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Resumen en español

En la actualidad, el Modelo Estándar de Física de partículas es el marco teórico que
mejor explica la evidencia disponible sobre procesos mediados por las fuerzas débil, elec-
tromagnética y fuerte en la naturaleza. Los fenómenos físicos gobernados por estas tres
interacciones fundamentales se describen en términos de un conjunto de partículas ele-
mentales y una sofisticada arquitectura basada en simetrías. En el Modelo Estándar, la
Cromodinámica Cuántica (QCD) es la teoría cuántica de campos que explica los fenó-
menos asociados a la fuerza fuerte. Sin embargo, QCD no se puede resolver en general
y, desafortunadamente, tan solo es posible utilizarla de modo aproximado, o implemen-
tando la teoría en un espacio-tiempo discretizado (LQCD). Debido a sus propiedades,
no es posible realizar cálculos perturbativos en el régimen de bajas energías, donde la
interacción entre las partículas fundamentales—quarks y gluones—es demasiado intensa.
Y precisamente, es este régimen de bajas energías el que es necesario estudiar para enten-
der el espectro hadrónico, es decir, las partículas que existen y sus propiedades (masas,
anchuras, espín...). Con frecuencia, la interpretación de los numerosos hadrones o resonan-
cias asociadas con la interacción fuerte se basa en aproximaciones de la teoría subyacente
(QCD), como los denominados Modelos de Quarks Constituyentes (CQMs) o las Teorías
Efectivas de Campos (EFTs). Mención aparte merece LQCD, que aún contando con la
limitación que supone simular hadrones físicos (límite quiral y/o utilizar quarks c y b en
el retículo), ha experimentado un considerable avance en los últimos años. No obstante,
los resultados de LQCD para describir resonancias todavía presentan errores sistemáti-
cos relacionados, no sólo con el límite del continuo, sino principalmente con la dificultad
de describir procesos de dispersión de hadrones. En esta tesis hemos estudiado, desde
un punto de vista teórico en el marco de EFTs, la naturaleza y fenomenología asociada
a una clase especial de estados mesónicos con contenido de quarks charm (quark c) y
bottom (quark b). Los hadrones que consideramos en este trabajo podrían identificarse
como moléculas mesónicas (en un sentido amplio del término), es decir, sus propiedades
y fenomenología se pueden explicar, en gran medida, gracias a la interacción fuerte de
otros dos mesones más fundamentales. Además, estos estados que llamaremos exóticos,
son difíciles de interpretar en el contexto de CQMs.

Esta tesis se estructura en dos partes. La primera, Capítulos 2 y 3, está dedicada a la
presentación del formalismo utilizado en la descripción de la interacción entre mesones.
Las simetrías exactas y aproximadas de QCD juegan un papel de especial relevancia en este
contexto. En el Capítulo 2 describimos el método utilizado para obtener amplitudes de
dispersión consistentes con unitariedad no perturbativa en canales acoplados. También se
discute el papel crucial que juegan unitariedad y la estructura analítica de las amplitudes
de dispersión con las propiedades de los hadrones exóticos que se estudian en esta tesis.
Cabe destacar que tanto los conceptos de molécula hadrónica, como de EFTs, se basan
en la existencia de una escala que delimita el régimen de bajas energías. La descripción
molecular es apropiada en el contexto de estados mesón-mesón interactuando a energías
bajas, en particular, lo suficientemente pequeñas para no resolver longitudes de onda del
orden del tamaño de los hadrones involucrados, y otros fenómenos asociados a física de
cortas distancias. Las simetrías exactas y aproximadas de QCD en el régimen de bajas
energías son muy útiles, ya que guían/determinan la construcción de EFTs. Prestaremos
una atención especial a la Simetría Quiral (χSym), a la Simetría de Sabor de Quarks
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Pesados (HQFS) y a la Simetría de Espín de Quarks Pesados (HQSS). En el Capítulo
3 discutimos de modo general estas simetrías aproximadas de QCD. Describimos cómo
pueden emplearse en la construcción de Lagrangianos efectivos para la interacción mesón-
mesón a bajas energías. Construimos EFTs que incorporan, por un lado, el octete de
pseudo bosones de Nambu-Goldstone pπ0, π˘, K0, K̄0, K˘, ηq, resultantes de la rotura
dinámica de χSym, y por otro, los mesones pesados con contenido de quark c y b explícito
en términos de multipletes de SU(3) y dobletes de HQSS.

En la segunda parte de esta memoria se detallan los resultados obtenidos. En el
Capítulo 4, discutimos las predicciones de una extensión unitaria de la teoría quiral
para mesones pesados (HMχPT). Esta se utiliza para describir la interacción de pseudo-
escalares ligeros pπ,K, ηq y mesones pesados, pseudo-escalares y vectoriales, con contenido
de un quark charm pDp˚q, Dp˚qs q y bottom pB̄p˚q, B̄p˚qs q. Unitarizamos las amplitudes de
dispersión deducidas de un Lagrangiano quiral de segundo orden, incorporando, además
de χSym, unitariedad y simetrías de espín y sabor de quarks pesados. Nos referiremos
a este esquema como NLO UHMχPT. Las amplitudes describen la interacción en onda
S de estos hadrones, en canales acoplados, para todas las configuraciones de números
cuánticos de isospín (I) y de extrañeza (S) posibles. El momento angular total viene
dado por el espín del mesón pesado, J “ 0 ó J “ 1, mientras que en todos los casos
la paridad de los sistemas es `1. Por tanto, estamos estudiando los sectores JP “ 0`
y 1` con un quark pesado. Los parámetros del modelo se fijaron en un trabajo previo,
analizando longitudes de dispersión correspondientes a varios canales y diferentes masas
de pión, obtenidas en cálculos de LQCD. En primer lugar estudiamos las predicciones de
este formalismo para el sector pS, Iq “ p0, 1{2q. Se trata del sector al que pertenece la
resonancia escalar D˚0 p2400q, que no fue incluido en el análisis de longitudes de dispersión
mencionado. Extendemos nuestro esquema a volúmenes espaciales finitos, y comparamos
los niveles de energía obtenidos para diferentes tamaños de la caja con resultados recientes
de LQCD. Se consideran los canales más relevantes: Dπ, Dη y DsK̄. Nuestras prediccio-
nes son remarcablemente consistentes con los resultados de LQCD, sin ajustar ningún
parámetro, lo cual le da gran verosimilitud teórica al resto de predicciones del modelo en
otros sectores. Encontramos dos polos en las amplitudes de dispersión con masas (M)
y anchuras (Γ), pM,Γ{2q “

`

2105`6
´8 ´ i 102`10

´12
˘

MeV y
`

2451`36
´26 ´ i 134`7

´8
˘

MeV, que
identificamos con dos resonancias escalares. El estado más ligero (pesado) se acopla de
forma dominante al canal Dπ (DsK̄). Se trata de un resultado muy interesante, ya que la
Colaboración Particle Data Group sólo recoge un estado en el Review of Particle Physics,
la resonancia D˚0 p2400q. La existencia de dos estados escalares ya ha sido sugerida en
investigaciones previas, y nuestro trabajo constituye una evidencia a favor de esta inter-
pretación. Además, exploramos el origen de esta estructura de dos polos, y encontramos
que es consecuencia directa de la simetría SU(3) de sabor que incorpora la interacción.
La estructura de simetría subyacente nos permite dar una interpretación interesante de
los mesones escalares con contenido cq̄ (q̄ “ ū, d̄, s̄q más ligeros. En este esquema la re-
sonancia D˚s0p2317q y el estado escalar de masa „ 2.1 GeV, encontrado en el sector de la
D˚0 p2400q, son miembros del mismo anti-triplete de SU(3). Por último, gracias a HQFS
y HQSS, obtenemos que este patrón de dos estados no existe solamente para mesones
escalares con contenido charm, sino que también con bottom, y además en ambos sectores
para las resonancias axiales (JP “ 1`).

En los Capítulos 5 y 6 utilizamos de nuevo las amplitudes NLO UHMχPT. En primer
lugar, discutimos cómo este esquema es capaz responder varias cuestiones que surgen en la
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espectroscopia de dichos estados, i) por qué las predicciones de CQMs para los estados es-
calar y axial son tan diferentes de las masas experimentales de las resonancias D˚s0p2317q
y D˚s1p2460q; ii) por qué el estado escalar con contenido de extrañeza [cs̄], D˚s0p2317q,
aparentemente es más ligero que su compañero sin extrañeza [cū, cd̄], D˚0 p2400q; iii) por
qué la diferencia de masas de los estados D˚s1p2460q y D˚s0p2317q es idéntica a la existente
entre los mesones D˚psq y Dpsq, y tan distinta de las predicciones de modelos de quarks.
Los tres interrogantes encuentran respuesta gracias a la interpretación de los estados cq̄
escalar y axial como moléculas mesónicas. A continuación, utilizamos las amplitudes de
dispersión NLO UHMχPT en onda S deducidas en el Capítulo 4 para analizar los datos
experimentales de LHCb sobre la desintegración B´ Ñ D`π´π´. Mostramos cómo dichas
amplitudes ajustan los resultados experimentales de modo satisfactorio, comparando di-
rectamente con los resultados proporcionados por la Colaboración LHCb. Se trata de un
resultado relevante, ya que en nuestro caso, la dinámica de canales acoplados y la estruc-
tura de dos polos determinan fuertemente el comportamiento de la fase de la amplitud de
onda S. Esta dependencia en la fase no se distingue claramente en la amplitud experimen-
tal, debido a la incertidumbre de los datos y a que la resolución en energía es insuficiente.
Una determinación experimental más precisa podría constituir la prueba definitiva para
dilucidar la estructura de dos estados predicha por UHMχPT. Además, proponemos una
simulación de QCD en el retículo para confirmar la estructura de dos polos. Tal y como se
discutirá en el Capítulo 4, el más ligero de los dos estados es miembro de un antitriplete de
SU(3)—compañero de la D˚s0p2317q—mientras que el origen de la segunda resonancia, el
estado más pesado, se encuentra en una representación irreducible distinta. La predicción
de este último hadrón exótico es consecuencia directa de la naturaleza molecular de la
interacción y la simetría SU(3) de los mesones constituyentes. Investigando cómo varía
la masa de este estado en función de la masa de los quarks ligeros, en el límite de SU(3)
y para masas de bosones de Goldstone lo suficientemente grandes, encontramos que se
convierte en un estado ligado. Por tanto, este estado, en principio, se podría obtener en
una hipotética simulación de LQCD reproduciendo dichas condiciones.

La serie de aplicaciones que involucra las estructuras de dos polos y de SU(3) de las
amplitudes NLO UHMχPT concluye en el Capítulo 6. En esta parte de la tesis estu-
diamos los factores de forma hadrónicos escalares involucrados en la descripción de las
desintegraciones débiles semileptónicas exclusivas D Ñ π ¯̀ν`, D Ñ K̄ ¯̀ν`, B̄ Ñ π`ν̄` y
B̄s Ñ K`ν̄`. Abordamos el problema empleando un formalismo dispersivo en canales
acoplados, basado en la representación de Muskhelishvili-Omnès (MO), que incorpora las
amplitudes NLO UHMχPT como punto de partida. Estas amplitudes contienen la estruc-
tura de dos estados y el patrón SU(3) de sabor mencionados anteriormente. Analizamos
la influencia en los factores de forma de las resonancias escalares, con quarks b y c, encon-
tradas en el Capítulo 4. Los factores de forma escalares juegan un papel potencialmente
relevante en la medida experimental de los elementos de la matriz de Cabbibo-Kobayashi-
Maskawa (CKM), que a su vez, son una de las múltiples formas disponibles en la actu-
alidad para explorar la validez y posibles extensiones del Modelo Estándar. Aunque los
factores de forma escalares no sean tan importantes como los vectoriales, sí que tienen
un impacto indirecto en la determinación de los elementos de la matriz de CKM, porque
ambos factores de forma tienen que ser iguales a q2 “ 0 (con qµ el momento transferido
entre el mesón pesado y el ligero). Estas funciones no se pueden calcular mediante QCD
perturbativa, por lo que actualmente la mejor fuente de información se obtiene de simu-
laciones de QCD en el retículo y reglas de suma en el cono de luz (LCSR). Ninguno de
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estos métodos puede usarse en el rango completo de q2 permitido en la desintegración. En
nuestro estudio, empleamos la información disponible sobre los factores de forma escalares
para determinar los parámetros libres de la representación dispersiva de MO. Mostramos
cómo es posible describir con precisión los resultados existentes de LQCD y LCSR so-
bre los factores de forma escalares de las desintegraciones semileptónicas D Ñ π ¯̀ν`,
D Ñ K̄ ¯̀ν`, B̄ Ñ π`ν̄` y B̄s Ñ K`ν̄`. Además, predecimos la dependencia de q2 de los
factores de forma escalares en todo el rango cinemático, incluyendo algunas transiciones
que no se habían estudiado antes, y que calculamos aquí por primera vez: D Ñ η ¯̀ν`,
Ds Ñ K ¯̀ν`, Ds Ñ η ¯̀ν` y B̄ Ñ η`ν̄`. Para finalizar, determinamos los elementos de la
matriz CKM |Vcd| “ 0.244 ˘ 0.022, |Vcs| “ 0.945 ˘ 0.041 y |Vub| “ p4.3 ˘ 0.7q ˆ 10´3

involucrados en las desintegraciones analizadas. Además, proporcionamos el valor de los
factores de forma vectoriales a q2 “ 0: |fDÑη` p0q| “ 0.01˘ 0.05, |fDsÑK` p0q| “ 0.50˘ 0.08,
|fDsÑη` p0q| “ 0.73 ˘ 0.03 y |f B̄Ñη` p0q| “ 0.82 ˘ 0.08, que pueden usarse como alternativa
en un futuro para determinar los elementos de la matriz CKM, cuando estén disponibles
las correspondientes distribuciones diferenciales de desintegración.

En el Capítulo 7, proponemos una nueva parametrización para los factores de forma
hadrónicos en la desintegración semileptónica B̄ Ñ D`ν̄`, basándonos también en una re-
presentación dispersiva de tipo MO. Considerando de forma combinada tanto las medidas
experimentales de la anchura diferencial de desintegración, como los resultados de LQCD,
determinamos de forma precisa el elemento de la matriz CKM |Vcb| “ 41.01p75q ˆ 10´3 y
el cociente RD “ BRpB̄ Ñ Dτν̄τ q{ BRpB̄ Ñ D`ν̄`q “ 0.301p5q. Los coeficientes de esta
nueva parametrización los denominamos momentos de fase, debido a que involucran la
integral de la fase de los factores de forma a modo de reglas de suma. Estos momentos
de fase contienen información valiosa acerca de la interacción B̄D̄ en onda S y P , de la
cual se tiene muy poca información actualmente. Encontramos evidencia en favor de la
existencia de, al menos, un estado ligado y uno virtual generados por la interacción B̄D̄
en onda S, sujetos a incertidumbres debidas a la influencia de posibles efectos inelásticos
potencialmente importantes. Este esquema podría ser aplicado también a cualquier otra
desintegración semileptónica que involucre la transición bÑ c.

En el Capítulo 8, prestamos una atención especial al papel de la interacción, entre
estados obtenidos en modelos quark y grados de libertad mesón-mesón, en la dinámica de
las resonancias D˚s0p2317q y D˚s1p2460q. Consideramos un potencial efectivo mesón-mesón
efectivo en onda S, generado a partir del intercambio de componentes cs̄ de espín-paridad
JP “ 0` y 1` obtenidas en CQM. La interacción entre los bosones de Goldstone y los
mesones D y D˚ se obtiene del orden más bajo de HMχPT. La interacción resultante
es unitarizada en canales acoplados y es consistente con HQFS y HQSS. Empleamos la
información (niveles de energía) disponible de LQCD sobre las resonancias D˚s0p2317q y
D˚s1p2460q para fijar el acoplamiento entre grados de libertad quark-antiquark y mesón-
mesón. Estudiamos en detalle la importancia de los estados CQM en la generación
dinámica y estructura de estas resonancias. Los resultados revelan que, de acuerdo con
diversos análisis anteriores, la naturaleza de estos hadrones es dominantemente molecular
(„ 60-70%). Por otro lado, comparamos las predicciones del formalismo NLO UHMχPT
utilizado en los Capítulos 4, 5 y 6, con los resultados de QCD en el retículo. Resulta
que ambos formalismos, el nuevo incorporando el intercambio de grados de libertad cs̄
a las amplitudes obtenidas en HMχPT a nivel árbol, y el discutido previamente a se-
gundo orden—únicamente en términos de mesones Dp˚q

psq y mesones de Goldstone—, son
equivalentes en el régimen de bajas energías y los dos reproducen razonablemente los re-
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sultados de LQCD. Concluimos que los dos esquemas contienen la misma dinámica gracias
al ajuste de las constantes de baja energía fenomenológicas, dando lugar a descripciones
similares de los estados D˚s0p2317q y D˚s1p2460q. Sin embargo, la inclusión de los estados
de CQM se manifiesta a energías mayores, que quedan fuera del rango de aplicabilidad
de las amplitudes efectivas.

En el Capítulo 9, generalizamos estas ideas al sector del quark b. Estudiamos el
efecto del intercambio de estados CQM bs̄ en la interacción B̄p˚qK y ajustamos los niveles
de energía disponibles, obtenidos en en simulaciones de QCD en el retículo, sobre los
compañeros de las resonancias D˚s0p2317q y D˚s1p2460q en el sector bottom. Estos mesones
exóticos, denominados B̄˚s0 y B̄˚s1, no han sido descubiertos experimentalmente todavía.
Encontramos evidencia de un estado ligado escalar B̄K y otro axial B̄p˚qK con masas
5709 ˘ 8 MeV y 5755 ˘ 8 MeV, respectivamente. Nuestras predicciones para la masa de
estas resonancias son muy similares a las obtenidas en el análisis del trabajo de LQCD,
y en contraste con la situación del Capítulo 8, encontramos una componente molecular
ligeramente menor („ 50%) que para el caso de los estados D˚s0p2317q y D˚s1p2460q.

Consideramos de nuevo el escalar D˚s0p2317q en el Capítulo 10. En este capítulo
proponemos la desintegración Bc Ñ J{ψD`K0, con el objetivo de investigar la naturaleza
de la resonancia D˚s0p2317q por medio de la interacción de estados finales del par D`K0.1
En particular, gracias a la interacción fuerte de este par de mesones, que describimos con
amplitudes de dispersión basadas en UHMχPT a primer orden, se incorpora la resonancia
D˚s0p2317q como un estado ligado. Su efecto en la distribución de eventos, como función de
la masa invariante del parD`K0, presenta un exceso característico en la región de energías
cercana al umbral de producción del par de mesones. Es un resultado relevante, ya que
se trata de un comportamiento muy distinto al que cabría esperar a partir del espacio
fásico en ese mismo rango de energía. Por otro lado, también calculamos la anchura de
desintegración Bc Ñ J{ψD˚s0p2317q, lo que nos permite construir un nuevo observable
independiente de normalización y asociado directamente con la naturaleza molecular de
la resonancia D˚s0p2317q.

Continuamos con el Capítulo 11, donde estudiamos el estado exótico Zcp3900q. Explo-
ramos las predicciones en volúmenes finitos de un modelo para la interacción en onda S
de los canales J{ψπ y DD̄˚. Este modelo se desarrolló en un trabajo anterior, y se empleó
con éxito para estudiar la información experimental disponible en su momento acerca del
estado Zcp3900q. Dos escenarios resultaron compatibles con los datos de la Colaboración
BESIII. En uno de ellos, el Zcp3900q se identificaba con una resonancia, y en el otro,
con un estado virtual. Con el objetivo de descartar una u otra interpretación, en este
capítulo analizamos la información disponible sobre esta resonancia en LQCD. Así com-
paramos los niveles de energía que se obtienen en cada uno de los escenarios anteriores,
con los resultados existentes de QCD en el retículo, obtenidos para un único volumen.
Encontramos que la información de la simulación no es suficiente para favorecer ninguna
de las dos interpretaciones. Discutimos cómo información adicional de niveles de energía
para volúmenes distintos podría ser determinante para resolver la situación, ya que am-
bos escenarios dan lugar niveles de energía con dependencias de volumen sustancialmente
diferentes.

En el Capítulo 12 estudiamos la interacción en onda S de los estados B, B˚ y los
mesones vectoriales ρ y ω, para las configuraciones de espín total J “ 0, 1 y 2. En este
estudio exploratorio, empleamos el formalismo de Local Hidden Gauge (LHG), basado en

1En el momento en que se realizó este estudio, esta desintegración no se había medido todavía.
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una extensión de la teoría quiral de perturbaciones para incluir los mesones vectoriales.
Investigamos cómo las amplitudes de dispersión son consistentes con HQSS, encontrando
que la interacción LHG al orden más bajo satisface dicha simetría, salvo por contribuciones
pequeñas, con origen en términos de contacto y provenientes del intercambio de mesones
pesados. A continuación, exploramos el contenido espectroscópico de las amplitudes,
teniendo en cuenta la contribución proveniente de la anchura del mesón ρ, así como de
diagramas tipo caja construidos a partir de vértices con intercambio de un pión. Pre-
decimos un conjunto de cuatro resonancias con paridad positiva y contenido de quark b,
generadas por la dinámica mesón-mesón Bp˚qρ en onda S: dos estados vector-axial y dos
resonancias adicionales con JP “ 0` y 2`. Fijamos las constantes de renormalización de
la teoría ajustando la masa y anchura del estado de espín 2 a los valores experimentales de
la resonancia B˚2 p5747q. El resto de estados son, por tanto, predicciones. Encontramos un
acuerdo razonable entre las propiedades de una de las resonancias predichas para J “ 1,
generada por la interacción ρB, y los valores nominales de la resonancia B1p5721q. El
análisis de la estructura HQSS de la interacción nos conduce a una posible interpretación
de las resonancias B1p5721q y B˚2 p5747q como componentes, en cierta aproximación, del
mismo doblete Lπ de HQSS, donde Lπ son los números cuánticos de espín-paridad de los
grados de libertad ligeros.

Por último, en el Capítulo 13 recopilamos las conclusiones más importantes de esta
memoria.

Los contenidos de esta tesis se basan en los artículos de investigación publicados en
las Refs. [1–9] durante el desarrollo de la misma.
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Abstract

The Standard Model (SM) of Particle Physics is currently established as the theory which
better encodes our knowledge regarding the weak, electromagnetic and strong elementary
forces of nature. It provides a description of these interactions based on an ensemble of
fundamental degrees of freedom and a sophisticated apparatus of symmetries. Quantum
Chromodynamics (QCD) governs the phenomena associated to the strong interactions,
although its properties make extremely difficult its direct application in some circum-
stances: in the regime of low energies, where the interaction of the fundamental degrees
of freedom—the quarks and gluons—is so strong that forbids any perturbative calculation.
In particular, the diverse and rich experimentally observed spectrum of hadrons since the
beginning of the 20th century up to the present days, belongs to this nonperturbative
regime of QCD. The way to understand from QCD the masses, widths and some other
properties of hadrons is nowadays based on approximations to the underlying theory.
Among the most successful examples, we will consider in this work Constituent Quark
Model (CQM), Effective Field Theory (EFT) approaches and Lattice Quantum Chro-
modynamics (LQCD). This dissertation provides a theoretical effective description of a
special class of hadronic meson states with charm and bottom quark content and their as-
sociated phenomenology. The considered states are difficult to be accomodated in CQMs
and are candidates to be interpreted as meson molecules. This relies on the assumption
that their main properties can be described by means of an effective low energy interaction
of two more fundamental mesons. In this picture, the physical interpretation of the exotic
hadron states considered in the forthcoming chapters could be envisioned as originated by
the interaction between other—more fundamental but nevertheless composite—objects.

This thesis is structured in two parts. In the first part, containing Chapters 2 and
3, we present the theoretical formalism used to describe the interaction of the meson
degrees of freedom. In Chapter 2, we introduce a nonperturbative construction of S-wave
scattering amplitudes consistent with exact two-body unitarity in coupled channels. The
roles of unitarity and of the analytic structure of the scattering amplitudes, and their
relations with the appearance of resonances are also discussed. These amplitudes should
be understood to be valid at low energies, since they are effective descriptions of the
dynamics of the relevant degrees of freedom. We stress that the molecular picture, and
in general the concept of EFT, relies on the assumption of a separation of energy regimes
regulated by a scale Λ. It is adequate when the energy is sufficiently low to prevent the
resolution of wavelengths λ „ h{Λ, typically smaller than the hadron sizes, associated
with short-distance physics. Besides, we establish a link between the nonperturbative
amplitudes and the low energy dynamical information of the mesonic degrees of freedom.
On the other hand, the low energy symmetries of the underlying theory, QCD, provide very
useful constraints on the amplitudes. We will pay special attention to Chiral Symmetry
(χSym), Heavy Quark Flavour Symmetry (HQFS) and Heavy Quark Spin Symmetry
(HQSS). In Chapter 3 we provide a general overview of these approximate symmetries of
QCD, and how they can be used to construct the low energy meson-meson interactions
by means of effective Lagrangians. The latter incorporate, on the one hand, the light-
pseudoscalar degrees of freedom pπ0, π˘, K0, K̄0, K˘, ηq as the octet of pseudo Nambu-
Goldstone bosons, resulting from the breaking of χSym and, on the other hand, the heavy-
light mesons as SU(3) multiplets and HQSS doublets. We finish Part I constructing the
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effective Lagrangians that will be used later in the subsequent chapters.
The research studies are presented in Part II. We shall begin with Chapter 4, where

we investigate the predictions of the Next-to-Leading Order (NLO) Unitary Heavy Meson
Chiral Perturbation Theory (UHMχPT) scheme. The amplitudes, which describe the S-
wave coupled-channel scattering in all the possible strangeness-isospin pS, Iq sectors, were
determined in a previous work using LQCD information on the pion mass dependence
of several scattering lengths. Our purpose is to test the predictions for pS, Iq “ p0, 1{2q
quantum numbers. This is the sector of the open-charm scalar resonance D˚0 p2400q, which
was not considered in the set of aforementioned LQCD scattering lengths. We compare
the energy levels obtained for different finite volumes with the first LQCD results on this
sector involving all the relevant two-meson channels: Dπ, Dη and DsK̄. We find that
our predictions turn out to be remarkably consistent with the LQCD results, even though
there are no free parameters in our scheme. This agreement supports the numerous
additional predictions of the model in other sectors, which thereafter are also presented.
Interestingly, we find out evidence for two scalar states—instead of the currently accepted
single D˚0 p2400q—associated to a two-pole structure of the amplitude. The two poles
are located at

`

2105`6
´8 ´ i 102`10

´12
˘

MeV and
`

2451`36
´26 ´ i 134`7

´8
˘

MeV, with the largest
couplings to the Dπ and DsK̄ channels, respectively. This pattern of two states was
already suggested in previous studies, and our work provides a strong support to that
scenario. Besides, we also unravel the origin of the two-pole structure: it is rooted in
the SU(3) symmetry encoded in the interaction, inherited from the use of amplitudes
consistent with χSym. It allows us to interpret the lowest-lying scalar open charm mesons
as SU(3) partners, conforming a triplet. Finally, exploiting HQSS and HQFS we conclude
that this pattern is not only reproduced in the scalar bottom sector, but also for axial
open charm and bottom resonances.

In Chapters 5 and 6, we further explore the consequences of the NLO UHMχPT
scheme. In Chapter 5, we pay attention to two aspects that might serve as a further test
of the validity of the approach to describe open charm and bottom scalar and axial reso-
nances. We demonstrate how the two-meson coupled-channels EFT scheme incorporating
χSym, HQSS, HQFS and two-body unitarity constraints provides successful answers to
several puzzles arising in the spectroscopy of heavy-light mesons. It simultaneously ex-
plains i) why the CQM expectations for the charm-strange scalar and axial states were so
different from the experimental masses of the D˚s0p2317q and Ds1p2460q; ii) why the scalar
charm-strange resonance D˚s0p2317q seemed to be lighter than the non-strange partner,
D˚0 p2400q; and finally, iii) why the experimental mass splitting between the D˚s0p2317q
and Ds1p2460q states is so different from that found in CQM approaches, most impor-
tantly, why it is almost identical to the splitting of the lowest-lying Dpsq and D˚psq mesons.
The answers are all based on a meson-meson molecular interpretation of the scalar and
axial resonances. Lately, we further test the validity of the amplitudes by using them
to analyze the experimental data on the angular moments of the B´ Ñ D`π´π´ de-
cay, measured by the LHCb collaboration. We find out that the NLO UHMχPT S-wave
amplitudes successfully reproduce the experimental results reported by the LHCb col-
laboration. Furthermore, we directly compare our S-wave decay amplitude with that
obtained by LHCb from a best fit to data and find out a remarkable agreement between
both amplitudes. Interestingly, in our case, the two-meson coupled-channel dynamics and
the two-pole structure are strongly reflected in the phase-behaviour. However, this be-
haviour cannot be disentangled from the experimental amplitude, because of the lack of
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energy resolution and the limited available statistics. A finer experimental determination
might constitute a definitive test of the two-pole structure predicted by the UHMχPT
approach. Additionally, we propose a LQCD simulation to further unveil certain aspects
related to the realization of the two-pole structure. The lighter scalar state of the two
poles, as it is discussed in Chapter 4, is associated with a member of the SU(3) triplet—it
would be a partner of the D˚s0p2317q—while the origin of the higher one is rooted on a
different SU(3) component of the interaction. We show that, from the light-quark mass
dependence of the pole position for large enough Goldstone masses in the SU(3) limit, the
higher resonance pole evolves into a bound state, and consequently, it might be found on
a lattice simulation reproducing such conditions.

The series of applications involving the two-pole and SU(3) structures of the NLO
UHMχPT amplitudes concludes in Chapter 6. There, we study scalar hadronic form
factors which enter in the description of weak semileptonic exclusive decays of bottom and
charm heavy-light mesons into a Goldstone boson, both in the strange and nonstrange
sectors, D Ñ π ¯̀ν`, D Ñ K̄ ¯̀ν`, B̄ Ñ π`ν̄` and B̄s Ñ K`ν̄`. It is accomplished by
means of a coupled-channel dispersive approach that incorporates the NLO UHMχPT
amplitudes as input, carrying the “two-pole” structure and SU(3) information of scalar
open-charm and bottom resonances discussed in Chapter 4. One of the reasons that makes
the study of the open-charm and bottom scalar states important can be traced to their
influence on the shape of the scalar hadronic form factors, that describe the mentioned
weak decays. The role of the QCD form factors in weak decays is essential to extract
the values of the Cabibbo–Kobayashi–Makawa (CKM) matrix elements, and, as it is well-
known, the determination of the CKM parameters is currently part of the plethora of
available validity tests of the SM and its possible extensions. Although in practice, in
many cases, the role of the scalar form factors may not be as important as that of vector
form factors, in others the situation might be different because of their indirect impact on
the values of the latter ones at q2 “ 0 (with qµ the transferred momentum between the
heavy and light mesons). Currently, there exist information on these scalar form factors
from LQCD and light-cone sum rules (LCSR) computations, since these quantities cannot
be obtained using pertubative QCD. None of these approaches can be used in the whole
q2 range accessed in the decay. In our study, we use the available information on scalar
form factors to constrain our Muskhelishvili–Omnès (MO) dispersive approach, finding
out that we are able to simultaneously describe fairly well LQCD and LCSR results on
weak semileptonic exclusive transitions D Ñ π ¯̀ν`, D Ñ K̄ ¯̀ν`, B̄ Ñ π`ν̄` y B̄ Ñ K`ν̄`.
Furthermore, we predict the scalar form factors in all the kinematic range, including some
transitions which have not been studied yet, and that are determined here for the first
time, namely, D Ñ η ¯̀ν`, Ds Ñ K ¯̀ν`, Ds Ñ η ¯̀ν` and B̄ Ñ η`ν̄`. Finally, we extract the
values |Vcd| “ 0.244 ˘ 0.022, |Vcs| “ 0.945 ˘ 0.041 and |Vub| “ p4.3 ˘ 0.7q ˆ 10´3 for the
involved CKM matrix elements. Additionally, we provide the following vector form factors
at q2 “ 0: |fDÑη` p0q| “ 0.01 ˘ 0.05, |fDsÑK` p0q| “ 0.50 ˘ 0.08, |fDsÑη` p0q| “ 0.73 ˘ 0.03
and |f B̄Ñη` p0q| “ 0.82˘ 0.08, which might constitute alternatives to determine the CKM
elements when experimental measurements of the corresponding differential decay rates
become available.

In Chapter 7, a new model-independent parametrization is proposed for the hadronic
form factors in the semi-leptonic B̄ Ñ D`ν̄` decay. By a combined consideration of the
recent experimental and LQCD data, we determine precisely the CKM matrix element
|Vcb| “ 41.01p75q ˆ 10´3 and the ratio RD “

BRpB̄ÑDτν̄τ q
BRpB̄ÑD`ν̄`q

“ 0.301p5q. The coefficients in
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this parametrization, related to phase shifts by sumrule-like dispersion relations and hence
called phase moments, encode important scattering information of the B̄D̄ interactions
which are poorly known so far. Thus, we find strong hints about the existence of at
least one bound and one virtual B̄D̄ S-wave 0` states, subject to uncertainties produced
by potentially sizeable inelastic effects. This formalism is also applicable for any other
semileptonic processes induced by the weak bÑ c transition.

In Chapter 8, we pay special attention to the interplay between CQM and meson-meson
degrees of freedom in the description of the D˚s0p2317q and its HQSS partner Ds1p2460q
resonances. We consider an effective two-meson interaction allowing the exchange of
genuine scalar and axial-vector CQM components, in a formalism consistent again with
unitarity, χSym, HQSS and HQFS. We will use the most recent LQCD information on
the charm-strange scalar and axial resonances to constrain the effective approach, and
to study the influence of the CQM degrees of freedom in the dynamical generation and
compositeness of the D˚s0p2317q and Ds1p2460q resonances. Our findings are very much in
line with previous analyses, pointing out to a dominant („ 60-70%) molecular nature for
both states. We further compare the predictions obtained using the NLO UHMχPT finite
volume amplitudes—employed in Chapters 4, 5 and 6—with the LQCD results. It turns
out that both approaches, the new one incorporating CQM states into the two-meson
dynamics, and the previously discussed one—solely in terms of heavy-light meson and
Goldstone degrees of freedom—are equivalent at low energies, and are able to describe
the available LQCD data. We conclude that, in both cases, the low energy dynamics
is properly encoded in the phenomenological low energy constants, leading to similar
descriptions of the physical systems. Nevertheless, the influence of the inclusion of CQM
states shows up at higher energies, which due to the effective nature of both approaches,
might not be reliable in either case.

Chapter 9 is the extension of the discussion of Chapter 8 to the bottom sector. We
use the same formalism to analyze the LQCD information on the bottom partners of the
D˚s0p2317q and Ds1p2460q, which have not been experimentally found yet. We successfully
describe the LQCD energy levels and make predictions for the mass of the bottom-strange
scalar and axial resonances, showing-up as two-meson bound states with masses of 5709˘8
MeV and 5755 ˘ 8 MeV, respectively. Our predictions for these exotic hadrons turn out
to be in good agreement with those reported in the LQCD works. In contrast with the
situation in Chapter 8, we find slightly smaller molecular contributions („ 50%) in the
compositeness structure of the bottom-strange HQSS doublet.

In Chapter 10, we propose the weak decay of a Bc meson into J{ψK0D` in order
to learn about the nature of the D˚s0p2317q resonance from the K0D` final state inter-
action. By the time the work was performed, this decay mode had not been measured.
In particular, due to the strong interaction of the K0D` final states, which we compute
in the framework of Leading Order (LO) UHMχPT amplitudes, the D˚s0p2317q turns out
to be generated as a bound state. We find out that it would strongly influence the line
shape of the K0D` invariant mass distribution of events in the proposed decay, in the
low energy region close to the K0D` threshold. We further compute the width for the
coalescence production of the D˚s0p2317q in the final state, which allows us to construct a
ratio in terms of the invariant mass distribution and the aforementioned width. This ratio
can be used to make predictions of a new normalization independent observable directly
associated with the molecular nature of the D˚s0p2317q.

We continue with Chapter 11, where we study the charmonium charged exotic state,

xx



Zcp3900q. We explore the predictions for finite volumes of a previously determined S-wave
D˚D̄ and J{ψπ coupled-channel interaction, consistent with HQSS. This scheme is able
to describe the experimental information available concerning the Zcp3900q resonance,
where two scenarios were found compatible with the BESIII data, namely: the Zcp3900q
as a narrow resonance or as a virtual state. For that reason, on this chapter we compare
the volume dependence of the energy levels obtained in both scenarios with the single-
volume LQCD results of the same system. We find out that the lattice information is not
enough to favour any of the two interpretations. However, we conclude that energy levels
coming from one or more additional lattice volumes could be essential in order to resolve
the situation, since for certain sizes both scenarios show different volume dependence.

In Chapter 12 we explore the open-bottom meson sector by studying the S-wave
interaction of B and B˚ mesons with ρ and ω mesons for all possible spins: J “ 0, 1, 2. In
this exploratory study, we adopt the Local Hidden Gauge (LHG) formalism. It is based
on an extension of Chiral Perturbation Theory (χPT) extension to include vector mesons
as gauge bosons of a hidden local SU(3) symmetry. We investigate whether this formalism
is consistent with HQSS, and conclude that the leading LHG interaction satisfies HQSS.
However, we identify small breaking contributions which come from the exchange of heavy
vector mesons and the contact terms. These breaking terms are not problematic since
they are consistently small, given that they are originated from subleading HQSS pieces.
We construct unitary scattering vector-vector and vector-pseudoscalar amplitudes based
on low energy LHG input potentials, and explore their spectroscopic content. We further
take into account the effects due to the width of the ρ meson, as well as the box-diagrams
contribution incorporating one pion exchange vertices. In this way, we are able to predict a
set of four open-bottom resonances with positive parity, generated by the dynamics of two-
meson S-wave Bp˚qρ interaction: Two axial-vector states and two additional resonances
with spins J “ 0 and 2. We fix the free parameters of the theory by matching the mass
and width of the J “ 2 state to the average values corresponding to the B˚2 p5747q. Thus,
the rest of states are predictions of the scheme. We find an interesting agreement between
one of our predicted J “ 1 states, generated by the ρB interaction, and the nominal
values of the B1p5721q resonance. Thanks to the analysis of the HQSS structure of the
interaction we can provide a possible interpretation of these two narrow resonances, since
in this formalism, they are originated in great measure by the same interaction and they
could be identified as the members of a JP “ p1`, 2`q HQSS doublet.

Finally, in Chapter 13 we summarize the main results obtained in this thesis.
The contents of this work are based on the research papers of Refs. [1–9] performed

during the development of this thesis.
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Chapter 1

Introduction

1.1 Motivation and scope

The contents of this manuscript constitute a varied set of studies which share many sim-
ilarities. From all, the most important is that the studies are devoted to the theoretical
description of low energy scattering of two-meson systems. The physical situations ex-
plored are motivated by the presence, either confirmed or hypothetical, of one or several
meson resonances with exotic properties. From that perspective, the present research
could be placed in the broad field of the old problem of hadron spectroscopy. The path
that has led to the establishment of the SM as the paradigm of particle physics, and QCD
as the fundamental theory of the strong interactions, has been guided, to a large degree,
by the efforts on understanding the spectroscopy of the strong interactions.

The low energy regime of the strong interactions is populated by a rich variety of un-
stable particles, which number has steadily grown up boosted by the experimental efforts
of many research groups. Since the beginning of the 21st century, the advent of powerful
experimental facilities has motivated a renewed attention to the QCD spectrum of states
at scales of the order of the charm and bottom mass; these scales would correspond to
resonance masses of the order of 2 and 5 GeV, respectively. The interplay between theory
and experiment has crystallized in a picture where the symmetries play a central role
for classifying the different states according to internal degrees of freedom or quantum
numbers.

Nowadays, a combined effort between LQCD simulations and experiment is boosting
the exploration of this area of knowledge. Among all the theoretical approaches to the
low energy QCD spectrum of hadrons, one of the most relevant and historically celebrated
ones are the CQMs. Any technical and detailed description of these schemes is beyond the
scope of this thesis, nevertheless we shall briefly refer to them for illustrative purposes.

The QCD bound states are supposed to manifest as colorless objects, leading to
mesons, baryons, glueballs or multiquark states among many other possibilities. Even
though any of these systems is extremely difficult to be described by the fundamental
theory, CQMs aim to derive their properties in terms of an effective interaction of the
constituents quarks [10–12]. The Gell-Mann eightfold way [10] is one of the most famous
attempts towards understanding the spectrum of low energy mesons and baryons by us-
ing symmetry arguments. Up to 2003, they had succeeded in describing the spectrum
of meson and baryons, with a few exceptions like the case of the Λp1405q and the Roper
baryon resonances [13, 14].

We particularize now the discussion to the systems studied in this dissertation, focusing
on the situation of the “open heavy flavour” or “heavy-light” mesons: boson states which
contain a heavy charm or bottom valence quark. They were described as combinations of
quark–anti-quark pairs, and interestingly, in Ref. [11] Godfrey and Isgur proposed, in their
relativistic quark model, the existence of excited states with different quantum numbers,
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Chapter 1. Introduction

both in the open charm and bottom sectors. Years later, in 2003, the charm-strange
scalar1 (JP “ 0`) and axial-vector (1`) isoscalar mesons,

D˚s0p2317q „
ˇ

ˇJP “ 0`; I “ 0; S “ 1
D

Ds1p2460q „
ˇ

ˇJP “ 1`; I “ 0; S “ 1
D (1.1)

were discovered [15,16], and identified with the lowest-lying P -wave quark-model excita-
tions of the S-wave states Ds and D˚s—where the latter have JP “ 0´ and 1´ quantum
numbers, and masses 1968 and 2112 MeV, respectively. These P -wave mesons were found
to have very small widths, decaying into channels with unexpected isospin and explicit
strangeness, due to their low masses. The discovery of these exotic resonances challenged
the CQM predictions, since they showed properties at odds with the quark model ex-
pectations: their experimental masses were found around 100 MeV below the expected
values, and they were strikingly narrow. Additionally, such states were found slightly
below the energy thresholds for the production of DK and D˚K. The latter meson pairs,
when coupled to zero orbital angular momentum—in a S-wave configuration—have the
same quantum numbers as the D˚s0 and Ds1 states,

|DK pI “ 0, L “ 0qy “
ˇ

ˇJP “ 0`; I “ 0;S “ 1
D

|D˚K pI “ 0, L “ 0qy “
ˇ

ˇJP “ 1`; I “ 0;S “ 1
D

.
(1.2)

As a consequence of the proximity of the Dp˚qK threshold energies to the scalar and
axial resonances, the hypothesis of the “molecular nature” of these states quickly raised.
A hadronic molecule is a composite state made out of two weakly bound hadrons, DK
and D˚K pairs in the case of the D˚s states. On the other hand, from a formal point
of view, any reference to the nature of a state would be linked to the structure of its
wave function. This may be problematic, since the wave function is not an observable.
However, at least in the case of bound states with small binding energies, one could
identify the imprints of their existence on low energy observables involving the scattering
constituents, such as the scattering length. This is the case of the paradigmatic deuteron,
in which its properties are explained in terms of the nucleonic degrees of freedom—even
though they are ultimately determined by QCD.

Here comes a very important concept: how to quantify up to what values it can be
assumed that the binding energy is small. This is at the core of not only the low energy
description of QCD, but of any Effective Theory. To address such question, we need to
introduce a scale in the problem, necessary to identify the relevant degrees of freedom
(the mesons in the case of a molecule) as well as the high and low energy regimes. We
shall refer as small binding energies B those which satisfy |~k| ăă Λ, where the wave
number |~k| «

?
2µB would be the off-shell center of mass momentum of the constituent

mesons inside the molecule (µ is their reduced mass), and Λ is the mentioned scale. In a
hadronic molecule, the latter should be small enough to make some bound state properties
insensitive to the details of the interaction at short distances. In this way, the constituent
hadrons would be the relevant degrees of freedom. One could think that the scale Λ should
be related to the smallest resolution needed to resolve the system, a typical hadron scale
of the order of „ 0.5 ´ 1 fm, determined by the size of the involved hadrons. This is to

1In the following we use the isospin I, total spin J , parity P and strangeness S quantum numbers to
identify the different sectors.
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say

Λ “ h

λ
« 1´ 2 GeV (1.3)

although, we shall consider the conservative value of Λ « 1 GeV. In the cases of the
deuteron or theD˚s0 andDs1, it turns out that the wave numbers are approximately 36, 198
and 193 MeV. Clearly, the latter two cases are not as good as the first one, but |~k| ăă Λ is
definitely not a bad approximation. This would point out that a low energy description of
the D˚s0{Ds1 states in terms of the DK{D˚K meson-pairs should be sufficiently accurate
to capture essential features of these resonances. Therefore, the picture of the D˚s0p2317q
as a bound state—DK molecule—would qualitatively be interpreted using the following
schematic superposition

|D˚s0y “ α1 |DK pI “ 0, L “ 0qy ` α2
ˇ

ˇcs̄
`2S`1LJ “

3P0
˘D

` α3 |Dsη pL “ 0qy ` α4 |D
˚K˚

pI “ 0, L “ 0qy ` . . . (1.4)

if |α1| is significantly larger than the rest of |αj| (j , 1). Throughout this work, we
will study exotic states (resonances) which are candidates to fit into a hadronic molecule
description, motivated by the closeness of their masses to the energy thresholds for the
production of S-wave two meson systems—with the same quantum numbers. We will ex-
tend these ideas not only to bound state candidates, but also to wide resonances, although
the picture of a molecule gets more complicated, and there is not a straightforward inter-
pretation of the associated quantum mechanical structure. Nevertheless, even if different
approaches are able to provide a satisfactory description of some properties of a given
state, they might differ in other predictions. In this way, the molecular scenarios can
accommodate resonances with exotic quantum numbers, and relate different exotic states
by means of the symmetry properties of the interaction between the constituent hadrons.
Some of these results might not be easy to accommodate within CQM schemes.

In general, whenever the scattering observables could be influenced by the existence
of resonances, we shall need an appropriate description of the amplitude accounting for
the final state interaction of the mesonic degrees of freedom. That is the case in all the
physical situations discussed in the following chapters. We will use in our analyses phe-
nomenological information from both experiment and LQCD results. Thus, for instance,
we will consider the volume dependence of lattice hadron eigenenergies, experimental
event distributions or experimental masses and widths. On the other hand, we shall also
speculatively explore, from a theoretical point of view, some situations in which the meson
dynamics may lead to interesting predictions for unmeasured observables.

Before moving into the theoretical formalism, let us first take a quick overview of the
heavy meson systems studied in this work.

1.2 Some exotic heavy mesons

Here, we will introduce some theoretical aspects and experimental evidences about dif-
ferent exotic mesons, this is to say, states that cannot be easily accommodated within
CQMs, that will be studied in this thesis.

1.2. Some exotic heavy mesons 3
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1.2.1 Heavy light mesons
In this sector, we will study some even parity resonances which may be organized in terms
of their associated valence Qq̄ structure. The presence of the heavy charm (or bottom)
quark implies the validity, up to ΛQCD{mQ corrections, of HQSS [17–21], with mQ the
heavy quark mass, and ΛQCD « 250 MeV a typical scale related to the dynamics of the
light degrees of freedom. Thus, in a good approximation, the spin of the heavy quark sQ
is decoupled from the total angular momentum of the light degrees of freedom jq̄, and
hence they are separately conserved. This gives rise to the arrangement of the heavy-light
mesons in doublets, classified by the total angular momentum and parity, jPq̄ , of their
light degrees of freedom content, and with total spin J “ jq̄ ˘ 1{2 and parity P . For
the P -wave Qq̄ mesons, the expected HQSS doublets are,2 on the one hand, jPq̄ “ 1{2`
with JP “ 0`, 1` mesons, and, on the other hand, jPq̄ “ 3{2` with JP “ 1`, 2` mesons.
Furthermore, according to their light flavour content the heavy-light P -wave doublets
will be classified into strangeness S and isospin I combinations, pS, Iq. Finally, all this
structure can be put in correspondence in both the charm and bottom sectors by means
of HQFS, so that the HQSS doublets existing in each pS, Iq configuration in the charm
sector will have the analogue partners in the bottom one. In Table 1.1, we show possible
experimental candidates for the different jPq̄ HQSS doublets in all sectors, together with
the average values for the masses and widths taken from the Review of Particle Physics
(RPP) [14]. From all the configurations, we shall pay attention to the lowest lying even-
parity doublets, those corresponding to the jPq̄ “ 1{2` configuration of the light degrees
of freedom.

‚ The jPq̄ “ 1{2` doublet in the pS, Iq “ p1, 0q sector

Charm sector. About ten years before the discovery of the positive parity D˚s0p2317q
and Ds1p2460q resonances, two positive parity JP “ 1` and JP “ 2` charmed-strange
resonances, Ds1p2536q and D˚s2p2573q, had already been reported and confirmed by the
ARGUS and CLEO collaborations [22–24]. These narrow states have almost degener-
ate masses and might be identified with the jPq̄ “ 3{2` doublet. The current aver-
age values quoted in the RPP [14] are pM,Γq “ p2535.10 ˘ 0.06, 0.92 ˘ 0.05q MeV and
p2569.1˘0.8, 16.9˘0.8qMeV for the 1` and 2`, respectively. These values were consistent
with the results of CQMs [11, 25, 26] for this HQSS doublet. On the other hand, these
CQMs made predictions for the members of the jPq̄ “ 1{2` HQSS doublet. Thus, the
0` and 1` mesons of this multiplet were expected to be almost degenerated and quite
broad, decaying into Dp˚qK through S-wave, and separated by around 80 MeV. However,
neither of these properties are consistent with the observed D˚s0p2317q and Ds1p2460q
states [15, 16]. They are very narrow, located below the Dp˚qK thresholds, and have a
mass splitting of the order of „ mπ, see Fig. 1.1.

This triggered an intense debate on the nature of those resonances, leading to a wide
variety of interpretations among which we highlight their assignment to cs̄ states [27–29]
and two-meson or four-quark systems [30–44].

There is another essential tool to explore the low energy hadron spectrum of QCD,
2The parity of the light degrees of freedom in this case is `, that corresponds to an odd parity q̄

antiquark orbiting in P wave around the heavy quark Q, while the total angular momentum of the light
degrees of freedom is determined by the sum of the spin 1/2 of the q̄ antiquark and its orbital angular
momentum (L “ 1).

4 1.2. Some exotic heavy mesons
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Figure 1.1: Peaks associated to the experimental measurement of the D˚s0 (left) and Ds1
(right) in their isospin violating decay modes Dsπ and D˚sπ, respectively. Figures are taken
from Ref. [16] .

which is the information obtained from LQCD. The latest LQCD simulations [45–47] have
achieved a good description of these charmed-strange resonances when Dp˚qK interpola-
tors are included in the set of used operators. Notably, the mass of the D˚s0p2317q was
found to be overestimated if the DK interpolators were omitted, which gives further sup-
port to the idea of a necessary interplay between CQM configurations and nearby Dp˚qK
thresholds.

We will extensively refer to these exotic states in the forthcoming pages, specifically,
they will be discussed in Chapters 4, 5, 6, 8, and 10.

Bottom sector. As we have already mentioned, in the heavy quark limit the dynamics
of systems containing a single heavy quark becomes also independent of the flavour of the
heavy quark (see for instance [21]). Hence the bottom-strange sector is expected to present
a pattern similar to that of the charm-strange one described above, in particular there
should exist bottom partners of the D˚s0p2317q and Ds1p2460q resonances. Furthermore,
since the b quark is heavier than the c quark, the Op1{mQq corrections are expected to be
smaller, and thus the HQSS relations should be more accurate. In these circumstances,
the bs̄ jPq̄ “ 1{2` doublet is a good scenario to discuss the interplay between CQM states
and meson-meson channels with thresholds located close to the former. Studying the
bottom sector is thus relevant to unveil the nature of the D˚s0p2317q and Ds1p2460q, and
elucidate the role played by this interplay in the dynamics of these states in both heavy
flavour sectors.

Unfortunately, unlike the cs̄ spectrum, the lowest-lying positive parity bs̄ states have
not been fully discovered. While experimental searches have successfully observed narrow
candidates for the jPq̄ “ 3{2` doublet B̄s1p5830q and B̄˚s2p5840q [48, 49], the lower mass
jPq̄ “ 1{2` doublet states still wait to be observed. Note that the dynamics of the
jPq̄ “ 3{2` doublet is not entirely governed by χSym, since the B̄p˚qK˚ channel, involving
the light vector meson K˚, should be considered. On the other hand, this situation may
have some resemblances to the existing one back in 2003, when the D˚s0 was discovered.

6 1.2. Some exotic heavy mesons
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Under this lack of experimental data, many theoretical predictions have been pro-
duced within a wide variety of techniques (CQMs [26,50–52], EFT [33,37,42,53–56], and
LQCD [57, 58]). A special attention deserves the recent LQCD study of the even-parity
isoscalar bs̄ energy-levels carried out in Ref. [58]. There, clear signatures for the B̄s1p5830q
and B̄˚s2p5840q are found above the B̄p˚qK thresholds. Below these thresholds, two QCD
bound states are identified using a combination of quark-antiquark and B̄p˚qK interpo-
lating fields, and assuming that the mixing with B̄p˚qs η and the isospin-violating decays
B̄p˚qs π are negligible. A JP “ 0` bound state with mass 5.711 ˘ 0.023 GeV is predicted,
and with some further assumptions, a 1` state is also found with a mass of 5.750˘ 0.025
GeV [58].

We shall consider these states in Chapters 4 and 5, where we will show predictions
for the bottom-strange jPq̄ “ 1{2` doublet, while in Chapter 9 we will further discuss the
influence of CQM states on the dynamics of these resonances.

‚ The jPq̄ “ 1{2` doublet in the pS, Iq “ p0, 1{2q sector.

Possible candidates for the members of the jPq̄ “ 1{2` HQSS doublet in the pS, Iq “
p0, 1{2q sector are denoted as pD˚0 , D1q. While the D˚s0p2317q is very narrow and its mass
is well measured [14], the situation for the broad D˚0 p2400q is less clear: the reported mass
values for the D˚0 p2400q0 at B-factories, p2308˘36q MeV (Belle [59]) and p2297˘22q MeV
(BABAR [60]), differ from that in γ A reactions, p2407˘ 41q MeV (FOCUS [61]), while the
LHCb value for the charged partner lies in between [62]. These analyses use Breit–Wigner
parametrizations and assume a single scalar particle. See Fig. 1.2 gathering all the experi-
mental results mentioned above. Therein, we can appreciate how the set of measurements
seem to be scattered in the area ranging from 2.2 GeV up to the Dη threshold. Although
they coincide for the width, the masses appear distributed in two distinct regions of low
(2.3 GeV) and higher masses (2.4 GeV), whereas the LHCb result lies in between. From
the experimental results gathered in Fig. 1.2, one might be tempted to suggest the possible
existence of two scalar D˚0 -like states instead of the single established one. In Chapter 4,
we will provide further theoretical arguments supporting this scenario.

Definitely, the situation of the D˚0 state deserves some attention. Additionally, a better
understanding of the D˚0 p2400q is important because its properties influence the shape of
the scalar form factor f0 in semileptonic D Ñ π decays [40, 63], and indirectly it has
some impact in the form factor f` that determines |Vcd| [64–68]. The bottom analogue,
which is still missing, is even more interesting because of the existing tension between the
determinations of |Vub| from inclusive and exclusive B̄ decays [69,70], and the implications
on the unitarity triangle [71,72] and on new physics limits [73].

Different schemes have described the jPq̄ “ 1{2` doublet members as mostly cq̄ states
[53,74,75], as mixture of cq̄ with meson-meson components [76], as purely tetraquarks [77–
79], or as heavy–light meson molecules [33, 37, 38, 40, 80] motivated by the closeness of
the two-meson thresholds (as suggested by the physics of the D˚s0p2317q and the DK
threshold [30,32,34,38,39,44]).

There have also been LQCD simulations in the charmed scalar sector. The first LQCD
study of Dπ, Dη, and DsK̄ coupled-channel scattering (for mπ » 391 MeV) was recently
reported by the Hadron Spectrum collaboration [81]. Therein, a bound state with a
large coupling to Dπ is found and assigned to the D˚0 p2400q. These results constitute a
very important step towards the understanding of the interaction of charmed mesons and

1.2. Some exotic heavy mesons 7
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Figure 1.2: Experimental massM and total width Γ of the charged and neutral D˚0 p2400q.
The values and uncertainties shown are those provided by different experimental facilities
[59–62]. The vertical dashed lines show the energies of the nearby Dη and DsK̄ thresholds,
which coupled in S-wave and I “ 0 have the same quantum numbers as D˚0 p2400q.

light pseudoscalars. In Chapter 4 we shall pay special attention to these LQCD results,
in particular, to the information concerning the volume dependence of the energy levels
reported in Ref. [81].

1.2.2 The charmonium Zcp3900q state
In addition to the heavy-light states introduced in the former Sec. 1.2.1, we will also pay
attention in Chapter 11 to this exotic state belonging to the charmonium spectrum. Since
the discovery of the Xp3872q in 2003 [82], the charmonium and charmonium-like spectrum
are being continuously enlarged with new so-called XY Z states [83–85], many of which
do not fit properly in the conventional quark models (see for instance Ref. [11]). The
relevance of meson-meson channels can be grasped from the fact that all the charmonium
states predicted below the lowest hidden-charm threshold (DD̄) have been experimentally
confirmed, but above this energy most of the observed states cannot be unambiguously
identified with any of the predicted charmonium cc̄ states.

Amongst the XY Z states, the Zcp3900q˘ was simultaneously discovered by the BESIII
and Belle collaborations [86, 87] in the e`e´ Ñ Y p4260q Ñ J{ψπ`π´ reaction, where a
clear peak very close to theD˚D̄ threshold, around 3.9 GeV, is seen in the J{ψπ spectrum.
Later on, an analysis [88] based on CLEO-c data for the reaction, e`e´ Ñ ψp4160q Ñ
J{ψπ`π´, confirmed the presence of this resonant structure as well, although with a
somewhat lower mass. The BESIII collaboration [89,90] has also reported a resonant-like
structure in the D̄˚D spectrum for the reaction e`e´ Ñ D̄˚Dπ at different e`e´ center
of mass energies [including the production of Y p4260q]. This structure, with quantum
numbers favoured to be JP “ 1`, has been cautiously called Zcp3885q˘, because its
fitted mass and width showed some differences with those attributed to the Zcp3900q˘.
Whether both sets of observations correspond to the same state needs to be confirmed,

8 1.2. Some exotic heavy mesons
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though there is a certain consensus that this is indeed the case, and the peaks reported as
the Zcp3885q˘ and Zcp3900q˘ are originated by the same state seen in different channels.
Moreover, evidence for its neutral partner, Zcp3900q0, has also been reported [88,91].

The nature of the Zc p3900q˘ is intriguing. On one hand, it couples to D˚D̄ and J{ψπ,
and therefore one assumes it should contain a constituent cc̄ quark–anti-quark pair. On
the other hand, it is charged and hence it must also have another constituent quark–
anti-quark pair, namely ud̄ (for Z`c ). Its minimal structure would be then cc̄ud̄, which
automatically qualifies it as a non-qq̄ (exotic) meson. Being a candidate for an exotic hid-
den charm state, it has triggered much theoretical interest. An early discussion of possible
structures for the Zc p3900q˘ was given in Ref. [92]. The suggested interpretations cover
a wide range: a D̄˚D molecule [93–100], a tetraquark [101–107], an object originated
from an attractive D̄˚D˚ interaction [108], a simple kinematic effect [109, 110], a cusp
enhancement due to a triangle singularity [111], or a radially excited axial meson [112].
In Ref. [113], it was argued that this structure cannot be a kinematical effect and that
it must necessarily be originated from a nearby pole. Consequences from some of these
models have been discussed in Ref. [114]. The non-compatibility (partial or total) of the
properties of the Zc deduced in different approaches clearly hints why the actual nature
of this state has attracted so much attention.

Hopefully, in this chapter we have conveyed a clear message: in the field of heavy
meson spectroscopy new experimental information is being continuously added, and it
presents many issues not yet fully understood on theoretical grounds. In this regard, in
this thesis we try to shed some light into several of these aspects.

1.2. Some exotic heavy mesons 9
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Chapter 2

Non-perturbative amplitudes

The present knowledge of the low energy regime of the strong interactions manifests as a
quite subtle picture, mixture of fundamental principles and phenomenological information.
In the SM, the strong force is explained by the quantum field theory of color interactions,
QCD. It is a renormalizable gauge theory in which the quarks are the fundamental building
blocks, matter fields interacting via the exchange of gauge bosons, the gluons, which also
carry the color charge associated to the strong interaction. Among all the features of QCD,
there are two aspects that make this theory very special in the regime of low energies,
and rely on the research efforts of the hadron community since the beginning of the last
century until the present days. These are confinement and asymptotic freedom.

The confinement phenomenon follows from the fact that neither quarks nor gluons
have ever been observed as free states. Its formulation is stated simply by saying that
quarks and gluons always combine into color-singlet states. Even if there is no analytic
proof of confinement in four space-time dimensions for non-abelian theories, it is undis-
putedly assumed to be a property of the interaction of quarks and gluons [115]. On the
other hand, asymptotic freedom [116–118] is a theoretical consequence stemming from the
non-abelian nature of QCD, further verified by experiments, see e.g, [14,119]. It predicts
that the strength of the renormalized coupling between quarks and gluons decreases with
increasing energy scales. In contrast, the interaction between quarks and gluons becomes
more and more intense for decreasing energy scales. Therefore, unfortunately it is not
possible to use perturbation theory in the strong coupling constant, αs, to compute ob-
servables at a small enough scale. Such scale is commonly referred to as the confinement
scale or ΛQCD, and could be regarded as a fundamental parameter of QCD, which would
replace the dimensionless parameter αs via dimensional transmutation [120]. Formally, it
is not clear how to state a precise definition and determine ΛQCD. One could identify this
scale with that introduced during the integration of the renormalization group equations
which describe the running of αspµ2q, in a way that αspµ2q Ñ 8 for µ Ñ ΛQCD. Never-
theless, its value depends on the specific renormalization scheme and the quark flavours
considered. Furthermore, since the β function entering in the renormalization group equa-
tion in practice is computed up to a given order in perturbation theory, the solution for
αspµ

2q is not valid for such scales approaching ΛQCD. Thus, nowadays the growing of αs
with decreasing scales is a working assumption consistent with confinement.

The two aspects discussed above point to two different regimes of QCD, separated by
a scale of the order of ΛQCD. Thus, if one intends to apply QCD to processes involving
momentum transfers of order OpΛQCDq, just like the case of the low energy scattering
of an open-flavour heavy meson off a light pseudo-scalar meson, one necessarily needs
to consider alternative methods to perturbation theory, which are generally referred to
as non-perturbative approaches. For example, this is the case of LQCD, χPT and other
QCD-inspired EFTs or models like CQM ones. The initial efforts for understanding strong
interactions were pursued in the spirit of the program developed by Heisenberg [121,122]
in terms of observable objects. The theory of the scattering matrix [123], or S-matrix
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theory [124], makes emphasis on a black-box description of strong interacting processes
constrained by the general principles of Lorentz invariance, causality and unitarity as
well as quantum symmetries [125]. The knowledge of the interaction is translated to the
knowledge of a set of complex functions (scattering amplitudes) depending on the kine-
matic variables. A further step was taken by Mandelstam in two-body scattering with the
maximum analyticity hypothesis, connecting causality with the properties of the scatter-
ing amplitudes when promoting the variables s, t and u to be complex valued. Though
there is no a complete proof of the connection of analyticity and causality in relativistic
quantum field theory—it is manifest in non-relativistic scattering for certain types of fi-
nite range potentials [126]—this connection is extensively considered as a requirement of
any effective theory of the strong interactions. Therefore, according to the Mandelstam
conjecture [127] the scattering amplitudes would be analytic functions in the complex s,
u and t planes up to singularities required by physical features. These singularities can
have a kinematic origin, such as the branch cuts, due to unitarity and crossing symmetry,
or a dynamical one, like the simple poles associated to bound and resonant states.

The role of unitarity. The low energy spectrum of QCD is populated by a rich num-
ber of short-lived states decaying into multi-hadron states. We are interested in meson
resonances with charm and bottom content, which either are seen, or expected, to decay
into two hadron states. On the other hand, these resonant states have a strong influence
in the dynamics of the decaying products. In particular, we will pay special attention to
some exotic states which nature has not been fully understood by established theoretical
CQMs or even in some LQCD computations.

As we shall justify later, and already mentioned above, resonance states are associated
with pole singularities in the scattering amplitudes. In our case, we are interested in those
which can be classified as dynamically generated [128–137]. This concept may somehow
be diffuse for a classification of hadrons. We will be concerned with singularities that can
be generated in the scattering amplitudes via a unitarization program. This is to say,
singularities mainly produced by the unitarization of the hadron loops. This brings us to
the concept of unitarity and its relation with resonances.

Unitarity is a constraint on the scattering amplitudes, which has its origin in the con-
servation of probability. It induces a nonlinear relation between the real and imaginary
parts of the scattering amplitude, and it also manifests in the form of bounds on its
magnitude. The nonlinear relation implies that this requirement is satisfied only pertur-
batively in any field theory, in a way that higher orders will always be necessary to fulfil
the unitary relation. Furthermore, whenever the interaction is strong, the behaviour of
the amplitude may saturate the mentioned unitarity bounds—specially in the case of the
presence of resonances—and in such situations unitarity plays an essential role. This is
the motivation that triggered the efforts towards exploring approximate ways to restore
exact unitarity in perturbative (or kernel) scattering amplitudes. As a few examples, we
will quote the Inverse Amplitude Method [138–141], the Numerator Denominator or N/D
method [142], and the unitary extension of χPT [130,132].

2.1 Unitarity and T -matrix
In this section, the consequences of unitarity are briefly introduced in the context of
the T -matrix operator. The formal development of the theory of quantum scattering is
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devoted to the description of transitions among asymptotically free incoming and outgoing
quantum states, symbolically denoted in the following as |iny and |outy respectively. In an
operator notation, the observables are computed by means of the transition probability
amplitude Sin,out,

Sin,out “ xout|S |iny (2.1)

where S is the scattering operator. It embodies all the possible effects on the incoming
and outgoing states due to the interaction, which can be made explicit by rewriting it in
terms of the transition operator or T -matrix T,

S “ I´ iT. (2.2)

Unitarity is the necessary requirement for probability conservation [125],

SS: “ S:S “ I, (2.3)

which follows from a natural constraint: the outcome of any scattering process described
by the theory will always be a combination—or superposition—of asymptotic states. For
simplicity, let us choose an orthonormal and complete discrete set of asymptotic states
O “ t|αjyu

N
j“1. The statement above is translated to the equality,

N
ÿ

j“1
|xαj|S |iny|2 “ 1, (2.4)

from where the condition in Eq. (2.3) can be derived, since |iny is a linear combination of
states of O. In the language of T -matrix, unitarity reads,

i
`

T´T:
˘

“ TT:, (2.5)

or equivalently,

i
´

`

T:
˘´1

´T´1
¯

“ I, (2.6)

Let us pay attention to the particular matrix element among the states |ay , |by P O.
Introducing the notation Tba “ xb|T |ay Eqs. (2.5) and (2.6) lead to

i
´

Tba ´ T:ba
¯

“

N
ÿ

j“1
TbαjT:αja, (2.7)

i
´

`

T:
˘´1
ba
´ pTq´1

ba

¯

“ xb|

˜

N
ÿ

j“1
|αjy xαj|

¸

|ay . (2.8)

.

