Low-energy constants of the $\Delta S=1$ weak Hamiltonian from (quenched) lattice QCD

Leonardo Giusti

CERN PH-TH Division

Collaboration: P. Hernández, M. Laine, M. Lüscher, C. Pena, P. Weisz, J. Wennekers, H. Wittig

- Introduction to $\mathrm{K} \rightarrow \pi \pi$ decays
- $\mathrm{SU}(4)$ strategy for $\mathrm{K} \rightarrow \pi \pi$ decays
- Renormalization of $H_{\mathrm{eff}}^{\Delta S=1}$ with GW fermions
- Numerical results for the $\mathrm{SU}(4)$ symmetric case
- Conclusions and outlook
- In the basis $\left(K^{0}, \bar{K}^{0}\right)$, Hermiticity + CPT lead to

$$
H=\left[M-\frac{i}{2} \Gamma\right]=\left(\begin{array}{cc}
A & p^{2} \\
q^{2} & A
\end{array}\right)
$$

where no conserved quantum numbers prevent $p, q \neq 0$

- If CP preserved by weak interactions $(p=q)$

$$
\begin{array}{ll}
\left|K_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] & \mathrm{CP}\left|K_{1}\right\rangle=\left|K_{1}\right\rangle \\
\left|K_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] & \mathrm{CP}\left|K_{2}\right\rangle=-\left|K_{2}\right\rangle
\end{array}
$$

- CP violation removes the mass degeneracy

$$
\left|K_{\mathrm{S}}\right\rangle=\frac{\left|K_{1}\right\rangle+\bar{\varepsilon}\left|K_{2}\right\rangle}{\sqrt{1+|\bar{\varepsilon}|^{2}}} \quad\left|K_{\mathrm{L}}\right\rangle=\frac{\left|K_{2}\right\rangle+\bar{\varepsilon}\left|K_{1}\right\rangle}{\sqrt{1+|\bar{\varepsilon}|^{2}}} \quad \bar{\varepsilon}=\frac{p-q}{p+q}
$$

- $K \rightarrow \pi \pi$ amplitudes can be parameterized [CP violation implies $A_{I} \neq A_{I}^{*}$]

$$
\begin{array}{rl}
-i T\left[K^{+} \rightarrow \pi^{+} \pi^{0}\right] & =\frac{1}{\sqrt{2}} A_{2} e^{i \delta_{2}} \\
-i T\left[K^{0} \rightarrow \pi^{+} \pi^{-}\right] & =\sqrt{\frac{1}{3}} A_{0} e^{i \delta_{0}}+\sqrt{\frac{1}{6}} A_{2} e^{i \delta_{2}} \\
-i T\left[K^{0} \rightarrow \pi^{0} \pi^{0}\right] & =-\sqrt{\frac{1}{3}} A_{0} e^{i \delta_{0}}+\sqrt{\frac{2}{3}} A_{2} e^{i \delta_{2}} \\
-i T\left[K^{0} \rightarrow(\pi \pi)_{I}\right]=A_{I} e^{i \delta_{I}} & T\left[(\pi \pi)_{I} \rightarrow(\pi \pi)_{I}\right]_{l=0}=2 e^{i \delta_{I}} \sin \delta_{I}
\end{array}
$$

- CP violation can be parameterized as

$$
\begin{array}{rlrl}
& \varepsilon=\frac{T\left[K_{L} \rightarrow(\pi \pi)_{0}\right]}{T\left[K_{S} \rightarrow(\pi \pi)_{0}\right]} \simeq \bar{\varepsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} & \mathrm{~K}_{\mathrm{L}} \propto \mathrm{~K}_{2}+\bar{\varepsilon} \mathrm{K}_{1} \\
\varepsilon^{\prime} & =\frac{\varepsilon}{\sqrt{2}}\left(\frac{T\left[K_{L} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{L} \rightarrow(\pi \pi)_{0}\right]}-\frac{T\left[K_{S} \rightarrow(\pi \pi)_{2}\right]}{T\left[K_{S} \rightarrow(\pi \pi)_{0}\right]}\right) \\
\simeq & \frac{1}{\sqrt{2}} e^{i\left(\delta_{2}-\delta_{0}+\frac{\pi}{2}\right)} \frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)
\end{array}
$$

