Strange quark mass

 m_s and V_{us} from Sum Rules Matthias Jamin, ICREA & IFAE, UA Barcelona

Valencia, November 2005

Our starting point is the SU(3)-breaking difference:

$$\delta R_{\tau} \equiv \frac{R_{\tau,NS}}{|V_{ud}|^2} - \frac{R_{\tau,S}}{|V_{us}|^2} = N_c \sum_{D \ge 2} \left(\delta_{ud}^{(D)} - \delta_{us}^{(D)} \right)$$

Given m_s , we are in a position to predict δR_{τ} from theory:

 $\delta R_{\tau,th} = 0.162 + 6.12 \, m_s^2 - 7.78 \, m_s^4 = 0.218 \pm 0.026 \, .$

Let us now reconsider the equation for δR_{τ} :

$$|V_{us}| = \sqrt{\frac{R_{\tau,S}}{R_{\tau,NS}/|V_{ud}|^2 - \delta R_{\tau,th}}}$$

$$\approx 3.658$$

Thus the theoretically derived quantity $\delta R_{\tau,th}$ only gives a small correction to experimentally measured quantities.

 m_s and V_{us} from Sum Rules Matthias Jamin, ICREA & IFAE, UA Barcelona

Valencia, November 2005

 V_{us} from $R_ au$

Together with the experimental results $R_{\tau,NS} = 3.469 \pm 0.014$ as well as $R_{\tau,S} = 0.1677 \pm 0.0050$, V_{us} can be determined:

 $|V_{us}| = 0.2208 \pm 0.0033_{exp} \pm 0.0009_{th} = 0.2208 \pm 0.0034$

The uncertainty on V_{us} is dominated by the experimental error on $R_{\tau,S}$. The theoretical error by our knowledge of m_s .

In the near future, it should be possible to reduce the uncertainty with the τ -data sets from BABAR and BELLE.

If the experimental value $B(\tau \rightarrow K \nu_{\tau}) = (0.686 \pm 0.023)\%$ is replaced by the theoretical prediction $(0.715 \pm 0.004)\%$ based on $K_{\mu 2}$ decays, one finds $|V_{us}| = 0.2219 \pm 0.0034$.

 m_s and $V_{\!us}$ from Sum Rules Matthias Jamin, ICREA & IFAE, UA Barcelona