2.2 Unitarity and partial waves

2.2.1 T -matrix normalization
First of all, we shall state the necessary conventions and definitions in the theoretical
description of the scattering of a heavy meson (H) off a light meson (φ). Let us identify
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p1 and p2 as the four-momenta of the initial heavy and light mesons respectively, while p3
and p4 will denote those of the heavy and light mesons in the final state. For simplicity,
we will limit here the discussion to spinless mesons.1 We denote as Pipfq ” p1p3q`p2p4q the
total initial (final) momentum of the system. For the masses, we will use the notationMHi

in the case of the heavy mesons, and mφi for the light ones. We normalize the one-particle
momentum and total momentum states as follows,

xp|p1y “ p2πq3 p2p0
qδ3
p~p´ ~p1q, (2.9)

xP |P 1y “ p2πq4δ4
pP ´ P 1q . (2.10)

The pair of mesons conform a two-body state

|HppHqφppφqy ” |Py b |pHpφyP (2.11)

with definite conserved internal quantum numbers, e.g., isospin (I), parity (P ) and other
discrete symmetries that determine the sector. In general, there may be different combi-
nations of meson species—referred to as channels—leading to the same quantum numbers
of the two-particle state in a given sector. For a total number of channels n, we denote the
two-body states as Hjφj, where j “ 1, . . . , n labels the channel. The scattering process,

Hi pp1qφi pp2q Ñ Hj pp3qφj pp4q (2.12)

will be described by the amplitude,

Tji “ xHj pp3qφj pp4q ;σ|T |Hi pp1qφi pp2q ;σy (2.13)

where σ denotes the quantum numbers that identify the sector. This means that the
transition probability amplitude is

Sji “ δijp4p0
1p

0
2qp2πq6δ3

p~p1 ´ ~p3q δ
3
p~p2 ´ ~p4q ´ iTji. (2.14)

It is convenient to make the total momentum conservation P explicitly manifest rewriting
the amplitude (2.13) in terms of the following reduced matrix element

Tji “ p2πq4δ4
pPj ´ Piq ˆ T σjipp1, p2, p3, p4q, (2.15)

keeping in mind that there should be an extra label (P “ Pipfq) in the amplitude T σji identi-
fying the total four momentum configuration of the system. The amplitude in Eq. (2.15)
is a Lorentz scalar and, therefore, it will only depend on the well-known Mandelstam
variables, which are defined in the usual way

s ” pp1 ` p2q
2
“ pp3 ` p4q

2 ,

t ” pp1 ´ p3q
2
“ pp2 ´ p4q

2 ,

u ” pp1 ´ p4q
2
“ pp2 ´ p3q

2

(2.16)

These variables are not independent of each other, and they are related

s` t` u “M2
1 `m

2
2 `M

2
3 `m

2
4 ” Σ. (2.17)

1Most of the results are extended in the case of particles with spin interacting in S-wave, after averaging
over third spin components.
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Thus, the dependence of the reduced amplitude may be simply stated as T σjips, tq. Within
our conventions, we can write the differential cross section in the center of momentum or
zero momentum (cm) frame, i.e., in the frame satisfying P “ p

?
s,~0q, as follows,

dσji
dΩ

ˇ

ˇ

ˇ

ˇ

cm
“

1
64π2s

|~q |

|~p |

ˇ

ˇT σjips, tq
ˇ

ˇ

2 (2.18)

where |~p | and |~q | are the magnitude of the incoming and outgoing cm momenta, re-
spectively. Their expressions are compactly written in terms of the Khällén function
λpx, y, zq “ x2 ` y2 ` z2 ´ 2pxy ` yz ` zxq,

|~p | “

a

λps,M2
1 ,m

2
2q

2
?
s

,

|~q | “

a

λps,M2
3 ,m

2
4q

2
?
s

.

(2.19)

In the rest of the chapter, we will omit the sector label “σ” in T σjips, tq and we will simply
refer to this function as Tjips, tq.

2.2.2 Expansion in partial waves
Let us choose a special coordinate system with the z-axis pointing in the direction of the
cm relative three-momentum ~p of the initial particles. The dependence on the orientation
of the initial and final momenta is encoded in the t variable,

t “ ´
s2 ´ sΣ`∆i∆j ´ 4|~p ||~q | s cos θ

2s , (2.20)

where θ is the angle formed by ~p and ~q in the cm frame, and we have introduced the
shorthand ∆i ” M2

i ´m2
i . Thus Tjips, tq (or equivalently Tjips, θq) admits an expansion

in powers of cos θ [125],

Tjips, θq “
8
ÿ

J“0
T
pJq
ji psqp2J ` 1qPJpcos θq. (2.21)

This is the so-called partial-wave expansion of Tjips, tq. The PJ functions are the Legendre
polynomials, a set of orthogonal polynomials of order J , and T pJqji psq is called the partial
wave amplitude. This expansion is obtained after rewriting the two-particle states in
Eq. (2.13) in terms of angular momentum states |JMy. Since we consider spinless states,
the total angular momentum ( ~J) and orbital angular momentum (~L) are equal ~L “ ~J .
The partial wave amplitudes may be labelled in terms of the relative orbital quantum
number l,

T
plq
ji psq “

1
2

ż `1

´1
dpcos θq Tjips, θqPlpcos θq, (2.22)

where the orthogonality property of the Legendre polynomials,
ż `1

´1
dxPlpxqPl1pxq “ 2δll1{p2l ` 1q, (2.23)
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has been used.
The constraints that unitarity imposes are specially manifest in the partial wave form

of the amplitude. Let us insert the expansion of (2.21) on the left and right-hand sides
of Eq. (2.7). For the left-hand side we get,

i
´

Tji ´ T:ji
¯

“ ip2πq4δ4
pPi ´ Pf q

8
ÿ

l“0

´

T
plq
ji psq ´ T

:plq
ji psq

¯

p2l ` 1qPlpcos θq. (2.24)

In the case of the right-hand side of Eq. (2.7), which involves the sum over the matrix
elements of all the intermediate transitions, we need to sum over the complete set of
|pHmpφmy states,

I “

n
ÿ

m“1

"
R6

d3~p

p2πq3 2p0

d3~p 1

p2πq3 2p0 1

ˇ

ˇpHmp
1
φm

D @

pHmp
1
φm

ˇ

ˇ , (2.25)

to obtain2

n
ÿ

m“1
TjmT:mi “

n
ÿ

m“1

"
R6

d3~p

2p0
d3~p 1

2p0 1
1

p2πq6 Tjmps, θ
2
qT :mips, θ

1
q

ˆ p2πq4δ4
pPj ´ Pmq p2πq4δ4

pPi ´ Pmq (2.26)

where θ1 (θ2) is the angle formed by the cm momenta of the intermediate two-meson state
|pHmpφmy and the initial (final) pair. We take the cm momentum of the initial state in the
z direction and that of the final pair in the yz-plane; with θ its polar angle (see Fig. 2.1).
Defining the well-known Lorentz invariant two-body phase-space operator,"

dLIPSmt. . . u ”
"

R6

d3~p

2p0
d3~p 1

2p0 1
1

p2πq6 p2πq
4 δ4

pPi ´ Pmq t. . . u

“

ż 2π

0
dφ1

ż 1

´1
dpcos θ1q 1

16π2
|~pm |
?
s
t. . . u, (2.27)

where φ1 is the azimuthal angle of the momentum of the intermediate state. Thus, we
find

n
ÿ

m“1
TjmT:mi “p2πq

4 δ4
pPi ´ Pjq

n
ÿ

m“1

"
dLIPSmTjmps, cos θ2qT :mips, cos θ1q

“ p2πq4 δ4
pPi ´ Pjq

n
ÿ

m“1

8
ÿ

l,l1“0
p2l ` 1q p2l1 ` 1qT pl

1q

jm psqT
:plq
mi psq

ˆ

"
dLIPSmPlpcos θ1qPl1pcos θ2q (2.28)

Taking into account the addition theorem for spherical harmonics Y m
l pθ, φq [125,143],

Pl1pcos θ2q “ 4π
2l1 ` 1

l1
ÿ

m1“´l1

Y ˚m
1

l1 pθ, φ “
π

2 qY
m1

l1 pθ
1, φ1q (2.29)

2We truncate the full QCD coupled channel space and we only consider n two meson (one heavy and
one light) channels.
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θ′
θ

θ′′

φ′

p̂m

p̂j

p̂i

x̂
ŷ

ẑ

Figure 2.1: Definition of the angles φ, θ, θ1 and θ2 formed by the vectors ~pipjq and ~pm,
which correspond to the cm momenta of the initial (final) and intermediate two-particle
states entering the partial wave decomposition of TjmT:mi, see Eq. (2.26).

with cos θ2 “ sin θ sin θ1 sinφ1 ` cos θ cos θ1, the angular integrations that are implicit in
the
!

dLIPSm can be performed [144,145]
ż `1

´1
dpcos θ1qPlpcos θ1q

ż 2π

0
dφ1Pl1pcos θ2q “

ż `1

´1
dpcos θ1qPlpcos θ1q p2πPl1pcos θqPl1pcos θ1qq

“
4π

2l ` 1δll
1Plpcos θq. (2.30)

With the above result, Eq. (2.28) becomes,
n
ÿ

m“1
TjmT:mi “p2πq

4 δ4
pPi ´ Pjq

n
ÿ

m“1

|~pm |

4π
?
s

8
ÿ

l“0
p2l ` 1qPlpcos θqT plqjmpsqT

:plq
mi psq (2.31)

Finally, we gather the results of Eqs. (2.24) and (2.31) for the left and right hand sides
of the unitarity condition of Eq. (2.7) , and we obtain for each partial wave

i
´

T
plq
ji psq ´ T

:plq
ji psq

¯

“

n
ÿ

m“1

|~pm |

4π
?
s
T
plq
jmpsqT

: plq
mi psq. (2.32)

This equation represents a constraint of the partial wave amplitudes, which should be
satisfied for cm energies in a certain range. We can bound such energy regime as

L ” rs0, są2q (2.33)

where s0 denotes the smallest energy threshold—the energy necessary for two-particle
production—and są2 denotes the energy threshold for the production of the lowest-lying
intermediate state of more than two particles. At energies larger than są2, the relation
of Eq. (2.32) should be modified in order to include the effect of intermediate states with
three or more particles. However, we will not consider their influence, i.e., assume in the
following that są2 Ñ 8, restricting the discussion exclusively to the case of two-body
unitarity in coupled channels.
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2.3 Analytic properties of partial wave amplitudes

The analytic structure of the functions T plqpsq plays a very important role relating the
scattering observables to the properties of the interaction. The analyticity of the scattering
amplitude is well understood under certain conditions, where it turns out to be highly
relevant, for example, in the case of the non-relativistic interactions with reasonable3
potentials [146]. Analyticity may be linked to strong consistency conditions, such as
causality, giving rise to a dispersive treatment of scattering amplitudes in non-relativistic
collisions [126]. Whether this connection—which would promote the analytic properties
of scattering amplitudes to the category of physical principles—is valid in the general
case of any proper Quantum Field Theory is still an open question. Nevertheless, the
assumption of such properties is a rather common working hypothesis, which has proven
to be very fruitful in the description of the scattering phenomena.

In this context, the partial wave amplitude T plqpsq is regarded as a (complex) function
defined in the complex s-plane: Cs. The main assumption is that the amplitudes will
have as few singularities as possible. Any singularity must be required by some physical
cause. Hence, there exists an analytic continuation of T plqpsq onto most of the complex
plane Cs, such that the physical values that T plqpsq takes on the scattering line, s P L,
are the boundary values,

T plqpsq [physical] “ lim
εÑ0`

T plqps` iεq, s P L, (2.34)

In other words, all the physical information is encoded in the singularities of the partial
wave amplitude—and all of them are of physical origin. In the following, whenever we
write “iε” we will implicitly assume that the limit ε Ñ 0` is being taken. It is a key
further assumption that the partial wave amplitude is a real function in some segment
of the real s-axis disjoint from L. When one takes into account the latter property,
Hermitian analyticity [147,148]

T
plq
ji ps

˚
q “

´

T
plq
ji psq

¯:

(2.35)

allows for an analytic continuation from s` iε onto the lower half-plane, and we have

T
plq
ji ps` iεq ´ T

:plq
ji ps` iεq “ T

plq
ji ps` iεq ´ T

plq
ji ps´ iεq ” DiscT plqji ps` iεq. (2.36)

Eq (2.36), together with the unitarity condition in Eq. (2.32), provide a strong constraint
on the analytic structure of the partial wave amplitudes,

iDiscT plqii ps` iεq “ ´2 ImT
plq
ii ps` iεq “

n
ÿ

m“1

σmps` iεq

4π |T
plq
imps` iεq|

2, s P L. (2.37)

As we can read from Eq. (2.37), the imaginary part is proportional to a linear combination
of the functions σmpsq. Let us look in detail to these quantities which are defined as follows,

σjpsq ”
|~pj|
?
s
“

a

ps´ pMj `mjq
2qps´ pMj ´mjq

2q

2s . (2.38)

3Here reasonable stands for a particular class of finite range potentials which behave properly in the
r Ñ8 limit.
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Figure 2.2: The s, t and u channels described by the Tiips, tq amplitude according to
crossing symmetry.

Note that σjpsq describes a multi-valued function. When s P Cs, the function σjpsq has two
branches, with the branch points located at spjq0 ” pMj`mjq

2 and spjq´ ” pMj´mjq
2 [149].

These points are commonly referred to as the threshold and pseudo-threshold, respectively.
The branch cut is chosen to be the line segment s´8, spjq´ s

Ť

rs
pjq
0 ,`8r . It is also usual to

denote the rspjq0 ,`8r segment, which is included in L, as the right hand cut. Therefore,
from Eq. (2.37) we deduce that ImT plqii psq will inherit as many right hand cuts as the
number of channels considered. Besides, to each cut there will be associated two branches
or Riemann Sheet (RS)s of T plqij psq, although for the moment we will concentrate on the
so called physical sheet, satisfying Eq. (2.32) on the upper lip, i.e., ImTiips ` iεq ă 0
(s P L).

Left hand cuts. There exists additional cuts required by crossing symmetry. These
kind of processes are depicted in Fig. 2.2. Let us briefly focus on the full amplitude
Tiips, tq. The Mandelstam variables (2.16) are commonly used to identify the three pro-
cesses depicted in Fig. 2.2, and related by crossing symmetry. In each of them, one of
the three variables plays the role of the invariant mass squared, so that we will refer to
them as the s, t and u-modes or, redundantly, channels. The same amplitude describes
the different modes, the difference is that in each case the Mandelstam variables take real
values in non-overlapping regions, so in practice they could be regarded as three inde-
pendent functions. On the other hand, it may be interesting to suggest that all these
processes are described by the same function. Once the kinematic variables are promoted
to be complex, each of the three disjoint regions may be connected in the complex plane
by analytic continuation. The three amplitudes would become the boundary values of
the same function T ps, t, uq, allowing then relating any of the modes to the other two.
This assumption was originally made by Mandelstam [127], and generally it is adopted
as the starting point to derive the analytic properties of the partial wave amplitudes. If
unitarity is taken into account in the crossed u-mode, for fixed t, we would expect a right
hand cut structure on the u complex plane in the same way as for the s-mode. The cut
in the u-plane is the line segment Lu ” rpMi `miq

2,8q, and it induces an additional cut
structure of Tiips, tq on Cs, for the values

U ” ts “ Σ´ t´ u : u P Luu pt fixedq. (2.39)

The set of values U is traditionally called a left-hand cut. This singularity structure
accounting for crossed u-mode processes is propagated to the partial wave amplitude
when integrating in the angular variable θ (see Eq. (2.21)). We will briefly illustrate
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later, with a simple example, how u-mode physics induce left hand cut structures into the
partial wave amplitudes of the s-channel.

Poles. So far we have considered two-particle states, though in the physical situation
there may well be necessary to include one particle states |py in a given quantum sector.
If such states have a mass Mr larger than the lowest two-particle threshold, M2

r ą s0,
then they will be unstable and allowed to decay into |pp1y products. On the other hand,
states satisfying M2

r ă s0 will be kinematically stable. Therefore they should be included
in the Hilbert space, i.e., they should be accounted in the identity resolution (2.25) by
adding the corresponding terms,

nb
ÿ

b“1

ż

R3

d3~pb
p2πq32p0

b

|pby xpb| “
nb
ÿ

b“1

ż

R4

d4pb
p2πq3 Θpp0

bqδpp
2
b ´M

2
r q |pby xpb| (2.40)

where nb denotes the total number of such one-particle stable states. The latter are known
as bound states, while unstable states are called resonances. When the contribution in
Eq. (2.40) is implemented into the unitarity relation of Eq. (2.7)—similarly as it was done
in Eq. (2.26) for the two-particle states—we find for each of the bound states the following
term,

xHjφj|T:T |Hiφiy “

ż

R4

d4pb
p2πq3 Θpp0

bqδpp
2
b ´M

2
r q xHjφj|T: |pby xpb|T |Hiφiy

“

ż

R4

d4pb
p2πq3 Θpp0

bqδpp
2
b ´M

2
r q
@

pHjpφj
ˇ

ˇT : |by xb|T |pHipφiy

ˆ p2πq4δ4
pPi ´ pbqp2πq4δ4

ppb ´ Pjq ` . . .

“ 2πδpP 2
i ´M

2
r q
@

pHjpφj
ˇ

ˇT : |by xb|T |pHipφiy
ˇ

ˇ

P 2
i “M

2
r

ˆ p2πq4δ4
pPj ´ Piq ` . . .

(2.41)

Eq. (2.41) represents the contribution of a bound state of mass Mr to the right-hand
side of the T -matrix unitarity relation (2.7). When Eq. (2.7) is expressed in terms of the
reduced matrix element in Eq. (2.15), we find

i
´

Tjips, tq ´ T
:
jips, tq

¯

“ 2πδps´M2
r q
@

pHjpφj
ˇ

ˇT : |by xb|T |pHipφiy
ˇ

ˇ

s“M2
r
` . . .

” 2πδps´M2
r q ˆ g˚j gi ` . . . (2.42)

ñ Im Tjips, tq “ ´πδps´M
2
r qg˚j gi ` . . . (2.43)

The result obtained in Eq. (2.43) is traditionally referred to as a pole term contribution,
since this is the imaginary part that would produce an amplitude of the form

Tjips, tq “
gig˚j

s´M2
r

` . . . (2.44)

The former statement can be checked applying the famous result from complex analysis
known as the Sokhotski-Plemelj theorem:

lim
εÑ0`

1
x´ a˘ iε

“ P 1
x´ a

¯ iπδpx´ aq, (2.45)
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to the physical amplitude Tjips ` iε, tq (2.44)—the symbol “P” in Eq. (2.45) denotes
the principal value. We conclude that for each bound state there will be a simple-pole
singularity (Eq. (2.44)), and the associated residue gig˚j will depend on the strength of the
overlap between the bound and the two-particle states

@

pHjpφj
ˇ

ˇT : |byxb|T |pHipφiy |s“M2
r
.

When the |pHipφiy states are expressed in the cm two particle state basis, it turns out
that the residue (gig˚j ) is real and proportional to the Legendre polynomial PJpxq, with
J the spin of the bound state [125], gig˚j ” gig

˚
j PJpxq. Therefore, a bound state pole will

also appear in the partial wave amplitude satisfying l “ J (we recall that for simplicity
we are studying here scattering of spin zero particles).

Particle exchanges in crossed process. The above discussion, combined with the
Mandelstam hypothesis, would indicate that the existence of bound states in the u-channel

Tiipu, tq „ ρ̃u{pu´M
2
uq, (2.46)

would generate non-analytic structures in the complex s-plane Cs of the type (2.17)

Tiips, tq „ ρ̃u{pΣ´ t´ s´M2
uq. (2.47)

The particle exchange in a crossed process is an example of a left-hand cut structure
induced on the partial wave amplitudes, because, for the amplitude of Eq. (2.47), we
would have the partial wave projection (2.21),

T
plq
ii psq „

1
2

ż `1

´1
dx ρuPJpxq

Σ´ tpxq ´ s´M2
u

Plpxq (2.48)

“
1
2

ż `1

´1
dx 1

2|~pi|2
ρuPJpxqPlpxq

x´ gps,m,M,Muq
(2.49)

where we have introduced

gps,m,M,Muq “
´s2 ` sΣ´ 2sM2

u `∆2
i

4s |~pi|2
, (2.50)

as well as ρ̃u “ ρuPJpxq. For illustration, for S-wave J “ l “ 0 we would find

T
p0q
ii psq „

1
2

ż `1

´1
dx ρu

2 |~pi|2
P0pxqP0pxq

x´ gps,m,M,Muq
(2.51)

“
ρu

2 |~pi|2
ln
ˆ

gps,m,M,Muq ` 1
gps,m,M,Muq ´ 1

˙

(2.52)

“
ρu

2 |~pi|2
ln
ˆ

1
s

∆2
i ´ sM

2
u

Σ´M2
u ´ s

˙

. (2.53)

From Eq. (2.53) we learn that the partial wave amplitude will develop an imaginary part
whenever the argument of the logarithm, ln pzq, becomes negative. Once again, given
that Hermitian analyticity requires pT plqii psqq˚ “ T

plq
ii ps

˚q, we would have a discontinuity:
Discrln pzqs “ ln pz ` iεq ´ ln pz ´ iεq “ 2πi, with z ă 0. In this example, there are two
branch points of the 1{s logarithm at 0 and ´8, plus the two located at sb “ ∆2

i {M
2
u

and s1b “ Σ ´M2
u associated to the second logarithm. The location of the left hand cuts

stemming from u-mode bound states would be U “ t s ´ 8, 0s
Ť

rsb, s
1
bs u.
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z = s+ iε

z∗ = s− iε
T (s) on sheet I

Re s
Im s

s0M2
v

s∗P

sPT (s) on sheet II

Figure 2.3: Schematic plot of the analytic structure for the two branches (labelled as sheet
I and II) of an elastic partial wave amplitude T psq in the complex s-plane—neglecting left-
hand cuts. The solid thick black arrow starting at s0 depicts the branch cut, and the
dashed arrow points into the direction approaching the physical values of the amplitude
(see Eq. (2.34)) in both sheets. The blank circles represent the location of simple poles.

One could pay attention to a physical system where this cut would appear, like for
example, the amplitude of the DK̄ scattering in S-wave—therefore JP “ 0`—in the
strangeness-isospin pS, Iq “ p´1, 0q sector. The u-mode associated to this system would
be the DK elastic scattering, which in S-wave in the pS, Iq “ p1, 0q sector is well known
for the existence of a scalar particle, D˚s0p2317q, satisfying Mu “ MD˚s0

ă MD ` mK .
This scenario is exactly the situation discussed in the former paragraph. If we use the
numerical values of the particle masses to find the location of the left hand cuts we find
U “ tp´8, 0s

Ť

rp1.403q2, p1.454q2su (units of GeV2). These contributions are “quite far”
from the DK̄ scattering line, since the threshold is located at 2.3652 GeV2. For that
reason, left hand cut terms like the one in Eq. (2.53) may be regarded as a mild effect,
when it comes to describe the physical amplitude T p0q

DK̄
psq on the scattering line (note that

the term (2.53), for large s, is suppressed behaving like „ 1{sˆ ln s) .
This is just a simple illustration on how this type of singularities could arise in partial

wave amplitudes. The actual general case is more complicated involving further cuts and,
given that we will always neglect the energy dependence of such contributions, we will
omit a thorough derivation. (The reader may find it, for example, in the textbook [125]).
Another reason is that, as it has been shown, a proper management of such singularities
requires a priori a deep knowledge about the interaction, such as the possible existence
of bound states. This, in general, will not be the case, and we shall see how in our
phenomenological treatment the effects induced by this unified consideration of the (s-t-
u)-channels are only approximately taken into account.

Resonances and Riemann sheets. In the case of resonant states, since their only
difference with bound states is the matter of stability, one may think that they would
also be associated with pole singularities in Cs at positions, lets say sP ,4 but satisfying
Re sp ą s0 and Im sp , 0 to prevent spoil unitarity on the scattering line (2.32). These
poles would influence a dispersive representation of T plqji psq—since it necessarily would
have contributions from the residues gig˚j of the resonance poles. In general, gig˚j will
be complex and therefore contribute to the absorptive part of the amplitude, spoiling
unitarity again. For this reason, resonances do manifest as poles in different Riemann
sheets of T plqji psq, but not in the first one.

In Fig. 2.3, a sketch of the analytic structure of an elastic S-wave amplitude, T psq, is
shown. Therein, we can distinguish the two sheets on the left and right panels, denoted as
I—the physical sheet—and II respectively. These are the two branches associated to the

4Note that each complex pole would have a complex conjugate partner due to Hermitian analyticity,
as deduced from Eq. (2.35).
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right hand cut starting at s0. The different colors represent the values of T psq around the
cut, and we can see how a path crossing the upper lip of the physical sheet is connected
with the lower lip of the second sheet. On the right panel, two complex conjugate poles
sP and s˚P are shown. From the two poles, the most important would be the lower one,
sP , since it lies on the region that is connected with the physical sheet, and consequently,
will have a strong impact on the line-shape of the physical amplitude (note that red and
blue colors represent the different values of T psq along the cut). This pole is parametrized
in terms of the mass Mr and width Γr of the associated particle, sP “ pMr ´ iΓr{2q2, a
reminiscence from quantum mechanics [150]. On the same sheet, we distinguish another
class of poles which are known as virtual poles, associated to virtual states. These would
be located on the real axis at values s “ M2

v ă s0. In a situation without bound state
poles, the latter may play a role, influencing the low energy region if they are located
close enough to s0.

In order to find the analytic continuation into the second sheet, as well as for future
purposes, it is convenient to express the unitarity condition in Eq. (2.37) in terms of the
inverse of the partial wave amplitude T plqji psq. For simplicity we will denote the latter here
as T´1

ji psq ” pT
´1psqqji, omitting the “l” (wave) label. One easily finds,

DiscT´1
ji ps` iεq “ 2i ImT´1

ji ps` iεq “ 2i σips` iεq8π δij, s P rs
piq
0 ,`8r . (2.54)

From Eq. (2.54) we learn that the inverse amplitude will also inherit the right hand cut
structure carried by the function σipsq. The values of T´1ps` iεq on the upper lip of the
right hand cut satisfy

T´1
ji ps` iεq “ pT

´1
q
II
jips´ iεq (2.55)

where the label “II” is used to denote the second sheet of T´1
ji . On the other hand, one

can use the following trivial identity (2.36)

T´1
ji ps` iεq “ T´1

ji ps´ iεq `DiscT´1
ji ps` iεq, (2.56)

in order to find an analytic continuation of T´1
ji psq (and therefore, of Tjipsq) onto the

second sheet [133]

pT´1
q
II
jips´ iεq “ T´1

ji ps´ iεq `DiscT´1
ji ps` iεq,

“ T´1
ji ps´ iεq ` 2i σips` iεq8π δij (2.57)

ñ pT´1
q
II
jipsq “ T´1

ji psq ´ 2i σipsq8π δij. (2.58)

Eq. (2.58) constitutes a proper analytic continuation onto the second sheet of T´1psq
provided the function σpsq enters evaluated on the first sheet, i.e., σps ` iεq ą 0 for
s ě s

piq
0 .

2.3.1 Phase shifts, inelasticities and low energy parametrization

In many situations, it is important to have a parametrization of the partial wave ampli-
tude. At low energies, one can always model the line shape of a physical amplitude in
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a way consistent with unitarity. In this regime, one might consider the case of elastic
scattering, either because the inelastic channels are closed or maybe because the influ-
ence of such higher channels is expected to be small. If so, we learn from unitarity and
analyticity that the partial wave amplitude is a complex analytic function with a right
hand cut along the scattering line L. The physical amplitude can be parametrized as
T psq “ Npsqeiδpsq, i.e., in terms of a phase δpsq, called phase shift. Alternatively, one also
has that the S-matrix is a complex number of unit modulus, Spsq “ e2iδpsq. Recalling that
Eq. (2.37) in the elastic case reads ImT psq “ ´σpsq|T psq|2{8π , we thus have,

T plqpsq “ ´8π sin δplq psq
σpsq

eiδ
plqpsq, (2.59)

Splqpsq ” e2iδplqpsq
“ 1´ iσpsq4π T plqpsq. (2.60)

For finite range interactions, it is in general possible to perform the following low energy
expansion5 [151,152],

|~p |2l`1 cot δplqpsq “ ´ 1
al
`

1
2rl |~p |

2
`Op|~p |4q, (2.61)

where al and rl in the case of S-waves (l “ 0) are known as the scattering length and
effective range, respectively—note that the sign in front of al is a convention and it
may be different in other works. The parameters a0 and r0 can be related to the elas-
tic partial wave amplitude combining Eq. (2.60), σpsq “ |~p |{

?
s and Spsq “ e2iδpsq “

pcot δpsq ` iq { pcot δpsq ´ iq,

|~p | cot δpsq “ ´8π
?
s T´1

psq ` i |~p |. (2.62)

From Eq. (2.62), we find the formula of the scattering length in terms of the S-wave
amplitude

a0 “ lim
sÑs0

T psq

8π
?
s
. (2.63)

In the coupled channels case, we will extend the phase shift parametrization of Eq. (2.60)
to introduce, for each channel, the phase shifts (δplqm psq) and inelasticities (ηplqm psq) through,

Splqmmpsq ” ηplqm psqe
2iδplqm psq “ 1´ iσmpsq4π T plqmmpsq, pm “ 1, . . . , nq. (2.64)

The inelasticities parametrize the dynamical absorptive effects deviating the S-matrix
diagonal elements from having modulus unity. These effects come into play at energies
big enough to open higher channels. Therefore, they enter in different energy regions,
satisfying 0 ď ηipsq ď 1 whenever s ě s

piq
0 . The exception is the lightest channel i “ 1,

for which η1psq is one in the elastic regime of energies s0 ď s ă s
p2q
0 , recovering Eq. (2.60).

Furthermore, using the condition SpsqS:psq “ I, one can readily show that η1psq “ η2psq

in the region sp2q0 ď s ă s
p3q
0 , when there are only two coupled channels open.

5The exceptional case in which the expansion is not possible would be in the presence of a bound state
pole located at threshold. In the case where there exist a weakly bound state sb, sb ă s0, cot δpsbq “ i
and Eq. (2.61) becomes, for S-wave, γ “ 1{a0 ` γ

2r0{2, with γ “ Abs|~ppsbq|.
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Figure 2.4: Analytic structure of the function T psq{ps´ zq on the complex s-plane Cs.

Dispersion relations. Nevertheless, even if the analytic structure of the partial wave
amplitudes provides useful constraints, these, are not enough per se to describe physical
systems. In any case, what one effectively does is to encode the dynamical information
of the amplitudes in different places, like the pole positions, residues, phase shifts and
inelasticities. Let us consider a single-channel T ps, tq for a fixed t-value. Formally, our
amplitude T pzq can be represented as an integral in the complex plane Cs along a closed,
counter-clockwise oriented path γ including z, by means of Cauchy’s Residue Theorem,

T pzq “
1

2πi

ż

γ

dz1 T pz
1q

z1 ´ z
(2.65)

provided T pzq is analytic inside γ. Now, if the contour γ is enlarged to the circuit ΓpR, εq,
see Fig. 2.4, Eq. (2.65) is no longer valid and should be modified to accommodate all the
new enclosed singularities of T pz1q{pz1 ´ zq. Let us assume that we know in advance that
there exist real poles, like in the situation depicted in Fig. 2.4. In that case we should
rewrite Eq. (2.65) including all the pole contributions on the left hand side,

T pzq `
g2

M2
b ´ z

`
g2
u

Σ´ t´M2
b ´ z

“
1

2πi

ż

ΓpR,εq
dz1 T pz

1q

z1 ´ z
(2.66)

while the right-hand side integral can be divided into three main pieces: the straight
segments, that enclose the left and right branch cuts, and the two circular curves on the
upper and lower half planes. If, as we enlarge the circuit Γ, the integrand vanishes6—

6It should be mentioned that one can always perform a Cauchy representation of the function T pzq{pz´
z1q ¨ ¨ ¨ pz ´ znq such that the integrand evaluated on the circular path—of large enough radius R—gives
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|T pReiφq| Ñ 0 for RÑ 8 (φ P p0, πq
Ť

pπ, 2πq)— the contribution of the circular integrals
can be neglected for large values of R. Hence, in the limit of vanishing ε and very large R
we are left with the contribution of the straight segments along the upper and lower lip
of the cuts, which gives,

T pzq `
g2

M2
b ´ z

`
g2

Σ´ t´M2
b ´ z

“
1

2πi

ż

U

DiscT pz1 ` iεq
z1 ´ z

dz1 ` 1
2πi

ż 8

s0

DiscT pz1 ` iεq
z1 ´ z

dz1
(2.67)

Eq. (2.67) stems from the simplified analytic structure represented in Fig. 2.4. In general,
as already mentioned, the left-hand cut structure could be more complicated. In this work
we aim to describe the interaction of hadrons at low energies, therefore, we will pursue
a sufficiently accurate description of the amplitude T pzq for values in the region close
to s0. The exact structure of the left-hand cut contributions has a small effect on the
amplitude in the scattering line, since it will give rise to mild s-dependences for s ą s0,
as long as the cuts are sufficiently separated. Furthermore, the low energy constants
will effectively account for these effects, and the presence of resonances or weakly bound
states makes even less relevant a correct treatment of the left-hand cut terms. The former
discussion can alternatively be displayed in terms of the inverse amplitude T´1pzq—recall
Eq. (2.54)—by writing the following dispersive representation [132],

T´1
pzq “ Qpzq ` 1

2πi

ż 8

s0

DiscT´1pz1 ` iεq

z1 ´ z
dz1 (2.68)

In Eq. (2.68), the energy dependence encoded in the function Qpzq accounts for the
dynamics (bound states, left hand cut contributions, etc...), while the integral guaran-
tees that the amplitude satisfies exact unitarity (2.54) by construction, since we can use
Eq. (2.45) and get,

T´1
ps` iεq “ Qpsq ` 1

8π2

ż 8

s0

σpz1 ` iεq

z1 ´ s´ iε
dz1

“ Qpsq ` 1
8π2P

ż 8

s0

σpz1 ` iεq

z1 ´ s
dz1 ` iσps` iεq8π . (2.69)

In the next section we shall see how it is possible to establish a connection between
the function Qpsq and the dynamics of the scattering constituents. With this link, the
formulation in Eq. (2.69) would allow for a program to construct amplitudes satisfying
symmetry constraints, and, at the same time, consistent with unitarity. The drawback
is that, in most of the approximations for Qpsq, the exact crossing structure is lost. As
commented before, some mild contributions may be considered as absorbed in the free
parameters, since, at least we need to introduce one subtraction in order to make finite
the principal part integral in Eq. (2.69).

2.4 The Bethe-Salpeter resummation
We discuss here the method that we shall utilize to build unitary amplitudes in a coupled-
channels formalism, starting from kernel amplitudes consistent with a set of symmetry
a vanishing contribution.
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properties. The general idea was originally proposed in the work of Oller and Oset [130]
as an approach to the lowest-lying unflavoured meson resonances in the scalar sector.
There, the applicability of the tree level χPT amplitudes was extended by means of
the restoration of exact two-body unitarity. This approach was in the spirit of previous
attempts of describing meson-nucleon resonances by Kaiser, Siegel and Weise [128, 129].
Whereas in the latter cases the idea was based on the resolution of S-wave non-relativistic
Lippmann-Schwinger and Schrödinger equations with pseudo-potentials obtained from
χPT amplitudes, in the case of Ref. [130] the tree-level amplitudes were directly iterated
in a set of algebraic Lippmann-Schwinger equations with relativistic propagators. The
approach has been successively extended to study dynamically generation of resonances in
meson-meson [130,132,153–155] or meson-baryon [131,133,156] in a diversity of situations
and sectors in order to assess and/or incorporate the dynamical generation of resonances.

Dynamically generated resonances. As we have discussed in the previous section,
one particle (stable or unstable) states are associated to poles in partial wave amplitudes
on its different sheets. When constructing the dispersive representation, its presence has
always been imposed in advance. As it may seem natural to think, in a real situation
without enough information this is a clear disadvantage, since such approach lacks of
predictivity in that sense. On the other hand, amplitudes obtained in perturbation theory
would never contain any further pole singularity than those introduced at the Lagrangian
level. One should use nonperturbative methods, such as scattering equations or infinite
resummations of diagrams in order to generate pole singularities. In this context, when
an amplitude obtained after some sort of nonperturbative method contains poles, either
in the first or second Riemann sheets, the latter are called dynamically generated poles or
resonances, specially when their dynamics is decisively influenced by the unitarity hadron
loops.

The Bethe-Salpeter Equation (BSE). Let us rewrite the kinematic variables s, t
and u resorting to the following notation for the iÑ j process,

Hip
P

2 ` pq ` φip
P

2 ´ pq Ñ Hjp
P

2 ` qq ` φjp
P

2 ´ qq. (2.70)

The variables in Eq. (2.70), in terms of the Mandelstam variables, correspond to s “ P 2,
t “ pp´ qq2 and u “ pp` qq2. The amplitude of the process will be written as T pP qij pp, qq,
making the off-shell dependence explicit. In this language, the BSE equation reads [132]
(see also [157]),

T
pP q
ji pp, qq “ V

pP q
ji pp, qq `

n
ÿ

a“1
i

ż

R4

d4k

p2πq4
V
pP q
ai pp, kq

∆´1pP2 ´ k,maq

T
pP q
ja pk, qq

∆´1pP2 ` k,Maq
. (2.71)

It relates the complete off-shell amplitudes T pP qji pp, qq with the full set of two-particle irre-
ducible (2PI) diagrams without unitarity cuts, V pP qji pp, kq (red dashed circles in Fig. 2.5),
plus the renormalized full propagators ∆pp,mq “ pp2´m2`iεq´1 (double lines in Fig. 2.5)
of the heavy H` (M`) and light φ` (m`) mesons. In what follows, in many ocassions, we
will refer to the 2PI amplitudes as potentials. Eq. (2.75) can be understood diagrammat-
ically as the resummation depicted in Fig. 2.5—note that one can iterate the solution
by insertions of T pP qja pk, qq on the right hand side. The limitation of the BSE lies in the
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Figure 2.5: Diagrammatic formulation of the Bethe-Salpeter Equation

knowledge of the dynamics, which would determine V pP qji pp, qq and ∆pp,mq. One could
use a perturbative kernel for V pP qji pp, qq and ∆pp,mq derived from some effective quantum
field theory to get consecutive approximations to the exact T pP qji pp, kq. In that case, the
necessary renormalization constants—to regularize the subsequent ultraviolet (UV) diver-
gent loop integrals—would reflect the lack of knowledge of the short distance physics (or
approximated nature of the solution). These low energy constants will account for some
contributions from higher orders.

On-shell scheme. A very important simplification for the resummation of (2.75) is
found when off-shell effects are neglected in the loop integral. This step is justified if,
as it was shown in the case of the π-π interaction involving chirally invariant 2PI am-
plitudes [132], the off-shell contributions lead to power-like divergences with the same
structure as the potential. These divergencies can be absorbed by renormalizing the
low energy constants in the V pP qji pp, kq amplitudes. This is also the case for the Hp˚qφ
scattering, which is also governed by the chiral counting rules.

The partial wave decomposition of the half off-shell two-particle amplitude (P “

p
?
s,~0q) is,

V
pP q
ai pp, kq “

8
ÿ

l“0
p2l ` 1qPlpcos θ~p,~kqV

plq
ai ps, k

2, P ¨ kq (2.72)

where we have taken into account that on-shell, p2 “ pm2
i `M2

i q{2 ´ s{4, and that p0 is
a function of s. Besides, θ~p,~k is the angle formed by ~p and ~k. Using a similar expression
for T pP qja pk, qq, we find,

8
ÿ

l“0
p2l ` 1qPlpcos θ~p,~qqT plqji psq “

8
ÿ

l“0
p2l ` 1qPlpcos θ~p,~qqV plqji psq

`

n
ÿ

a“1

8
ÿ

l,l1“0
p2l ` 1qp2l1 ` 1q i

ż

R4

d4k

p2πq4
V
plq
ai ps, k

2, P ¨ kq

∆´1pP2 ´ k,maq

T
pl1q
ja ps, k

2, P ¨ kq

∆´1pP2 ` k,Maq

ˆPlpcos θ~p,~kqPl1pcos θ~q,~kq. (2.73)

At this point, we recall Eq. (2.30) to perform the angular integration. Using that
ż `1

´1
dΩpk̂qPlpcos θ~p,~kqPl1pcos θ~q,~kq “

4π
2l ` 1δll

1Plpcos θ~q,~pq. (2.74)
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we get,

T
plq
ji psq “ V

plq
ji psq `

n
ÿ

a“1
i 4π

ż dk0 |~k|2d|~k|
p2πq4

V
plq
ai ps, k

2, P ¨ kq

∆´1pP2 ´ k,maq

T
plq
ja ps, k

2, P ¨ kq

∆´1pP2 ` k,Maq
. (2.75)

Now, within the on-shell approximation, where k2 and P ¨ k in the arguments of V plqai and
T
plq
ja are approximated by their on-shell values, we finally obtain,

T
plq
ji psq “ V

plq
ji psq `

n
ÿ

a“1
V
plq
ai psqGapsqT

plq
ja psq (2.76)

with the loop function of the two mesons associated to the channel “a” given by,

Gapsq “ i

ż

R4

d4k

p2πq4
1

ppP ´ kq2 ´m2
a ` iεq pk

2 ´M2
a ` iεq

. (2.77)

The k0 integral can be performed taking into account that the integrand has poles
located at positions k̃0

m˘ “
?
s ¯ pEm ´ iεq and k̃0

M˘ “ ¯pEM ´ iεq, where E2
xp
~kq “

~k2` x2 (x “ m,M). Thus, choosing an appropriated closed path—as we did to build the
dispersive representation (2.67) (see Fig. 2.4)—we can close the k0 integral on a segment
of the real axis r´R,Rs using a semicircle line of radius R, clockwise oriented. In the
limit RÑ 8 the contribution from the semicircular path vanishes, and we obtain the k0

integral in terms of the residues at the poles with negative imaginary parts k̃0
m´ and k̃0

M´

Gapsq “ ´ 2πi
ż

R3

d3k

p2πq4 i
«

1
`

k̃0
m´ ´ k̃

0
m`

˘ `

k̃0
m´ ´ k̃

0
M´

˘ `

k̃0
m´ ´ k̃

0
M`

˘

`
1

`

k̃0
M´ ´ k̃0

m`

˘ `

k̃0
M´ ´ k̃0

m´

˘ `

k̃0
M´ ´ k̃0

M`

˘

ff

“

ż

R3

d3k

p2πq3
Em ` EM
2EmEm

1
s´ pEm ` EMq2 ` iε

. (2.78)

We shall need some regularization in order to deal with the logarithmic UV divergence
of Eq. (2.78). We will come back to this point later. Performing the change of variables
z1 “ pEm ` EMq

2 we obtain (the angular integration gives 4π),

Gapsq “

ż 8

s0

dz1σpz
1q

8π2
1

s´ z1 ` iε
, (2.79)

which has a suitable form to extract the imaginary part of the loop function (2.45). Thus,
one gets,

ImG`ps` iεq “ ´
|~p`psq|

8π
?
s
“ ´

σps` iεq

8π . (2.80)

Eq. (2.76) can be easily solved, either in terms of the amplitude or its inverse. Using
the matrix notation T psq and V psq—in the space of coupled channels—to respectively
denote the partial wave and 2PI amplitudes, plus introducing rGpsqsij “ Gipsqδij, the
solution is,

T psq “ rI´ V psqGpsqs´1 V psq (2.81)
T´1

psq “ V ´1
psq ´Gpsq (2.82)
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where we have omitted the partial wave labels. The amplitude obtained solving Eq. (2.81)
or (2.82) satisfies exact unitarity across the right hand cut (2.54). This is thanks to the
imaginary part of the loop function (2.80), since ImT´1psq “ ´ImGpsq. Recall that the
two-particle irreducibility of the amplitudes implies that these are real functions free of
right hand cuts for energies s P L. In this on-shell approximation, the physics encoded
in the kernel 2PI amplitudes of the matrix V ´1psq in Eq. (2.82), characterize the Qpsq
function introduced in the dispersive representation of Eq. (2.69). It is illustrative to
compare Eq. (2.82) with the elastic dispersive representation of T´1psq ´ T´1ps1q, where
s1 is a subtraction point. From Eq. (2.69) we get

T´1
psq “ pT´1

ps1q ´Qps1qq
loooooooooomoooooooooon

”α

`Qpsq ` 1
8π2

ż 8

s0

σpz1 ` iεqps´ s1q

pz1 ´ s1qpz1 ´ sq
dz1

“ α `Qpsq ` 1
8π2

ż 8

s0

σpz1 ` iεqps´ s1q

pz1 ´ s1qpz1 ´ sq
dz1. (2.83)

While solving the on-shell BSE (with Gpsq in the form (2.79)), we find

T´1
psq “ pT´1

ps1q ´ V
´1
ps1qq

looooooooooomooooooooooon

”α1

`V ´1
psq `Gpsq ´Gps1q

“ α1 ` V ´1
psq `

1
8π2

ż 8

s0

σpz1 ` iεqps´ s1q

pz1 ´ s1qpz1 ´ sq
dz1. (2.84)

In this way, we realize how the energy dependence of the functions Qpsq is clearly in
correspondence with the dynamics associated to the 2PI amplitudes [132]. In Eqs. (2.83)
and (2.84) the undetermined constant factors, α and α1, arise from the renormalization
scheme—in this case, subtracting the value of T at s1. Hence, we shall have that an
amplitude T psq calculated using a regularized loop function, G(R)pΛ, sq, will be equivalent
to a once-subtracted dispersive representation (2.83) provided,

T´1
psq “ V ´1

ps,Λq ´GpRqpΛ, sq, (2.85)

where the regulator (Λ) dependence of GpRq should be absorbed by the low energy con-
stants of the 2PI amplitudes. Consequently, the observables would not be sensitive to
ambiguities in the regularization procedure. This could not be always the case, given
that in practice it may not be feasible to include the full set of 2PI amplitudes and
some truncation will be implemented. Hence, one should expect some (mild) dependence
of the observables on the UV regulator. In all the cases, the input consists on phe-
nomenological perturbative amplitudes—potentials—which are calculated at some order
and, consequently, depend on a finite set of low energy constants. Whenever the changes
experimented by T psq—due to different values of the regulator—are significant, these
would be pointing out that the role of higher orders could be important. Conversely, from
an alternative perspective, we see that the regulator effectively accounts for part of the
higher order contributions.

2.5 The unitary T -matrix in coupled channels
In the rest of the dissertation we shall make extensive use of the formalism introduced
up to this point. The purpose of this section is to summarize the results gathering the
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relevant expressions in a common place. In all the situations, we will deal with systems
in which the relevant degrees of freedom must be considered in the formalism of coupled
channels. As already derived in the previous section, a unitary T -matrix in the space of
N coupled channels is obtained by solving the algebraic equation (2.85)

T´1
psq “ V ´1

psq ´GpRqpsq, (2.86)

GpRqpsq “ diag
´

G
pRq
1 psq, . . . , G

pRq
N psq

¯

, (2.87)

in which we omit the regulator dependence of the input tree level amplitudes V and
of the loop function matrix GpRq, although, they should be implicitly understood to be
there. Besides, we may use different regularization “R” schemes for the loop function—
either because we explore implications of previously fixed unitary models, or in order to
compare different regularization procedures. For convenience, all the necessary formulae
concerning the regulated loop function can be found in appendix A.

We shall also search for poles in the complex s-plane Cs. As already discussed in
Sec. 2.3, we will be able to reach the different 2N Riemann sheets by performing the
analytic continuation of Eq. (2.58) on the diagonal elements of the inverse amplitude
T´1. Thanks to Eq. (2.86), this operation may be applied to the set of loop functions
carrying the right hand cut structure

tG
pRq,ξ1
11 , G

pRq,ξ2
22 , . . . , G

pRq,ξN
NN u (2.88)

where each of the variables ξi can take the values ξi “ 0 or 1, and denote if the analytic
continuation

G
pRq
ii psq Ñ G

pRq
ii psq ` i

σipsq

8π ξi, s P C , (2.89)

has or has not been performed in each channel. Consequently, the vectors ~ξ “ pξ1, . . . , ξNq

serve to label the possible sheets, with ~ξ “ ~0 referring to the physical, first Riemann sheet.
Nevertheless, we will be interested in those sheets analytically connected with the first
one—the physical sheet—on the upper lip of each cut, and refer to it, with some abuse of
notation, as the unphysical or “second” sheet. If, as we have previously introduced, we
label the different thresholds as

s
p1q
0 ” pMH1 `mφ1q

2 , (2.90)
s
p2q
0 ” pMH2 `mφ2q

2 , (2.91)
. . .

s
pNq
0 ” pMHN `mφN q

2 , (2.92)

the mentioned second sheet is defined, for a given cm energy satisfying spn`1q
0 ąRetsu ą

s
pnq
0 , as ξi “ 1 for i “ 1, 2, . . . , n and ξi “ 0 for i ą n. On the other hand, for each pole
singularity located at the position sP “ pM ´ iΓ{2q2, we identify the couplings of the
associated resonance to the channels i and j by means of the residue of the T -matrix (see
Eq. (2.44) and the related discussion),

Tijpsq «
gigj
s´ sP

, s « sP

gigj “ Res rTij; sP s
(2.93)
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either for a pole on the physical or unphysical sheet. The residue can be numerically
computed by means of an integral along a circle of radius ρ enclosing sP :

Res rTij; sP s “
1

2πi

ż 2π

0
dθ TijpsP ` ρeiθqiρeiθ. (2.94)

It should be noted that some caution is needed, since ρ should be chosen small enough to
avoid including further singularities different to sP inside the contour.

In the following chapter we shall focus on the kernel potentials that will model the low
energy S-wave interaction of the degrees of freedom. These will be chosen on the light of
the symmetries of the underlying theory, QCD.

2.5.1 Finite volume
In hadron spectroscopy, LQCD is playing a very important role [70, 158, 159]. The path
integral formulation of QCD on Euclidean R4 space-time is numerically evaluated, replac-
ing the latter by a discretized lattice of points [160], that is further bounded to a finite
volume V ˆ T P R3 ˆR.

The properties of hadrons, associated to QCD one-particle eigenstates,

HQCD |mi, ~p;σy “ Eσ,i
~p |mi, ~p;σy (2.95)

are extracted from Euclidean correlation functions [159] computed on the lattice, thanks
to the behaviour of the correlator at large time separations,

ż

d3x e´i~p ~x x0|Oσ
pxqOσ

p0q: |0y9
ÿ

i

|αi|
2 e
´Eσ,i

~p
|x0|

2Eσ,i
~p

`O rtwo-particle eigenstatess ` . . . (2.96)

The correlation functions are built out from operators Oσpxq with definite quantum num-
bers “σ” on the Heisenberg representation,7 Oσpxq “ eHQCD|x0|´iPxOp0qe´HQCD|x0|`iPx.
They are often constructed in a way such that their overlap (αi) with the desired QCD
eigenstate |mi, ~p;σy is maximal, since as shown in Eq. (2.96), in principle one should ex-
pect contributions coming from all the QCD eigenstates allowed by the quantum numbers
at stake.

The case of resonant unstable states cannot be treated as illustrated in Eq. (2.96)
since they appear as poles on the unphysical sheet of the scattering amplitudes. Ideally,
one probably would like to have a way to access the scattering amplitudes via LQCD.
Unfortunately, it is not possible to obtain directly this information using LQCD compu-
tations: on the Euclidean lattice there is no difference between |iny and |outy states, and
the matrix elements (2.1), (2.14) are real valued.8 Therefore, using lattice correlation
functions it is not possible to directly detect changes in the amplitude phase due to the
interaction. This result is known as the Maiani-Testa theorem [161].

Instead, the information on these states, and on scattering in general, should be ob-
tained from the dependence of the energy spectrum of eigenstates on the size of the finite

7We recall that Heisenberg representation describes the time evolution in the Minkowski space of an
operator φ driven by a time independent Hamiltonian H “ H0 `HI as φHptq “ eiHtφe´iHt.

8There is no such concept of “asymptotic state” in a confined space-time.
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volume V , as well as the difference with the free (noninteracting two particle) spectrum.
This approach was proposed by Lüscher in 1985-1986 [162–164] in the context of non-
relativistic elastic scattering of two particles. Essentially, it establishes a relation between
the interacting energies E~ppLq and the scattering phase shifts in a cubic volume V “ L3

configuration with periodic field boundary conditions. This approach, as well as its ex-
tensions and generalizations, has been widely used in the recent LQCD analysis of hadron
systems.

In our case, in many situations we will use as input the lattice information on the
volume dependence, E~ppLq, obtained for different two-meson systems, with the purpose of
learning about their properties and constrain the two-body interaction, V psq. The LQCD
results are subject to a series of artifacts (unphysical pion masses, finite lattice spacing,
etc...) which arise during their technical implementation. They vary from one study to
another, to make profit from the LQCD input it is necessary to adapt the unitary approach
discussed in the previous section, and try to implement the lattice characteristics. We
highlight in what follows the most important points which are common to all lattice
studies.
• In general, the simulations can be performed in one or several volumes with different

geometry and boundary conditions. However, in this thesis we will always have
spatial cubic isotropic lattices, which gives rise to volumes of side length L and
periodic boundary conditions.

• Lorentz invariance under space-time transformations is only recovered in the contin-
uum limit. The lattice spacing of the spatial coordinates, a, restricts the maximum
momentum available to the Brillouin zone pi ă π{a, introducing an ultraviolet cut-
off. The symmetry under continuous spatial Op3q rotations is reduced to the set
of discrete rotations of the cubic point group Oh. In particular, the irreducible
representation that corresponds to S-wave is the one denoted as A`1 , which also
comprises D-waves [164]. Nevertheless, we shall neglect the mixing between S- and
with D-waves when considering finite volume results from the A`1 sector.

• The practical lattice implementations might involve unphysical hadron masses and
energy-momentum dispersion relations, therefore, in those cases we will consistently
implement the same kinematic conditions. Some of these effects may be due to the
use of finite volumes, finite lattice sizes and unphysical quark masses. The LQCD
simulation of physical u and d quarks is very demanding from the computational
point of view [165].

• The periodic boundary conditions introduce a maximal resolution of the possible
three-momenta configuration of the states. The three-momentum states are quan-
tized as ~q~n “ p2π{Lq ˆ ~n, ~n P Z3 [160,166].

We extend the unitarized T -matrix scheme, presented in previous sections, to finite vol-
umes implementing periodic boundary conditions [41,167]. In this way, we would directly
compare with the LQCD results. For simplicity, we will first consider a single channel case.
The generalization to coupled channels is straightforward. The finite volume T -matrix,
rT ps, Lq, can be employed to determine the discrete spectrum of eigenenergies s˚ “ pE˚q2,
s˚ P R:

”

rT
`

pE˚q2, L
˘

ı´1
“ rV ´1 `

pE˚q2, L
˘

´ rGpRq
`

pE˚q2, L
˘

“ 0 (2.97)
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Figure 2.6: Example of the energy levels solution of rT´1pE,Lq “ 0 (Eq. (2.97)) using
the finite volume loop function of Eq. (2.100). In the top panel, the energy dependence of
rGpRqpE,Lq for a fixed box size is shown in blue—note how the latter is made up of a sum
of poles (2.100) located at the free energies Efree

N pLq—together with two cases of elastic
repulsive (dashed-green) and attractive (solid-red lines) interaction potential V . Therein,
black circles (squares) correspond to the eigenenergies solution of (2.97), in the attractive
(repulsive) case. In the bottom left (right) panels, the volume dependence of the spectrum
of eigenenergies for an attractive (repulsive) case is shown. The points correspond to the
fixed volume solutions of the upper plot. Note how the interaction shifts the energy levels
towards smaller or larger energies compared to the noninteracting ones (blue dashed lines).

where the difference with respect the on-shell Bethe-Salpeter equation (see Eqs. (2.85)
and (2.86)) is in the three-momentum integral, that must be replaced by discrete sums
over the allowed momenta,

ż

R3

d3q

p2πq3 Ñ
ÿ

~nPZ3

1
L3 . (2.98)

For 2PI amplitudes not involving loops, the finite box corrections to the infinite volume
potentials V are exponentially suppressed [162], and will not be considered in this work.
On the other hand, as already mentioned, we will take into account the unphysical lattice
meson masses when solving the energy levels from Eq. (2.97).

The eigenenergies associated to the allowed discrete two-meson “scattering states” in
the finite box are obtained from the singularities of rT , zeros of rT´1, from Eq. (2.97). Let
us introduce here the cm free energies,

Efree
~n pLq “ Em

~n pLq ` E
M
~n pLq “

b

~q 2
~n `m

2 `

b

~q 2
~n `M

2. (2.99)

The dependence on the square of the three-momentum in Eq. (2.99) allows us to la-
bel the free energies by means of their associated integer magnitude number m ” ~n2 “
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|~q~n|
2L2{p4π2q. Let us denote the set of values of m as M. We realize that each value of

m P M will have a different associated multiplicity, Mpmq, i.e., a different number of ~n
configurations leading to the same m (for further details on this issue see, e.g., Ref. [168]).9
Note that not all values of m are allowed, thus for instance the multiplicity of m “ 7 is zero.
With this information, the UV renormalized finite volume version of the loop function
(2.78) can be obtained through the replacement (2.98) as the sum,

rGpRqps “ E2, Lq “
mmax
ÿ

mPM

Mpmq
L3

Efree
m pLq

2Em
m pLqE

M
m pLq

1
E2 ´ pEfree

m pLqq2
. (2.100)

The upper value of the sum is needed to render finite the loop function. It would corre-
spond to the use of a hard UV cutoff in the momentum integration of the loop function in
Eq. (2.78) for infinite volume. The finite volume loop function can be renormalized using
different procedures, as we will see later.

From Eq. (2.100), we learn that in the limit of vanishing interaction, rV Ñ 0, we
can interpret the rT singularities satisfying rV ´1pE˚, Lq “ rGpE˚, Lq, as the noninteracting
eigenenergies. For each value of L, we expect a tower of energies E˚ “ Efree

m satisfying
the condition above. The interaction (V , 0) will hence deviate the eigenenergies E˚
from the values Efree

m . On the upper panel of Fig. 2.6, we show (blue solid lines) the finite
volume loop function for a fixed volume size. Two cases of an attractive and repulsive
interaction are shown, and the associated eigenenergies solution of (2.97) are depicted as
black circles and squares, respectively. On the lower panels, the energy levels obtained in
the two sample cases of interaction are illustrated; we can see the effect of the interaction
on the shift of the solid lines associated to the volume dependence of the eigenvalues with
respect to the free energy levels (dashed blue lines in the plots).

Note that, neglecting finite volume effects in the potential V ´1, one obtains the infinite
volume T -matrix precisely for the eigenenergies, E˚, found in the LQCD simulation—
carried out for the volume L—since they satisfy V ´1pE˚q “ rGpRqpE˚, Lq, and therefore

T´1
pE˚q “ rGpRqpE˚, Lq ´GpRqpE˚q. (2.101)

In the above equation, the meson masses correspond to those found in the LQCD simula-
tion. The difference rGpRqpE˚, Lq´GpRqpE˚q is related with the Luscher Z00 function [163],
as it was shown in Ref. [167] (see also Ref. [169]). In addition, T´1pE˚q can be used to
obtain the cm two-meson phase shifts.

As we have seen, the lattice input can be used to determine the interaction V . This
might, in turn, imply that the finite volume and discretization effects will be propagated
into the low energy parameters entering in the kernel potentials. Henceforth, we shall
keep in mind this issue in some of the future chapters when interpreting the corresponding
results.

9Hence, for example, Mp0q “ 1, Mp1q “ 6, Mp2q “ 12, etc... For ~n2 “ 2, one has p˘1,˘1, 0q,
p˘1, 0,˘1q, p0,˘1,˘1q which gives rise to 12 different momenta.
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Chapter 3

Interactions

3.1 Preliminary remarks
In the previous chapter we have presented the formalism to describe the interaction of
multiple two-meson channels in a way consistent with the constraints of exact two-body
unitarity, and the low energy analytic structure of the scattering amplitudes. The non-
perturbative T -matrix was obtained using kernel potentials for the two-meson degrees of
freedom and performing a nonperturbative resummation to restore exact coupled-channels
unitary. In the present chapter we will discuss how to incorporate the symmetry prop-
erties of QCD to the strong interacting meson system, and more specifically, how to
employ the underlying QCD information to construct the 2PI amplitudes (potentials).
The latter will be obtained from effective Lagrangians, that incorporate the imprints of
the exact and approximate relevant QCD symmetries in a situation where the relevant
degrees of freedom are mesons and not quark and gluons. To achieve this goal, we shall
firstly focus in Sec. 3.2 on the symmetry properties of QCD in the heavy and light quark
sectors. The light-quark chiral symmetry and its breaking pattern is essential; its role and
the identification of each member of the octet of light pseudoscalar mesons as a pseudo
Nambu-Goldstone boson (pNGB) will be discussed. On the other hand, heavy quark
symmetries are very useful in the classification and understanding of the QCD spectrum
in the heavy quark sectors. How to implement these symmetries on the meson degrees
of freedom will be discussed in Section 3.3. Finally, in Section 3.4 we will present the
interaction Lagrangians that will be later employed in Chapters 4, 5, 6, 8, and 9.

Effective field theory. The concept of effective theories [170] is a hot-topic, guiding
an important subset of research efforts in particle physics in the last three decades, up
to the present days. Even if each effective theory might be very different from the rest,
all of them are based on the same idea: the existence of a relevant scale, Λ, which allows
to construct an approximate (effective) theory in terms of some small physical quantity
q. The applicability of the approximated theory will be restricted to the situations in
which q{Λ . 1, and its usefulness lies on the fact that, in such regime, the details of the
real theory at scales larger than Λ are not essential. In that sense, it will involve the
degrees of freedom which are relevant in its regime of applicability—if Λ is an energy
scale, one might neither explicitly include particles heavier than Λ nor physics details at
distances shorter than 1{Λ. All these effects will be encoded in the low energy parameters
of the effective theory. In the case of effective field theories [170], the goal is to construct
the most general Lagrangian consistent with a given set of symmetries, as well as other
general requirements [171–173].1 In our case, we will deal with the low energy regime of
the strong interactions. Hence, it will be necessary to impose the symmetries of QCD.

1It should provide the most general amplitude "consistent with analyticity, unitarity, cluster decom-
position and the assumed symmetry principles" [173] (in a perturbative manner).
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The number of possible terms in the effective Lagrangian is infinite since in general there
will be infinite operators satisfying the requirements mentioned above. By assigning a
counting rule to the different building blocks of the Lagrangian, these pieces are organized
in terms of their contributions to the scattering amplitudes of a particular topology by
means of powers of pq{ΛqN . Therefore, the observables computed perturbatively will be
known at a determined level of precision, which may be improved by including more terms
(higher order contributions pq{ΛqN

1

, N 1 ą N). Each new term in the Lagrangian will be
accompanied, in general, by an undetermined coefficient, a Low Energy Constant (LEC),
parametrizing our “ignorance” about the UV behaviour of the underlying (real) theory.
As mentioned above, the LECs effectively incorporate effects from short distance physics
and from heavier degrees of freedom that have been integrated out in the path integral.
In χPT, the Weinberg’s power counting [173] ensures that at a given order, provided one
includes all the allowed operators, the field theory is renormalizable; the new ultraviolet
divergences arising at higher orders can be absorbed by the new renormalized LECs. This
is a general property of well-defined effective field theories [174]: they are renormalizable
order by order, and renormalizability stems from the fact that one is considering all
the necessary effective operator structures which provide the most general amplitude
satisfying the demanded symmetry properties.

The contents of this chapter constitute a sequential exposition of the most relevant as-
pects behind the construction of the effective field Lagrangians that we will consider in the
research applications. A more systematic and thorough review of the crucial features in-
volving the light-quark symmetries of QCD may be found in the textbooks [175,176]. Con-
cerning the construction of effective Lagrangians of QCD involving Goldstone boson de-
grees of freedom we quote the historical papers [177–179] as well as the reviews [180–182].
Finally, the heavy quark symmetries and their interplay with χSym in the construction
of effective Lagrangians can be found in Refs. [19, 21,183–185].

3.2 Quantum Chromodynamics and its approximate
symmetries

Quarks and gluons are the fundamental degrees of freedom of the strong interaction. QCD
is a gauge theory invariant under local SU(3)—color—transformations of the quark and
gluon fields. As already mentioned, one of the most relevant properties of QCD is the
so-called asymptotic freedom and its implications on low energy perturbative calculations.
We shall see how, nevertheless, it is possible to use QCD to learn about the nature of
the strong dynamics at low energies by exploiting its approximate symmetries, as well as
their breaking pattern.

Let us consider the term in the QCD Lagrangian density containing the quark fields
ψc
f , with the index c and f labelling the three colors and six flavours respectively. It is

convenient to gather the quark fields into color triplets ψf “ pψ1
f , ψ

2
f , ψ

3
f q

T, and fur-
thermore, introduce additional notation to distinguish the light and heavy quark flavour
sectors: qf ” ψf for f “ u, d, s and Qf ” ψf for f “ c, b, t, with bare masses mf and
Mf in each case. The separation of the quarks into these two sectors may be justified
by the existence of the scale ΛQCD and the fact that the current quark masses satisfy
mq ă ΛQCD ! mQ [14]. In this context, the term of the QCD Lagrangian containing the
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fermion matter fields is,

LQCD
“ LQCD

light ` L
QCD
heavy (3.1)

“
ÿ

f“u,d,s
q̄f
`

i {D ´mf
˘

qf `
ÿ

f“c,b,t
Q̄f

`

i {D ´Mf
˘

Qf. (3.2)

The covariant derivative, Dµ, is a matrix in color space

Dµ “ Bµ ` igAµpxq, (3.3)

with Aµpxq “
ř8
i“1A

i
µpxqT

i, where T i are the eight generators of SU(3) acting in the
color space—they are traceless and satisfy rT a, T bs “ i

ř8
j“1 fabjT

j, with fabc the structure
constants of the SU(3) Lie algebra. The constant g is the gauge coupling that defines the
strong coupling constant αs “ g2{4π. The covariant derivative contains the gluon fields
Aiµpxq, ensuring the invariance under local color SU(3) transformations, Ucpxq P SU(3)
(c),

ψfpxq ÝÑc Ucpxqψfpxq “ exp
˜

´i
8
ÿ

j“1
αjcpxqT

j
c

¸

ψfpxq, (3.4)

Aµpxq ÝÑc
UcpxqAµpxqU

´1
c pxq `

i

g
pBµUcpxqqU

´1
c pxq, (3.5)

Dµψfpxq ÝÑc UcpxqDµψfpxq. (3.6)

Note that in Eq. (3.2) we are omitting the gauge fixing and kinetic gluon terms. The
latter is ´TrpFµνFµνq{2, with

Fµν “ BµAν
´ B

νAµ
` ig rAµ,Aν

s , (3.7)

the gluon gauge field strength tensor. Even if it is not possible to use QCD to describe
multi-quark systems involving low momentum transfers, the study of its properties in
certain limits is extremely useful. Here we will focus on two limits which involve the two
separate terms LQCD

light and LQCD
heavy, namely, the limit of vanishing light quark masses mf Ñ 0

and the limit of infinite heavy quark massMf Ñ 8. The interest in these limiting cases—
despite not being strictly realized in nature—is justified by the fact that the confinement
scale, ΛQCD, the energy scale associated to the nonperturbative phenomena in strong
interactions, is much larger that the mass of any of the light quarks and, at the same
time, much smaller than the mass of the heavy quarks. As a consequence, whenever we
deal with the interaction of quarks at energies of the order ΛQCD one may consider the
limits mi{ΛQCD Ñ 0 and ΛQCD{Mi Ñ 0 to be a good approximation. In each of these
limits, QCD exhibits different approximate symmetries. As we will see, they turn to be
essential in the understanding of hadron systems at low and intermediate energies: Chiral
and Heavy Quark symmetries.

Chiral symmetry. First, let us begin rewriting the QCD Lagrangian term containing
only the light quark fields,

LQCD
light “

ÿ

f“u,d,s
q̄fi {Dqf ´

ÿ

f“u,d,s
q̄fmfqf, (3.8)
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in terms of the chiral projections qfLR ” P χ
¯qf and q̄fLR “ q̄fP

χ
˘, where the projectors are

given by

P χ
˘ “ p1˘ γ5q {2. (3.9)

The Lagrangian of Eq. (3.8) now reads

LQCD
light “

ÿ

f“u,d,s

`

q̄fLi {DqfL ` q̄fRi {DqfR
˘

´
ÿ

f“u,d,s
pq̄fLmfqfR ` q̄fRmfqfLq

“ q̄Li {DqL ` q̄Ri {DqR ´ pq̄Lm̂qR ` q̄Rm̂qLq .

(3.10)

We have introduced in Eq. (3.10) the notation in flavour space q “ pqu, qd, qsqT, for both
left and right fields, and m̂ “ diagpmu,md,msq. The QCD Lagrangian for the three
lightest flavours in the massless limit reads,

LQCD
0 “ q̄Li {DqL ` q̄Ri {DqR. (3.11)

The Lagrangians of Eqs. (3.2), (3.10) and (3.11) are invariant under local color transfor-
mations (see Eqs. (3.4), (3.5), (3.6)), parity (P)

ψfpx
0, ~xq ÝÑ

P
γ0ψfpx

0,´~xq

qfLR px
0, ~xq ÝÑ

P
γ0qfRL px

0,´~xq
(3.12)

and charge conjugation (C)

ψfpxq ÝÑC
iγ2γ0 “ψ̄fpxq

‰T
psame for qfLpRqq,

ψ̄fpxq ÝÑC
´ rψfpxqs

T iγ2γ0
psame for q̄fLpRqq,

(3.13)

transformations of the quark fields—“T” denotes transposition in Dirac space. Addition-
ally, due to the absence of the mass term, the Lagrangian in Eq. (3.11) is invariant under
independent global SU(3) transformations in flavour space of the chiral fields,

qL ÝÝÝÝÑ
SU(3)L

LqL “ exp
˜

´i
8
ÿ

j“1
αjLT

j

¸

qL

qR ÝÝÝÝÑ
SU(3)R

RqR “ exp
˜

´i
8
ÿ

j“1
αjRT

j

¸

qR.

(3.14)

The latter group of transformations is known as the chiral group, which in tensor notation
is denoted as G “ SU(3)Lb SU(3)R. Therefore, if g “ pL,Rq P G, the action of the chiral
group on the chiral fields pqL, qRq is simply pLqL, RqRq. We refer to the invariance of
LQCD
light in the limit of vanishing quark masses as the χSym of QCD. The Lagrangian of

Eq. (3.11) is also invariant under Up1q transformations expp´iΘL{Rq of the left and right
quark fields, satisfying ΘL “ ΘR and ΘL “ ´ΘR. The former transformation leads to
the quark—or baryon—number conservation, while the latter is only a symmetry at the
classical level, that is broken by the axial anomaly.

