 F 1 003F o 1

005F Y B 0.025 F \ E

0.02 F vy — 002F vy " —

0.015 - v 0015 F E

Vvy 1 ]

001 F v 001  YVy VV% V \/ E

v b Yy 'y W wy ]

0.005 £ YY vy vy Y o00sF Wy oy v Kol

P R B BN B B B R B B T I I AN

0 2 4 6 8 10 12 100 200 300 400 500 600 700 800

Charge Injected (pC) Charge Injected (pC)

Fig. 13. CIS quality factor distributions (x, top) and their RMS (bottom) as a
function of the injected charge (in pC). Left: high gain. Right: low gain.

33



5.5 Physics: Noise

The energy reconstruction in pedestal events sets the accuracy of the calorime-
ter to measure non energy depositions. Figure 14 shows the reconstructed en-
ergy for pedestal events and for the four algorithms discussed in this paper.
Each distribution corresponds to a particular cell of a calorimeter module.
All distributions are Gaussian and centered in zero which proves the correct
pedestal subtraction for all the algorithms.

The sigma of the fit sets the precision for the measurament of non energy
depositions. The FF distribution is characterized by the largest sigma around
0.054 pC while the lowest sigma is obtained by the OF2 and FM algorithms
which correspond to ~ 0.022 pC and ~ 0.023 pC respectively, which are com-
patible within the errors. If we apply the overall pC to GeV calibration factor
of 1.1 GeV/pC, the sigma noise are of the order of 59 MeV, 25 MeV, 32 MeV
and 24 MeV corresponding to the FF, FM, OF1 and OF2 algorithms respec-
tively.

Notice that the sigma of the OF1 distribution is larger than the sigma of OF2
and FM. As OF1 only outputs two parameters the level of noise minimization
is larger than the OF2 which outputs three parameters. This proofs the im-
portance of a proper determination of the pedestal - as an output parameter of
the algorithm - which could be as relevant as the noise minimization. However
the difference is not very large and this situation could change in a more noisy
enviroment.
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5.6  Physics: Pions

The energies used for the pion analysis correspond to 350, 180, 100, 20 and
9 GeV. The signal for pions is defined by the function Spi(Eip,). This function
returns the sum of the energy of all the channels of all the drawers at the
testbeam setup. Only those channels whose energy is greater than a particular
threshold Ejp, (in GeV) are included in the sum.

The pion beam is contaminated with muons (from pion decays) and electrons,
being the muons the dominant contamination component. We have defined
several cuts in order to select good events of pions:

cutl: The X and Y coordenates of beam chambers 1 and 2 must be be-
tween —25 mm and 25 mm [17]. This cut selects only those events where the
particle impinges in the proper detector position by the use of the beam
chambers at the testbeam setup.

cut2: The trigger value must be equal to 1 (i.e., physics events) and Spy(1.)
must be greater than 1 pC [17]. This cut selects only those events which are
flagged as physics events by the DAQ software.

cut31: The Cherenkovl signal must be lower than 150 ADC counts [17]. This
first Cherenkov detector flags electron contamination in the beam at 100
GeV.

cutT32: The Cherenkov2 signal must be lower than 450 ADC counts. This sec-
ond Cherenkov detector flags electron contamination in the beam at very
low energies.

cut4: The muon wall signal must be lower than 2 ADC counts. This signal
comes from a muon wall which is a layer of scintillators read by several PMs
placed at around one meter distance from the back of the detector. It flags
muons which go through the whole module.

All above cuts are energy dependent and are summarized in Table 1.

The pion signal is defined as Spy(0.2) for the FF algorithm and as Sp;(0.07)
for the FM and OF algorithms. The distribution of this function over 40 000
events is then fitted by a Gaussian distribution along the whole energy range.
The output parameters of this fit define the range of a second fit to be two
times the sigma around the mean. This process is iterated until the sigma and
the mean convergence.

