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Introduccion

Hoy en dia se considera a la Cromodindmica Cudantica (QCD) [1] como la teoria que
describe las interacciones fuertes. Dicha teoria utiliza los quarks como grados de libertad.
Esta eleccién de grados de libertad resulta tutil para el régimen de altas energias donde,
debido al fenémeno de la libertad asintética, los quarks se manifiestan como estructuras
puntuales que interactiian débilmente. De hecho, ésta es la tnica situacion en la que se
sabe resolver QCD dado que se pueden emplear técnicas perturbativas.

Sin embargo, para energias < 2 GeV, las que se van a considerar en esta tesis, los
grados de libertad relevantes son los hadrones: mesones y baryones. Para pasar de quarks
a hadrones mediante QCD se tendria que saber resolver el problema del confinamiento de
los quarks. Sin embargo, en la actualidad permance incluso como un enigma si QCD es
confinante.

Se podria pensar en construir una teoria que tuviese como grados de libertad direc-
tamente los hadrones, sin embargo, esta solucion resulta tanto o mas complicada que el
problema mismo que se pretende resolver dada la superabundancia de hadrones en el es-
pectro. No obstante en los anos 60 se dieron pasos en esta direccion a través de la hipétesis
del bootstrap [2]. Dicha hipdtesis establecia que todos los hadrones procederian de las
fuerzas de interacambio originados por ellos mismos. Las técnicas utilizadas serian las de
la Matriz-S complementadas con la hipétesis de que las interacciones fuertes sean lo més
fuerte posible respetando los principios de unitariedad y analiticidad de la Matriz-S. De
este modo todas las particulas observadas se apoyarian unas a otras para conseguir tal
objetivo y se fijarian las constantes de acoplo que fuesen apareciendo. El bootstrap falld
dado que pretendia que todas las resonancias que iban apareciendo se puediesen interpretar
como resonancias hadrénicas. Sin embargo, hoy en dia sabemos que ésta no es la situacién
general. Bien al contrario, en términos de quarks, existen muchos estados que son ¢g o
qqq y su existencia puede ser entendida en una primera aproximacién a partir de las in-
teracciones entre los quarks sin relacion alguna con las amplitudes de scattering entre los
hadrones. Por otra parte, en large N. QCD toda la fisica de loops, en la que se basa el
bootstrap, es subleading y desapareceria en dicho limite mientras que la masa de la mayoria
de los hadrones es O(1), por ejemplo de aquellos que se pueden clasificar como ¢ or qqq.

En el espectro de QCD existe un hecho remarcable, como es la aparicion de un triplete de
isospin con una masa mucho mas pequena que el resto de las masas del espectro hadronico.
Se trata de los piones, 7. Esta situacién se puede extender a SU(3) dando lugar al octete
de pseudoscalares m, K y ng. Desde el punto de vista de QCD, esta caracteristica del
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espectro puede ser entendida a partir del hecho de que dicha teoria presenta una simetria
quiral global SU(3), ® SU(3)g que espontaneamente se romperia a SU(3) g, = SU(3)y.
Los ocho generadores correspondientes a la simetria rota SU(3)g_;, = SU(3)4, por el
teorema de Goldstone, darian lugar a un octete de particulas pseudoscalares de masa nula,
los bosones de Goldstone, que se identificarian con el octet de piones, kaones y etas. Sin
emargo, todavia no se ha demostrado que QCD tenga ruptura espontianea de simetria
quiral, aunque, contenga las simetrias correctas.’

El hueco anteriormente aludido en el espectro de QCD, entre los pseudo-bosones de
Goldstone y las resonances mas pesadas, se puede aprovechar para construir un Lagrangiano
efectivo en funcién de los bosones de Goldstone en el que las particulas masivas desapare-
cerian como grados explicitos de libertad. Su presencia repercutiria en el valor final de los
contratérminos a ordenes superiores. Este esquema ha sido realizado dando lugar a Chiral
Perturbation Theory (xPT) [4, 5], que es por tanto, el Lagrangiano efectivo de QCD
para bajas energias. Dicha teoria permite calcular de un modo sistematico cualquier
funcién de Green en una serie de potencias sobre los momentos externos de los bosones de
Goldstone. La escala sobre la que se realiza dicha expansién, A, pr, viene a corresponder
con las masas de los estados masivos mds préximos, lo que implica que A, py ~ 1 GeV.

Junto a sus grandes virtudes xP7T presenta también obvias limitaciones. En primer
lugar a partir de esta teoria no se pueden generar los estados masivos ya que precisamente
han sido integrados para dar origen a dicha teoria efectiva. Dicho de otro modo, a partir
de una expansioén en potencias no se puede generar polos, los cuales estan ligados a tales
estados masivos. Por otro lado, hay correcciones quirales de orden superior que también
limitan dicha expansién. De hecho a partir de las correcciones introducidas por los loops
se puede llegar a la conclusién de que Aypr < 1.2 GeV [6]. Estos hechos hacen que
tipicamente una expansién quiral sélo sea valida hasta energias del orden de unos 500
MeV. Por otra parte, el nimero de parametros libres presentes en los lagrangianos quirales
aumenta rapidamente con el orden en el que se calcula. Asi, mientras que el lagrangiano
quiral de orden mas bajo viene dado tinicamente en términos de masas y de f,, la constante
de desintegraciéon del pion, el orden siguiente requiere de 10 nuevos parametros libres y el
siguiente orden al anterior requiere algo mas de 100 nuevas constantes. Es decir, el poder
predictivo de la teoria se pierde rapidamente con el orden en que se calcula.

Por lo tanto parece obvio el interés que pueden suscitar técnicas no perturbativas ca-
paces de llevar a cabo una resumacion de la expansion quiral a energias superiores mante-
niendo el poder predictivo de la teoria.

Para conseguir tal objetivo se hardn uso de resultados muy generales procedentes de la
Teoria de la Matrix-S que seran presentados en el capitulo primero.