As already mentioned, χSym is only approximate and it is explicitly broken by the
quark masses,

LQCD
light ÝÑ

G
LQCD
light ´

`

q̄L
`

L:m̂R ´ m̂
˘

qR ` q̄R
`

R:m̂L´ m̂
˘

qL
˘

. (3.15)
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Nevertheless, it is interesting to note that in the of case equal quark masses mu “ md “

ms , 0, Eq. (3.15) tells us that there is still a symmetry if the transformation is chosen
of the type L “ R “ U , with U P SU(3). Such set of transformations V ” pU,Uq is called
the group of vector transformations, SU(3)V , a subgroup of the chiral transformations G.

The rest of transformations in the chiral group G are obtained introducing the axial
transformations A ” p´U,Uq, SU(3)A, for which L “ ´R. The axial together with the
set of vector transformations lead to pL,Rq “ pV ´Aq‘pV `Aq, or G “ SU(3)V bSU(3)A.

Thus, in the scenario of equal u, d and s masses, the invariance of Eq. (3.15) under the
action of vector group will imply that hadrons could be organized as members of multiplets
associated to irreducible representations of SU(3)V , with degenerate masses. This invari-
ance of the strong interactions was proposed by Gell-Mann and Ne’eman in the famous
eightfold way [186], promoting SUp2q isospin symmetry to SU(3) in order to accommodate
the strangeness quantum number. It works well in the case of the octet of lightest pseu-
doscalar mesons φm “ tπ˘, K˘, π0, η,K0, K̄0u and baryons φb “ tp, n,Σ˘,Σ0,Ξ´,Ξ0,Λu,
and much better in the case of SUp2qV or isospin. The consideration of infinitesimal chi-
ral transformations in the expressions of Eq. (3.14) leads to the following transformation
properties under vector and axial flavour rotations,

q ÝÝÝÝÑ
SU(3)V

V q “ exp
˜

´i
8
ÿ

j“1
αjV T

j

¸

q

q ÝÝÝÝÑ
SU(3)A

Aq “ exp
˜

´i
8
ÿ

j“1
αjAT

jγ5

¸

q,

(3.16)

where the different parameters are related by αjV
A
“ pαR˘αLq{2. Unlike the case of vector

transformations, LQCD
light is only invariant under SU(3)A in the chiral limit, i.e., when all

quark are massless. The Noether charges associated to the conservation of axial and
vector transformations (3.16) are

Qj
Apx

0
q “

ż

R3
d3xq̄pxqT jγ0γ5qpxq, pj “ 1, 2, . . . , 8q (3.17)

Qj
V px

0
q “

ż

R3
d3xq̄pxqT jγ0qpxq, pj “ 1, 2, . . . , 8q. (3.18)

The eight axial and vector charge operators transform as pseudoscalar and scalar objects
under parity (3.12) and, as a consequence, the action of the axial charges onto QCD
energy eigenstates, H0

QCD |α, ηPy “ Eα |α, ηPy (with ηP the parity quantum number of the
state), will turn negative parity eigenstates into positive ones and viceversa:

|α, j, η1P y ” Qj
A |α, ηP y

P̂ |α, j, η1P y “ P̂Qj
AP̂

´1P̂ |α, ηP y
“ ´ηP |α, j, η

1
P y

where P̂ denotes the parity operator and the relation 9Qa
A “ rH0

QCD, Q
a
As “ 0 would

ensure the degeneracy of the states. The (Wigner-Weyl) realization of χSym in nature,
even if approximate, would produce a parity doubling of the spectrum, i.e., there would
be a spectrum of degenerate SU(3) multiplets, each with two versions showing opposite
parities. In contrast, this is not the case of the observed approximate SU(3)V multiplets
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φmpηP “ ´1q and φbpηP “ `1q, there is no trace of such degenerate chiral partners with
parity η1P “ ´ηP.

On the other hand, if we assume that the (approximate) χSym of the strong interaction
is dynamically broken into SU(3)V , according to the Goldstone theorem [187,188] for each
of the eight broken generators of SU(3)A there will be a massless spin zero boson, the so-
called Nambu-Goldstone bosons [187,189,190] denoted here as ξjpxq, j “ 1, 2, ..., 8. Since
the set of fields will still be invariant under vector transformations, they will fulfil an octet
representation of SU(3)V . The quantum numbers of such bosons are obtained from the
transformation properties of Qj

Apxq, and therefore, they have negative parity.
Due to the explicit breaking of χSym (3.15), the Nambu-Goldstone bosons acquire

finite masses. Additionally, such breaking in the quark masses also introduces differences
between the masses of the members of the SU(3)V multiplets. Nevertheless, if the breaking
is small, in that case one would expect that the mass of these bosons would be smaller
than the rest of the hadron spectrum. This picture gives an explanation to the lightness
of the triplet of pions (in the case of SU(2)V ) or the octet of pseudoscalars φm (in the case
of SU(3)V ) compared to the rest of hadrons. Then, it might seem reasonable to identify
the octet of pseudoscalars φm with the mentioned massive modes or pNGBs.

There is no need to know how QCD undergoes the symmetry breaking in order to
appreciate the consequences of the existence of these approximate massless modes in the
low energy regime of QCD. All of them are encoded in the possible effective Lagrangians
valid at low energies made out with the pNGB, plus other additional degrees of freedom
relevant in each case.

Heavy quark symmetries. The symmetries arising in hadron systems containing hea-
vy quarks can be also inferred from QCD. For a hadron system containing heavy quarks,
these will manifest differently depending on the number and type of heavy quarks present.
Let us pay attention to mesons containing only one heavy quark Q (heavy-light mesons).

Inside a heavy-light meson Qq̄, the heavy quark Q interacting with the light degrees
of freedom, the brown muck, exchanges momenta much smaller than its mass mQ. In first
approximation, the heavy quark momentum pµQ is close to mQv

µ,

pµQ “ mQv
µ
` kµ, (3.19)

where vµ is the four velocity (v2 “ 1) of the hadron (pµH “ mHv
µ, with pH and mH the

hadron momentum and mass). The “residual” momentum k is of order ΛQCD.
In the mQ Ñ 8 limit, the heavy quark is on-shell, since v ¨ k „ OpΛQCDq and p2

Q „

m2
Qp1 ` OpΛQCDq{mQq, hence, the heavy quark and the hadron that contains it have

the same velocity. In this heavy quark limit, the strong interaction effects—encoded
in the residual momentum k—would not change the four velocity. This is the velocity
superselection rule, which requires dealing with the velocity variable as an additional
fundamental parameter.

To deduce the further implications of the heavy quark limit it is very useful to construct
an effective Lagrangian for the heavy quark Qv with four-velocity v. This is achieved
encoding the strong interaction effects in an expansion in powers of 1{mQ and the strong
coupling αspmQq. The applicability of the effective interaction will thus be constrained
to small residual momenta k compared with the heavy quark mass scale: k{mQ ! 1.
This is the reason why in the case of heavy-light mesons, such as D and B mesons, the
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leading corrections due to the finite c and b quark masses are of the order of ΛQCD{mc

and ΛQCD{mb in each case.
Let us consider the heavy quark field Qpxq with an almost on-shell momentum pQ “

mQv ` k inside of a heavy-light meson. From the QCD Lagrangian (3.2) we have

LQQCD “ Q̄
`

i {D ´mQ

˘

Q. (3.20)

Its free propagator is ip{pQ`mQq{pp
2
Q´m

2
Q`iεq, which, in the heavy quark limit, simplifies

to ipI` {vq{p2vk ` iεq. The operators Π˘ ” pI˘ {vq{2 behave like projectors, Π˘Π˘ “ Π˘
and Π˘Π¯ “ 0. In the Q rest frame, v “ p1,~0q, and we have Π`Q “ 1{2 diagp1, 1, 0, 0qQ,
and hence Π` projects the Dirac four-spinor Q into the particle bispinor. It is convenient
to introduce the components,

Qvpxq “ eimQvx Π`Qpxq (3.21)
Qvpxq “ eimQvx Π´Qpxq (3.22)

So that Qpxq “ e´imQvxrQvpxq ` Qvpxqs. The purpose of the exponential factors is to
extract the explicit mQ dependence of the fields. If we use Eqs. (3.21) and (3.22) to
rewrite the QCD Lagrangian (3.20) we find,

LQQCDpxq “ Q̄vpxq riv ¨Ds Qvpxq

´ Q̄vpxq riv ¨Ds Qvpxq ´ 2mQQ̄vpxqQvpxq

` Q̄vpxq
“

i {D
‰

Qvpxq ` Q̄vpxq
“

i {D
‰

Qvpxq.

(3.23)

We see in Eq. (3.23) that the field Qvpxq describes massless degrees of freedom while Qvpxq
is related to fluctuations with twice the heavy quark mass. The latter heavy degrees of
freedom must be removed. Both fields are coupled in the last two terms, which describe the
creation or annihilation of heavy quark–antiquark pairs. The virtual quantum fluctuation
can only propagate over a short distance ∆x „ 1{mQ [185]. We see that the first term
is invariant under heavy quark spin rotations. In a general frame one can always define
generators of spin symmetry in terms of a set of three orthonormal vectors orthogonal to
v (see, e.g. Ref. [185]), still finding that the first term of Eq. (3.23) is invariant under spin
rotations. Additionally, this term in Eq. (3.23) has no explicit dependence on the heavy
quark mass, and it provides the same free propagator ipI` {vq{p2vk ` iεq which would be
obtained from the relativistic one in the heavy quark limit. The invariance under SUp2qS
rotations of the heavy quark spin is called HQSS of QCD, while the independence on mQ

is referred to as HQFS.
The heavy degrees of freedom represented by Qvpxq can be integrated out using the

equations of motion of QCD [21,191],
`

i {D ´mQ

˘

Qpxq “ 0 (3.24)
`

i {D ´mQ

˘

Qpxq “
`

i {D ´mQ

˘

e´imQ vx rQvpxq `Qvpxqs

“ e´imQ vx
`

i {D ´ 2mQΠ´
˘

rQvpxq `Qvpxqs

“ e´imQ vx
`

i {DQvpxq `
“

i {D ´ 2mQ

‰

Qvpxq
˘

. (3.25)

From where it follows,

Qvpxq “
“

2mQ ´ i {D
‰´1

i {DQvpxq «
1

2mQ

i {DQvpxq `O
“

p1{2mQq
2‰ . (3.26)
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If we take Eq. (3.26) into account, we derive the subleading 1{mQ terms—tree-level in
αs—in Eq. (3.23) for the interaction of the Qvpxq field,

Lpxq “ Q̄vpxq riv ¨Ds Qvpxq `
1

2mQ

Q̄vpxq
“

i {Di {D
‰

Qvpxq `O
“

p1{2mQq
2‰ . (3.27)

Now, we recall the definition of the covariant derivative in terms of the gluon fields Aaµpxq,
which allows us expressing {D {D as follows

{D {D “ DµD
µ
`
rγµ, γνs

4 igFµν ” DµD
µ
` g

σµν

2 Fµν (3.28)

where Fµν denotes the gluon field strength tensor (see Eq. (3.7)). The subleading 1{mQ

interaction terms in the Lagrangian (3.27) break HQFS, but, from the two structures
stemming by the terms in Eq. (3.28) only the second one breaks the invariance under spin
rotations in Dirac space. The light degrees of freedom are blind to the flavour (mass) and
spin orientation of the heavy quark. They only experience its color field, which extends
over large distances because of confinement.

We shall make use of these two approximate symmetries arising in heavy-light systems.
In the following sections we will concentrate on the effective interactions involving heavy-
light mesons and pNGBs, which have been employed throughout the different chapters of
this thesis.

3.3 The building blocks

3.3.1 The Nambu-Goldstone bosons
As we have seen in Sec. 3.2, the pNGBs are associated to the dynamical symmetry breaking
pattern

G “ LbRÑ H “ V b V (3.29)

where G denotes the group of chiral transformations, and V the subgroup of vector trans-
formations. The set of Goldstone fields is introduced through the field multiplet ξpxq, that
in each point x is a real vector in a space of dimension n “ nG ´ nV . To build effective
Lagrangians in terms of the Goldstone degrees of freedom, it is necessary to know the
transformation properties of the latter under the symmetry groups. For that, a mapping
ξ1 “ fpg, ξq relating the fields with the group elements g P G is necessary. Besides, in order
to be a representation of the group G the mapping should satisfy fpgg1, ξq “ fpg, fpg1, ξqq.
The symmetry breaking pattern (3.29), states that the vacuum is invariant under the
action of the elements of H. If the vacuum is identified with the field configuration
ξ “ O, the mapping should be such that O “ fph,Oq, with h P H. It will also satisfy
fpg,Oq “ fpgh,Oq, and therefore, it will describe the transformation properties of the
Goldstone fields by group elements defined on the quotient G{H, i.e., the set of left cosets:
G{H “ ttgh|h P Hu|g P Gu. That this mapping indeed exists, it is an isomorphism and
it is unique, has been discussed in detail in the literature [171, 172], here we will simply
explore the implications.

The isomorphic relation allows to identify the Goldstone fields with a group element.
Choosing a representative group element, g “ pL,Rq P G, of each left coset tgh|h P Hu P
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G{H, we would have the transformation properties,

ξ “ fpgh,Oq (3.30)
ξ1 “ fpg, ξq “ fpggh,Oq. (3.31)

In this context, we can always arrange the left coset gh as (the following equalities are
understood @V P V )

g ˝ h “ pLV ,RVq,
“ pI,RL:q ˝ pLV ,LVq,
“ pI,RL:q
looomooon

g

˝ pV ,Vq
loomoon

h

, (3.32)

note that alternatively one could have chosen the element g “ pLR:, Iq as the represen-
tative of the left coset. The action of the chiral transformations on gh is

g ˝ pg ˝ hq “ pL,Rq ˝ pI,RL:q ˝ pV ,Vq,
“ pL,RRL:q ˝ pV ,Vq,
“ pI, RRL:L:q ˝ pLV , LVq,
“ pI, RRL:L:q
loooooomoooooon

gg

˝ pV ,Vq
loomoon

h

. (3.33)

Finally, we arrive to the matrix relating the Goldstone fields and the left coset (Eqs. (3.30)
and (3.32)) Upxq “ RL:pxq, which should transform according to U 1pxq “ RUpxqL:

(Eqs. (3.31) and (3.33)).
As it is customary, the SU(3) field matrix Upxq is parametrized by means of the

generators of SU(3) in terms of the exponential mapping

Upxq B exp
ˆ

i

řn
a“1 ξapxqT

a

F

˙

(3.34)

“ exp

»

—

—

—

–

i

F

¨

˚

˚

˚

˝

π0 ` η?
3

?
2π`

?
2K`

?
2π´ ´π0 ` η?

3

?
2K0

?
2K´

?
2K̄0 ´ 2?

3η

˛

‹

‹

‹

‚

fi

ffi

ffi

ffi

fl

(3.35)

where F is the pion decay constant in the three-flavour chiral limit. For convenience, we
will denote the matrix of pseudoscalar mesons in Eq. (3.35) as ξ̂pxq B

ř

a Taξapxq, hence,

ξ̂pxq B

¨

˚

˚

˚

˝

π0 ` η?
3

?
2π`

?
2K`

?
2π´ ´π0 ` η?

3

?
2K0

?
2K´

?
2K̄0 ´ 2?

3η

˛

‹

‹

‹

‚

. (3.36)

The realization of G on the set of matrix fields (3.35) is conveniently described by the
mapping

U 1pxq “ f pg, Upxqq “ RUpxqL:, g “ pL,Rq P G. (3.37)
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From Eq. (3.37) we see that the vacuum configuration should correspond to ξj “ Oj “ 0,
in order to have O “ f rh,Os: I “ f rh, Is “ V IV :. The realization of G in terms of the
fields ξj is much more complicated, involving non-linear relations among them.

Note that the Goldstone fields are pseudoscalar fields, therefore, from Eq. (3.35) we
can derive the action of a parity operation on U : U ÝÑ

P
U :. On the other hand, charge

conjugation implies U ÝÑ
C
UT, where transposition should be understood in terms of the

matrix expansion exppXq “ pI ` X ` XX{2 ` . . . q. These properties are summarized
here,

Upxq ÝÑ
G
RUpxqL:, (3.38)

Upxq ÝÑ
P
U :px0,´~xq, (3.39)

Upxq ÝÑ
C
UT
pxq. (3.40)

We finally make explicit the convention between pNGBs particle and isospin states that
will be used in the next chapters. We shall always—with the exception of Chapter 12—use
the isospin convention

ū “ |1{2,´1{2y
d̄ “ ´|1{2,`1{2y,

(3.41)

which induces a minus sign between particle and antiparticle states in the following isospin
multiplets |ξ; I, I3y:

ˇ

ˇπ˘
D

“ ¯ |π; 1,˘1y ,
ˇ

ˇπ0D
“ ` |π; 1, 0y . (3.42)

ˇ

ˇK`
D

“ `

ˇ

ˇ

ˇ

ˇ

K; 1
2 ,`

1
2

F

,
ˇ

ˇK0D
“ `

ˇ

ˇ

ˇ

ˇ

K; 1
2 ,´

1
2

F

. (3.43)

ˇ

ˇK̄0D
“ ´

ˇ

ˇ

ˇ

ˇ

K̄; 1
2 ,`

1
2

F

,
ˇ

ˇK´
D

“ `

ˇ

ˇ

ˇ

ˇ

K̄; 1
2 ,´

1
2

F

. (3.44)

3.3.2 The heavy mesons
In section 3.2 we have introduced the two important symmetries that arise in heavy-light
hadron systems when the heavy quark limit is considered: HQSS and HQFS. The case
of charm and bottom mesons, which constitute the core of all the applications discussed
in this thesis, is a very suitable scenario to learn about the consequences of these two
approximate symmetries. For the charm sector, they may not be as good as in the case
of the bottom one, since OpΛQCD{mQq corrections are expected. HQSS predicts that for
each Qq̄ state with quantum numbers2 N2S`1LJ , there will be another one, N2S1`1LJ 1 ,
approximately degenerated in mass,which is obtained by a flip of the spin state of the
heavy quark:

ˇ

ˇSQ, S
3
Q

D

Ñ
ˇ

ˇSQ,´S
3
Q

D

. For that reason, since both the spin SQ “ 1{2 and
total angular momentum J are conserved quantities, the heavy mesons could be classified
in degenerate doublets depending on the spin of the light degrees of freedom jq̄, satisfying
J “ jq̄ ` SQ. Note that the spin-parity of the light degrees of freedom will be also

2Here we use the spectroscopic notation with ~S “ ~SQ ` ~Sq̄ and ~J “ ~L` ~S, the total spin and angular
momentum of the quark antiquark pair. In addition, ~L and N refer to the orbital angular momentum
and the radial excitation.
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conserved. It is assumed that, as it is the case of CQM, the lowest excitations correspond
to the smaller values of L. In this way, the S-wave states (L “ 0) would form the lowest
lying heavy-light HQSS doublets with quantum numbers JP “ p0´, 1´q—the parity is
P “ ηQηq̄p´1qL “ p´1qL`1 where the intrinsic parities ηQ and ηq̄ of the quark and anti-
quark are opposite ηQ “ ´ηq̄. The spin-parity of the light degrees of freedom in this case
are jq̄ “ 1{2´, that correspond to those of a light antiquark orbiting in S-wave around the
heavy quark. Thus, these JP “ p0´, 1´q mesons are, in spectroscopic notation, the 1S0
and 3S1 states. The next excitation would correspond to P -wave (L “ 1) states of positive
parity: 2S`1LJ “

3P0 and 2S`1LJ “
3P1, that would form the doublet JP “ p0`, 1`q. The

configuration of the light degrees of freedom are now jPq̄ “ 1{2`, obtained out of a light
antiquark orbiting in P -wave around the heavy quark. In P -wave, the light degrees of
freedom can also be 3{2`, that, when coupled with the spin of the heavy quark, give rise
to another HQSS doublet JP “ p2`, 1`q, 3P2 and 3P1. This doublet is not degenerated
with the previous jPq̄ “ 1{2` doublet, since the light degrees of freedom configuration is
different. Note, however, that HQSS is only an approximate symmetry, there will exist
some mixing between the two JP “ 1` states.

We should consider the HQSS Qq̄ doublets pP, P ˚q on the same footing. To achieve
this, for instance in the case of S-wave mesons, we first introduce the field HpQq

a [21, 183,
192],

HpQq
a “

1` {v
2

`

P ˚pQqaµ γµ ´ P pQqa γ5
˘

, (3.45)

which combines the SU(3)V multiplet of pseudoscalar heavy-meson fields

P pQqa “
`

Qū,Qd̄,Qs̄
˘

(3.46)

and their vector partners P ˚pQqa , with the condition v ¨ P ˚pQqa “ 0. We recall that in the
heavy quark limit, the projected field Qvpxq in Eq. (3.23) annihilates a heavy quark with
velocity v. Hence, the fields (3.46) will consequently annihilate a heavy meson moving
with a fixed four velocity v—we dropped the v label in Eqs. (3.45) and (3.46) to alleviate
notation, though, it must be understood to be there. Furthermore, as in the case of
Eq. (3.23), we would like also to remove any trivial dependence on the heavy quark mass.
The point is that the mass independence should be manifest on the matrix elements
relating transitions between heavy meson states |Hy “ P pQq :a |0y. Given our relativistic
normalization of one-particle states (see Eq. (2.9)) we would have

x0| aP p~p 1qa:P p~pq |0y “ p2πq
3
p2p0

qδ3
p~p´ ~p 1q, (3.47)

where ap:qP denotes the Fock destruction (creation) operator of a given relativistic heavy
meson field P pxq. In order to remove the mass dependence in Eq. (3.47)—encoded in
p0 “

a

~p 2 `m2
H—we should consider the P pQqa fields in Eqs. (3.45) and (3.46) with a

different normalization satisfying aP „
?
mHaH [21], such that it would give

x0| aHp~p 1qa:Hp~pq |0y ÝÝÝÝÑmHÑ8
p2πq3 p2v0

qδ3
p~k ´ ~k 1q (3.48)

where k represents the OpΛQCDq residual momentum introduced in Eq. (3.19). As a
consequence of the different normalization, the heavy meson states in the effective theory
will have dimensions E´3{2. In addition, we recall the convention of Eq. (3.41), which
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induces a minus sign between the D` „ cd̄ (and B̄0 „ bd̄) particle and isospin doublets
|H; I, I3y,

ˇ

ˇD`
D

“ ´

ˇ

ˇ

ˇ

ˇ

D; 1
2 ,`

1
2

F

,
ˇ

ˇD0D
“ `

ˇ

ˇ

ˇ

ˇ

D; 1
2 ,´

1
2

F

ˇ

ˇB̄0D
“ ´

ˇ

ˇ

ˇ

ˇ

B̄; 1
2 ,`

1
2

F

,
ˇ

ˇB´
D

“ `

ˇ

ˇ

ˇ

ˇ

B̄; 1
2 ,´

1
2

F

.

(3.49)

On the other hand, within the HQSS formalism the even parity Qq̄ states, associated to
the jPq̄ “ 1{2` HQSS doublet, are described by the matrix field J pQqa [193],

J pQqa “
1` {v

2
`

Y ˚pQqaµ γ5γ
µ
` Y pQqa

˘

, (3.50)

with vµY ˚pQqaµ “ 0. The Ya and Y ˚a fields respectively annihilate the 0` and 1` meson
states belonging to the jq̄ “ 1{2` doublet.

Under a parity transformation we have

HpQq
px0, ~xq Ñ γ0HpQq

px0,´~xqγ0, vµ Ñ vµ. (3.51)

The field HpQq
a transforms as a p2, 3̄q under the heavy spin b SU(3)V symmetry [183], this

is to say:
HpQq
a Ñ SQ

`

HpQqU :
˘

a
. (3.52)

The hermitian conjugate field is defined by:

H̄pQqa
“ γ0

rHpQq
a s

:γ0, (3.53)

and transforms as a p3̄, 2q [183]:

H̄pQqa
Ñ

`

UH̄pQq
˘a
S:Q. (3.54)

The matrix field J pQqa satisfies transformation relations identical to those in Eqs. (3.51)–
(3.54).

We shall summarize here the transformation properties of the HpQq, H̄pQq, J pQq and
J̄ pQq degrees of freedom under chiral,

HpQq
a ÝÑ

G

“

HpQqU :χ
‰

a

H̄pQq
a ÝÑ

G

“

UχH̄
pQq

‰

a

(3.55)

J pQqa ÝÑ
G

“

J pQqU :χ
‰

a

J̄ pQqa ÝÑ
G

“

UχJ̄
pQq

‰

a

(3.56)

parity,

HpQq
a px0, ~xq ÝÑ

P
γ0HpQq

a px0,´~xqγ0

H̄pQq
a px0, ~xq ÝÑ

P
γ0H̄pQq

a px0,´~xqγ0 (3.57)
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J pQqa px0, ~xq ÝÑ
P
γ0J pQqa px0,´~xqγ0

J̄ pQqa px0, ~xq ÝÑ
P
γ0J̄ pQqa px0,´~xqγ0 (3.58)

and heavy quark spin rotations
HpQq
a ÝÝÝÝÑ

SUp2qQ
SQH

pQq
a

H̄pQq
a ÝÝÝÝÑ

SUp2qQ
H̄pQq
a S:Q

(3.59)

J pQqa ÝÝÝÝÑ
SUp2qQ

SQJ
pQq
a

J̄ pQqa ÝÝÝÝÑ
SUp2qQ

J̄ pQqa S:Q
(3.60)

where now Uχ “ UχpL,Rq is a SU(3) matrix depending on the specific pL,Rq transfor-
mation. The chiral transformation Uχ should satisfy V “ UχpV, V q. On the other hand,
it should be noted that the action of consecutive PGP transformations on H should give
the same result as the one obtained by the only action of G. Hence we have,

Hpxq ÝÑ
P
γ0Hpx0,´~xqγ0

ÝÑ
G
γ0Hpx0,´~xqγ0U :χpL,Rq

ÝÑ
P
HpxqU :χpR,Lq

!
“ HpxqU :χpL,Rq (3.61)

where we have taken into account the action of parity on the group elements of G:
PLpRqP´1

“ RpLq, and the last equality stems from the assumption rP,Gs “ 0.
Equations (3.55) and (3.59) imply that the field HpQq

a , which contains the matter fields
P pQq, P ˚ pQq, transforms as an antitriplet under the unbroken SU(3)V subgroup of χSym
and as a doublet under HQSS. Matter fields have a well defined transformation rule under
the unbroken vector SU(3)V symmetry, but they do not necessarily form representations
of the spontaneously broken χSym. To construct the chiral Lagrangian, it is useful to
define an HpQq

a field that transforms under the full SU(3)L b SU(3)R χSym group in such
a way that the transformation reduces to HpQq

a V : under the unbroken vector subgroup.
The transformation of HpQq

a under SU(3)L b SU(3)R is not uniquely defined, but one can
show that all such Lagrangians are related to each other by field redefinitions, and so,
they make the same predictions for any physical observable [180,194].

For example, we could pick a field ĤpQq
a that transforms as,

ĤpQq
a ÝÑ

G
Ĥ
pQq
b L:ba, pUχ “ Lq (3.62)

under chiral SU(3)L b SU(3)R. This transformation is a little unusual in that it singles
out a special role for the SU(3)L transformation. Furthermore, for this choice the parity
transformation of Eq. (3.57) and the relation of Eq. (3.61) are not compatible. To solve
the problem, the transformation under parity needs to be changed to

ĤpQq
a px0, ~xq ÝÑ

P
γ0ĤpQq

a px0,´~xqγ0U :px0,´~xq (3.63)

with Upxq the exponential map introduced in Eq. (3.35) and transforming as showed
in Eqs. (3.38) and (3.39). Clearly, Eq. (3.62) is not symmetric under L Ø R, which
causes the parity transformation rule to involve the Upxq field. It is convenient to have a
more symmetrical transformation for HpQq

a , which will allow us consistently use the simple
parity transformation of Eq. (3.57).
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3.4 Effective Lagrangians
External sources. The construction of low energy effective Lagrangians of QCD is
based on approximations of the generating functional ZQCD by the ones obtained in the
different effective theories Zeff [177–179]. The symmetry requirements are inherited by the
amplitudes, since when these functions are invariant under local chiral transformations
they satisfy the so-called Takahashi-Ward identities [195,196]. The program is to consider
the action of local G transformations pLpxq, Rpxqq,

U 1pxq “ RpxqUpxqL:pxq, Lpxq, Rpxq P SU(3) (3.64)

which are the local version of the global chiral transformations in Eq. (3.37). One also
needs the associated external currents `µpxq and rµpxq. The transformation properties
of the left and right fields are obtained requiring local invariance of the chiral QCD
Lagrangian, LQCD

0 pxq in Eq. (3.11), including external classical sources [177–179],

LQCD
v, a, s, ppxq “ L

QCD
0 pxq ` q̄pxqγµ pvµpxq ` aµpxqγ5q qpxq ´ q̄pxq pspxq ´ i γ5ppxqq qpxq

(3.65)

where the external fields vµpxq ” prµpxq ` `µpxqq{2 and aµpxq ” prµpxq ´ `µpxqq{2 are the
vector and axial sources, respectively, while spxq and ppxq are the scalar and pseudoscalar
densities. These objects are all hermitian, colorless matrices of dimension 3ˆ 3 in flavour
space. Under a local chiral rotation pLpxq, Rpxqq of the quark fields (recall the chiral
projectors P χ

˘ given in Eq. (3.9)),

qpxq ÝÑ
G
rRpxqP χ

` ` LpxqP
χ
´s qpxq

q̄pxq ÝÑ
G
q̄pxq

“

P χ
´R

:
pxq ` P χ

`L
:
pxq

‰ (3.66)

the transformation rules of the external fields are,

rµpxq ÝÑ
G
Rpxq rµpxqR

:
pxq ` i RpxqBµR

:
pxq, (3.67)

`µpxq ÝÑ
G
Lpxq `µpxqL

:
pxq ` i LpxqBµL

:
pxq, (3.68)

rspxq ` i ppxqs ÝÑ
G
Rpxq rspxq ` i ppxqsL:pxq. (3.69)

With the help of Eqs. (3.67) and (3.68) we can construct a chirally covariant derivative

DµO B BµO ` iO`µ ´ irµO (3.70)

for any object O transforming as U in Eq. (3.64), DµO itself transforms in the same
way as O—this is the requirement of a covariant derivative. The left and right sources,
`µpxq and rµpxq, serve to effectively incorporate the electromagnetic and weak couplings
between the quarks and the photon as well as the weak bosons [182]. Recalling Eqs. (3.12)
and (3.13) one can also derive the transformation rules of the external fields to guarantee
parity and charge conjugation invariance of LQCD

v, a, s, p in Eq. (3.65), which read [180]

rµpxq ÝÑP
`µpxq, (3.71)

`µpxq ÝÑP
rµpxq, (3.72)

rspxq ` i ppxqs ÝÑ
P
rspxq ` i p´ppxqqs , (3.73)
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and,

rµpxq ÝÑC
´`Tµ pxq, (3.74)

`µpxq ÝÑC
´rTµ pxq, (3.75)

rspxq ` i ppxqs ÝÑ
C

“

sTpxq ` i pTpxq
‰

. (3.76)

We recall that the QCD Lagrangian (Eq. (3.8)) would be recovered setting the sources
to the values `µ “ rµ “ p “ 0 and s “ diagpmu,md,msq. In our effective Lagrangian, in
terms of the Goldstone degrees of freedom, we use the same sources and densities. Note
that the transformation rules of `µ and rµ in Eq. (3.67) and (3.68) depend explicitly on
derivatives of the Lpxq and Rpxq matrices, therefore, these fields will only enter through
the chiral covariant derivative in Eq. (3.70). We will incorporate the pseudoscalar and
scalar densities using the linear combination

χ B 2B0 ps` i pq . (3.77)

With the transformation properties χ ÝÑ
G
RχL:, χ ÝÑ

P
χ: and χ ÝÑ

C
χT given by Eqs. (3.69),

(3.73) and (3.76), respectively. The quantity B0 appearing in Eq. (3.77) is related to the
scalar singlet quark condensate through 3F 2B0 “ ´x0| q̄q |0y, and its value is a measure of
the dynamical breaking of chiral symmetry [180]. The explicit breaking of chiral symmetry
is implemented by introducing, as in the case of (3.65), the source,

χ “ 2B0

¨

˚

˚

˚

˝

m̂ 0 0

0 m̂ 0

0 0 ms

˛

‹

‹

‹

‚

(3.78)

where we do not distinguish the masses of the u and d quarks and take a common mass, m̂,
in the isospin symmetric limit. Before continuing, we need the power counting assignment
of the different building blocks. The expansion of the low energy interaction of pNGBs
is in terms of their (small) momentum p momentum over the typical hadron scale Λχ “

4πF „ 1 GeV [194]. Any derivative of a Goldstone field is counted as Oppq, with p
denoting the momentum of the Goldstone boson. Hence, we account U and DµU as
Opp0q and Oppq respectively. The action of charge conjugation and parity onto DµU have
the same effect as in the case of U . The scalar source χ is counted, as we shall see soon, as
Opp2q. We can build the lowest order effective Lagrangian for the interaction of pNGBs,
invariant under parity, charge conjugation and incorporating the masses of the Goldstone
bosons via Eq. (3.78), as follows

Lp2q1 “
F 2

4 Tr
“

DµUpD
µUq:

‰

`
F 2

4 Tr
“

χU : ` Uχ:
‰

. (3.79)

By expanding U and U : in Eq. (3.79) in terms of the Goldstone fields φi we identify
the kinetic terms: 1{2BµφiBµφ:i ´ 1{2m2

iφiφ
:
i—the F 2{4 factors therein ensure the correct

normalization of these terms and the mi coefficients stand for the bare masses of the
pseudoscalar fields. Hence, the pieces quadratic in the fields (φiφ:i ) allow us to rewrite
Eq. (3.78) in terms of the masses of the pseudoscalar mesons: m2

π “ 2B0m̂, m2
K “
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B0pm̂`msq and m2
η “

2
3B0pm̂` 2msq,

χ “

¨

˚

˚

˚

˝

m2
π 0 0

0 m2
π 0

0 0 3m2
η ´ 2m2

K

˛

‹

‹

‹

‚

. (3.80)

which would complete the kinetic term of the Goldstone fields. For that reason, the source
χ is considered as Opp2q. A further relation can be obtained by this identification, the
so-called Okubo mass formula [197]: m2

η “ p4m2
K ´m

2
πq{3.

3.4.1 Heavy-light—pNGB’s interaction
Incorporating heavy mesons as matter fields. As we have stated, the goal is to
construct an effective Lagrangian describing the scattering of the pNGB’s off heavy-light
pseudoscalar mesons. The latter can be included in different ways, and firstly, following
Refs. [198,199] we will consider them as matter fields. Let us refer to the field describing
the heavy-light pseudoscalar meson degrees of freedom as P , which should transform
appropriately under the symmetry groups. The advantage of this approach is that this
is the canonical way to describe the interaction of pNGB’s with relativistic baryons, and
one can use the ideas developed for the pion nucleon interaction [200, 201], since both
baryons and heavy mesons have non vanishing masses in the chiral limit. This approach
is commonly known as Heavy Meson Chiral Perturbation Theory (HMχPT). We retake
here part of the discussion in Sec. 3.3.2. We will consider the heavy mesons as a SU(3)
anti-triplet (regarding these states as Qq̄ with q “ u, d, s). Therefore, under a chiral
transformation they will transform as

P ÝÑ
G
PM :

pL,Rq (3.81)

P : ÝÑ
G
MpL,RqP : (3.82)

where M denotes a SU(3) matrix, which in principle can depend on the chiral transfor-
mation. This matrix should satisfyMpV, V q “ V for a vector transformation. As we have
already discussed in Sec. 3.3.2 around Eq. (3.61), there is ambiguity concerning the form
ofMpL,Rq, and this will have repercussion on the transformation properties of the heavy-
light degrees of freedom under parity (we follow here the discussion of the book [21]). To
solve this issue, it is convenient to introduce the square root of Upxq field [202]

upxq “
a

Upxq “ exp
ˆ

i

2F ξ̂pxq
˙

(3.83)

with ξ̂ denoting the matrix of pNGB fields of Eq. (3.35). The new field introduced in
Eq. (3.83) satisfies uu “ U , therefore, a chiral transformation (3.37) acting on this object
would result in

upxq ÝÑ
G
MpL,RqupxqL: “ RupxqM:

pL,Rq. (3.84)

The matrix MpL,Rq is a unitary matrix which is not only a function of the L and R

matrices, but also of the fields in ξ̂, consequently it is also space-time dependent: it is
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local. In the construction of chiral Lagrangians with matter fields it is common to choose
M “M, we shall do the same here. In practice [21], this choice requires a redefinition
of the heavy meson fields P̃ B Pu: which would admit the simpler parity transformation
of Eq. (3.57). The complicated transformation property (3.84) may not be convenient in
order to build invariant objects. This issue is overcome if we consider the combinations

Vµ “
1
2
`

u: Bµu` u Bµu
:
˘

(3.85)

Aµ “
1
2
`

u: Bµu´ u Bµu
:
˘

(3.86)

since their chiral transformation are much simpler, and reads

Vµ ÝÑ
G
MVµM

:
`MBµM

: (3.87)

Aµ ÝÑ
G
MAµM

:. (3.88)

From Eqs. (3.87) and (3.88) we see that Vµ transforms as a vector gauge field—note that
upxq ÝÑ

P
u:px0,´~xq,

Vµpxq ÝÑP
V µ
px0,´~xq (3.89)

Aµpxq ÝÑP
´Aµpx0,´~xq. (3.90)

This gauge field is also known as the chiral connection. Therefore, analogously to Eq.
(3.70), the gauge field can be used to define a chiral covariant derivative of the anti-triplet
P

DµP ” BµP ` PV
:
µ

DµP
:
” BµP

:
` VµP

:
(3.91)

Using Eq. (3.91) we can construct the simplest chiral invariant Lagrangian describing
the interaction of the SU(3)V anti-triplet of heavy mesons P and the octet of Goldstone
bosons ξ̂ as,

LPφ “ DµPDµP
:
´

˝

M
2
Q PP

:. (3.92)

which includes the nonvanishing bare mass of the heavy-light mesons
˝

MQ in the chiral
limit. The heavy-light masses are counted as Opp0q „ OpΛχq « 1 GeV, similarly, the
momentum of the heavy mesons—derivatives of P and P :—which does neither vanish in
the chiral limit, is counted as Opp0q. Therefore, the LO PφÑ Pφ interaction in Eq. (3.92)
is Opp1q coming from terms involving one vector current (3.85)—u „ Opp0q, Bµu „ Opp1q,

LPφ “ BµPBµP :´
˝

M
2
Q PP

:

` BµPV
µP : ´ PVµB

µP :
loooooooooooomoooooooooooon

“:LPφLO

`O
`

φ4
i {F

4˘ (3.93)

Note that the PφÑ Pφ amplitudes from Eq. (3.93) require expanding the vector current
up to second order in the Goldstone fields, while at first order we would have a vanishing
contribution: V µ « iBµξ̂ ` piBµξ̂q: “ 0.
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Concerning the applications to be discussed in this thesis, we shall need the first
subleading Opp2q interaction, LPφNLO. It will incorporate sources like χ in Eq. (3.80), which
provide the mass differences among the members of the anti-triplet P incorporating the
explicit SU(3)V breaking through the Goldstone masses. One thus should consider order
Opp2q blocks, B, such that terms of the form PBP : and DµPB̃

µνDνP
: remain invariant

under chiral transformations. The blocks should transform as

B ÝÑ
G
MBM :, (3.94)

which may be achieved through the structures u:B̂u:`uB̂:u, with B̂ “ χ,DµU—note that
we do not need B̂ “ U since u:Uu: “ I. In addition, uDµU

:u “ uDµpuuq
:u “ ´u:DµUu

:.
We introduce the following hermitian operators,

χ` B uχ:u` u:χu: „ Opp2
q (3.95)

uµ B iu:DµUu
:
„ Opp1

q (3.96)

which allow the construction of the following Opp2q invariants,

χ`, Tr rχ`s , uµuµ, Tr ruµuµs , uµuν , Tr ruµuνs . (3.97)

Gathering the possible combinations in Eq. (3.97) the NLO Lagrangian reads,

LPφNLO “ P p´h0 Tr rχ`s ´ h1 χ` ` h2 Tr ruµuµs ´ h3 uµu
µ
qP :

`DµP ph4 Tr ruµuνs ´ h5 tu
µ, uνu ´ h6 ru

µ, uνsqDνP
:.

(3.98)

Each coefficient hi (i “ 0, 1, ..., 6) accompanying the corresponding invariant term is a
real undetermined parameter, a LEC. Before continuing, it should be mentioned that
the invariant DµP ru

µ, uνsDνP
: contributes at least at order Opp3q, and consequently,

it should not be considered. Let us rewrite this (apparently) order Opp2q contribution
stemming from the partial derivatives in the covariant derivative Dµ “ Bµ `Oppq,

BµP ru
µ, uνs BνP

:
“ Bµ

`

P ruµ, uνs BνP
:
˘

´ P prBµu
µ, uνs ` ruµ, Bµu

ν
sq BνP

:

´ P ruµ, uνs BµBνP
: (3.99)

Paying attention to the three pieces in Eq. (3.99), the first one gives a surface term
contribution to the action, which is neglected. The second one is of order Opp3q, while
the third one is zero since, in terms of Feynman Pφ Ñ Pφ amplitudes, we would have
BµBνP

: “ BνBµP
:.

Let us note that blocks of the form PCµDµP
: ` DµPC

µ:P : do not contribute to
the scattering at order Opp2q. These terms would also require Cµ transforming as the
axial chiral current Aµ in Eq. (3.88) under G. We could consider Cµ “ uµ, which would
provide the term P

`

V µuµ ` uµV
µ:
˘

P :. The latter one does not contribute to PφÑ Pφ
amplitudes, since it would require keeping one derivative in V µ, and—as we have seen
before—the vector current vanishes when expanded in terms of one derivative of Goldstone
fields.

We conclude that the NLO Lagrangian depends solely on five LECs [198],

LPφNLO “ P p´h0 Tr rχ`s ´ h1 χ` ` h2 Tr ruµuµs ´ h3 uµu
µ
qP :

`DµP ph4 Tr ruµuνs ´ h5 tu
µ, uνuqDνP

:.
(3.100)
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We need the dimensionfull h4 and h5 parameters to satisfy that h4,5
˝

M
2
Q are of natural size.

This further requirement guaranties that Opp2q contributions are smaller than the Oppq
ones. As we will see, this is well satisfied. We could use some experimental input in order
to fix one of the LECs in Eq. (3.100). If we expand the explicit chiral symmetry breaking
blocks containing the Goldstone masses (χ` „ χ), we will obtain a modified kinetic term
for each heavy light meson depending on h0 and h1. Noting that the contribution of h0
is the same for all the members of the anti-triplet, the values of the physical Qū, Qd̄ and
Qs̄ heavy-light meson masses can be used to fix the constant h1. The latter incorporates
the mass splitting of the anti-triplet of Qq̄ degrees of freedom: it has a contribution to the
kinetic chiral mass

˝

MQ of each meson leading to M2
Qs̄ ´M

2
Ql̄
“ 4h1pm

2
K ´m

2
πq (l “ u, d).

Hence, it can be fixed to reproduce the mass splitting of, for example, the charm and
charm-strange pseudoscalar mesons D and Ds. Using the isospin symmetric physical
masses of the different particles the value of h1 is 0.42, of order one—and therefore of
natural size, as expected in a well defined EFT.

One may wonder how the interaction is consistent with heavy quark spin symmetry
requirements. The answer is simple, since the formalism described throughout the present
section can be applied to the S-wave P ˚φÑ P ˚φ interaction, using the same amplitudes
to describe both systems. In this way we would be incorporating the requirement that,
at leading order in the heavy quark mass expansion, the interaction of the members of
the HQSS doublet (P and P ˚) and the light degrees of freedom are identical. Of course,
ΛQCD{mQ corrections to this limit will always be present, and in principle, one could
expect differences in the values of the LECs describing both JP “ 0` and JP “ 1`
(S-wave P p˚qφ).

Incorporating heavy mesons as hyperfields. We consider here the heavy meson
fields in the form previously introduced in Sec. 3.3.2, through Eqs. (3.45) and (3.53).
However, first of all we will focus exclusively on their transformation properties under the
groups SU(3)V b SU(2)SQ . Due to their transformation properties under the heavy quark
spin and chiral symmetries (see Eqs. (3.52) and (3.54)), the associated building blocks
should be considered in the form

@

HbC
b
aΓH̄a

D

(3.101)

where symbol “x. . .y” stands for the trace in Dirac space, Ca
b (a, b “ 1, 2, 3) denotes a

3 ˆ 3 matrix in flavour space and Γ refers to a matrix in Dirac space. We can derive
the chirally covariant kinetic term, see Eq. (3.92), for the fields H and H̄, which would
ultimately provide the leading order Lagrangian describing Hφ Ñ Hφ amplitudes, by
simply writing,

LHφ “ 1
2
@

DµHD
µH̄

D

´
1
2m

2
H

@

HH̄
D

. (3.102)

The covariant derivatives above are the same as those introduced in Eqs. (3.91), with the
correspondences P Ø H and P : Ø H̄. The factors 1{2 ensure that from Eq. (3.102) we
recover the kinetic term of the P and P ˚ matter fields. On the other hand, we keep in
mind that there should not be explicit dependence on mH in the heavy quark formalism.
Therefore, as we did with the heavy quark field Qpxq in Eq. (3.21), we reparametrize
the fields H and H̄ as follows: H Ñ e´imHvxH; H̄ Ñ eimHvxH̄. After performing these
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replacements in Eq. (3.102) the kinetic mass terms disappear and we obtain the following
terms,

LHφ “ 1
2iv

µmH

@`

BµHH̄ ´HBµH̄
˘D

`
1
2iv

µmH

@

H
`

V :µ ´ Vµ
˘

H̄
D

`
1
2
@

BµHB
µH̄

D

`
1
2
@

BµHV
µH̄ `HV :µ B

µH̄
D

`
1
2
@

HV :µV
µH̄

D

. (3.103)

The remaining explicit mH dependence is absorbed by introducing the non-relativistic
fields P pQq and P pQq˚µ , which have a different normalization: HpQq „

?
mHH (see Eqs.

(3.46) and (3.48)). Besides, we use V :µ “ ´Vµ (which can be deduced from its defi-
nition (3.85)) and we also rewrite the first term involving only one partial derivative
neglecting its surface contribution to the action,

LHφ “ ´ivµ
@

HpQq
BµH̄

pQq
D

`
1

2mH

@

BµH
pQq
B
µH̄pQq

D

`
1

2mH

@

HpQqV :µV
µH̄pQq

D

´ ivµ
@

HpQqVµH̄
pQq

D

`
1

2mH

@

BµH
pQqV µH̄pQq

`HpQqV :µ B
µH̄pQq

D

. (3.104)

Among all the terms in Eq. (3.104), those without the field Vµ (first line) correspond to the
kinetic pieces of the heavy meson field. The second line has no tree level contribution to the
Pφ scattering. The third and fourth lines give instead contributions to the Pφ scattering
amplitude. We note that they are of the same order, Oppq, in the chiral counting, since
all of them involve a single power of the chiral connection Vµ. Moreover, with respect to
the interaction term in the third line, the terms in the fourth are suppressed since they
involve a derivative of the heavy field HpQq and a factor 1{mH . These latter terms are
thus necessarily included in the NLO lagrangian of Eq. (3.100). Therefore, the only LO
term is:

LHφ1 “ ´
i

2v
µ
@

HpQq
`

u:Bµu` uBµu
:
˘

H̄pQq
D

. (3.105)

The Lagrangian of Eq. (3.105) provides the LO (Weinberg-Tomozawa) S-wave Pφ inter-
action, written in a formalism where HQSS and HQFS are made explicit.

There is one more term which can be built involving one derivative of Goldstone fields.
This would be of the form

@

HpQqiAµγµγ5H̄
pQq

D

, with the γµγ5 matrix which ensures parity
invariance. This term would allow the existence of tree level amplitudes corresponding
to one Goldstone exchange between heavy mesons, because, as opposed to the case of
the vector current, Aµ « iBµξ̂{2F `Opp3q. Such Lagrangians provide PP ˚φ and P ˚P ˚φ
P -wave couplings. On the other hand, they will only contribute to the S-wave HφÑ Hφ
scattering through t-channel diagrams, which give a very small contribution [40,63], and
consequently, we will not consider them.
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The correspondence between the fields P pQq „ ?
mQP can be used to determine the

scaling of the NLO LECs in the Lagrangian (3.100) with the mass of the heavy quark. On
the other hand, in order to satisfy HQFS, the LECs hpcq and hpbq associated to charm and
bottom heavy mesons fields P should scale properly. We identify these rules absorbing
the corresponding ?mQ factors in the fields P and taking into account the mQ factors
coming from the derivatives acting on the heavy fields in Eq. (3.100)

h
pcq
i

mc

„
h
pbq
i

mb

, i “ 0, 1, . . . , 3

h
pcq
i mc „ h

pbq
i mb, i “ 4, 5.

(3.106)

To finish this section, we will discuss the contribution to the Hφ Ñ Hφ S-wave
scattering coming from the possible exchange of positive parity heavy-light states. This
will be studied in Chapters 8 and 9. We will consider the s-channel exchange of the lowest-
lying P -wave heavy-light Qq̄ states obtained in CQMs. We have previously introduced
the p0`, 1`q doublet in Sec. 3.3.2 through the hyperfield J pQq given in Eq. (3.50)—which
is the analogue of HpQq in the case of the p0´, 1´q HQSS doublet. Thus, the lowest
order Lorentz invariant term relating the coupling Hφ pairs to intermediate jPq̄ “ 1{2`
heavy-light mesons takes the form [4]

Lex
“ c

@

HpQqiAµγ
µγ5J̄

pQq
D

` c
@

J pQqiAµγ
µγ5H̄

pQq
D

“ i
c

2
@

HpQq
`

u:Bµu´ uBµu
:
˘

γµγ5J̄
pQq

D

` h.c. (3.107)

which is consistent with chiral, HQSS and parity invariance. The parameter c is an
undetermined low energy constant which will regulate the strength of the coupling of the
P -wave scalar HQSS doublet to the S-wave Pφ and P ˚φ pairs. Since the nonrelativistic H
and J fields have dimensions of E3{2, we find that c is dimensionless—recall the constraint
rLpxqs „ E4 in order to obtain a dimensionless action. Note that, even though it does
not depend on the flavour of the heavy quark, one could expect corrections of the order
ΛQCD{mQ and, therefore, the values in the charm and bottom sector should not be exactly
the same.
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Chapter 4

The two-pole structure of the
D˚0p2400q

4.1 Introduction

In this chapter we study the heavy–light pseudoscalar meson JP “ 0` scattering in the
strangeness-isospin pS, Iq “ p0, 1{2q sector, and present a strong case for the existence
of two poles in the D˚0 p2400q energy region (and similarly in the bottom sector). The
affirmative evidence comes from a remarkably good agreement between our parameter-
free predicted energy levels and the LQCD results reported in Ref. [81]. This two-pole
structure was previously claimed in Refs. [33,37,38,199], and finds now a strong support.
Its dynamical origin is elucidated from the light-flavour SU(3) structure of the interaction,
and we find that the lower pole is the SU(3) partner of the D˚s0p2317q. Predictions for
other pS, Iq sectors, including bottom ones, are also given. For a brief review about
the current status of the experimental information concerning the D˚0 p2400q we refer to
Sec. 1.2.1. This chapter is based in the findings of Ref. [3].

4.2 Formalism

4.2.1 Unitary T -matrix

We consider the S-wave Dπ, Dη, and DsK̄ coupled-channel scattering. A unitary T -
matrix, T psq, can be written [203, 204] following Eq. (2.86), T´1psq “ V ´1psq ´ GpRqpsq,
with s ” E2 the cm energy squared. The kernel V will be discussed in the next section.
The diagonal matrix GpRq (see Eq. (2.87)) is constructed from the two-meson loop func-
tion, GpRqii psq “ GpDqps,mi,Miq [205], where mi and Mi are the masses of the light and
heavy pseudoscalar mesons in the channel i, respectively. It carries the unitarity cut and
it is regularized with a subtraction constant apµq (at a scale µ “ 1 GeV), see Eq. (A.1)
in Appendix A for details. The matrix V psq containing the interaction potentials is made
out from tree level amplitudes obtained from the Opp2q HMχPT Lagrangian of Ref. [198],
that we have previously introduced in Eqs. (3.93) and (3.100). The tree level amplitudes
depend on six LECs, h0,...,5. For the LECs and the subtraction constant apµq we use the
values and uncertainties obtained in Ref. [205] from a fit to LQCD results of the S-wave
charm–light pseudoscalar-meson scattering lengths in several pS, Iq sectors. Notice that
the channel p0, 1{2q was not included in the fit carried out in [205].
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Table 4.1: Coefficients entering the tree level scattering amplitudes of Eq. (4.3) for the
different pS, Iq sectors.

pS, Iq channel CLO C0 C1 C24 C35

(-1,0) DK̄ Ñ DK̄ ´1 m2
K m2

K 1 ´1

(-1,1) DK̄ Ñ DK̄ 1 m2
K ´m2

K 1 1

(0,3/2) Dπ Ñ Dπ 1 m2
π ´m2

π 1 1

(0,1/2)

Dπ Ñ Dπ ´2 m2
π ´m2

π 1 1

Dη Ñ Dη 0 m2
η ´m2

π{3 1 1
3

DsK̄ Ñ DsK̄ ´1 m2
K ´m2

K 1 1

Dπ Ñ Dη 0 0 ´m2
π 0 1

Dπ Ñ DsK̄ ´

b

3
2 0 ´

?
6pm2

K `m
2
πq{4 0

b

3
2

DsK̄ Ñ Dη ´

b

3
2 0 `

?
6p5m2

K ´ 3m2
πq{12

(1,0)
DK Ñ DK ´2 m2

K ´2m2
K 1 2

DK Ñ Dsη ´
?

3 0 ´p5m2
K ´ 3m2

πq{
?

12 0 1?
3

Dsη Ñ Dsη 0 m2
η ´2pm2

η ´m
2
π{3q 1 4

3

(1,1)
Dsπ Ñ Dsπ 0 m2

π 0 1 0

DK Ñ DK 0 m2
K 0 1 0

DK Ñ Dsπ 1 0 ´pm2
π `m

2
Kq{2 0 1

(2,1/2) DsK Ñ DsK 1 m2
K ´m2

K 1 1

4.2.2 NLO amplitudes

With the conventions used in Eqs. (3.42), (3.43), (3.44) and (3.49) the tree level transitions
among the different channels in all pS, Iq sectors can be computed from the LO and NLO
HMχPT Lagrangians (3.93) and (3.100). Note that the amplitudes, as in Ref. [198, 205],
are projected into isospin |πDy and |DKy states—a different ordering might influence
crossed transitions by inducing minus signs into Clebsch-Gordan coefficients. The expan-
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sion of the LO and NLO Lagrangians in terms of two pNGB fields yields

LLO “
1

8F 2

´

BµP
”

ξ̂, Bµξ̂
ı

P : ´ P
”

ξ̂, Bµξ̂
ı

BµP
:
¯

(4.1)

LNLO “
1

2F 2

´

P
´

´h0Tr
!

ξ̂χξ̂
)

´ h1ξ̂χξ̂
¯

P :
¯

`
1
F 2

´

P
´

h2Tr
!

Bµξ̂B
µξ̂
)

´ h3Bµξ̂B
µξ̂
¯

P :
¯

`
1
F 2

´

BµP
´

h4Tr
!

B
µξ̂Bν ξ̂

)

´ h5

!

B
µξ̂, Bν ξ̂

)¯

BνP
:
¯

, (4.2)

which give the amplitudes with the following Lorentz structure

V ps, t, uq “
1
F 2 pCLO ps´ uq {4

´ 4C0h0 ` 2C1h1

´ 2C24 p2h2 p2 ¨ p4 ` h4 rpp1 ¨ p2qpp3 ¨ p4q ` pp1 ¨ p4qpp2 ¨ p3qsq

` 2C35 ph3 p2 ¨ p4 ` h5 rpp1 ¨ p2qpp3 ¨ p4q ` pp1 ¨ p4qpp2 ¨ p3qsqq . (4.3)

The different Ci factors appearing in Eq. (4.3) are constant coefficients associated to the
specific transition and pS, Iq considered sector. Their values can be found in Table. 4.1.
Note that the amplitudes of Eq. (4.3) need to be projected into S-wave.

Above threshold, we adopt the parametrization of the S-matrix in terms of phase
shifts [δipsq] and inelasticities [ηipsq] of each channel i introduced in Sec. 2.3.1, which
are related to the diagonal elements of T by means of Eq. (2.64). Bound, resonant, and
virtual states are associated to poles in different RSs of the T -matrix. In our three-channel
problem, RSs are denoted as pξ1 ξ2 ξ3q, ξi “ 0, 1, and are defined through the analytical
continuations of Eq. (2.89). Thus, p000q is the physical RS. The coupling gi of a pole to
the channel i is obtained from the residue (g2

i ) of Tii as discussed in Eq. (2.93).

Finite volume. In order to compare with the LQCD results, we follow the program
described in Sec. 2.5.1 calculating the UHMχPT amplitude in a finite box, rT ps, Lq “

V ´1psq ´ rGpsq. The finite volume loop functions are calculated as follows [41,167]:

rGiips, Lq “ Giipsq

` lim
qmaxÑ8

#

1
L3

|~q |ăqmax
ÿ

~n

1
2EmiEMi

Emi ` EMi

s´ pEmi ` EMi
q2 ` iε

´GpSCqps,mi,Miq

+

(4.4)

with GpSCqps,mi,Miq the loop function regularized with a sharp cutoff qmax, that is send
to infinity, given in Eq. (A.5). The kernel potentials V psq do not involve loops and
therefore, do not receive finite volume corrections. Hence, the energy levels are obtained
as poles of rT ps, Lq—as denoted in Eq. (2.97)—and they can be directly compared with
those obtained in LQCD simulations.

Here we compare with the results of Ref. [81], where energy levels relevant to the Dπ,
Dη, and DsK̄ channels at different volumes are reported. We employ the meson masses
of that reference in the evaluation of V psq and rGiipsq.
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Figure 4.1: Comparison of Ref. [81] p0, 1{2q energy levels (black dots) with our predictions
(red lines and bands) from Eq. (2.97). The bands represent the 1σ uncertainties derived
from the LECs fitted in Ref. [205], and as “ 0.12 fm [81] .
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Figure 4.2: Complex energy plane location of the two-pole-structure collected in Table 4.2.
Empty red (filled blue) symbols stand for the poles obtained when the LQCD [81] (physical)
masses are used. The black diamond represents the isospin average of the PDG values for
D˚0 p2400q0 and D˚0 p2400q` [206].

4.3 Results

The predicted p0, 1{2q energy levels as a function of L are shown in Fig. 4.1. The region
above 2.7 GeV (shaded in Fig. 4.1) is beyond the range of applicability of our Opp2q chiral
unitary formalism. Below that energy, the agreement of our computed energy levels with
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Masses M (MeV) Γ{2 (MeV) RS |gDπ| |gDη|
∣∣∣gDsK̄ ∣∣∣

lattice
2264` 8

´14 0 (000) 7.7`1.2
´1.1 0.3`0.5

´0.3 4.2`1.1
´1.0

2468`32
´25 113`18

´16 (110) 5.2`0.6
´0.4 6.7`0.6

´0.4 13.2`0.6
´0.5

physical
2105`6

´8 102`10
´12 (100) 9.4`0.2

´0.2 1.8`0.7
´0.7 4.4`0.5

´0.5

2451`36
´26 134`7

´8 (110) 5.0`0.7
´0.4 6.3`0.8

´0.5 12.8`0.8
´0.6

Table 4.2: Position (
?
s “M ´ iΓ{2), couplings (in GeV) and RS of the two poles found

in the p0, 1{2q sector using LQCD [81] or physical masses.

those obtained in the LQCD simulation is excellent. This is remarkable, since no fit to the
LQCD results is performed. The error bands in Fig. 4.1 correspond to 1σ uncertainties
propagated from the LECs determined in Ref. [205].

The level below Dπ threshold is interpreted in Ref. [81] as a bound state associated to
the D˚0 p2400q. For infinite volume and with the lattice meson masses, our T -matrix also
presents this pole. The second level, lying between the Dπ and Dη thresholds, is very
shifted with respect to both of them, hinting at the presence of another pole in infinite
volume, that we find slightly below the Dη threshold. Both poles are collected in the
upper half of Table 4.2 and represented with empty red symbols in Fig. 4.2.

Next, we study the spectroscopic content of our UHMχPT amplitudes when the phys-
ical masses are employed. The poles found are also collected in Table 4.2, and shown in
Fig. 4.2. Comparing the couplings, we see that the bound state below the Dπ threshold
evolves into a resonance above it when physical masses are used (notice that the threshold
decreases from 2277 MeV to 2005 MeV). Such an evolution is typically found for S-wave
poles (e.g., for the σ meson [134, 207]). The second pole moves very little and its cou-
plings are rather independent of the meson masses. For physical masses, it is a resonance
located between the Dη and the DsK̄ thresholds in the p110q RS, continuously connected
to the physical sheet. The mass of the D˚0 p2400q reported by the Particle Data Group
(PDG) [206] lies between those of the two poles found here, whereas the widths are similar
(Fig. 4.2). We conclude the D˚0 p2400q structure is produced by two different states (poles),
alongside with complicated interferences with the thresholds. This two-pole structure was
previously reported in Refs. [33, 37,38,199], and it receives here a robust support.

Phase shifts and |Tiipsq|2 are shown in Fig. 4.3. The lower pole causes a very mild
effect in the Dη and DsK̄ amplitudes. It couples mostly to Dπ where a peak around
2.1 GeV is clearly seen, while the phase goes through π{2 at

?
s » 2.2 GeV. The higher

pole manifests itself in a more subtle way. It produces a small enhancement in the
Dπ amplitude, but the strongest effect is a clear peak in the DsK̄ amplitude around
2.45 GeV. However, the shape is quite non-conventional. Despite the relatively large
width, the amplitude shows a narrow peak stretched between two cusps at the Dη and
DsK̄ thresholds. Such a behaviour provides a possible test of the two-pole structure. The
BABAR and Belle data for B Ñ D´s Kπ show an enhancement in the D´s K invariant mass
distribution [208,209] (see also Ref. [210]). This might confirm the features of the second
pole found here, although better statistics data are required.
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Figure 4.3: Phase shift and modulus squared of the diagonal Dπ, Dη and DsK̄ UHMχPT
amplitudes, Tiipsq, in the p0, 1{2q sector.
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Figure 4.4: Weight diagrams of the 15, 6 and 3 irreps.

4.4 SU(3) study

To gain further insights, we study the evolution of the two poles in the light-flavour SU(3)
limit, i.e., when all light and heavy meson masses take common values, mi “ m andMi “

M , respectively. Similar analyses were done in Refs. [33,38]. In this limit, the heavy–light
meson scattering decomposes into irreducible representation (irrep) components as 3b8 “
15‘ 6‘ 3 (Fig. 4.4), and the potential matrix can be diagonalized, Vdpsq “ D:V psqD “

diag pV15, V6, V3q. Since the three channels have a common subtraction constant [205],
the T -matrix is diagonalizable, Tdpsq “ D:T psqD “ diagpT15, T6, T3q, where T´1

A psq “
V ´1
A psq ´ Gps,m,Mq, A P t15,6,3u. At chiral Oppq, Vdpsq “ fpsq diagp1,´1,´3q, with
fpsq positive in the scattering region, showing that the interaction in the 6 and 3 (15)
irreps is attractive (repulsive). The most attractive irrep, 3, admits a cq̄ (q “ u, d, s)
configuration. At Opp2q, the potentials receive corrections, but these qualitative features
remain.

We can connect the physical and SU(3) symmetric cases by continuously varying the

68 4.4. SU(3) study



Chapter 4. Two-pole structure of the D˚
0p2400q

2000

2100

2200

2300

2400

2500

0 50 100 150

x = 0 [phys.]
x = 1 [SU(3)]

3

6

E
R
(M

eV
)

Γ/2 (MeV)

3

6

x

High pole
Low pole
D∗

s0(2317)

Thresholds

0 0.25 0.5 0.75 1

Figure 4.5: Evolution from the physical to the flavour SU(3) symmetric cases of p0, 1{2q
and p1, 0q poles

?
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path followed by the poles in the complex plane. Right: evolution of ER with x. The purple
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meson masses as:

mi “ mphy
i ` xpm´mphy

i q , (4.5)

and analogously forMi. Thus, x “ 0 (x “ 1) corresponds to the physical (SU(3) symmet-
ric) case. Numerically, we take m “ 0.49 GeV and M “ 1.95 GeV. The evolution of the
poles with x is shown in Fig. 4.5. The lower D˚0 p2400q pole found in the physical case (in
the p100q RS) connects with a bound state of T3 in the SU(3) limit, whereas the higher
pole (in the p110q RS) connects with a virtual (V6 is not attractive enough to bind) state
generated in T6.1

In the pS, Iq “ p1, 0q sector involving the DK and Dsη channels, and using the same
input and physical masses, we find a bound state at 2315`18

´28 MeV [205] which is naturally
identified with the D˚s0p2317q. Its evolution is also shown in Fig. 4.5, and we see that it
emerges from the T3 pole. Hence, the D˚s0p2317q and the lower D˚0 p2400q poles are flavour
SU(3) partners.

4.5 Pole predictions in other sectors.
We now discuss other sectors in the physical case. The energies of the relevant two-meson
thresholds have been included in Table 4.3 whereas the pole positions are collected in
Table 4.4. The pS, Iq “ p´1, 0q involves only the DK̄ channel, and it is part of the 6

1In the physical case, the RSs are specified by pξ1 ξ2 ξ3q, with ξi “ 0 or 1 [Eq. (2.89)]. In the
SU(3) symmetric case, since all channels have the same threshold, there are only two RSs, the physical
[p000q] and the unphysical [p111q] sheets. To connect the lower pole in the physical case, located in the
p100q RS, with the T3 pole, in the p000q RS, we vary the parameter ξ1 “ 1´ x. For the higher pole, one
has to evolve ξ3 “ x to connect p110q (physical case) with p111q (SU(3) limit).
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Table 4.3: Threshold energies, Eth, of the different relevant channels with JP “ 0`, 1`
in both charm and bottom, p0, 1{2q and p1, 0q sectors.

Channel Dπ Dη DsK̄ D˚π D˚η D˚s K̄

Eth [MeV] 2005.26 2415.09 2463.92 2146.74 2556.57 2607.75

Channel B̄π B̄η B̄sK̄ B̄˚π B̄˚η B̄˚s K̄

Eth [MeV] 5417.50 5827.33 5862.47 5462.69 5872.51 5911.05

Channel DK Dsη - D˚K D˚sη -

Eth [MeV] 2362.87 2516.13 - 2504.35 2659.96 -

Channel B̄K B̄sη - B̄˚K B̄˚s η -

Eth [MeV] 5775.11 5914.68 - 5820.30 5963.26 -

irrep, which is weakly attractive. Indeed, we find a virtual pole, at 2342`13
´41 MeV, roughly

20 MeV below threshold, which has a sizeable influence on the DK̄ scattering length [205].
The pS, Iq “ p1, 1q sector, involving the Dsπ and DK channels, has contributions from
the 6 and the repulsive 15. Because of this, we do not find any pole that can be associated
to a physical state.

4.5.1 Heavy-quark mass scaling of the LECs in the Dφ interac-
tions at NLO

In the bottom sector, due to the HQFS, we foresee a similar pattern. Thanks to heavy
quark symmetry, the Dφ and B̄φ interactions share the same effective Lagrangian with
the correspondence D Ø B̄. The heavy flavor scaling of the NLO LECs hi’s is discussed
in Refs. [55,198,205] and given here in Eq. (3.106), equivalently,

hB0,1,2,3 “
m̄B

m̄D

hD0,1,2,3 , hB4,5 “
m̄D

m̄B

hD4,5 . (4.6)

Here m̄D (m̄B) is the average of the physical masses of the D (B̄) and Ds (B̄s) mesons.
In addition, as already mentioned in Sec. 4.2, in the unitarized amplitudes there appears
one subtraction constant, apµq, with µ “ 1 GeV the scale introduced in dimensional
regularization. In the pS, Iq “ p0, 1{2q channel, the subtraction constants in the charm,
denoted by aDpµq, and in the bottom, denoted by aBpµq, sectors are related as follows [37]:

1. First, given the phenomenological value of aDpµq, a sharp-cutoff, qmax, is determined
by requiring the dimensionally (A.1) and the sharp-cutoff regularized (A.5) DsK̄
loop functions to be equal at threshold [211]

apµq “ ´
2

m1 `m2

#

m1 ln qmax `
a

q2
max `m

2
1

µ
`m2 ln qmax `

a

q2
max `m

2
2

µ

+

,

(4.7)

with m1 “MDs and m2 “ mK̄ . This cutoff turns out to be qmax “ 0.72`0.07
´0.06 GeV.

70 4.5. Pole predictions in other sectors.