- $\Delta \mathrm{I}=1 / 2$ rule

$$
\left|\frac{A_{0}}{A_{2}}\right| \simeq 22.1
$$

- Indirect CP violation

$$
|\varepsilon|=(2.282 \pm 0.017) \times 10^{-3}
$$

- Direct CP violation

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(16.7 \pm 2.3) \cdot 10^{-4}
$$

The $H_{\text {eff }}^{\Delta S=1}$ with an active charm

- By using the Operator Product Expansion

- The CP-conserving $\Delta S=1$ eff. Hamiltonian is [Gaillard, Lee 74; Altarelli, Maiani 74]

$$
\begin{gathered}
H_{\mathrm{eff}}^{\Delta S=1}=\sqrt{2} G_{F} V_{u d} V_{u s}^{*}\left\{\sum_{\sigma= \pm} k_{1}^{\sigma} Q_{1}^{\sigma}+k_{2}^{\sigma} Q_{2}^{\sigma}\right\} \\
Q_{1}^{ \pm}=\left[\left(\bar{s} \gamma_{\mu} P_{-} u\right)\left(\bar{u} \gamma_{\mu} P_{-} d\right) \pm\left(\bar{s} \gamma_{\mu} P_{-} d\right)\left(\bar{u} \gamma_{\mu} P_{-} u\right)\right]-[u \rightarrow c] \\
Q_{2}^{ \pm}= \\
\left(m_{u}^{2}-m_{c}^{2}\right)\left[m_{d}\left(\bar{s} P_{+} d\right)+m_{s}\left(\bar{s} P_{-} d\right)\right]
\end{gathered}
$$

- For $m_{s} \pm m_{d} \neq 0$

$$
\bar{s} P_{ \pm} d=\partial_{\mu}\left[\frac{1}{m_{s}-m_{d}} \bar{s} \gamma_{\mu} d \pm \frac{1}{m_{s}+m_{d}} \bar{s} \gamma_{\mu} \gamma_{5} d\right]
$$

and it does not contribute in MEs which preserve four-momentum

- In physical matrix elements

$$
H_{\mathrm{eff}}^{\Delta S=1}=\sqrt{2} G_{F} V_{u d} V_{u s}^{*} \sum_{\sigma= \pm} k_{1}^{\sigma} Q_{1}^{\sigma}
$$

- The Wilson coefficients are known at NLO in α_{s} [Buras et al. 92; Ciuchini et al. 94]
- A non-perturbative determination of the matrix elements $\left\langle(\pi \pi)_{I}\right| \widehat{Q}_{1}^{ \pm}\left|K^{0}\right\rangle$ of the properly renormalized operators is needed
- Use of ChPT for weak decays already developed in the '80s
[Georgi 84; Bernard et al. 85; Kambor et al. 91]
- Exploratory computations on the lattice: a statistical signal obtained for $K \rightarrow \pi$ matrix elements in the quenched approximation, systematics not under control [Kilcup, Pekurovsky 98; Blum et al. 01; Ali Khan et al. 01]
- Approximate chiral symmetry
- Charm integrated out: UV problem
- Large quark masses
- Large amount of work done with models
[see for recent review Bertolini et al. 00; Pallante et al. 01]

- Lightest pion mass $m_{M} \simeq 495 \mathrm{MeV}$
- It is interesting to understand the origin of the $\Delta I=1 / 2$ enhancement: is there a single mechanism or is an accumulation of several small factors?
- Important to disentangle possible sources of enhancement
- Leading order contributions in ChPT
- Charm mass dependence
- Higher orders in ChPT (FSI, m_{s}, \ldots)
- Computing each of these contributions requires simulations with different numerical difficulties
- First goal: computation of LO LECs of $H_{\text {eff }}^{\Delta S=1}$ as a function of m_{c}
- First step toward this goal: computation of LECs in the SU(4) symmetric limit
- The effective chiral Lagrangian of QCD at LO is

$$
\mathcal{L}=\frac{\bar{F}^{2}}{4} \operatorname{Tr}\left\{\partial_{\mu} U^{\dagger} \partial_{\mu} U\right\}-\frac{\bar{\Sigma}}{2} \operatorname{Tr}\left\{U M^{\dagger}+M U^{\dagger}\right\}
$$