En el segundo capitulo se llevard a cabo un repaso somero de xPT [4, 5] haciendo hin-

I Existe no obstante un teorema que remite la solucién de este problema a demostrar que QCD es
confinante en el limite quiral. Designando por N el nimero de sabores de quark sin masa en el Lagrangiano
de QCD y por N, el nimero de colores, el teorema puede ser enunciado como sigue: Si Ny > 3, N. >3 y
supuesto que los quarks estén confinaddos (no hay objetos fisicos con color), la simetria quiral SU(Ny), X
SU(N¢)r x Uy (1) se rompe necesariamente a su subgrupo diagonal Uy (N¢) generado por las corrientes
vectoriales [3]
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capié en aquellos aspectos que se utilizaran a lo largo del trabajo, como son los lagrangianos
quirales Lo y L4 asi como la introduccién explicita de resonancias con spin<1 siguiendo
el trabajo ref. [7]. Un aspecto muy interesante en la anterior referencia es la saturacién
por parte de las resonancias de los contratérminos que aparecen en L£4. Dicho concepto,
anticipando resultados del capitulo 6, se discutira prestando atencion especial al caso de
las resonancias escalares. Se vera que las resonancias escalares que conducen a dicha satu-
racion de los contratérminos quirales no son las mas ligeras sino las que corresponden a las
del siguiente nonete que aparece con una masa estimada de 1.2 GeV. También se discutira
como el primer nonete escalar, con una masa < 1 GeV, tiene un origen dinamico, fruto
esencialmente de la unitarizacion de las amplitudes chirales de orden mas bajo. Con ello se
pone de manifiesto la importancia que las correcciones de unitariedad tendran para la onda
S con isospin(7) 0, 1y 1/2. Asi quedaria resuelto un problema cuyo origen tiene mucho que
ver con el Modelo Sigma Lineal. Este es un modelo particular de realizacién de la simetria
quiral en el que junto a los piones se introduce una particula escalar, o, con el mismo nivel
de “elementariedad” que los piones. Dicha particula presenta una masa reducida, de unos
500 MeV, dificil de entender a partir de su repercusién en los contratérminos quirales y de
otros modelos inspirados en QCD, los cuales predicen una masa para la primera resonancia,
escalar de alrededor de 1 GeV [8]. Veremos, que dicho mesén o, tipicamente reclamado
por los modelos de potencial N-N y en anélisis de los desfasajes de 7m, no es la sigma del
Modelo Sigma Lineal. En contra, se trata de una resonancia pidnica y que por tanto no
tiene el mismo nivel de “elementariedad” que los piones.

En el capitulo tercero se discuten ciertos aspectos generales con respecto al concepto
de resonancia. Tras introducir el concepto de una Breit-Wigner se discuten algunas de
sus limitaciones que surgen cuando hay presente un background significativo o cuando
la resonancia se acopla con un canal cuyo threshold estd muy préximo a la masa de la
resonancia. Todos estos aspectos tienen una realizacion practica en el controvertido sector
escalar.

En el cuarto capitulo se discute el Método de la Amplitud Inversa (IAM), comenzando
propiamente con el material original de esta memoria. Dicho método se basa en el de-
sarrollo de la inversa de la Matriz-T a partir del desarrollo quiral de dicha matriz. Este
procedimiento presenta la ventaja de que cuando la amplitud T tiene un polo su inversa
solo tiene un cero que obviamente no presenta ningin problema para un desarrollo en
serie. También tiene la ventaja de que dicho método es unitario a todos los 6rdenes en
el desarrollo quiral. Estas técnicas se aplicardn a una amplisima gama de procesos de
colision de dos mesones describiéndolos con notable éxito hasta una energia de unos 1.2
GeV. También se vera como dicho método es capaz de generar las resonancias observadas
experimentalmente como son: f3(980), a(980), p, K*, 0, £ y una singularidad préxima al
meson ¢. Seguidamente, se estudiaran las posiciones de los polos asociados a las anteriores
resonancias y las anchuras parciales de desintegracién de las mismas.

En los dos siguientes capitulos se emplea el método N/D [9] para llegar a una amplitud
unitarizada a partir de xPT y su extension para incluir campos resonantes explicitos. En
el capitulo quinto se introduce el método N/D y se aplica para discutir tanto los canales
vectoriales con =1y 1/2 como los escalares con =0, 1, 1/2. Para la onda P se llega a las
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bien conocidas conclusiones de VMD. En el caso de la onda S el estudio es especialmente
valioso para la zona de energias menores que 1.2 GeV donde se incluyen todos los canales
relevantes. Se observa la apariciéon, como se ha discutido arriba, de un primer nonete
escalar que englobaria las resonancias o, k, aq(980) y una importante contribucién a la
f0(980). El estudio se forzé hasta energias de unos 1.4 GeV observiandose la aparicién
de un segundo nonete que consistiria de un octete alrededor de 1.4 GeV y de un singlete
alrededor de 1 GeV que da contribucién a la resonancia fy(980). Sin embargo, el estudio
detallado del octete escalar con una masa de unos 1.4 GeV requeriria de la inclusion de
mds canales como son los 47 para I = 0y el canal de K7’ para [ =1/2.

Este es uno de los objetivos planteados en el siguiente capitulo donde se estudiaran la
onda S con I = 3/2 y 1/2 introduciéndose en este tltimo caso, junto a Kn el canal de
Kn'. Asimismo se ampliara el estudio llevado a cabo en el capitulo quinto para permitir la
inclusién de forma perturbativa de los cortes no fisicos a O(p*). Este estudio corrobora al
anterior pues da lugar a la apariciéon de un meson  en una posicion semejante a la obtenida
en capitulo quinto y a la necesidad de una resonancia K perteneciente a un octete escalar
con una masa desnuda entre 1.3-1.4 GeV. Por otro lado, las constantes de dicho octete
escalar y su masa son tales que conducen al concepto de saturaciéon de los contratérminos
quirales de £, en acuerdo cualitativo con la ref. [7]. Cualitativo porque en dicho trabajo
se abogaba por un nonete escalar con una masa de un 1 GeV que incluyese la a((980) que
seria algo asi como la p para el nonete escalar. Veremos que esta prescripcion no es la
correcta sino que la a¢(980) pertenece a un nonete escalar subleading en large N, mientras
que el nonete escalar que se mantendria en large N, tendria una masa de unos 1.2 GeV.
En este capitulo se fija el valor de las constantes de acoplo del nonete escalar en large N,
a partir de la anulacién de los factores de forma escalares de Kn, Kn y Kn' en el infinito
dando un valor adecuado también desde el punto de vista fenomenoldgico tal y como se ha
discutido.