Chapter 4. Two-pole structure of the D˚
0p2400q

Table 4.4: Pole positions pM,Γ{2q in units of MeV. The Lower poles shown are always
found in p1, 0, 0q Riemann sheet, while the Higher ones are located in the p1, 1, 0q, except
for the pS, Iq “ p1, 0q, where poles are in the physical sheet p0, 0q. Couplings are in units of
GeV. In addition, the poles in the pS, Iq “ p´1, 0q correspond to virtual states, since they
are found in the p1q sheet (there is only one, Dp˚qK̄{Bp˚qK̄, channel).

Sector pM,Γ{2q |g1| |g2| |g3|

pS, Iq “ p0, 1{2q

D˚0 Lower
`

2105`6
´8, 102`10

´12
˘

9.4`0.2
´0.2 1.8`0.7

´0.7 4.4`0.5
´0.5

D˚0 Higher
`

2451`35
´26, 134`7

´8
˘

5.0`0.7
´0.4 6.3`0.8

´0.5 12.8`0.8
´0.6

D1 Lower
`

2247`5
´6, 107`11

´10
˘

10.1`0.2
´0.2 1.3`0.4

´0.5 5.0`0.4
´0.4

D1 Higher
`

2555`47
´30, 203`8

´9
˘

5.3`0.4
´0.3 5.3`0.6

´0.4 13.1`0.8
´0.6

B˚0 Lower
`

5535`9
´11, 113`13

´17
˘

25.0`0.7
´0.7 3.8`1.5

´1.5 14.6`0.5
´0.4

B˚0 Higher
`

5852`11
´12, 36˘ 5

˘

7.9`1.0
´0.8 14.4`0.6

´0.4 23.4`1.1
´0.8

B1 Lower
`

5584`9
´11, 119`14

´17
˘

25.5`0.7
´0.8 4.0`1.5

´1.5 14.9`0.5
´0.4

B1 Higher
`

5912`9
´10, 42`5

´4
˘

8.7`0.8
´0.6 15.0`0.3

´0.3 24.0`0.7
´0.6

Sector pM,Γ{2q |g1| |g2|

pS, Iq “ p1, 0q

D˚s0
`

2315`18
´28, 0

˘

9.5`1.2
´1.1 7.5`0.5

´0.5

Ds1
`

2456`15
´21, 0

˘

10.4`0.8
´0.7 7.6`0.5

´0.4

B˚s0
`

5720`16
´23, 0

˘

23.1`1.8
´1.7 18.9`0.5

´0.6

Bs1
`

5772`15
´21, 0

˘

22.8`1.9
´1.7 18.8`0.6

´0.7

Sector pM,Γ{2q |g1|

pS, Iq “ p´1, 0q

V (c) 0`
`

2342`13
´41, 0`0

´0
˘

9.4`6.0
´2.2

V (c) 1`
`

2353`21
´14, 84`42

´60
˘

12.5`9.3
´1.3

V (b) 0`
`

5763`9
´36, 0`0

´0
˘

22.7`28.6
´7.4

V (b) 1`
`

5791`17
´51, 0`48

´0
˘

32.4`77.1
´10.0

2. Next, qmax is used to determine aBpµq by requiring that the dimensionally and the
sharp-cutoff regularized B̄sK̄ loop functions to be also equal at threshold.

LECs and subtraction constants forDφ and B̄φ interactions used in this work are collected
in Table 4.5. Those in the charm sector, together with their uncertainties, are taken from
Ref. [205]. Note that the values shown on Table 4.5 correspond to redefinitions of the LECs
appearing in the HMχPT amplitudes of Eq. (4.3): h1, DpBq4,5 ” m̄2

DpBqh
DpBq
4,5 , h24 ” h2 ` h14

and h35 ” h3 ` 2h15.
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Table 4.5: LECs and subtraction constants apµ “ 1 GeVq used in this work to compute
the unitary Dφ and B̄φ UHMχPT amplitudes

a h0 h1 h24 h14 h35 h15

Dφ ´1.88`0.07
´0.09 0.014 0.42 ´0.10`0.05

´0.06 ´0.32`0.35
´0.34 0.25˘ 0.13 ´1.88`0.63

´0.61

B̄φ ´3.41`0.03
´0.04 0.038 1.17 ´0.27˘ 0.15 ´0.90`0.97

´0.93 0.68˘ 0.36 ´5.23`1.74
´1.69

4.5.2 JP “ 0` bottom and JP “ 1` bottom and charm resonances
We conclude that also in the bottom sector and for pS, Iq “ p0, 1{2q there is a two-pole
structure, located at p5535`9

´11, 113`15
´17qMeV and p5852`11

´12, 36˘5qMeV. For pS, Iq “ p1, 0q,
we find a state with a mass of 5720`16

´23 MeV, bound by about 50 MeV, as the D˚s0p2317q
in the charm sector. All these pole positions are very similar to those found already at
Oppq [37]. In the p´1, 0q sector, we find a virtual state located almost at threshold, which
can also appear as a bound state considering the Opp2q parameter uncertainties. As in
the charm case, we do not find physical poles in the p1, 1q sector that could be identified
with the Xp5568q, recently reported by the D0 Collaboration [212], but not seen in other
experiments [213, 214]. We conclude the Xp5568q is not generated by the B̄sπ ´ B̄K
rescattering [215] (see also Refs. [216–218]).

Finally, we recall that HQSS relates the 0` and 1` sectors, and thus in the latter we find
a similar pattern of bound, resonant and virtual states [33,34,37,54,55]. We highlight the
predictions for the 3 multiplet, where we find 2456`15

´21 MeV and
`

2247`5
´6 ´ i 107`11

´10
˘

MeV,
for the Ds1p2460q and a new D1 resonance, respectively. In the bottom sector, we predict
5772`15

´21 MeV and
`

5584`9
´11 ´ i 119`14

´15
˘

MeV for the Bs1 and the lowest B1. The higher
D1 and B1 poles stemming from the 6 will presumably be affected by channels involving
ρ mesons [1, 219]. For pS, Iq “ p´1, 0q, we find, as in the 0` case, an axial state located
almost at threshold in the bottom sector, while for charmed mesons the pole (virtual)
moves deep in the complex plane.

4.6 Conclusions

We have first studied the Dπ, Dη and DsK̄ scattering in the JP “ 0` and pS, Iq “ p0, 1{2q
sector. Although so far only one meson, the D˚0 p2400q, has been reported in experi-
ments [206], we present a strong support for the existence of two poles in the D˚0 p2400q
mass region: the physical amplitudes, that contain two poles, when put in a finite volume
produce energy levels that successfully describe the LQCD results obtained in Ref. [81]
without adjusting any parameter. The two poles are located at

`

2105`6
´8 ´ i 102`10

´12
˘

MeV
and

`

2451`36
´26 ´ i 134`7

´8
˘

MeV, with the largest couplings to the Dπ and DsK̄ channels,
respectively. A group theoretical analysis shows that the lower pole and the D˚s0p2317q
complete the 3 multiplet, being thus flavour SU(3) partners, with the mass of the lower
nonstrange resonance smaller than that of the strange one. We expect the two-pole struc-
ture to produce distinctive features in Dπ, Dη and DsK̄ invariant mass spectra in high-
energy reactions, such as B̄ decays. In particular, despite of its large width, the higher
pole shows up as a narrow peak in the DsK̄ Ñ DsK̄ amplitude and should produce a
sizeable near-threshold enhancement. Note that clear DsK̄ threshold enhancements have
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been already observed in B decays [208, 209]. Future data from better statistics experi-
ments, such as LHCb and Belle-II, will shed light into their origin. In Chapter 5 we will
pay a special attention to the B´ Ñ D`π´π´ reaction, recently measured by LHCb.

A similar resonance pattern is also found in the bottom sector. Besides the two-pole
structure, we stress the possible existence of a near-threshold bound or virtual state in
the B̄K̄ (or BK) channel, both for 0` and 1` sectors. These exotic states, with quark
content bsd̄ū, will have a large impact in the scattering length, and if bound they could
only decay through weak and/or electromagnetic interactions.

The predicted phase shifts, both in the charm and bottom sectors, can be used as
input to the Omnès representation of the scalar form factors describing heavy meson
semileptonic decays [40, 63]. Thus, the special two-pole structure discussed here is also
of interest to achieve an accurate determination of the CKM matrix elements. We will
address this issue in Chapter 6.

It is also worthwhile to notice the resemblance between the results obtained here for
the D˚0 p2400q and the widely discussed two-pole structure of the Λp1405q linked to Σπ
and NK̄ [204,206,220–222]. The existence of such a two-pole structure is rooted in both
cases in chiral dynamics, which on one hand determines the interaction strength, and
on the other hand ensures the lightness of pions and kaons. The latter is important to
separate the two poles from higher hadronic channels. A two-pole structure driven by
chiral dynamics is also found in Refs. [211,223,224] for the K1p1270q.
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Chapter 5

Puzzles and answers in open-charm
meson spectroscopy

5.1 Introduction
Until the beginning of the millennium, heavy-hadron spectroscopy was assumed to be
well understood by means of the quark model [10,11], which describes the positive-parity
ground state charm mesons as bound systems of a heavy quark and a light antiquark
in a P -wave. This belief was put into question in 2003, when the charm-strange scalar
(JP “ 0`) and axial-vector (1`) mesonsD˚s0p2317q [15] andDs1p2460q [16] were discovered
(for recent reviews on new hadrons, see Refs. [84, 225–230]), since the states showed
properties at odds with the quark model. Moreover, attempts to adjust the quark model
raised more questions [231]. Various alternative proposals were put forward about the
nature of these new states including Dp˚qK hadronic molecules (loosely bound states of
two colorless hadrons) [30, 76], tetraquarks (compact states made of two quarks and two
antiquarks) [232] and chiral partners (doublets due to the chiral symmetry breaking of
QCD in heavy-light systems) [53,233]. The situation became more obscure in 2004, when
two new charm-nonstrange mesons, the D˚0 p2400q [61] and D1p2430q [59], were observed.
In brief, the experimental discoveries brought up three puzzles:

(1) Why are the D˚s0p2317q and Ds1p2460q masses much lower than the quark model
expectations for the lowest 0` and 1` cs̄ mesons?

(2) Why is the mass difference between the Ds1p2460q and the D˚s0p2317q equal to that
between the ground state vector meson D˚` and pseudoscalar meson D` within
2 MeV?

(3) Why are the D˚0 p2400q and D1p2430q masses almost equal to or even higher than
their strange siblings, a relationship exploited in many works [56,234–236], although
states with an additional strange quark are typically at least 100 MeV heavier since
ms{md » 20, see, e.g., Ref. [206]?

Although their bottom cousins are still being searched for in high-energy experiments, it
is natural to ask whether such puzzles will be duplicated there and in other sectors.

As outlined below, in recent works it was demonstrated that analyses combining EFT
methods with LQCD allows one to resolve all those puzzles. These analyses suggest that
all low-lying positive-parity heavy open-flavour mesons qualify as hadronic molecules.
Here we add two crucial pieces to the existing line of reasoning, namely we propose a
lattice QCD study at unphysical quark masses that will allow one to see the two-meson
character of the mentioned states more explicitly, and we demonstrate that recent data
on B´ Ñ D`π´π´ show a nontrivial structure fully in line with the proposed dynamical
picture.
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Table 5.1: Predicted masses of the lowest positive-parity heavy-strange mesons in com-
parison with the measured values [206] and latest LQCD results, in units of MeV. These
results were already presented in Chapter 4.

prediction RPP LQCD
D˚s0 2315`18

´28 2317.7˘ 0.6 2348`7
´4 [45]

Ds1 2456`15
´21 2459.5˘ 0.6 2451˘ 4 [45]

B˚s0 5720`16
´23 ´ 5711˘ 23 [58]

Bs1 5772`15
´21 ´ 5750˘ 25 [58]

One reason why the analyses that led to the D˚0 p2400q and D1p2430q resonance pa-
rameters in the RPP [206] should be questioned is that the amplitudes used were in-
consistent with constraints from the chiral symmetry of QCD. As its chiral symmetry is
spontaneously broken, the pions, kaons and eta arise as Goldstone Bosons with deriva-
tive and thus energy-dependent interactions even for S-wave couplings. The standard
Breit Wigner (BW) resonance shapes used in the experimental analyses correspond, how-
ever, to constant couplings. Moreover, the energy range of these states overlaps with
various S-wave thresholds that necessarily need to be considered in a sound analysis,
as these thresholds can leave a remarkable imprint on observables as will be shown be-
low. As we have discussed at length, a theoretical framework satisfying such require-
ments is provided by the Unitarized Chiral Perturbation Theory (UχPT) for heavy
mesons [33, 34, 37, 38, 40, 42, 54, 199, 205, 237]: UHMχPT. In this approach, χPT at a
given order is used to calculate the interaction potential which is then resummed in a
scattering equation to fulfil exact two-body unitarity and allows for the generation of
resonances as pioneered in Ref. [138]. Although there is no unique method for unitariza-
tion, different methods do not differ much as long as there are no prominent left-hand
cuts [136], as is the case here. We will employ here the NLO version whose free parame-
ters have been fixed to the Goldstone-Boson–charm-meson scattering lengths determined
in fully dynamical LQCD in channels without disconnected diagrams [205]. Later it was
demonstrated [3] (previous chapter) that these coupled-channel amplitudes properly pre-
dict the energy levels generated in LQCD (with a pion mass Mπ » 391 MeV) for the
isospin-1/2 channel even beyond the threshold [81]. This means that now the scattering
amplitudes for the coupled Goldstone-Boson–charm-meson system are available, and that
are based on QCD. Moreover, those amplitudes allow us to identify the poles in the com-
plex energy plane reflecting the lowest positive-parity meson resonances of QCD in the
charm sector as well as in the bottom sector, once heavy quark flavor symmetry [185] is
employed (see previous Chapter 4). The predicted masses for the lowest charm-strange
positive-parity mesons are fully in line with the well-established measurements, and those
for the bottom-strange mesons are consistent with LQCD results with an almost physical
pion mass [58], see Table 5.1 where the uncertainties quoted stem from the one-sigma
uncertainties of the parameters in the NLO UHMχPT determined in Ref. [205].

The first two of the puzzles listed above are solved in this picture: the Dp˚qK hadronic
molecules do not correspond to the quark model cs̄ states; spin symmetry predicts that
the binding energies are independent of the heavy meson spin up to an uncertainty of
about 10%, as the leading spin symmetry breaking interaction is also of NLO in the
chiral expansion. Moreover, there are two poles, corresponding to two resonances, in the

76 5.1. Introduction



Chapter 5. Puzzles and answers in open-charm meson spectroscopy

Table 5.2: Predicted poles corresponding to the positive-parity heavy-light nonstrange
mesons given as (M,Γ{2), with M the mass and Γ the total decay width, in units of MeV.
The current RPP [206] values are listed in the last column. These results were already
obtained in Chapter 4

lower pole higher pole RPP
D˚0

`

2105`6
´8, 102`10

´11
˘ `

2451`35
´26, 134`7

´8
˘

p2318˘ 29, 134˘ 20q
D1

`

2247`5
´6, 107`11

´10
˘ `

2555`47
´30, 203`8

´9
˘

p2427˘ 40, 192`65
´55q

B˚0
`

5535`9
´11, 113`15

´17
˘ `

5852`11
´12, 36˘ 5

˘

´

B1
`

5584`9
´11, 119`14

´17
˘ `

5912`9
´10, 42`5

´4
˘

´

I “ 1{2 and strangeness S “ 0 channel. The predicted poles, located at the complex
energies M ´ iΓ{2, for both scalar and axial-vector charm and bottom mesons are listed
in Table 5.2. The masses for the lower nonstrange resonances are smaller than those for
the strange ones, leading to the solution to the third puzzle as we already commented in
Chapter 4. For comparison the currently quoted masses and widths of the D˚0 p2400q0 and
D1p2430q0 given in RPP are also listed.

This pattern of two I “ 1{2 states emerges naturally in the underlying formalism
since already leading order HMχPT interactions are attractive in two flavour multiplets,
to which the two states belong: the anti-triplet and the sextet [3, 33]. These two scalar
isospin I “ 1{2 states were predicted in the earlier works of Refs. [33,37], where, however,
less refined amplitudes were employed.

Given the above discussion, it is important to test the scenario outlined above as much
as possible. In this chapter we discuss two possible paths: On the one hand we propose
a numerical experiment on the lattice, on the other hand we demonstrate that recent
experimental data provide additional support of the nontrivial dynamics that leads to the
existence of the light positive-parity open-charm states. This work is based on the results
of Ref. [6].

The sextet state. If the mentioned states were q̄c states, they would all be members of
the flavour anti-triplet—the presence of the sextet is a nontrivial prediction emerging from
the meson-meson dynamics that the picture presented above is based on. We notice that
while we predicted two I “ 1{2 states (see Table 5.2), the Hadron Spectrum Collaboration
reported only one, located just below the Dπ threshold, in their lattice calculation at
Mπ » 391 MeV [81]. This is in line with the expectation that the lower pole would
become a bound state at Mπ & 350 MeV [205]. The authors of Ref. [81] report that they
“do not find any further poles in the region where ... [their lattice analysis] constrained
the amplitudes”. This does on the other hand not exclude the presence of the second
pole advocated in Ref. [3] as well as above: The quote simply reflects the fact that while
various of the amplitudes employed in the analysis of Ref. [81] contained a second pole,
its location was strongly parametrization-dependent [238]. With the quark masses used
in Ref. [81], the predicted sextet pole is located deep in the complex plane [3], and thus
it is not captured easily. The advantage of our amplitudes compared to those employed
in the analysis of Ref. [81] is that they are constrained by both the pattern of chiral
symmetry breaking of QCD as well as lattice data in additional channels. To further
test our explanation for the light positive parity open charm states, we propose to search
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Figure 5.1: Illustration of the mass of the predicted sextet state at the SU(3) symmetric
point as a function of the Goldstone boson mass mφ. Below mφ . 475 MeV, the pole
is a resonance with its imaginary part (Γ6{2) shown in the inserted sub-figure. Above
mφ » 475 MeV, it evolves into a pair of virtual states, and finally it becomes a bound state
at mφ » 600 MeV.

for them in lattice studies at a SU(3) symmetric point, with a relatively large quark
mass mu “ md “ ms, such that the lightest pseudoscalar-meson masses will be near or
above mφ & 475 MeV. We predict that the sextet pole will become a virtual state below
threshold for such large quark masses, and that it would even become a bound state for
higher quark masses. This behaviour is illustrated in Fig. 5.1, where one can see that now
the pole is close to threshold, and it should be easy to detect in a lattice calculation.

Note that the trajectory of the pole displayed in Fig. 5.1, where resonance poles exist
in the complex energy plane below threshold, is a common pattern for two-meson states
in a relative S-wave. This feature is discussed in quite general terms in Ref. [239] (see
also Refs. [134,207] for the f0p500q case) and was first presented for the open flavor states
in the focus here in Ref. [199].

5.2 The Dπ final state interaction in the B´ÑD` π´

π´ reaction
In the following, we show that our solution to these puzzles is backed by precise experi-
mental data by showing that the amplitudes with the two D˚0 states are fully consistent
with the LHCb measurements of the reaction B´ Ñ D`π´π´ [240], which are at present
the best data providing access to the Dπ system and thus to the nonstrange scalar charm
mesons. Therefore, all the available theoretical, experimental and LQCD knowledge is
consistent with the existence of two D˚0 states in the mass region where there was believed
to be only one D˚0 p2400q.

78 5.2. The Dπ final state interaction in the B´ Ñ D`π´π´ reaction



Chapter 5. Puzzles and answers in open-charm meson spectroscopy

Figure 5.2: The decay amplitude for B´ Ñ D`π´π´. Here, A,B parametrize the
production vertex, see Eq. (5.11), and T Iij denotes the final state interactions between the
charm and the light mesons.

5.2.1 Effective Lagrangian

We begin briefly discussing the effective Lagrangian for the weak decays B̄ Ñ D, with
the emission of two light pseudoscalar mesons. They are induced by the Cabibbo-allowed
transition b Ñ cūd. In the phase space region near the Dπ threshold, chiral symmetry
puts constraints on one of the two pions while the other one moves fast and can be treated
as a matter field. Moreover, its interaction with the other particles in the final state can
be safely neglected. Then the relevant chiral effective Lagrangian reads [241],

Leff “ B̄
“

c1 puµtM `Mtuµq ` c2 puµM `Muµq t

`c3 t puµM `Muµq ` c4 puµxMty `Mxuµtyq

`c5 txMuµy ` c6xpMuµ ` uµMq ty
‰

B
µD: . (5.1)

Here, B̄ “ pB´, B̄0, B̄0
s q and D “ pD0, D`, D`s q are the fields for bottom and charm

mesons, x. . .y denotes the trace in the SU(3) light-flavour space, and uµ “ ipu:Bµu´uBµu
:q

(see Eq. (3.96)) is the axial current derived from chiral symmetry. The Goldstone Bosons
are represented non-linearly via u “ exp

`

iφ{p
?

2F q
˘

in Eq. (3.83), with φ a field matrix
containing the light pseudoscalars and F as the Goldstone-Boson decay constant in the
chiral limit—in particular, we have that ξ̂ in Eq. (3.35) satisfies ξ̂ “

?
2φ. In addition,

t “ uHu: is a spurion field with [241]

H “

¨

˚

˝

0 0 0
1 0 0
0 0 0

˛

‹

‚

, (5.2)

for Cabibbo-allowed decays. The matter field M , having the same form as φ, describes
the fast moving light meson. The ci pi “ 1, . . . , 6) are LECs. This effective Lagrangian
considers both chiral, for the regime with soft Goldstone Bosons, and SU(3) constraints,
the latter of which has been considered in Ref. [241].

5.2.2 The B´ Ñ π´π´D` decay amplitude
The Feynman diagrams of the decay amplitude for B´ Ñ D`π´π´ are shown in Fig. 5.2.
Let us introduce the notation pD` , pπ´ and p˚π´ to identify the four momenta of the final
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D, fast and slow pion, respectively—note that, since we will pay attention to the regime
involving small energies of the final D`π´ state, there will always be a relativistic pion
carrying the rest of the total momenta pB´ . All the channels (D`π´, D0π0, D0η and
D`s K

´) coupled to D`π´ need to be considered in the intermediate states. The decay
amplitude in the energy region up to 2.6 GeV, which is sufficient to study the low-lying
scalar states, can be decomposed into S-, P - and D-waves,

ApB´ Ñ D`π´π´q “
2
ÿ

L“0

?
2L` 1ALpsqPLpzq , (5.3)

whereA0,1,2psq correspond to the amplitudes withD`π´ in the S , P andD waves, respec-
tively, and PLpzq are the Legendre polynomials. For the P - and D-wave amplitudes we use
the same BW form as in the LHCb analysis [240]. Note that the coefficients/normalization
entering the partial wave expansion of Eq. (5.3) are chosen as in Ref. [240], and are dif-
ferent from the standard form introduced in Eq. (2.21).

Breit-Wigner amplitudes in P and D waves. In the work of Ref. [240], the LHCb
collaboration obtained the masses and widths of the vector (JP “ 1´) resonances, D˚
and D˚p2680q, and the tensor state (JP “ 2`) D2p2460q, which are present in the L “ 1
and L “ 2 partial wave amplitudes. In order to analyze their data, we choose to represent
the P and D partial waves in the same way. We consider BW amplitudes

A1psq “ a1T
D˚

1 psq ` b1T
D˚p2680q
1 psq, a1, b1 P C (5.4)

A2psq “ a2T
D2p2460q
2 psq, a2 P C, (5.5)

where the complex undetermined coefficients a1, b1 and a2 will be fitted to the experi-
mental data. The functions TR

L psq are the BW corresponding to a D`π´ resonance “R”,
with mass M , total width Γ, and appearing in the partial wave amplitude L,

TR
L psq “ Rpsq ˆX p|~ppsq| rq ˆX p|~p ˚psq| rq ˆ

ˇ

ˇ

ˇ

ˇ

~ppsq

~ppM2q

ˇ

ˇ

ˇ

ˇ

L ˇ
ˇ

ˇ

ˇ

~p ˚psq

~p ˚pM2q

ˇ

ˇ

ˇ

ˇ

L

MΓ (5.6)

where ~p ˚psq and ~p psq denote the three momentum of the slow—belonging to the D`π´
system—and fast pion, in the D`π´ cm frame. Their expressions will be given later in
the next section. The parameter “r” is called the barrier radius, and we take the value
r “ 4.0 GeV´1 as in Ref. [240]. The BW amplitudes of Eq. (5.6) depend on two further
functions, the radial function Rpsq,

Rpsq “
1

pM2 ´ sq ´ iM Γ̃ p
?
sq
, (5.7)

Γ̃pxq “ Γˆ
„

|~p ˚px2q|

|~p ˚pM2q|

2L`1

ˆ
M

x
ˆX2 `ˇ

ˇ~p ˚px2
q
ˇ

ˇ r
˘

. (5.8)
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Table 5.3: Numerical values of the mass and width of the different resonances included
as relativistic BW amplitudes in P and D partial waves (see Eqs. (5.3), (5.4) and (5.5)),
taken from Ref. [240].

state L M [MeV] Γ [MeV]
D˚ 1 2006.98 2.1
D˚1 p2680q 1 2681.10 186.7
D˚2 p2460q 2 2463.70 47.0

and the Blatt-Weiskopf barrier factors X pxq

X pxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 L “ 0,
c

1` x2
0

1` x2 L “ 1,
c

x4
0 ` 3x2

0 ` 9
x4 ` 3x2 ` 9 L “ 2,

(5.9)

x0 “
´ˇ

ˇ

ˇ

~kpM2
q

ˇ

ˇ

ˇ
r
¯

, with ~k “ ~p ˚ or ~p. (5.10)

Note that the BW form in Eq. (5.6) may be different with respect to other standard
versions, since we are including the normalization factors MΓ{ |~p ˚pM2q|

L
|~ppM2q|

L in
order to have TR

L pM
2q „ 1, which turns out convenient in the numerical calculations—

with the purpose of avoiding coefficients a1, b1 and a2 showing ridiculously different scales.
As already mentioned, we use the values of mass and width for the different resonances
obtained in the LHCb fit (see Tables III and IV in Ref. [240]) using relativistic BW. The
values can be found here in Table 5.3.

S-wave amplitude. However, for the S-wave we employ

A0psq “ A

"

Eπ

„

2`G1psq

ˆ

5
3T

1{2
11 psq `

1
3T

3{2
psq

˙

`
1
3EηG2psqT

1{2
21 psq `

c

2
3EK̄G3psqT

1{2
31 psq

*

`BEηG2psqT
1{2
21 , (5.11)

where A and B are two independent couplings following from SU(3) flavor symmetry [241],
and Eπ,η,K̄ are the energies of the light mesons. In terms of the LECs appearing in the
effective Lagrangian of Sec. 5.2.1, the parameters A and B in Eq. (5.11) can be expressed
as A “

?
2pc1 ` c4q{F and B “ 2

?
2pc2 ` c6q{p3F q. Here the T Iijpsq are the UHMχPT

S-wave scattering amplitudes for the coupled-channel system with total isospin I, where
i, j are channel indices with 1, 2 and 3 referring to Dπ, Dη and DsK̄, respectively. These
scattering amplitudes were determined in Ref. [205] where also all the parameters were
fixed, and they can be found in Chapter 4. The unitarity relation of Eq. (2.32) is readily
adapted to the present situation in the case of the S-wave decay amplitude A0,i,

ImA0,ipsq “ ´
ÿ

j

T ˚ijpsqρjpsqA0,jpsq, (5.12)
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with ρjpsq “ σjpsq{8π the two-body phase space factor for channel-j. Equation (5.12)
is satisfied as long as ImGipsq “ ´ρipsq (see Eq. (2.80)), which allows us to represent
Gipsq via a once-subtracted dispersion relation [242]. The same subtraction constant, aA,
is taken for all channels, and it constitutes one more free parameter. The amplitude of
Eq. (5.11) embodies chiral symmetry constraints and coupled-channel unitarity, and thus
has a sound theoretical foundation. Here the final state interaction between the two π´
mesons is neglected because the two pions are in an isospin-tensor state, and they have a
large relative momentum so that they quickly fly away from each other.

5.3 Angular moments
Following Ref. [243], the angular moments of order L are defined as the weighted sum of
the events in each bin of energy, where the sum should be performed over all the possible
angles of the D`π´ system relative to the remaining—fast—pion. The weights for each
angular moment are given by the corresponding Legendre Polynomial1 of order L—for
further details, the reader may see p. 12 of Ref. [243], and also Sec. V of Ref. [240].
The—unnormalized—angular moments of the B´ Ñ D`π´π´ decay, can be written as
follows,

xPLy „

ż `1

´1

dEvents
d cosφ dmD`π´

ˆ PLpcosφq d cosφ (5.13)

where φ is the angle between the three-momentum of the pion in theD`π´ system relative
to the three-momentum of the remaining pion, in the D`π´ frame.

5.3.1 The partial decay rate
The experimental event distribution is proportional to the partial decay rate [206],

dΓ “ 1
p2πq3

1
32m3

B´

ˇ

ˇA
`

B´ Ñ D`π´π´
˘
ˇ

ˇ

2 dm2
D`π´ dm2

π´π´ , (5.14)

where mB´ , m2
D`π´ and m2

π´π´ label the mass of the decaying B meson, the invariant
mass squared of the D`π´ and π´π´ pairs, respectively. The goal now is to express dΓ
as a function of mD`π´ and cos pφq as in Eq. (5.13), because,

dEvents
d cosφ dmD`π´

9
dΓ

d cosφ dmD`π´
. (5.15)

Recalling the definitions,

m2
D`π´ “ ppD` ` p

˚
π´q

2 (5.16)
m2
π´π´ “ ppπ´ ` p

˚
π´q

2 , (5.17)

where we have denoted as p˚π´ “
`

p0,˚
π´ , ~p

˚
π´

˘

the momentum of the—slow—pion belonging
to the D`π´ system. In the D`π´ cm frame we have,

m2
D`π´ “ ppD` ` p

˚
π´q

2 (5.18)

“
`

p0
D` ` p

0,˚
π´

˘2
” s (5.19)

1The Legendre polynomials have been introduced in Chapter 2, see also Eq. (2.23) in Sec. 2.2.2 for
details on their normalization.
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On the other hand, in the same frame,

m2
π´π´ “ ppπ´ ` p

˚
π´q

2 (5.20)
“ p2

π´ ` pp
˚
π´q

2
` 2pπ´p˚π´ (5.21)

“ 2m2
π´ ` 2p0

π´p
0, ˚
π´ ´ 2 |~pπ´ | |~p ˚π´ | cosφ. (5.22)

At this point, is convenient to bring here total four-momentum conservation,

pB´ “ pD` ` pπ´ ` p
˚
π´ (5.23)

pB´ ´ pπ´ “ pD` ` p
˚
π´ (5.24)

ñ ppB´ ´ pπ´q
2
“ s, (5.25)

which leads to the following expressions of the magnitude of the three-momentum in terms
of the variable s defined in Eq. (5.19),

|~p˚π´ | “
λ1{2ps,m2

π´ ,m
2
D`q

2
?
s

(5.26)

|~pπ´ | “
λ1{2pm2

B´ ,m
2
π´ , sq

2
?
s

, (5.27)

together with the energies

p0˚
π´ “

s`m2
π ´m

2
D`

2
?
s

(5.28)

p0
π´ “

m2
B´ ´ s´m

2
π

2
?
s

. (5.29)

We must rewrite the differential decay rate in terms of the new variables
?
s ” mD`π´

and cosφ. The transformation between the old variables—m2
D`π´ , m2

π´π´—and the new
ones—

?
s, cosφ—are given by Eqs. (5.19) and (5.22). We shall need the Jacobian matrix

of the transformation:

J
“?

s, cos pφq
‰

“

¨

˝

Bm2
D`π´

B
?
s

Bm2
D`π´

B cosφ
Bm2

π´π´

B
?
s

Bm2
π´π´

B cosφ

˛

‚, (5.30)

“

˜

2
?
s 0

2 pp0
π´p

0˚
π´q

1
´ 2 r|~pπ´ | |~p ˚π´ |s

1 cosφ ´2 |~pπ´ | |~p ˚π´ |

¸

. (5.31)

where r. . . s1 denotes a derivative with respect to
?
s. We get,

dΓ “ 1
p2πq3

1
32m3

B´
|A|2 4

?
s |~pπ´ | |~p

˚
π´ | d

`?
s
˘

d cosφ. (5.32)

Alternatively, coming back to the notation
?
s Ñ mD`π´ , we finally get the differential

decay rate in terms of the D`π´ invariant mass and—what is called in Ref. [240]—the
helicity angle of the D`π´ system, i.e., the angle between the momentum of the pion in
the D`π´ system relative to the momentum of the other pion, evaluated in the D`π´
frame,

dΓ
d cosφ dmD`π´

“
1

64π3m3
B´

?
s |~pπ´ | |~p

˚
π´ | |A|

2 . (5.33)
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With the relations of Eqs. (5.3), (5.13), (5.15) and (5.33) we finally obtain the angular
moments as,

xPLy „

ż `1

´1
|A|2 |~p ˚π´ | |~pπ´ | ˆ PLpcosφqd cosφ (5.34)

“ |~p˚π´ | |~pπ´ |

ż `1

´1

ˇ

ˇ

ˇ
A0P0pzq `

?
3A1P1pzq `

?
5A2P2pzq

ˇ

ˇ

ˇ

2
ˆ PLpzqdz (5.35)

where we should keep in mind that we do not consider partial waves with L ą 2. After
the φ integration—for L “ 0, 1, 2 and 3—the result is,

ż `1

´1
dz

ˇ

ˇ

ˇ
A0P0pzq `

?
3A1P1pzq `

?
5A2P2pzq

ˇ

ˇ

ˇ

2
ˆ PLpzq

“

$

’

’

’

’

&

’

’

’

’

%

2 pA0A˚0 `A1A˚1 `A2A˚2q , pL “ 0q
2

5
?

3 p5 pA0A˚1 `A1A˚0q `2
?

5 pA1A˚2 `A2A˚1q
˘

, pL “ 1q
2?
5 pA0A˚2 `A2A˚0q ` 4

5A1A˚1 ` 4
7A2A˚2 , pL “ 2q

6
7

b

3
5 pA1A˚2 `A2A˚1q , pL “ 3q

(5.36)

Let us introduce the notation AiA˚j `AjA˚i “ 2 |Ai| |Aj| cos pδj ´ δiq, with δi the phases
of Ai. In this way, we can directly compare with the LHCb results of Ref. [240] directly
with

xP0y9 |~p
˚
π´ | |~pπ´ |

`

|A0|
2
` |A1|

2
` |A2|

2˘ , (5.37)

xP2y9 |~p
˚
π´ | |~pπ´ |

ˆ

2
5 |A1|

2
`

2
7 |A2|

2
`

2
?

5
|A0| |A2| cos p∆δ2q

˙

, (5.38)

xP13y ” xP1y ´
14
9 xP3y9 |~p

˚
π´ | |~pπ´ |

ˆ

2
?

3
|A0| |A1| cos p∆δ1q

˙

. (5.39)

where ∆δ1,2 ” δ1,2 ´ δ0 are the phase differences of P - and D-waves relative to the S-
wave, respectively. Instead of xP1y and xP3y, we propose to analyze the linear combination
xP13y, since besides being only dependent on the S-P interference—up to L “ 2—is partic-
ularly sensitive to the S-wave phase motion. The angular moments in Eqs. (5.37), (5.38)
and (5.39) contain important information about the partial-wave phase variations. Ne-
glecting partial waves above L ě 3 is consistent in the energy region of interest to analyze
the LHCb data.

5.4 Results

5.4.1 Fit
We fit Ndata “ 27 data points of each LHCb moment (see Eq. (5.13)), up to the energy
MD`π´ “ 2.54 GeV, minimizing the merit function,

χ2
pa1, b1, a2, aA, A,Bq “

ÿ

k“t0,2,13u

Ndata
ÿ

n“1

`@

P th
k

D

´
@

P LHCb
k

D˘2

p∆ xP LHCb
k yq

2 (5.40)
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Figure 5.3: Fit to the LHCb data of the angular moments xP0y, xP2y and xP13y ”
xP1y ´ 14xP3y{9 for the B´ Ñ D`π´π´ reaction [240]. The largest error among xP1y and
14xP3y{9 in each bin is taken as the error of xP13y to compute the chi-square. The solid
blue lines show our results, with the darker error bands corresponding to the one-sigma
statistical uncertainties propagated from the fit procedure (see caption in Table 5.4 for
details), while the outer bands—in lighter blue color—were obtained by adding in quadra-
ture the 1σ uncertainties propagated from the LECs entering the UHMχPT amplitudes in
the S-wave decay amplitude. The rest of coloured bands displayed represent the different
contributions to each angular moment governed by different partial waves as can be seen
in Eqs. (5.37), (5.38) and (5.39)
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Table 5.4: Parameters obtained from the fit to the LHCb data on the angular mo-
ments in the decay B´ Ñ D`π´π´ [240] (see Eq. (5.40)). The first quoted errors cor-
respond to statistical 1σ confident-level uncertainties propagated from a large set of Mon-
tecarlo synthetic fits to randomly generated data samples assuming Gaussian statistics:
A

PLHCb,synth
k

E

„ N pµ “ PLHCb
k , σ “ ∆PLHCb

k q. The second errors correspond to uncer-
tainties propagated from fits where the input LECs entering the S-wave NLO UHMχPT
amplitudes—determined in Ref. [205], (see Table 4.5)—were varied covering 1σ hyperel-
lipses in the LECs parameter space.

parameter result
a1 1.3p0.1qp0.1q ` i p´0.8p0.1qp0.1qq

b1 ˆ 103 ´2.0p0.9qp1.3q ` i p1.5p0.7qp0.7qq
a2 ˆ 102 ´1.5p0.1qp0.2q ` i p1.9p0.1qp0.2qq
Aˆ 102 ´8.4p0.4qp1.6q
B 0.3p0.0qp0.1q
aA 1.1p0.1qp0.3q

χ2{d.o.f. 126.21
81´9 “ 1.75

with
@

P th
k

D

denoting the angular moments given by Eqs. (5.37), (5.38) and (5.39), which
are obtained in terms of the S, P and D partial wave amplitudes introduced in Eqs. (5.4),
(5.5) and (5.11). There is a total of 9 undetermined parameters ta1, b1, a2, aA, A,Bu—
recall that a1, b1 and a2 are complex constants. As already explained, in addition to
S-wave Dπ amplitude given in Eq. (5.11), we include the resonances D˚ and D˚p2680q
in the P -wave and D2p2460q in the D-wave. The best fit has χ2{d.o.f. “ 1.75 and
the best fit parameters obtained are collected in Table 5.4. A comparison of the best
fit with the LHCb data is shown in Fig. 5.3, where the darker inner bands reflect the
one-sigma errors obtained from a bootstrap Montecarlo propagation assuming Gaussian
statistics. The outer bands have been obtained by adding in quadrature to the former
the uncertainties resulting from propagation of the LECs 1σ errors—note that the LECs
enter the S-wave decay amplitude in Eq. (5.11) via the NLO UHMχPT amplitudes T .
It is worthwhile to notice that in xP13y, where the D2p2460q does not play any role, the
data show a significant variation between 2.4 and 2.5 GeV. Theoretically this feature can
now be understood as a signal for the opening of the D0η and D`s K´ thresholds at 2.413
and 2.462 GeV, respectively, which leads to two cusps in the amplitude. This effect is
amplified by the higher D˚0 p2400q pole which is relatively close to the DsK̄ threshold on
the unphysical sheet.

5.4.2 S-wave amplitude

One might wonder if the discrepancy between our amplitude and the data for xP13y at low
energies points at a deficit of the former. Fortunately the LHCb Collaboration provides
more detailed information on their S-wave amplitude in Ref. [240]: in their analysis a
series of anchor points were defined where the strength and the phase of the S-wave
amplitude were extracted from the data. Then cubic splines were used to interpolate
between these anchor points. In Fig. 5.4 our S-amplitude fixed in the previous section is
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Figure 5.4: Comparison of the S-wave amplitude determined in this work to the S-wave
anchor points found in the experimental analysis, shown as black data points [240]. The
blue lines give the best fit results and the blue bands quantify the uncertainties that emerged
from the fitting procedure—see caption of Fig. 5.3 and Table 5.4 for details on the error
determination. The fitting range extends up to 2.55 GeV. The dashed perpendicular lines
indicate the location of the Dη and DsK̄ threshold, respectively. Note how the S-wave
amplitude provided in Ref. [240] is normalized to 1{2 at the energy 2.4 GeV, henceforth,
we have also set A˚0 “ 2A0

´

r2.4 GeVs2
¯

.
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compared to the LHCb anchor points. Not only does this figure show very clearly that
the strength of the S-wave amplitude—largely determined by the fits to lattice data—is
fully consistent with the one extracted from the data for B´ Ñ D`π´π´. Additionally, it
also shows the importance of the Dη and DsK̄ cusps and, thus, of the role of the higher
pole in the I “ 1{2 and S “ 0 channel—even more clearly than the angular moments
discussed above.

This clearly highlights the importance of a coupled-channel treatment for this reaction.
An updated analysis of the LHC Run-2 data is called for to confirm the prominence of the
two cusps. Notice that the shape of the S-wave is determined by only two real parameters
(B{A, aA), while its phase motion is largely determined from unitarity, Eq. (5.12).

5.5 Conclusions
In summary, we have demonstrated that amplitudes fixed from QCD input for the pNGB
scattering off charm mesons not only resolve some longstanding puzzles in charm-meson
spectroscopy but also are at the same time fully consistent with recent LHCb data on B
decays, which provide by far the most precise experimental information for theDπ system.
The amplitudes have a pole corresponding to the D˚s0p2317q in the isoscalar strangeness
S “ 1 channel, and two poles in the I “ 1{2 nonstrange channel [3]. The latter pair of
poles should replace the lowest JP “ 0` charm nonstrange meson, D˚0 p2400q, listed in the
RPP [206]. Similarly, the broad D1p2430q listed in RPP should also be replaced by two
JP “ 1` states.

It should be stressed that the observation that certain scattering amplitudes employ
poles does not necessarily imply that the corresponding states need to be interpreted as
molecular states. However, the S-wave molecular admixture of a near-threshold state can
be quantified from the scattering length directly [244]. Applying this argument to the DK
scattering length in the D˚s0p2317q channel, predicted in Ref. [205] and determined using
LQCD [46], reveals that the molecular component of the D˚s0p2317q is larger than 70%, a
conclusion confirmed later in Ref. [44,45,245] for both the D˚s0p2317q and the Ds1p2460q.
All the poles listed in Tables 5.1 and 5.2 are spin-flavour partners, due to approximate
QCD symmetries. Therefore, they should be envisioned as to have the same origin, i.e.,
hadronic molecules generated from coupled-channel two-hadron chiral dynamics.

Treating other narrow heavy mesons, such as theD1p2420q and theD2p2460q, as matter
fields leads to additional molecular states such as the JP “ 1´ D˚s1p2860q [246] and its
partners. In fact, the interactions of Goldstone bosons with matter fields are relatively
weak at low energies because of the chiral symmetry of QCD. Even though, hadronic
molecular states can be still generated. One would expect that the S-wave attractive
interaction of other hadrons with heavy mesons, not suppressed by chiral symmetry,
may produce hadron-hadron states as well, analogous to nuclei. These states are not
the exclusive origin of higher resonances, but they are important contributors to the
hadron zoo. Given more and more S-wave thresholds at higher energies, quark models
are expected to become less and less reliable.

We therefore conclude that the long accepted paradigm underlying open-flavour heavy
meson spectroscopy that identifies all ground states with cq̄ or bq̄ quark model states, is
no longer tenable. In a broader view, the hadron spectrum must be viewed as more
than a collection of quark model states, but rather as a manifestation of a more complex
dynamics that leads to an intricate pattern of various types of states that can only be
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understood by a joint effort from experiment, LQCD and phenomenology. We close the
chapter by summarizing a few suggestions that will provide further, non-trivial tests of
the scenario proposed here:

• Measuring the angular moments, in particular xP1y´ 14xP3y{9, with unprecedented
accuracy for the B Ñ Dp˚qππ and B Ñ Dp˚qs K̄π reactions. This can be done
at LHCb and Belle-II. We expect to see nontrivial cusp structures at the Dp˚qη
and Dp˚qs K̄ thresholds in the former, and near-threshold enhancement in the Dp˚qs K̄
spectrum in the latter [3].

• Measuring the hadronic width of the D˚s0p2317q, predicted to be of about 100 keV
in the molecular scenario [205, 247], while much smaller otherwise. This will be
measured by the PANDA experiment.

• Checking the existence of the sextet pole in LQCD with a relatively large SU(3) sym-
metric quark mass.

• Searching for the predicted analogous bottom positive-parity mesons both experi-
mentally and in LQCD.
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Chapter 6

Scalar form factors in Hpsq Ñ φ`ν̄`
(H “ B,D) semileptonic decays

6.1 Introduction
Exclusive semileptonic decays play a prominent role in the precise determination of the
CKM matrix elements, which are particularly important to test the SM—any violation
of the unitarity of the CKM matrix would reveal new physics beyond the SM (see for in-
stance the review on the CKM mixing parameters by the PDG [206]). Experimental and
theoretical efforts have been devoted to multitude of inclusive and exclusive semileptonic
decays driven by electroweak charge currents. For instance, the K`3 decays and those
of the type H Ñ φ ¯̀ν` and H Ñ φ ` ν̄` (hereafter denoted by H`3 or H Ñ φ), where
H P tD, B̄u is an open heavy-flavour pseudoscalar meson and φ P tπ, K, K̄, ηu denotes
one of the Goldstone bosons due to the spontaneous breaking of the approximate chiral
symmetry of QCD, are important in the extraction of some of the CKM matrix elements.
Experimentally, significant progresses have been achieved and absolute decay branching
fractions and differential decay rates have been accurately measured [248–257]. On the
theoretical side, determinations of the form factors in the vicinity of q2 “ 0 (with q2 the
invariant mass of the outgoing lepton pair) using LCSR have significantly improved their
precision [258, 259], and have reached the level of two-loop accuracy [260]. Meanwhile,
improvements have been made by using better actions in LQCD, which have allowed
to extract CKM matrix elements with significantly reduced statistical and systematical
uncertainties [66, 261–266]. As a result of this activity in the past decade, lattice cal-
culations on the scalar form factors in heavy-to-light semileptonic transitions have been
also reported by the different groups (see the informative review by the Flavour Lattice
Averaging Group (FLAG) [70]).

The extraction of the CKM mixing parameters from K`3 and/or H`3 decays relies
on the knowledge of the vector [f`pq2q] and scalar [f0pq

2q] hadronic form factors that
determine the matrix elements of the charged current between the initial and final hadron
states.1 Various parametrizations, such as the Isgur–Scora–Grinstein–Wise updated mo-
del [267] or the series expansion proposed in Ref. [268], are extensively used in LQCD and
experimental studies. In this chapter, based on the findings of Ref. [8], we will study the
scalar form factors inH`3 decays by using the MO formalism, which is a model independent
approach to account for Hφ coupled-channel re-scattering effects. The coupled-channel
MO formalism has been extensively applied to the scalar ππ, πK and πη form factors, see,
e.g., Refs [269–273]. It builds up an elegant bridge to connect the form factors with the

1The contribution of the scalar form factor to the decay width is suppressed since it vanishes in the
limit of massless leptons. However, both scalar and vector form factors take the same value at q2 “ 0, and
thus an accurate determination of the q2´dependence of the scalar form factor can be used to constrain
the vector one in this region.
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corresponding S-wave scattering amplitudes via dispersion relations. The construction of
those equations is rigorous in the sense that the fundamental principles, such as unitarity
and analyticity, and the proper QCD asymptotic behaviour are implemented. The first
attempts to extend this method to the investigation of the scalar H Ñ φ form factors
were made in Refs. [40,63,67,68,274–278], but just for the single-channel case. A similar
dispersive MO approach has been also employed to study the semileptonic B̄ Ñ ρlν̄l
[277, 279–281] and B̄s Ñ K̄˚lν̄l [277] decays and the possible extraction of the CKM
element |Vub| from data on the four-body B̄ Ñ ππlν̄l and B̄s Ñ K̄πlν̄l decay-modes.

The study of heavy-light form factors using the MO representation incorporating
coupled-channel effects has not been undertaken yet. This is mainly because of the poor
knowledge on the Hφ interactions up to very recent years. However, a few intriguing
positive-parity charmed mesons, like the D˚s0p2317q, have been recently discovered [206],
giving support to a new paradigm for heavy-light meson spectroscopy [6] that questions
their traditional qq̄ constituent quark model interpretation. Hence, the study of the Hφ
interactions aiming at understanding the dynamics of these newly observed states has be-
come an interesting subject by itself, see, e.g., Refs. [3, 33, 34,37,38,42, 199,237,282–285]
for phenomenological studies and [45–47, 81, 205, 286, 287] for LQCD calculations. For
the D`3 decays, several LQCD results on the relevant form factors have been recently
reported, see, e.g., Refs. [261, 262, 266]. This situation makes timely the study of the
scalar D Ñ φ form factors by means of the MO representation incorporating our current
knowledge of Dφ interactions. The extension to the H “ B̄ case is straightforward with
the help of HQFS. Based on HQFS, the LECs involved in the Dφ interactions or D Ñ φ
semileptonic form factors are related to their analogues in the bottom sector by specific
scaling rules. It is then feasible either to predict quantities in the bottom (charm) sector
by making use of the known information in the charm (bottom) case or to check how well
HQFS works by testing the scaling rules.

In the present study, we construct the MO representations of the scalar form factors,
denoted by f0psq, for the semileptonicD Ñ π andD Ñ K̄ transitions, which are related to
the unitarized S-wave scattering amplitudes in the Dφ channels with strangeness (S) and
isospin (I) quantum numbers pS, Iq “ p0, 1

2q and pS, Iq “ p1, 0q, respectively. These am-
plitudes are obtained by unitarizing the Opp2q heavy-meson chiral perturbative ones [198],
with LECs determined from the lattice calculation [205] of the S-wave scattering lengths
in several pS, Iq sectors. The scheme provides an accurate description of the Dφ inter-
actions in coupled channels. For instance, as it is shown in Ref. [3] and in the previous
Chapter 4, the finite volume energy levels in the pS, Iq “ p0, 1{2q channel calculated with
the unitarized amplitudes, without adjusting any parameter, are in an excellent agreement
with those recently reported by the Hadron Spectrum Collaboration [81].

The unitarized chiral scattering amplitudes are used in this work as input to the
dispersive integrals. However, these amplitudes are valid only in the low Goldstone-
boson energy region. Hence, asymptotic behaviours at high energies for the phase shifts
and inelasticities are imposed in the solution of the MO integral equations. The Omnès
matrices obtained in this way incorporate the strong final state interactions, and the
scalar form factors are calculated by multiplying the former by polynomials. The (a priori
unknown) coefficients of the polynomials are expressed in terms of the LECs appearing
at NLO in the chiral expansion of the form factors [184,288].

The scheme employed in the charm sector is readily extended to the bottom one.
Afterwards, the LECs could be either determined by fitting to the results obtained in
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the LQCD analyses of the D Ñ πpK̄q decays carried out in Refs. [261, 262, 266] or to
the LQCD and LCSR combined B̄ Ñ π and B̄s Ñ K scalar form factors reported in
Refs. [66,263–265] and [258–260], respectively. In both scenarios LQCD and LCSR results
are well described using the MO dispersive representations of the scalar form factors
constructed in this work.

However, our best results are obtained by a simultaneous fit to all available results,
both in the charm and bottom sectors. As mentioned above, all of the LECs involved
in the B̄psqφ interactions or B̄psq Ñ φ̄ semileptonic transitions are related to those in
the charm sector by making use of the heavy quark scaling rules [288], which introduce
some constraints between the polynomials that appear in the different channels. Thus,
assuming a reasonable effect of the HQFS breaking terms, a combined fit is performed to
the D Ñ π{K̄ and the B̄ Ñ π and B̄s Ñ K scalar form factors, finding a fair description
of all the fitted data, and providing reliable predictions of the different scalar form factors
in the whole semileptonic decay phase space, which turn out to be compatible with other
theoretical determinations by, e.g., perturbative QCD [289, 290]. The results of the fit
allow also to predict the scalar form factors for the D Ñ η, Ds Ñ K and Ds Ñ η
transitions in the charm sector, and for the very first time for the B̄ Ñ η decay. In
some of these transitions, the form factors are difficult for LQCD due to the existence of
disconnected diagrams of quark loops.

Based on the results of the combined fit, and taking advantage of the fact that scalar
and vector form factors are equal at q2 “ 0, we extract all the heavy-light CKM elements
and test the second-row unitarity by using the |Vcb| value given in the PDG [206]. We
also predict the different form factors above the q2´regions accessible in the semileptonic
decays, up to energies in the vicinity of the involved thresholds, which should be correctly
described within the employed unitarized chiral approach.

This chapter is organized as follows. In Subsec. 6.2.1, we introduce the definitions
of the form factors for H`3 decays. A general overview of the MO representation of the
scalar form factors is given in Subsec. 6.2.2, while the input for the MO problem and
the solutions are discussed in Subsec. 6.2.3. In Subsec. 6.2.4, we derive the scalar as
well as vector form factors at NLO in heavy-meson chiral perturbation theory and then
perform the aforementioned matching between the MO and the chiral representations
close to the corresponding thresholds. Section 6.3 comprises our numerical results and
discussions, with details of the fits given in Subsecs. 6.3.1 and 6.3.2. With the results of
the combined charm-bottom fit, in Sec. 6.3.3, we extract the related CKM elements and
make predictions for the values of f`p0q in various transitions. Predictions for flavour-
changing b Ñ u and c Ñ d, s scalar form factors above the q2´regions accessible in the
semileptonic decays are given and discussed in Subsec. 6.3.4. We summarize the results
of this work in Sec. 6.4. Finally, some further results for b Ñ u form factors, obtained
with quadratic MO polynomials, are shown in Sec. 6.5.
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6.2 Theoretical framework

6.2.1 Form factors in H`3 decays

For a semileptonic decay of the type Hppq Ñ φ̄pp1q `pp`q ν̄`ppνq, the Lorentz invariant
Feynman amplitude is proportional to

M9GF
?

2

!

ūpp`qγ
µ
p1´ γ5qvppνq

)

ˆ

!

VQq xφ̄pp
1
q|q̄γµp1´ γ5qQ|Hppqy

)

, (6.1)

where GF is the Fermi constant, and VQq is the CKM matrix element corresponding to the
flavour changing QÑ q transition. The terms in the first and second curly brackets stand
for the weak and hadronic matrix elements, respectively. In the hadronic matrix element,
the axial-vector part vanishes due to parity and total angular momentum conservation,
while the remaining vector part is parametrized in a conventional form as

xφ̄pp1q|q̄γµQ|Hppqy “f`pq
2
q

„

Σµ
´
m2
H ´M

2
φ

q2 qµ


` f0pq
2
q
m2
H ´M

2
φ

q2 qµ , (6.2)

where f`pq2q and f0pq
2q are the vector and scalar form factors, respectively, with qµ “

pµ ´ p1µ and Σµ “ pµ ` p1µ. Note that both form factors should be equal at q2 “ 0. As
discussed in Ref. [291], they specify the P -wave (JP “ 1´) and S-wave (JP “ 0`) of the
crossed-channel matrix elements,

x0|q̄γµQ|Hppqφp´p1qy “ xφ̄pp1q|q̄γµQ|Hppqy . (6.3)

Both the scalar and vector form factors contribute to the differential decay rate, see e.g.,
Ref. [70]. Nevertheless, when the lepton mass is neglected, the differential decay rate in
the H´meson rest frame can be simply expressed in terms of the vector form factor via

dΓpH Ñ φ̄`ν̄`q

dq2 “
G2
F

24π3 |~p
1
|
3
|VQq|

2
|f`pq

2
q|

2 . (6.4)

It is then possible to extract the CKM element |VQq| even for a single value of the four-
momentum transfer, provided one simultaneously knows the vector form factor and the
experimental differential decay width. A possible choice is q2 “ 0, where the scalar and
vector form factors coincide, f`p0q “ f0p0q.

In the next two subsections, Subsecs. 6.2.2–6.2.3, we give specific details on the MO
representation of the form factors. For brevity, in some occasions we will focus on the
formalism for the case of the charm sector (H “ D). The extension to the bottom sector
(H “ B̄) is straightforward using HQFS, though some aspects are explicitly discussed in
Subsec. 6.2.3.

6.2.2 Muskhelishvili–Omnès representation
We now discuss the dispersive representation of the scalar form factors within the MO
formalism. Throughout this work, isospin breaking terms are not considered, and there-
fore it is convenient to work with the isospin basis. Before proceeding, we first discuss the
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relation of the form factors expressed in the particle and isospin bases. We start defining
the phase convention for isospin states as illustrated in Subsec. 3.3.1 of Chapter 3 through
Eqs. (3.42), (3.43) and (3.44) for the pNGBs, whereas for the heavy mesons the conven-
tions are those in Eq. (3.49) introduced in Subsec. 3.3.2 of the same chapter. The form
factors involving the c Ñ d transition are those appearing in the D0 Ñ π´, D` Ñ π0,
D` Ñ η, and D`s Ñ K0 semileptonic decays. (Note that D0 Ñ π´ and D` Ñ π0 tran-
sitions are related by an isospin rotation.) The details of these form factors close to the
zero recoil point, where the outgoing Goldstone boson is at rest, are greatly influenced
by the πD, Dη, and DsK̄ scattering amplitudes in the pS, Iq “ p0, 1{2q sector. Note that
to be consistent with the convention of Refs. [198, 205] and previous Chapter 4, we use
πD instead of Dπ to construct the isospin 1/2 state. We then define the vector-column
~F p0,1{2q as

~F p0,1{2qpsq ”

¨

˚

˚

˝

b

3
2f

D0Ñπ´
0 psq

fD
`Ñη

0 psq

fD
`
s ÑK

0

0 psq

˛

‹

‹

‚

. (6.5)

We shall use the shorthand fDπ0 psq “ fD
0Ñπ´

0 psq, fDη0 psq “ fD
`Ñη

0 psq, and fDsK̄0 psq “

fD
`
s ÑK

0

0 psq. Likewise for the c Ñ s transitions, we have the D0 Ñ K´, D` Ñ K̄0, and
D`s Ñ η semileptonic decays, related to the DK and Dsη scattering amplitudes in the
pS, Iq “ p1, 0q sector. We thus define:2

~F p1,0qpsq ”

˜

´
?

2fD0ÑK´
0 psq

fD
`
s Ñη

0 psq

¸

, (6.6)

for which we will also use the notation fD
0ÑK´

0 psq “ fDK0 psq and fD
`
s Ñη

0 psq “ fDsη0 psq.
Here, and again to be consistent with the convention of Refs. [198,205], we useDK instead
of KD to construct the isoscalar state, which is just the opposite convention to that used
for the isospin πD state. With these definitions, the unitarity relation for any of the ~Fpsq
can be compactly written as:

~Fps` iεq ´ ~Fps´ iεq
2i “ Im ~Fps` iεq

“ T ˚ps` iεqΣpsq ~Fps` iεq , (6.7)

where T psq stands for the coupled-channel S-wave scattering amplitude in the correspond-
ing pS, Iq sector, which will be discussed further in Sec. 6.2.3. The diagonal matrix Σpsq
contains the phase space factors. For p0, 1{2q, one has

Σpsq “ 2 diag
`

σDπpsq, σDηpsq, σDsK̄psq
˘

, (6.8)

whereas in the p1, 0q sector including two coupled channels we have

Σpsq “ 2 diag pσDKpsq, σDsηq . (6.9)

The function σabpsq was already introduced in Eq. (2.38), and we reproduce it here in-
cluding a Heaviside step function:

σabpsq “
λ1{2ps,m2

a,m
2
bq

2s Θ
“

s´ pma `mbq
2‰ . (6.10)

2Here also D0 Ñ K´ and D` Ñ K̄0 form factors are related by an isospin rotation.
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which ensures the reality of the form factors below the lowest threshold. Invariance under
time-reversal together with the optical-theorem leads to

ImT´1
ps` iεq “ ´Σpsq (6.11)

In this convention, the T - and S-matrices are related by

Spsq “ I` 2iΣ 1
2 psqT psqΣ 1

2 psq (6.12)

The unitarity relation of Eq. (6.7) can be used to obtain dispersive representations for
the form factors. We start considering the D Ñ π transition in the single channel case
(elastic unitarity) where the form factor satisfies

ImfDπ0 psq “ rtπDpsqs˚σDπpsqf
Dπ
0 psq , s ” q2 , (6.13)

with tπDpsq the πD S-wave elastic scattering amplitude. Equation (6.13) admits an
algebraic solution [292],

fDÑπ0 psq “ ΩpsqP psq , (6.14)
where P psq is an undetermined polynomial, and the Omnès function Ωpsq is given by

Ωpsq “ exp
„

s

π

ż 8

pmD`Mπq2
ds1 δps1q

s1ps1 ´ sq



, (6.15)

with δpsq the elastic 0` πD phase shift, in accordance with the Watson final state inter-
action theorem [293]. This was the scheme adopted in the previous studies carried out in
Refs. [40, 63,67,68,274–276,278].

For coupled channels the solution for ~Fpsq takes the form:

~Fpsq “ Ωpsq ¨ ~Ppsq (6.16)

being ~Ppsq a vector of polynomials with real coefficients and Ωpsq the Omnès matrix that
satisfies3

Im Ωps` iεq “ T ˚ps` iεqΣpsqΩps` iεq (6.19)
which leads to the following unsubtracted dispersion relation:

Ωps` iεq “ 1
π

ż 8

sth

T ˚ps1qΣps1qΩps1q
s1 ´ s´ iε

ds1 , (6.20)

3Taking into account that the Ωpsq matrix should have only a right-hand cut and it should be real
below all thresholds, Eq. (6.19) is equivalent to

Ωps` iεq “ Hps` iεqΩps´ iεq. (6.17)

with Hpsq “ pI` 2iT psqΣpsqq. Furthermore since HpsqH˚psq “ I, though Hpsq is not the S-matrix in
the coupled-channel case, it follows

det rΩps` iεqs “ e2iφpsqdet rΩps´ iεqs (6.18)

with exp 2iφpsq “ det rHpsqs. This is to say that the determinant of the matrix Ωpsq satisfies a single-
channel Omnès-type relation [294], which is extensively used in this work to check the accuracy of the
numerical calculations. Note that above all thresholds, det rHpsqs “ det rSpsqs and therefore in the elastic
case (ηi Ñ 1 @i), φpsq “

řn
i“1, δipsq, with n the number of channels.
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with sth the lowest threshold, which is referred to as the MO integral equation [295].
Taking a polynomial ~P psq of rank pn ´ 1q would require the knowledge of ~Fpsq for n
values of s. Unlike the single channel case, there is no analytical solution [in the sense of
Eq. (6.15)] for the coupled-channel MO problem and it has to be solved numerically. The
MO equation can be written in an alternative form:

Re Ωpsq “
1
π
P
ż 8

sth

ds1
s1 ´ s

Im Ωps1q,

Im Ωpsq “ XpsqRe Ωpsq , (6.21)
with P

ş

denoting the principal value and

Xpsq “ ImT psq rReT psqs´1 , (6.22)
which is expressed in terms of the T -matrix and encodes the information on the Dφ re-
scattering. The linear MO system, Eq. (6.21), can be solved by following the appropriate
numerical method described in Ref. [294].

6.2.3 Input and MO solutions
To solve the MO equation and obtain the Ωpsq matrix, the T -matrix is needed as an input.
We will use here the amplitudes based on unitarized chiral effective theory as computed
in Refs. [198,205] and presented in the previous Chapter 4. Because of the normalizations
used in Eqs. (6.7) and (6.11), the unitarized amplitude calculated in Chapter 4, denoted
here by TUpsq, is related to the T -matrix introduced in the above subsection by:

T psq “ ´
1

16πTUpsq . (6.23)

Since the amplitudes are based on chiral potentials, the obtained T -matrices are only
valid in the energy region not far from the corresponding thresholds. We thus adopt
such T -matrices only up to a certain value of s, denoted by sm. Above that energy, the
T -matrix elements are computed as an interpolation between their values at s “ sm and
the asymptotic values at s “ 8. The interpolation still gives a unitary T -matrix since, as
we will specify below, it is actually performed on the phase shifts and the inelasticities.
Moreover, the approximation of quasi-two-body channels cannot hold for arbitrarily large
energies and Eq. (6.7) is a reasonable approximation to the exact discontinuity only in
a finite energy range. However, as we are interested in constructing the form factors
in a finite energy region also, the detailed behaviour of the spectral function at much
higher energies should be, in principle, unimportant. As we will see below, this is not
entirely correct, in particular for the B̄ Ñ π semileptonic transition, because of the large
q2´phase space accessible in this decay. Nevertheless, we will assume that Eq. (6.7) holds
up to infinite energies, only requiring that the T -matrix behaves in a way that ensures an
appropriate asymptotic behaviour of the form factors, and we will discuss the dependence
of our results on the contributions from the high energy region. In general, except for the
B̄ decays,4 the asymptotic conditions on the T -matrix are chosen such that:

lim
sÑ8
|Tijpsq| “ 0 for i , j , (6.24)

lim
sÑ8

n
ÿ

i“1
δipsq “ nπ , (6.25)

4We will specifically discuss the situation for these transitions below.
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where n is the number of channels involved in the T -matrix and δipsq are the phase shifts.
These conditions ensure (in general) that the unsubtracted dispersion relation for the
Omnès matrix in Eq. (6.20) has a unique solution, albeit a global normalization [295] (see
also in particular Sec. 4.3 of Ref. [294]). The condition of Eq. (6.25) guaranties that

lim
sÑ8

det rΩpsqs Ñ 1{sn (6.26)

as can be deduced from the discussion of Eqs. (6.17) and (6.18). Note that the normal-
ization of the Omnès matrix is completely arbitrary, and the computed form factors do
not depend on it.5

In what follows, we detail the T -matrices and the specific shape of the asymptotic
conditions for the two coupled-channel cases [pS, Iq “ p1, 0q and p0, 1{2q] that will be
analyzed below.

‚ The pS, Iq “ p1, 0q sector
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Figure 6.1: Phase shifts, inelasticities [see Eq. (6.27)] and amplitude moduli from T
p1,0q
U .

The vertical line indicates the Dsη threshold. Error bands have been obtained by Monte
Carlo propagating the uncertainties of the LECs quoted in Ref. [205].

In this sector, we will consider two coupled channels, DK (1) and Dsη (2), and above
all thresholds, the T -matrix is parametrized in terms of two phase shifts and one inelas-

5For example, let us consider Omnès matrices Ω and Ω̄ normalized to Ωp0q “ I or Ω̄psnq “ A (sn the
normalization point, sn 6 sth and A a real matrix), respectively. The matrix Ω̄psq is readily obtained
from Ωpsq as Ω̄psq “ ΩpsqΩ´1psnqA. The form factors can then also be written as ~Fpsq “ Ωpsq~Ppsq “
Ω̄psqA´1Ωpsnq~Ppsq ” Ω̄psq ~̄Ppsq, where the definition of ~̄Ppsq reabsorbs the constant matrix A´1Ωpsnq.
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Figure 6.2: pS, Iq “ p1, 0q Omnès matrix solution of the MO integral equation (6.21)
with the contour condition Ω

`

pmD ´MKq
2˘ “ I, and asymptotic phase shifts δDKp8q “

2π and δDsηp8q “ 0. Error bands have been obtained by Monte Carlo propagating the
uncertainties of the LECs quoted in Ref. [205]. The dashed vertical line indicates q2

max “
pmD ´MKq

2.

ticity parameter,

T psq “

¨

˚

˝

ηpsqe2iδ1´1
2iσ1psq

?
1´η2eiφ12

2
?
σ1psqσ2psq?

1´η2eiφ12

2
?
σ1psqσ2psq

ηpsqe2iδ2´1
2iσ2psq

˛

‹

‚

(6.27)

with the phase φ12 “ δ1` δ2`modpπq and 0 ď η ď 1. To solve the MO integral equation
[cf. Eq. (6.21)], we use a T -matrix of the form

T psq “

#

´ 1
16πT

p1,0q
U psq sth 6 s 6 sm ,

THpsq s > sm ,
(6.28)

with sth “ pmD`MKq
2 the lowest threshold, TU defined in Eq. (2.86) and TH the asymp-

totic matrix that will be discussed below. TU is computed following the prescriptions
of Sec. 2.5 and the kernel potentials introduced in Sec. 4.2.2 of previous Chapter 4 (see
Eqs. (4.2) and Tables 4.1 and 4.5). Phase shifts, inelasticities and amplitude moduli from
T
p1,0q
U are displayed in Fig. 6.1 up to

?
s “ 2.8 GeV, slightly above sm “ p2.7 GeVq2.

Above this scale, the T -matrix elements are computed as an interpolation between their
values at s “ sm and the asymptotic values at s “ 8, given in Eqs. (6.24) and (6.25).
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Thus, TH is constructed from Eq. (6.27) using the following parametrizations for phase
shifts and inelasticities:

δipsq “ δip8q ` rδipsmq ´ δip8qs
2

1` ps{smq3{2
,

ηpsq “ ηp8q ` rηpsmq ´ ηp8qs
2

1` ps{smq3{2
(6.29)

as suggested in Ref. [294]. As discussed above, the Omnès matrix is uniquely determined
by choosing ηp8q “ 1 and δ1p8q ` δ2p8q “ 2π. The only remaining freedom is the
distribution of 2π over the two phase shifts. Note that, δipsmq is defined modulo π and
this ambiguity is fixed by continuity-criteria. Here for the DK ´Dsη coupled channels,
we choose δ1p8q “ 2π, δ2p8q “ 0. Different choices of the asymptotic values or of the
interpolating functions in Eq. (6.29) will modify the shape of the Omnès solution far from
the chiral region. The numerical effect of such freedom on the derived scalar form factors
should be safely compensated by the undetermined polynomial in front of the Omnès
matrix.

