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Abstract— We present an Optimal Filtering (OF) algorithm to
reconstruct the energy, time and pedestal of a photomultiplier
signal from its digital samples. The OF algorithm was first
developed for liquid ionization calorimeters, its implementation
in scintillator calorimeters, specifically in the ATLAS hadronic
Tile calorimeter (TileCal), is the aim of this study. The objective is
to implement the algorithm on the DSPs of the Read Out Driver
cards in order to reconstruct online the energy of the calorimeter
and provide it to the second level trigger. The algorithm is
tested and compared with a plain filtering algorithm using both
calibration and real data from the TileCal detector. The results
are promising specially in the regions where the electronic noise
contributes significantly to the resolution.

I. INTRODUCTION

The Hadronic Tile Calorimeter (TileCal) is the central
hadronic calorimeter of the ATLAS detector [1]. It is a
sampling calorimeter made of iron as passive material and
plastic scintillators as active material. The light produced in
the scintillators is driven to photomultipliers by WSL fibers.
The photomultipliers (PMs) produce an electrical signal which
is shaped and digitized by the front-end electronics. The digital
samples of the signal are transmitted to the Read Out system
through optical fibers. The ROD system must reconstruct the
energy of all the channels of the TileCal detector during the
first level trigger latency of the ATLAS detector, which is
10 us. Once the energy is reconstructed, it is sent to the
second level trigger. There are ~ 10 000 channels in the TileCal
detector and seven samples of 10 bits are taken per channel
in each event. The ROD receives the events once they are
accepted by the first level trigger i.e. every 10 us. Therefore
the ROD system must process up to 80 000Mb/s. In order to
do that there are 32 ROD motherboards divided in 4 partitions.
Each motherboard is equipped with two processing units each
with two DSPs, hence each DSP process up to 2 500Mb/s [2].
Hence the computing time is an important constraint and the
RODs must implement a fast algorithm to reconstruct energy
accurately in 10 us.

We present an algorithm, so called Optimal Filtering (OF)
algorithm, to reconstruct amplitude, time information and
pedestal from a PM signal. The algorithm also provides an
online quality check in order to decide in real time whether raw
data should be added to the output stream in order to perform
posterior analysis. The algorithm was first developed for
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liquid ionization calorimeters [3], its performance in hadronic
calorimeters is the aim of the present analysis.

II. THEORETICAL BACKGROUND

Let’s define g as a set of values of the shape form function
of the signal, ¢(¢), noise free and normalized to one in
amplitude. The g values are taken at times ¢;, the time interval
of which must be equal to the sampling period. The samples
can thus be expressed as:

where S represents the digital samples, A is the true amplitude
of the signal, 7 accounts for a phase between the shape form
factors and the samples, n; is the noise contribution and p is
the pedestal.

We can develop it in Taylor’s series as:

Si~p+ Ag(t;) — Atg'(t;) + n; = p+ Ag; — ATg +n; .

Notice that the algorithm uses a first order aproximation
for the phase between the samples S and the shape form
factors g, as the phase, 7, tends to zero as more accurate
the reconstruction. Therefore it is important to calculate the
g components as close as possible from the positions of the
samples within the signal.

Let’s define now three quantities:

n n n
u:E a; Sy, v:E b; Sy, UJ:E ¢S,
i=1 i=1 i=1

where n is the number of samples and a, b and c are free
parameters of the algorithm called OF weights.
We set now two conditions:

o The expected values of u, v and w ({u), (v) and {w)) for
m events of equal amplitude, time and pedestal must be
equal to A, A7 and p respectively.

o The distributions of u, v and w values are broaded by
the noise. We require the parameters a, b and c to be
calculated so that they minimize the u, v and w variances.

The theoretical development of the algorithm supposes a

stationary noise, i.e. the statistical averages of the noise terms
must be time independent, otherwise the algorithm is not valid.



With these conditions and using the Lagrange multipliers
method - to minimize a function imposing constraints - we
obtain three sets of n + 3 equations and 7 + 3 unknowns.
The three systems of equations are linear (due to the Taylor’s
expansion) and their solutions are the parameters a, b and
c [4]:

Rii Ria ... Rin 1 91 1 a1 0
Ro1 Ryy ... Rop g2 g5 1 az 0
Ry Rna ... Run 9n Q;L 1 an || O ’
g1 g2 ... Gn 0 00 A 1
gy g ... g, 000 K 0
1 1 ... 1 0 00O € 0

where ¢; and g; are the values of the shape form and its
derivative respectively, a; are the OF weights (the system for b
and c weights is identical only the independent term changes),
A, K, € are the Lagrange multipliers and R;; are terms of the
noise autocorrelation matrix which can be calculated by:

R — >-(ni — () (ny — (ny))
1] 9
\/Z(ni — (n3))? 2(nj — (n;))?
where n; are noise samples.
Therefore, the OF algorithm reconstructs the amplitude,

phase and pedestal information from weighted sums of the
samples:

A:ialsl, AT:iblsz7 p:iclsl
i=1 i=1 =1

In order to check the quality of the reconstruction we define
a quality factor, x:

X =Y _ ABS((Si —p) — Agi) .
=1

We use the absolute value formula instead of the square
because is faster to implement in the ROD DSPs. Notice that
when the computing time is limited, as in the TileCal ROD,
the p calculation is not necessary, one sample without signal
is enough as the x factor pretends to be only an estimator of
the quality of the reconstruction.

III. IMPLEMENTATION IN THE ATLAS TILE
CALORIMETER

The weights are calculated offline and used online event by
event. In order to calculate the weights the noise and the shape
form function must be understood.

The noise autocorrelation matrix is calculated by forcing
triggers with no signal. In this analysis the noise autocorre-
lation matrix is set to the unitary matrix due to the small
correlation found in the TileCal electronics. However, once the
LHC is operative the correlation must be corrected because of
the effect of the underlying events produced in each collision
at the LHC.