Finalmente en el capitulo siete se abordan ciertos procesos electromagnéticos en los que
las correcciones de interaccién de estado final resultan decisivas. Se discuten los factores de
forma escalares y vectoriales de w7 haciendo uso de la ecuaciéon de Omnes y de los resultados
del capitulo 4. También se aborda de una forma original el problema de vy —meson-meson
con un excelente acuerdo con la experiencia. Utilizando el mismo tipo de aproximacion se
estudian diversos procesos de desintegracion del mesén ¢ relevantes para la fisica que se
pretende detectar en DAPHNE y con el detector SND en Novosibirsk. Este estudio se ha
visto corrobado por recientes medidas llevadas a cabo por este ltimo grupo experimental.

Para mayores detalles se presenta el siguiente material.



Chapter 1

Elements of the S-Matrix Theory of
Strong Interactions.

In preparing this chapter I have made extensive use of three very nice and good books
[10], [11] and [12]. Further details on any particular subject can be found in these references.

1.1 Free particle states.

From the beginning we are going to consider just the scattering of hadrons without
spin, mesons. Let |m,p’> denote the free state of one meson with three-momentum p’ and
mass m. The relativistic invariant scalar product of two such states is

<p',m|m,p >= (2r)*5® (5 — §")2p° (1.1)

where

P = Vi + 72 (1.2)

is the energy of the particle.
From these mono-particle states we can construct multi-particle ones just by doing the
direct product of the former states

|m17ﬁ1; mQ:ﬁ?; mnaﬁn >= |m17ﬁ1 > ®|m27ﬁ2 > Q... |mn7ﬁn > (13)

In this way, we generate a n free particle state such that the i, particle has mass m;
and three-momentum p;. Eq. (1.1) fixes the scalar product of the multiparticle states, eq.
(1.3), to be

n
< M, P - M2, Py M, P, Prs Mg, Pas . My, >= H(QW)32P? 5(3)(15; 73 (14)
i=1
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In the case of two particles, it is interesting to work out explicitly eq. (1.4) by noting
that

(21)° 49 p3 6@ (B = 51) 8 (7 — 75) = (2m) "6 (P —P") (20)? 4 W 5] 7' 6(Q — ) (L.5)

where P and P’ are the total four-momenta of the states |mq, p1; ma, po > and |my, p'; mo, 5 >
respectively, W is the total energy in the center of mass frame(c.m.), |p] is the modulus
of the three momentum of the particles in the c.m. and €2, Q' are the polar angles of the
three-momenta p; and p’| in the same frame.

From eq. (1.5) the standard separation between the free motion of the c.m. and the rest
of variables attached to the relative motion of the particles can be seen. This separation
is in fact independent of the number of particles and gives rise to the concept of phase
space. For the state |mq, p1; ma, Do; ... My, Dy, > it is given by

o= || H et 9P - ) (1.6

where the integration is done with respect the total four-momentum Y., p; and dQ rep-
resents an infinitesimal of phase space.
From eq. (1.5), the phase space for a two particle state results:

a2 1pi

Q=7

(1.7)

in terms of the c.m. variables.
In the following we will omit the mass m of a particle in the labelling of its state. It
will be understood that the state |p; > will have a mass m,.

1.2 The S-Matrix and the T-Matrix. Unitarity (I).

Let us consider the scattering process of the ingoing free state |i > to the outgoing one
|f >. The probability amplitude will be

< fIS)i >= Sy (1.8)

where S is the evolution operator. Due to the Lorentz invariance, the matrix element S;y,
regarded as a function of the states |i > and |f >, is a scalar under Lorentz transformations.
On the other hand, since the total probability of finding the state |¢ > in any possible final
state | f > must be 1, the S-operator must be unitary. Thus,

SST=81S=1 (1.9)

Because of translation invariance, the scattering process does not affect the total c.m.
motion. In this way, one can write the matrix element S;; as
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< fIS]i >= (2n)*6W (P; — Pi) < af|Spla; > (1.10)

where |a; > and |ay > refer to the states |¢ > and |f > after eliminating the global c¢.m.
motion. A short way to write eq. (1.10) is by expressing the S-matrix as the direct product

S=1®Sp (1.11)

and then eq. (1.9) also implies that

SpSh=8LSp=1 (1.12)

for the evolution operator Sp which only connects states | > with the same total four-
momentum.

The process |¢ >— |f > will have in general two ways of occur: with or without
interaction. To make explicit such separation, the T-matrix is defined as:

S=1—iT (1.13)

From eq. (1.11), T may also be written as the direct product:

T=1I11Tp (1.14)
and then

Sp=1I—iTp (1.15)

The unitarity requirements given by eqs. (1.9) and (1.12), when applied to T" and Tp,
respectively, imply

T-T' = —iT'T
Tp—T, = —iTLTp (1.16)

Including a resolution of the identity among 7" and T in the right hand side (R.H.S)
of the first of eqs. (1.16), we have

< fIT)i > — < fIT")i >= —12/ [ W] < fITa >< a|T)i > (1.17)

with n, the number of particles in the intermediate state |a >. Each one of these states
la >, which have the same quantum numbers than the final or initial ones, is called a
channel. After removing a common factor (27)*6)(P; — P;) in both sides of eq. (1.17),
one finds
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< ap|Tpla; > — < ozf|T7)L|ai >= —iZ/an < af|T7];|oza >< a|Tpla; > (1.18)
a

where dQ, is the phase space for the state |a >, eq. (1.6). In the former equation it is
sufficient to sum over those states |a > whose threshold is lower than P, otherwise dQ,
will be zero because of the §(P? — Y 7 p?) in eq. (1.6).

1.3 Partial wave amplitudes. Unitarity (II).

We can represent the scattering of two mesons, both in the final and initial states, as:

a(p1) + b(p2) — c(p3) + d(ps) (1.19)

with p; the four-momentum for the 7;, particle. If the three-momenta of the initial particles
are given, there will be six degrees of freedom for the former process corresponding to the
final three-momenta, p3 and py (we assume that all the masses are known). However,
because of the conservation of the total four-momenta, the number of degrees of freedom
is reduced just to two, for instance, the angles (6, ¢) defining the c.m. direction of the
three-momentum of particle ¢. On the other hand, taking the z-axis along the initial c.m.
three-momentum of particle a, rotational invariance requires that 7 will not depend on
¢. To see this, note that

lap > = 10,90 >=R,(¢)]0,0 >
la; > = 0,0 > (1.20)

with R(¢) a rotation around the z-axis. Thus,

Tp(0, )iy = <0,9|Tp|0,0 >=<0,0|RL(¢)T[0,0 >=< 6,0[RL($)TpR.(¢)|0 >=
< 0,0|Tp|0,0 >= TP(Q,O)U (121)

where we have used the rotational invariance requirement

RIUA)TPR.(¢) = Tp (1.22)

In eq. (1.21) we have written the full expression Tp(f, ¢);s to distinguish from the
operator Tp itself. In the following, we will not have such possible source of ambiguity and
then we will denote simply by Tp(€) the matrix element among two states of two mesons,
which only depends on 6 because of eq. (1.21).