The resolution is defined as the ratio between the sigma and the mean. The
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error on the resolution is calculated from the errors of the fit parameters as:

¢(R) = /@ (o) + R (1), (45)

where R is the resolution, u is the mean, € (1) is the error on the mean and
€ (o) is the error on the sigma.

Figure 15 shows the energy distribution of pions at 350 (top left), 180 (top
right), 20 (bottom left) and 9 GeV (bottom left). The 350 GeV distribution
shows a low energy tail due to pion shower leakage in the modules. This tail
is also seen for the 180 GeV beam although here it is less remarkable as at
this energy the pions are almost fully contained in the modules. The 9 GeV
distribution shows a high energy tail produced by the muon contamination in
the beam. In all these plots, specially at high energies where the resolution is
better, the detector response is higher for the FF algorithm with respect to
the others. This is due to a miscalibration in the ADC to pC factors produced
by a ~ 10% difference in the shape form area for CIS events with respect to
physics events. As FF is an area calculation algorithm - a plain sum of the
samples - this difference is translated to the calibration constants.

The resolutions of the four algorithms for all the energies are summarized in
Table 2. Figure 16 shows the resolutions versus the beam energy. At high en-
ergies the resolution is relatively similar for all the algorithms while at low
energies the resolution varies for the different algorithms. The OF algorithm
improves the resolution at all the energies but specially at low energies due
to the minimization of the electronics noise contribution. At high energies
the signal to noise ratio is high and therefore the resolution is dominated by
sampling and physics fluctuations. At low energies the signal to noise ratio is
low and thus there is a non negligible contribution in the resolution due to
electronics noise. As OF minimizes the electronic noise the effect is remark-
able in this region. For the TileCal case this region corresponds to low ADC
count signals, lower than 1 pC in the high gain region and higher than 12.5 pC
which is the gain transition region. This result is compatible with the energy
resolution versus injected charge plots at the bottom of Figures 9 and 10. In
the physics case the differences are not as remarkable as in the CIS case as
they are masked by the physics fluctuations.

The resolution data shown in Table 2 is fit over the whole energy range to
the functions £ = ﬁ +band £ = ﬁ @ b. The parameter a, the stochas-
tic term, reflects statistical fluctuations in the shower development, while b,
the constant term, reflects uncertainties in the energy measurements due to
miscalibration, cracks in the detector, dead material, etc. [10]. These formu-
las show the typical energy behaviour of the resolution in calorimetry which

scales as E~'/2. Table 3 shows the results of the fits. The first parameteri-
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zation provides an slope between 40% and 50% while the constant term is
between 2.0% and 2.5% which agree with [10]. The second parameterization
provides an slope between 50% and 55% while the constant term is between
3.8% and 4.2%. These results are compatible with the requirements of ATLAS
calorimetry where a jet energy resolution of £ = 5%’ ® 3% is expected. The
combination of the TileCal and the electromagnetic calorimeter improves the

resolution fulfilling the requirement [18].

We conclude from the fit data that the election of the energy reconstruction
algorithm does not have an strong impact on the determination of the a and b
parameters. This result is expected as the parameters depend on the intrinsic
calorimeter construction. The energy reconstruction algorithm only minimizes
the noise contribution to the resolution which is rather small at the testbeam
setup. In a more noisy environment, which can be artificially produced if
we sum all the channels in the pion signal, the resolution and then the a
and b parameters show a stronger dependence on the energy reconstruction
algorithm [19].

Figure 17 shows the reconstructed energy in pC divided by the beam energy
versus the energy of the beam. This corresponds to the conversion factors
(pC/GeV) for pions impinging a CB module at n = 0.35. If we ignore the
point at 9 GeV the figure shows an upward tendency of the relative response
of the calorimeter with the energy. This non linearity is expected as a con-
sequence of the non compensation of the calorimeter and the increase of the
electromagnetic component within the hadronic shower as a function of the
energy. We have to be carefull with the point at 9 GeV as at this energy the
reconstructed pion energy is contamined with muons and therefore no conclu-
sions should be derived from this point.
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Table 1
Summary of applied cuts for the pion analysis.

