Kaon Physics and χ PT Discussion

Chris Sachrajda

School of Physics and Astronomy
University of Southampton
Southampton
UK
χ PT Confronts Lattice QCD
November 29-30 2005

Some Introductory Comments

- $\Delta S=2, K \Leftrightarrow \bar{K}$ matrix elements and $\Delta S=1$ matrix elements for $K \rightarrow \pi$ and $K \rightarrow \pi \pi$ transitions are being calculated in unquenched simulations with $m_{q}<m_{s}$.

What is the best strategy for obtaining the results at physical m_{u} and m_{d} ?

- Strategies for determining the LECs at NLO in the chiral expansion have been developed \Rightarrow physical matrix elements.
P.Boucaud et al. (SPQR Collaboration)
J.Laiho and A.Soni

In order to make use of these strategies we need calculations in χ PT at unphysical kinematics. (Status ~ NLO)

- For the calculation of $K \rightarrow \pi \pi$ matrix elements we know the expressions for the finite-volume corrections (both in the centre-of-mass frame and in moving frames).
M.Lüscher; L.Lellouch and M.Lüscher; C.Lin, G.Martinelli, CTS and M.Testa K.Rummukainen and S.Gottlieb; C.Kim, CTS and S.Sharpe; N.Christ, C.Kim and T.Yamazaki

Some Questions for Discussion

- Is (NLO, NNLO) χ PT sufficiently precise to be useful?
M.Golterman, D.Becirevic

What is the error if we fit the lattice data to $\chi \mathrm{PT}$ at NLO or NNLO?
Is it $m_{K}^{2} / \Lambda_{\chi}^{2}$ squared or cubed or ???

- What is the status of $\chi \mathrm{PT}$ calculations for such matrix elements?
J.Bijnens
- If $\chi \mathrm{PT}$ is a useful tool in principle, at what values of m_{u} and m_{d} does it set in?
- What are the prospects for a wider programme of kaon physics using the improved staggered formulation of lattice fermions?

$K \rightarrow \pi \pi$ Matrix Elements of EWP Operators (Quenched)

P.Boucaud et al. (SPQR Collaboration), hep-lat/0412029

Quenched Improved Clover + Plaquette action.
$0.5 \mathrm{GeV}<m_{\pi}<1 \mathrm{GeV}$

$K \rightarrow \pi$ Matrix Elements of EWP Operators

$N_{f}=2$ Domain Wall Fermion \& DBW2 action.

$\Delta I=3 / 2$ Matrix Elements of EWP Operators

J.Noaki, hep-lat/0510019
$N_{f}=2$ Domain Wall Fermion \& DBW2 action.