Making an expansion of Tp(f) in terms of the Legendre polynomials Pr(6), we have:
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Tp(0) = i(u + 1) Py (cos 0)T%(s) (1.23)

L=0

where T} (s) is called the partial wave amplitude with angular momentum L, and s = P? =
W?, which is the only scalar we can form from P.
The inverse of eq. (1.23) is:

1 /1
TL(s) = 5/ d cos 0P (cos0)Tp(6) (1.24)
-1
The unitarity requirements upon a partial wave amplitude 77, (s) follows from a partial
wave decomposition of both sides of eq. (1.18). In this way, below the threshold of
intermediate states with more than two particles, one has, using also eq. (1.7):

—

Tu(s)ig = Ti(8)ig = =i Y To()uTi(8) i (1.25)

where |py| is the modulus of the c.m. three-momentum for the state |a >. Due to time
reversal invariance, T7,(s)as = T1(5)gq, (see for instance pag. 231 of ref. [11]). Thus,

* |ﬁa|
Im T, (s) = — Z T1()iaTL(5)as g 7 (1.26)
In a matrix notation, eq. (1.26) can be written as
Im Ty (s) = =T} (s)p(s)TL(s) (1.27)
with p(s) a diagonal matrix with elements
i
p(s)ij = i Jij (1.28)

C8TW

If we isolate p(s) from eq. (1.27), taking into account that Im Ty, = (Ty, — T} )/(2i), one
has

o= (@ [ 7] @) = ) - ] (1.29)

From where a well known and important result follows,

ImT; ' (s) = p(s) (1.30)

This result establishes that all the dynamics of a scattering process of two particles,
both in the initial and final states, is contained in the real part of the inverse of the partial
wave amplitudes, since the imaginary part is fixed by unitarity. This is the basis for the
K-matrix approach, which is usually defined as:
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T, =[K '+ip]” (1.31)
hence,

K™ '=Re(T;") (1.32)

For energies below the first inelastic threshold, the sum in eq. (1.26) reduces only to
the elastic term, and then

ImT;1 = Pl 1.
m7; =~ (1.33)
If we write

T(s) = — WV i8)e in 6(s),, (1.34)

171

eq. (1.33) follows immediately. The quantity d(s); is known as phase shift for the
corresponding partial wave amplitude. The magnitude Sy is usually defined as

. |p 240
=1—71——T; = e**L 1.
S[ 7 W L (& ( 35)

and then S; ST = 1.

The above formulae can be easily generalized to the case of several coupled channels.
As before, we use a matrix notation. Requiring the matrix S; to be symmetric, because
of time reversal, one has

Sy =1 — 2ip"*Typ'/? (1.36)
From eq. (1.27), it follows that

Sp-St=81.5, =1 (1.37)

Just another way to state unitarity for partial waves amplitudes.
On the other hand, the matrix element (SLS};)Z-Z- is given by:

[(Sp)arl” + 1(Sn)i2l? + -+ 1(Sp)al* + - + [(Sp)an> = 1 (1.38)
Then, |(SL)i| < 1, so that, in general,

(SL)“ = ni€2i6i (139)

where we have suppressed the subindex L in § because it is clear to which partial wave we
are referring. For the elastic case, eq. (1.35), n = 1.
For a two channel process, imposing eq. (1.37), the matrix Sy, can be written as:

2101 (1 _ n2)1/2 ,i(81402)
_ ne ’L(l n ) e
S, = ( 2-(1 _ 772)1/2ei(61+62) 776%62 ) (1_40)



1.4. Crossing and Analyticity. 11

Egs. (1.36), (1.39) and (1.40) will be used to extract phase shifts and inelasticities in
terms of the T-matrix.

To end this section let us see the modifications to eq. (1.25) when some of the states cor-
respond to identical particles, for instance, 7°7% nn or two pions in the isospin formalism.
The differences arise because the phase space for such identical particles states must be
divided by two since a direction (6, ¢) cannot be distinguished of its inverse, (7 — 6, ¢ + ).
Hence, for these states instead of the phase space factor p,/(87W) we will have p,/(167W).
An important aspect to realize about eq. (1.25) is that an intermediate state appears in
two amplitudes at the same time in the sum of this equation. Hence, we can maintain
the same phase space for all the states but dividing by (v/2)® each partial wave, with «
the number of identical particle states that appear in the amplitude. For instance, o = 2
for the scattering of 7w — 77, @ = 1 for mm — KK, o = 0 for K — K= and so on.
Another advantage of considering this normalization is that all the formulae relating phase
shifts and inelasticities to the T-matrix will be the same since they are direct consequence
of unitarity and the normalization of the states, which have remained the same both for
identical /non-identical particle states. However, one has to keep in mind such normaliza-
tion factor when comparing with other experimental data in order to remove it, if it is
necessary. In this way eq. (1.24) transforms to

Tys) = — / " deos Py (cos 8) T (6) (1.41)

1

1.4 Crossing and Analyticity.

Let us consider once again the scattering of two-meson states, given by eq. (1.19).
Taking into account that p? = m? and the conservation of the total four-momentum, we
can form only three Lorentz scalars from the momenta p;. These are the well known
Mandelstam variables s, ¢t and u, given by:

s = (m +p2)2 = (ps +p4)2
= (pl - p3)2 = (p2 - p4)2
u = (p— p4)2 = (p2 — P3)2 (1.42)

the variable s was introduced already after eq. (1.23).
Thus, the T-matrix, which is just a Lorentz scalar, will be a function of these variables.
However, only two of the three Mandelstam variables are independent since:

4
stt+u=» m; (1.43)
=1

The process in eq. (1.19) is called the s-channel because the s Mandelstam variable is
the square of the total energy in the c.m., as we have already seen.
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In order to introduce the concept of crossing, it is worth representing the scattering in
eq. (1.19) by Fig. 1.1:

a C

N // %

b \d
4, a,

Figure 1.1: Crossing symmetric diagram for a two particle scattering.

where all the momenta are ingoing and the bars indicate that the antiparticle has to be
considered, in order to obtain the quantum numbers of the vacuum. We redefine the
Mandelstam variables as

s = (q+ (J2)2
= (¢ +@)°
u = (q+q) (1.44)

We now take the convention that the four-momentum for the outgoing particles is the
same but with opposite sign than the one of their antiparticles in Fig. 1.1. The four-
momentum of the ingoing particles will be the same than in Fig. 1.1. As a consequence,
eqs. (1.42) and (1.44) are equivalent, since ¢; = p1, ¢2 = D2, g3 = —p3 and ¢4 = —py.