E(GeV) NTUPLE TESTBEAM MODULE n CUTS
CODE PERIOD CODE

350 340698 July 2003 JINR27 0.35 cuTlé&cuT2

180 340427 July 2003 JINR27 0.35 cuTlé&cuT2

100 340487 July 2003 JINR27 0.35 cuTl&cuT2&cuT3l

20 330362 June 2003 JINR12 0.35 cuTl&cuT2

9 360188 August 2003 JINR63 -0.35 cutl&cur2&cuT32&cuTd
Table 2

Energy resolution of pions with an incident angle of n = 0.35.

E(GeV) FF FM OF1 OF2
350 (4.99 £0.04)% (5.01 £0.04)% (4.83 £0.03)% (4.76 £ 0.03)%
180 (5.73£0.00)% (5.57 £0.04)% (5.58 £0.04)% (5.51 £ 0.04)%
100 (6.68+0.11)% (6.29 +£0.10)% (6.44 £0.100% (6.33 £0.10)%
20 (13.1 £0.2)% (12.4 £ 0.2)% (12.7 £ 0.2)% (12.8 £0.2)%

9 (18.9 £ 0.2)% (172 +0.2)% (17.17 £ 0.19)% (17.9 £0.2)%

Table 3

Parameters of the fit for pions with an incident angle of n = 0.35.

S

S[E]

+b

sl

S[E]

@b

FF

FM

OF1

OF2

a

48.6 £ 0.6

42.7 £ 0.6

43.9+£0.6

46.0 £ 0.6

b

2.23 £ 0.05

2.53 £ 0.05

2.41 £0.05

2.20 £ 0.05

a

55.3 £0.5

50.2+£0.5

51.2+0.5

52.9£0.5

b

4.00 £ 0.05

4.17 £0.05

4.01 £0.04

3.83 £0.04
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Table 4

Energy calibration factors pC/GeV of pions with an incident angle of 7 = 0.35.

E(GeV) FF

FM

OF1

OF2

350 0.9844 + 0.0003

180 0.9716 £+ 0.0004

100 0.9490 £ 0.0010

20 0.928 + 0.002

9 0.961 £ 0.002

0.8720 £+ 0.0003

0.8593 £ 0.0003

0.8443 £ 0.0008

0.873 £ 0.002

0.979 £ 0.002

0.8879 £ 0.0003

0.8731 £+ 0.0003

0.8564 £+ 0.0009

0.886 £ 0.002

0.9263 + 0.0018

0.8858 £+ 0.0003

0.8716 £ 0.0003

0.8547 £ 0.0008

0.872 £ 0.002

0.8851 +0.0018
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5.7 Physics: Electrons

The energies used for the electron analysis correspond to 180, 100, 20 and
9 GeV. The signal for electrons is also defined by the function Se(Ej,,). This
function returns the sum of the energy of all channels of all the drawers at
the testbeam setup. As for the pions case only those channels whose energy is
greater than a particular threshold FEjy,, are included in the sum.

The pion contamination in the electron beam is much greater than the electron
contamination in the pion beam. Therefore we have defined additional cuts in
order to suppress pions in the energy distribution and select good events of
electrons. These new cuts are:

cuth: Ly (B9) greater than 0.5 where the function Ly (cell) returns the ratio
between the energy deposited in the cell divided by the total energy. Only
those events which deposit more than 50% of the energy in the first cell
(B9) are included in the analysis. This cut uses the longitudinal profile of
the energy deposition to select electrons from pions and muons.

cut6: Tiy() must be lower than 0.03 where the function Ty () returns the
ratio between the energy deposited in the upper and lower module and the
total energy. This cuts selects only those events which deposit more than
97% of the energy in the central modules. The cut uses the lateral profile of
the hadronic shower to remove pion events from the energy reconstruction.

All above cuts are energy dependent and are summarized in Table 5.

As for the pion case the signal for electrons is defined as S¢(0.2) for the FF al-
gorithm and as Se(0.07) for the FM and OF algorithms. The energy resolution
and its error are obtained as in the pion case by an iteration procedure.