- The CP-conserving $\Delta S=1$ Hamiltonian reads

$$
\mathcal{H}_{\mathrm{eff}}^{\Delta S=1}=\sqrt{2} G_{F} V_{u d} V_{u s}^{*}\left\{\sum_{\sigma= \pm} \bar{g}_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma}+\bar{g}_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\right\}
$$

- At leading order in momentum expansion

$$
\begin{aligned}
\mathcal{Q}_{1}^{ \pm} & =\frac{\bar{F}^{2}}{4}\left[\left(U \partial_{\mu} U^{\dagger}\right)_{u s}\left(U \partial_{\mu} U^{\dagger}\right)_{d u} \pm\left(U \partial_{\mu} U^{\dagger}\right)_{d s}\left(U \partial_{\mu} U^{\dagger}\right)_{u u}\right]-[u \rightarrow c] \\
\mathcal{Q}_{2}^{ \pm} & =-\frac{\bar{\Sigma}}{2}\left(m_{u}^{2}-m_{c}^{2}\right)\left[m_{s} U_{d s}+m_{d} U_{d s}^{\dagger}\right]
\end{aligned}
$$

Matching to $\mathrm{SU}(3)$ and $K \rightarrow \pi \pi$ at LO in ChPT

- Matching $\operatorname{SU}(4) \longrightarrow \mathrm{SU}(3)$ in ChPT for values of m_{c} in the chiral regime [L.G. et al. 04; Hernández, Laine 04]
- $\mathrm{SU}(3) \mathrm{ChPT}$ when m_{c} is heavy enough to decouple

$$
\bar{g}_{1}^{ \pm} \rightarrow g_{1}^{ \pm}\left(m_{c}\right) \quad \bar{g}_{2}^{ \pm} \rightarrow g_{2}^{ \pm}\left(m_{c}\right)
$$

- At leading order in ChPT

$$
\left|\frac{A_{0}}{A_{2}}\right|=\frac{1}{2 \sqrt{2}}\left\{1+3 \frac{g_{1}^{-}}{g_{1}^{+}}\right\}
$$

and if compared with experimental results $g_{1}^{-} / g_{1}^{+} \approx 20.5$

- Lecs determined by matching suitable quantities in massless QCD with ChPT
- A possible choice is

$$
\begin{aligned}
\left\langle\pi^{+}\right| k_{1}^{ \pm} \widehat{Q}_{1}^{ \pm}+k_{2}^{ \pm} \widehat{Q}_{2}^{ \pm}\left|K^{+}\right\rangle & =\bar{g}_{1}^{ \pm} \frac{\bar{F}^{2} \bar{M}_{K} \bar{M}_{\pi}}{2}-\bar{g}_{2}^{ \pm}\left(m_{u}^{2}-m_{c}^{2}\right) \bar{M}_{K}^{2} \\
\langle 0| k_{1}^{ \pm} \widehat{Q}_{1}^{ \pm}+k_{2}^{ \pm} \widehat{Q}_{2}^{ \pm}\left|K^{0}\right\rangle & =\frac{i}{\sqrt{2}} \bar{g}_{2}^{ \pm}\left(m_{u}^{2}-m_{c}^{2}\right) \bar{F}\left(\bar{M}_{K}^{2}-\bar{M}_{\pi}^{2}\right)
\end{aligned}
$$