The shape form is reconstructed using the charge injection
system which is part of the TileCal front-end electronics. This
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Fig. 1. Shape form reconstructed with charge injection events.
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Fig. 2. Function fitted to the shape form reconstruction.

system injects charge directly to the shaper emulating a PM.
The injected charges range between zero and 800 pC and the
injection start time ranges to cover the 25ns sampling period.
Therefore, the system sweeps all the signal range allowing us
to obtain a set of numerical values which define the shape
form. We fit an analytical function to the numerical values
obtained from the charge injection system in order to eliminate
the front-end electronics noise in the shape form. We use the
function:

SF(t)=p+A (tT)\)Hexp (—ut — A) ’

T

which fits the shape form of the TileCal PM signal. Fig. 1
plots the numerical values versus the time and Fig. 2 plots
the function fitted. The g components are calculated from this
function once it is normalized to one in amplitude.

The OF algorithm needs the samples to come within a
narrow time interval from the OF weights reference time (set
by the time postions where g are calculated). However when
the events do not arrive synchronously to the detector the phase
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between the samples and the g components changes event by
event. The problem is solved by applying the proper weights
for each event according to the position of the samples in the
signal. In order to do that we calculate 25 sets of weights, one
for each reference time between —25 and 25 ns in steps of 1 ns
sweeping all the signal. The problem becomes thus to find out
the position of the samples in the signal in order to choose
the appropiate weights. The phase information provided by the
OF algorithm can be used to start an iteration process. The
convergence criteria is set by requiring the relative phase of
the last iteration to be lower than half the time step between set
of weights. The iteration process is limited by the computing
time available, in our case the synchronism of ATLAS-LHC
prevents us to implement iterations. However the arrival of
the events in the set-up from which we acquired the data
used in this analysis was asynchronous, hence we implement
iterations.

IV. RESULTS

We test the algorithm using two types of data, charge injec-
tion data and physics data. The injected charge in the charge
injection system ranges between zero and 800pC and the
injection start time ranges to cover the 25 ns sampling period.
These characteristics allow to test the algorithm performance
in both, amplitude and time, for all the charges availables.

Fig. 3 shows the results of the algorithm for amplitude
reconstruction. The results are compared with the Flat Filtering
algorithm (FF) which consists in a plain sum of the samples.
The top plot shows the reconstructed charge versus the injected
charge for the whole range of charges, both in picocoulombs.
For each charge injected we reconstruct ~ 200 events sweeping
all the phase range. The points represent the average of the dis-
tribution of the reconstructed charge for each injected charge.
The middle plot represents the residual of the points to the line
which bisects the graph. Both plots show that both algorithms
output on average a correct reconstructed charge. The bottom
plot shows the resolution of the reconstruction versus the
injected charge. The resolution is defined as the ratio between
the standard deviation and the average of the distribution of the
reconstructed charge. The plot shows the difference between
the FF algorithm and the OF one. The resolution at high
injected charges is similar for both algorithms, however as
the injected charge decreases the OF algorithm plots better
resolution. This is a consequence of the OF basic concepts,
the algorithm is designed to minimize the noise impact on the
resolution which is more important at low charges where the
signal to noise ratio is small.

Fig. 4 shows the plots for the time reconstruction of the
OF algorithm. The phase between the samples and the g
values was fixed in 5ns. The top plot shows the average
of the reconstructed phase distribution and the bottom plot
shows its standard deviation both versus the injected charge
for the whole range of injected charges. Notice that the phase
is well reconstructed for the whole range of charges having
an accuracy of 200 ps.
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Fig. 3.  Amplitude reconstruction for Optimal Filtering algorithm (OF) and
Flat Filtering algorithm (FF) in charge injection events.

Fig. 5 shows the plots for the quality factor, y, of the OF
algorithm. The plot shows that for most of the injected charge
range the reconstruction is good only at very low injected
charges the reconstruction starts to be less reliable.

For the physics data we use pions and electrons of several
energies. The data was taken during testbeam periods using
the SPS accelerator at H§ CERN facility. The total energy
deposited in the calorimeter is computed by summing the
amplitude reconstructed in all the channels multiplied by a
calibration constant. We fit a Gaussian distribution to the
energy deposited in the calorimeter The resolution of the
calorimeter is defined here as the ratio between the sigma and
the average of the distribution.

Fig. 6 shows the resolutions obtained with the OF and FF
algorithm versus the momentum of the incident electron. As in
the charge injection case the improvement of the OF algorithm
is manifested at low energies where the signal to noise ratio is
small and the noise degrades significantly the resolution. Fig. 7
shares the same result, now the resolutions are in general worse
than in the electron case due to the intrinsic fluctuations of the
shower developed by the pions but again the OF algorithm
improves the resolution at low energies.

V. CONCLUSIONS

The Optimal Filtering algorithm has been tested satisfacto-
rily in two types of data. For the data obtained with charge
injection runs the reconstruction is correct for both amplitude
and time. At the same time the algorithm improves the
resolution, compared with plain filtering algorithms, when the
signal to noise ratio is small. This result is shared in physics
runs taken during physics calibration periods of the detector.
Therefore the results are promising for the OF algorithm to be
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Fig. 6. Energy resolution of the TileCal detector obtained with the Optimal
Filtering (OF) and Flat Filtering (FF) algorithm versus the momentum of the
incident electrons.
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Fig. 7. Energy resolution oof the TileCal detector btained with the Optimal
Filtering (OF) and Flat Filtering (FF) algorithm versus the momentum of the
incident pions.

a good candidate to reconstruct online the energy of the Tile
Calorimeter when the LHC will be operative.
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