Figure 18 shows the energy distribution of electrons at 180 (top left), 100
(top right), 20 (bottom left) and 9 GeV (bottom left). The 180 and 100 GeV
distributions show a low energy tail due to the pion contamination in the
beam. Although several cuts have been set in order to select good events of
electrons there is still pion contamination in those distributions. It is difficult
to get a good selection criteria as the energy of the beam decreases and this
explains the low and high energy tails of the distributions at 20 and 9 GeV.
As for the pion case the detector response is higher for the FF algorithm with
respect to the others. Again here the miscalibration in the ADC to pC factors
due to the differences in the shape forms explains this higher response for the
FF algorithm.

The resolutions of the four algorithms for all energies are summarized in Ta-
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ble 6. Figure 19 shows the resolutions versus the beam energy. The electrons
deposit the energy within the first cell of the detector. Each cell is read out by
two photomultipliers which receive approximately the same amount of light.
Therefore both photomultipliers are read out by the same gain. As the elec-
tron signal is concentrated in a single cell the effect of the two read out gains
on the resolution is remarkable with these type of particles. The two highest
energies are read out by the low gain while the two lowest energies are read
out by the high gain. At 180 GeV the signal to noise ratio is large and the
four algorithms give approximately the same resolution. At 100 GeV this ratio
is not as large as for high energies and the differences on the resolution are
slightly higher. At 20 GeV the gain changes, the signal to noise ratio becomes
large and the four resolutions are approximately equal again. At 9 GeV the
signal compared to the noise is low and now the effect of the algorithms on
the resolution is remarkable as in the low gain case.

Figure 20 shows the reconstructed energy in pC divided by the beam energy
versus the energy of the beam. As for the pion case the point at 9 GeV is
not reliable due to the difficulty in selecting good electron events. The other
points do not show the upward tendency as for the pions case as here now all
the shower is purely electromagnetic.
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Table 5

Summary of applied cuts for the electron analysis.

E(GeV) NTUPLE TESTBEAM MODULE Tile CUTS
CODE PERIOD CODE
180 360483 August 2003 JINRG63 5 cuTl&cuT2&cuTh&cuT6& CUT31
100 340534 July 2003 JINR27 5 cuTl&cuT2é&cuTh&cuTbézcuT3l
20 330368 June 2003 JINR12 5 cutl&cuT2&cuTh&cuTb& CcuT31l
9 360301 August 2003 JINR63 5 cuTrl&cuT2&cuTH&cuTb8cuT31&CcUTI2
Table 6

Energy resolution of electrons with an incident angle of 90° at tile 5.

E(GeV) FF FM OF1 OF2
180 (2.12+£0.04)% (1.82+0.03)% (2.01 £0.04)% (1.82+0.03)%
100 (3.64 £0.06)% (3.16 £0.06)% (3.44+0.06)% (3.21 £0.06)%

20 (6.0£0.2)% (5.8+£0.2)% (5.99+0.17M% (5.85+0.18)%
9 (8.3+0.2)% (7.5 +£0.2)% (7.6 £ 0.2)% (7.1 +£0.2)%

Table 7

Energy calibration factors pC/GeV of electrons with an incident angle of 90° at

tile 5.

E(GeV) FF FM OF1 OF2
180 1.2272 £ 0.0005 1.0990 + 0.0004 1.1012 £+ 0.0004 1.0973 + 0.0004
100 1.2104 +0.0008 1.0809 + 0.0006 1.0872 4 0.0007 1.0860 + 0.0006
20 1.216 £+ 0.003 1.127 £ 0.003 1.132 £ 0.003 1.126 £+ 0.002

9 1.267 £ 0.003 1.219 £ 0.003 1.228 £ 0.003 1.190 £ 0.003
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5.8 Physics: Muons

For the muon analysis only one energy run is used corresponding to muons
at 180 GeV. The muons behave as MIPs and impinge the detector at tile 5
(Figure 7 right). The signal for muons is defined as the sum of all cells which
contain tile 5 of the CB module impinged by the beam. The muon beam is not
contaminated by any other particle and thus only curl is applied. As for the
pion and electron cases this cut selects only muons which impinge the detector
at the proper position.