- Computing $\bar{g}_{1}^{ \pm}$requires eight-diagrams only
- Penguin diagrams needed for $g_{1}^{ \pm}\left(m_{c}\right)$
- The "mildest way" of breaking standard chiral symmetry [Ginsparg Wilson 82]

$$
\gamma_{5} D+D \gamma_{5}=\bar{a} D \gamma_{5} D
$$

- An exact symmetry at finite cut-off implied [Lüscher 98]

$$
\delta q=\epsilon \hat{\gamma}_{5} q \quad \delta \bar{q}=\epsilon \bar{q} \gamma_{5} \quad \hat{\gamma}_{5}=\gamma_{5}(1-\bar{a} D)
$$

- $U(1)_{\mathrm{A}}$ anomaly from the Jacobian à la Fujikawa [Lüscher 98]

$$
J=\exp \left\{\epsilon \bar{a} \sum_{x} \operatorname{Tr}\left[\gamma_{5} D(x, x)\right]\right\}
$$

- The topological charge density defined as [Neuberger 97, Hasenfratz et al. 98, Lüscher 98]

$$
a^{4} Q(x)=-\frac{\bar{a}}{2} \operatorname{Tr}\left[\gamma_{5} D(x, x)\right] \quad n_{+}-n_{-}=\operatorname{index}(D)=\sum_{x} Q(x)
$$

and for smooth gauge configurations $Q(x) \rightarrow-\frac{g^{2}}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left[F_{\mu \nu}(x) F_{\rho \sigma}(x)\right]$

- After 15 years from the GW relation, a Dirac operator that satisfies the GW relation, is local and leads to the correct continuum limit was found [Neuberger 97]

$$
D=\frac{1}{\bar{a}}\left(1+\frac{X}{\sqrt{X^{\dagger} X}}\right)
$$

with

$$
X=D_{W}-1 / \bar{a} \quad \bar{a}=a /(1+s) \quad f(r)=\max \left\{\left.\left\|\frac{X}{\sqrt{X^{\dagger} X}}(x, y)\right\| \right\rvert\,\|x-y\|=r\right\}
$$

- A family of GW regularizations for $0<s<2$

$$
\langle f(r)\rangle \propto e^{-\mu r / a} \quad r / a \gg 1
$$

- Numerical treatment challenging and expensive
- No mixing among operators of different chirality:
- No additive quark mass renormalization
- Simplified mixing for composite operators
- $O\left(a^{2}\right)$ discretization effects
- Very light quark masses can be reached
- Bilinears with correct chiral properties

$$
O_{\alpha \beta}^{\Gamma}(x)=\bar{\psi}_{\alpha}(x) \Gamma \tilde{\psi}_{\beta}(x) \quad \tilde{\psi}_{\beta}(x)=\left[\left(1-\frac{\bar{a}}{2} D\right) \psi_{\beta}\right](x)
$$

- Apparently no simple transformation under CP. But at non-zero physical distance

$$
O_{\alpha \beta}^{\Gamma}(x)=\frac{1}{\left(1-\frac{\bar{a}}{2} m_{\beta}\right)} \bar{\psi}_{\alpha}(x) \Gamma \psi_{\beta}(x) \quad \Longrightarrow \quad O_{\alpha \beta}^{\Gamma}(x) \xrightarrow[\mathrm{CP}]{\longrightarrow} \frac{1-\frac{\bar{a}}{2} m_{\alpha}}{1-\frac{\bar{a}}{2} m_{\beta}} O_{\beta \alpha}^{\Gamma}(\tilde{x})
$$

Renormalization pattern for $Q_{1}^{ \pm}$[Capitani, L. G. 00]

- To select operators with $d \leq 6$:
- Flavour symmetry
- P, C symmetries
- Chiral symmetry
- At a non-zero physical distance (on-shell) one operator is left

$$
Q_{2}=\left(m_{u}^{2}-m_{c}^{2}\right)\left[m_{d}\left(\bar{s} P_{+} \tilde{d}\right)+m_{s}\left(\bar{s} P_{-} \tilde{d}\right)\right]
$$

- No power divergent subtractions are needed with GW fermions: UV ren. solved

$$
\widehat{Q}_{1}^{ \pm}=Z_{1}^{ \pm}\left\{Q_{1}^{ \pm}+z^{ \pm} Q_{2}\right\}
$$

