

Energy Reconstruction Algorithms for the ATLAS Tile Calorimeter

Esteban Fullana Tilecal subsystem of ATLAS collaboration.

Summary

Tile Calorimeter

- Test beam calibration
- Energy reconstruction algorithms
- Energy resolution under Pions
- Energy resolution under electrons
- Linearity
- Conclusions

Tile Calorimeter

Tile Calorimeter inside ATLAS

3 Barrels: 64 modules / barrel R_i: 2280 mm R_o: 4320 mm L: 5640 mm + 2910 mm Passive Medium: Iron Active Medium: Scintillators Weight: 2900 T

Tilecal

Staggered in Scintillator Tiles and iron
Tiles perpendicular to beam direction and read out by two WLS fibres
Segmented in cells defined as groups of fibres.

Each cell is read by two photomultiplier
Front-End electronics placed inside the module.

Test Beam Calibration

Test beam setup

Test beam features

- 8% of the modules calibrated under particles of known energy
- Pion, electron and muon response
- Energies from 350 GeV to 1 GeV
- Three angles of incidence:

Eta proiect

 \mathbf{M}

Energy reconstruction algorithms

Most simple algorithms

Area Based Algorithms

 Flat Filtering

 Amplitude Based Algorithms

 Maximum Sample
 Optimal Filtering

Flat Filtering (FF)

Energy Calculation

$$S_i' = S_i - Ped$$

$$E = \sum_{i=1}^{n} S_i^{'}$$

Maximum Sample

Energy Calculation

$$S_i' = S_i - Ped$$

$$E = Max \left\{ S_i' \right\}$$

Weights calculation

Energy resolution under pions

Pions eta projective 0.35

Energy (GeV)	FF	OF
350	7.8%	7.6%
180	8.4%	8.4%
100	10.8%	10.5%
20	16.6%	16.4%
9	28.1%	26.5%
5	40.8%	36.9%

Pions Resolution

$$\frac{\boldsymbol{s}}{E} = \frac{0.86}{\sqrt{E}} \oplus 0.055$$

2

$$\frac{\boldsymbol{s}}{E} = \frac{0.79}{\sqrt{E}} \oplus 0.060$$

$$\frac{\mathbf{s}}{E} = \frac{0.64}{\sqrt{E}} \oplus \frac{1.43}{E} \oplus 0.073$$

DF
$$\frac{\mathbf{s}}{E} = \frac{0.66}{\sqrt{E}} \oplus \frac{1.07}{E} \oplus 0.070$$

$$\frac{s}{E} = \frac{0.22}{\sqrt{E}} + \frac{1.24}{E} + 0.064$$

3

)F
$$\frac{s}{E} = \frac{0.32}{\sqrt{E}} + \frac{0.86}{E} + 0.058$$

$$\mathbf{F} \qquad \frac{\mathbf{s}}{E} = \left(\frac{0.46}{\sqrt{E}} + 0.053\right) \oplus \frac{1.59}{E}$$

4

<u>F</u>

OF
$$\frac{\mathbf{s}}{E} = \left(\frac{0.50}{\sqrt{E}} + 0.049\right) \oplus \frac{1.27}{E}$$

Energy resolution under Electrons

Electrons 90°

Energy (GeV)	FF	OF
180	2.3%	2.2%
100	3.4%	3.1%
50	4.8%	4.0%
20	6.1%	6.0%
9	8.7%	8.1%
2	21.6%	18.7%

e Resolution

$$\frac{\mathbf{s}}{E} = \frac{0.29}{\sqrt{E}} \oplus 0.018$$

2

FF

F

$$\frac{\mathbf{s}}{E} = \frac{0.26}{\sqrt{E}} \oplus 0.012$$

$$\frac{\mathbf{s}}{E} = \frac{0.23}{\sqrt{E}} \oplus \frac{.271}{E} \oplus 0.028$$

1

DF
$$\frac{\mathbf{s}}{E} = \frac{0.26}{\sqrt{E}} \oplus \frac{.007}{E} \oplus 0.002$$

$$\frac{s}{E} = \frac{0.13}{\sqrt{E}} + \frac{.202}{E} + 0.022$$

3

F
$$\frac{s}{E} = \frac{0.20}{\sqrt{E}} + \frac{.074}{E} + 0.009$$

4

FF

F

$$\frac{\boldsymbol{s}}{E} = \left(\frac{0.26}{\sqrt{E}}\right) \oplus \frac{.021}{E}$$

Linearity

Linearity

Conclusions

Conclusions

- Energy reconstruction algorithms can change significantly the resolution in energy regions where sampling fluctuations are not dominant
- Respecting FF vs. OF, OF improves the resolution in energy regions when the ratio (electronic noise)/(PM signal) is important
- Using FF or OF does not affect compensation