In Fig. 6.2, we show the solution of the MO integral equation (6.21), with the input
specified above, and the contour condition Ωpq2

maxq “ I, with q2
max “ pmD ´MKq

2. We
display results only up to s “ sm that would be later used to evaluate the scalar form
factors entering in the D Ñ K̄ and Ds Ñ η semileptonic transitions. Note that the
imaginary parts are zero below the lowest threshold sth “ pmD ` MKq

2, and how the
opening of the Dsη threshold produces clearly visible effects in the Omnès matrix. At
very high energies, not shown in the figure, both real and imaginary parts of all matrix
elements go to zero, as expected from Eq. (6.26).

‚ The pS, Iq “ p0, 1{2q sector

Charm sector: Here we consider three channels, Dπ (1), Dη (2), and DsK̄ (3), and
above all thresholds, the S-matrix can be still specified6 by the elastic parameters, i.e.,
three phase shifts and three inelasticities [296,297],

Spsq “

¨

˚

˝

η1e
2iδ1 γ12e

iφ12 γ13e
iφ13

γ12e
iφ12 η2e

2iδ2 γ23e
iφ23

γ13e
iφ13 γ23e

iφ23 η3e
2iδ3

˛

‹

‚

, (6.30)

Furthermore, the parameters in the off-diagonal elements are related to the diagonal ones
δi and ηi by

γ2
ij “

1
2
`

1` η2
k ´ η

2
i ´ η

2
j

˘

, i , j , k , i ,

φij “ δi ` δj ` αij `modpπq, i, j, k “ 1, 2, 3 ,

and αij is determined as

sinαij “

d

1
4ηiηj

„

γ2
ikγ

2
jk

γ2
ij

´ pηi ´ ηjq2


” Xij . (6.31)

6The T -matrix is obtained from Eq. (6.30).
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Figure 6.3: Phase shifts, inelasticities and amplitude moduli from T
p0,1{2q
U in the charm

sector. The vertical lines indicate the Dη and DsK̄ thresholds. Error bands have been
obtained by Monte Carlo propagating the uncertainties of the LECs quoted in Ref. [205].

Note that the solutions for αij can be either arcsinpXijq or π´arcsinpXijq. The inelasticity
parameters should satisfy the following boundary conditions:

0 ď ηi ď 1 ,
|1´ ηj ´ ηk| ď ηi ď 1´ |ηj ´ ηk|, i , j , k . (6.32)

To solve the MO integral Eq. (6.21), we use a T -matrix similar to that in Eq. (6.28), with
the obvious substitution of T p1,0qU psq by T p0,

1
2 q

U psq. In addition, sth “ pmD `Mπq
2 and we

now take sm “ p2.6 GeVq2. Phase shifts, inelasticities and amplitude moduli from T
p1,0q
U

are displayed in Fig. 6.3 for sth ď s ď sm. Above sm “ p2.6 GeVq2, TH is constructed from
Eq. (6.30) using interpolating parametrizations for phase shifts and inelasticities similar
to those given in Eq. (6.29), imposing continuity of phase shifts and of the T -matrix, and
taking

δ1p8q “ 3π , δip8q “ 0, i “ 2, 3 ,
ηjp8q “ 1 , j “ 1, 2, 3 . (6.33)

With the input specified above, the three-dimensional pS, Iq “ p0, 1{2q Omnès matrix can
be numerically computed and its complex elements are shown in Fig. 6.4 up to

?
s ď 2.6

GeV.

Bottom sector: In Figs. 6.5 and 6.6, we show phase shifts, inelasticities and the
solution of the MO integral equation for the pS, Iq “ p0, 1{2q channel in the bottom
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Figure 6.4: Charm pS, Iq “ p0, 1{2q Omnès matrix solution of the MO integral equa-
tion (6.21) with the contour condition Ω

`

pmD ´Mπq
2˘ “ I, and asymptotic phase shifts

δDπp8q “ 3π, δDηp8q “ 0 and δDsK̄p8q “ 0. Error bands have been obtained by Monte
Carlo propagating the uncertainties of the LECs quoted in Ref. [205].

sector. The chiral amplitudes7 are used in Eq. (6.20) up to sm “ p6.25 GeVq2, and from
there on, the asymptotic forms of the amplitudes are employed. As we will show in the
next section, in the case of B̄ decays, the accessible phase space is quite large, and q2

varies from around m2
B at zero recoil [q2

max “ pmB ´Mφq
2] down to zero, when the energy

of the outgoing light meson is about mB{2 far from the chiral domain. The B̄π scalar
form factor decreases by a factor of five, and the LQCD results around q2

max and the
LCSR predictions in the vicinity of q2 “ 0 are not linearly connected. In the present
approach, as we will discuss, we multiply the MO matrix Ω by a rank-one polynomial,
and thus the extra curvature provided by the MO matrix becomes essential. While Ωpsq
around q2

max is rather insensitive to the adopted asymptotic behaviour of the T -matrix,
since it is dominated by the integration region close to threshold (s ă sm) where the

7The values of the involved LECs in the B̄φ interactions are determined from their analogues in the
charm sector by imposing the heavy-quark mass scaling rules discussed in Sec. 4.5.1 of previous Chapter 4.
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chiral amplitudes are being used,8 this is not the case for low values of q2 close to 0,
quite far from the two-body scattering thresholds. This unwanted dependence, due to
the large extrapolation, could be compensated in the form factors by using higher rank
polynomials, but that would introduce additional undetermined parameters. Conversely,
this dependence of Ωp0q, relative to the results at q2

max, on the details of the amplitudes
at high energies will be diminished by solving a MO integral equation involving several
subtractions, instead of the unsubtracted one of Eq. (6.20). This, however, will also
introduce some more free parameters [40]. The situation is better in the charm sector,
where the needed q2´range is much reduced, and thus most of the contributions to the
MO matrix come from an integration region within the chiral regime. Indeed, in the
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Figure 6.5: Phase shifts, inelasticities and amplitude moduli from T
p0,1{2q
U in the bottom

sector. The vertical lines indicate the B̄η and B̄sK̄ thresholds. The values of the involved
LECs in the B̄φ interactions are determined from their analogues in the charm sector by
imposing the heavy-quark mass scaling rules discussed in Sec. 4.5.1. Error bands have been
obtained by Monte Carlo propagating the uncertainties of the LECs quoted in Ref. [205].

bottom sector we need to use δ1p8q “ 2π, δ2p8q “ 2π and δ3p8q “ 0, instead of the choice
of Eq. (6.33) used for the charm decays, to find acceptable fits to the LQCD and LCSR
predictions of the B̄π and B̄sK scalar form factors. With this choice, we find theoretically
sound fits where the LECs9 that determine the rank-one Omnès polynomials describe the
LQCD data close to q2

max, within the range of expected validity of the chiral expansion,
while the LCSR results are reproduced thanks to the non-linear behaviour encoded in the

8In general, the MO matrix in the chiral domain, between the q2
max and scattering (below sm) regions

is rather insensitive to the high energy behaviour of the amplitudes.
9These are βP1 and βP2 , to be introduced in Subsec. 6.2.4, that appear in the chiral expansion of the

form factors at NLO.
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Figure 6.6: Bottom pS, Iq “ p0, 1{2q Omnès matrix solution of the MO integral equa-
tion (6.21) with the contour condition Ω

`

pmB ´Mπq
2˘ “ I, and asymptotic phase shifts

δB̄πp8q “ 2π, δB̄ηp8q “ 2π and δB̄sK̄p8q “ 0. Error bands have been obtained by Monte
Carlo propagating the uncertainties of the LECs quoted in Ref. [205].

MO matrix Ωpsq. This picture will be reinforced by the consistent results that will be
obtained, assuming a reasonable effect of the HQFS breaking terms, from combined fits
to the D Ñ π{K̄ and the B̄ Ñ π and B̄s Ñ K scalar form factors.

We do not really have an explanation of why the above choice of phase shifts at
infinity works better in the bottom sector than the usual one in Eq. (6.33) adopted in
the charm meson decays. We would like, however, to mention the different behaviour
of the unitarized chiral phase shifts in the charm and bottom sectors. In both cases,
the chiral amplitudes give rise to two resonances [3] (see Chapter 4): the first one, the
non-strangeness flavour partner of the D˚s0p2317q, quite broad, and located around 100
MeV above the Dπ or B̄π thresholds and the second one placed below the heaviest of the
thresholds, DsK̄ and B̄sK̄, respectively. In the charm sector, the second resonance does
not produce clear signatures in the phase shifts of the two open channels Dπ and Dη,
while it is clearly visible in the phase shifts of the bottom B̄π and B̄η channels. Moreover,
the second resonance is significantly narrower for the latter heavy-quark sector than for
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the former one (70 MeV versus 270 MeV).
Note also that now limsÑ8

ř3
i“1 δipsq “ 4π ą 3π, which implies a slightly faster

decreasing of the MO matrix elements at high energies.

6.2.4 Chiral expansion of the form factors and the MO polyno-
mial

Once the Omnès matrix is obtained, the form factor ~Fpsq is determined, according to
Eq. (6.16), up to a polynomial ~Ppsq that contains unknown coefficients. We will match
the dispersive and the NLO chiral representations of the form factors in a region of values
of s where the latter are supposed to be still valid. Besides the theoretical benefit of
this constraint, it has also the practical advantage of expressing the coefficients of the
polynomials in terms of the few LECs used in the chiral expansion of the form factors.
Since, as will be discussed below (cf. Eqs. (6.39) and (6.40) and the discussion that
follows), the NLO chiral expansion of the form factors used here is appropriate only up
to terms linear in s, we should also take linear forms for the MO polynomials,

~Ppsq “ ~α0 ` ~α1 s . (6.34)

Since the Omnès matrix elements asymptotically behave as 1{s [see Eq. (6.26)], due
to the chosen asymptotic conditions, this implies that the form factors will tend to a
constant10 for s Ñ 8. Note that one would rather expect the form factors to vanish
in this limit [298]. To achieve such asymptotic behaviour one should employ order zero
polynomials. However, since we are interested in the region 0 6 s 6 smax, with smax in the
vicinity of pmH ´Mφq

2, we prefer to keep the linear behaviour of the polynomials, since
this allows for a better matching of the coefficients ~α0,1 with the LECs that appear in the
NLO chiral calculation of the form factors.

‚ Form factors in heavy meson chiral perturbation theory

The leading-order (LO) coupling of the charm (D and Ds) or bottom (B̄ and B̄s) mesons
to the Nambu–Goldstone bosons of the spontaneous breaking of the approximate chiral
symmetry of QCD, through the charged, left-handed current Jµ “

`

Q̄γµLu, Q̄γ
µ
Ld, Q̄γ

µ
Ls
˘T ,

with Q “ c, b, and γµL “ γµp1 ´ γ5q, is described by the following chiral effective La-
grangian [184,288,299]

L0 “
?

2fP
`

i m̊P˚µ ` BµP
˘

u:Jµ . (6.35)

where P and P˚ are the pseudoscalar and vector heavy-light mesons with content pQū,
Qd̄, Qs̄q, respectively, which behave as SU(3) light flavour triplets. Here m̊ denotes the
degenerate mass of the Ppsq and P ˚psq mesons in the chiral and heavy-quark limits, and fP
is the pseudoscalar heavy-light meson decay constant defined as

x0|Jµ|Ppp1qy “ i
?

2fP p
µ
1 . (6.36)

10This not strictly true in the case of B̄psq´decays since, as discussed above, different asymptotic
conditions have been assumed in the bottom sector and the Omnès matrix elements are expected to
decrease slightly faster than 1{s.
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The chiral block is defined by u2 “ U “ expri
?

2Φ{F0s as in Eq. (3.83), where ξ̂ “
?

2Φ
is the octet of the Nambu–Goldstone bosons given in Eq. (3.36), and F0 the pion decay
constant in the chiral limit (we will take the physical value for the decay constant F0 »

92 MeV). The relevant NLO chiral effective Lagrangian reads [288]

L1 “ ´β
P
1 P u pBµU :qJµ ´ βP2 pBµBνPqu pBνU :q Jµ . (6.37)

We need the LO PP˚φ interaction as well, which is given by [184,288,299] ,

LPP˚φ “ g̃
`

P˚µuµP: ` P uµP˚:µ
˘

, (6.38)

where uµ was introduced in Eq. (3.96) and g̃ „ gm̊, with g „ 0.6 a dimensionless and
heavy quark mass independent constant. The topologies of relevant Feynman diagrams
are shown in Fig. 6.7. The vector and scalar form factors, in the (strangeness, isospin)
basis, at OpEφq (i.e., NLO) in the chiral expansion read [288]

f
rPφspS,Iq

` psq “
CpS,Iq
rPφs
?

2F0

„

fP
?

2
`
?

2 g̃ m̊ fP
m2
R ´ s

` βP1 ´
βP2
2 pΣPφ ´ sq



, (6.39)

f
rPφspS,Iq

0 psq “
CpS,Iq
rPφs
?

2F0

„ˆ

?
2 g̃ m̊fP
m2
R

` βP1

˙

∆Pφ ´ s

∆Pφ

`

ˆ

?
2fP ´ βP2 pΣPφ ´ sq

˙

∆Pφ ` s

2 ∆Pφ



, (6.40)

where ∆Pφ “ m2
P ´M

2
φ and ΣPφ “ m2

P `M
2
φ with P P tQs̄,Qd̄,Qūu and φ P tπ, K, K̄ ηu.

The coefficients CpS,Iq
rPφs are collected in Table 6.1. Moreover, we have fixed mR to mD˚

(mB˚) and to mD˚s (mB˚s ) for the pS, Iq “ p0, 1{2q and pS, Iq “ p1, 0q charm (bottom)
channels, respectively. In principle, at LO in the heavy quark expansion, mR should be
set to m̊, however the use of the physical vector mass is quite relevant for the vector form
factor, because of the propagator structure, though it has much less relevance for the scalar
form factor that we study in this work. We should also note that all kinematical factors
are always calculated using physical masses of the involved mesons. It is worthwhile to
notice that s is of the order m2

P „ OpE0
φq, p∆Pφ ´ sq „ OpEφq and pΣPφ ´ sq „ OpEφq,

and p∆Pφ ` sq „ OpE0
φq, so that a small change of OpEφq in p∆Pφ ` sq only leads to

a higher order effect. Thus, p∆Pφ ` sq should be regarded as basically a constant with
s „ m2

P , and the expression in Eq. (6.40) should be matched to a rank-1 MO polynomial
as mentioned before (see below for details of the matching).

Finally, we should mention that the LECs βP1 and βP2 scale with the heavy quark mass
as [288]

βP1 „
?
mP , βP2 „ 1{

a

m3
P (6.41)

neglecting logarithmic corrections.

‚ Matching

At energies close to the thresholds, the scalar form factors in Eq. (6.16) should have the
same structure as the ones obtained from chiral perturbation theory, given in Eq. (6.40).
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P P

P ∗

φ φ

(a) (b)

Figure 6.7: Topologies of the relevant Feynman diagrams contributing to the hadronic
matrix elements. The solid circle denotes the LO PP˚φ interaction and the solid square
represents the left-handed current.

Table 6.1: Strangeness-isospin coefficients appearing in the chiral expansion of the form
factors.

pS, Iq p1, 0q p0, 1
2q

channel DK Dsη Dπ Dη DsK̄

B̄π B̄η B̄sK̄

C ´
?

2 ´

b

2
3

b

3
2

1?
6 1

We match the two representations at a point s “ s0 located in the valid region of the chiral
expansion. Namely, we take s0 “ q2

max “ pmP ´Mπq
2 for the p0, 1{2q form factors, and

s0 “ pmD´MKq
2 for the charm p1, 0q case, since this is the point in which the momentum

of the lightest meson is zero. Imposing that the dispersive form factors and their first
derivative to be equal to the chiral ones at s “ s0, the coefficients in the polynomials,
Eq. (6.34), can be expressed as:

~α0 “ Ω´1
ps0q ¨ ~Fχps0q ´ ~α1 s0, (6.42)

~α1 “ Ω´1
ps0q ¨

”

~F 1χps0q ´ Ω1ps0q ¨ Ω´1
ps0q ¨ ~Fχps0q

ı

,

where the 1 stands for a derivative with respect to s. The vectors ~Fχ contain the chiral
form factors,

~F p0,
1
2 q

χ psq ”

ˆ

fDπ
p0, 1

2 q

0 , fDη
p0, 1

2 q

0 , fDsK
p0, 1

2 q

0

˙T

, (6.43)

~F p1,0qχ psq ”
´

fDK
p1,0q

0 , fDsη
p1,0q

0

¯T

, (6.44)

with all the elements given in Eq. (6.40). Similar expressions are used for the p0, 1
2q

channel in the bottom sector. In other words, the vectors ~Fχpsq contain the form factors
defined in Eqs. (6.5) and (6.6), but computed according to the chiral expansion.

It is worth noting that the NLO LECs βP1 and βP2 determined from a fit to data using
the MO scheme would have some residual dependence on the matching point. To minimize
such dependence, we have chosen s0 “ q2

max, where the momentum of the Goldstone bosons
is close to zero and higher order chiral corrections are expected to be small. Different
choices of the matching point, within the chiral regime, will amount to changes in the
fitted (effective) βP1 and βP2 LECs driven by higher order effects.
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In the charm p1, 0q sector, due to the presence of the D˚s0p2317q state as a bound
state in the T -matrix, the solution of Eq. (6.16) gets modified. The contribution from
D˚s0p2317q is easily incorporated as follows:

Ωp1,0q ¨ ~Pp1,0qpsq Ñ Ωp1,0q ¨
"

β0 ~Γ
s´ sp

` ~Pp1,0qpsq
*

, (6.45)

where β0 is an unknown parameter which characterizes the coupling of D˚s0p2317q to the
left-hand current. ~Γ contains the couplings of the D˚s0p2317q to the DK-Dsη system,11
namely, ~Γ “ pgDK , gDsηqT . As it was shown previously (see Table 4.4), this bound state
is dynamically generated in the unitarized amplitudes T p1,0qU psq presented in Chapter 4,
that we also employ here. The couplings are computed from the residue of the amplitude
at the pole as in Eq. (2.93). The D˚s0p2317q pole position sp “ pM ´ iΓ{2q2, together with
gDK and gDsη, are collected in Table 4.4.

6.3 Numerical results and discussion

Table 6.2: Masses and decay constants (in MeV units) used in this work and taken from
the PDG [206] and FLAG [70] reviews.

Goldstone charm sector bottom sector
Mπ 139 mD 1869.6 mB 5279.5
MK 496 mDs 1968.5 mBs 5366.8
Mη 547 fD 147.6 fB 135.8
F0 92.4 fDs 174.2 fBs 161.5

mD˚ 2008.6 mB˚ 5324.7
mD˚s 2112.1

So far, the theoretical MO representations of the scalar form factors have been con-
structed. In this section, we want to confront the so-obtained form factors to the LQCD
and LCSR results. In what follows, we first fit to the B̄ Ñ π and B̄s Ñ K̄ scalar form
factors, where we expect the 1{mP corrections to the chiral expansion in Eq. (6.40) to be
substantially suppressed. Next, we will carry out a combined fit to all the data in both
charm and bottom sectors, by adopting some (approximate) heavy-quark flavor scaling
rule [288] for the βP1 and βP2 LECs in Eq. (6.40). Using the results of our combined fit,
we will: i) determine the CKM elements, |Vcd|, |Vcs| and |Vub|, ii) predict form factors,
not computed in LQCD yet, and that can be used to over-constrain the CKM matrix
elements from analyses involving more semileptonic decays, and iii) predict the different

11Note that the first term in the bracket of Eq. (6.45) should have a more general form, ~β0
s´sp

, with
~β0 a vector with two independent components, ~β0 “ pβ

a
0 , β

b
0q
T . The specific form in Eq. (6.45) reduces

the number of free parameters, by forcing βa0 {βb0 “ gDK{gDsη. On the other hand, this has the effect
that the form factors fDK0 and fDsη

0 are not exactly independent of the choice of the point sn where one
normalizes the Omnès matrix, Ωpsnq “ I. Nonetheless, we have checked that this choice, varying sn from
zero to q2

max, has no practical effect in the determination of β0, which indicates that our assumption is
reasonable. We also remark that this discussion has no effect at all in the p0, 1{2q sector.
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form factors above the q2´regions accessible in the semileptonic decays, up to moderate
energies amenable to be described using the unitarized coupled-channel chiral approach.

Masses and decay constants used in this work are compiled in Table 6.2. In addition,
the mass of the heavy-light mesons in the chiral limit, see Eq. (6.35), is set to m̊ “

pmP `mPsq{2, for simplicity the same average is used to define m̄P in the Sec. 4.5.1 and
in the relations given in Eq. (6.52). The PP˚φ axial coupling constant g̃ in Eq. (6.38) can
be fixed by calculating the decay width of D˚` Ñ D0π` [206], which leads12 to g „ 0.58
and hence g̃D˚Dπ „ 1.113 GeV. In the bottom sector we use a different value for g, around
15% smaller, consistent with the lattice calculation of Ref. [300], where g „ 0.51 (or
g̃B̄˚B̄π „ 2.720 GeV) was found. Note that the difference is consistent with the expected
size of heavy-quark-flavour symmetry violations. In addition, there exist sizeable SU(3)
corrections to the overall size of the P˚ pole contribution to both f` and f0 form factors.
Thus, such contribution is around „ 20% smaller for B̄˚B̄sK than for B̄˚B̄π [275, 278].
According to [301] this suppression is mainly due to a factor Fπ{FK „ 0.83 [70]. We will
implement this correction in the pole contribution to f0 in Eq. (6.40) when the Goldstone
boson is either a kaon or an eta meson (for simplicity, we also take Fη « FK), and both
in the bottom and charm sectors.

6.3.1 Fit to the LQCD+LCSR results in the bottom sector

We are first interested in the B̄ Ñ φ transitions induced by the b Ñ u flavour-changing
current, which include B̄ Ñ π, B̄ Ñ η and B̄s Ñ K. The scalar form factors involved in
those transitions can be related to the Omnès matrix through

¨

˚

˚

˝

b

3
2f

B̄0Ñπ`
0 psq

fB
´Ñη

0 psq

f
B̄0
sÑK

`

0 psq

˛

‹

‹

‚

“ Ωp0,
1
2 q

B̄
psq ¨ ~Pp0,

1
2 q

B̄
psq . (6.46)

Within the present approach, and considering just rank-one MO polynomials, there are
only two undetermined parameters: the NLO LECs βP1 and βP2 that appear in the chiral
expansion of the form factors in Eq. (6.40). We fit these parameters, in the bottom sector,
to LQCD (UKQCD [265], HPQCD [66,263] and Fermilab Lattice & MILC (to be referred
to as FL-MILC for brevity) [264]) and LCSR [258,259] results for the scalar form factors
in B̄0 Ñ π` and B̄0

s Ñ K` semileptonic decays. Lattice results are not available for the
whole kinematic region accessible in the decays, and they are restricted to large values of
q2 ě 17 GeV2, where momentum-dependent discretization and statistical errors are under
control. To constrain the behaviour of the scalar form factors at small values of q2, we
take four LCSR points (equally-spaced) in the interval q2 “ 0´ 6 GeV2 for each decay.

The UKQCD Collaboration [265] provides data for both B̄ Ñ π and B̄s Ñ K form
factors together with statistical and systematic correlation matrices for a set of three
form factors computed at different q2 (Tables VIII and IX of this reference). In the case
of HPQCD [263] B̄s Ñ K and FL-MILC [264] B Ñ π form factors, we have read off
four points from the final extrapolated results (bands) given in these references, since
in both cases, originally only four momentum configurations (0 Ñ 0, 0 Ñ 1, 0 Ñ

?
2

and 0 Ñ
?

3) were simulated. Finally, we also include in the fit the five B Ñ π points
provided by the HPQCD Collaboration in the erratum of Ref. [66].

12Errors on g determined from the decay D˚` Ñ D0π` are very small of the order of 1%.
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We address the uncorrelated merit function, χ2
u,

χ2
u “

ÿ

i“1

pf0pq
2
i q ´ f

i
0q

2

p∆f i0q
2 , (6.47)

used in the uncorrelated data sets tf i0,∆f i0u
Ndata
i“1 . On the other hand, the correlated merit

function χ2
cov accounting for the information of the correlation matrices in UKQCD data

is defined as

χ2
cov “

ÿ

i,j“1

“

f0pq
2
i q ´ f

i
0
‰

pC´1
qij
“

f0pq
2
j q ´ f

j
0
‰

, (6.48)

with the covariance matrix C constructed from the statistical and systematic correlation
matrices and uncertainties given in Ref. [265]. Above, f0pq

2q stands for the theoretical
scalar form factor obtained from the MO representation.

Thus, the χ2 reads

χ2
“ pχ2

covq
B̄Ñπ
UKQCD ` pχ

2
covq

B̄sÑK
UKQCD ` pχ

2
uq
B̄Ñπ
FL´MILC

` pχ2
uq
B̄Ñπ
HPQCD ` pχ

2
uq
B̄sÑK
HPQCD

` pχ2
uq
B̄Ñπ
LCSR ` pχ

2
uq
B̄sÑK
LCSR , (6.49)

The chi-squared fit results are

βB1 “ p0.27˘ 0.12˘ 0.07q GeV
βB2 “ p0.037˘ 0.004˘ 0.003q GeV´1 (6.50)

with χ2{dof “ 4.2 for 25 degrees of freedom, and a correlation coefficient 0.999 between
the two fitted parameters. The first set of errors in the parameters is obtained from the
minimization procedure, assuming Gaussian statistics, while the second one accounts for
the uncertainties of the LECs quoted in Ref. [205] that enter in the definition of the chiral
amplitudes. Such a correlation coefficient so close to 1 indicates that the considered data
can not properly disentangle both LECs,13 and that different pβB1 , βB2 q pairs belonging to
the straight line

βB1 ´ β
B

1
σβB1

“
βB2 ´ β

B

2
σβB2

(6.51)

in the vicinity of the best fit values pβB1 , β
B

2 q quoted in Eq. (6.50) lead to similar descrip-
tions of the data (see the dashed-blue line in the right panel of Fig. 6.10). The scalar
form factors obtained are displayed in Fig. 6.8. We find a fair description of the LQCD
and LCSR results for the B̄0

s Ñ K` scalar form factor, while we face some problems for
the B̄0 Ñ π` decay. The large value of χ2{dof reported in Eq. (6.50) is mainly due to
the existing tension between the LQCD results from different collaborations in this latter
decay. The disagreement between UKQCD and HPQCD B̄0 Ñ π` scalar form factors
was already highlighted in the top-right panel of Fig. 23 of the UKQCD work [265], where
it is noted that the HPQCD calculation used only a single lattice spacing.

13This can be easily understood since these LECs enter in the definition of ~α0 and ~α1 in the combinations
β1 ´m

2
Pβ2 and β1 ´mP pmP ´ 2Mφqβ2 , which are identical up to some small SU(3) corrections.
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In addition, as we discussed before, the B̄π´scalar form factor decreases by a factor
of five in the q2´range accessible in the decay, and the LQCD results around q2

max and
the LCSR predictions in the vicinity of q2 “ 0 are not linearly connected at all. In
the current scheme, where only rank-one MO polynomials are being used, this extra
needed curvature should be provided by the q2´dependence of the MO matrix, Ω, whose
behaviour near q2 “ 0, far from q2

max, is not determined by the behaviour of the amplitudes
in the chiral regime. Indeed, it significantly depends on the high-energy input.14 This
is an unwanted feature, source of systematic uncertainties. To minimize this problem, in
the next subsection we will perform a combined fit to transitions induced by the b Ñ u
and c Ñ d, s flavour-changing currents. The latter ones describe D Ñ π and D Ñ K̄
semileptonic decays for which there exist recent and accurate LQCD determinations of
the scalar form factors. Moreover, in these latter transitions the q2´ranges accessible in
the decays and the form factor variations are much limited and, thus, the input provided
in the chiral regime becomes more relevant.

To finish this subsection, we would like to stress that given the large value found for
χ2{dof , statistical errors should be taken with some care. Indeed, one can rather assume
some systematic uncertainties affecting our results, that could be estimated by considering
in the best fit alternatively only the HPQCD or the UKQCD and the FL-MILC sets of
predictions. We will follow this strategy to obtain our final results for the CKM matrix
elements and form factors at q2 “ 0 from the combined-fit to charm and bottom decays
detailed in the next subsection.

6.3.2 Extension to the charm sector and combined fit
Besides the parameter β0 introduced in Eq. (6.45) to account for the effects on the
D˚s0p2317q state in the c Ñ s decays, one should also take into account that the LECs
βP1 and βP2 depend on the heavy quark mass. The scaling rules given in Eq. (6.41) can
be used to relate the values taken for these LECs in the bottom (βBi ) and charm sectors
(βDi ). We will assume some heavy quark flavour symmetry violations and we will use

βD1
βB1

“

c

m̄D

m̄B

p1` δq, βD2
βB2

“

d

m̄3
B

m̄3
D

p1´ 3δq (6.52)

where, one should expect the new parameter, δ, to be of the order ΛQCD{m̄D. Note that
we are correlating the heavy quark flavour symmetry violations in the LECs β1 and β2.
There is not a good reason for this other than avoiding to include new free parameters.
On the other hand, at the charm scale, one might also expect sizeable corrections to the
LO prediction f0psq „ C ˆ fP {F0 of Eq. (6.40), even more bearing in mind the large
(40 ´ 50%) heavy-quark symmetry violations inferred from the ratio fB{fD quoted in
Table 6.2. (Note that at LO in the inverse of the heavy quark mass, this ratio should

14The results displayed in Fig. 6.8 might suggest that the present approach hardly provides enough
freedom to simultaneously accommodate the near q2 “ 0 (LCSR) and q2

max (LQCD) determinations of
the B̄π scalar form factor. The situation greatly improves when only the HPQCD, among all LQCD cal-
culations, B̄π results are considered in the q2

max region, being then possible to find an excellent combined
description of the LCSR and HPQCD results with χ2 “ 9.65 for a total of 18 degrees of freedom (see
dashed-red curve in the right plot of Fig. 6.10), which leads to χ2{dof “ 0.5. The parameters βB1,2 come
out still to be almost totally correlated as in Eq. (6.50), and moreover they lie, within great precision, in
the straight line of Eq. (6.51), but in the βB1 „ 0.7 GeV region.
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Figure 6.8: Fitted B̄0 Ñ π`, B̄0
s Ñ K` (top) and predicted B̄´ Ñ η (bottom) scalar

form factors. Besides the fitted data (UKQCD [265], HPQCD [66, 263], FL-MILC [264]
and LCSR [258, 259]), and for comparison, predictions from the NLO perturbative QCD
approach of Ref. [289] for the B̄0 Ñ π` decay are also shown. Statistical (stat) and
statistical plus systematic (stat & sys) 68%-confident level (CL) bands are also shown. The
systematic uncertainties are inherited from the errors on the LECs quoted in Ref. [205],
that enter in the definition of the chiral amplitudes, and are added in quadratures to the
statistical uncertainties to obtain the outer bands. To estimate the systematic uncertainties
for each set of LECs we re-do the best fit.

scale as pm̄D{m̄Bq
1{2). Thus, we have also introduced an additional parameter, δ1, defined

through the replacement
fP Ñ fP ˆ p1` δ1q (6.53)

when Eq. (6.40) is applied to the c Ñ d, s decays. Thus, we have three new parameters
β0, δ, δ

1, which in addition to βB1,2, will be fitted to the LQCD & LCSR results for the
scalar form factors in the B̄ Ñ π, B̄s Ñ K, D Ñ π and D Ñ K̄ semileptonic decays.

First we need to incorporate the c Ñ d, s input into the merit function χ2, which
was defined in Eq. (6.49) using only bottom decay results. In the last ten years, LQCD
computations of the relevant D Ñ π and D Ñ K̄ semileptonic decay matrix elements
have been carried out by the HPQCD [261, 262] and very recently by the ETM [266]
Collaborations. Compared with the former, the latter corrects for some hypercubic ef-
fects, coming from discretization of a quantum field theory on a lattice with hypercubic
symmetry [302], and uses a large sample of kinematics, not restricted in particular to the
parent D meson at rest, as in the case of the HPQCD simulation. Moreover, it is argued
in Ref. [266] that the restricted kinematics employed in the simulations of Refs. [261,262]
may obscure the presence of hypercubic effects in the lattice data, and these corrections
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Figure 6.9: Scalar form factors from theD`3, B̄`3 and pB̄sq`3 combined fit (see Table 6.3 for
details). The three bottom panels are similar to those depicted in Fig. 6.8, but computed
from the results of the combined best-fit. The four panels in the first two rows show
form factors for c Ñ d, s semileptonic transitions. Only ETM results, corrected for some
hypercubic (discretization) effects [266], have been considered in the fit of Table 6.3. For
comparison, predictions from the HPQCD [261, 262] Collaboration are also displayed.
Differences between ETM and HPQCD sets of D Ñ π and D Ñ K form factors are clearly
visible in the vicinity of q2

max, in particular for the D Ñ π case. Statistical (stat) and
statistical plus systematic (stat & sys) 68%-confident level bands are also given and are
calculated as explained in Fig. 6.8. Finally, predictions for the D Ñ η, Ds Ñ K and
Ds Ñ η scalar form factors are also shown.
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Table 6.3: Results from the bottom-charm combined fit, with χ2 defined in Eq. (6.54)
and a total of 38 degrees of freedom. The first set of errors in the best-fit parameters is
obtained from the minimization procedure, assuming Gaussian statistics, while the second
one accounts for the uncertainties of the LECs quoted in Ref. [205] that enter in the
definition of the chiral amplitudes. The LECs β0 and βB1 (βB2 ) are given in units of GeV
(GeV´1).

correlation matrix
χ2

dof
“ 2.77 β0 βB1 βB2 δ δ1

β0 0.152p14qp13q 1.000 0.502 0.499 ´0.490 0.311
βB1 0.22p4qp4q 0.502 1.000 0.995 ´0.965 0.848
βB2 0.0346p16qp15q 0.499 0.995 1.000 ´0.958 0.845
δ 0.138p21qp18q ´0.490 ´0.965 ´0.958 1.000 ´0.942
δ1 ´0.18p4qp2q 0.311 0.848 0.845 ´0.942 1.000

can affect the extrapolation to the continuum limit in a way that depends on the specific
lattice formulation. This might be one of the sources of the important discrepancies found
between the D Ñ π form factors reported by the HPQCD and ETM Collaborations in
the region close to q2

max “ pmD ´Mπq
2, as can be seen in the left top panel of Fig. 6.9.

Here, we prefer to fit to the most recent data together with the covariance matrices
provided by the ETM Collaboration. This analysis is based on gauge configurations
produced withNf “ 2`1`1 flavours of dynamical quarks at three different values of lattice
spacing, and with pion masses as small as 210 MeV. Lorentz symmetry breaking due to
hypercubic effects is clearly observed in the ETM data and included in the decomposition
of the current matrix elements in terms of additional form factors. Those discretization
errors have not been considered in the HPQCD analyses, and for this reason we have
decided to exclude the results of these latter collaboration in our fits.

The scalar form factors involved in the D Ñ π and D Ñ K̄ transitions are related
to the Omnès matrices displayed in Figs. 6.2 and 6.4 through15 Eq. (6.16) and Eqs. (6.5)
and (6.6). Hence, the bottom-charm combined χ2 now reads

χ2
“ pχ2

covq
B̄Ñπ
UKQCD ` pχ

2
covq

B̄sÑK
UKQCD ` pχ

2
q
B̄Ñπ
FL´MILC

` pχ2
q
B̄Ñπ
HPQCD ` pχ

2
q
B̄sÑK
HPQCD

` pχ2
q
B̄Ñπ
LCSR ` pχ

2
q
B̄sÑK
LCSR

` pχ2
covq

DÑπ
` pχ2

covq
DÑK̄ , (6.54)

where we have added sixteen ETM points, eight for each of the two D Ñ π and D Ñ K̄
decay modes. Each of the new eight-point sets is correlated and the corresponding covari-
ance matrices16 have been obtained from the authors of Ref. [266]. Thus, we are fitting

15Notice that the particle charges are not specified in the notation used in Lattice QCD, for instance,
D0 Ñ π´ in Eq. (6.5) is simplified to D Ñ π, to be used below and denoted by Dπ in the lattice paper.

16The D Ñ π and D Ñ K̄ scalar form factor covariance-matrices have troublesome small eigenvalues,
as small as 10´6 or even 10´9. Due to this, the fitting procedure could be easily spoiled since a tiny error
in the fitting function yields a huge χ2 value (specific examples can be found in Ref. [303]). We have used
the singular value decomposition (SVD) method to tackle this issue, which is widely used by a number
of lattice groups [304–306].
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five parameters to a total of 43 points. The best-fit results for the five unknown param-
eters and their Gaussian correlation matrix are collected in Table 6.3 and the resulting
scalar form factors are shown in Fig. 6.9.

The results for the bottom scalar form factors are almost the same as the ones shown
in Fig. 6.8, while the ETM cÑ d, s transition form factors are remarkably well described
within the present scheme. As in the former best-fit to only the B̄psq results, the large
value obtained for χ2{dof is mainly due to the existing tension between the LQCD results
from different collaborations in the B̄ Ñ π decay.

Due to the hypercubic effects, there might be inconsistencies between the ETM and
HPQCD analyses for the Dπ scalar form factor in the region close to q2

max “ pmD ´

Mπq
2 [266]. As one can see, our result disagrees with the HPQCD data in that region

too. We have checked that if we fit to the HPQCD instead of the ETM data in the
charm sector, the best fit still tends to coincide with the ETM data. This observation is
important and it seems to indicate that the Lorentz symmetry breaking effects in a finite
volume, due to the hypercubic artifacts, could be important in the LQCD determination
of the form factors in semileptonic heavy-to-light decays, as pointed out in Ref. [266].

The HQFS breaking parameters δ and δ1 turn out to be quite correlated and their
size is of the order ΛQCD{mc. As expected, δ presents also a high degree of correlation
with βB1 and βB2 , and on the other hand, the combined fit does not reduce the large
correlation between these two latter LECs, while the central values (errors) quoted for
them in Table 6.3 are compatible within errors with (significantly smaller than) those
given in Eq. (6.50), and obtained from the fit only to b Ñ u transitions. In addition,
the values quoted for pβB1 , βB2 q in Table 6.3 perfectly lie in the straight line of Eq. (6.51),
deduced from the fit to only bottom form factors carried out in the previous Sec. 6.3.1.
Indeed, the straight line that one can construct with the results of Table 6.3 in the
pβB1 , β

B
2 q´plane is practically indistinguishable from that of Eq. (6.51). All this can be

seen in the left plot of Fig. 6.10, where both straight lines are depicted, together with
the statistical 68% CL ellipses and the one-sigma-rectangle bands obtained by minimizing
the merit function given in Eq. (6.49) or alternatively in Eq. (6.54), and considering only
bottom or bottom and charm scalar form factors, respectively.

In the right plot of Fig. 6.10, we show the dependence of χ2 on βB1 for different
situations. We display the combined charm-bottom and the bottom-only fits, and in both
cases, we have considered results obtained when all B̄ Ñ π LQCD form factors or only
the HPQCD or the UKQCD and the FL-MILC subsets of results are considered in the
fits. The circles stand for the different best-fit results, accounting for variations of χ2

up to one unit from the minimum value,17 while the dashed and solid curves have been
obtained by relating βB1 and βB2 through Eq. (6.51) and minimizing χ2 with respect to
the other parameters, β0, δ and δ1, respectively. Several conclusions can be extracted from
the results shown in the figure:

• The combined charm-bottom analyses (solid lines) provide large curvatures of χ2 as
a function of βB1 , hence leading to better determinations of this latter LEC, always
in the 0.2 GeV region, as we also found in Eq. (6.49) from the best fit to only the
bottom results. A value for βB1 close to this region, taking into account errors, is
also found from a fit where only the bottom form factors are considered, but without
including the HPQCD B̄ Ñ π results (dashed-green curve). Only the dashed-red

17Thus, the ranges marked by the circles show the statistical errors of βB1 in each fit.
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line (fit only to the bottom results, but without including in this case the UKQCD
and FL-MILC B̄ Ñ π scalar form factors) turns out to be incompatible with the
combined fit presented in Table 6.3. Thus, we find some arguments to support the
range of values quoted in Table 6.3 for the parameters pβB1 , βB2 q that appear in the
HMχPT expansion of the scalar form factors at the bottom scale.

• The existing tension between HPQCD, and UKQCD and FL-MILC sets of B̄ Ñ π
form factors leads to large values of χ2. Thus, as mentioned above, statistical errors
should be taken with some care, and some systematic uncertainties would need to
be considered in derived quantities, as for instance in the values of the form factors
at q2 “ 0 or in the CKM mixing parameters. We note that this source of systematics
also induces variations on the fitted parameters in Table 6.3 which range between
50% (β0 and βB2 ) to 100% (βB1 , δ and δ1) of the statistical errors quoted in the table.

Our predictions for the scalar form factors for the Ds Ñ η, D Ñ η and Ds Ñ K
transitions, for which there are no lattice results as yet, are also shown in Fig. 6.9. Note
that transitions involving the η meson in the final state are more difficult to be evaluated
in LQCD simulations. Interestingly, the D Ñ η scalar form factor in the three-channel
p0, 1{2q´case is largely suppressed, similar to the component regarding the K Ñ η tran-
sition in the strangeness-changing scalar form factors as shown in Ref. [270].

Further considerations

We have also obtained results using constant and quadratic MO polynomials. In the
first case, the dispersive representations of the form factors should be matched to the
LO chiral ones, where the terms driven by the βP1 and βP2 LECs are dropped out. The
first consequence is that bottom and charm sectors are no longer connected since, in
addition, we are not enforcing the heavy-quark scaling law for the decay constants. To
better describe the data, one might perform separate fits to bottom and charm form
factors with free ~α0 parameters in Eq. (6.34). Fits obviously are poorer, and moreover,
they do not necessarily provide reliable estimates of the form factors at q2

max, since the
fitted parameters are obtained after minimizing a merit function constructed out of data
in the whole q2´range accessible in the decays. For charm decays, the description of the
D Ñ π form factor is acceptable, while that of the D Ñ K̄ is in comparison worse, mostly
because the s´dependence induced by the D˚s0p2317q can not be now modulated by the
MO polynomial. In the bottom sector, as one should expect, the simultaneous description
of LQCD and LCSR form factors in the vicinity of q2

max and q2 “ 0, respectively, becomes
poorer. Indeed, since the LQCD input has a larger weight in the χ2 than the LCSR one,
the latter form factors are totally missed by the new predictions, which now lie below the
lower error bands of the LCSR results.

The consideration of quadratic MO polynomials solves this problem, as shown in
Fig. 6.12 of Sec. 6.5. Indeed, it is now possible to improve the description of the B̄ Ñ π
LCSR form factors, providing still similar results in the q2

max´region, where the LQCD
data are available. Thus, for instance, we get f B̄Ñπ` p0q “ 0.248p10q using the new fit to
be compared with 0.211p10q obtained using the parameters of the fit of Eq. (6.50) (form
factors displayed in Fig. 6.8). Nevertheless, as we will see in the next subsection, there
exist some other systematic errors, which practically account for the latter difference, and
thus this source of uncertainty will be considered in the determination of the CKM matrix
element |Vub|. In addition, though the χ2{dof obtained with quadratic MO polynomials is
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better, it is still large (around 3.7) due to the tension between the B̄ Ñ π LQCD results
from different collaborations. Moreover βB1 and βB2 are still fully correlated, and the
quadratic terms of the MO polynomials that multiply the elements Ωij, pi “ 1, 2, 3, j “
2, 3q of the matrix displayed in Fig. 6.6 are almost undetermined (see the large errors
in the parameters α2,3 and especially α2,2 given in Table 6.4). Finally, the central-value
predictions, that will be shown in Subsec. 6.3.4, for the form factors above q2

max and to
moderate energies amenable to be described using the unitarized coupled-channel chiral
approach, are not affected by the inclusion of quadratic terms in the MO polynomials,
though errors are enhanced. For all of this, we consider our best estimates for the form
factors those obtained using rank-one polynomials.

We do not discuss quadratic terms in the charm-sector because rank-one MO poly-
nomials led already to excellent reproductions of the form factors (see Fig. 6.9), in part
due to the smaller q2´range involved in these decays. Moreover a correct charm-bottom
combined treatment will require the matching at Next-to-next-to-Leading Order (NNLO)
in the chiral expansion, which is beyond the scope of this work.

6.3.3 Extraction of CKM elements and predictions

Taking advantage that scalar and vector form factors are equal at q2 “ 0, the results of the
combined charm-bottom fit presented in the previous subsection can be used to extract
the vector form factor, f`, at q2 “ 0 for various semileptonic decays studied in this work.
Moreover, given some experimental input for the quantity |VQq|f`p0q, with Qq “ bu, cd or
cs, we can extract the corresponding CKM matrix element using the present MO scheme.
Measurements of the differential distribution dΓpH Ñ φ̄`ν̄`q{dq

2 at q2 “ 0 will directly
provide model independent determinations of |VQq|f`p0q,18 while measurements of the
total decay width could be used to estimate this latter quantity only after relying on
some model for the q2´dependence of f`.

In the charm sector from the fit presented in Table 6.3 and Fig. 6.9, we find

fDÑπ` p0q “ 0.585p35qstatp19qsys1p32qsys2 , (6.55)
fDÑK̄` p0q “ 0.765p30qstatp4qsys1p14qsys2 , (6.56)

where the first and second sets of errors are similar to those quoted in Table 6.3 and
account for statistical (propagated from the 1σ fluctuations of the fitted parameters) and
chiral systematic (propagated from the errors of the LECs that enter in the computation
of the MO matrix) uncertainties, respectively. The third set of errors (sys2) takes into
account the variations that are produced when in the best fit one considers alternatively
only HPQCD or UKQCD and FL-MILC B̄ Ñ π form factors. The results of Eq. (6.55)
and (6.56) are in good agreement with our preliminary estimates reported in [307], where
we fitted only to the charm ETM LQCD form factors.

In combination with the experimental values

fDÑπ` p0q|Vcd| “ 0.1426p19q ,
fDÑK̄` p0q|Vcs| “ 0.7226p34q , (6.57)

18Neglecting the lepton masses.
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taken from the report by the Heavy Flavor Averaging Group (HFLAV) [308], we obtain

|Vcd| “ 0.244p22q (6.58)
|Vcs| “ 0.945p41q (6.59)

for the corresponding CKM matrix elements. The dominant error is the theoretical one
affecting the determination of the form factors at q2 “ 0, within the scheme presented
in this work. As expected, these results nicely agree with those reported by the ETM
Collaboration [266] since we describe rather well the LQCD scalar form factors calculated
in this latter work. The values of Eq. (6.58) agree within around 1σ with the average
ones19 given in Ref. [206],

|Vcd| “ 0.220p5q , (6.60)
|Vcs| “ 0.995p16q . (6.61)

On the other hand, the test of the second-row unitarity of the CKM matrix is satisfied
within errors

|Vcd|
2
` |V 2

cs| ` |Vcb|
2
“ 0.95p9q , (6.62)

where |Vcb| “ 0.0405p15q from PDG [206] has been used.
Likewise, in the bottom sector, we obtain from the combined bottom-charm fit

f B̄Ñπ` p0q “ 0.208p7qstatp15qsys1p30qsys2 , (6.63)

where we see that the error budget is now dominated by the inconsistency between
HPQCD and UKQCD and FL-MILC sets of results for f B̄Ñπ0 for high q2, above 17 GeV2.
Dropping out the UKQCD and FL-MILC sets of results for B̄ Ñ π, the LCSR and
HPQCD results for this transition can be significantly better described simultaneously,
leading to values of the form factor at q2 “ 0 around 0.24 for the combined charm-bottom
fit, in the highest edge of the interval quoted in Eq. (6.63), and compatible within errors
with the result of 0.26`0.04

´0.03 predicted in Ref. [258] using LCSR.20 However, the description
of the B̄s Ñ K and D Ñ π scalar form factors gets somewhat worse, being thus the
situation unclear.

In principle, based on the above values, the CKM element |Vub| could be determined
as in the charm sector. However, the full kinematic region in the bottom case is very
broad, and the experimental determination of f`p0q|Vub|might suffer from large systematic
uncertainties. A customary way to extract |Vub| has been to perform a joint fit to the
LQCD and LCSR theoretical results for f`pq2q and to measurements of the differential
decay width, with |Vub| being a free parameter, see, e.g., Refs. [276,309,310]. This is not
feasible to us, since we only know the value of the vector form factor at zero momentum
by using the relation f`p0q “ f0p0q. However the latest Belle [255] and BaBar [256] works
reported accurate measurements of the B̄ Ñ π partial branching fractions in several bins
of q2 that are used to extract the f` form factor shape and the overall normalization
determined by |Vub|. As a result, Belle and BaBar obtained values of p9.2 ˘ 0.3q ˆ 10´4

19Determinations from leptonic and semileptonic decays, as well as from neutrino scattering data in
the case of |Vcd|, are used to obtain the PDG averages.

20Fitting only to the b Ñ u data and not considering UKQCD and FL-MILC sets of B̄ Ñ π results,
we find f B̄Ñπ0 p0q „ 0.27, even in better agreement with the LCSR determination.
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and p8.7˘0.3qˆ10´4 for f`p0q|Vub|, respectively. Though the latter values were extracted
from direct fits to data, they might be subject to some systematic uncertainties, since they
were obtained using some specific q2 parametrizations (Becirevic and Kaidalov [311] and
Boyd-Grinstein-Lebed [312] in the Belle and BaBar works, respectively). Nevertheless,
we average both determinations and we take

f B̄Ñπ` p0q|Vub| “ p8.9˘ 0.3q ˆ 10´4 , (6.64)
Using this latter value and our estimate for the form factor at q2 “ 0 given in Eq. (6.63),
we get

103
|Vub| “ 4.3p7q (6.65)

There exist tensions between the inclusive and exclusive determinations of |Vub| [206]:

103
|Vub| “ 4.49p16qp17q (inclusive), (6.66)

103
|Vub| “ 3.72p19q (exclusive). (6.67)

and combining both values, R. Kowalewski and T. Mannel quote an average value of

103
|Vub| “ 4.09p39q (6.68)

in the PDG review [206], which is in good agreement with our central |Vub| result of
Eq. (6.65). We should mention that it is higher than the typical values obtained from
LQCD and LCSR determinations of the B̄ Ñ π f`pq

2q form factor, combined with mea-
surements of the q2 distribution of the differential width. Thus, the FLAG review [70]
gives an average value (in 103 units) of 3.67˘ 0.09˘ 0.12. Nevertheless, this latter value
is still compatible, taking into account the uncertainties, with our result.

These extractions of the CKM elements rely strongly on the results either from LQCD
in the high q2 region or from LCSR in the vicinity of q2 “ 0 (the latter only in the bottom
sector), which are used in the combined fit, and hence are not ab initio predictions.
However, our extractions incorporate the influence of general S-matrix properties, in the
sense that unitarity and analyticity are implemented in the MO representation of the
scalar form factors. Moreover, one of the advantages of our approach is that we can make
predictions for the channels related by chiral SU(3) symmetry of light quarks. In some of
these channels, the form factors are difficult for LQCD due to the existence of disconnected
diagrams of quark loops. The D Ñ η, Ds Ñ K, Ds Ñ η and B̄ Ñ η scalar form factors
were already shown in Fig. 6.9 for the whole kinematical regions accessible in the decays.
On the other hand, their values at q2 “ 0 are particularly important, since they might
serve as alternatives to determine the CKM elements when experimental measurements
of the corresponding differential decay rates become available. Our predictions for the
absolute values of the vector form factors at q2 “ 0 are (we remind once more here that
vector and scalar form factors coincide at q2 “ 0)

|fDÑη` p0q| “ 0.01p3qstatp2qsys1p4qsys2 , (6.69)
|fDsÑK` p0q| “ 0.50p6qstatp3qsys1p5qsys2 , (6.70)
|fDsÑη` p0q| “ 0.734p21qstatp21qsys1p3qsys2 , (6.71)
|f B̄Ñη` p0q| “ 0.82p1qstatp7qsys1p3qsys2 , (6.72)
|f B̄sÑK` p0q| “ 0.301p9qstatp11qsys1p26qsys2 (6.73)
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For the decay B̄s Ñ K, we find, adding errors in quadrature, f B̄sÑK` p0q “ 0.30 ˘ 0.03 in
perfect agreement with the results obtained from the LCSR (0.30`0.04

´0.03 [259]) and HPQCD
(0.32 ˘ 0.06 [263]) analyses, but about 1 sigma above the LQCD result of the UKQCD
Collaboration [265]. The single-channel Omnès-improved constituent quark model study
of Ref. [278] led to 0.297˘ 0.027, which is also in good agreement with our result.

6.3.4 Scalar form factors above the q2
max´region

It is worth recalling here the relation between the results obtained for the form factors
and the scattering amplitudes used as input of the MO representation. If we focus, for
instance, on the charm form factors, the lightest open-charm scalar resonance, called
D˚0 p2400q by the PDG [206], lies in the pS, Iq “ p0, 1{2q sector. In Refs. [33, 37, 199], two
different states, instead of only one, were claimed to exist in the energy region around
the nominal mass of the D˚0 p2400q. These studies were based on chiral symmetry and
unitarity. This complex structure should be reflected in the scattering regime of the form
factors. Indeed, this can be seen in the first row of panels of Fig. 6.11, where form factors
for different semi-leptonic transitions are shown above the q2

max´region. As discussed in
Sec. 6.2.3, here we use the Opp2q HMχPT amplitudes obtained in Refs. [198, 205], which
also successfully describe the p0, 1{2q finite-volume energy levels reported in the recent
LQCD simulation of Ref. [81] (see Chapter 4 for details) and, as we will see soon in
Chapter 5, are consistent with the precise LHCb data [240] for the angular moments of
the B´ Ñ D`π´π´ [6]. These chiral amplitudes predict the existence of two scalar broad
resonances, instead of only one, with masses around 2.1 and 2.45 GeV, respectively [3,6],
which produce some signatures in the D Ñ π, D Ñ η and Ds Ñ K form factors at
around q2 “ 4.4 and 6 GeV2, as can be appreciated in Fig. 6.11. The effect of this two-
state structure is particularly visible in the Ds Ñ K form factor. Note that this two-state
structure should have also some influence in the region below q2

max, where we have fitted
the LQCD data. Below q2

max, the sensitivity of the form factors to the details of the two
resonances is however smaller than that of the energy levels calculated in the scattering
region, since the former ones are given below the lowest threshold, while the latter ones
are available at energies around and above it. Nonetheless, the success in describing the
LQCD results for the D Ñ π scalar form factor clearly supports the chiral input, and the
predictions deduced from it, used in the current scheme. If better determined form factors
were available in all of the channels, perhaps the two state structure for the D˚0 p2400q
could be further and more accurately tested.

A similar pattern is found in the bottom sector [3,6], as expected from the approximate
heavy-flavour symmetry of QCD. The two-state structure is clearly visible, more than that
in the charm sector, in the corresponding form factors (three bottom plots of Fig. 6.11),
and it has a certain impact in the form factors close to q2

max, where LQCD results are
available.

In the charm pS, Iq “ p1, 0q sector the effect of the narrow D˚s0p2317q resonance,
which is the SU(3) flavor partner of the lighter one of the two D˚0 states, predicted by
the unitarized NLO chiral amplitudes [3, 6], is clearly visible in the scalar D Ñ K̄ and
Ds Ñ η form factors, and it fully dominates these form factors in the vicinity of the pole,
as can be seen in the second row of panels of Fig. 6.11. Indeed, this state also influences
the D Ñ K̄ form factor below (near) q2

max, where the LQCD results are available,21 and
21Indeed, the existence of theD˚s0p2317q was suggested in [40] by fitting the single channel MO represen-
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the excellent description of the ETM results gives clear support to the coupled-channel
MO representation of the D Ñ K̄ and Ds Ñ η scalar form factors derived in this work.

6.4 Summary and outlook

We have studied the scalar form factors that appear in semileptonic heavy meson decays
induced by the flavour-changing bÑ u and cÑ d, s transitions using the MO formalism.
The coupled-channel effects, due to re-scattering of the Hφ (H “ D, B̄) system, with
definite strangeness and isospin, are taken into account by solving coupled integral MO
equations. We constrain the subtraction constants in the MO polynomials, which en-
codes the zeros of the form factors, thanks to light-quark chiral SU(3) and heavy-flavour
symmetries.

The Hφ interactions used as input of the MO equations are well determined in the
chiral regime and are taken from previous work. In addition, some reasonable behaviours
of the amplitudes at high energies are imposed, while appropriate heavy-flavour scaling
rules are used to relate bottom and charm form factors. We fit our MO representation
of the scalar form factors to the latest c Ñ d, s and b Ñ u LQCD and b Ñ u LCSR
results and determine all the involved parameters, in particular the two LECs (βP1 and
βP2 ) that appear at NLO in the chiral expansion of the scalar and vector form factors
near q2

max, which are determined in this work for first time. We describe the LQCD and
LCSR results rather well, and in combination with experimental results and using that
f0p0q “ f`p0q, we have also extracted the |Vub|, |Vcd| and |Vcs| CKM elements, which turn
out to be in good agreement with previous determinations from exclusive decays.

We would like to stress that we describe extremely well the recent ETM D Ñ π scalar
form factor, which largely deviates from the previous determination by the HPQCD Col-
laboration, providing an indication that the Lorentz symmetry breaking effects in a finite
volume, due to the hypercubic artifacts, could be important in the LQCD determination
of the form factors in semileptonic heavy-to-light decays, as claimed in Ref. [266]. As
it is also pointed out in the previous reference, this is a very important issue, which re-
quires further investigations, since it might become particularly relevant in the case of the
determination of the form factors governing semileptonic B̄´meson decays into lighter
mesons.

We have also predicted the scalar form factors, which are in the same strangeness-
isospin multiplets as the fitted D Ñ π, D Ñ K̄, B̄ Ñ π and B̄s Ñ K ones. Our
prediction of the form factors in such channels (D Ñ η, Ds Ñ K, Ds Ñ η, and B Ñ η)
are difficult for LQCD simulations due to the existence of disconnected diagrams. These
form factors are related to the differential decay rates of different semileptonic heavy
meson decays and hence provide alternatives to determine the CKM elements with the
help of future experimental measurements.

Moreover, we also find that the D Ñ η scalar form factor is largely suppressed com-
pared to the other two components (D Ñ π, D Ñ K̄) in the three-channel p0, 1{2q´mul-
tiplet, which is similar to what occurs for the K Ñ η strangeness-changing scalar form
factor in Ref. [270].

Our determination of the form factors has the advantage that the constraints from

tation of the D Ñ K̄ scalar form factor, constructed out the unitarized LO chiral elastic DK amplitude,
to LQCD results of the scalar form factor below q2

max.
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Figure 6.11: Scalar form factors for different bÑ u and cÑ d, s transitions. They have
been computed in this work using the MO matrices derived in Sec. 6.2.3 from the NLO
HMχPT amplitudes of Refs. [198, 205], and the LECs, compiled in Table 6.3, obtained
from a fit to LQCD and LCSR results below q2

max. Statistical (stat) and statistical plus
systematic (stat & sys) 68%-confident level bands are also given and are calculated as
explained in Fig. 6.8.
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unitarity and analyticity of the S-matrix have been taken into account, as well as the
state-of-the-art Hφ chiral amplitudes. Thus, our predictions for the flavour-changing
bÑ u and cÑ d, s scalar form factors above the q2´region accessible in the semileptonic
decays, depicted in Fig. 6.11, should be quite accurate22 and constitute one of the most
important findings of the current research. Indeed, we have shown how the form factors
in this region reflect details of the chiral dynamics that govern the Hφ amplitudes, and
that give rise to a new paradigm for heavy-light meson spectroscopy [6] which questions
the traditional qq̄ constituent quark model interpretation, at least in the scalar sector.

As an outlook, the scheme presented here will also be useful to explore the Hφ in-
teractions by using the lattice data for the scalar form factors in semileptonic decays of
B̄ or D mesons. As pointed out in Ref. [313], more data are needed to fix the LECs in
the NNLO potentials. Since the dispersive calculation of Dφ and B̄φ scalar form factors
depend on the scattering amplitudes of these systems, the LQCD results for the form
factors can be used to mitigate the lack of data and help in the determination of the new
unknown LECs.

One might also try to extend the MO representation to a formalism in a finite volume
with unphysical quark masses, such that comparisons to the discretized lattice data could
be directly undertaken. On the other hand, the chiral matching of the form factors can
be carried out at higher order to take into account the expected sizeable corrections in
SU(3) HMχPT. Moreover, this improved matching will in practice suppose to perform
additional subtractions in the dispersive representations of the form factors, and it should
reduce the importance of the high-energy input used for the Hφ amplitudes. The high
energy input turns out to be essential to describe the scalar B̄ Ñ π form factor near
q2 “ 0, and it represents one of the major limitations of the current approach.

Both improvements would lead to a more precise and model-independent determina-
tion of the CKM matrix elements related to the heavy-to-light transitions.

6.5 Bottom form factors and quadratic MO polyno-
mials

Table 6.4: Results from the fit to the scalar B̄ Ñ π and B̄s Ñ K LQCD & LCSR form
factors using rank-two MO polynomials (see Eq. (6.74)), and with χ2 defined in Eq. (6.49).
There is a total of 22 degrees of freedom and the best-fit gives χ2{dof “ 3.7. The LECs
βB1 , βB2 and α2,i are given in units of GeV, GeV´1 and GeV´4, respectively.

βB1 pβB2 ˆ 10q pα2,1 ˆ 103q pα2,2 ˆ 103q pα2,3 ˆ 103q

0.74(22) 0.53(8) 0.24(6) ´0.1p7q 1.0(8)

We show in Fig. 6.12, the scalar B̄ Ñ π, η and B̄s Ñ K form factors obtained using
rank-two MO polynomials. Specifically, we replace Eq. (6.34) by

~Ppsq “ ~α0 ` ~α1 s` ~α2 s
2 , (6.74)

22Note that for the moderate q2´values shown in Fig. 6.11, the form factors are largely insensitive
to the high-energy input in the MO dispersion relation, and they are almost entirely dominated by the
low-energy (chiral) amplitudes.
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where ~α2, together with βB1,2, are fitted to the merit function defined in Eq. (6.49). (Note
that ~α0,1 are still expressed in terms of βB1,2.) Best fit results are compiled in Table 6.4.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 5 10 15 20 25

f
B̄
π

0

q2 [GeV2]

FL-MILC

pQCD

UKQCD

HPQCD

LCSR

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 5 10 15 20 25 0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

f
B̄

s
K̄

0

q2 [GeV2]

UKQCD

HPQCD

LCSR

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 5 10 15 20

f
B̄
η

0

q2 [GeV2]

stat stat & sys

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 5 10 15 20

Figure 6.12: Same as Fig. 6.8, but using a quadratic MO polynomial (see Eq. (6.74)),
and parameters given in Table 6.4.
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Chapter 7

A new parametrization of form
factors in B̄ Ñ D`ν̄` decays

7.1 Introduction

One of the most primary goals in flavor physics currently is to precisely determine the ele-
ments of the CKM matrix, since they afford a sharp probe of physics beyond the standard
model (SM) as inputs of the CKM unitarity triangle. For that purpose, experimental and
theoretical efforts are extensively devoted to study both inclusive and exclusive semilep-
tonic decays of bottom hadrons. For the latter ones, different ways have been proposed
to parametrize the hadronic form factors involved, the most commonly used of which
are the Boyd-Grinstein-Lebed (BGL) [314] and Caprini-Lellouch-Neubert (CLN) [315]
parametrizations. There is tension in the determination of some of the entries like Vcb
from B meson decays, for which the result considering inclusive decays [316] is larger
than the value obtained from exclusive ones—a discrepancy at 2-3σ significance level ex-
ists, see e.g. Refs. [70, 308, 317, 318] for recent reviews. The main source of exclusive Vcb
determinations is the B̄ Ñ Dp˚q`ν̄` semi-leptonic decay.

Since 2015, significant progress has been made. The Belle Collaboration measured the
differential decay rates of the exclusive B̄ Ñ D`ν̄` [319] and B̄ Ñ D˚`ν̄` reactions [320]
using their full data set; and there have been LQCD results on the form factors at non-zero
recoils for B̄ Ñ D`ν̄` obtained by the HPQCD [321] and Fermilab Lattice plus MILC (FL-
MILC) [322] Collaborations. It turns out that the CLN and BGL parametrizations lead
to different values of the extracted |Vcb|, see e.g., Refs [319,320,323,324]. For instance, the
Belle determinations of this CKM matrix element from the B Ñ D̄ ¯̀ν decay are p39.86˘
1.33qˆ10´3 or p40.83˘1.13qˆ10´3 using the CLN or BGL parametrizations, respectively
[319]. For comparison, the updated HFLAV averages for the inclusive determination of
|Vcb|in are p42.19˘0.78qˆ10´3 or p41.98˘0.45qˆ10´3 depending on the used scheme [308].
It is pointed out in Refs. [323,325,326] that the CLN parametrization, based upon heavy
quark effective theory, though very useful in the past, may no longer be adequate to cope
with the accuracy of the currently available data. The BGL parametrization is a model-
independent expansion in powers of a small variable z. To describe data, the expansion
needs to be truncated at least at the z2 order, leading to 3 unknown coefficients for each
form factor. The relation f` “ f 0 at q2 “ 0 imposes a constraint among these parameters,
which on the other hand do not have an obvious physical interpretation, except for those
of the leading term that could be related to the form factor normalization.

In this chapter, based on Ref. [9], we propose a new model-independent parametriza-
tion based on a dispersion relation. It is more efficient than the BGL one in the sense
that modern high-accuracy data can be described with less parameters. Furthermore, the
parameters are the moments of the phase of form factors and encode information of the
B̄D̄ interactions. As will be shown below, the available Belle and LQCD data can be
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well reproduced truncating at the leading order, which has only one parameter for each
form factor in addition to the normalization. This allows for an extraction of |Vcb| with a
smaller uncertainty of only 1.8%.

Furthermore, all the involved parameters are physically meaningful, encoding scatter-
ing information on elastic and inelastic B̄D̄ interaction through dispersion relations to
phase shifts.

The B̄D̄ interaction, related to the B̄ Ñ D transition amplitude by crossing, is poorly
known so far, however, is utmost essential to explore the spectrum of hadrons containing
one bottom quark (b) and one charm antiquark (c̄), i.e., Bc mesons, see Ref. [327] for
example. Up to now, the discovery of the Bc mesons is restricted to two states only [14]:
Bcp6275q and Bcp2Sqp6871q, both with JP “ 0´ (although the vector B˚c p2Sq was reported
recently by both CMS [328] and LHCb [329], its mass has not been measured because
of the unreconstructed low-energy photon in both experiments). In view of the well
established bottomonium or charmonium spectra, it is clear that many Bc states are still
missing. Hopefully, states will be unravelled in the near future due to the advent of
the LHCb, which is an efficient factory to produce bc̄ or bc states. Besides, prognosis
of charmed-bottom hadrons from LQCD has been made very recently [330]. Our new
parametrization, bringing information from semileptonic decays to the scattering problem,
will definitely shed light on those newly predicted/discovered states.

7.2 New parametrization

To proceed, let us first introduce the semileptonic B̄ppq Ñ Dpp1q`pq1qν̄`pq2q differential
decay rate [331]

dΓ
dq2 “

8N |~p˚|
3

„ˆ

1` m2
`

2q2

˙

|H0|
2
`

3m2
`

2q2 |Ht|
2


, (7.1)

with q ” p´ p1 “ q1` q2 and |~p˚| is the modulus of the three-momentum of the D meson
in the B̄ rest frame. The normalization factor is

N “
G2
F

256π3η
2
EW|Vcb|

2 q
2

m2
B

ˆ

1´ m2
`

q2

˙2

, (7.2)

where GF “ 1.166 ˆ 10´5 GeV´2 is the Fermi coupling constant and the factor ηEW “

1.0066 accounts for the leading order electroweak corrections [332]. Here mB (mD) and
m` denote the masses of the B (D) meson and the lepton, respectively. We will use the
values mD “ 1867.22 MeV, mB “ 5279.47 MeV and mτ “ 1776.91 MeV. Furthermore, the
helicity amplitudeH0 amounts to the longitudinal part of the spin-1 hadronic contribution,
while Ht corresponds to the spin-0 hadronic contribution, owing its presence to the off-
shellness of the weak current. They are related to the conventional hadronic vector (JP “
1´) and scalar (JP “ 0`) form factors, i.e., f`pq2q and f0pq

2q, respectively, through

H0 “
2mB|~p

˚|
?
q2 f`pq

2
q , Ht “

m2
B ´m

2
D?

q2 f0pq
2
q . (7.3)

At q2 “ 0, the two form factors coincide: f`p0q “ f0p0q.
According to Refs. [298, 333, 334], and using general arguments from QCD, one ex-

pects vector and scalar form factors to fall off as 1{s (up to logarithms) when |s| Ñ 8.
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Thus, based on analyticity, unitarity and crossing symmetry, once-subtracted dispersion
relations for each form factor admit solutions of the Omnès form

fipq
2
q “ fips0q exp

„

q2 ´ s0

π

ż 8

sth

ds
s´ s0

αipsq

s´ q2



, (7.4)

for q2 ă sth. In addition, i “ `, 0, sth “ pmB ` mDq
2 is the B̄D̄ threshold, s0 is

the subtraction point and αipsq is the phase of the corresponding form factor. This
solution can be easily obtained noticing that fips` iεq{fips´ iεq “ exp r2iαipsq θps´ sthqs.
It is worthwhile to emphasize that Eq. (7.4) holds even in the inelastic regime, i.e.,
when channels with a higher threshold such as B̄˚D̄˚ are open. In the elastic region
(
?
s ă mB˚ `mD for i “ ` and

?
s ă mB˚ `mD˚ for i “ 0), the phase αipsq coincides

with the P - and S-wave B̄D̄ scattering phase shift for f`and f 0, respectively, according
to the Watson’s theorem [335].