- Note the quadratic GIM mechanism

- Parity-odd and parity-even components renormalize differently
- For parity conserving sector, using flavour and CPS

$$
\begin{aligned}
{\left[\widehat{Q}_{1}^{ \pm}\right]^{\mathrm{PC}} } & =\mathcal{Z}_{1}^{ \pm}\left[\widetilde{\mathcal{Q}}_{1}^{ \pm}\right]^{\mathrm{PC}} \\
{\left[\widetilde{Q}_{1}^{ \pm}\right]^{\mathrm{PC}} } & =\left[Q_{1}^{ \pm}\right]^{\mathrm{PC}}+\sum_{j} b_{j}^{ \pm} O_{j}^{ \pm}+z_{\tau}^{ \pm} Q_{\tau}+\frac{z_{s}^{ \pm}}{a^{2}} Q_{s}
\end{aligned}
$$

where

$$
Q_{\tau}=\left(m_{u}-m_{c}\right) \bar{s} \sigma_{\mu \nu} F_{\mu \nu} d \quad Q_{s}=\left(m_{u}-m_{c}\right) \bar{s} d
$$

and $O_{j}^{ \pm}$are 4-fermion operators with wrong chirality

- With a broken chirality the GIM mechanism is only linear

The $H_{\text {eff }}^{\Delta S=1}$ with charm integrated out

- The effective Hamiltonian reads

$$
H_{\mathrm{eff}}^{\Delta S=1}=\sqrt{2} G_{F} V_{u d} V_{u s}^{*} \sum_{i=1}^{10} h_{i} \widehat{Q}_{i}
$$

where a basis for QCD-penguin operators is

$$
Q_{3,5}=\left(\bar{s} \gamma_{\mu} P_{-} \tilde{d}\right) \sum_{q}\left(\bar{q} \gamma_{\mu} P_{\mp} \tilde{q}\right) \quad Q_{4,6}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{-} \tilde{d}^{\beta}\right) \sum_{q}\left(\bar{q}^{\beta} \gamma_{\mu} P_{\mp} \tilde{q}^{\alpha}\right)
$$

- At a non-zero physical distance two more operators can mix

$$
\begin{aligned}
Q_{\sigma} & =m_{d}\left(\bar{s} F_{\mu \nu} \sigma_{\mu \nu} P_{+} \tilde{d}\right)+m_{s}\left(\bar{s} F_{\mu \nu} \sigma_{\mu \nu} P_{-} \tilde{d}\right) \\
Q_{m} & =m_{d}\left(\bar{s} P_{+} \tilde{d}\right)+m_{s}\left(\bar{s} P_{-} \tilde{d}\right)
\end{aligned}
$$

- Power-divergences even with chiral symmetry

$$
\widehat{Q}_{i}=Z_{i j}\left[Q_{j}+z_{j}^{\sigma} Q_{\sigma}+\frac{z_{j}^{m}}{a^{2}} Q_{m}\right]
$$

I

- No asymptotic expansion at fixed N_{c} in quenched QCD
- An extra $1 / N_{c}$ expansion needed to define quenched ChPT
[Bernard, Golterman 92; Sharpe 92]

$$
\begin{aligned}
\mathcal{L}^{\text {Quen }} & =\frac{F^{2}}{4} \operatorname{Str}\left\{\partial_{\mu} U^{\dagger} \partial_{\mu} U\right\}-\frac{m \Sigma}{2} \operatorname{Str}\left\{U+U^{\dagger}\right\} \\
& +\frac{m_{0}^{2}}{2 N_{c}} \Phi_{0}^{2}+\frac{\alpha}{2 N_{c}}\left(\partial_{\mu} \Phi_{0}\right)^{2}
\end{aligned}
$$

