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is difficult to simulate, because the massive Wilson–Dirac

operator is not protected from arbitrarily low eigenvalues”
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Spectral gap, asymmetry, . . .

Hermitian Wilson–Dirac operator

Qm = γ5Dm

Dm = Dw +m0, Dw = 1
2 {γµ (∇∗µ +∇µ )− a∇∗µ∇µ}

Spectral gap

µ = min {|λ| | λ is an eigenvalue of Qm}

Spectral asymmetry

η = 1
2 {Nλ≥0 −Nλ<0} ∈ Z
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With Ginsparg–Wilson quarks we have

µ ≥ m = bare current-quark mass

η = 0 (if m > 0)

Wilson quarks break chiral symmetry

⇒ µ� m is not excluded

⇒ there can be fields with η 6= 0

The distributions of µ and η are properties of the theory,

not of a particular simulation algorithm
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Stability and the spectral gap

p(µ): distribution of the gap

0

0.1

0.2

0 5 10 15 20 25 30
µ [MeV]

0

0.1

0.2 p(µ)

p(µ) /µ2

Stable situation

⇒ HMC algorithm works well

⇒ Small statistical fluctuations

Potentially unstable situation

⇒ HMC becomes inefficient

⇒ Ergodicity problems

In unquenched QCD this is not a fundamental problem
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Ergodicity?

• ∆η = ±1 if an eigenvalue of Qm crosses 0

• The HMC algorithm tends to preserve η

⇒ an ergodicity problem can arise

� in the “unstable” situation

� during thermalization

May lead to long autocorrelation times, incorrect error estimates,

fake first-order transitions, . . .
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Empirical studies of the gap

Simulations using the Schwarz-preconditioned HMC algorithm

Run Id Lattice β csw κ ∼ m/ms Ncfg

A1 32× 243 5.6 0 0.15750 0.93 64
A2 0.15800 0.48 109
A3 0.15825 0.30 100
A4 0.15835 0.17 100
B1 64× 323 5.8 0 0.15410 0.88 100
B2 0.15440 0.50 101
C1 64× 243 5.6 0 0.15800 0.48 116
D1 48× 243 5.3 1.9095 0.13550 1.05 104

Performed at Bern (8 nodes), CERN (32 nodes) and the Fermi Institute (64 nodes)
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Mass-dependence of the median µ̄ (32× 243 lattice, A1–A4)
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Statistical fluctuations of the gap

Consider a random fluctuation of the gauge field

δU(x, µ) = ω(x, µ)U(x, µ)

To first order we have

δµ = a4
∑

x

ψ(x)†δQmψ(x), a4
∑

x

|ψ(x)|2 = 1

If the lowest mode extends over the whole lattice, this implies

〈
(δµ)2

〉
∝ a2

V

Suggests that the width σ of the gap distribution scales like a/
√
V
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Stability range

µ̄ ' Zm

σ ' a/
√
V

Define the stability range through µ̄ ≥ 3σ

m ≥ 3a
Z
√
V

=
3a

Z
√

2L2
(on 2L× L3 lattices)

Substituting m2
π = 2Bm, this becomes

mπL ≥
√

3
√

2aB/Z

mπL ≥


2.8 at a = 0.08 fm

2.3 at a = 0.06 fm

3.2 at a = 0.09 fm, O(a) improved

⇒ constraint is irrelevant in the large-volume regime of QCD
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Theoretical issues

• What is the precise relation between µ̄ and m?

• Are the lowest modes extended over the

whole lattice?

• Can the eigenvalue distributions be computed

in ChPT or RMT?
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Spectral density in infinite volume

Let α1 ≤ α2 ≤ . . . be the eigenvalues of Q2
m

ρ(α) = lim
V→∞

1
V

∑
k≥1

〈δ(α− αk)〉

Number of modes per bin and fm4
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? Limit exists van Hemmen ’82

? Single eigenvalues don’t count

? With GW quarks

ρ(α) =
α↓m2

Σ
π
√
α−m2
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Working hypothesis

The spectral density ρ(α) vanishes below some ᾱ > 0,

and it is non-zero at or immediately above this value

It is then possible to show that

? ρ(α) is multiplicatively renormalizable

?
√
ᾱ = ZAm up to O(a) corrections
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Renormalization (abbreviated)

Resolvent

R(z) =
∫ ∞

ᾱ

dα
ρ(α)

α2(z − α)

Expansion for |z| < ᾱ

R(z) =
∞∑

k=0

Mkz
k, Mk = −

∫ ∞

ᾱ

dα
ρ(α)
αk+3

Mk = a4n−4
∑

x1,...,xn−1

〈P12(x1)P23(x2) . . . Pn1(0)〉 , n = 2k + 6

⇒ the moments Mk renormalize multiplicatively with (ZP)n
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The renormalized quantities

ρR(α) = Z2
Pρ

(
Z2

Pα
)
, ᾱR = Z−2

P ᾱ

are thus expected to have a well-defined continuum limit

Relation to the current-quark mass m

Renormalization & universality

mR = ZAZ
−1
P m ⇒

√
ᾱR

mR
= independent of ZP = universal = 1

The bare quantities thus satisfy
√
ᾱ = ZAm, up to O(a) corrections
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Run Id ZA µ̄/m µ̄− ZAm [MeV] Nlower

A1 0.78(2)a 0.76(1) −1.4 1

A2 0.78(1)a 0.75(1) −1.1 1

A3 0.79(∗)b 0.80(3) 0.2 0

A4 0.79(∗)b 0.85(4) 0.8 0

B1 0.78(2)a 0.77(1) −0.6 1

B2 0.80(∗)b 0.78(1) −0.6 1

C1 0.78(1)a 0.72(1) −2.1 1

D1 0.75(1)c 0.68(1) −5.3 2

a RI-MOM, Bećirević et al. (SPQCDR collab.) ’05

b Tadpole-improved boosted perturbation theory

c SF chiral Ward identity, Della Morte et al. (ALPHA collab.) ’05
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⇒ µ̄ ' ZAm on all lattices

⇒ data support working hypothesis

However, the detailed behaviour of µ̄ may be complicated

• It is possible that limV→∞ µ̄ 6=
√
ᾱ

0 ᾱ
α

• There could be important O(a) corrections
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Conclusion

In the large-volume regime, the massive Wilson–Dirac operator

is, effectively, protected from arbitrarily low eigenvalues

On 2L× L3 lattices with a ≤ 0.1 fm, there is a safe spectral gap if mπL ≥ 3

Simulations in this regime are feasible using current technologies

? No ergodicity problems, stability, efficiency

? Small statistical errors

? Anyway required for the baryons, pion phase shifts, . . .
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