The distribution of the energy deposited by muons is fitted by a Landau
convoluted with a Gaussian function:

oo y —_ p2 (x - y)2
i y P2, P3, = 0.5860p= o2 . !
Si (z|p1, P2, 3, Ps) = P1 X /_OOE (0.58601)3) eXp ( 2p? ) dy (46)

The function L£(z) is the Landau probability density function. The p;, po
and p3 parameters characterize the Landau distribution while p, describes the
Gaussian smearing term.

The distribution of energy deposited by muons is characterized by two im-
portant magnitudes: the most probable value (MOP) which is defined as the
peak position and the full width at half maximum (FWHM). Equation (46)
has no analytic solution and therefore it has to be calculated numerically. The
same applies to the MOP and FWHM values with their errors. Equation (46)
is taken from [20] and it is the standard function to fit the energy deposited
by muons in the TileCal detector.

The distribution of the energy deposited by muons of 180 GeV in the TileCal
detector is shown in Figure 21 for the FF, FM and OF algorithms. The results
of the fit are summarized in Table 8.

The MOP differences between the different algorithms correspond to the same
miscalibrations seen for electrons and pions. The FWHM values show also
differences between the algorithms. This result should in principle not occur
as the Landau distribution depends only on the detector geometry and not
on the energy reconstruction algorithm. However the fit procedure does not
distinguish between the Gaussian sigma and the Landau FWHM and thus
both quantities can be algorithm dependent [21]. The p, value of the FF
algorithm in Table 8 is the largest of the four algorithms which confirms the
result of Section 5.5 about the pedestal sigma. The unexpected large value of
the FWHM for this algorithm also confirms the difficulty of the fit process
to distinguish between both distributions. For the other three algorithms the
FWHM and p, parameters are very similar which also agrees with the noise
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results from Section 5.5 except for the FM which shows a p, value slightly
higher than expected when it should be closer to the OF2 value according to
Section 5.5. However it is compensated by a slightly lower value of the FWHM
value.

Table 8
Parameters of the fit for muons with an incident angle of 90° at tile 5.

FF FM OF1 OF2

pC/bin 0.01 0.04 0.04 0.04
X2 /ndf 0.83 0.87 0.85 0.87
npfit 2300 780 707 699

P 258 + 5 1184 +19 833 +15 820 + 15

p2 (pC) 10.254 +0.014  9.417 £0.012 9.700 £ 0.015  9.843 £ 0.015
p3 (pC) 1.384+0.03  1.25+0.02  1.30+0.02  1.32+0.02
p4 (pC) 049 +0.04  0464+0.02  047+0.03  0.4140.03
MOP (pC 10.2140.03  9.38+0.02  9.66+0.03  9.77 +0.03
FWHM (pC 3.534+0.03  3.22+0.02  3.334+0.03  3.31+0.03
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6 Conclusions

In this note the basis of the Optimal Filtering algorithm has been shown in
two different ways:

e The two parameters approach, where the energy and time are given as
output parameters of the algorithm while the pedestal is calculated directly
from the samples.

e The three parameters approach, where the energy, time and pedestal are all
output parameters of the algorithm.

The OF algorithm requires information about the noise of the specific channel
and a very good characterization of its shape form. The noise treatment has
been neglected in this paper due to the difficulties to extract noise information
from the digital samples. The introduction of a proper noise treatment in the
algorithm would otherwise improve the results shown in this paper. Thus these
results should be interpreted as a low limit of the goodness of OF performance.
The shape form is characterized differently according to the type of data where
the OF is applied. For charge injection events the shape form is reconstructed
with the charge injection data itself while for physics events it is reconstructed
with a shape form given directly from physics data. This avoids systematics
due to different shape forms in the two types of data. The OF parameters
distribution due to differences in the CIS shape form correspond to differences
of the order of one per cent.