In the physical B̄ Ñ D`ν̄` decay, the maximum value of q2 is q2
max “ pmB ´ mDq

2.
Given that s ě sth " q2

max ě q2, Eq. (7.4) can be recast into a new form,

fipq
2
q “ fips0q

8
ź

n“0
exp

„

q2 ´ s0

sth
Ain

q2n

snth



, (7.5)

with the dimensionless coefficients (phase moments) defined as

Ain ”
1
π

ż `8

sth

ds
s´ s0

αipsq

ps{sthqn`1 . (7.6)

Since the power of s in the denominator of the integrand above grows as n ` 1, higher
moments become sensitive only to the details of the form-factor phases αipsq in the vicinity
of threshold. Equation (7.5) provides a new parametrization of the form factors in B̄ Ñ D
semileptonic decays. The coefficients Ain are called phase moments hereafter, due to the
fact that they are related to the phases of the form factors in the physical B̄D̄ scattering
region.

7.3 Fit to Belle and LQCD data
Let us first define the recoil variable ω “ pm2

B `m
2
D ´ q

2q{p2mBmDq. It ranges from 1 at
zero recoil, q2 “ pmB ´mDq

2, to about pm2
B `m2

Dq{p2mBmDq « 1.59 at q2 “ 0, for the
decays into electron or muon leptons. To determine the phase moments Ain introduced
in Eq. (7.5), we perform a combined fit to the recent experimental data measured by
Belle [319] together with the LQCD results of the vector and scalar form factors at non-
zero recoil obtained by the HPQCD [321] and FL-MILC [322] collaborations.

The Belle data consist of the weighted averaged differential decay rates for 10 ω-bins
(see Table II of Ref. [319]), and should be confronted with

∆Γk
∆ω “

1
∆ω

ż ωk,max

ωk,min

dΓ
dωdω , k “ 0, ¨ ¨ ¨ , 9 , (7.7)

where the ∆ω is the width of each bin, ωk,min pmaxq is the minimal (maximal) value of
ω in the kth bin. The lepton masses, except for the tau case to be discussed later, are
neglected.
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Table 7.1: Results from the combined fit to Belle [319] and LQCD [321,322] data.

Correlation matrix
χ2

dof
“ 6.47

22´4 » 0.36 f0p0q A0
0 A`0 |Vcb| ˆ 103

f0p0q 0.658p17q 1.000 ´0.979 ´0.978 ´0.818
A0

0 1.38p12q ´0.979 1.000 0.957 0.801
A`0 2.60p12q ´0.978 0.957 1.000 0.774

|Vcb| ˆ 103 41.01p75q ´0.818 0.801 0.774 1.000

The FL-MILC Collaborations [322] provide results both for both f` and f0 at three
different ω P t1.00, 1.08, 1.16u. The HPQCD Collaboration [321] presents their results in
terms of the Bourrelly-Caprini-Lellouch (BCL, a simple alternative to BGL, see Ref. [310])
parametrization for the entire kinematic decay region (see the gray bands in the upper
panel of Fig. 7.1). However, they only performed numerical lattice simulations for three
different q2 configurations, which lead to ω values in the range of r1,„ 1.11s. Therefore,
as done in Refs. [323, 324], we prefer to extract, from the BCL parametrization obtained
in Ref. [321], three values for each of the form factors, f` and f0, at ω P t1.00, 1.06, 1.12u.
The 12 lattice data points with error-bars are shown in the upper panel of Fig. 7.1. We
note that the HPQCD errors are significantly larger than the FL-MILC ones.

In our fit, in addition to the phase moments Ain, the subtraction f0ps0q and the CKM
matrix element |Vcb| are treated as free parameters as well. The kinematic constraint
f`p0q “ f0p0q imposes a relation for the subtractions of both form factors

f`ps0q “ f0ps0q exp
„

s0

sth
pA`0 ´A0

0q



. (7.8)

We choose s0 “ 0 as the subtraction point, and find that a truncation of the the expansion
in Eq. (7.5) to the first order, i.e., n “ 0, is sufficient to accurately describe the data as
seen in Fig. 7.1. Consequently, we have a total of four free parameters: f0p0q, A0

0, A`0 and
|Vcb|. Fit results are collected in Table 7.1, where the errors in brackets are obtained from
the minimization procedure. Moreover, it is found that the precision of the data set at
hand is not sufficient to reliably pin down the phase moments Ain with n ě 1. We already
observe large correlation in Table 7.1. In Fig. 7.1, the form factors and the differential
decay rates from the combined fit are plotted as a function of q2 in the whole kinematic
region. We also show the prediction of the differential decay rate for the B̄ Ñ Dτν̄τ
decay. For comparison, the Belle and LQCD (HPQCD and FL-MILC) data are displayed
as well.

From the best fit, we get

|Vcb| “ p41.01˘ 0.75q ˆ 10´3 , (7.9)

which is in agreement with the determination reported in Ref. [319] using the BGL
parametrization, but higher than the values obtained using the CLN one [319, 320, 323,
325, 326]. It also agrees with the world average of the inclusive determinations [308].
Our result confirms the conclusion that the previous tension between the exclusive and
inclusive determinations was mostly due to the use of the CLN parametrization. The
error in our determination is only 1.8%, which is lower than the 2.4% from the combined
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Figure 7.1: Upper panel: vector and scalar form factors. Lower panel: differential decay
rates. The gray bands in the upper panel stand for the HPQCD results from the BCL
continuous parametrization provided in [321].

fit in Ref. [323] to the experimental data (BABAR [336], Belle [319]) and LQCD results
(HPQCD [321], FL-MILC [322]) using the BGL parametrization. Furthermore, as already
commented, the fitted phase moments A0,`

0 provide valuable information to constrain the
B̄D interaction.

With the parameters in Table 7.1, we predict the ratio

RD “
BRpB̄ Ñ Dτν̄τ q

BRpB̄ Ñ D`ν̄`q
“ 0.301p5q , (7.10)

with ` “ e or µ. It is well consistent with the predictions using the LQCD form factors:
RD “ 0.299p11q by FL-MILC [322] and RD “ 0.300p8q by HPQCD [321]. However,
the central value is significantly smaller than the values measured by BABAR, RD “

0.440p58qp42q [337], and by Belle, RD “ 0.375p64qp26q [338]. Yet, the deviation is 1.8 σ
from the former and only 1.0 σ from the latter, given the large uncertainties in the
experimental measurements. It is intriguing to see whether the deviation persists under
more precise measurements.

We checked the dependence of the above results on the subtraction point s0 by redoing
fits with s0 varied in the range r0, q2

maxs. We find that the fit quality keeps exactly the
same as for s0 “ 0, and the values of |Vcb| and RD are independent of the choice of
s0 as well. This is because in the Omnès representation, one is free to choose any s0.
The dependence of s0 in the exponential in Eq. (7.4) or Eq. (7.5) is compensated by the
parameter f0ps0q that behaves as a normalization factor.
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7.4 Comparison
For decades, the CLN parametrization [315] has been widely used. In the work of
Ref. [315], the ratio

S1pωq

V1pωq
“

p1` rq2
2rp1` ωq

f0pωq

f`pωq

“ A
“

1`Bpω ´ ω0q ` Cpω ´ ω0q
2
` ¨ ¨ ¨

‰

(7.11)

is reported as a series of ω expanded around some ω0, with r “ mD{mB. The coefficients
A,B and C were determined from available LQCD results at that time, Heavy Quark
Effective Theory (HQET), sum-rule calculations and unitary constrains, and included
leading short-distance and 1{mQ corrections [339,340] as well. Given the above relations
and our new parametrization of f`,0pq2q in Eq. (7.5), we obtain the HQET prediction of
the difference between A`0 and A0

0 as

rA`0 ´A0
0sHQET “

p1` rq2
1´ 2ω0r ` r2 ln p1` rq2

2rAp1` ω0q
(7.12)

by matching at ω “ ω0. In Ref. [315], A was given by expanding the results for the ratio
of Eq. (7.11) for two different choices of ω0 (see Tables A.1 and A.2 of that reference).
For ω0 “ 1, A “ 1.0036, while A “ 1.0018 for ω0 » 1.267. These spread of values for A
leads to

rA`0 ´A0
0sHQET » 1.05 „ 1.12 . (7.13)

As mentioned, Eq. (7.12) was obtained only from the constant term in Eq. (7.11). As a
further check, we have also found the above difference of phase moments by matching the
pω ´ ω0q term

rA`0 ´A0
0sHQET “

p1` rq2
2r

Bp1` ω0q ` 1
p1` ω0q

(7.14)

which consistently gives values in the 0.98 „ 1.12 range.
The difference rA`0 ´A0

0s can be also obtained from our results in Table 7.1,

rA`0 ´A0
0sthis work “ 1.22 p3q , (7.15)

where we have taken into account the large statistical correlation between A`0 and A0
0

to obtain the error above. Our result is larger than the HQET prediction in Eq. (7.13).
This gives a strong indication that higher order HQET corrections, neglected in the CLN
parametrization, are sizable, in agreement with the conclusion in Refs. [323,325,326].

7.5 Further considerations
As we stressed above, one of the advantages of the parametrization proposed in this work
is that the fitted phase moments may be used to learn details on the B̄D̄ dynamics. Let
us focus on A0

0, and let us note that if α0psq is replaced by the constant π in Eq. (7.6), the
zeroth order S-wave phase moment would be one (taking s0 “ 0). In the elastic region,
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?
s ă pmB˚ ` mD˚q, the phase α0 coincides with the S-wave B̄D̄ phase shift. Let us

suppose that the integration in Eq. (7.6) is being dominated by phase-space regions close
to threshold, then according to Levinson’s theorem, it would be justified to replace α0psq
by π if there exists one, but only one, B̄D̄ bound state. This scenario will easily explain a
value for A0

0 of 1. Moreover, since the best fit value is 1.38p12q, we might conjecture either
the existence of two bound states or of one bound and one virtual state. We recall here
that for an energy-independent interaction, which seems a reasonable approach to describe
low energy S´wave B̄D̄ scattering, Levison’s theorem establishes that δpsthq “ nbπ, with
nb the number of bound states of the potential1, and δp8q “ 0 [151]. In the case of two
B̄D̄ bound states, we envisage a situation where the phase shift will take the value of 2π
at threshold and after will decrease with

?
s (positive scattering length), providing an

integrated value larger than one for A0
0. In the second case, one bound and one virtual

state, the phase shift will begin taking the value of π at threshold, but it would grow in
the vicinity of s “ sth (negative scattering length) to make possible the phase moment
to reach magnitudes of around 1.4. We notice, however, the above discussion might be
altered by inelastic-channel effects that will induce energy dependent interactions.

7.6 Summary
In this chapter, we have proposed a new model-independent parametrization for the form
factors in the semileptonic B̄ Ñ D`ν̄` decays. It provides an excellent simultaneous
reproduction of experimental measurements of the differential decay rate and the LQCD
results for f` and f0, leading to a quite accurate determination of |Vcb|. We also confirm
that the previous tension between the exclusive and inclusive determinations was mostly
due to the use of the CLN parametrization. Furthermore, the fitted phase moments A0,`

0
provide valuable information to constrain the S- and P -wave B̄D̄ interactions. Any model
for them should be consistent with the determination of these parameters extracted here
from the B̄ Ñ D semileptonic decays. As an example, we have given strong hints about
the existence of at least one bound and one virtual B̄D̄ S-wave 0` states, subject to
uncertainties produced by potentially sizeable inelastic effects. The same parametrization
can be also employed to other b Ñ c semileptonic processes such as B̄ Ñ D˚`ν̄` and
Λb Ñ Λc`ν̄`.

1An S´wave bound state of zero binding energy gives a contribution of π{2 instead of π.
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Chapter 8

Contribution of constituent
quark model cs̄ states to the
dynamics of the D˚s0p2317q and

Ds1p2460q resonances

8.1 Introduction
In this chapter we shall focus on the most recent LQCD information concerning the
charmed-strange scalar D˚s0p2317q and axial Ds1p2460q resonances. These states have
already been presented in Sec. 1.2.1 of Chapter 1, remarking the important role that are
currently playing in the understanding of the spectroscopy of open-charm mesons. We
have also illustrated how they can be associated with P -wave cs̄ excitations from the
perspective of their valence quark content, and at the same time, be considered as part of
a HQSS doublet. In the course of the following pages, our aim is to develop a description
of these states based on a UHMχPT interaction that explicitly includes the contribution
of CQM bare degrees of freedom in a way consistent with HQSS and HQFS. To that end,
we will follow the scheme detailed in Ref. [341], where the pDD̄˚`h.c.q two-meson channel
was coupled to the χc1p2P q charmonium state, and the consequences for the Xp3872q and
its spin-flavour partners, were examined. The contents of this chapter are based on the
results obtained in Ref. [7].

If one accepts the predictions of generally successful CQMs, one should expect the
charmed-strange JP “ 0` ground state to lie much closer to the DK threshold than the
physical D˚s0p2317q, so the latter meson pair could act as an essential dynamical agent to
reduce the mass of the bare meson state closer to the experimental value, as suggested by
some authors [76]. Hence, in this picture, the physical D˚s0p2317q resonance would be the
result of a strong renormalization of a bare cs̄ component, rather than a new dynamical
state generated from a strongly attractive DK interaction. Nevertheless, since the re-
quired renormalization would be quite significant, one would expect, even in this context,
that the D˚s0p2317q resonance will acquire a sizeable two-meson molecular probability.
Indeed, the low-lying P -wave charmed-strange mesons were studied in Ref. [342] employ-
ing a widely used CQM [343–345], where the coupling between the quark-antiquark and
meson-meson degrees of freedom was modeled with the 3P0 transition operator [346]. In
that work, where all the parameters were constrained from previous studies on hadron
phenomenology, the bare 13P0 cs̄ state1 developed a large mass-shift as a consequence of
its coupling with the DK´meson pair, becoming its mass closer to that of the physical

1As in previous chapters, we use the nomenclature n 2S`1L2J`1 for the radial, spin, orbital and total
angular momentum quantum numbers of a quark-antiquark state. In addition the parity of the state is
p´1qL`1.
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D˚s0p2317q resonance. On the other hand, the dressed state contained a large molecular
component that gave rise to a DK´meson pair probability of around 33% [342] in the
final configuration of the meson.

In sharp contrast, the LQCD energy-levels reported in Refs. [46, 47] were analyzed in
Ref. [245], employing an auxiliary potential method, where DK molecular probabilities
for the D˚s0p2317q much higher, of the order of 70%, were found. This result was consistent
with the previous values obtained in Ref. [205]. The authors of this work performed a
LQCD calculation of several heavy-light meson–Goldstone boson scattering lengths, that
they used to fit the LECs entering in the unitarized NLO heavy meson chiral perturbation
theory HMχPT coupled-channel T´matrix derived in Ref. [198]. The latter amplitudes
were employed to estimate the D˚s0p2317q molecular component. These high values for the
DK probabilities2 are similar to those obtained in Ref. [44] from the analysis of the experi-
mentalDK invariant mass spectra of the reactions B` Ñ D̄0D0K`, B0 Ñ D´D0K` [348]
and Bs Ñ D̄0K´π` [243] measured by the BaBar and LHCb Collaborations, respectively.
In all cases an enhancement right above the threshold is seen and it is related in Ref. [44]
to the presence of the D˚s0p2317q. The latter is dynamically generated when LO HMχPT
amplitudes are used as the kernel of a BSE, whose renormalized solutions fulfil exact
elastic unitarity in coupled-channels.

The predominantly molecular structure of the D˚s0p2317q and Ds1p2460q resonances
has recently received an indirect robust theoretical support in Refs. [3, 6] (see also the
review of Ref. [228]). The results for the first of these two references have already been
discussed in Chapter 4, where the heavy-light pseudoscalar meson JP “ 0` scattering
in the strangeness-isospin pS, Iq “ p0, 1{2q sector was studied, and a strong case for
the existence of two poles in the D˚0 p2400q energy-region was presented. The dynamical
origin of this two-pole structure was elucidated from the light-flavour SU(3) structure
of the interaction, and we found that the lower pole would be the SU(3) partner of
the D˚s0p2317q. Thus, this latter state will have also clear hadron-molecular origin. A
similar pattern was found for JP “ 1` and in the bottom sector. This in fact might
solve a long-standing puzzle in charm-meson spectroscopy—as has been also discussed
in the previous Chapter 5—since it would provide an explanation of why the masses,
quoted in the PDG [206], of the non-strange mesons D˚0 p2400q and D1p2430q are almost
equal to or even higher than their strange siblings. Moreover, in Chapter 5 it has been
further shown that the well-constrained amplitudes for Goldstone bosons scattering off
charm mesons used in Chapter 4 are fully consistent with recent high quality data on the
B´ Ñ D`π´π´ final states provided by the LHCb experiment in Ref. [240]. Indeed, all
these results suggest a new paradigm for heavy-light meson spectroscopy that questions
their traditional qq̄ CQM interpretation [6].

Most of these latter works [3,6,44,205] do not incorporate explicitly the bare cs̄ degrees
of freedom, whose effects are, in principle, encoded in the LECs that appear beyond LO
in the chiral expansion, and in the non-perturbative re-summation employed to restore
elastic coupled-channels unitarity. However, and depending on the proximity of the CQM
states to the energy-region under study, this approximation might not be sufficiently
accurate.

2Note that Ref. [205] made use of the Weinberg compositeness rule [244], which relates this probability
to the scattering length in the limit of small binding energies. However, the works of Ref. [44, 245]
employed a generalization [347] that remains valid for bound states, independently of their distance to
threshold.
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Such radically different pictures of the inner structure of the D˚s0p2317q make timely
a re-analysis of this resonance, paying special attention to the interplay between meson
molecular and CQM degrees of freedom. From that perspective, we will try to describe
here the charm 0` and 1` LQCD energy-levels obtained in Ref. [45] using a HMχPT
approach incorporating, for the very first time in this context, bare CQM scalar and axial
degrees of freedom to the relevant two-meson channels. Such comparison will also serve
to constrain/determine the LECs that appear in the approach.3

The recent LQCD simulation of Ref. [45] reported finite volume energy-levels from
a high statistics study of the JP “ 0` and 1` charmed-strange mesons, D˚s0p2317q and
Ds1p2460q, respectively, where the effects of the nearby DK and D˚K thresholds were
taken into account by employing the corresponding four-quark operators. As we will
discuss below, the work of Ref. [45] represents a clear improvement on the pioneering ones
of Refs. [46, 47]. Some of the energy-levels reported in Ref. [45] lie in the proximity of,
when not above, the expected CQM bare masses of the ground scalar and axial charmed-
strange states, being thus interesting to include explicitly these degrees of freedom in the
scheme, since their effects might not be properly taken into account by simply including
LECs. Moreover, in the present study, we will also include the next pS “ 1, I “ 0q higher
thresholds, Dp˚qs η, since they appear at energies below some of the finite-volume levels
computed in Ref. [45].

This chapter is structured as follows. After this introduction, some novel aspects of
the theoretical formalism are described in Sec. 8.2, where details about the Dp˚qK and
Dp˚qs η scattering amplitudes, the coupling of the meson-pair degrees of freedom with the
bare CQM cs̄ spectrum, the restoration of unitarity and the extension of the scheme to
finite volume are discussed. In Sec. 8.3 our results for the finite volume 0` and 1` energy
levels are presented and compared with the ones reported in Ref. [45]. The properties of
the D˚s0p2317q and Ds1p2460q mesons, in particular their molecular content, are discussed
in this section. We also compute the energy levels obtained using the unitarized NLO
HMχPT amplitudes derived in Refs. [198, 205], and extensively compare the predictions
of this latter scheme with those deduced by including a bare CQM pole. The section
concludes with predictions for DK S-wave scattering phase shifts, and a discussion about
a few aspects of the renormalization dependence of the results obtained in this work. The
conclusions and a summary of results are presented in Sec. 8.4.

8.2 Theoretical formalism
We will briefly review here the most relevant aspects of the theoretical formalism, paying
attention to the inclusion of the Dp˚qs η channels and the coupling with the CQM bare
states. The relevant effective Lagrangians have been introduced in Sec. 3.4.1 in terms of
the heavy-light meson 3.3.2 and pNGBs 3.3.1 degrees of freedom.

8.2.1 Interactions
We are interested in the S-wave Goldstone boson (K`, K0 and η) scattering off charm
mesons P p˚qa ” pD0p˚q, D`p˚q, D`p˚qs q. We will generically refer as φ to the former mesons

3As it will be discussed below, LECs of our effective interaction in the charm and bottom sectors
might be related by heavy-quark flavour symmetry. The present study is closely related to the contents
of Chapter 9 where we study the same states in the bottom sector.
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and P p˚q to the latter ones. The heavy-light charm mesons are described in terms of the
HQSS matrix field Ha (3.45).

The Weinberg-Tomozawa Lagrangian (WTL), which was introduced in Eq. (3.105)
of Sec. 3.4.1, describes the S-wave P p˚qφ chiral interaction at LO. In this case, we shall
later distinguish between the unflavoured η8 SU(3) state appearing in the octet of pNGBs
and the physical state by incorporating the ideal mixing between the octet and singlet η1
states. For that reason, we replace the field matrix u in Eq. (3.83) by its modified version
containing the singlet η1 given by [184],

u “ exp
˜

i
ĂM
?

2f

¸

, (8.1)

with normalization f „ 93 MeV and the matrix ĂM reads,

ĂM “

¨

˚

˚

˝

π0
?

2 `
η8?

6 `
η1?

3 π` K`

π´ ´ π0
?

2 `
η8?

6 `
η1?

3 K0

K´ K̄0 ´

b

2
3η8 `

η1?
3

˛

‹

‹

‚

, (8.2)

where we explicitly consider the η1 and η8 unflavoured SU(3)states. On the other hand,
within the HQSS formalism, the even parity CQM bare cq̄ states, associated to the jPq̄ “
1
2
` HQSS doublet, are described by the matrix field Ja [193] introduced in Eq. (3.50) (see

Sec. 3.3.2 for details). Since in this chapter we will be interested in the pS, Iq “ p1, 0q
sector, in what follows and for simplicity we will denote the relevant heavy quark fields
Y
p˚q

cs̄ entering the SU(3) anti-triplet Ja as Y p˚q. The mass of CQM bare states, ˝
mcs̄, is a

renormalization-dependent parameter of the scheme [341] that will be discussed below.
At LO in the heavy quark expansion, there exists only one term invariant under Lorentz,
parity, chiral and heavy quark spin transformations which was given in Eq. (3.107). It
depends on a dimensionless undetermined LEC, c, that controls the strength of the vertex.
This LEC, though it depends on the orbital angular momentum and radial quantum
numbers of the CQM state, is in principle independent of the spin of the quark-model
heavy-light meson, and of the light SU(3) flavour structure of the vertex. Thus, up to
ΛQCD{mQ corrections, it can be used both for J “ 0 and J “ 1 in the charm and bottom
sectors. Moreover, in the SU(3) limit, the same LEC governs the interplay between two-
meson and quark model degrees of freedom in all isospin and strangeness channels. Let us
consider the transitions involving pseudoscalar (P ) heavy-light and Goldstone (φ) mesons,

PIφI Ñ PFφF , (8.3)

for which the tree level isoscalar4 amplitude (Vc) deduced from the WTL of Eq. (3.105)
reads [199]

Vcps, uq “ ´A
ps´ uq

2f 2 ,

A “

˜

1
a

2{3
a

2{3 0

¸

,

(8.4)

4The phase convention for isospin states |I, I3y are given in Eqs. (3.41), (3.43) and (3.49). Moreover,
we use the order DK, as in Ref. [199], to construct the isoscalar amplitudes.
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where channels 1 and 2 are DK and Dsη, respectively, s and u are the usual Mandelstam
variables and we have considered the η ´ η1 ideal mixing [349]5,

η8 “
2
?

2
3 η ´

1
3η

1,

η1 “
1
3η `

2
?

2
3 η1.

(8.5)

After projecting into J “ 0, we replace

ps´ uq

2 Ñ
3s2 ´ sΣ´∆I∆F

4s (8.6)

with Σ “ pM2
I `m

2
I`M

2
F `m

2
F q and ∆IpF q “ pM

2
IpF q´m

2
IpF qq, whereMIpF q and mIpF q are

the masses of the initial (final) heavy-light charm and Goldstone mesons, respectively.
The WTL leads to similar isoscalar amplitudes for the transitions involving vector

(P ˚) heavy-light mesons,

P ˚I φI Ñ P ˚FφF . (8.7)

Indeed, one gets in this case a potential6 like that of Eq. (8.4), supplemented by a term
´εI ¨ εF , where εIpF q is the polarization four-vector of the initial (final) heavy-light meson.
This latter factor reduces, at LO, to 1 after projecting into J “ 1 (S-wave, i.e., zero
orbital angular momentum). In summary, the amplitudes given in Eq. (8.4), together
with the projection implicit in Eq. (8.6) provide the coupled-channel contact potential,
Vcpsq, both in the 0` and 1` sectors.

Next, we consider transitions between CQM bare states [Y p˚q] and P p˚qφ meson pairs,
Y p˚q Ñ P p˚qφ. From Eq. (3.107) we find

Vcs̄psq “ ´Ã
ic

f

b

M
˝
mcs̄

s`m2 ´M2
?
s

,

Ã “

˜

1
1?
6

¸

,

(8.8)

with M an m the masses of the P p˚q and φ mesons, respectively.
Note that, here, by bare mass, we mean the mass of the CQM states when the LEC c

is set to zero, and thus it is not a physical observable. In the sector studied in this work,
the coupling to the P p˚qφ meson pairs renormalizes this bare mass, as we will discuss

5The ideal mixing-angle turns out to be around ´19.5 degrees, while the global fit to determine
the η ´ η1 mixing angle carried out in [350] provided a value of ´13.3p5q degrees. There is an abundant
literature on this subject, and more recent theoretical works (see for instance [284] and references therein)
found higher absolute values for the mixing-angle, and therefore closer to the ideal one. Thus for instance,
the authors of Ref. [351] quoted ´16.2`2.8

´2.9 degrees. Fine details of the η´η1 mixing are irrelevant for the
exploratory study carried out in this work, since, as we will see, the influence of the Dp˚qs η channels on
the D˚s0p2317q and Ds1p2460q dynamics is quite small, and can be taken into account by mild variations
of the rest of the LECs of the scheme. Thus, for simplicity, we find sufficiently accurate to adopt the
ideal mixing scheme. However, η´ η1 mixing fine details are certainly relevant for studies on the number
of colors and/or pion mass dependencies of the properties of these resonances, as the one carried out
in [284], where mπ is extrapolated until values close to 700 MeV.

6Now channels 1 and 2 are D˚K and D˚s η, respectively.
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below. Since, in the effective theory, the UV regulator is finite, the difference between
the bare and the physical resonance masses is a finite renormalization. This shift depends
on the UV regulator since the bare mass itself depends on the renormalization scheme.
The value of the bare mass, which is thus a free parameter, can either be indirectly fitted
to experimental observations, or obtained from schemes that ignore the coupling to the
mesons, such as some CQMs. In this latter case, the issue certainly would be to set the
UV regulator to match the quark model and the HMχPT approaches [341].

The vertices in Eq. (8.8) can be used to compute the contribution [Vexpsq] to P p˚qφ
scattering via the exchange of intermediate even-parity charmed-strange mesons. It is
given by [4, 341]

Vexpsq “
Vcs̄psqV

:
cs̄psq

s´ p
˝
mcs̄q

2
. (8.9)

Finally, the full effective potential, V psq, consistent with HQSS is given by

V psq “ Vcpsq ` Vexpsq, (8.10)

that incorporates the interplay between meson-pairs and CQM degrees of freedom in the
P p˚qφ dynamics [341].

Note that Vcpsq is obtained from Vcps, uq in Eq. (8.4) using the projection implicit in
Eq. (8.6). The LO potentials, Vcpsq and Vexpsq, are identical in the heavy-quark limit
in both the 0` and 1` sectors. Here, we will include some HQSS breaking corrections
stemming from the mass difference between pseudoscalar and vector heavy-light mesons
and the masses of scalar and axial CQM bare states. The scheme derived here is similar
to that followed in next Chapter 9, though here the Dp˚qs η channel has been included,
while the counterpart of this channel in the bottom-strange sector will not be considered
in the forthcoming chapter.

8.2.2 Unitarity in coupled-channels
Elastic unitarity in coupled channels is restored by solving for each JP sector a BSE (2.81),
using as kernel the HQSS effective potential of Eq. (8.10). The BSE is solved within
the so-called on-shell approximation [132] (2.87) and using a Gaussian cut-off, Λ, to
regularize/renormalize its UV behaviour. For further details on the conventions and
normalizations employed here, we refer to the program described in Sec. 2.5 as well as
Sec. 2.3.1 for the phase shifts definitions.

The expression for the regularized loop functions GpRq` psq “ GpGqps,m`,M`q entering
the loop matrix (2.87) can be found in Eq. (A.2) of Appendix A. In our two coupled
channels context the ` “ 1, 2 particularize to channels Dp˚qK, Dp˚qs η.

8.2.3 CQM states

We have seen that through the coupling of the CQM cs̄ and the P p˚qφ degrees of freedom,
the effective interaction incorporates a term (Vexpsq) driven by the exchange of bare CQM
states (Y p˚q). Such a term introduces a pole in the two-meson tree-level amplitudes,
Eq. (8.10), located at the bare mass value,

?
s “

˝
mcs̄. As already mentioned, it should

be interpreted as the mass of the CQM state in the limit of vanishing coupling to the
P p˚qφ meson-pairs (c Ñ 0), and therefore it is not an observable. The interaction with
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the meson cloud dresses the CQM state through loops [Eq. (2.87)], renormalizing its
mass, and the dressed state might also acquire a finite width, when it is located above
threshold. At energies far enough ˝

mcs̄, the contribution of Vex can be regarded as small
contact interaction that can be accounted for by means of a LEC. However, the exchange
contribution becomes more important for higher energies approaching ˝

mcs̄, and its energy
dependence might then not be safely ignored.

A priori, the value of ˝
mcs̄ is a free parameter of the present approach, and moreover

it should depend on the renormalization scheme [341]. We will take predictions from
quenched CQMs, which in principle do not include couplings with nearby meson-meson
channels. In the JP “ 0` sector, quark models predict, in general, cs̄ bare masses well
above MD ` mK , which lead to attractive Vex exchange interactions at DK threshold,
which might help in forming the D˚s0p2317q resonance. Most quark models predict masses
in the range of 2.45 ´ 2.51 GeV for the 13P0 cs̄ state [25, 26, 352, 353], significantly far
from the D˚s0p2317q experimental mass. With the aim of improving these predictions,
some other models [29, 354] incorporated a one-loop correction diagram to the one-gluon
exchange (OGE) potential, adding a spin-dependent term to the quark-antiquark potential
which affects mesons with different flavour quarks, such as the cs̄ mesons. In these works,
it is shown that this correction is rather small except for the 0` sector, where large
shifts are found and the mass of the CQM 13P0 state is significantly lowered („ 100
MeV). Indeed, it is found in the 2.35-2.38 GeV region—closer to but still above the
experimental D˚s0p2317q mass. Nevertheless, these predicted states would be still above
the DK threshold and their width would be large due to the decay into final DK, and
difficult to reconcile with the experiment that currently provides an upper bound of a
few MeV for its total width,7 as mentioned in the Introduction. Moreover, quark models
including these modified OGE potential will still face difficulties to describe the JP “ 1`
sector, where these corrections are quite small, and the experimental mass pattern is
similar to that found in the isoscalar-scalar sector.

One should bear also in mind, as the one-loop OGE correction brings the bare state
closer to the DK threshold, the interplay between the two-meson channel and the CQM
degrees of freedom might have a major impact on the description of the resonance prop-
erties and LQCD energy-levels.

Thus, in this study we will explore both types of CQMs. On one side, we will take
the ˝

mcs̄ values for the jPq̄ “ 1
2
` charmed-strange meson doublet predicted in the CQM

calculations of Refs. [345,356] (Set A in Table 8.1). Such CQM is based on the assumption
that the light constituent quark mass and the exchange of pseudo-Goldstone bosons arise
as a consequence of the spontaneous breaking of the chiral symmetry in QCD. Besides,
the dynamics is completed with a perturbative OGE potential and a non-perturbative
screened confining interaction [343, 345]. On the other hand, another set of bare masses
(Set B in Table 8.1) will be employed, predicted within the same CQM but supplemented
by the one-loop OGE corrections derived in Ref. [354] (see Ref. [356] for further details).

In contrast to the bottom sector studied in next Chapter 9, we see in Table 8.1 how the
values of the bare masses lie close to the Dp˚qs η threshold and, consequently, this channel
has been incorporated to the formalism.

7Being theD˚s0p2317q resonance located below theDK threshold, all its hadronic decays are suppressed
by isospin symmetry. Depending on different dynamical assumptions, decay widths, within molecular
schemes, from 10 keV to more than 100 keV have been predicted [247,285,355].
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Table 8.1: The two sets of ˝
mcs̄ CQM bare masses and the Dp˚qK and D

p˚q
s η averaged

threshold energies (in MeV units) used in this work, taken from Ref. [356]. In addition, we
take an average kaon mass of mK “ 495.6 MeV.

[Set A] [Set B]
JP

˝
mcs̄

˝
mcs̄ pMDp˚q `mKq pM

D
p˚q
s
`mηq

0` 2510.7 2382.9 2362.8 2516.1
1` 2593.1 2569.7 2504.2 2660.0

1` ´ 0` 82.4 186.8

8.2.4 NLO corrections

We will also use the Opp2q NLO UHMχPT amplitudes presented in Subsects. 4.2.1 and
4.2.2 in Chapter 4. The consideration of the contributions from explicit exchanges of
CQM states, in addition to the LO HMχPT amplitudes, contemplated in the previous
subsections provides a different perspective to the physiognomy of the P p˚qφ interac-
tions. Thus, it is worth discussing if there exists an energy-regime where the LO & CQM
scheme might mimic the NLO amplitudes, and when the CQM effects cannot be prop-
erly accounted for by the LECs that appear beyond LO in the chiral expansion. Such
study could provide further insights on the energy range of applicability of the unitarized
effective theory. Hence, in addition to results obtained with a LO & CQM interaction,
we will also show results from the pS, Iq “ p1, 0q NLO UHMχPT amplitudes employed in
previous Chapters 4, 6 and 5.

8.2.5 Poles, couplings and compositeness condition for bound
states

The interplay between meson-meson and CQM cs̄ states might dynamically generate new
states that arise as poles of the scattering amplitudes on the complex s´plane. There
exist two thresholds sp1,2q0 (see Eq. (2.92)) in our two-channel problem, therefore, RSs are
denoted as pξ1 , ξ2q, ξi “ 0, 1, and are defined in the whole complex plane through ana-
lytical continuations of the loop functions [133] in Eq. (2.89). With the definitions stated
in Sec. 2.5, p0, 0q is the physical RS (or first Riemann sheet (FRS)), while the unphysical
sheet (second Riemann sheet (SRS)), is defined by requiring continuity across the uni-
tarity cut between its fourth quadrant and the first one of the physical one. Therefore,
the definition of the SRS of the amplitudes varies below and above the highest threshold
(branch point of the T´matrix) [133], and it corresponds to p10q or p11q when the real
part of s is above sp1q0 , but below s

p2q
0 , or above both thresholds, respectively (see Ref. [133]

and Sec. 2.5 in Chapter 2 for some more details).
The mass (MR) and the width (ΓR) of the bound state/resonance are obtained from

the position of the pole on the complex energy plane ?sR “ MR ´ iΓR{2, whereas the
coupling gi of the resonance to the channel i is obtained from the residue (2.93) of Tijpsq
at the pole position. The residues can be used to get information on the compositeness
of the bound states. Motivated by the Weinberg compositeness condition [244, 357, 358],
the probability of finding the Dp˚qK or Dp˚qs η molecular component in the bound state
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wave function is given by [347,359–361],

Pj “ ´g
2
j

BGj

Bs

ˇ

ˇ

ˇ

ˇ

s“M2
b

, (8.11)

where Mb is the bound state mass. The energy dependence of the potential produces
probabilities in Eq. (8.11) that deviate from one. We will restrict the discussion to the
case of bound states. The evaluation of Eq. (8.11) for resonances gives rise to complex
values of Pj, loosing then a straightforward probabilistic interpretation. (Further details
can be found, for instance, in section 4.2 of Ref. [341]. See also Refs. [359,362,363].)

8.2.6 Finite volume and details of the LQCD simulation
As mentioned in Sec. 8.1, the simulation of Ref. [45] reported finite volume energy-levels
from a high statistics study of the D˚s0p2317q and Ds1p2460q resonances, taking into ac-
count effects of the nearby DK and D˚K thresholds by employing appropriate four-quark
operators. Six ensembles with Nf “ 2 non-perturbatively Opaq improved clover Wilson
sea quarks at lattice-spacing a “ 0.071 fm were employed in Ref. [45], covering different
spatial volumes and pion masses: linear lattice size (L) of 1.7 fm to 4.5 fm were realized
for mπ “ 290 MeV and 3.4 fm and 4.5 fm for an almost physical pion mass of 150 MeV.
Thus, the work of Ref. [45] represents a clear improvement on the pioneering ones of
Refs. [46,47], where an ensemble with mπ “ 156 MeV, at a fairly coarse lattice spacing of
a “ 0.09 fm and a small spatial lattice extent of L “ 2.9 fm (Lmπ “ 2.29) were analyzed
using the effective range approximation to extract infinite volume results. Thus, the use
of a finer lattice spacing in Ref. [45] is important since discretization effects can be sub-
stantial for observables involving charm quarks, while exploring the dependence on the
spatial volume is needed, since contributions which are exponentially suppressed in Lmπ

(that are ignored in the Lüscher formalism) may not be small for Lmπ “ 2.29.
Nevertheless, we should warn the reader that by employing Nf “ 2 dynamical fer-

mions, effects arising from strange sea quarks are omitted in Ref. [45], with the expectation
that the valence strange quark provides the dominant contribution. This seems to be the
case, as can be inferred from Fig. 10 of this latter reference, where the splittings found
in Ref. [45] of the two lowest states, with the noninteracting threshold for the scalar
and axial-vector channels, for mπ “ 290 MeV and 150 MeV and various volumes are
compared to the mπ “ 156 MeV 2+1 dynamical quarks results obtained in Ref. [47] for
Lmπ “ 2.29. The latter single-volume splittings lie in the volume-dependence curves
derived in Ref. [45], but with significant larger errors. Firstly because the number of
gauge configurations used in Ref. [45] is around one order of magnitude larger than that
computed in Ref. [47], and secondly, perhaps, as a consequence of the discretization errors
that should be higher in this LQCD simulation (see for instance the sizable breaking of
Lorentz symmetry in the heavy-light meson dispersion relation given in Eq. (2) and Table
VI of Ref. [47]).

To compare with the energy-levels reported in Ref. [45], we consider our scheme, based
on unitarized HMχPT and the contribution of CQM states, in a cubic box of side L, and
periodic boundary conditions for the fields. The three momentum is quantized ~q “ 2π

L
~n

(~n P Z3). The integrals in the loop functions Gpsq are replaced by their finite volume
versions , rGps, Lq “ diag

”

rGDp˚qKps, Lq, rGD
p˚q
s η
ps, Lq

ı

[167,169], involving the sum over all
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possible ~q,

rGjps, Lq “
1
L3

ÿ

~nPZ3

Ωp~q qe´2p~q 2´~k 2q{Λ2

s´
”

ω
P
p˚q

j
p~q q ` ωφjp~q q

ı2 ,

Ωp~q q “
ω
P
p˚q

j
` ωφj

2ω
P
p˚q

j
ωφj

,

(8.12)

where ωip~q q “ pM2
i ` ~q

2q
1
2 , with Mi the mass of the heavy-light meson or the Gold-

stone boson for i “ P p˚q or φ, respectively. (We have adopted relativistic dispersion
relations as in Ref. [45].) Up to the order considered in this work, there are no finite
volume corrections to the potential, so the full volume dependence is carried by the loop
function rG defined in a finite box. As explained in Sec. 2.5.1, the energy-levels EpLq
(s “ E2, E P R) are computed from the poles of rT ps, Lq in Eq. (2.97) for each size of
the box, detrT´1ps, Lq “detpV ´1psq ´ rGps, Lqq “ 0. The spectrum becomes discrete, with
levels that, in principle, can be associated to two-meson pP p˚qφq scattering states. In
the non-interacting case, the free energies (2.99), Efree

Dp˚qKp~q q and Efree
D
p˚q
s η
p~q q are recovered

(there should not be room to confusion noting that, now, the subindex is used to distin-
guish free energies related to the two channels instead of labelling the three-momentum
as in Eq. (2.99)). Hence, the continuous volume dependent curves that will be presented
below are essentially the Lüscher curves obtained from the phase shift by solving

δpqq ` φpq̂q “ nπ (8.13)

with q̂ “ qL{2π and φpq̂q determined by the Lüscher function (see Eq. (6.13) of Ref. [164]).
On the other hand, for a proper comparison with the results of Ref. [45], it is necessary

to use the lattice meson masses obtained in that simulation. That work reported two
different sets of results that correspond to two different pion masses used to compute the
energy-levels. We will label here the two sets of LQCD levels by Ensembles I and II, for
mπ “ 290 MeV and 150 MeV, respectively. We take the π, K, D and D˚ masses, for the
different box-sizes considered in each of the ensembles, from Table I of Ref. [45]. Besides,
the 0´ and 1´ Dp˚qs masses for the Ensemble II are taken from Table VII (L{a “ 64) of
Ref. [45], while for Ensemble I the masses of the charmed-strange heavy-light mesons have
been obtained using the values of pm0` ´m0´q and pm1` ´m1´q displayed in Fig. 13 of
the latter reference, and taking for the m0` and m1` masses the L{a “ 64 values reported
in Table III of the same work (Ref. [45]). Hence, we neglect any dependence on L in the
masses of 0´ and 1´ cs̄ ground states.8 The masses used in this work are compiled in
Table 8.2.

The mass of the η meson is not reported in Ref. [45] either, so we estimated its value,
as function of the volume and pion mass, using the Okubo mass formula [197] as follows

mlat
η “ mexp

η `mlat
8 ´mexp

8 , (8.14)

8It is not straightforward to extract the masses of the 0´ and 1´ D
p˚q
s mesons, for each of the pion

masses and volumes studied in Ref. [45], from the results reported in that work. Note, however, that
volume effects in the masses of these mesons are expected to be even smaller than for the D´meson, and
that these masses enter only through the small effects originated from the coupled-channels dynamics,
when the Dp˚qs η components are considered.
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Table 8.2: LQCD masses (in MeV units) of the 0´ and 1´ D
p˚q
s mesons used in this

work. They have been obtained from Tables III, VII and Fig. 13 of Ref. [45] [we always use
the results corresponding to the highest volume (L{a “ 64); see discussion in the text for
details]. We also give experimental masses, taken from the RPP [206], and the difference
between the experimental and lattice spin-averaged Ds masses.

Ensemble I Ensemble II Exp
MDs 1978(4) 1976.9(2) 1968.28
MD˚s 2100(7) 2094.9(7) 2112.1

M̄ exp ´ M̄ lat 5(5) 9.6(7)

with m2
8 “ p4m2

K ´m
2
πq{3. Finally for unphysical pion masses, the CQM bare masses are

also corrected using the difference between the experimental and lattice spin-averaged Ds

masses,

˝
m

lat
cs̄ “

˝
mcs̄ `M̄

lat
´ M̄ exp, (8.15)

with M̄ “ pMDs ` 3M
D
p˚q
s
q{4.

Uncertainties in all input lattice mesons masses (Table I of Ref. [45] and Table 8.2
of this work), as well as in ˝

m
lat
cs̄ , are taken into account in the error budget of our final

results, as we will detail in the next section.
To end this subsection, we would like to stress that considering the LQCD meson

masses, for finite volumes and unphysical pions, it is important to set up correctly the
thresholds and to properly compute the loop function in a finite box. However, the
current approach will still suffer from some systematic errors, mostly because we have not
considered the dependence of the Goldstone decay constant, that appears in the WTL
interaction, on the volume and the unphysical pion mass (such information is not given
in Ref. [45]), and we still use its value in the infinite-volume chiral limit.9 Nevertheless,
some of this dependence might be partially reabsorbed in the parameters fitted to the
LQCD energy-levels, and we certainly benefit from the fact that the pions simulated in
Ref. [45] are quite light and close to the physical one.

8.3 Results and discussion

8.3.1 LO HMChPT+CQM analysis

Fit details

The S-wave Dp˚qK interaction in the LO+CQM interaction scheme depends on three, a
priori, free parameters: the Gaussian cut-off Λ, the LEC c (Eq. (8.8)) and the masses of
the bare CQM cs̄ state, ˝

mcs̄. Nevertheless, we will consider different CQM meson masses
in the 0` and 1` sectors (Sets A and B in Table 8.1), as discussed in Sec. 8.2.3.

9We have simplified the discussion and have focused on f . An accurate treatment might require to go
beyond LO in the chiral expansion, which in turn might create some problems of double counting with
the contribution from CQM states. We will come back to this point below.

8.3. Results and discussion 145



Chapter 8. CQM cs̄ states and D˚
s0p2317q-Ds1p2460q

E
[G

eV
]
(0

+
)

L [fm]

E I [A]

E II [A]

Efree

D
(∗)

K

Efree

D
(∗)
s η

LQCD

2.30

2.40

2.50

2.60

2 3 4 5

E
[G

eV
]
(1

+
)

2.40

2.50

2.60

2.70

E
[G

eV
]
(0

+
)

L [fm]

3 4 5
2.30

2.40

2.50

E
[G

eV
]
(1

+
)

2.40

2.50

2.60

Figure 8.1: Black points: LQCD JP “ 0` (bottom panels) and JP “ 1` (top panels)
energy-levels, taken from Ref. [45], for different volumes and pion masses. LQCD data
for Ensembles I and II are depicted in the left and right panels, respectively. Solid lines:
Energy-levels obtained from 0` and 1` combined fits to Ensembles I and II using the Set
A of CQM bare masses, as a function of the box-size, L (some volume interpolated meson
masses are used to compute the continuous energy-levels for values of L different than
those employed in Ref. [45]). Details of the fits and some derived quantities are collected in
Table 8.3. Statistical 68%-confident level (CL) bands are also shown. They are calculated
from the distributions obtained from a sufficiently large number of fits to synthetic sets of
LQCD data, randomly generated assuming that each of the LQCD energy-levels is Gaussian
distributed. (Note that possible correlations between the different energy-levels are not
considered, since these are not provided in Ref. [45].) In addition, in all synthetic fits, the
LQCD meson masses for each volume are randomly chosen as well. For comparison, the
free energies Efree

j , j “ Dp˚qK,D
p˚q
s η, for each volume and set of LQCD meson masses are

also shown (dashed lines).

To determine the values of the LEC c, that controls the interplay between CQM and
meson-pairs degrees of freedom, and the Gaussian cut-off, we perform, for each set (A
and B) of bare CQM masses and lattice ensembles (I and II) a combined fit to the 0` and
1` energy-levels, using an uncorrelated merit function defined as,

χ2
“
ÿ

i

ˆ

Elat
i ´ Eth

i

∆Elat
i

˙2

, (8.16)

where the sum spans over the 0` and 1` energy-levels compiled in Table III of Ref. [45].
For both 0` and 1` sectors, only two energy-levels for each volume are fitted. We have not
considered in the fits the third 1` level given in the last column of that table. It is rather
insensitive to the spatial volume, suggesting only a small coupling to the D˚K threshold
and, in Ref. [45], it is identified with the Ds1p2536q resonance, that would presumably
have a large overlap with the jPq̄ “ 3

2
` HQSS state.

We show in Figs. 8.1 and 8.2 the 0` and 1` energy-levels obtained using sets A and
B of CQM bare masses, respectively. Fitted parameters and best fit χ2{dof values are
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Figure 8.2: Same as Fig. 8.1, but in this case the predictions have been obtained using
the Set B of CQM bare masses.

Table 8.4: Infinite volume properties of the second pole, resonance located above the
Dp˚qK threshold, that appears in the unitarized amplitudes considered in Table 8.3. Note
that now the couplings are complex in general, and we only give here the moduli.

Set Ensemble JP MR ΓR |gRDp˚qK | |gR
D
p˚q
s η
|

[MeV] [MeV] [GeV] [GeV]

A
I 0` 2689`25

´18 85˘ 4 3.5`0.1
´0.2 3.7˘ 0.2

1` 2772`24
´18 98˘ 5 4.3`0.1

´0.2 3.8˘ 0.2

II 0` 2684`53
´45 85`8

´13 3.6`0.1
´0.5 3.6˘ 0.4

1` 2767`51
´44 98`10

´16 4.4`0.1
´0.4 3.8˘ 0.4

B
I 0` 2602˘ 8 97˘ 3 3.4˘ 0.2 4.2˘ 0.1

1` 2797˘ 7 91˘ 2 2.2˘ 0.3 4.6˘ 0.1

II 0` 2527`33
´32 101`7

´17 4.9`0.1
´0.3 3.2˘ 0.3

1` 2713`36
´35 88`5

´12 4.5`0.2
´0.4 3.5`0.4

´0.3

collected in Table 8.3.
We see that the Set A of bare CQM masses provides a fairly good description of the

volume dependence of the LQCD energy-levels in both the JP “ 0` and 1` sectors,
despite the large deviations from the free levels. There exists a very mild dependence of
the UV cutoff and LEC c on the pion mass, which however is not statistically significant.
The Dp˚qs η coupled channel effects are negligible, except perhaps for the highest levels
calculated with the heaviest pion mass ensemble at the smallest of the volumes, since
that threshold is located sufficiently more higher than the measured levels in Ref. [45].
(Note thatDp˚qs η correlators are not considered in the LQCD study of the latter reference.)
We find c “ 0.61p9q and Λ “ 710p70q MeV from the fit to the lightest pion mass ensemble.
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This parameter is also determined in Chapter 9—based on Ref. [4]—from a similar analysis
of the LQCD low-lying 0` and 1` Bs´energy-levels calculated in Ref. [58]. There, we
shall see that we find c “ 0.75p6q, with an UV cutoff in the range 620-770 MeV, which
points out to some small dependence of the LEC c on the heavy-flavour mass.

On the other hand, when the Set B of 0` and 1` CQM bare masses are used, we
find unacceptable fits, with χ2{dof values much larger than 1—above 18 for both pion
mass ensembles. Indeed, as can be seen in Fig. 8.2, the set B leads to a really poor
description of the LQCD data. For the latter, the HQSS breaking corrections thus look
i) compatible with those encoded in the current scheme when the Set A of bare masses is
used, but ii) much smaller than those implemented by the Set B of bare masses. The one-
loop corrections [354] to the OGE potential implemented in Ref. [356] produce a 1` ´ 0`
shift of the bare CQM masses of around 190 MeV, while it is around only 80 MeV when
these corrections are neglected (see Table 8.1). This is because, as we already mentioned,
this correction mostly affects the 0` sector [354]. Actually, because of the denominator in
Eq. (9.3) and for fixed c and Λ, the decrease of the 0` bare mass produces an enhancement
of the attraction close to the DK threshold from the exchange of the CQM state. This
effect is much less important in the 1` sector, and thus the current scheme using Set B
of bare masses produces a visible tension between the predicted 0` and 1` levels and the
LQCD data (Fig. 8.2). The scheme tends to overestimate (underestimate) the attraction
in the former (latter) energy-levels by around 10-20 MeV, amount significantly larger
than the errors of the LQCD data. Therefore, this study strongly disfavors the bare
masses found in Ref. [356], where the one-loop corrections derived in Ref. [354] are taken
into account. These one-loop corrections to the OGE potential produced a much smaller
HQSS breaking of the bare masses in the bottom sector, and thus nothing statistically
meaningful could be concluded about this issue in the analysis carried out in Ref. [4] of
the Bs´energy-levels reported in Ref. [58]. Due to the former discussion, we will always
make reference to the results obtained from the Set A of CQM bare masses in the rest of
the work.

Next, and once the parameters of the model have been fixed, we search for poles in
the FRS (bound states) and SRS (resonances) of the isoscalar S-wave Dp˚qK and Dp˚qs η
amplitudes for the infinite volume case and using physical meson masses. For both sets
of CQM bare masses, and in both JP “ 0` and 1` sectors, we find a bound state (FRS)
and a resonance (SRS). The masses and couplings [see Eq. (2.93)] of the lowest-lying
jPq̄ “

1
2
` charm-strange meson doublet are compiled in Table 8.3, together with the 0`

and 1` isoscalar Dp˚qK scattering lengths and the probabilities of the molecular Dp˚qK
and Dp˚qs η components [see Eq. (8.11)]. The properties of the additional 0` and 1` states,
resonances located above the Dp˚qK threshold, are compiled in Table 8.4 for the different
schemes presented in the previous table.

Properties of the lowest-lying states: masses, molecular probabilities and cou-
plings

We first pay attention to the mesons of the lowest-lying jPq “ 1
2
`
Ds doublet. We see that

the predicted mass of the 0` bound state, using Set A of CQM bare masses, is only around
15 MeV higher than the experimental mass of the D˚s0p2317q and 75-80 MeV smaller than
the CQM bare mass, while that of the 1` nicely agrees, taking into account the errors,
with the experimental mass of the Ds1p2460q state. Nevertheless, this level of discrepancy
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can be well attributed to the presence of discretization errors, or some uncertainties in
the determination of the mass of the charm quark in the lattice simulation. Actually, the
results compiled in Table I of Ref. [45] show discrepancies of the order of 10 MeV between
the experimental masses of the D and D˚ mesons and the LQCD ones, determined from
the lightest quark mass, which provides almost physical pion masses. We should also
note some differences (1-2 σ’s) between the 0` and 1` masses found in this work and
those reported in Table VII of Ref. [45], taken from the mπ “ 150 MeV and L “ 64a
ensemble. These might be due to the use here of physical meson masses, and also because
the LQCD ones are accessed via the Lüscher’s relation [Eq. (8.13)] using the effective
range approximation. The approach followed here, where the two meson loop function is
computed in a finite volume, the unknown LECs are determined from fits to the LQCD
data, and finally poles are searched for in the infinite volume unitarized chiral amplitudes,
provides a theoretically sound tool to analyze the LQCD energy-levels. A good example
of the latter affirmation can be found in Ref. [3], where such approach led to the existence
of two D˚0 p2400q´poles, instead of only one reported in the original lattice work of the
Hadron Spectrum Collaboration [81], where the LQCD energy-levels were calculated (see
also the discussion in Ref. [6], where it is emphasized how the two-pole pattern of the
D˚0 p2400q, together with their SU(3) structure, provides a natural solution to a number
of puzzles).

Interestingly, we appreciate in Fig. 8.1 a quite significant dependence of the lowest-
lying LQCD energy-levels on the pion mass (differences between left and right plots), as
it is also evident in the results of Table IV of Ref. [45]. Thus, the LQCD 0` and 1`
masses reported in that table vary between 30 to 50 MeV, when the pion mass is reduced
from 290 MeV down to 150 MeV. These changes are likely related to the modifications
of the DK and D˚K thresholds. All of this clearly indicates that the D˚s0p2317q and
Ds1p2460q states should have a sizeable molecular component, and that any CQM cs̄
component in their dynamics cannot be dominant, because it could not accommodate
such visible dependence of their masses on the light quark mass, as exhibited by the
LQCD data. These findings are corroborated by the molecular probabilities collected in
Table 8.3. Using the modified Weinberg compositeness condition of Eq. (8.11), we derive
the molecular S-wave Dp˚qK probabilities for the D˚s0p2317q and Ds1p2460q, which turn
out to be around 65% and 56% for the scalar and axial states, respectively. On the other
hand, Dp˚qs η components are small for both mesons, of the order of 2%. The LQCD studies
of Ref. [45–47] showed a non-zero overlap of the energy-levels related to the D˚s0p2317q
and Ds1p2460q and meson-meson lattice interpolating fields, but no precise information
was provided on the percentage of meson-meson channels in the wave function of these
states. Only in the latest work of Ref. [45], the compositeness probability is studied, and
found to be 1 within errors (around 20-30%) for both states.

The large molecular probabilities found in this work confirm those reported in previous
works [44,205,245] that, employing also unitarized meson-meson amplitudes, had already
obtained molecular components of around 70% for the D˚s0p2317q, as mentioned in the
Introduction. In what respects the Ds1p2460q, the authors of Ref. [245] found a molecular
probability of 0.57 ˘ 0.22 also in good agreement with our findings, although with a
much larger error. The interesting and novel aspect of the present calculation is that
the LO HMχPT interactions have been supplemented by those driven by the exchange of
even-parity charmed-strange CQM mesons, and thus the couplings of CQM cs̄ and P p˚qφ
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degrees of freedom have been explicitly taken into account.10
In Ref. [342] two-meson loops and CQM bare poles are also coupled. For the latter,

the values of the bare masses are the same as those used here. The Dp˚qK interactions are
derived from the same CQM used to compute the bare states, instead of using HMχPT.
The 3P0 model is employed to couple both types of degrees of freedom, and the quark
model wave functions provide form-factors that regularize the meson loops. Thus, all the
inputs in this approach are constrained/determined from previous studies. The masses
of the 0` and 1` states found in Ref. [342] are about 10 and 25 MeV higher than the
experimental ones, respectively. The coupling of the CQM mesons to the DK and D˚K
thresholds is crucial to simultaneously lower the masses of the corresponding D˚s0p2317q
and Ds1p2460q states predicted by the naive quark model. Such effects are of the order of
60 and 85 MeV in the 0` and 1` sectors, respectively. However, in the study carried out in
Ref. [342], the one-loop corrections derived in Ref. [354] are taken into account, and they
lower the predicted mass of the D˚s0p2317q by more than 100 MeV. To this respect, we
should repeat once more that the simultaneous analysis of the 0` and 1` LQCD energy-
levels of Ref. [45] carried out in this work strongly disfavors such corrections. Molecular
probabilities are reported in Ref. [342] to be around 33% and 54% for the D˚s0p2317q
and Ds1p2460q, respectively. Though the latter one turns out to be in a nice agreement
with our results, the former one is around twice smaller than that found here and in
previous works [44, 205, 245], and it would contradict a dominant molecular picture for
the Ds0p2317q. Moreover, this disparity between the molecular components in the scalar
and axial states might also question that the D˚s0p2317q and Ds1p2460q could form a
HQSS doublet. Within our scheme, it is however natural to assign these two states to
the jPq̄ “ 1{2` HQSS doublet, assignation that gets further support from the observation
that the experimental mass splitting between these two resonances is remarkably similar
to that between the D and D˚ mesons. Furthermore, interpreting the D˚s0p2317q and
Ds1p2460q as DK and D˚K bound states, the binding energies of both states will be very
similar (approximately 46 MeV versus 54 MeV).

The couplings of the D˚s0p2317q and Ds1p2460q to Dp˚qK and Dp˚qs η are also compiled in
Table 8.3. We see that the coupling of both states to the latter channel, though around a
factor two smaller than to Dp˚qK, is not negligible.11 The analysis adopted in the original
LQCD work of Ref. [45] led to gDp˚qK couplings of 11.0˘ 1.3 GeV and 13.8˘ 1.3 GeV for
the D˚s0p2317q and Ds1p2460q, respectively. These values are in good agreement with the
values found in this work. We would like to stress that the clear similarities between the
couplings of both resonances reinforces our conclusion that they form a HQSS doublet.
Moreover, as we shall discuss in next Chapter 9, D˚s0p2317q and Ds1p2460q should be

10Other studies have done something similar (e.g. Ref. [245]) by including in the interactions a
Castillejo-Dalitz-Dyson pole [364] to visualize a genuine (CQM) state that couples weakly to a meson-
meson component. However, those studies do not make use of the HQSS to relate the interplay between
both types of degrees of freedom in the 0` and 1` sectors, which will be fundamental to disfavor the
Set B of CQM bare masses used in the study of Ref. [342], that will be discussed in the next paragraph,
and that claimed a much smaller („30%) molecular components for the D˚s0p2317q. Moreover, in some of
these studies chiral symmetry is not fully used to constraint the P p˚qφ interactions, and different solutions
were obtained with many sets of parameters, obviously correlated, though the claim in Ref. [245] was
that the particular values of the parameters did not have a special significance, and all of them led to
similar hadronic-molecular probabilities [245].

11The much larger differences found for the molecular probabilities are due, not only because it appears
the square of the couplings, but also because the large distance of the Dp˚qs η thresholds to the masses of
the resonances.
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heavy-flavour partners of the B̄s scalar and axial mesons found in Ref. [4] at 5709˘ 8 and
5755 ˘ 8 MeV, respectively. Note that the mass shift, due to the breaking of HQSS, is
much smaller in the bottom sector, and it turns out to be quite similar to pMB̄˚ ´MB̄q,
as expected.

Dp˚qK scattering lengths

The Dp˚qK scattering lengths are negative (see Table 8.3), compatible with the interpre-
tation of the D˚s0p2317q and Ds1p2460q as bound states. Indeed, the zero-range approxi-
mation, a0 “ ´1{p2µBq 1

2 [B ą 0 and µ are the Dp˚qK binding energy and reduced mass,
respectively], provides already the first significant digit (´1 fm). This simple formula
also anticipates that |aDK | ą |aD˚K |. Our predictions for the scattering lengths are con-
sistent, within errors, with previous lattice determinations [45–47], particularly with the
reanalysis of Ref. [245]; the bulk of the small differences existing among central values
can be explained in terms of the differences between binding energies. The uncertainties
on our estimates are significantly smaller than those affecting the LQCD ones. This is
in line with the previous discussion about the errors on the masses of the D˚s0p2317q and
Ds1p2460q resonances, and it shows, once more, that the present analysis of the LQCD
energy-levels leads to more precise results than those based on the Lüscher’s relation using
the effective range approximation.

Second pole: resonances

Within the current scheme, the amplitudes include an explicit pole. It is therefore rea-
sonable to assume that the CQM bare state does not disappear, but it gets dressed by the
meson-meson interaction moving into the complex plane. In addition to a mass shift, the
new state acquires a width since it can decay into S-wave Dp˚qK and Dp˚qs η meson-pairs.
The position and couplings of these extra poles, located in the SRS of the amplitudes,
are collected in Table 8.4. We see that both in the 0` and 1` sectors, the resonances
are relatively broad (85p4q and 98p5q MeV), respectively) and have similar couplings12 to
Dp˚qK and Dp˚qs η. On the other hand, the couplings of these resonances to Dp˚qK are
around a factor of three smaller than those of the D˚s0p2317q and Ds1p2460q states.

The masses of these higher states are 175 (330) and 110 (270) MeV above the Dp˚qs η
(Dp˚qK) threshold. Thus, we should take these results with some caution, since most likely
they should be affected by sizeable higher order chiral corrections and higher threshold-
channels corrections. In other words, they are not as theoretically robust as those con-
cerning the lowest-lying D˚s0p2317q and Ds1p2460q states. As mentioned, these additional
resonances are likely originated from the bare cs̄-quark-model poles that are dressed by
the Dp˚qK and Dp˚qs η meson loops. In that case, the bare poles have been highly renor-
malized, moving to significant higher masses and acquiring a significant width. We should
also bear in mind that radial excitations (23P0) of the CQM states [26] or Dp˚qK˚ two-
meson loops, neither of them taken into account in this study, might lie in this region of
energies, then having a certain impact in the dynamics of these resonances.

12The couplings are now complex in general, and we refer to the moduli.
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Figure 8.3: Same as Fig. 8.1, but in this case the predictions have been obtained after
neglecting the contribution to the amplitudes of the exchange of intermediate even-parity
charmed-strange CQM mesons, i.e., setting c “ 0 and evaluating the energy-levels using
finite-volume unitarized LO HMχPT amplitudes. The best fit UV cutoff in this scenario
and some derived quantities are given in the Set C rows of Table 8.3.

8.3.2 LO and NLO unitarized HMChPT analysis

LO HMChPT energy-levels

In addition to the results shown in the previous sections, where a CQM pole was added
to the LO Dp˚qK interaction, it is enlightening to discuss whether we are able to describe
the lattice data without any CQM cs̄ contribution. To explore this scenario, we have
performed an additional one-parameter (UV cutoff Λ)-fit, where the LQCD energy-levels
are described using finite-volume unitarized LO HMχPT amplitudes. Thus the LEC c is
set to zero, and consequently the contribution to the amplitudes of the exchange of the
CQM mesons vanish as well. This fit is labelled as Set C in Table 8.3, and the obtained
0` and 1` energy-levels, as a function of the box-size, are shown in Fig. 8.3.

We find a quite reasonable description of the LQCD data, and the infinite volume
properties of the lowest-lying states agree well with those deduced using the Set A of
CQM bare masses, though molecular probabilities and couplings of the Ds1p2460q and
D˚s0p2317q are now much more similar.13 Note that the CQM exchange potential induces
some HQSS breaking corrections, driven by the 0` and 1` cs̄ bare mass-shift, and the
fact that these contributions have been eliminated might explain the found pattern of
probabilities and couplings. The more distinctive difference, however, is that the UV
cutoff is around 1100 MeV. This is to say, the new UV cutoff is around 400 MeV higher
than the values needed when the contribution of the CQM meson exchanges are kept.
That reveals that higher order chiral corrections, previously effectively accounted for by

13We find PDp˚qK „ 65% and P
D
p˚q
s η

„ 6% for both states, and adding the probabilities, we obtain
molecular components above 70% in the wave-functions of both mesons. On the other hand, the higher
D
p˚q
s η channel becomes also more important in their dynamics.
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means of the CQM pole, are not negligible. Conversely, taking into account explicitly the
exchange of (bare) CQM mesons is not crucial to describe the D˚s0p2317q and Ds1p2460q
states, because such contributions can be accommodated by appropriately modifying the
finite contributions derived from short-distance physics. This is expected since the CQM
bare states lie far from the latter physical states, for which the unitarity meson loops play
a fundamental role.

The UV cutoff Λ is expected to be larger than the wave number of the states („ 200
MeV) and, at the same time, small enough to prevent it from inducing large HQSS
breaking corrections. From this perspective, one might think that values in the range of
1.1 GeV, comparable to the mass of the charm quark, do not seem appropriate within
the spirit of an EFT based on HQSS. However, one should bear in mind that here we are
using a Gaussian UV regulator, which will approximately correspond to a sharp-cutoff,
qmax, smaller by a factor14

a

π{8 [347]. Thus, in terms of a sharp-cutoff, we are dealing
with values of the order of 700 MeV that are more acceptable from the point of view of a
HQSS EFT.

The Set A of Gaussian regulators found in Sec. 8.3.1 would correspond to sharp cutoffs
of the order of 400-450 MeV, which are still larger than the wave number of the D˚s0p2317q
and Ds1p2460q states. Nevertheless, we should remind here that the CQM bare masses are
not observables, and they depend on the UV renormalization. Here we have fixed the CQM
masses, and thus the fitted cutoffs should be understood as those needed to effectively
account for higher order chiral corrections, when these bare poles are incorporated [341].
This also hints to a certain scale for which the CQM of Ref. [342] might match the chiral
EFT.

NLO HMChPT energy-levels

Within this context, it seems appropriate to calculate the energy-levels obtained from
the unitarized HMχPT NLO amplitudes [198] described in Sec. 8.2.4. As in the previous
subsection, the exchanges of CQM bare poles are not included. Indeed, as we have
discussed above, considering such contributions, together with the NLO corrections, might
lead to some double-counting problems.

The UV divergences are renormalized in Ref. [198] by using subtracted meson loop
functions instead of a sharp-cutoff. However, both schemes can be related (see for instance
the discussion in Sec. 4.5.1 in Chapter 4), and the subtraction constants determined
in [205] correspond, in good approximation, to a sharp-cutoff qmax “ 0.72`0.07

´0.06 GeV, similar
to the values mentioned in the previous discussion.

Results are shown in Fig. 8.4, where we see that this scheme provides a more than
acceptable description of the 0` and 1` LQCD data, for both pion mass ensembles, despite
having set all LECs to the values determined in Ref. [205]. We emphasize that, therefore,
the energy levels shown in the different panels of the figure are predictions and do not
imply any fine adjustment of any type of parameter.15 We find this remarkable, and

14Note that the Gaussian regulator introduced in [347] and that used here are related by an extra factor
1{
?