We can also consider the particles b and d in Fig. 1.1 as outgoing ones, so that we will
have the process:

a(p1) + &(=ps) = b(=p2) + d(pa) (1.45)
but now
s = (p1— p2)2
= (p1+p3)?
u = (p—p)? (1.46)

Hence, s, t, u plays for the process (1.45) the same role than ¢, s, u in the process (1.19).
Since for (1.45), the square of the total c.m. energy corresponds to the ¢ variable this
process is called the t-channel.
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In analogous way, the u-channel process is given when considering particles ¢ and b as
the outgoing ones.

a(p1) + d(—ps) — c(ps) + b(—p2) (1.47)
with

s = (m— p2)2
= (pl - p3)2
u = (p1+ps1)’ (1.48)

As a consequence of eqs. (1.42), (1.46) and (1.48), the Mandelstam variables s, ¢ and u
will have a different range of values in the physical region of the s-, t- or u-channels. The
physical region for each channel will correspond to

Wa: Z mg1 + Mmy2

-1 <cosb, <1 (1.49)

with the subindex z indicating any of the three channels.

Since the three physical regions are non-overlapping there is no reason why we cannot
refer to the three physical amplitudes as a single amplitude 7T'(s, ¢, ) which is now defined
over all three physical regions and which takes the appropriate values in each one. This is
just a question of convention or terminology. But it becomes full of physical significance
when we introduce the hypothesis that this amplitude T'(s, ¢, u), initially defined on the
three disjoint physical regions, permits an analytic continuation which apart from certain
specific singularities allows it to be defined over the whole of the s, ¢ and u complex planes.
This is the content of the so called Mandelstam Hypothesis [13]. To accomplish this,
one requires a knowledge of the singularities of T'(s,¢,u) as a function of two complex
variables. These singularities appear always that one of the variables s, ¢ or u are greater
than the threshold of an intermediate state. If this state is multiparticle, the singularity
will be a branch point or a simple pole if the state is monoparticle. For certain mass ratios
one encounters anomalous singularities, that is, branch points not determined simply by
the masses of the intermediate states ref. [14]. All the problems discussed in this work are
believed to have normal singularities, consistently with the information obtained from the
use of the effective Lagrangians.

The Mandelstam Hypothesis has not been derived from a clear set of physical principles
coming from Quantum Field Theory. However, all the Feynman diagrams analyzed so far,
fulfill the Mandelstam representation.

For partial wave amplitudes the situation is essentially the same than for the full ampli-
tude since the former ones are obtained by projecting the latter over a certain partial wave,
eq. (1.24). Hence, a partial wave amplitude will have, for s > (m,; + m)?, the ‘physi-
cal cut’ also called ‘right hand cut’ or ‘unitarity cut’, due to the presence of intermediate
states with the same quantum number than the s-channel. It has also poles coming from
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resonances or bound states and the ‘unphysical cuts’ which appear from the projection
of the physical cuts in the crossed channels, that is, t- or u-channels. For instance, for
the elastic 77 scattering it is easy to see that the unphysical cut appears for s < 0. This
is a general feature of the unphysical cut for the scattering of particles with equal mass,
that is, it appears for s < sp. This is why, in this situation, the unphysical cut is also
called ‘left hand cut’. As a consequence of the Mandelstam Hypothesis it follows that the
partial wave amplitudes must satisfy hermitian analyticity, that is, Tr(s) = T} (s*). This
is so, because in the real s-axis there is a segment where T7(s) has not cuts. For the 77
scattering this happens for 0 < s < 4m2, with m, the mass of the pion in the isospin
limit. Thus, the hermitian analyticity follows as a consequence of the Schwartz theorem
for analytic functions of one complex variable.

From eq. (1.30) it is clear that a partial wave amplitude must have several Riemann
sheets as a function of s due to the multivalued relation among p and s. For a two meson
state, with masses m; and ms, this relation is:

V(5 = (m1 +mg)?) (s — (m1 — my)?)
2V/s

and we have a cut for 0 < s < (m; — my)? and s > (m; + mz)?. For a two particles with

the same mass only the last cut survives. The physical sheet corresponds to the plus sign

in front of eq. (1.50). When the sign changes we are in an unphysical sheet.

In the physical region, there can be only poles along the real axis and below the lightest
threshold (bound states). Note that a pole on the real axis and above the first threshold
violates unitarity, eq. (1.27), since it would imply the equality oo = oo? which is not
possible. In the unphysical sheets there can be poles above/below threshold. If the pole
is above a threshold it will be unstable and will have also an imaginary part due to its
width. A simple picture of why poles off the real axis must be on the unphysical sheets can
be obtained from the inverse of the propagator of a resonance present in a Breit-Wigner
representation, which is valid for energies close to the mass of the state:

Pl =+

(1.50)

s — M}y + iMgIL(s) (1.51)

with T'(s) the width of the resonance for s = M3%. It is important to note that [ oc p?/*1,

where J is the spin of the resonance. If s — M3 =+ ie, with € > 0, the term iMzI" develops
an imaginary part in the physical sheet which goes as +iMzT'(M3), so that it cannot cancel
the imaginary part of s since both have the same sign. Only if we are in the unphysical
sheet, the sign is opposite and the cancellation is possible.



Chapter 2

Effective Chiral Lagrangians.

In this chapter we want to give a general overview over some aspects of Chiral Pertur-
bation Theory(xPT) [4, 5] and the extension of the formalism to the intermediate energy
region by including explicit resonance fields with spin < 1, ref. [7]. In preparing this
chapter I have made large use of the report [15].