- Infrared divergences appear associated with Φ_{0}
- When QChPT is applied, it is assumed that the form of the correlators in the specified kinematical region is close to the one in QCD and that it can be parameterized as predicted by the quenched effective theory
- When $F^{2} M^{2} L^{4} \simeq 1, L \gg 1 /(4 \pi F)$ and for $p^{2} \simeq 1 / L^{2}$

$$
\frac{M}{\Lambda_{\chi}} \sim \frac{p^{2}}{\Lambda_{\chi}^{2}} \sim \frac{1}{(4 \pi L F)^{2}}=\epsilon^{2}
$$

and QCD Green's functions can be expanded in powers of ϵ

- At LO the reordered chiral expansion gives

$$
\mathcal{S}=\frac{F^{2}}{4} \int d^{4} x \operatorname{Tr}\left\{\partial_{\mu} U^{\dagger} \partial_{\mu} U\right\}-\frac{m \Sigma V}{2} \operatorname{Tr}\left\{U_{0}+U_{0}^{\dagger}\right\}
$$

where the the $O(1)$ zero-mode fluctuations have to be treated exactly

$$
\int d U_{0} \exp \left[\frac{m \Sigma V}{2} \operatorname{Tr}\left\{U_{0}+U_{0}^{\dagger}\right\}\right] \quad U=U_{0} \exp (i \sqrt{2} \xi(x) / F) \quad \int \xi(x)=0
$$

- The expansion can also be performed in fixed-topology sectors
- $L_{4} \rightarrow L_{8}$ do not enter at NLO!
- Large condition number of the Dirac operator ($\propto 1 / V$)

$$
m \sim\left|\lambda_{1}\right| \sim \frac{1}{V}
$$

requires low-mode preconditioning in the conjugate gradient solver
[L. G., Hoelbling, Lüscher and Wittig 02]

- Large fluctuations in the observables due to large contributions from only few modes require low-mode averaging [L.G., Hernández, Laine, Weisz, Wittig 04]
- Low-mode averaging reduces the variance by averaging the low-mode contributions from any point to any point and computing the rest locally
- Already several variants and applications: [DeGrand, Schaefer 04; Fukaya et al. 05; Ogawa, Hashimoto 05]

- The correlator of two left-currents (flavor index omitted)

$$
C(t)=\sum_{\vec{x}}\left\langle J_{0}(x) J_{0}(0)\right\rangle \quad J_{0}(x)=\bar{\psi}(x) \gamma_{0} P_{-} \tilde{\psi}(x)
$$

fits the QChPT prediction with $F=102(4)(\mu=m \Sigma V)$

$$
\mathcal{C}(t)=\frac{F^{2}}{2 T}\left\{1+\frac{T}{F^{2} L^{3}} b(\mu) h_{1}\left(\frac{t}{T}\right)\right\} \quad h_{1}\left(\frac{t}{T}\right)=\frac{1}{2}\left[\left(\left|\frac{t}{T}\right|-\frac{1}{2}\right)^{2}-\frac{1}{12}\right]
$$

Comparing results from p and ε regime: L_{5} [L.G., Hernández, Laine, Weisz, Wittig 04]

- In the p-regime

$$
F_{P}=F\left\{1+\frac{M_{\pi}^{2}}{2(4 \pi F)^{2}} \alpha_{5}\right\} \quad \alpha_{5}=8(4 \pi)^{2} L_{5}
$$

and by fitting linearly $F=104(2) \mathrm{MeV}$ and $\alpha_{5}=1.66(8)$

- Excellent agreement between the two values of F !
]

Numerical computation of $\bar{g}_{1}^{ \pm}$in quenched QCD [L.G., P. Hernández, M. Laine, C. Pena, J. Wennekers, H. Wittig in prepar

- For $y_{0} \ll 0$ and $x_{0} \gg 0$

$$
R_{ \pm}\left(x_{0}, y_{0}\right)=\frac{\sum_{\vec{x}, \vec{y}}\left\langle J_{0}(x) \hat{Q}_{1}^{ \pm}(0) J_{0}(y)\right\rangle}{\sum_{\vec{x}}\left\langle J_{0}(x) J_{0}(0)\right\rangle \cdot \sum_{\vec{y}}\left\langle J_{0}(0) J_{0}(y)\right\rangle}
$$