The OF algorithm applied to CIS data reconstructs the injected charge for
the whole range for both high and low gain data. The resolution of the recon-
structed charge is better than the one reconstructed with the Flat Filtering
algorithm. This improvement is more evident as the signal to noise ratio de-
creases for both gains. The time reconstruction is also satisfactory in CIS
events where the reconstructed RMS is lower than 0.3 ns for the whole range
of injected charges getting worse for very low charges. The worsening of both
energy and time reconstructions is monitored by the variable y which could
be used to flag those events online at the ROD DSP level.

The reconstruction of physics events is also promising. The OF algorithm
has been tested with pions, electrons and muons at the testbeam. In general
the OF algorithm equals or improves the resolution of the detector with the
current algorithms for all data types. As for the CIS case this improvement is
more remarkable in regions where the signal to noise ratio is low.

The OF algorithm fulfills also several aspects needed at the ROD level. It is
versatile, it reconstructs energy, time, pedestal and monitors the quality of
all the reconstructions. It is accurate, it outputs the energy with a resolution
which is equal or better than the present energy reconstruction algorithms. It
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is simple and fast, it is based in a weighted sum of samples which combines
sums and multiplications. These are operations which consume few clock cycles
in a DSP minimizing the computing time of all the reconstructions. All these
characteristics make OF a good candidate for the online reconstruction at the
ROD level.

Finally we note that the OF is expected to further improve the energy and
time reconstruction in the presence of minimum bias noise, consider as an
additional noise source together with the intrinsic noise from the front-end
electronics [22].
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A Signal reconstruction with OF (ii)

One of the problems of OF as developed in Section 2 is the non zero pedestal
treatment of the Tilecal electronics signal. In this section we show how OF
can be redeveloped in order to have into account this pedestal as another
parameter appart from the amplitude and time.

Let’s define again g(t) as the shape form function of the signal (noise free)
normalized in amplitude and resting at a zero baseline. The samples can thus
be expressed as:

S(t)=p+ Ag(t), (A1)

where S(t) represents the time sampling function, p the pedestal and A the
true amplitude of the signal. The set of samples are taken from S(t) at regular
time intervals ¢; and are given by:

Si=p+Ag(t;) =p+ Ag;. (A.2)

If we introduce imperfections due to real electronics the samples now become:

Si=p+Ag(ti —7) +n;, (A.3)

where 7 is the phase between the digitizer output and the g and n; is the
noise term. In order to linearize the dependence with 7, we make a Taylor’s
expansion at first order:

Si ~p+ Ag(t;) — Atg'(t;) + ni = p+ Agi — Atg, + n; . (A4)
This aproximation introduces a dependence on the quality of the reconstruc-

tions with 7. If 7 is equal to zero the Taylor’s expansion is exact but with
increasing 7 the quality of the reconstruction decreases.

Let’s define now three quantities:

i=1
=1
i=1

95



where n is the number of samples and a, b and ¢ are free parameters of the
algorithm called OF weights.

We require now the expected values of u, v and w ({u), (v) and (w)) for m
events of equal amplitude and time to be equal to A, A7 and p respectively:

A= (u) = éaz-s» - éaxs» , (A8)
Ar = (u) = <z b.Ss) = ﬁ;bxs» , (A.9)

S is linear dependent on p as A and A7 which is a required condition for the
OF weights determination. If we substitute S; by (A.4) in equations (A.8),
(A.9) and (A.10) and assume all parameters to be constant except the noise,
n, we get:

n

A=(u)= Z(Pai + Aa;gi — Ataig; + a;(ni)), (A.11)
i=1
At = (v) = Z(Pbi + Ab;g; — ATb;g; + bi(ni)) (A.12)
i=1
p = (w) =Y (pci + Acigs — Atcig; + ci(ni)) . (A.13)
i=1