2.1 Chiral Symmetry.

The QCD Lagrangian with massless u, d and s quarks coupled to several external
sources reads:

Locp = Lyop + iqD" g + 77" (vy + ¥5a,)q — 3(s — iv5p)g (2.1)

where E%CD is the part of the QCD Lagrangian for the heavier quarks ¢, b and ¢ and
gluons, v, a,, s and p are the vector, axial, scalar and pseudoscalar external sources, D,
is the covariant derivative for the SU(3)-color gauge symmetry and

u
g= | d (2.2)
s

is a vector in the three dimensional flavour space.
The Lagrangian eq. (2.1) exhibits a local SU(3), ® SU(3)x flavour symmetry under
the following transformation rules

1 1
q — gR§(1 +75)q + 9L5(1 — 5)q (2.3)
vpEtay = grolv, £ au)g}Lz,L + 1 9r L0 g;rz,L
s+ip — gr(s+ ip)gz
grr € SUB)rL

15
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This chiral symmetry, which should be rather good in the light quark sector, is not
seen in the hadronic spectrum. Although hadrons can be classified in SU(3)y = SU(3) g1
representations, degenerate multiplets with opposite parity are not observed. Moreover,
the octet of the lightest pseudoscalar mesons (m, K, 1) can be understood if the chiral
SU(3),®SU(3) g symmetry spontaneously breaks down to SU(3)y. Then, according to the
Goldstone theorem [16] an octet of pseudoscalar massless bosons appear in the theory, since
they will have the same quantum numbers as the broken generators of SU(3)4 = SU(3)g_1L-
One thus expects that (7, K, n) are to be identified with this octet of Goldstone bosons.

Furthermore, Chiral Symmetry is also explicitly broken by a mass term in eq. (2.1)

—qMyq (2.4)

when fixing the scalar source s(z) = M = diag(m,, mg, ms). Because of this term the Gold-
stone bosons acquire a small mass. On the other hand SU(3)y in the hadronic spectrum
is an approximate symmetry because m; is much larger than m,, or my.

2.2 Chiral Perturbation Theory.

To take advantage of the mass gap separating the lightest pseudoscalar octet from
the rest of the hadronic spectrum we build an effective field theory containing only the
Goldstone modes. We collect the Goldstone fields in a traceless SU(3) matrix

1.0 1
(A
@:ﬁqs: T —ﬁﬂ +%778 K (25)
K- K° 2y
NG 8

where )\; are the Gell-Mann’s matrices with Tr(\;A;) = 2J;;. From this matrix one has a

non linear realization of the chiral symmetry through U(¢) = ¢V2®// with f a constant.
This matrix transforms linearly under SU(3), ® SU(3)g as:

U(¢) = grU(9)g}, (2.6)

and hence, the Goldstone boson fields ¢ transform in a non-linear form.

The effective Lagrangian will be constructed as a power expansion series in terms of
the external Goldstone momenta and the quark matrix mass. The lowest order chiral
Lagrangian invariant under Lorentz transformations, parity and charge conjugation with
only two derivatives and linear in the quark masses is [5]

2

EQ:Z<DMUTD"U+UTM+MTU> (2.7)
where <> means SU(3)-flavour trace and

M = 2By(s +ip) (2.8)
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with By a constant and the covariant derivative
D, U =9,U —ur,U+iUl, (2.9)

where 7,(l,) = v, + (—)a,, respectively.

Fixing s(z) = M and p(z) = 0, the M term in eq. (2.7) gives rise to a quadratic
pseudoscalar mass term plus additional interactions proportional to the quark masses.
This is the reason why in xPT the quark masses are considered as O(p?). In the isospin
limit with m = %, the following relations arise

m2 = 2By (2.10)
mi{ = (ﬁ1+ms)BO

2
mis = g(m + ZmS)BO

satisfying the Gell-Mann[17]-Okubo[18] mass relation.

Bm%8 =4m3 —m? (2.11)

The meaning of the constant f can be achieved when calculating from the lowest order
Lagrangian, eq. (2.7), the axial current. Then f results to be the pion decay constant in
the chiral limit, that is,

=TI+ 0(my) (2.12)

The next to leading order Lagrangian, L4, is constructed with the same building blocks
than Lo, namely, egs. (2.3), (2.5), (2.6) and (2.9). Preserving Lorentz invariant, parity
and charge conjugation one has:

Ly = Ly {8,U10"U) + L, (8,U18,U) (a*U'8"U) (2.13)
+L3 (9,UT0U8, U U + Ly (8,U'0*U) (UM + MIU)
+Ls (9,UT0MU (UM + MIU)) + Le (UM + MU )?
+L: (UM — MUY’ + Ly (MTUMIU + Ut MU M)
+H, (Fru F& + Fppw ) + Hy (MIM)
In L4 there is also the anomalous term [21, 22]. We will come back to this point in

chapter 6.
In the former equation we have also included the strength tensor:
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Ry O, O 1 (2.14)

FEY = oFr¥ = 0" rk —i[rk r"]

In the £, the terms proportional to H; and H, do not contain the pseudoscalar fields
and are therefore not directly measurable. Thus, at O(p*) we need ten additional coupling
constants L; to determine the low-energy behaviour of the Green functions. These couplings
have an infinite plus a finite part. The infinite part cancels with the infinities from loops,
so that at the end only the finite parts, L}, remain. In xPT the MS-1 scheme is the usual
renormalization scheme. At the present time these L] constants have to be fitted to the
phenomenology. In general, the number of free parameters increases drastically with the
order of the chiral expansion so that for L there are more than one hundred free couplings.
This implies that the predictive power of the theory is rapidly lost with higher orders.

On the other hand, the convergence of the xPT series is restricted to low energies,
typically for /s < 500 MeV, although this upper limit depends strongly on the process to
be considered. Note that the lightest well established resonance, the p(770) has a mass of
770 MeV. This resonance introduces a pole in the T-matrix which cannot be reproduced
by a power expansion. Thus, the masses of the heavier states not included in eq. (2.5),
put a clear upper limit to the xPT series and also give us the scale A, pr over which the
xPT power series is constructed

4 2
o) »p (2.15)
O(?) A?(PT

with Ay pr =~ M, =~ 1 GeV.

One can also obtain an estimation of A, pr by taking into account those contributions
coming from loops when allowing a change in the regularization scale by a factor of O(1)
[6]. The result is that

AxPT S 47Tf7r ~ 1.2 GeV (216)

In the next section we discuss how to include explicit resonance fields compatible with
chiral symmetry and its breaking. Their contributions to the low energy constants L; is
also discussed.