2.
15We should mention that the unitarized NLO HMχPT description of the LQCD energy levels shown

in Fig. 8.4 might be improved by allowing for a slight variation of the LECs, which could, for example,
effectively account for some discretization/finite volume errors etc. Note that, in addition, these system-
atic errors could be also different to those affecting the lattice study of scattering lengths carried out
in Ref. [205]. Nevertheless, the second levels are quite far from the thresholds, and one might need to

154 8.3. Results and discussion



Chapter 8. CQM cs̄ states and D˚
s0p2317q-Ds1p2460q

E
[G

eV
]
(0

+
)

L [fm]

E I

E II

Efree

D
(∗)

K

Efree

D
(∗)
s η

LQCD

2.30

2.40

2.50

2.60

2 3 4 5

E
[G

eV
]
(1

+
)

2.40

2.50

2.60

2.70

E
[G

eV
]
(0

+
)

L [fm]

3 4 5

2.30

2.40

2.50

E
[G

eV
]
(1

+
)

2.40

2.50

2.60

Figure 8.4: Volume dependence of the energy levels predicted using the unitarized NLO
HMχPT amplitudes of Refs. [198, 205] compared to the lattice results of Ref. [45]. Ex-
changes of intermediate CQM mesons are not included, and the distribution of panels is
the same as in Fig 8.1. There are no fitted parameters involved in these predictions since
all LECs that appear in the definition of the chiral amplitudes were determined from the
lattice calculation [205] of the S-wave scattering lengths in several pS, Iq sectors. The 68%
CL uncertainty bands depicted in the plots are inherited from the errors on the LECs
quoted in Ref. [205].
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together with the similar good description found in Chapter 4 of the pS, Iq “ p0, 1{2q
LQCD low-lying energy levels calculated in Ref. [81], provides a great support for the
UHMχPT amplitudes derived in Refs. [198,205]. Hence, the D˚0 p2400q two-pole structure
and the SU(3) pattern D˚1 resonance (located at 2240p6q ´ i93p9q MeV) and of the 0`
and 1` heavy-light sectors claimed in Chapter 4 seem rather robust from the theoretical
point of view. As we have already discussed in Chapter 5, all these results reinforce the
new paradigm to study the spectrum of heavy-light mesons [6], and that questions its
traditional interpretation in terms of constituent Qq̄ degrees of freedom.

8.3.3 DK S-wave phase shifts
Here we will show predictions for DK S-wave scattering phase shifts [see Eq. (2.64)],
and will take the opportunity to discuss few aspects of the renormalization dependence
of the scheme. For the sake of brevity, we will not address the rest of channels. In this
subsection, we will always show results obtained for infinite volume, using physical meson
masses, and the Set A of bare masses to incorporate the CQM degrees of freedom.

The behaviour of the phase shifts at threshold depends strongly on the position of the
S-wave DK pole, as can be seen in the bottom panel of Fig. 8.5. Thus, and to make the
discussion meaningful, we will consider approaches leading to the same D˚s0p2317q mass
value, 2315`18

´28, obtained in the NLO UHMχPT approach [198, 205], and whose central
value is quite close to the experimental one. Details can be found in Table 8.5, while the
related phase shifts are shown in the left panels of the first two rows in Fig. 8.5.

NLO vs CQM+LO: Poles, couplings and compositeness. Looking at the results
of Table 8.5, we first stress the dependence of the UV cutoff on the LEC c, or viceversa
the dependence of c on Λ, for a fixed CQM bare mass. The latter should be also un-
derstood as a renormalization scheme dependent quantity. All these three parameters
(c,Λ, ˝mcs̄) should effectively incorporate higher order chiral corrections beyond LO, and
not accounted by the unitarity loops. One expects that these further corrections should be
rather independent of the short distance physics at energies moderately far from thresh-
old. However predictions might significantly differ, lets us say above 2450 or 2500 MeV.
Indeed, we have an indication from the masses and widths of the possible second (higher
resonance) state compiled in the table. We see that for c “ 0.3, a narrow resonance (28
MeV) is generated at around 2557 MeV, that would produce clear signatures, not seen, in
the second energy level calculated in Ref. [45]. The other schemes either do not generate
any resonance (c “ 0 and NLO) or it is located close to 2700 GeV (c “ 0.61) and it is
sufficiently broad to become unnoticed for energies below 2600 MeV. The conclusion is
that the c “ 0.3 predictions above 2500 MeV are unreliable, and that the exact location of
the resonance generated for c “ 0.61 is not well constrained by the data of Ref. [45]. On
the other hand, we appreciate a variation pattern for c consistent with the physical inter-
pretation of this LEC, and thus the total molecular probability decreases from p67˘10q%
down to p60˘9q%, when c varies from 0 to 0.61. Scattering lengths are mostly determined
by the common D˚s0p2317q mass and do not show statistically significant variations, as it
also occurs for the couplings. Paying attention now to the NLO results, we find that they

explicitly include higher order chiral corrections. Otherwise, the re-fitted NLO LECs would be biased,
since they would effectively account for those contributions. All of this is beyond the scope of the present
work.
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Figure 8.5: First two rows of plots: energy dependence of the DK S-wave phase shifts
obtained using the chiral unitarized approach of Refs. [198, 205] (NLO) compared with
the results deduced including the exchange of a CQM state of mass 2511 MeV (Set A).
Predictions for three different values of the dimensionless LEC c, that controls the strength
of the coupling of the bare CQM meson and the Pφ´pair, are depicted. Note that in the
case c “ 0, the approach reduces to unitarized LO HMχPT. In the left (right) panels the UV
divergences, that appear in the unitarization of the LO HMχPT +CQM amplitudes, have
been renormalized using a Gaussian cutoff (subtraction constant). For details see Tables 8.5
and 8.6. The UV behaviour of the NLO unitarized amplitudes is always renormalized using
subtraction constants [198, 205]. Statistical 68%-CL error-bands are generated from the
uncertainties of the LECs that enter in each scheme. Bottom plot: comparison of phase
shifts for c “ 0.61 using two different UV Gaussian cutoffs, 0.71`0.07

´0.06 GeV and 0.81`0.17
´0.12

GeV. The first value corresponds to Fit AII of Table 8.3, and the uncertainty of ˘0.09
quoted there for the the LEC c is also considered to obtain the statistical 68%-CL error-
band. The second UV cutoff is that associated to c “ 0.61 in Table 8.5, and the deduced
phase shifts are also shown in the left panel of the second row of plots in this figure. Both
sets of LECs produce different D˚s0p2317q masses, 2331 ˘ 3 MeV (Table 8.3) and 2315`18

´28
MeV (Table 8.5), respectively. In all cases, physical masses have been used.
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coincide reasonably well with those found using LO HMχPT amplitudes, thanks to the
freedom in the latter to re-adjust the cutoff. Finally, it could be surprising that the DK
molecular probability, obtained within the NLO scheme, is only 54˘ 4%, when a value of
„ 70% was claimed in the original work of Ref. [205]. This discrepancy is due to the use
in the latter work of the Weinberg compositeness rule [244], that provides the molecular
probability in terms of the scattering length and the DK wave number γB,

PDK „ ´
aDK

aDK ` 2{γB
, γB “

a

2µB, (8.17)

which leads to one, in the limiting case when the scattering length is approximated by
´γ´1

B (very loosely bound states), neglecting finite effective range corrections. Indeed,
using the relation of Eq. (8.17), one obtains PDK „ 70 ˘ 4 %, as obtained in Ref. [205].
Note, however, that Eq. (8.17) has corrections due to the D˚s0p2317q binding energy [245],
which is not too small („ 46 MeV), and possible inelastic effects [358], which should bring
the 70% down to the more accurate estimate found in the present work.

NLO vs LO+CQM: phase shifts. Coming back to the phase shifts shown in the left
panels of Fig. 8.5, we see that different schemes produce compatible phase shifts close to
threshold, while the differences become larger as the energy increases. Thus for instance,
the c “ 0.3 phase shifts suddenly change curvature above 2500 MeV, but as we discussed
above such behaviour, produced for a narrow resonance at 2557 MeV (see Table 8.5),
is not compatible with the higher 0` LQCD energy level reported in Ref. [45]. Above
2450 MeV the rest of schemes lead to differences in the phase shifts of few degrees, and at
most of around 15˝ at 2550 MeV. However, taking into account the uncertainties of the
different predictions, phase shifts are almost compatible up to this latter energy.

Regularization dependence. We now discuss about the dependence of the analysis
on the regulator scheme. To this end, instead of the Gaussian form factor UV regula-
tor (Eq. (A.2)), we consider a LO+CQM scheme where the loop matrix function G is
renormalized by one subtraction (see Eq. (A.1) in Appendix A)—as in the case of NLO
UHMχPT amplitudes. Suppressing the indices, the loop function is equivalently written
for each channel as,

Gpsq “ Ḡpsq `GrpM `mq2s. (8.18)
The finite function Ḡpsq can be found in Eq. (A9) of Ref. [133]. On the other hand, the
constant GrpM`mq2s contains the UV logarithmic divergence. After renormalizing using
dimensional regularization, one finds,

GrpM `mq2s “
1

16π2

´

apνq `

1
M `m

rM ln M
2

ν2 `m ln m
2

ν2 s
¯

(8.19)

where ν is the scale of the dimensional regularization. Changes in the scale are, in princi-
ple, reabsorbed in the subtraction constant apνq, so that the results remain scale indepen-
dent. Here we have taken ν “ 1 GeV and a common subtraction constant ap1 GeVq “ α
for both DK and Dsη channels, as in Refs. [198, 205]. We have now constrained the
LEC α to obtain the same D˚s0p2317q mass (2315`18

´28), as in Table 8.5, for each value of
the parameter c. The results are presented in Table 8.6. Comparing these latter results
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with those in Table 8.5, we see that the predictions, within uncertainties, are consistent
in the two renormalization schemes. There is a slight dependence, and the D˚s0p2317q
coupling to DK and the modulus of the scattering length are smaller and closer to those
deduced from the NLO approach. Molecular probabilities are somewhat larger, specially
PDsη that becomes almost twice bigger. As a consequence, the total hadronic molecular
component is now roughly 70 ˘ 10%. The dependence on c follows a similar pattern as
in Table 8.5, and the importance of the Dsη channel decreases as the value of the LEC
c increases. Finally, the results concerning the higher—dressed—resonance pole position
are similar in the two renormalization schemes. Thus from the previous discussion, the
c “ 0.3 predictions for energies above 2500 MeV turn out to be little reliable also in this
scheme.

The phase shifts deduced from the various possibilities discussed in Table 8.6 are
shown in the right panels of the first two rows in Fig. 8.5. We see, the c “ 0.3 phase
shift above 2500 MeV presents the same pathologies as in the left top panel, where an UV
Gaussian cutoff is used. It is interesting to note that the c “ 0 and c “ 0.61 phase shifts
have smaller errors, the two sets of phase shifts are still statistically compatible, but in
addition, they now agree quite well with the NLO predictions, and also qualitatively with
those found in Ref. [285]. Thus, the renormalization scheme dependence, while it is not
much relevant for the D˚s0p2317q properties, turns out more important for the phase shift
at energies above 2450 MeV, as one could reasonably expect from the previous discussions.
This clearly could be regarded as a source of systematic uncertainty, though up to 2550
MeV remains smaller/comparable to the other uncertainties of the predictions accounted
for the error bands depicted in Fig. 8.5.

8.4 Summary and concluding remarks
In this chapter we have first carried out a coupled channel study of the 0` and 1` charm-
strange meson sectors employing a chiral unitary approach based on LO HMχPT P p˚qφ
interactions, and that incorporates, consistently with HQSS, the interplay between inter-
mediate CQM bare cs̄ and P p˚qφ degrees of freedom. We have extended the scheme to
finite volumes and fixed the strength of the coupling between both types of degrees of
freedom to the available 0` and 1` LQCD energy-levels [45], which we have successfully
described. On the other hand and at variance with the situation in the bottom-sector
reported in Ref. [4]—which will be presented in the next chapter—, we have found that
the 0` and 1` CQM bare masses (denoted as Set B in this work) obtained in Ref. [356]
using the one-loop corrections to the CQM OGE potential proposed in Ref. [354], lead to
a really poor description of the LQCD data. This is because the HQSS breaking correc-
tions induced by this modification of the OGE potential are inconsistent with the LQCD
energy levels calculated in Ref. [45].

We have estimated the size of the the Dp˚qK two-meson components in the D˚s0p2317q
and Ds1p2460q, and conclude that these states have a predominantly hadronic-molecular
structure. Furthermore, we have observed a quite significant dependence of the lowest-
lying LQCD energy-levels of Ref. [45] on the pion mass, which is difficult to accommodate
by a dominant CQM cs̄ component. This is, however, consistent with having a large
influence of the P p˚qφ loops in the D˚s0p2317q and Ds1p2460q structure.

In addition, we have found one extra resonance, in both the 0` and 1` sectors, arising
from the dressed CQM states. Our predictions for these states are not as robust as those
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for the low lying D˚s0p2317q and Ds1p2460q, and moreover they are relatively broad, which
might complicate their discovery. Some experimental efforts are needed to clarify their
possible existence.

The LEC c depends on the radial quantum number, but not on the heavy flavour,
up to ΛQCD{mQ corrections. Thus, the value determined here for this parameter should
be similar to the value which would be found in the bottom-strange sector. As we have
already advanced, we shall undertake the case of bottom-strange sector in the forthcoming
chapter. Nevertheless, we anticipate here that in the bottom sector a value c “ 0.75p6q will
be obtained, which is quite compatible with the values in the range 0.52–0.70 found in this
work for the Set A of CQM bare masses. Note that in addition to heavy flavour symmetry
breaking corrections, there might be also some discretization errors. Nevertheless, we
have shown that taking into account explicitly the exchange of (bare) CQM mesons is
not fundamental to describe the D˚s0p2317q and Ds1p2460q states, since such contributions
can be accommodated by appropriately modifying the finite contributions derived from
short-distance physics. This is natural because the CQM bare states lie far from the latter
physical states, for which the unitarity meson loops play a fundamental role.

We have discussed how the approach followed here, where the two meson loop function
is computed in a finite volume, the unknown LECs are determined from fits to the LQCD
data, and finally poles are searched for in the infinite volume unitarized amplitudes using
physical meson masses, provides a theoretically sound tool to analyze the LQCD energy-
levels. We have shown that such procedure leads to more precise predictions that those
obtained via the Lüscher’s relation using the effective range approximation.

We have also calculated the energy-levels obtained from the unitarized HMχPT NLO
amplitudes presented in Chapter 4, without including any contribution from the exchanges
of CQM bare poles. We have shown (Fig. 8.4) that this scheme provides a more than
acceptable description of the 0` and 1` LQCD energy levels of Ref. [45], despite having
fixed all LECs to the values previously determined in Ref. [205] (not fitted to the energy
levels). These findings, together with the similar good description found in Chapter 4 of
the pS, Iq “ p0, 1{2q LQCD low-lying energy levels of the Hadron Spectrum Collabora-
tion [81], provide a great support for the aforementioned amplitudes. Hence, theD˚0 p2400q
two-pole structure and the SU(3) pattern of the 0` and 1` heavy-light sectors claimed
in Chapter 4 seem rather robust from the theoretical point of view. All these results, as
we have discussed in former Chapter 5, reinforce a new paradigm to study the spectrum
of heavy-light mesons, that questions its traditional interpretation in terms of constituent
Qq̄ degrees of freedom.
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Chapter 9

Lowest lying even-parity B̄s
mesons: heavy quark spin-flavor
symmetry, chiral dynamics, and
constituent quark model bare

masses

9.1 Introduction
In the previous Chapter 8, we discussed the effects of incorporating CQM cs̄ degrees
of freedom into a HMχPT molecular description of the charm-strange D˚s0p2317q and
Ds1p2460q states. In this chapter, we shall apply the same formalism to study the bottom
analogues of these resonances, although currently there are not experimental evidences of
their existence. A brief exposition of their expected properties as well as previous research
on these states can be found in Sec. 1.2.1.

Henceforth, we will pay attention to the 0` and 1` isoscalar bottom-strange sector.
We will use a UHMχPT scheme to describe the isoscalar S-wave elastic B̄p˚qK Ñ B̄p˚qK
T´matrix. The scattering amplitudes will be obtained by solving a renormalized BSE
with an interaction kernel determined from LO HMχPT [183, 184, 288, 299]. We will
couple the two-meson BK and B˚K channels with the CQM P -wave B̄s scalar and axial
mesons using the same effective interaction consistent with HQSS that we employed in
Chapter 8 (see Sec. 8.2 for details). Finally, as in the preceding chapter, we will use
the LQCD information—in this case the energy levels reported in Ref. [58]—to constrain
the undetermined LECs of the approach. In contrast with the previous study on charm
mesons, we will not consider the influence of coupled B̄p˚qs η channels, as in Ref. [58], since
in this case the bare CQM bare masses that will be used lie far enough from the B̄p˚qs η
energy thresholds. As a final outcome, we will present robust predictions for the lowest-
lying bs̄ JP “ 0` and 1` states, that can serve as an important guidance for experimental
searches and to shed light into the situation in the analogue charm sector. This chapter
is based on Ref. [4].

9.2 Isoscalar B̄p˚qK Ñ B̄p˚qK scattering
The formalism introduced in previous Sec. 8.2 for S-wave scattering of pNGBs off charm
mesons is readily extended to the case of bottom B̄ mesons with the identification D Ø B̄,
i.e., the SU(3) anti-triplet of heavy nonrelativistic fields P p˚qQ is now pB0p˚q, B´p˚q, B̄0p˚q

s q.
In the following, we will nevertheless review a few distinct key points with respect to the
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situation in Chapter 8.

9.2.1 Interactions

In S-wave, the spin-parity quantum numbers of the B̄K
`

B̄˚K
˘

meson pair are 0`p1`q,
while the light degrees of freedom are coupled to spin-parity 1{2`. As in Ref. [58], we will
neglect the B̄p˚qs η channels, and thus the (elastic) isoscalar B̄p˚qK Ñ B̄p˚qK interaction
potential V psq consists of a chiral contact term [Vcpsq] plus the exchange [Vexpsq] of a bare
bs̄ state as in Eq. (8.10). At LO in the chiral counting, Vcpsq is given by the WTL [183,
184, 288, 299] that reads as given in Eq. (3.105). The isoscalar contact term contribution
Vcpsq can be easily derived, and the result after projecting into S-wave reads:1

Vcpsq “
´3s` pm2

B̄p˚q ´m
2
Kq

2
{s` 2pm2

B̄p˚q `m
2
Kq

4f 2 . (9.1)

Neglecting the B̄˚ ´ B̄ mass difference, the interactions in the J “ 0 and 1 sectors are
identical, as expected from HQSS because they correspond to the same configuration
(jPs̄ “ 1{2`) of the light degrees of freedom.

As before, the exchange term in Eq. (8.10) is determined by the coupling between the
B̄p˚qK meson pairs and the P -wave bare quark model states described by the matrix field
J pQqa introduced in Eq. (3.50). The LO term in the chiral and heavy quark expansion
was presented in Eq. (3.107) (subsec. 3.4.1 of Chapter 3), depending on the dimensionless
undetermined LEC, c, that controls the strength of the vertex. See the discussion in the
paragraph after Eq. (8.2) for further details. Paying attention to the isoscalar (see isospin
conventions in Eqs. (3.43) and (3.49)) bottom-strange sector, we find a bs̄ Ñ B̄p˚qK
coupling in S-wave,

Vbs̄psq “
ic

f

d

mB̄p˚q
˝
mbs̄

s

`

s´m2
B̄p˚q `m

2
K

˘

, (9.2)

where now ˝
mbs̄ is nothing but the mass of the bs̄ meson without the effect of the B̄p˚qK

meson loops. This mass is the same, up to small HQSS breaking corrections, for both
J “ 0 and J “ 1 sectors, and it can be in principle obtained from CQMs. In what follows,
we will denote it as the bare mass of the state.2 We reinforce here the interpretation that,
by bare mass, we mean the mass of the CQM states when the LEC c is set to zero, and
thus it is not a physical observable. In the sector studied in this work, the coupling to
the B̄p˚qK meson pairs renormalizes this bare mass, as we will discuss below. We remark
that since, in the effective theory, the UV regulator is finite, the difference between the
bare and the physical resonance masses is a finite renormalization. This shift depends
on the UV regulator since the bare mass itself depends on the renormalization scheme.
The value of the bare mass, which is thus a free parameter, can either be indirectly fitted
to experimental observations, or obtained from schemes that ignore the coupling to the
mesons, such as some CQMs. In this latter case, the issue certainly would be to set the

1For J “ 1, as already discussed in the paragraph after Eq. (8.7), there appears the product of the
polarization vectors of the initial and final B̄˚ mesons, which is approximated by ´1, after neglecting
corrections suppressed by the heavy meson mass.

2Owing to SU(3) light flavor-symmetry, the bare mass would present also a soft pattern of isospin and
strangeness corrections.
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UV regulator to match the quark model and the EFT approaches. We will come back to
this point later.

From Eq. (9.2), we can compute the Vexpsq term contribution to the full potential,
(analogous to Eq. (8.10)), that accounts for B̄p˚qK scattering via the exchange of inter-
mediate even-parity bottom-strange mesons [341]:

Vexpsq “
Vbs̄psqV

:

bs̄psq

s´
˝
m

2
bs̄

. (9.3)

The potential V psq detailed above is consistent with HQSS, and it is used to obtain the
B̄p˚qK elastic unitary amplitude, T psq. This is done as explained in Sec. 8.2.2, solving
the BSE within the so-called on-shell approximation ( [132], see Sec. 2.5), with a loop
function regularized using a Gaussian form factor suppressing the UV three-momenta (see
Eqs. (A.2) and (A.4)).

9.2.2 Bound, resonant states, couplings and the compositeness
condition for bound states

We follow, as in Chapter 8, the T -matrix prescription of Sec. 2.5. In this case, since we
have elastic scattering, we have only two RSs which are straightforwardly interpreted as
the FRS and SRS. For details on the analytic continuation to the SRS as well as definition
of bound and resonant poles, and their couplings, we refer to Sec. 2.5 and subsec. 8.2.5.

We will follow the approach described in Sec. 8.2.5 in order to get information on the
compositeness of the bound states from the derivative of the meson loop function and the
residue at the pole position. The probability of finding the B̄p˚qK molecular component
in the bound state wave function is given by Eq. (8.11) particularized for the present
elastic case. We shall not extend the compositeness discussion to resonances, restricting
it to the case of bound states.

9.2.3 Finite volume
In the present case, the comparison with the LQCD results is similar to the one explained
in subsec. 8.2.6. To obtain the volume the energy levels in our scheme, we consider
the finite volume prescription for the T -matrix introduced in subsec. 2.5.1, and compare
the eigenenergies obtained with those reported in Ref. [58]. We use finite volume loop
functions, rGps, Lq [167, 169], introduced in Eq. (8.12), but adapting them to the case of
intermediate B̄p˚qK states considered here.

To better describe the energy levels reported in the LQCD simulation carried out in
Ref. [58], we use the masses and the energy-momentum dispersion relations given in that
work. In particular, we will employ in Eq. (8.12) a modified energy-momentum dispersion
relation for the B̄p˚q mesons,

ωp~q q Ñ ωlat
p~q q “ m1 `

~q 2

2m2
´
p~q 2q2

8m3
4
, (9.4)

where the parameters appearing in the above equation can be found in Table 1 of Ref. [58].
The lattice size and spacing in that simulation are 323 ˆ 64 and a “ 0.0907˘ 0.0013 fm,
respectively, while the pion mass is 156 ˘ 7 MeV. For the kaon, the ordinary relativistic
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Figure 9.1: LQCD energy levels for JP “ 0` (left) and JP “ 1` (right), as a function
of the box size L. We compare our predictions for the difference E ´ m̄ with the results
of Ref. [58], given also in Table 3 of that work. We have used m̄a “ 1.62897p43q, as in
Ref. [58]. We have evaluated energy levels ( rT ps, Lq presents poles at

?
s “ E for a given L,

when the lattice masses are employed) using both sets of parameters compiled in Table 9.1,
which are shown by dashed blue and solid red lines for sets (a) and (b), respectively. Black
lines stand for the first and second non-interacting B̄p˚qK levels, while the data points
show the lattice levels reported in Ref. [58]. The uncertainty bands in the predicted energy
levels mark 68% CLs obtained from a Monte Carlo simulation considering the parameter
distributions of Table 9.1.

dispersion relation is used with an unphysical mass of mlat
K a “ 0.2317 ˘ 0.0006 (mlat

K “

504˘ 7 MeV) [47]. Thus, the B̄p˚qK free energies are given by Efreep~q q “ ωlatp~q q`ωKp~q q
whereas ωKp~q q “ rpmlat

K q
2` ~q2s1{2. To compute the potentials (chiral+exchange) at finite

volume, we set the B̄p˚q mass to m1, introduced in the modified dispersion relation of
Eq. (9.4). Finally ~k 2, that appears in the Gaussian regulator needed to render rGps, Lq
finite is obtained from Eq. (A.3) using the lattice masses.

9.3 Results
We will fit our model to the levels 1,2,3 and 1,3,4 given in Table 3 of Ref. [58] for the 0` and
1` sectors, respectively.3 We will consider the energy-levels in lattice units. Hence, and to
properly take into account the uncertainty on this scale, we introduce it as an additional
best-fit parameter, ath, constrained by the central value and error quoted above and taken
from Ref. [58]. Thus, we minimize the following χ2,

χ2
“
ÿ

i

ˆ

pEaqlat
i ´ pEaqthi

∆ rpEaqlat
i s

˙2

`

ˆ

alat ´ ath

∆ ralats

˙2

. (9.5)

The sum runs over the six 0` and 1` energy-levels (given in lattice units) specified above.
We could instead have fitted directly to the energy levels in physical units, but in that
case, the errors on the levels inherited from the lattice spacing need to be treated as
correlated ones, since variations in the lattice spacing affect to all the energy levels in
the same manner. In addition to the use of correlated errors, one would have also to

3Note that the 1` level 2 is interpreted in [58] to be the jPq̄ “ 3
2
` state with JP “ 1`, which does not

couple to B˚K in S-wave in the heavy quark limit.
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consider that the lattice meson masses, appearing in the theoretical rT ps, Lq, will change
with a as well because of their conversion into physical units. The χ2 introduced in
Eq. (9.5) accounts for all these correlations. Indeed, the latter make the uncertainties
on pEaqlat

i to become the most relevant ones. Note that if these correlations induced by
the lattice spacing are not taken into account, one will end up with large and unrealistic
errors. On the other hand, one might treat mKa, pm1,2,4qa also as best-fit parameters,
supplementing appropriately the χ2. Results do not change significantly and for simplicity
we have fixed all these masses in lattice units to the central values reported in Ref. [58].
This little sensitivity can be expected since the errors on mKa and m1a, which determine
the threshold and the chiral potential, are much smaller than those on a. Indeed, the
largest uncertainty in the magnitude of these quantities is induced from the error on the
lattice spacing.

Besides the lattice spacing, the parameters of the model are the bare masses of the
CQM bs̄ 0` and 1` mesons, ˝

mbs̄, the LEC c that gives us the strength of the coupling
of the latter states with the two-meson B̄p˚qK channels, and the UV Gaussian regulator
Λ. We expect to get reasonable estimates for the bare masses from the predictions of
CQMs [26, 51, 52]. These kind of models find masses in the ranges 5800 ´ 5850 MeV
and 5840 ´ 5880 MeV for the JP “ 0` and JP “ 1` sectors, respectively. The B̄K
and B̄˚K thresholds are located approximately at 5775 MeV and 5820 MeV, respectively.
Thus, in principle, we expect the quark model states to be relatively close to, but above,
the respective B̄p˚qK thresholds, which would produce attractive B̄p˚qK interactions for
energies below the bare masses [341].

We will explore the ranges of bare masses mentioned above, and we will perform two
independent fits using ˝

mbs̄ values close to their respective lower and upper limits. To
maintain a consistent 0`´ 1` mass splitting, we will use the predictions of a widely used
non-relativistic CQM [343–345]. This quark model was already employed to study the
low-lying P -wave charmed-strange mesons [342]. In that reference, since the D˚s0 13P0
(n2S`1LJ) bare state was found significantly above the experimental level (2511 versus
2317.7 MeV), an additional one-loop correction to the OGE potential was introduced.
This extra term was motivated from the studies of Refs. [29,354], where a spin-dependent
term was added to the quark-antiquark potential affecting only mesons in the case of
unequal quark masses. Such correction is in general rather small, except for the 0` sector,
where a large mass shift was found (around 128 MeV in the case of the D˚s0). Hence, as
commented above, we will consider two sets of bare masses ˝

mbs̄. In the set (a), we will
use bare masses of 5851 MeV and 5883 MeV for the 0` and 1` states, respectively, as
deduced from the CQM of Refs. [343–345] without including any correction to the OGE
potential. For the second set, (b), we will fix the 0` and 1` bare masses to 5801 MeV and
5858 MeV, as obtained when the latter CQM is supplemented with the OGE one-loop
terms discussed in Ref. [29,354,365]. Since the LQCD simulation carried out in Ref. [58]
uses non-physical meson masses, the CQM bare masses have been corrected using the
difference between the experimental and the prediction of Ref. [58] for the spin-average
mass m̄ “ 1

4pmB̄s ` 3mB̄˚s
q.

For each set of bare masses, the values of the other two parameters, c and Λ, are
obtained from a simultaneous fit to the first three JP “ 0` and 1` energy levels reported
in the LQCD study of Ref. [58]. In Fig. 9.1, we present the predicted energy levels as
a function of the lattice size L, and the values of the fitted parameters are compiled in
Table 9.1. As can be seen, we find an excellent description of the LQCD levels of Ref. [58]
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in both JP sectors, despite the large deviations from the free levels. The LEC c is rather
insensitive to the used bare masses, taking a value about 0.75 with an error of around
6%. The central values of the UV regulator present however a mild dependence, and we
find Λ “ 730˘ 40 MeV for set (a), while for set (b) the fitted value is Λ “ 650˘ 30 MeV.
We should remind that the CQM bare masses depend on the renormalization scheme, in
particular on the UV regulator, or equivalently the UV regulator is expected to depend
on the bare masses. Nevertheless, set (a) and (b) UV regulators turn out to be almost
compatible within errors.

When the loop function is renormalized by a suitable subtraction, instead of using a
Gaussian regulator, the physical results showed in Table 9.1 and Fig. 9.1 do not apprecia-
bly change, besides some variation of the renormalization-scheme-dependent low energy
constant c. Thus, a similar good reproduction of the LQCD energy levels is achieved.
Note that the finite volume loop function, in both renormalization schemes, is related to
the Lüscher function [163, 164], as it is shown in Refs. [167, 169]. Hence, the continuous
volume dependent curves in Fig. 9.1 are essentially the Lüscher curves obtained from the
phase shift by solving

δpqq ` φpq̂q “ nπ (9.6)

with q̂ “ qL{2π and φpq̂q determined by the Lüscher function (see Eq. (6.13) of Ref. [164]).
Next, and once the parameters have been fixed, we search for poles in the FRS (bound

states) and SRS (resonances) of the isoscalar S-wave B̄p˚qK amplitudes for the infinite
volume case. Pole positions are also compiled in Table 9.1, together with the 0` and 1`
isoscalar scattering lengths and the probabilities of the molecular B̄p˚qK component in
the bound states. For both sets of parameters, and for both JP “ 0` and 1` sectors, we
find a bound state (FRS) and a resonance (SRS).

In all cases, the mass of the bound state is rather independent of the UV regulator, or
equivalently of the bare quark model mass, and it is located more than 100 MeV below
the corresponding bare pole, consequence of the strong attraction produced by the chiral
potential. This is a first hint of the importance of the meson loops in the dynamics of
the bound state, which can be also inferred from its large („ 50%) molecular component.
From the results of the Table 9.1, we predict masses of 5709˘ 8 MeV and 5755˘ 8 MeV
for the B̄˚s0 and B̄s1 states, respectively. These states are the heavy flavor partners of
the charmed-strange D˚s0p2317q and Ds1p2460q resonances, and are clear candidates for
future experimental searches. The masses obtained in this work are in excellent agreement
with the estimations given in Ref. [58], and mentioned in the introduction.4 They are also
quite compatible within errors with other HMχPT predictions, where the explicit coupling
(LEC c) of the two-meson channel and the bare quark model state is not considered5 [3,
37,42,54,55]. In all cases a similar binding energy around 60´70 MeV is obtained, which
favours a molecular interpretation of such states, where one would expect a pB̄s1 ´ B̄˚s0q

4Note that the uncertainties obtained here are smaller than those quoted in Ref. [58] because we go
beyond the effective range approximation and determine a potential (see the discussion in Ref. [169]).

5In these schemes, such effect is encoded either in the renormalization subtraction constants or in
higher order LECs, appearing at NLO in the HMχPT expansion. (Note that in the present work, we
obtain reasonable UV cutoff values „ 700 MeV, which do not hide large higher order contributions [215,
216].) Despite the bare quark model pole was located above, and relatively close to, the B̄p˚qK threshold,
we find the bound state significantly below ˝

mbs̄. Hence, the bare pole induces a mild energy dependence
in the vicinity of the physical bound states, which can be accounted for by means of local terms in the
potential [341]. The bare pole, however, should produce a relevant energy dependence in the amplitudes
above threshold and close to its position.
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mass splitting similar to the pB̄˚ ´ B̄q one. The latter is around 45 MeV, while in our
calculation we find pmB̄s1 ´mB̄˚s0

q „ 41 MeV for set (a) and „ 49 MeV for set (b), around
4 MeV below and above the pseudoscalar-vector mass splitting, respectively. This is a
clear indication of the non-canonical quark model nature of the B̄s1 and B̄˚s0 states. It is
interesting, though, to note that the molecular proportion in the 0` state („ 50%q is below
the EFT estimations for theD˚s0p2317q, predicted to be around 70% ofDp˚qK [44,205,245].

In Ref. [365] two-meson loops and CQM bare poles are also coupled. For the latter,
the values of the bare masses are the same as those used here. The B̄p˚qK interactions are
derived from the same CQM used to compute the bare states, instead of using HMχPT.
The 3P0 model is employed to couple both types of degrees of freedom, and the quark
model wave functions provide form-factors that regularize the meson loops. The 0` and
1` states reported in Ref. [365] are around 30´ 40 MeV less bound than those found here
and in the LQCD study of Ref. [58]. Presumably, this is because the B̄p˚qK interactions
derived in the CQM of Ref. [365] are weaker than those used here. Molecular probabilities
are reported in Ref. [365] to be around 30 ´ 40%, which are smaller than those found in
the present approach.

Regarding the isoscalar scattering lengths, we predict (combining the results of both
sets) a0 “ ´0.89 ˘ 0.07 fm for both JP “ 0` and 1` sectors, which compares well with
the results aB̄K0 “ ´0.85˘ 0.10 fm and aB̄˚K0 “ ´0.97˘ 0.16 fm, obtained in the analysis
carried out in the LQCD study of Ref. [58]. In the approach of Ref. [365], the 0` and
1` scattering lengths turn out to be „ ´1.18 fm and ´1.35 fm, respectively, which are
larger (in absolute value) than those found here and in Ref. [58]. This is expected, since
the bound states in Ref. [365] lie closer to the respective thresholds.

We now pay attention to the extra poles found in the SRS, located well above („
400-500 MeV) their respective thresholds. From the very beginning we should take these
results with some caution, since most likely they should be affected by sizeable NLO
and higher threshold-channels corrections. In other words, they are not as theoretically
robust as those concerning the lowest-lying B̄s1 and B̄˚s0 states. These resonances, likely,
are originated from the bare bs̄-quark-model poles that are dressed by the B̄p˚qK meson
loops. In that case, the bare pole has been highly renormalized, moving to significant
higher masses („ 6.2 ´ 6.3 GeV) and acquiring a significant B̄p˚qK width („ 70 ´ 80
MeV). We should also bear in mind that radial excitations of the CQM states or B̄p˚qK˚

two-meson loops, neither of them taken into account in this study, might lie in this region
of energies. Further theoretical and experimental studies will be helpful in shedding light
on the possible existence and properties of these resonant states.

9.4 Conclusions

We have adopted a chiral unitary approach, based on leading-order HMχPT B̄p˚qK in-
teractions, and for the very first time in this context, the two-meson channels have been
coupled to the corresponding CQM P -wave B̄s scalar and axial mesons using an effective
interaction consistent with HQSS. We have examined two different sets of masses for the
bare quark model poles, and in each case, successfully fitted the rest of parameters to
the recently reported LQCD isoscalar bs̄ 0` and 1` energy-levels [58]. Results turned
out to be rather independent of the bare masses, showing that the changes can be easily
re-absorbed by means of reasonable variations of the UV regulator.

We have focused on the scalar and axial B̄˚s0 and B̄s1 states, which form a HQSS
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jPq̄ “ 1{2` meson doublet, heavy-flavor partner of that in the charmed-strange sector
integrated by the D˚s0p2317q and Ds1p2460q resonances. We have searched for bound
states (poles in the FRS) of the isoscalar S-wave B̄p˚qK amplitudes and found masses of
5709 ˘ 8 MeV (0`q and 5755 ˘ 8 MeV (1`) for these states. Therefore, the B̄˚s0 and B̄s1
appear well below the B̄K and B̄˚K thresholds, being in this way the lowest-lying mesons
with these quantum numbers and stable through strong interactions. These states are
clear candidates for experimental search in the LHCb experiment, B´factories or future
high-luminosity proton-antiproton experiments.

We have also predicted the isoscalar elastic S-wave B̄K and B̄˚K scattering lengths
to be similar and approximately equal to ´0.89 ˘ 0.07 fm, in good agreement with the
findings of Ref. [58].

We have obtained sensible UV cutoff values „ 700 MeV, which do not hide large higher
order contributions. In addition, and within the renormalization scheme adopted in this
work, we have determined the dimensionless LEC c that controls the strength of the
coupling between the B̄p˚qK meson pairs and the P -wave bare quark model states. This
LEC, though it depends on the orbital angular momentum and radial quantum numbers
of the CQM state, is in principle independent of both the heavy-quark flavor and the light
SU(3) flavor structure of the vertex. Thus, up to ΛQCD{mQ corrections, it can for example
be also used to address the interplay between meson-loops and CQM degrees of freedom
in the case of the D˚s0p2317q and Ds1p2460q resonances. Indeed, we found in Chapter 8
values for this parameter in reasonable agreement with those found here in the bottom
sector. Moreover, the same LEC governs the interplay between two-meson and quark
model degrees of freedom in all isospin and strangeness channels. Next, we have looked
at the Weinberg compositeness condition. Thanks to this admixture between CQM and
two-meson degrees of freedom, we could realistically estimate the molecular component
(B̄p˚qK) of the B̄˚s0 and B̄s1, which turned out to be of the order of 50%. This is a clear
indication of the non-canonical quark model nature of these states.

Finally, we have further predicted the volume dependence of the isoscalar bs̄ 0` and
1` energy-levels, which could be useful for future LQCD simulations.

9.4. Conclusions 171





Chapter 10

The D˚s0p2317q in the decay
Bc Ñ DKJ{ψ

10.1 Introduction

In the present chapter, we shall study the DK invariant mass distribution in the decay
Bc Ñ J{ψDK, from which information on the internal structure of the D˚s0p2317q` state
will be obtained. Besides the weak decay of the Bc meson and hadronization of the
quark-antiquark pair to two mesons, the final state interaction is involved. In order
to describe the final state interaction, by which the D˚s0p2317q` state is generated, we
use the chiral unitary approach which makes use of the on-shell version of the factorized
Bethe-Salpeter equation which has successfully explained the existence of some resonances
(see [129,131,204,219,220,366–372]).

The chapter is organized as follows. In Section 10.2 we present the formalism to study
the decay of Bc Ñ J{ψDK and Bc Ñ J{ψD˚s0p2317q. The numerical results of the DK
invariant mass distribution are given in Section 10.3. Finally, in Sec. 10.3, we present a
brief conclusion. The results of this chapter are based on the findings of Ref. [2].

10.2 Formalism

In this work, we will discuss the decay mechanism of the Bc meson into J{ψDK and
also into J{ψD˚s0p2317q. In Refs. [373–377], the weak decay mechanisms of the B and Bs

mesons were studied. We can take many elements from those works, but there are also
some important differences. The works of [373,374] relied upon diagrams with a structure
as the one shown in the left panel of Fig. 10.1, which we have adapted to the present
problem. Essentially a d quark from the B0 meson is replaced now by a c quark in the
B`c case here. This mechanism is addressed as internal emission in the nomenclature of
Ref. [378, 379]. However we can also have a mechanism of external emission as depicted
in the right diagram in Fig. 10.1.

The right diagram of Fig. 10.1 is colored favored and dominates the transition, but in
both cases we have a primary J{ψcs̄ production assuming a cc̄ pair combining into J{ψ.
This is all that we need in the present case, since the matrix element for this transition
will be factorized and assumed to be constant in the small range of the KD invariant
mass that we need in our problem. The smoothness of the weak plus hadronization form
factors is supported by calculations [280] and phenomenology (see a detailed discussion
in [380]). The next step consists of the hadronization of the cs̄ pair into two mesons.
This is depicted in Fig. 10.2 and is implemented introducing an extra q̄q pair with the
quantum numbers of the vacuum, ūu` d̄d` s̄s. In a third step, the two mesons produced
in the second process may interact with themselves in coupled channels, which is shown
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Figure 10.1: Diagrams for the decay of B`c into J{ψ and the quark pair cs̄ with internal
(left) and external (right) W -emission [378].
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Figure 10.2: The hadronization of cs̄Ñ cs̄puū` dd̄` ss̄q.

in Fig. 10.3.
It should be noted that apart from the necessary bc transition in the weak process,

the other weak vertex is Vcs in both mechanisms. As mentioned before, we will include
the matrix elements for the weak plus hadronization processes into a constant factor that
we call Vp. The cs̄ then recombine with the qq̄ created from the vacuum producing two
mesons. In order to calculate it, we first consider the qq̄ matrix M

M “

¨

˚

˚

˚

˝

uū ud̄ us̄ uc̄

dū dd̄ ds̄ dc̄

sū sd̄ ss̄ sc̄

cū cd̄ cs̄ cc̄

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

u

d

s

c

˛

‹

‹

‹

‚

´

ū d̄ s̄ c̄
¯

, (10.1)

which has the property,

M ¨M “

¨

˚

˚

˚

˝

u

d

s

c

˛

‹

‹

‹

‚

´

ū d̄ s̄ c̄
¯

¨

˚

˚

˚

˝

u

d

s

c

˛

‹

‹

‹

‚

´

ū d̄ s̄ c̄
¯

“

¨

˚

˚

˚

˝

u

d

s

c

˛

‹

‹

‹

‚

´

ū d̄ s̄ c̄
¯

pūu` d̄d` s̄s` c̄cq

“ M ˆ pūu` d̄d` s̄s` c̄cq. (10.2)
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Figure 10.3: The diagrams of the decay B`c Ñ J{ψD`K0 at hadronic level. Note that
the intermediate PiP 1i loops involve the channels D`K0, D0K` and D`s η (i “ 1, 2, 3).

On the hadron level, the M matrix corresponds to a hadron qq̄ matrix (φ), which has
the form,

φ “

¨

˚

˚

˚

˚

˝

η?
3 `

π0
?

2 `
η1?

6 π` K` D̄0

π´ η?
3 ´

π0
?

2 `
η1?

6 K0 D´

K´ K̄0
?

2η1?
3 ´

η?
3 D´s

D0 D` D`s ηc

˛

‹

‹

‹

‹

‚

, (10.3)

where the standard η ´ η1 mixing is used [349]—see Eqs. (8.5).
Then, we get

pūu` d̄d` s̄s` c̄cqpcs̄q Ñ pφφq43 “ ηcD
`
s `D

0K`
`D`K0

´
1
?

3
ηD`s `

c

2
3D

`
s η

1.

(10.4)

In this work, we neglect the contribution of η1 and ηc because of their large mass compared
with the K and η masses.

10.2.1 Rescattering
As it is shown in Fig. 10.3, the two mesons produced from the pcs̄q (see Fig. 10.2)
may interact with themselves and the coupled channels. The amplitude of the B`c Ñ

J{ψD`K0 decay is

tpB`c Ñ J{ψD`K0
q “ Vp

˜

h1 `
ÿ

i

hiGiti1

¸

. (10.5)

Here i “ 1, 2, 3 label the channels D`K0, D0K` and D`s η respectively. In Eq. (10.5),
h1 “ h2 “ 1 and h3 “ ´

1?
3 . Gi is the loop function of two meson propagators, which is

calculated using dimensional regularization and renormalized by means of a subtraction
constant αpµq. The explicit expressions of the loop function can be found in Eq. (A.1). In
Eq. (10.5) tij is the scattering matrix element for the transition channel iÑ j, obtained
solving the on-shell BSE [130, 204]—see Eq. (2.86) and Sec. 2.5. The kernel potential,
V , is taken from the LO HMχPT Lagrangian (see Eq. (3.93)). As in Ch. 8, we take
into account the ideal η ´ η1 mixing (8.5). On the other hand, here we are interested in
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transitions involving the D`K0, D0K` and Dsη states, while in Ch. 8 the interaction
kernel amplitudes of Eq. (8.4) were obtained in terms of isospin states. In the particle
basis the kernel V is expressed as

V psq “ CLO
s´ u

4f 2

ˇ

ˇ

ˇ

ˇ

S-wave
,

(10.6)

where the S-wave projection of Eq. (8.6) is implicit, f „ 93 MeV is the pion decay constant
and the coefficients CLO read

CLO “

¨

˚

˝

´1 ´1 2?
3

´1 ´1 2?
3

2?
3

2?
3 0

˛

‹

‚

. (10.7)

Since the process depicted in Fig. 10.1 is a 0´ Ñ 1´0` transition, the angular mo-
mentum between the J{ψ and the quark pair pcs̄q is L “ 1 due to the total angular
momentum conservation. So Vp should have the form of

Vp “
?

3ApJ{ψ cos θ. (10.8)

Thus, we can get the expression of the K0D` invariant mass distribution of the decay,
dΓ{dMinv:

dΓ
dMinv

“
A2

p2πq3
1

4m2
Bc

p3
J{ψp̃DK

¯ÿÿ

ˇ

ˇ

ˇ

ˇ

tB`c ÑJ{ψD`K0

Vp

ˇ

ˇ

ˇ

ˇ

2

, (10.9)

where Minv is the invariant mass of the D`K0 system. In Eq. (10.9), the factor 1
3 which

comes from the integral of cos θ2 cancels the
?

32 in the definition of Vp of Eq. (10.8).
The value of A is chosen to normalize the invariant mass distribution and it will cancel
in the ratios that we shall construct. In Eq. (10.9) pJ{ψ is the momentum of the J{ψ in
the global CM frame and p̃DK is the kaon momentum in the D`K0 rest frame.

10.2.2 Coalescence production of the D˚
s0p2317q` resonance

In the former subsection we have studied the production of DK in the final state. Here
we study the production of the resonance D˚s0p2317q` under the assumption that it is
dynamically generated from the DK and ηDs channels. Diagrammatically, the reaction
proceeds as shown in Fig. 10.4.

The amplitude for the production of the resonance R (in this case the D˚s0p2317q`) is
given by

tpB`c Ñ J{ψRq “ Vp
ÿ

i

hiGigi

ˇ

ˇ

ˇ

ˇ

ˇ

pole

“
?

3ApJ{ψ cos θ
ÿ

i

hiGigi

ˇ

ˇ

ˇ

ˇ

ˇ

pole

, (10.10)

where the index i sums over K`D0, K0D`, ηDs, and gi is the coupling of the resonance
to the channel i (2.93). We remove the kinematic Vp factor from the decay amplitude
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Figure 10.4: Diagrammatic presentation of B`c Ñ J{ψR. One sums over all intermediate
mesons Pi and P 1i that generate the resonance (K`D0, K0D` and ηD`s ).

defining t̃pB`c Ñ J{ψRq “ tpB`c Ñ J{ψRq{Vp. Eqs. (10.10) and (10.5) are different,
but under the assumption that the resonance is dynamically generated by the channels
included in Eq. (10.5), the two expressions are related and are fixed, up to the common
factor Vp. The width for the production of the resonance R, irrelevant of which decay
channel it has, is given by

ΓpB`c Ñ J{ψRq “
A2

8π
1

m2
B`c

ˇ

ˇt̃pB`c Ñ J{ψD˚s0p2317q`q
ˇ

ˇ

2
p3
J{ψ

ˇ

ˇ

pole
.

(10.11)

It is then interesting to study the ratio [381] of the KD invariant mass distribution (10.9)
and the width of direct resonance production (10.11)

dΓ̃
dMinv

“ M2
R

pdΓ{dMinvq{p
3
J{ψp̃DK

ΓpB`c Ñ J{ψRq{ p3
J{ψ

ˇ

ˇ

ˇ

pole

“
M2

R

4π2

ˇ

ˇt̃pB`c Ñ J{ψD`K0q
ˇ

ˇ

2

ˇ

ˇt̃pB`c Ñ J{ψD˚s0p2317q`q
ˇ

ˇ

2

“
M2

R

4π2
|hD`K0 `

ř

hiGiti|
2

|
ř

hiGigi|2|pole
, (10.12)

where the factorM2
R is put in the formula for convenience in order to have a dimensionless

quantity. In this ratio the common factor Vp (or A) cancels and we obtain a magnitude
with no free parameters, tied to the nature of the D˚s0p2317q` as a dynamically generated
resonance.

10.3 Results
As mentioned above, the Gi function is calculated analytically by dimensional regular-
ization. In this work the parameter αpµq is fixed as ´1.852 and µ as 1 GeV, in order to
get the resonance D˚s0p2317q` from the DK and ηDs interaction as a bound state pole.
The very small width of this state comes from the decay into the isospin forbidden πDs
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Figure 10.5: (Left) Differential decay width for the reaction B`c Ñ J{ψD`K0. The solid
curve corresponds to pαpµq, µq “ p´1.852, 1 GeVq. The dash curve is the phase space. Note
that the two curves have been normalized in the range of Minv shown in the figure. (Right)
The plot of dΓ̃{dMinv defined in Eq. (10.12).

channel, which we do not consider since it has a negligible role in the generation of the
D˚s0p2317q` mass. We also calculate the couplings of the D˚s0p2317q` to the DK and the
Dsη channels, which can be extracted from the behavior of the T matrix near the pole
(see Eq. (2.93)). The values of the couplings that we get are gD`K0 “ gD0K` “ 7.1 GeV,
gD`s η “ ´6.5 GeV. This corresponds to a coupling ´

?
2 ˆ 7.1 “ ´10.1 GeV to the DK

I “ 0 channel ´ 1?
2pK

`D0`K0D`q. We see then that the D˚s0p2317q` resonance couples
to the DK channel more strongly.

Using the values of αpµq and µ mentioned above, we can get the differential decay
width for the reaction of B`c Ñ J{ψD`K0 (see left plot in Fig. 10.5). There the line
shape of the differential decay width and the phase space have been normalized to unity
over the range of the DK invariant mass in the figure, which have been done in the same
way as that in Ref. [377]. We clearly see that both curves have a different behaviour
near the threshold. Even if the phase space is relatively small, we observe a remarkable
enhancement in the KD invariant mass distribution. This enhancement has been also
observed experimentally, see for example in Ref. [243] the Bs decay into KD final states.
We present a new reaction where this feature is also predicted, but in our approach is due
to the dynamically generation of the D˚s0p2317q.

In the right panel of Fig. 10.5 we plot dΓ̃{dMinv of Eq. (10.12). We see a fall down of
the distribution as a function of the K`D0 invariant mass. This is a clear indication of the
presence of a resonance below threshold since we have divided the original invariant mass
distribution by the phase space. Hence, essentially we are plotting |tpB`c Ñ J{ψD`K0q|2,
which peaks at the mass of the D˚s0p2317q` and we are seeing the tail of the resonance.
In Ref. [2] we considered uncertainties tied to the possibility that the state D˚s0p2317q
contains some qq̄ component in addition to the KD and ηDs molecular channels. This
possibility was investigated in Ref. [245] when analyzing the lattice QCD spectra for KD
and related channels, including qq̄ components, and also has been thoroughly contem-
plated in Chapter 8. In Ref. [2] it was done by means of adding a Castillejo-Dalitz-Dyson
pole [364] to the kernel potential, as in Ref. [245]. We found that, in the energy regime
close to the K0D` threshold, the consideration of such contribution would lead to dif-
ferences in dΓ̃{dMinv ranging from 5 to 20% at most, with respect to those shown in the

178 10.3. Results



Chapter 10. The D˚
s0p2317q in the decay Bc Ñ DKJ{ψ

Figure 10.6: The event distribution for the decay Bc Ñ J{ψK`Dp˚q0 as a function of the
K`D0 invariant mass measured by LHCb [382]. These data were published after finishing
the results included in the present chapter, based on Ref. [2]. Unfortunately, we consider
that neither the precision nor the accumulated statistic are sufficient to extract conclusions
regarding the features discussed in the present chapter.

right plot of Fig. 10.5. This is a margin of uncertainty that we can assume, however, the
main features discussed above remain.

10.4 Conclusion
In this work we have studied the B`c decay into J{ψD`K0. The mechanism is: B`c decays
into J{ψ and the quark pair cs̄ via weak interaction; then the quark pair cs̄ hadronizes
into D`K0, D0K` or D`s η components which can interact among themselves generating
the D˚s0p2317q` resonance. In the scheme of the chiral unitary approach, we are able to
choose the proper parameters αpµq and µ appearing in the loop function by matching
the pole position of the D˚s0p2317q`. If αp 1 GeV q “ ´1.852, the couplings of DK and
Dsη channels are gD`K0 “ gD0K` “ 7.1 GeV and gD`s η “ ´6.5 GeV, respectively. Later
we have calculated the differential decay width of the reaction B`c Ñ J{ψD`K0. One
can appreciate that the shape of the distribution peaks closer to the DK threshold than
the phase space, indicating the coupling of DK to a resonance below threshold (the
D˚s0p2317q` in this case). We also evaluated the rate of production of the D˚s0p2317q`
resonance and then constructed the ratio of dΓ{dMinvpB

`
c Ñ J{ψD`K0q to the width

for D˚s0p2317q` production, where the unknown factor Vp of our theory cancels. The new
normalized distribution obtained is then a prediction of the theory, only tied to the fact
that the D˚s0p2317q` is dynamically generated from the DK and ηDs channels. As to
the feasibility of the reaction we think this is at reach in present facilities. Indeed in the
PDG [383] one finds half of the known decay channels of the B`c going to a J{ψ, one has
also decays into J{ψ and three pions, J{ψ plus two kaons and one pion, and also decays
into J{ψD`s and J{ψD˚`s . The study done here, showing how one can learn about the
nature of the D˚s0p2317q` from the measurements proposed, should serve as an incentive
to perform these experiments in the near future. Actually, by the time of writing this
dissertation there has been a measurement of this reaction by the LHCb collaboration in
Ref. [382], though, as can be seen from Fig. 10.6, without enough resolution to test low
energy enhancement predicted within our approach.
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Chapter 11

A study of the Zcp3900q state in
finite volume

11.1 Introduction
The present chapter is devoted to the analysis of the LQCD information on the Zcp3900q
resonance reported in Ref. [384], and it is based on [3]. For a brief introduction to this
exotic meson we refer to Sec. 1.2.2. Here, we shall explore the results for finite volumes of
a model based on a unitary HQSS D˚D̄ interaction, previously constrained in Ref. [385]
using experimental information. In this way, we will further test the predictions of the
approach by comparing with the LQCD results of Prelovsek et al of Ref. [384], in the
same spirit as previous research presented in Chapters 4, 8 and 9.

In Ref. [385], which constitutes the theoretical basis of the present manuscript, a J{ψπ–
D˚D̄ coupled-channels scheme was proposed to describe the observed peaks associated
to the Zcp3900q, which is assumed to have IpJPCq “ 1p1`´q quantum numbers.1 Within
this coupled channel scheme, it was possible to successfully describe simultaneously the
BESIII Jψπ [86] and D˚D̄ [90] invariant mass spectra, in which the Zcp3900q˘ structure
has been seen. Interestingly, two different fits with similar quality were able to reproduce
the data. In each of them, the origin of the Zcp3900q˘ was different:

1. In the first scenario, it corresponded to a resonance originated from a pole above
the D˚D̄ threshold.

2. Whereas in the second one the structure was produced by a virtual pole below the
threshold (see Ref. [385] for more details).

Hadron interactions are governed by the non-perturbative regime of QCD and, for
this reason, LQCD is an essential theoretical tool in hadron physics. In particular, one
of the aims of LQCD is to obtain the hadron spectrum from quarks and gluons and their
interactions (see e.g. Ref. [386] for a review focused on the light sector, and Refs. [387–390]
for results concerning the charmonium sector).

LQCD simulations devoted to find the Zcp3900q state are still scarce [384, 391–395].
Exploratory theoretical studies for hidden charm molecules have been performed in Refs.
[169,396], while actual LQCD simulations [384,391–394] find energy levels showing a weak
interaction in the Zcp3900q˘ quantum-numbers sector (either attractive or repulsive), and
no evidence is found for its existence. The work of Ref. [395] employs LQCD to obtain a
coupled-channel S-matrix, which shows an interaction dominated by off-diagonal terms,
and, according to Ref. [395], this does not support a usual resonance picture for the
Zcp3900q. This S-matrix contains a pole located well below threshold in an unphysical

1Through all this chapter, charge conjugation refers only to the neutral element of the Zcp3900q
isotriplet.
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Figure 11.1: The diagrams contributing to the Y p4260q Ñ DD̄˚π and Y p4260q Ñ J{ψππ
decay mechanisms.

RS, i.e., a virtual pole. It is worth to note that this possibility could be in agreement
with the second scenario advocated in Ref. [385], and mentioned above.

Our objective in the present work is to implement the coupled channel T -matrix—
fitted to data in Ref. [385]—in a finite volume and study its spectrum. Thus, we will be
able to compare the energy levels obtained with this finite volume T -matrix with those
obtained in LQCD simulations, in particular those reported in Ref. [384]. This chapter
is organized as follows. The formalism is presented in Sec. 11.2, while the T -matrix of
Ref. [385] is briefly discussed in Sec. 11.2.1, and its extension for a finite volume is outlined
in Sec. 11.2.2. Results are presented and discussed in Sec. 11.3, and the conclusions of
this work, together with a brief summary are given in Sec. 11.4.

11.2 Formalism

11.2.1 Infinite volume

We first briefly review the model of Ref. [385] (where the reader is referred for more
details) that we are going to employ here. There, the Y p4260q decays to DD̄˚π and
J{ψππ are studied with a model shown diagrammatically in Fig. 11.1, taken from this
reference. Final state interactions among the outgoing DD̄˚ and J{ψπ produce the peaks
observed by the BESIII collaboration, which are associated to the Zcp3900q state. The
two channels involved in the 1p1`q T -matrix are denoted as 1 ” J{ψπ and 2 ” DD̄˚. The
authors of Ref. [385] solve the on-shell BSE (2.86) using as input kernel potential (V ) the
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following matrix elements in the coupled-channel space:

Vij “ 4?mi,1mi,2mj,1mj,2 Cij e
´k2

i {Λ
2
i e´k

2
j {Λ

2
j . (11.1)

with mi,1 and mi,2 the masses of the particles of the ith channel. Besides, k2
i is the relative

three-momenta squared in the c.m. frame, implicitly defined in each channel through the
relations

E “ ωψpk1q ` ωπpk1q, (11.2)
E “ ωD˚D̄pk2q , (11.3)

where,

ωψpqq “
b

m2
J{ψ ` q

2 , (11.4)

ωπpqq “
a

m2
π ` q

2 , (11.5)

ωD˚D̄pqq “ mD `mD˚ `
mD `mD˚

2mDmD˚
q2 . (11.6)

with q ” |~q |. The Gaussian form factors e´k2
i {Λ

2
i are introduced to regularize the BSE,

and thus, for each channel, an UV cut-off Λi is introduced. In Ref. [385] Λ1 “ 1.5 GeV
and two values for Λ2 “ 0.5 and 1 GeV [397, 398] were used. The Cij matrix stands for
the S-wave interaction in the coupled-channels space, and it is given by [385]:

C “

«

0 rC
rC C22 pEq

ff

. (11.7)

In Eq. (11.7) the J{ψπ Ñ J{ψπ interaction is neglected, C11 “ 0, the inelastic transition is
approximated by a constant, rC, while the D˚D̄ Ñ D˚D̄ potential C22pEq is parametrized
as:

C22pEq “ C1Z ` b pE ´mD ´mD˚q . (11.8)

In a momentum expansion, the lowest order contact potential for this elastic transition
would be simply a constant, C22 ” C1Z . However, it is easy to prove that two coupled
channels with contact potentials cannot generate a resonance above threshold. Thus and
for the sake of generality, the model of Ref. [385] allows for an energy dependence in
Eq. (11.8), driven by the b parameter. The diagonal matrix elements of the loop matrix
G “ diagpG1, G2q (2.87) associated to J{ψπ and D˚D̄ channels are given by the following
relativistic and nonrelativistic loop functions, respectively, regularized with a Gaussian
cutoff (A.2),

G11pEq “

ż

R3

d3q

p2πq3
ωψpqq ` ωπpqq

2ωψpqqωπpqq
e´2pq2´k2

1q{Λ2
1

E2 ´ pωψpqq ` ωπpqqq
2
` iε

, (11.9)

G22pEq “
1

4mDmD˚

ż

R3

d3q

p2πq3
e´2pq2´k2

2q{Λ2
2

E ´ ωDD̄˚pqq ` iε
. (11.10)

These loop functions account for the right-hand cut of the T -matrix, that satisfies in
this way the optical theorem. The D˚D̄ channel loop function G22 is computed in the
non-relativistic approximation.
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Resonances, bound states or virtual states are found as poles in one or more of the
different RSs of the amplitude, which are reached by analytical continuation of the loop
functions [Eqs. (11.9) and (11.10)] that enter in the evaluation of the T -matrix [Eq. (2.86)].
As discussed in Sec. 2.5, the different RSs pξ1, ξ2q are defined by the following continua-
tions (2.89):

G11pEq Ñ G11pEq ` ξ1i
k1pEq

4πE , (11.11)

G22pEq Ñ G22pEq ` ξ2i
k2pEq

4πpmD `mD˚q
, (11.12)

where ξ1,2 take the values 0 or 1. The physical RS is thus denoted by p0, 0q, as usual.
The free parameters in the interaction matrix C ( rC, C1Z and b) were fitted in Ref. [385]

to the experimental J{ψπ´ and D`D˚´ invariant mass distributions in the Y p4260q Ñ
J{ψππ and Y p4260q Ñ DD̄˚π decays [86,90]. The fitted parameters are compiled here in
Table 11.1, where we can see the two different scenarios investigated in Ref. [385]. In the
first one, b , 0, the Zc appears as a D˚D̄ resonance, i.e., a pole above the D˚D̄ threshold
in the p1, 1q RS, connected with the physical one above this threshold. In the second one,
where b “ 0, a pole appeared below the DD̄˚ threshold in the (0, 1) RS, which gives rise
to the Zcp3900q structure, peaking exactly at the D˚D̄ threshold in this case [385]. As
mentioned, the pole is placed below the DD̄˚ threshold, but it is above the J{ψπ one, so
it has an small imaginary part (about 8 MeV). We still regard it as a virtual pole, since,
if the J{ψπ channel is switched off (by setting the DD̄˚ Ñ J{ψπ transition potential to
zero, rC “ 0), it moves to the real axis in the unphysical RS of the DD̄˚ elastic amplitude,
T22 (see also Ref. [399]). In both scenarios, b , 0 and b “ 0, only one pole appears, and
it does in only one RS.

11.2.2 Finite volume
In this section, the coupled channel T -matrix described above is studied in a finite volume.
Following the approach introduced in Sec. 2.5.1 the integrals in Eqs. (11.9) and (11.10)
will be replaced by sums over all the possible discrete values of ~q (~q “ 2π

L
~n, ~n P Z3):

rG11pEq “
1
L3

ÿ

~n

ωψpqq ` ωπpqq

2ωψpqqωπpqq
e´2pq2´k2

1q{Λ2
1

E2 ´ pωψpqq ` ωπpqqq
2 , (11.13)

rG22pEq “
1

4 pmDmD˚q

1
L3

ÿ

~n

e´2pq2´k2
2q{Λ2

2

E ´ ωDD̄˚pqq
, (11.14)

(see Ref. [169] for further details). The T -matrix in a finite volume, rT , is then obtained as
illustrated in Eq. (2.97), using the rG matrix elements given by Eqs. (11.13) and (11.14).
The discrete energy levels in the finite box are determined by the poles of the rT -matrix.
As already discussed in Sec. 2.5.1, if the interaction is switched off, V Ñ 0, the free (or
non-interacting) energy levels are identified with the poles of the rGii functions, that in
this particular case read,

E
p~n 2q
J{ψπ “ ωψpqLnq ` ωπpqLnq , (11.15)

E
p~n 2q

D˚D̄
“ ωDD̄˚pqLnq , (11.16)
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Table 11.2: Lattice parameters taken from Refs. [47, 384], and employed in this work.

Lengths (fm)
a 0.1239p13q

L “ 16a 1.982p21q

Masses (lattice units)
amπ 0.1673p16q
amJ{ψ 1.54171p43q
amηc 1.47392p31q
amD,1 0.9801p10q
amD,2 1.107p12q
amD,4 1.107p27q
amD˚,1 1.0629p13q
amD˚,2 1.267p21q
amD˚,4 1.325p68q

where we use the shorthand qL “ 2π{L, and n “
?
~n 2.

Our purpose is to make contact with the results reported in the LQCD simulation of
Ref. [384], and hence we will employ the masses and the energy-momentum dispersion
relations used in that work. For the J{ψπ channel the dispersion relation in Eq. (11.2) is
still appropriate, but for the case of the D˚D̄ channel, in Eqs. (11.3) and (11.6), ωDD̄˚pqq
must be replaced by [47,384]:

ωlat
DD̄˚pqq “ mD,1 `mD˚,1 `

mD,2 `mD˚,2

2mD,2mD˚,2
q2
´
m3
D,4 `m

3
D˚,4

8m3
D,4m

3
D˚,4

q4 . (11.17)

This lattice energy of the D˚D̄ pair suffers from discretization errors and it must be
used in Eq. (11.14). The non-interacting energy levels in Eq. (11.16) should be also
modified accordingly. Notice that, because of the factor e´q2{Λ2 , the sum in Eq. (11.14)
is exponentially suppressed in ~n 2. For the range of energies considered in this work, it
is sufficient to add terms up to ~n 2 “ 6.2 Finally, the discrete, interacting energy levels
reported in Ref. [384] are actually the result of applying the following shift:

E Ñ E˚ “ E ´mlat
s.a. `m

exp
s.a. , (11.18)

where the spin-average mass ms.a. is given by ms.a. “
1
4pmηc ` 3mJ{ψq. For this reason, we

will also present our energy levels shifted as in Eq. (11.18). The parameters involved in
our calculations, taken from Refs. [47,384], are collected in Table 11.2. In particular, one
has mπ “ 266˘ 4 MeV and L “ 16 a “ 1.98˘ 0.02 fm, being a the lattice spacing.

11.2.3 Further comments
With all the ingredients presented in Sec. 11.2.2, we can compare our predictions for the
energy levels in a box with those reported in Ref. [384]. But before presenting our results

2We have checked that the numerical differences are negligible if larger values, say ~n 2 “ 8, are used.
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we would like to discuss some technical details concerning two differences that could affect
the comparison.

First, we would like to note that the LQCD simulation in Ref. [384] includes the
J{ψπ and D˚D̄ channels that are present in our T -matrix analysis, but it also includes
other channels, like ηcρ or D˚D̄˚, the thresholds of which are located 120 MeV below and
140 MeV above the DD̄˚ threshold, respectively. However, according to Ref. [385], it is
sufficient to include the J{ψπ and D˚D̄ channels to achieve a good reproduction of the
experimental information concerning the Zcp3900q. For this reason, we expect that, in a
first approximation, these other channels could be safely neglected in the calculations. It
must be stated that there are also three-meson channels with thresholds below the D˚D̄
one, like ηcππ („ 3260 MeV) or J{ψππ („ 3370 MeV) among others, and also above the
D˚D̄ threshold, such as D˚D̄π („ 4015 MeV), which could give rise to energy levels in
the region we are exploring. These channels are neither explicitly taken into account in
Ref. [384] nor in the present approach.

Next, we would like to briefly mention the mπ dependence of our predictions and of
LQCD simulations. In general, the properties of resonances vary, to a larger or lesser
extent, with the quark masses. LQCD simulations are usually performed with quark
masses different from the physical ones, and hence the resonance parameters extracted
from them can also be different from the experimental ones.3 From a theoretical point of
view, the pion mass dependence (in general, the quark mass dependence) will manifest
itself both in the kinematics of the processes and in the dynamics of the interactions.
In our particular case, there could be a pion mass dependence in the parameters of the
potential, Eq. (11.7). Nonetheless, the LQCD simulation of Ref. [384] is performed for a
relatively low pion mass, mπ “ 266˘4 MeV, and we thus expect the eventual dependence
to be mild, so we have ignored it. Furthermore, we are going to compare several sets of
these parameters (presented in Table 11.1), which somewhat compensates this effect.