We take the expected value of n;, (n;), as zero. This is the case for a Gaussian
distribution which is the aproximation of a model for thermal noise and used
also for pile up noise. With this assumtion equations (A.11), (A.12) and (A.13)
become:

AZ(“):Pzai'i‘AZaigi—ATZaig,{, (A.14)
i=1 i=1 i=1
Ar= () =pd b+ AD bigi— AT big, (A.15)
i=1 i=1 i=1
p:<w>:pzcz’+AZCigz’—ATzCig§- (A.16)
i=1 i=1 i=1

From (A.14), (A.15) and (A.15) we must set now the following nine constraints
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for the weights:

Zn:a'i:Oa zn:azgz_l iazg;:(),
=1 =1 =1
=1 =1 =1
> =1, Zzgz—o Zzgz_o

~
Il
—
H
-~
H

Note that Z a; =0 and Z b; = 0 guarantees that any constant term added to
=1

S; will make no contrlbutlon to neither the amplitue A nor the phase 7. Also
note that we have defined m events with equal amplitude, time and pedestal
to calculate (u), (v) and (w). However the distribution of u, v and w values is
broaded by the noise contribution. In order to minimize this effect we require
the parameters a, b and ¢ to be calculated such that they minimize the u, v
and w variances.

These variances are given by:

Var(u) = Var( Z a;S;) , (A.18)
Var(v) = Var(y_bS) (A.19)
Var(w) = Var(i1 ¢iS;) - (A.20)

If we develop again equations (A.18), (A.19) and (A.20) using (A.4) we have:

Var(u) = Var(pd_a; + A>aigi — AT Y _aigi + > ain;), (A.21)
i—1 i=1 i=1 =

Var(v) = Var(p)_b; + A bigi — AT D _bigi + > _bins), (A.22)
i=1 i—1 i=1 i—1

Var(w) = Var(pd ;i + AY cigi — AT cigi+ > cini), (A.23)

=1 i=1

where again all the parameters are constant except n.

Note that Var(a + z) = Var(z) if a is constant. With this, equations (A.21),
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(A.22) and (A.23) can be reduced to:

Var(u) = Var(i ain;) ,

=1

Var(v) = Var(i bini)

=1

Var(w) = Var(i cing) -

=1

If we develop them we obtain:

2
Var(u a?Var(n;) + —
zzl m ;27 j=it1
Var(v) = be\/ar(nz) + 2 ST biby Y (g
i=1 M1 =it
Var(w) = Y ¢; Var(n;) + zz > ocici > (n
i=1 m =it

Var(u) = - ey 30— (m)) o — (1),
Var(v) = % Ail bib; i(nz = (n))(n; — (n;))
Var(u) = - 37 ey (s = (n) o ()

Var(u) 1 Z az-a,]z nin;) Z a;a;(n;n;)
m,;iz1 i,j=1
1 n m n
Var(v) = — > bib; > (niny) = Y bibj{nin;),
m 2,j=1 1,j=1
1 n m n
Var(w) . Yo Y (ning) = > cici{ning)
2,j=1 4,j=1

(A.24)

(A.25)

(A.26)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)



Our goal is to find expresions for @, b and ¢ which minimize the variance and
fulfill the constraints of (A.17). We use thus the Lagrange multipliers method
by constructing the following three functions:

Z a;a;(n;n;) ZazgZ -1)- /@Zazgz - I/Z(LZ, (A.36)

t,j=1
I, = > bibj(nin;) /LZ bigi — p(O_bigi+1) — o> b, (A.37)
i,j=1 i=1 i=1

L, = Y cici{niny) az cigi—BY cgi—v(D_ci—1), (A.38)

ij=1 i=1 i=1

where A\, K, v, u, p ¢, a, B, and v are the Lagrange multipliers.

Next we partial derivate I,, I, and I, with respect to a;, b; and ¢; and equal
them to zero:

I n
ol 53 ay(mny) — Agi — gl — v =0, (A.39)
0a; 4
oI, n ,

=2 b(min;) — pgi — pgi — ¢ =0, (A.40)

ob; =
oI,
e = 2> cj{ning) — ag; — By, — (A.41)

C; j=1

Equations (A.39), (A.40) and (A.41) define three sets of n equations. Together
with the three sets of three equations in (A.17) we have now three systems of
n + 3 equations and n + 3 unknows.