2.3 Resonances and Chiral Symmetry.

Following ref. [7] we include heavier hadron states than the lightest pseudoscalar mesons
(r, K, n). The former states will comprise vector (V'), axial (A), scalar (S) and pseu-
doscalar (P) octets and scalar (S7) and pseudoscalar (P;) singlets. The exchange of these
resonances between the Goldstone bosons contains the resonance propagators which for
p? << M% can be expanded as
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1 -1 p2 p2 2
AR TR 1+W+ az) (2.17)

giving rise to contributions which should be embodied in the xyPT counterterms. How-
ever, from the equation above it is obvious that a resummation to all orders of such local
contributions is obtained including the explicit resonance fields.

The interaction Lagrangian of the octets and singlets of resonances with spin<l to
lowest order in the chiral expansion are given by [7]:

Vector Octet, JPC _ -

F ZGV
<Vl > +— < Vyutu” > (2.18)
272 M V2
Axial Octet, JPC = 1++
2{ <At > (2.19)

Pseudosalar Octet, JPC _ o+

idym < Px_ > (2.20)
Scalar Octet, JPC _ g++
cq < Suyut > +e, < Sxg > (2.21)
Scalar Singlet, JPC _ o++
g S <uyut >+cp S1o < x4 > (2.22)
Pseudoscalar Singlet, JPC o+
idp Py < x_ > (2.23)

In matrix notation
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p° + * +
e oK
Vi = S B (2.24)
K* — K*O —2ws

V6 uv

and similarly for the rest of the octets. From eq. (2.18) and (2.19) the V' and A resonances
only couple at lowest order as octets. In the former equations the vector and axial octets
are included as antisymmetric tensor fields, such that if |[W, p > represents a vector or axial
resonance with momentum p and mass M, then

<O[Wu|[W,p >=i M~ [pue(p) — pveu(p)] (2.25)
with €,(p) the polarization vector of the resonance state. The propagator is given by:
M2

M2 —p? — e

In the Lagrangians given above we have also used:

(90 Go (M? — D) + Gup Do Do — Guo PvDp — (0 <3 V)] (2.26)

u, = ' D,Uu’ = uL (2.27)
xe = ulMul +uMly
W= uFPul + Wt PRy

In ref. [7] the O(p*) contributions which appear through the exchange of the above
resonances are also studied. Note that this is the first order to which resonance exchange
contributes to the xPT series since their couplings to the Goldstone fields are O(p?).

At O(p?) the resonance exchange gives contribution to all the terms of £4 in eq. (2.13).

The V exchange generates contributions to Ly, Ly, L3, Lg and L1g, while A exchange
contributes to Lig:

v o Gy v v
1% _ FyGy vV o 1%
Ly = 2 M2 Ly = —61y (2.28)
F2 F2
LV+A _ _ v + A
10 4MZ T 4AM3

with My the V octet mass in the chiral limit which is approximately given by the mass
of the p [7]. Fy and Gy are obtained from the decay p — e’ e~ and the electromagnetic
radius of the pion [7], respectively. F4 and M4 are deduced from the Weinberg’s sum rules
[23]. The values are Fyy = 154 MeV, Gy = 53 MeV, My = M, = 770 MeV, F4 = 123
MeV and M4 = 968 MeV.

The resulting values of the L; couplings [7] are summarized in Table 2.1, which compares
the different resonance exchange contributions with the phenomenologically determined
values of the L} (M,) at the scale u = M,. The results shown in the table establish a chiral
version of vector (and axial-vector) meson dominance: whenever they can contribute at
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all, V and A exchanges seem to completely dominate the relevant coupling constants, as
it is clear when summing columns three and four of the former table and comparing with
the experimental values.

Making use of additional QCD inspired assumptions of high-energy behaviour, such as
unsubtracted dispersion relations for the pion electromagnetic form factor, the V' couplings
can be expressed in terms of f; [24]:

Fy = V2f; (2.29)

fx
Gy = —
v /o
The former relations are calculated without loop contributions as it should be in large
N. QCD, where N. means number of colours. Applying the Weinberg’s sum rules we obtain
from the equation above the parameters of the axial resonances

Fy = fr (2.30)
My = V2My

Note that the deviation between the values in eqs. (2.29) and (2.30) and the values
given above are about a 20 — 25%. This is the kind of deviations one can expect in values
given from large N, QCD. The values of the L; couplings using eqgs. (2.29) and (2.30) are
shown in the last column of Table 2.1.

The situation for the scalar sector is much more complicated. In fact, there is not even
a consensus neither upon which states form the lightest scalar nonet nor how many states
there are below 1 GeV. One of the aims of this thesis is trying to bring light into this
problem. As we will see in section 6, the contributions from the scalar resonances to the
different L; couplings are those needed to saturate the values of the L} (A,), as claimed
in [7]. However, the scalar nonet which is used in [7], with a mass around 1 GeV and
containing the a((980) resonance, is not the proper one. The right scalar octet appears
with a mass of around 1.2 GeV and couplings which can be determined in large N, from
the vanishing of the scalar K7, Kn and Kn' form factors at infinite [103]. The values are:

C4 = Cm = "= ~ 46.2 MeV (2.31)

The scalar octet considered in [7], with the a¢(980) resonance, originates now from the
interactions between the pseudoscalar mesons, that is, it corresponds to dynamically gen-
erated resonances from a certain set of strengths, see sections 3.1 and 5.4. In this way,
this octet disappears in the large N, limit.

The contribution of S+5; to the LI are:

S+5S1 a3 c S 7 S+ cqc €4 Gy S cqc
L — _ d2 + al2 L2 = d2 L — _ % mo| d o L2 =4 m
1 6MZ T 2MZ 3 7 2M2 4 3M2 M3, 5 M2 939
2 =2 2 ( 3 )
LS+51 — _ Cm + [N LS — _ Cm
6 6M2 T 2M32 8 2M2

195)

1
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Table 2.1: V, A, S, S; and 7, contributions to the coupling constants L! in units of 1073.
The Total? column comes from eqs. (2.29) and (2.30) as explained in the text.

i | LI(M,) V. | A S | S| m | Total | Total?
1104£03] 06 0 1-02102| 0 0.6 0.9
2114£03] 1.2 0 0 0 0 1.2 1.8
3 -35+£11] -36 | 0 | 06| 0 0 -3.0 -4.9
4 1-03+£05 0 0 [-05]05] O 0 0
51 14+05 0 0 |15 0 0 1.5 1.5
6 1-02+03| 0 0 1-02102| 0 0 0
7 1-04%£0.2 0 0 0 0 -0.3| -0.3 -0.3
8 109+0.3 0 01070 0 0.7 0.7
9 169+07] 69 0 0 0 0 6.9 7.3
10 |-55£0.7]-100 40| O 0 0 -6.0 -5.5

The couplings of S, ¢4, and its mass, can be determined through large N, argumen-
tation, following [7]. In order to guarantee that for instance, Ly or Lg become zero in this
limit, since they are subleading constants, one needs:

Edze% G =S M, = My (2.33)
with € = £1 and ¢4, m given in eq. (2.31).