11.3 Results and discussion

In Fig. 11.2, we show the L dependence of some energy levels close to the D˚D̄ threshold.
They have been computed from the poles of the finite volume rT -matrix, Eq. (2.97),
by using the parameters of Table 11.1 for Λ2 “ 1 GeV, and the lattice setup given in
Table 11.2. The levels obtained in the Zcp3900q˘ resonance (virtual) scenario, calculated
using the entries of the first (third) row of Table 11.1, are displayed in the left (right) panel.
The blue dashed lines stand for the J{ψπ–D˚D̄ coupled-channel-analysis results, and the
red solid lines show the energy levels obtained when the inelastic J{ψπ–D˚D̄ transition
is neglected (C̃ “ 0). This latter case corresponds to consider a single, elastic channel

3As an example, let us consider the works of Refs. [400, 401], where LQCD simulations concerning
the light sector are performed for pion and kaon masses mπ “ 391 MeV and mK “ 549 MeV. Although
the spectrum found there cannot be easily compared with the physical (experimental) one because of
the large masses used, qualitative comparisons can still be made, which are in good agreement with the
observed spectrum or with theoretical expectations. In particular, in Ref. [401] the ηπ, KK̄ interaction
is studied and a cusp behaviour in the ηπ elastic amplitude is traced back to the a0p980q resonance. In
Ref. [400], where the ηK, πK interactions are considered, resonances are found alongside with a virtual
state and a bound state. The virtual state in the sector JP “ 0` is expected to evolve to a resonance
with decreasing quark masses, and may thus be identified with the κ resonance. This is in agreement
with the theoretically expected behaviour for the κ resonance [402], and also for the σ [134, 207], the
I “ 0 member of the octet.
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Figure 11.2: Volume dependence of some energy levels located close to theD˚D̄ threshold,
and obtained when the Zc is described as a resonance (left) or as a virtual state (right) in
the LÑ8 limit. The blue dashed lines have been obtained from the J{ψπ–D˚D̄ coupled
channel analysis, and the red solid lines show the single elastic channel (D˚D̄) case, in both
cases Λ2 has been fixed to 1 GeV. The error bands are obtained from the uncertainties of
the parameters introduced in the theoretical model of Ref. [385] (Table 11.1), adding in
quadratures the statistical and systematic errors. The green dashed (dotted-dashed) lines
are the free D˚D̄ (J{ψπ) energy levels Epl q

D˚D̄
(Epl qJ{ψπ).
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Figure 11.3: Same as in Fig. 11.2, but for the case Λ2 “ 0.5 GeV.

(D˚D̄). The error bands account for the uncertainties on the energy levels inherited from
the errors in the parameters of Ref. [385], quoted in Table 11.1 (statistical and systematic
errors are added in quadrature for the calculations). The green dashed (dotted-dashed)
lines stand for the non-interacting D˚D̄ (J{ψπ) energy levels. In Fig. 11.3, the same
results are shown but for the case Λ2 “ 0.5 GeV. The qualitative L behaviour of both
Figs. 11.2 and 11.3 is similar, so we discuss first Fig. 11.2 and, later on, the specific
differences between them will be outlined.

For both resonant and virtual scenarios, there is always an energy level very close
to a free energy of the J{ψπ state, Epl qJ{ψπ, which reveals that the interaction driven by
this meson pair is weak. Furthermore, the energy levels for the coupled–channel rT -
matrix basically follow those obtained within the elastic D˚D̄ approximation, except in
the neighbourhood of the J{ψπ free energies. This also corroborates that the role of the
J{ψπ is not essential.

Let us pay attention to the levels placed in the vicinity of the D˚D̄ threshold. For
simplicity, we first look at the single elastic channel case. There appears always a state
just below threshold, as it should occur since we are putting an attractive interaction in
a finite box. As the size of the box increases, and since there is no bound state in the
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infinite volume limit (physical case), this level approaches to threshold.4 When the J{ψπ
channel is switched on, the L´behaviour of this level will be modified, specially when it
is close to a discrete J{ψπ free energy. Note that the slopes of the J{ψπ free levels, in the
range of energies considered here, are larger (in absolute value) than those of the DD̄˚
ones, because the threshold of the J{ψπ channel is far from the region studied.

From the above discussion, one realizes that the next coupled channel energy level,
located between the two D˚D̄ free ones (E p0q

D˚D̄
and E

p1q
D˚D̄

), could be more convenient
to extract details of the Zcp3900q˘ dynamics. Indeed, in the resonance scenario, this
second energy level is very shifted downwards with respect to E p1q

D˚D̄
, since it is attracted

towards the Zc resonance energy.5 In this context, it should be noted that the presence
of Zcp3900q˘ does not induce the appearance of an additional energy level, but a sizeable
shift of the energy levels with respect to the non-interacting ones. Therefore, even if no
extra energy level appears, it would not be possible to completely discard the existence of a
physical state (resonance). The energy shift, however, can be quite large and, only in this
sense, one might speak of the appearance of an additional energy level. The correction of
the second energy level in the virtual state scenario is much less pronounced. We should
note here that the elastic phase shift computed with the T -matrix in Ref. [385] does
not follow the pattern of a standard BW distribution associated to a narrow resonance.
Indeed, the phase shift does not change quickly from 0 to π in the vicinity of the Zcp3900q
mass, and actually it does not even reach π{2. This is mostly due to a sizeable background
in the amplitude.

We now compare the cases Λ2 “ 1 GeV (Fig. 11.2) and Λ2 “ 0.5 GeV (Fig. 11.3). For
Λ2 “ 0.5 GeV, the relevant (second) energy level is more shifted with respect to Ep1q

D˚D̄

in the resonance scenario (Fig. 11.3, left) than in the virtual scenario (Fig. 11.3, right).
This is the same behaviour already discussed for Λ2 “ 1 GeV. However, the shift for
the resonance scenario is smaller in the Λ2 “ 0.5 GeV case (Fig. 11.3, left) than in the
Λ2 “ 1 GeV one (Fig. 11.2, left). This is due to the fact that the Zcp3900q˘ is closer to
the threshold and the coupling to D˚D̄ is smaller for the Λ2 “ 0.5 GeV case. Another
important difference between the Λ2 “ 1 GeV and Λ2 “ 0.5 GeV results is that the error
band of the relevant energy level is smaller when the lighter cutoff is used. This is due to
the different relative errors in both cases, and the fact that for Λ2 “ 0.5 GeV, the relevant
level is closer to the Ep1q

D˚D̄
free energy than in the Λ2 “ 1 GeV case.

After having explored the volume dependence of the energy levels predicted with our
rT -matrix and scrutinized its physical meaning, we can now compare our results with
those reported in Ref. [384]. The energy levels in the latter work are obtained from a
single volume simulation, L “ 1.98 ˘ 0.02 fm, and are shown in Fig. 11.4 with black
squares. In the figure, we also show the results obtained in this work for L “ 2 fm,
for both the resonance (filled circles) and virtual state (empty circles) scenarios for the
Zcp3900q. Besides, the energy levels calculated with Λ2 “ 1 GeV and Λ2 “ 0.5 GeV
are represented in blue and green, respectively. We provide two different error bars for
our results, considering only the uncertainties of the parameters entering in the T -matrix
(Table 11.1), or additionally taking into account the errors of the lattice parameters
(Table 11.2). We clearly see three distinct regions, the lowest energies are very close to

4This is also discussed in more detail in Ref. [169].
5For physical pions (mπ „ 140 MeV), the Zc resonance mass, ignoring errors, is 3894 MeV (3886 MeV)

for Λ2 “ 1 GeV (0.5 GeV), as seen from Table 11.1. For mπ “ 266 MeV as used in Ref. [384], and taking
into account the shift in Eq. (11.18), one might estimate that mass to be around 3912 MeV (3902 MeV).
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Figure 11.4: Comparison of the energy levels of Ref. [384], shown with black squares,
with our results for L » 2 fm. Full (empty) circles stand for the energy levels obtained in
the resonance (virtual state) scenario for the Zcp3900q state. On the other hand, the energy
levels for the Λ2 “ 1 GeV (0.5 GeV) case are shown by blue (green) circles. The energy
levels calculated in this work are displayed with two types of error bars: the smaller ones
have been obtained considering only the errors of the parameters entering in the T -matrix
(Table 11.1), whereas the larger ones additionally take into account the errors of the lattice
parameters (Table 11.2).

the DD̄˚ threshold (Ep0q
D˚D̄

) and to the first J{ψπ free energy level (Ep1qJ{ψπ). These free
energies are shown in Fig. 11.4 with red solid horizontal lines. As expected, the two
lowest lattice levels agree well with our results for both cutoffs and the two Zcp3900q
state interpretations examined in this work. The higher energy levels are the relevant
ones, and, as already mentioned, our results are significantly shifted to lower energies
with respect to Ep1q

D˚D̄
for the resonant scenario, while this shift is much smaller for the

virtual state one. In general, the lattice results are in very good agreement with the
virtual state scenario level for both Λ2 “ 0.5 GeV and Λ2 “ 1 GeV cases, whereas in the
resonance scenario the agreement is also very good for Λ2 “ 0.5 GeV, and it is not so
good for Λ2 “ 1 GeV. However, in the latter case, we find Eth “ 4000`24

´13 MeV, while the
lattice energy is Elat “ 4070 ˘ 30 MeV [384], and hence this non-compatibility is small,
the difference being Elat´Eth “ 70˘40 MeV. The comparison of our results with those of
Ref. [384] support the conclusions given in the latter work: from the energy levels found
in that LQCD simulation one cannot deduce the existence of a resonance (a truly physical
state, instead of a virtual state), namely Zcp3900q. But also from this comparison, putting
this conclusion in the other way around, one cannot discard its existence either.

Finally, as can be seen in Fig. 11.4, a comparison of the relevant energy level obtained
in the resonance scenario for Λ2 “ 0.5 GeV (green filled circle) with that obtained in
the virtual scenario for Λ2 “ 1 GeV (blue empty circle) shows that, within theoretical
uncertainties (the smallest error bars), both cases are indistinguishable. This fact can
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Figure 11.5: Comparison of the relevant energy level for the Λ2 “ 1 GeV virtual state
(solid purple lines) and the Λ2 “ 0.5 GeV resonance scenarios (dashed blue lines) around
L » 2 fm. The green dashed and dashed-dotted lines represent Ep1q

D˚D̄
and E

p2q
J{ψπ non-

interacting energies, respectively.

already be seen by comparing the left panel of Fig. 11.3 and the right panel of Fig. 11.2
around L » 2 fm. These energy levels are shown together in Fig. 11.5. It can be seen
that, although these two scenarios cannot be distinguished at L » 2 fm (the volume
used in Ref. [384]), they lead to appreciably different energies already at L » 2.5 fm.
This means that one cannot elucidate the nature of this intriguing Zcp3900q state with
LQCD simulations performed in a single volume. Rather, it would be useful to perform
simulations at different values of the box size, to properly study the volume dependence
of the energy levels. Of course, as discussed in Ref. [384], this would bring in a technical
problem –the appearance of more J{ψπ free energy levels in the energy region of interest,6
as can be seen in Fig. 11.5 (Ep2qJ{ψπ). Notwithstanding these difficulties, our work should
stimulate this kind of studies.

It must be also stated that there are certainly other ways to perform LQCD simulations
to gain further insight on the nature of the Zcp3900q that do not require the use of several
volumes. One can perform, for example, simulations in a single volume but with the
two-meson systems moving with several non-zero momentum [403–406] (examples of such
type of simulations can be found e.g. in Refs. [400,401,407]). Results of such approaches
could not be directly compared, however, with our results presented in Sec. 11.3, where
we have focused on the volume dependence of the discrete spectrum obtained in LQCD
calculations. Although beyond the scope of this work, we would like to mention that it is
also possible to make predictions from unitary effective field theories for such simulations
[408].

11.4 Summary

With the aim of shedding light into the nature of the Zcp3900q state, we have implemented
the J{ψπ, D˚D̄ coupled channel T -matrix of Ref. [385] in a finite volume, and we have
compared our predictions with the results obtained in the LQCD simulation of Ref. [384].
The model of Ref. [385] provides a similar good description of the experimental informa-

6It should be noted that recent analysis of LQCD simulations (e.g. Refs. [400,401]) are able to obtain
detailed spectra involving a large number of energy levels, overcoming this difficulty.
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tion concerning the Zcp3900q structure in two different scenarios. In the first one, the
Zcp3900q structure is due to a resonance originating from the D˚D̄ interaction, while in
the second one it is produced by the existence of a virtual state. We have studied the
dependence of the energy levels on the size of the finite box for both scenarios. For the
volume used in Ref. [384], our results compare well with the energy levels obtained in the
LQCD simulation of Ref. [384]. However, the agreement is similar in both scenarios (res-
onant and virtual) and hence it is not possible to privilege one over the other. Therefore
and in order to clarify the nature of the Zcp3900q state, we suggest performing further
LQCD simulations at different volumes to study the volume dependence of the energy
levels.
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Chapter 12

The ρpωqB˚pBq interaction and
states of J “ 0, 1, 2

12.1 Introduction

Chiral symmetry, reflecting the QCD dynamics at low energies, has played a crucial role
in the description of the hadron interactions. Originally developed for the interaction
of pseudoscalar mesons [178] and of the meson nucleon system [409, 410], the need to
incorporate vector mesons into the framework gave rise to the local hidden gauge approach
[202, 411, 412], which incorporates the information of the chiral Lagrangians of [178] and
extends it to accommodate the vector interaction with pseudoscalars and with themselves.
Another important step to understand the dynamics of hadrons at low and intermediate
energies was given by incorporating elements of non-perturbative physics, restoring two
body unitarity in coupled channels, which gave rise to the chiral unitary approach, that
has been instrumental in explaining many properties of hadronic resonances, mesonic
[130,132,153–155] and baryonic [128,131,133,204,220,361,366,413–417]. Concerning the
interaction of vector mesons in this unitary approach, the first work was done in [368],
where surprisingly the f2p1270q and f0p1370q resonances appeared as a consequence of
the interaction of ρ mesons from the solution of the BSE equation with the potential
generated from the LHG Lagrangians [202,411,412]. The generalization to SU(3) of that
work was done in [369] and further resonances came from this approach, the f 12p1525q
and f0p1710q among others. Most of these findings were confirmed in the SU(6) spin-
flavor symmetry scheme followed by [211]. The step to incorporate charm in the LHG
approach of Refs. [368, 369] was given in [219], and the interaction of ρ, ω and D˚ was
studied extrapolating to the charm sector the LHG approach. Three D states with spin
J “ 0, 1, 2 were obtained, the second one identified with the D˚p2640q and the last one
with the D˚2 p2460q. The first state, with J “ 0, was predicted at 2600 MeV with a width
of about 100 MeV. This state is also in agreement with the Dp2600q, with a similar width,
reported after the theoretical work in [418]. The properties of these resonances are well
described by the theoretical approach.

The success in the predictions of this theoretical framework in the light and the charm
sectors suggests to give the step to the bottom sector and make predictions in this chap-
ter. The extension is straightforward, because the interaction in the local hidden gauge
approach is provided by the exchange of vector mesons. The exchange of light vectors
is identical to the case of the ρD˚ interaction, since the c or b quarks act as spectators.
In the exchange of heavy vectors, the form and the coefficients are also the same, since
the B̄ meson can be obtained from the D simply replacing the c quark by the b quark.
However, instead of exchanging a D˚ in the sub-dominant terms, one exchanges now a
B˚ meson. These terms are anyway sub-dominant. Hence, it is not surprising that the
predictions that we obtain in this work in the bottom sector are very similar to those
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obtained in [219] in the charm sector.
We shall also discuss some implications derived from HQSS, which we show is satisfied

by the dominant terms of the interaction, and then discuss the relevance of the sub-
dominant HQSS breaking terms. We make predictions for three states from the ρ{ωB˚
interaction and compare with available experimental states. As we shall see, the role
played by the ω meson is minor and it is not as important as that of the ρ meson.

In a similar way, we also deal with the interaction of ρB in S-wave, which gives rise
to a state of J “ 1 which we can identify with a state already existing. This interaction
follows also from the LHG approach, although equivalent chiral Lagrangians have been
used in the light sector [211, 223, 419] and in the D sector [80, 355]. The contents of this
chapter are based on the results of Ref. [1]

12.2 Formalism
We are going to use the LHG approach where the interaction is given mainly by the
exchange of vector mesons. We follow closely the approach of [219] and with minimal
changes we can obtain most of the equations.

12.2.1 Vector-vector interaction
We take the vector-vector interaction from [202] as

LIII “ ´
1
4 xVµνV

µν
y . (12.1)

where the symbol xy represents the trace in SU(4) flavor space (we consider u, d, s and b
quarks), with

Vµν “ BµVν ´ BνVµ ´ igrVµ, Vνs (12.2)

and

Vµ “

¨

˚

˚

˚

˚

˝

ρ0
?

2 `
ω?

2 ρ` K˚` B˚`

ρ´ ´
ρ0
?

2 `
ω?

2 K˚0 B˚0

K˚´ K̄˚0 φ B˚0
s

B˚´ B̄˚0 B̄˚0
s Υ

˛

‹

‹

‹

‹

‚

µ

(12.3)

standing for the vector representation of the different qq̄ pairs, and the coupling g is given
by

g “
mV

2f (12.4)

with the pion decay constant f » 93 MeV, and mV » 770 MeV. One may wonder why
still the value of g in SU(3) is used in the heavy sector. We give a justification at the end
of section 12.3 when we discuss the implications of HQSS for the B˚Bπ vertex.

The LHG Lagrangians also contains a four vector contact term

LpcqIII “
g2

2 xVµVνV
µV ν

´ VνVµV
µV ν

y, (12.5)

which in the ρ{ωB˚ channel gives rise to the term depicted in Fig. 12.1(a).
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Figure 12.1: The model for the ρ{ωB˚ interaction.

From Eq. (12.1) we also get a three vector interaction term

L3V
III “ ig xpV µ

BνVµ ´ BνVµV
µ
qV ν

y . (12.6)

This latter Lagrangian gives rise to a V V interaction term through the exchange of a
virtual vector meson, as depicted in Figs. 12.1(b) and 12.1(c). As in [219] we also assume
that the three momenta of the particles are small compared to the vector masses. This
helps to simplify the formalism.

We consider the ρ{ωB˚ states

|ρB˚; I “ 1{2, I3 “ 1{2y “ ´
c

2
3
ˇ

ˇρ`B˚0D
´

c

1
3
ˇ

ˇρ0B˚`
D

,

|ρB˚; I “ 3{2, I3 “ 3{2y “ ´
ˇ

ˇρ`B˚`
D

,

|ωB˚; I “ 1{2, I3 “ 1{2y “
ˇ

ˇωB˚`
D

. (12.7)

Where the isospin doublets are pK˚`, K˚0q, pK̄˚0,´K˚´q, pB˚`, B˚0q, pB̄˚0,´B˚´q and
the rho triplet is p´ρ`, ρ0, ρ´q.

The contact terms are all of the type

´it
pcq
ρB˚ÑρB˚ “ ´ig

2
pαεp1qµ εp2qν εp3qνεp4qµ

` βεp1qµ εp2qµεp3qνεp4qν

` γεp1qν εp2qµ εp3qνεp4qµq, (12.8)

with εµ the polarization vectors of the vector mesons in the order 1, 2, 3, 4, where these
indices are used in the reaction 1` 2 Ñ 3` 4 (ρB˚ Ñ ρB˚). Note that we are using real
polarization vectors.

Analogously, the terms associated to vector exchange of the type of Fig. 12.1(b) are
particularly easy, since, neglecting the external three momenta, these terms are of the
type

tpexq “
g2

m2
V

α1pk1 ` k3q ¨ pk2 ` k4qε
p1q
µ εp2qν εp3qµεp4qν . (12.9)

The form of Eq. (12.9) stems from Eq. (12.6) assuming the ε0 component of the external
vector mesons to be zero, and neglecting the linear terms in three momentum coming
from Eq. (12.6), which is quite reasonable for S-wave. An explicit evaluation of these
latter extra terms was done in [420], in the study of the γp Ñ K0Σ` reaction, which
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showed the relevance of the VB intermediate states, where one finds the same three
vector vertex of Fig. 12.1 (see section 2 of [420]). The center of mass photon momentum
in the reaction of [420] is about 780 MeV/c in spite of which, the linear terms in three
momentum neglected in Eq. (12.9) were found to be of the order of 15%. This could also
explain why in the decay of resonances like the f2p1270q into two mesons, which rely upon
the same vertices and approximations [421], the widths are obtained in good agreement
with experiment, in spite of having two photons with momentum of 635 MeV/c. Note
that in this case, the f2p1270q, that comes as a two ρ bound state, is bound by about
270 MeV. Since the ε0 component goes as |~k|{MV , the ratio for the ρB˚ and ρρ bound
states would be about Mρ

a

µpρB˚qBpρB˚q{MB˚
a

µpρρqBpρρq, with µpρB˚q, µpρρq the
reduced mass and BpρB˚q, Bpρρq the binding energy of the bound state in the ρB˚ and
ρρ systems respectively. Taking into account that we get about 350 MeV binding for the
ρB˚ system, this ratio is of the order of about 0.22, which reinforces neglecting the ε0
component of the external vectors assumed in Eq. (12.9). One should also keep in mind
that small changes in the kernel of Eq. (12.9) can be reabsorbed by suitable changes in
the cut off, since the combination rV s´1 ´ G (V would sum contributions from tpcq and
tpexq from Eqs. (12.8) and (12.9)) is what appears in the evaluation of the final T -matrix,
and one finally always tunes the cut off to some experimental data. We shall come back
to this point in Section 12.5.2.

It is interesting to point out that the dominant vector exchange terms (with light vector
exchange, Fig. 12.1(b)) contribute neither to the ωB˚ Ñ ωB˚ nor to the ωB˚ Ñ ρB˚

transitions. Indeed, the ωωω vertex is forbidden by C´parity. Similarly, ωωρ0 is also
forbidden for the same reason, and isospin. Finally, the ρρω (even with charged ρ) is not
allowed by G parity conservation. The only way to have a contribution to the ωB˚ Ñ ωB˚

transitions is through intermediate steps that involve the exchange of heavy vector mesons
(12.1(c)).1

With the polarization structure of the amplitudes we can separate these terms into
different spin contributions (we work only with angular momentum L “ 0) which are
given by [368]

Pp0q “ 1
3ε
p1q
µ εp2qµεp3qν εp4qν , (12.10)

Pp1q “ 1
2pε

p1q
µ εp2qν εp3qµεp4qν ´ εp1qµ εp2qν εp3qνεp4qµq, (12.11)

Pp2q “ 1
2pε

p1q
µ εp2qν εp3qµεp4qν ` εp1qµ εp2qν εp3qνεp4qµq

´
1
3ε
p1q
µ εp2qµεp3qν εp4qν . (12.12)

We can see that, while the contact terms give rise to different combinations of spin, the
vector exchange term of type of Fig. 12.1(b), contains the sum Pp0q `Pp1q `Pp2q, with
equal weights for the different spins. This combination, corresponding to the exchange
of a light vector meson (ρ, ω, φ, K˚) if allowed, satisfies HQSS to which we shall come
back later on. On the other hand, the exchange of a heavy vector meson contains the
combination

εp1qµ εp2qν εp3qνεp4qµ “ Pp0q ´ Pp1q ` Pp2q (12.13)

1We recall the quantum numbers of ω and ρ states, which respectively are IGpJPCq “ 0´p1´´q and
1`p1´´q; whereas those of B and B˚ mesons are IpJP q “ 1

2 p0
´q and 1

2 p1
´q.
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and does not satisfy leading order HQSS constraints, as we shall see in Section 12.4.
This goes in line with HQSS, since the exchange of heavy vectors is penalized versus
the exchange of light ones by a factor m2

V {m
2
B˚ from the propagators and become sub-

dominant. The contact term is also sub-dominant since it goes like mV {mB˚ of the
dominant term from the exchange of a light vector. HQSS is unbroken only for the
dominant term in the Op 1

mB˚
q counting, as it should be expected.

12.2.2 Vector-pseudoscalar interaction

B

ρ

ρ

B

ρ

Figure 12.2: Interaction of ρB with vector exchange.

We shall also consider the ρB interaction. This proceeds via the exchange of a vector
meson as in Fig. 12.2 and in this case there is no contact term. One can see that in
the limit (which we also take) that q2{m2

V Ñ 0, where q is the momentum transfer, one
obtains the chiral Lagrangian of [419]. The lower vertex V BB is given by the Lagrangian
provided by the extended LHG approach

L “ ´ig xpφBµφ´ BµφφqV µ
y , (12.14)

where now φ is the corresponding matrix of Eq. (12.3) for qq̄ in the pseudoscalar repre-
sentation. We obtain the same expression as for ρB˚ Ñ ρB˚ (direct term in Fig. 12.1(b))
replacing

εp1qµ εp2qν εp3qµεp4qν Ñ ´εp1qµ εp3qµ. (12.15)

Then up to the factor ´εµεµ Ñ ~ε ¨~ε 1, a scalar factor, that becomes unit in the only possible
spin state here which is J “ 1 with L “ 0, we find the same potential for ρB Ñ ρB as
for ρB˚ Ñ ρB˚ with the dominant light vector exchange in any spin channel.

12.3 Decay modes of the ρB˚ and ρB channels

ρρ

B∗ B∗

π

π π

B

Figure 12.3: Box diagram to account for the decay of ρB˚ into πB state.
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ρρ

B B

π

π π

B∗

Figure 12.4: Box diagram for ρB Ñ ρB with B˚π intermediate state.

As in [219] we take into account the box diagrams of the type of Fig. 12.3. The details
are identical as those in [219] (Section VI) by simply changing the masses of the particles
D˚, D by those of the B˚, B mesons. Concerning to the ρB Ñ ρB interaction, the decay
modes that we will consider are those with a pion and a vector meson B˚ as intermediate
state2, which will lead to the kind of box diagrams depicted in Fig. 12.4. The evaluation
of these diagrams is very similar to the case of Fig. 12.3 but with some subtle differences
that we will deal with in Section 12.5.3.

From the time of Ref. [219] some clarification [422] has come concerning the B˚Bπ
vertex, the formalism that we use and HMχPT. In this latter formalism this coupling
is given by gH which is flavor independent in the heavy quark limit. The width for the
B˚ Ñ Bπ decay (formally, since there is no phase space here, unlike the case of D˚ Ñ Dπ)
is given by

Γ “ g2
H

6πf̃ 2
π

|~pπ|
3, f̃π “

?
2fπ, (12.16)

and according to [423] gH is heavy flavor independent at leading order. On the other
hand, in our normalization [166] we have

Γ “ g2
B˚Bπ

6πm2
B˚
|~pπ|

3. (12.17)

Hence we must identify,

gB˚Bπ “
gH

f̃π
mB˚ (12.18)

It is interesting to obtain that from our formalism. If we take the diagrams of Fig. 12.5
one may accept that the dd̄ hadronization acts in the same way in the case of K˚ Ñ Kπ
or B˚ Ñ Bπ, such that the matrix elements are the same at the quark level. Yet, in the
relativistic normalization of the fields that we use [166] we would have at the microscopic
level,

Smic
“ 1´ it

c

2ml

2ωl

d

2m1
l

2ω1l

c

1
2ωπ

1
V3{2 p2πq

4δp4qpPi ´ Pf q, (12.19)

where ml and m1
l are the masses of the incoming and outgoing light quarks respectively,

ωl and ω1l their energies, ωπ the pion energy and V the volume of the box where the states
2Note that these diagrams, with an intermediate B meson, do not exist for the case of the ρB Ñ ρB

interaction, because we would need a strong πBB vertex which does not exist.
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are normalized to 1. However, in our normalization, we have at the macroscopic level,

Smac
K˚ “ 1´ itK˚

1
?

2ωK˚
1

?
2ωK

1
?

2ωπ
1
V3{2 p2πq

4δp4qpPi ´ Pf q, (12.20)

Smac
B˚ “ 1´ itB˚

1
?

2ωB˚
1

?
2ωB

1
?

2ωπ
1
V3{2 p2πq

4δp4qpPi ´ Pf q. (12.21)

This means that in our normalization we would have

tB˚

tK˚
»

?
mB˚mB

?
mK˚mK

»
mB˚

mK˚
, (12.22)

which gives us
gB˚Bπ “ g

mB˚

mK˚
. (12.23)

If we go now to Eq. (12.18) we find

gH “
gB˚Bπf̃π
mB˚

“
gf̃π
mK˚

“
mV

2fπ
1

mK˚
f̃π “

1
?

2
. (12.24)

As one can see, our argumentation naturally leads to a flavor independent gH , as required
by heavy quark symmetry at leading order. The value of Eq. (12.24) is relatively close
to the one obtained in a lattice simulation [424] of gH » 0.57˘ 0.1, and using it, one also
gets a good result for the D˚ Ñ D0π` decay width. Then we use this vertex in the box
diagram instead of the empirical one g1D˚Dπ used in [219]. In the former argumentation
we are implicitly assuming that both the strange quark in the K˚ and the b quark in
the B˚ meson act as spectators. Recoil corrections when going from the strange sector
to the D or B sector seem to be small in this case, since the results obtained within the
spectator assumption agree quite well with both the empirical and lattice QCD values of
the gH coupling.

The same argument can be applied for the B˚B˚1ρ vertices, but the Weinberg-Tomoza-
wa coupling is proportional to the sum of the B˚, B˚1 energies and then the normalization
factor of Eq (12.23) is automatically implemented.

u s̄

d s̄

(K0)

(K∗+)

u d̄

(π+)

u d̄

(π+)

u b̄

(B∗+)

d b̄

(B0)

Figure 12.5: Diagram of the K˚` Ñ K0π and B˚` Ñ B0π decay at the quark level.
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12.4 Heavy quark spin symmetry considerations

Let us consider the ρBp˚q meson pair in S-wave. In the particle basis we have four
states for each isospin combination, namely |ρB, J “ 1y, |ρB˚, J “ 0y, |ρB˚, J “ 1y and
|ρB˚, J “ 2y. In the HQSS basis [425], the states are classified in terms of the quantum
numbers: J , total spin of the meson pair system and L, total spin of the light quark
degrees of freedom. In addition, for this particular simple case in the HQSS basis, the
total spin of the heavy quark subsystem, SQ, is fixed to 1{2. The spin of the light quarks
in each of the two mesons is also trivially fixed. Thus, the four orthogonal states in
the HQSS basis are given by |L “ 1{2, J “ 0y, |L “ 1{2, J “ 1y, |L “ 3{2, J “ 1y and
|L “ 3{2, J “ 2y. In all the cases the spin of the b̄-antiquark, SQ, is coupled to L to
give J . The approximate HQSS of QCD leads at LO, i.e., neglecting O pΛQCD{mQq to
important simplifications when the HQSS basis is used,

xL1, J 1;α1|HQCD
|L, J ;αy “ δαα1δLL1δJJ 1µ

α
2L (12.25)

where α stands for other quantum numbers (isospin and hypercharge), which are conserved
by QCD. The reduced matrix elements, labelled by µα2L, depend only on the spin (parity)
of the light quark subsystem, L, and on the additional quantum numbers, α, that for
the sake of simplicity we will omit in what follows. We thus have two irreducible matrix
elements µ1 and µ3 in the heavy quark limit.
The particle and HQSS bases are easily related through 9-j symbols (see [425]), and one
finds

|ρB, J “ 1y “ ´
c

1
3 |L “ 1{2, J “ 1y

`

c

2
3 |L “ 3{2, J “ 1y ,

|ρB˚, J “ 0y “ |L “ 1{2, J “ 0y ,

|ρB˚, J “ 1y “
c

2
3 |L “ 1{2, J “ 1y

`

c

1
3 |L “ 3{2, J “ 1y ,

|ρB˚, J “ 2y “ |L “ 3{2, J “ 2y .

(12.26)

In the infinite heavy quark mass limit we obtain,

xρB|HQCD
|ρBy “

1
3µ1 `

2
3µ3, (12.27)

xρB˚, J “ 0|HQCD
|ρB˚, J “ 0y “ µ1, (12.28)

xρB˚, J “ 1|HQCD
|ρB˚, J “ 1y “ 2

3µ1 `
1
3µ3, (12.29)

xρB˚, J “ 2|HQCD
|ρB˚, J “ 2y “ µ3, (12.30)

xρB|HQCD
|ρB˚, J “ 1y “ ´

?
2

3 µ1 `

?
2

3 µ3. (12.31)

Since we have not coupled the ρB with ρB˚ in our model because it involves anomalous
terms which are very small in this case, then µ1 “ µ3 and we conclude that all the matrix
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elements are equal for ρB˚ in J “ 0, 1, 2 and also for ρB. An explicit evaluation of the
box diagrams involving those transitions, and particularly considering ρ, ω transitions was
done in [368] and their contribution was found very small. We can see that the dominant
term for the light vector exchange (Eq. (12.9)) fulfils the rules of HQSS relations, but the
contact term and B˚ exchange, which are sub-dominant in the

´

1
mB˚

¯

counting, do not
satisfy those relations, since they do not have to. Note that when rewriting this potential
in the usual normalization of HQSS, we would have an extra

´

1
2ωB˚

¯

factor that makes

the ρ exchange to go like
´

1
mB˚

¯0
, the contact term like 1

mB˚
and the B˚ exchange like

1
mB˚

.
In the present approach the ρB˚ Ñ ρB transition would be subdominant. There are

other models where this might not be the case. For instance, in Ref. [211] a model is used
imposing SU(6) spin-flavor symmetry that, extended to the present problem, could have
this transition non suppressed.

We should note that the approach followed here is consistent with HQSS, as discussed
above, despite the ρB˚ Ñ ρB transition being suppressed. Treating on equal footing B
and B˚, as HQSS requires, does not imply that a model where the ρB˚ Ñ ρB transition
is suppressed necessarily breaks HQSS. Examples of this can also be seen in the work
of [426] for the B˚B̄˚ interaction and in [425] for the meson baryon system.

12.5 Results

12.5.1 Bethe Salpeter resummation
We restore exact unitary performing the diagrammatic resummation of BSE series. We
solve Eq. (2.86) to obtain the scattering matrix T in coupled channels by using an input
kernel matrix V , which is the potential describing transition amplitudes ρB˚ Ñ ρB˚,
ρB˚ Ñ ωB˚, ωB˚ Ñ ωB˚ and ρB Ñ ρB that one obtains using the former sections (from
Eqs. (12.8) and (12.9) after spin projection). All the relevant matrix elements can be
obtained from Tables I, II and III of [219]. Additionally, the finite width of the ρ meson is
also explicitly taken into account (as in Ref. [219]) by considering the ρ mass distribution
in the construction of the G function (2.87).

In the next section we shall discuss our results for both the ρ{ωB˚ and ρB systems
by using the coupled channel unitary approach, where we only consider the contribution
of S-wave. The interaction in the I “ 3{2 case is repulsive, and thus in what follows we
will focus in the I “ 1{2 sector.

12.5.2 ρ{ωB˚ system
In the first step, we introduce the kernel or potential V , corresponding to the contact and
vector exchange contributions. We can get an intuitive idea of the results by using the
results of Table I of [219], adapted to the present case in Table 12.1.

By calculating the potential at the threshold of ρB˚, summing the contact, ρ exchange
and B˚ exchange contributions we get potentials with weights (κ of [219] is now m2

ρ{m
2
B˚)

´51g2, ´50g2, ´58g2 for J “ 0, 1, 2, respectively. These results correspond to ´16g2,
´14.5g2, ´23.5g2 of [219]. The strength is bigger than for the ρD˚ system because of
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the bigger masses of the heavy quarks and we still find that the strength is bigger for
J “ 2. However, we also see that the weights for different spins are now more similar in
accordance with HQSS as discussed in Section 12.4.

With the potentials evaluated as a function of the energy as given in Tables I, II, III
of [219] we solve the BSE (2.86) in the ρB˚, ωB˚ coupled channels though the contribution
of the ω channel is fairly small. We need to regularize the G function and use the sharp cut
off prescription using qmax “ 1.3 GeV—see Eq. (A.5). The G function is also convoluted
with the ρ mass distribution as in [219]. With this prescription we obtain three bound
states for J “ 0, 1, 2 that we plot in Figs. 12.6 and 12.7. The value of qmax has been chosen
to obtain a mass of 5745 MeV within the range of 5743 ˘ 5 MeV of the nominal mass
of the B˚2 p5747q state [383]. The masses for the other two states are then predictions:
we obtain a state with J “ 0 at 5812 MeV and another one for J “ 1 at 5817 MeV.
Here, we can see that the mass of the spin 1 state is larger than that of spin 2, while
in the PDG, the resonance B1p5721q with spin 1 has a mass smaller than the mass of
B˚2 p5747q. Henceforth, the state with spin 1 that we obtain presents some difficulties to
be identified with the B1p5721q. One possibility is that it could be the resonance generated
by ρB interaction, which we shall discuss later. Note that the LO HQSS relation µ1 “ µ3
deduced in Section 12.4 has some 1{mQ corrections.

We have given the rational of choosing the value of the cut off to fit one datum.
Nevertheless, we test the sensitivity of the mass of the J “ 2 state in the cutoff. The
results are shown in Table 12.2, where we observe variations of about 40 MeV by varying
the cut off in 100 MeV. Changes in other spin channel are similar as can be also seen in
Table 12.2.

We have also taken the advantage to make a test of the stability of the results when
we change the strength of the potential and readjust the cut off to get the mass of the
J “ 2 resonance at the experimental value. For this we take the diagonal (largest) ρB˚
potential and multiply it by 1.5 or 0.75. The results are shown in Table 12.3. We observe
that the variation of the masses for the predicted J “ 0 and J “ 1 states are small, quite
smaller than the differences found with the changes in qmax for fixed potential shown in
Table 12.2.

The behaviour of each T matrix element close to a pole zR can be expressed as in
Eq. (2.93), where now gi is the coupling to channel i (i “ ρB˚, ωB˚). We choose the ρB˚
coupling with positive sign, and for the other channels we use

gi
gj
“ lim

zÑzR

Tii
Tij

, (12.32)

which gives us the relative sign for the ωB˚ channel. The couplings to the different

Table 12.1: V pρB˚ Ñ ρB˚q in isospin 1{2 sector and for the different spin channels. Here
κ “ m2

ρ{m
2
B˚ .

I J contact ρ exchange B˚ exchange
1/2 0 5g2 ´2 g2

m2
ρ
pk1 ` k3q ¨ pk2 ` k4q ´1

2
κg2

m2
ρ
pk1 ` k4q ¨ pk2 ` k3q

1/2 1 9
2g

2 ´2 g2

m2
ρ
pk1 ` k3q ¨ pk2 ` k4q `1

2
κg2

m2
ρ
pk1 ` k4q ¨ pk2 ` k3q

1/2 2 ´5
2g

2 ´2 g2

m2
ρ
pk1 ` k3q ¨ pk2 ` k4q ´1

2
κg2

m2
ρ
pk1 ` k4q ¨ pk2 ` k3q

202 12.5. Results



Chapter 12. The ρpωqB˚pBq interaction and states of J “ 0, 1, 2

Table 12.2: The mass of the states obtained with different values of qmax. All the masses
are in units of MeV.

qmax [MeV] J “ 0 J “ 1 J “ 2
1200 5845 5849 5785
1300 5812 5817 5745
1400 5782 5787 5710

Table 12.3: The mass of the states obtained for different strengths of the potential. CF
is the multiplicative coefficient of the ρB˚ diagonal potential. The cut off is tuned in every
case to reproduce the J “ 2 experimental mass. All the masses are in units of MeV.

CF qmax [MeV] J “ 0 J “ 1 J “ 2
1.5 1030 5807 5812 5745
1 1300 5812 5817 5745

0.75 1560 5815 5821 5745

channels are listed in Table 12.4.
As commented above, the ρ mass distribution is also involved via the convoluted G

function and should give a width different from zero to the states. Nonetheless, we obtain
that the widths for J “ 0, 1 and J “ 2 are much smaller than one MeV (see Figs. 12.6
and 12.7). However, in the PDG the width of the B˚2 p5747q state is 23`5

´11 MeV, which is
much larger than the one obtained here. To reconcile the difference, the πB decay channel
must be included.

The energies of the resonances are closer to the threshold of ρ and B˚ than to that of
π and B. We do not need to treat the πB as a coupled channel, since it does not have
much weight compared to the ρB˚ and ωB˚ channels. Henceforth, as in [219], one can
compute the box diagrams that are mediated by πB and put them in the potential V
in order to get the width. The ρB˚ contribution corresponding to the box diagram was
shown in Fig. 12.3. We use directly the result of Eq. (41) of [219], which is the sum of
all the terms after the q0 integration using the Cauchy’s residue theorem,

Table 12.4: Couplings of the bound states to the ρB˚ and ωB˚ channels with I “ 1{2
and J “ 0, 1, 2 in units of GeV. The imaginary parts of the couplings are negligible, less
than 0.05 % of the real part in all the cases.

channel J “ 0 J “ 1 J “ 2

ρB˚ 39.6 39.3 43.6
ωB˚ 1.0 ´2.1 ´2.4
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Figure 12.6: Squared amplitudes for J “ 0 and J “ 2 which depend on the energy in the
center of mass including the convolution of ρ mass distribution and the box diagram. The
very sharp peaks correspond to the squared amplitude without the box diagram contribu-
tion.
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Figure 12.7: Squared amplitude for the ρB˚ and the ρB sector with spin 1.

V πB
“ g4

pε
p1q
i ε

p2q
i ε

p3q
j ε

p4q
j ` ε

p1q
i ε

p2q
j ε

p3q
i ε

p4q
j ` ε

p1q
i ε

p2q
j ε

p3q
j ε

p4q
i q

ˆ
8

15π2

ż qmax

0
dq~q 6

ˆ

1
2ωπ

˙3 ˆ 1
k0

1 ` 2ωπ

˙2

ˆ
1

k0
2 ´ ωπ ´ ωB ` iε

1
k0

4 ´ ωπ ´ ωB ` iε

1
k0

1 ´ 2ω ` iε

ˆ
1

k0
3 ´ 2ωπ ` iε

1
P 0 ´ ωπ ´ ωB ` iε

1
P 0 ` ωπ ` ωB

ˆ

ˆ

1
k0

2 ` ωπ ` ωB

˙2 1
2ωB

fpP 0, ~q 2
q (12.33)
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Figure 12.8: The real part of box potential for pI, Jq “ p1{2, 0q and pI, Jq “ p1{2, 2q
compared with those from contact and vector exchange terms.
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Figure 12.9: The imaginary part of box potential for pI, Jq “ p1{2, 0q and pI, Jq “ p1{2, 2q.

where

fpP 0, ~q 2
q “ 4

 

´32k0
3P

0ω2
πωBppP

0
q
2
´ 2ω2

π ´ 3ωπωB ´ ω2
Bq

` 2pk0
3q

3P 0ωBppP
0
q
2
´ 5ω2

π ´ 2ωπωB ´ ω2
Bq

` pk0
3q

4
p2ω3

π ´ pP
0
q
2ωB ` 3ω2

πωB ` 2ωπω2
B ` ω

3
Bq

` 4ω2
πp8ω5

π ` 33ω4
πωB ` 54ω3ω2

B ` 3ωBppP 0
q
2

´ ω2
Bq

2
` 18ωπω2

Bp´pP
0
q
2
` ω2

Bq ` ω
2
πp´12pP 0

q
2ωB

` 44ω3
Bqq ´ pk

0
3q

2
p16ω5

` 63ω4ωB ` 74ω3
πω

2
B

` ωBppP
0
q
2
´ ω2

Bq
2
` 32ω2

πωBp´pP
0
q
2
` ω2

Bq

`ωπp´6pP 0
q
2ω2

B ` 6ω4
Bqq

(

, (12.34)

ωπ “
a

~q 2 `m2
π, ωB “

a

~q 2 `m2
B, and P 0 “ k0

1 ` k
0
2.

Here, in order to calculate the box diagram amplitude, one has first integrated analyt-
ically the q0 variable. Note that the integral is logarithmically divergent, and as in [219]
we use a form factor to regularize the loop in addition to the qmax value used before. The
spin structure only allows J “ 0 and 2. The reason why J “ 1 is forbidden is that the
parity of the ρB˚ system is positive with S-wave, and the angular momentum of the πB
system has to be L “ 0, 2. Therefore, the spin of the πB pair would be 0 or 2, but not 1.
Using again the results of [219] we find the spin projections

δV πB,I“1{2,J“0
“ 20Ṽ pπBq, δV πB,I“1{2,J“2

“ 8Ṽ pπBq, (12.35)

where Ṽ pπBq is given in Eq. (12.33) after removing the polarization vectors. As already
mentioned, the box diagram is logarithmically divergent and needs regularization. In this
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Figure 12.10: Squared amplitude of ρB system as a function of the c.m. energy including
the convolution of the ρ mass distribution and the box diagram contribution.

work, we also use a form factor in each vertex of the box diagram, and then finally, g4 is
replaced with

g2
ρππg

2
B˚Bπ

´

e´~q
2{Λ2

¯4
(12.36)

where gρππ ” g “ mρ{p2fπq and gB˚Bπ “ gmB˚{mV (see Eq. (12.23)), and Λ is of the
order of 1 GeV.

We take the form factor in exponential form from QCD sum rules calculations carried
out in [427]. In that work values of Λ « 1.2 GeV were determined for the D˚Dπ vertex
for the case when the pion is virtual (Eq. (17) of Ref. [427]). We allow the value of Λ to
change when moving to the beauty sector in the present case, and tune it to obtain the
phenomenological width. It is thus a free parameter of the theory. The sensitivity of the
result to changes in this parameter is discussed below.

The real part of the box diagram contribution is neglected, since it is very small
compared with those of the contact and vector exchange terms as we can see in Fig. 12.8.
The imaginary part that we focus on is shown in Fig. 12.9. If Λ is taken as 0.67 GeV
and qmax as 1.3 GeV, the width for J “ 2 is 25.5 MeV which is in agreement with the
experimental value in the PDG. For J “ 0 the width is then 24.7 MeV, while the state
with J “ 1 has no width in our approach. If Λ is increased to 0.73 GeV, we obtain a
width for J “ 2 of 37.5 MeV, and 47.8 MeV for J “ 0. We see that we can obtain a width
comparable to experiment using cutoffs or form factors of natural size.

In Fig. 12.6 we show the line shape of |T |2 including the box diagram contribution,
which generates a final width for the J “ 0, 2 states. On the other hand, for J “ 1 we
still have the results of Fig. 12.7, since as discussed above, in this case there is no box
diagram.

12.5.3 ρB system
As we have mentioned in the previous subsection, in the PDG the mass of the B1p5721q is
smaller than that of the B˚2 p5747q. However, for the ρB˚ systems the mass of the J “ 1
state is larger than that of the J “ 2 state. Henceforth, we turn to the ρB system and
investigate its interaction.

For this system there are no contact terms, but we have the vector exchange terms
only. In addition, the ω channel is now inoperative since the ρρω vertex is zero by G-
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parity and ωωρ is zero by C-parity and isospin. Note that in the case of the vector-vector
interaction it is the exchange term of Fig. 12.1 (c) the one that makes ωB˚ mix with
ρB˚. The equivalent diagrams would involve anomalous terms which are small. In any
case the factor m2

V {m
2
B˚ of these terms renders them negligible, of the order of 1% also

in the case of the vector-vector interaction.
Since the strength of the interaction is the same as in the ρB˚ Ñ ρB˚ case we expect

to find a bound state as before. If the cut off qmax in the G function is taken as 1.3
GeV, we find the pole position at 5728 MeV (see Fig. 12.7), which is consistent with the
PDG value of the B1p5721q. The coupling to ρB channel is also computed, and found to
be gρB “ 41.6 GeV. It is very interesting to also calculate the width of this state. The
dominant decay mode is B˚π, while the value is found to be « 30 MeV [428]. This decay
mechanism comes out naturally in our approach by means of the box diagram of Fig.
12.4.

It is easy to see the contribution for this new box diagram following the steps of [219].
There we had the combination

ż

d3qε
p1q
i ε

p2q
j ε

p3q
l εp4qm qiqjqlqmFp~q 2

q

“
1
15

ż

d3qε
p1q
i ε

p2q
j ε

p3q
l εp4qm ~q 4

pδijδlm

`δilδjm ` δimδjlqFp~q 2
q

“
1
15 p5Pp0q ` 2Pp2qq

ż

d3q~q 4Fp~q 2
q, (12.37)

here Fp~q 2q is a function depending on the square of the three momentum ~q 2, the center
of mass energy and the masses of the mesons appearing in Fig. 12.4 .

Now we have the same original form as in the beginning of the equation but we must
sum over the B˚ polarization of the intermediate B˚ state. Since we are only concerned
about the imaginary part, the on-shell approximation for the intermediate B˚ is sufficient
and the contraction of εp2qj εp4qm gives δjm. Then the remaining structure is

ż

d3qε
p1q
i ε

p3q
l qiql~q

2F̃p~q 2
q “ ε

p1q
i ε

p3q
i

ż

d3q
1
3~q

4F̃p~q 2
q, (12.38)

where F̃p~q 2
q has the same form as Fp~q 2q after making the change mB˚ Ñ mB and

mB Ñ mB˚ , up to a constant factor that we shall discuss right now. The interaction
Lagrangian of Eq. (12.14) involves derivatives of the pseudoscalar fields. In comparison
with the previous situation which is depicted in the box diagram of Fig. 12.3, now the
B˚Bπ vertex does not have a B meson carrying the q momenta of the integral, since this
meson is external (see Fig. 12.4). Before we had in the incoming B˚Bπ vertex a factor,

9ppP ´ qq ` pk1 ´ qqqµ
~kiÑ0
ÝÝÝÑ ´2qi, (12.39)

corresponding to the momentum of the B and π internal mesons in Fig. 12.3. Now in
Fig. 12.4 the incoming B˚Bπ vertex is

9p´k2 ` pk1 ´ qqqµ
~kiÑ0
ÝÝÝÑ ´qi, (12.40)
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because the derivatives involve the external pseudoscalar B and the internal π. As a
consequence, the amplitudes will lack a factor two in each of theB˚Bπ vertex, so F̃ “ F{4.
When we remove the polarization vectors the structure is

ż

d3q
1
3~q

4F̃p~q 2
q “

ż

d3q
1
3~q

4Fp~q 2
q
1
4 . (12.41)

Hence, comparing with Eq. (12.37) we see that the strength of the ρB box potential
is identical to the former one with J “ 0 of the ρB˚, divided by four (changing the
intermediate mass of the B to the present one of B˚ and viceversa). In Fig. 12.10 we
plot |T |2 for this case with the same parameters used before to obtain the width of the
B˚2 p5747q. We see that we obtain a width around 20 MeV, which is a further prediction
of the present work; not far from the experimental results of the CDF collaboration [429]
(23˘5 MeV for the neutral and 49`12

´16 MeV for the charged state) and 30˘7 MeV reported
by LHCb [428].

12.6 Summary
In this chapter we have studied the ρB˚, ωB˚ and ρB interactions by using the LHG
unitary approach. First we have solved the BSE in coupled channels for the ρB˚ and
the ωB˚ sectors, using the tree level amplitudes and regularizing the loop function with
a cut off of 1.3 GeV. In this way we have found three bound states, with masses 5812,
5817 and 5745 MeV for I “ 1{2 and J “ 0, 1, 2, respectively, identifying the J “ 2 state
with the B˚2 p5747q [383] of mass 5743 ˘ 5 MeV. Despite having considered the ρ mass
distribution, all the states that we have found show small widths. In order to generate
the correct width of the state with J “ 2 as that of the experimental B˚2 p5747q, which
is quoted as 23`5

´11 MeV, we have taken into account the box diagram mediated by the
πB which accounts for this decay channel. We have also considered a form factor for
the off-shell pions and a rescaled coupling in the B˚Bπ vertex. In this way, we have
obtained the widths 25.5 „ 37.5 MeV for J “ 2 and 24.7 „ 47.8 MeV for J “ 0, taking
Λ “ 0.67 „ 0.73 GeV and qmax “ 1.3 GeV. Since the pole position of J “ 1 is larger than
that of J “ 2, while in the PDG there is a spin one state B1p5721q which mass is smaller
than the B˚2 p5747q mass, we have considered the ρB system.

For the ρB interaction in the LHG approach we have found a bound state of mass
5728 MeV, which is consistent with the experimental value of the B1p5721q. We have
also predicted a width for this state considering the box diagram contribution in a similar
manner as for the ρB˚ system. The width that we have obtained is around 20 MeV. We
summarize our results in Table 12.5.

The free parameters in the present approach have been fixed in the J “ 2 sector. The
same parameters have been used in the J “ 0, 1 sectors to make predictions. We should
acknowledge some uncertainties in the predictions obtained for these two latter channels.
Quantifying these systematic errors is difficult, although we can make an educated guess
by accepting as uncertainties the differences found in Table 12.2 when the cut off was
changed by ˘100 MeV. This tells us that about 30 MeV, and smaller, uncertainties in the
masses of the J “ 0, 1 states seem reasonable.

Finally we have investigated if there is some aspect in the interaction which can be
related to the heaviness of the system under consideration. The fact that the B mesons
have a large mass can justify the study of the ρB and ρB˚ systems under the frame of
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Table 12.5: Summary of the states found in the ρpωqB˚ and ρB sectors. The experimental
values of the B˚2 p5747q [383] and B1p5721q [428] may slightly differ from the current updated
RPP average values [14] appearing in Table 1.1.

Main IpJP q M [Mev] Γ [MeV] Main decay Exp pM,Γq
channel channel [MeV]
ρB˚ 1

2p0
`q 5812 25´ 45 πB

ρB˚ 1
2p1

`q 5817 0
ρB˚ 1

2p2
`q 5745 25´ 35 πB p5743˘ 5 , 23`5

´11q

ρB 1
2p1

`q 5728 18´ 24 πB˚ p5726˘ 2 , 30˘ 7q

heavy quark spin symmetry. We have split these states in terms of eigenstates of total
angular momentum of the light quarks as in [425].

We find that the dominant terms in our approach, due to light vector exchange, which
go like Orp1{mB˚q

0
s fulfil the LO constrains of HQSS, while the contact terms and those

coming from the exchange of B˚ are sub-dominant pO p1{mB˚qq and do not fulfil the LO
HQSS rules. While in the Dρ sector these terms were not too small, in the present case
they are much smaller and we have a near degeneracy in the ρB˚ states with J “ 0, 1, 2.

It is interesting trying to interpret the results in Table 12.5 on the light of HQSS. As
it has been discussed in Sec. 1.2.1, the experimental information about the jPq̄ “ 1{2`
p0`, 1`q and jPq̄ “ 3{2` p1`, 2`q doublets is scarce. The two experimental states appearing
in the last column of Table 12.5 are those included in Table 1.1 associated to the jPq̄ “ 3{2`
doublet—although the values in table 1.1 correspond to isospin masses using the updated
averages from the RPP [14]. Note that the identification of those states as the jPq̄ “ 3{2`
doublet might be justified by the relations among the

ˇ

ˇρBp˚q, J
D

and |L, Jy states, and
the HQSS matrix elements of Eqs. (12.27)-(12.31). From Eq. (12.26) we learn that the
ρB J “ 1 state has a major contribution from the light-degrees of freedom configuration
associated to L “ 3{2, and in the case of ρB˚ J “ 2 we see that it is exclusively related
to L “ 3{2. By fixing the interaction in the JP “ 2` sector we are constraining in
great measure the ρB interaction in the JP “ 1` sector, and the fair reproduction of
the B1p5721q may indicate that they are indeed in good accuracy HQSS partners. The
situation of the additional 0` and 1` states is not so clear. On the other hand, we might
be tempted to relate them with the higher poles (members of the HQSS 1{2` doublet)
which were predicted in Chapter 4. By looking at Table 4.4 we see that the masses of
the higher B˚0 and B1 are not far from those reported above in Table 12.5. Although,
the widths of the higher B˚0 and B1 are larger, they are comparable to the ones given
Table 12.5. Nevertheless, as we already mentioned in Chapter 4, the higher poles might
be affected by ρ physics, conversely, the results discussed here concerning the L “ 1{2
ρB˚ states would be influenced by Bp˚qπ, Bp˚qη and Bp˚qs K channels.

12.6. Summary 209





Chapter 13

Conclusions

In the following pages we give a brief summary of the major findings obtained in this
thesis, paying a special attention to the main results presented in each chapter.

We have studied the Dπ, Dη and DsK̄ scattering in the JP “ 0` and pS, Iq “ p0, 1{2q
sector, where so far only one meson, the D˚0 p2400q, has been reported in experiments [14,
206]. We showed in Chapter 4, within the framework of NLO UHMχPT, that in the region
of the D˚0 p2400q there are in fact two poles in the coupled-channel scattering amplitudes.
The two poles are located at

`

2105`6
´8 ´ i 102`10

´12
˘

MeV and
`

2451`36
´26 ´ i 134`7

´8
˘

MeV, with
the largest couplings to the Dπ and DsK̄ channels, respectively. With all the parameters
previously fixed, we predicted the energy levels for the coupled-channel system in finite
volumes, finding that they agree remarkably well with the lattice QCD calculation of
Ref. [81]. This successful description of the lattice data is regarded as a strong evidence
for the two-pole structure of the D˚0 p2400q. Since the higher pole is close to the DsK̄
threshold, we expect it to show up as a threshold enhancement in the DsK̄ invariant
mass distribution. This could be checked by high-statistic data in future experiments.
We also showed that the lower pole belongs to the same SU(3) multiplet as the D˚s0p2317q
state. We found a similar two-pole resonance pattern in the JP “ 1` as well as in the
JP “ 0` and 1` bottom sectors. Besides the two-pole structure, we stress the possible
existence of a near-threshold bound or virtual state in the B̄K̄ (or BK) channel, both in
the 0` and 1` sectors. These exotic states, with quark content bsd̄ū, would have a large
impact in the scattering length, and if they were bound, they could only decay through
weak and/or electromagnetic interactions.

In Chapter 5, we have shown how the NLO UHMχPT amplitudes of Chapter 4 solve
various puzzles in the charm-meson spectrum. These questions find a natural resolution
if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the
D˚s0p2317q and the Ds1p2460q, owe their existence to the nonperturbative dynamics of
Goldstone-boson scattering off Dpsq and D˚psq mesons. Most importantly the mass ordering
of the lightest strange and nonstrange scalars becomes natural. We also demonstrated for
the first time that this mechanism is strongly supported by the high quality data on the
B´ Ñ D`π´π´ reaction provided by the LHCb experiment [240]. These findings led us to
conclude that the lightest quark-model positive-parity charm mesons, together with their
bottom counterparts, if realized in nature, do not form the ground-state multiplet. In
a broader view, the results reinforce the interpretation that the hadron spectrum should
not be viewed as a collection of quark-model states. Instead, it should be regarded as a
manifestation of complex dynamics, leading to an intricate and diverse pattern of states
that can only be understood by a joint effort from experiment, LQCD and phenomenology.

In Chapter 6, we simultaneously studied the scalar form factors of the semileptonic
heavy meson decays D Ñ π ¯̀ν`, D Ñ K̄ ¯̀ν`, B̄ Ñ π`ν̄` and B̄s Ñ K`ν̄`, solving the
MO integral equations. As input, we employed NLO UHMχPT amplitudes, used also in
Chapters 4 and 5, for the energy regions not far from thresholds, while, at high energies,
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adequate asymptotic conditions were imposed. The scalar form factors were expressed
in terms of Omnès matrices multiplied by vector polynomials, which contain some un-
determined dispersive subtraction constants. We made use of heavy quark and chiral
symmetries to constrain these constants, which were fitted to lattice QCD results both
in the charm and the bottom sectors. Besides, in this latter sector we used the LCSR
predictions close to q2 “ 0 as well. We found a good simultaneous description of the
scalar form factors for the four semileptonic decay reactions. From this combined fit,
and taking advantage that scalar and vector form factors are equal at q2 “ 0, we have
obtained |Vcd| “ 0.244 ˘ 0.022, |Vcs| “ 0.945 ˘ 0.041 and |Vub| “ p4.3 ˘ 0.7q ˆ 10´3 for
the involved CKM matrix elements. In addition, we showed predictions of the follow-
ing vector form factors at q2 “ 0: |fDÑη` p0q| “ 0.01 ˘ 0.05, |fDsÑK` p0q| “ 0.50 ˘ 0.08,
|fDsÑη` p0q| “ 0.73 ˘ 0.03 and |f B̄Ñη` p0q| “ 0.82 ˘ 0.08, which might serve as alternatives
to determine the CKM elements when experimental measurements of the corresponding
differential decay rates become available. Finally, we predicted the different form fac-
tors above the q2-regions accessible in the semileptonic decays, up to moderate energies
amenable to be described using the unitarized coupled-channel chiral approach.

Next in Chapter 7, we have presented a new model-independent parametrization for
the hadronic form factors in the semi-leptonic B̄ Ñ D`ν̄` decay, although the formalism
can be applied to any other semileptonic processes induced by the weak b Ñ c transi-
tion. This is also inspired in the MO dispersive representation of the form factors. The
coefficients in this parametrization are related to the form factor phases by sumrule-like
dispersion relations, and hence, are called phase moments. They encode important scat-
tering information of the B̄D̄ interactions which, currently, are not well known. Using
recent experimental and lattice QCD data on this reaction [319, 321], we determined the
phase moments, the CKM matrix element |Vcb| “ 41.01p75q ˆ 10´3, and predicted the
ratio RD “ BRpB̄ Ñ Dτν̄τ q{BRpB̄ Ñ D`ν̄`q “ 0.301p5q. We found an excellent simulta-
neous reproduction of the lattice and experimental data. Our results provide strong hints
about the existence of at least one bound and one virtual B̄D̄ S-wave 0` states, subject
to uncertainties due to the possible influence of inelastic channels.

The structure of the D˚s0p2317q and Ds1p2460q resonances has been studied in Chap-
ter 8. There, LO HMχPT amplitudes are improved by incorporating the interplay between
S-wave Dp˚qK meson-meson degrees of freedom and bare P -wave cs̄ states predicted by
CQM. We have extended the formalism to finite volumes, and fitted the strength of the
coupling between both types of degrees of freedom to the lattice levels [45], which we
successfully described. We have estimated the size of the Dp˚qK two-meson components
in the D˚s0p2317q and Ds1p2460q resonances, concluding that these states have a pre-
dominantly hadronic-molecular structure („ 60-70%), and that it should not be tried to
accommodate these mesons within cs̄ constituent quark model patterns. We have also
used this formalism in Chapter 9 to investigate the bottom counterparts of the D˚s0p2317q
and Ds1p2460q resonances. We used the LQCD results on the bs̄ JP “ 0` and 1` sectors
of Ref. [58] to fix the strength of the coupling between bare P -wave bs̄ states and S-wave
Bp˚qK two-meson components. We have found candidates of scalar B̄˚s0 and axial B̄s1
states with masses of 5709 ˘ 8 MeV and 5755 ˘ 8 MeV, respectively, and estimated the
molecular component of the B̄˚s0 and B̄s1 to be of the order of 50%. Thus, as in the case of
the charm siblings, we interpret these findings as a clear indication of the non-canonical
quark model nature of these states.

We have also studied (Chapter 10) the relationship between the D˚s0p2317q` resonance
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and the decay of the B`c meson into J{ψD`K0. The final state interaction of the S-wave
D`K0 pair was described by a LO UHMχPT amplitude, and generated the D˚s0p2317q`
resonance as a bound state pole. With the parameters which allowed us to match the
pole position to the experimental mass of the D˚s0p2317q`, we have obtained the D`K0

invariant mass distribution of the decay Bc Ñ J{ψD`K0, and also the rate for Bc Ñ

J{ψD˚s0p2317q`. We have predicted the ratio of these two magnitudes. We have found
that both the D`K0 invariant mass distribution and the ratio present a characteristic
enhancement for energies close to the D`K0 threshold, which is tightly related to the
dynamical generation of the D˚s0p2317q` pole in the amplitude. This low energy behaviour
of the invariant mass distribution is very different from the energy dependence of the phase
space and, in principle, this difference should show up in experiments.

We have also investigated the signatures produced by the Zcp3900q˘ in a LQCD sim-
ulation. We considered in Chapter 11 a T -matrix analysis [385], which accounts for the
J{ψπ and D˚D̄ coupled-channels dynamics, and which successfully describes the exper-
imental information concerning the Zcp3900q˘. Within such scheme, the data can be
similarly well described in two different scenarios, where Zcp3900q is either a resonance or
a virtual state. To shed light into the nature of this state, we have applied this formalism
in a finite box with the aim of comparing with most recent LQCD simulations. We see
that the energy levels obtained for both scenarios agree well with those obtained in the
single-volume LQCD simulation reported in [384], thus making it difficult to disentangle
the two possibilities. We have also studied the volume dependence of the energy levels
obtained with our formalism and suggested that LQCD simulations performed at several
volumes could help in discerning the actual nature of the intriguing Zcp3900q state.

Finally, we have studied in Chapter 12 the ρ{ω and B˚ scattering in S-wave using
unitarized LHG amplitudes. We have found evidence of three bound states in pI, JP q “
p1{2, 0`q, p1{2, 1`q and p1{2, 2`q. The state with J “ 2 can be a good candidate for the
B˚2 p5741q. We have also studied the ρB system in S-wave, and a bound state with mass
5728 MeV and with 20 MeV is obtained, which could be identified with the B1p5721q
resonance. In the case of I “ 3{2 the interaction was found repulsive, and thus, no exotic
meson resonances are generated in the approach.
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Regularized two-meson loop
functions

The purpose of this appendix is to collect all the formulae of the different regularized loop
functions employed throughout the previous chapters. We denote them asGpRqps,m1,m2q,
where “R” corresponds to the type of regularization, s is the invariant mass squared of
the external particles, and m1 and m2 are the masses of the pair of virtual mesons.

Dimensional regularization. This loop function [242, 430] is obtained by means of
Feynman integration in the so-called modified minimal subtraction scheme. Therefore,
its real part depends on the remaining subtraction constant apµq, and the associated scale
µ introduced during the integration process,

16π2GpDqps,m1,m2q “ apµq ` ln m
2
2

µ2 `
m2

1 ´m
2
2 ` s

s
ln m1

m2
` σpsqˆ

„

ln
ˆ

`s´m2
1 `m

2
2 ` 2sσpsq

´s`m2
1 ´m

2
2 ` 2sσpsq

˙

` ln
ˆ

`s`m2
1 ´m

2
2 ` 2sσpsq

´s´m2
1 `m

2
2 ` 2sσpsq

˙

(A.1)

with σpsq given in Eq. (2.38). We refer to App. A in Ref. [133] for the phase conventions
when Eq. (A.1) is evaluated in the complex s-plane.

Gaussian cut-off. In this case, the divergent part is removed by introducing an ex-
ponential suppression of the higher momenta in the integrand, affecting the real part
exclusively. This is achieved as follows. We add in Eq. (2.78), with the integral of the
zero-th component already performed, an extra e2p~p 2´~k2q{Λ2 suppressing factor, which be-
comes 1 when ~k2 is on-shell (~k2 “ ~p2q,

GpGqps,m1,m2q “

ż d3k

p2πq3
E1 ` E2

2E1E2

e2p~p2´~k2q{Λ2

s´ pE1 ` E2q2 ` iε
. (A.2)

with meson energies E1 and E2 given by Ei “
b

m2
i `

~k2 and the square of the on-shell
three-momentum ~p related with s and the meson masses by

~p 2
“
λps,m2

1,m
2
2q

4s . (A.3)

The parameter Λ is the cut-off scale, which suppresses three momentum contributions
with magnitudes |~k| ą Λ. Its specific value is undetermined, though in practice its
accepted values are expected to lie in the „ 1 GeV region (see Eq. (1.3) and related
discussion). For numerical applications, to compute the loop function on the scattering

215



Appendix A. Regularized two-meson loop functions

line, s` iε (s ą pm1`m2q
2), it is convenient to split Eq. (A.2) into its real and imaginary

contributions,

GpGqps,m1,m2q “ P
ż d3k

p2πq3
E1 ` E2

2E1E2

e2p~p2´~k2q{Λ2

s´ pE1 ` E2q2

´ i
σpsq

8π Θ
“

s´ pm1 `m2q
2‰ , (A.4)

where the real part has to be numerically performed.

Sharp-cutoff regularization. The last method consists on bounding the range of in-
tegration on the three momentum integral in Eq. (2.78), integrating up to some maximum
magnitude |~k| “ qmax:

GpSCqps,m1,m2q “

ż qmax

0

|~k|2d|~k|
2π2

E1 ` E2

2E1E2

1
s´ pE1 ` E2q2 ` iε

. (A.5)

as opposed to Eq. (A.4), it has the advantage that there is an analytic expression for
Eq. (A.5) which can be found in Ref. [431] (note the Erratum).

The three regularization/renormalization schemes provide similar results close to the
threshold energy, and the choice may be based on practical grounds. In terms of com-
putation performance, the sharp-cutoff prescription as well as dimensional regularization
are very suitable due to their analytic form. On the other hand, for calculations in a
finite box, one finds that their finite volume versions (4.4) turn out to be computationally
costly. This is not the case of the Gaussian regularization [169], since its finite volume
implementation is rather straightforward and converges faster than the others. As a final
comment, it should be considered that the application of the sharp cutoff prescription
should be restricted to values of

?
s below E1pqmaxq `E2pqmaxq, since at this value GpSCq

becomes singular [432].
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