We can substitute (n;n;) by R;; in (A.39), (A.40) and (A.41) which represents
an element of the noise autocorrelation matrix defined as:

= (ni - <nz>><ng () _ = )y = () o

\/2 n; — (n:))2 Y (n; — (n;))? \/Var(n;) Var(n;)

By hypotheses (n;) = 0 and Var(n;) = Var(n,) as n; and n; are samples of
the same noise distribution. Therefore the denominator in (A.42) is absorbed
in the Lagrange multipliers.
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The n + 3 equations for a are given by:

n
E a;9; = 1 )
=1

E azg; = Oa
=1

Zn:a'izoa

i=1

n
Y ajRi; —Agi— kg —v=0 Vi,
i=1

which can be written in matrix format as:

Riy Rys ...
Ry Roy ...

Ry Ry ...

g G2 ...

! !

91 92 ---
1 1

Rln g1 gi 1
R2n g2 gé 1

Ron gn gy, 1
gn 0 00
g. 000
1 000

a

a2

Qp

The n + 3 equations for b are given by:

n
> bigi =0,
i=1

n ’

=1

S b =0,
=1

ZlbjRij —ugi —pgi—¢=0 Vi.
]:
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(A.44)

(A.45)



In matrix format (A.45) reads:

Riy Ris ... Rip g1 g1 1 by 0
Ry Rys ... Rop g2 g5 1 bs 0
Ry Ryz .. Run gn g 1| | bn | =] 0 |- (A.46)
g 92 ... go 0 00 7 0
9 95 -~ g, 000 P -1
1 1 ...1 000/ \¢ 0

The n + 3 equations for ¢ are given by:

5 cigi =0,

i=1

f: ng; = 07

o (A.47)

) ¢ = 1 )

i=1

Y ¢Rij —agi—Bgi—v=0 Vi.

j=1

In matrix format (A.47) reads:

Riy Ry ... Rip g1 g7 1 c1 0
Ry Ryy ... Ry g0 g5 1 Co 0
g G2 --. g, 0 00 0
g9, g5 ... g, 000 0
1 1 ...1 000/ \~ 1

Equations (A.44), (A.46) and (A.48) are used to calculate a, b and c.
Notice that now the equations for amplitude, time and pedestal reconstruction
are given by:

A= asS, (A.49)

i=1
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Ar = Z b;S; (A.50)
=1

b= Z CiS; (A.51)

=1

and it is not necessary to substract the pedestal from the samples before ap-
plying the above equations. The pedestal calculation (equation (A.51)) could
be implemented in the DSPs according to the needs. The quality factor defined
in (44) is now given by:

YA =3 ABS(S; — (Agi +p)). (A.52)

=1

This factor should be interpreted only as an online variable to be eventually
implemented at the DSP level of the RODs and which flags events whose
shape form does not fit with the values of g (pile-up, saturation). Thus, the
definition of p as the signal from the first sample would be enough for this
purpose and would save time in an online implementation.

The most important consequence of the introduction of the pedestal as an ad-
ditional parameter in the output of the algorithm is the variance minimization.
One additional constraint is added per parameter in the Lagrange multipliers
method. As a consequence the variances (Var(u), Var(v), Var(w)) are equal
or greater than in the two parameter case and then the minimization could
be less optimal. In the ATLAS enviroment the beam is synchronous, there-
fore the phase distribution of the events could be narrow enough to neglect
the first order aproximation in (4) without including the time reconstruction.
Therefore the output parameters would only be the energy and pedestal going
back to the minimization levels of Section 2.

The final decision of which algorithm to implement at the ROD is not straight-
forward, and a further study including pileup and minimum bias final ATLAS
conditions is needed in order to give a final answer to this problem.
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