- In the ε-regime the NLO QChPT prediction is

$$
\mathcal{R}_{ \pm}\left(x_{0}, y_{0}\right)=\frac{\bar{g}_{1}^{ \pm}}{2}\left\{1 \pm \frac{2}{F^{2} L^{2}} \frac{T}{L} \tilde{\beta}\right\}
$$

- In the p-regime corresponding QChPT formula in finite volume

p-regime computation

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$\mathrm{m} \sim m_{s} / 6-m_{s} / 2$]

$$
a m=0.020,0.030,0.040,0.060
$$

$$
\mathrm{N}_{\mathrm{confs}}=197
$$

L. Giusti - Valencia November 2005 - p.29/33

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$\mathrm{m} \sim m_{s} / 6-m_{s} / 2$]

$$
a m=0.020,0.030,0.040,0.060
$$

$$
\mathrm{N}_{\mathrm{confs}}=197
$$

L. Giusti - Valencia November 2005 - p.29/33

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$\mathrm{m} \sim m_{s} / 6-m_{s} / 2$]

$$
a m=0.020,0.030,0.040,0.060
$$

$$
\mathrm{N}_{\mathrm{confs}}=197
$$

L. Giusti - Valencia November 2005 - p.29/33

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$m \sim m_{s} / 60-m_{s} / 40$]

$$
a m=0.002,0.003 \quad \mathrm{~N}_{\mathrm{confs}} \sim 630
$$

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$m \sim m_{s} / 60-m_{s} / 40$]

$$
a m=0.002,0.003 \quad \mathrm{~N}_{\mathrm{confs}} \sim 630
$$

- Simulation parameters

$$
\beta=5.8485 \quad \frac{V}{a^{4}}=16^{3} \cdot 32 \quad a \approx 0.125 \mathrm{fm} \quad V \approx 2^{3} \cdot 4 \mathrm{fm}^{4}
$$

- Quark masses [$m \sim m_{s} / 60-m_{s} / 40$]

$$
a m=0.002,0.003 \quad \mathrm{~N}_{\mathrm{confs}} \sim 630
$$

- Low-mode averaging allows to get a good signal up to the ε regime
- Statistical errors for $R_{ \pm}$in the ε regime under control with $500-1000$ confs
- Chiral corrections tend to be large
- Data suggests a significant enhancement in $\left|A_{0} / A_{2}\right|$ already in $\mathrm{SU}(4)$
- A SU(4) strategy to disentangle contributions from different sources in $K \rightarrow \pi \pi$ decays has been proposed
- First goal: computation of the $\Delta S=1$ low-energy constants vs m_{c}
- By using GW fermions:
the UV problem is solved, no power divergences
the chiral regime of QQCD is reachable. Low-mode preconditioning and averaging techniques solve the numerical problem and allow to get a good statistical signal up to the ε-regime
- The NLO QChPT corrections have been computed in the ε regime
- The numerical computation of the low-energy constants in the SU(4) symmetric theory is almost completed
- Physics results soon!
- In a random matrix model
$\left\langle\lambda_{i}\right\rangle=\int D[W] \lambda_{i} \operatorname{det}(D[W]+m)^{N_{\text {sea }}} e^{\frac{N}{2} \operatorname{Tr}}\left\{W^{\dagger} W\right\}$
- The spectral density at fix topology

$$
\rho_{k, \nu}(\zeta)=\lim _{N \rightarrow \infty}\left\langle\delta\left(\zeta-\lambda_{k} N\right)\right\rangle_{\nu}
$$

and the joint distributions are well defined and

known [Nishigaki et. al. 98; Damgaard, Nishigaki 00]

- The microscopic spectral density $\rho_{s}(\zeta)$ of the QCD Dirac operator can be computed in ChPT and it agrees with the one in RMT [Leutwyler, Smilga 92; Shuryak, Verbaarschot 93; Osborn et al 99]
- This is a strong hint that RMT is not needed at all also for $\rho_{k, \nu}(\zeta)$ [Akemann, Damgard 04]