In section 5.4 the parameters of the scalar singlet are fitted to data and the values
obtained are compatible with the above ones, taking into account the level of precision
expected in a large N, estimation as already commented before.

The scalar contributions to the L} (M,) from eqgs. (2.31), (2.32) and (2.33) are given
in the fifth and sith columns of Table 2.1 with a mass of 1.2 GeV, see section 6.5. It is
worth to remark that these values have been determined with only one free parameter, the
mass Mg of the scalar octet fitted to data in section 6.5, since the couplings have been
fixed by eq. (2.31). The conclusions about the scalar contributions to the LI in [7] can be
maintained although, when taking also into account the findings of chapter 5, the scalar
nonet there proposed is incorrect.

The exchange of the 7; meson generates a sizeable contribution to L; [5, 7]:

2
L7 = _Qd}\nﬁ
m

(2.34)

The magnitude of this contribution can be calculated from the quark-mass expansion
of m and m;,, which fixes the 7, parameters in the large N, limit [7]: m,, = 804 MeV,

|Elvm| = 20 MeV. The final result for L7 is in close agreement with its phenomenological
value as can be seen in the seventh column of Table 2.1.



Chapter 3

Some Aspects about Resonances.

As it was explained in section 2, Y PT is unable to reproduce resonances which, on the
other hand, are an essential characteristic of the strong interactions in the intermediate
energy region, 1/s > 0.8 GeV. To overcome this difficulty two ways will be presented in
the following chapters:

1) In one of the methods one generates poles from the xPT expansion of the inverse of
the T-matrix instead of the T-matrix itself. This will give rise to the Inverse Amplitude
Method [25] generalized to coupled channels in [26].

2) The second one consists of the inclusion of explicit resonance fields as given in [7] but
at the same time developing a suitable unitarization method in order to compare directly
with data from the meson-meson scattering. This will be accomplished making use of the
N/D method [9, 27].

In both cases unitarity is fulfill to all orders in the chiral expansion. This is also an
important source for higher order corrections in the yPT series, especially for the S-wave
meson-meson scattering, as we will see along this thesis.

3.1 Resonances.

A striking feature of the experimental data is the frequent occurrence of peaks, bumps
or dips when the various cross sections are displayed as a function of energy. The most
familiar way to interpret these situations, is to suppose that each peak is due to a resonance
in a single partial wave, since resonances have well defined spin, and that the resonant phase
shift §y, increases rapidly through an odd-integral multiple of 7 at the resonance energy
(or mass). Clearly, for an elastic resonance this gives the required peak in the cross section

47

Otot N =5 sin?§;, (3.1)
p
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><Pl

<P

Figure 3.1: s; and s, are threshold branch points. P, P’ are resonance pole positions on the
unphysical sheet reached by crossing the cut from s;. Notice that the circle of convergence
of the series of eq. (3.3) includes a region of the physical sheet.

However, in many cases there is a significant amount of background which causes that
this description is over-simplified. For instance, in the case of the I=0 77 scattering one
has a dip instead of a peak in the cross section. In fact, the cross section almost vanishes
at the mass of the f,(980) resonance. This can be easily understood from eq. (3.1) taking
into account that the f;(980) appears over a soft and large background. The background
phase shift is around 7 which must be summed to the resonant phase shift, also 5. The
sum is around 7 radians, which according to eq. (3.1) gives a very small cross section.

From the point of view of Quantum Field Theory there is no fundamental difference
between a bound state and a resonance, other than the matter of stability. In both cases
they correspond to simple poles. However, as indicated at the end of section 1.4, while
bound states appear below the lowest threshold over the real axis in the physical sheet,
resonances are associated with simple poles in the unphysical sheets. Furthermore, since
partial wave amplitudes satisfy hermitian analyticity, 77 (s) = T} (s*), as we also saw in
section 1.4, poles in the complex plane occur in complex conjugate positions.

Consider a resonance of spin J associated with poles P, P’ on the unphysical sheet (sheet
IT). The positions P, P’ are shown on Fig. 3.1, although the diagram actually represents
the physical sheet, sheet II is reached by crossing the cut originating from the threshold
branch point s;. Since below the inelastic threshold Tt (s + i) = T}/ (s — i€), where the
supraindex /1 means that the amplitude is considered in the second sheet, the pole P is
much closer to the physical region which corresponds to s+ i€, with € > 0. In this way, we
disregard the conjugate pole P’. We denote the pole position by sp = sp — iy where v is
real an positive. To consider the physical effect of this pole we expand the product

h(s) = (s — sp) T(s) (3.2)

in a power series about the pole position s = sp.

h(s) = h(sp) + (s — sp)h'(sp) + ... (3.3)
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This series converges in the circle centered on sp that passes through the next nearest
singularity of 77, (s), which in the case shown in Fig. 3.1 is the threshold branch point s;.
The circle encloses part of the physical region and for v small enough we may assume that

h(s) ~ h(sp) (3.4)

for physical s near sg. This approximation leads to the Breit-Wigner resonance formula

h(SP)
Ti(s) ~ P (3.5)
Since,
- |h(sp)|? 1 |h(sp)*/sr
with
Y
SR

the width of the resonance which corresponds also to the width of the peak at half maxi-
mum. Also from (3.5) it is clear that dp,

(3.8)

passes through an odd multiple of 7 as s increases through sp.

So far we agreed with our original simple resonance picture. However, the fitting of a
narrow peak with a Breit-Wigner formula corresponds to the simplest extrapolation from
the physical region to the nearby unphysical pole. The extrapolation can be improved by
keeping more terms in the expansion of eq. (3.3). These terms correspond to the so called
background of the resonance. When the background is appreciable the actual observed
width of the cross section peak need not be I'; and the phase shift need not pass through an
odd multiple of 7 at precisely the resonance energy. This last situation is the corresponding
one to the o resonance in the mm scattering, see Table 5.1 in section 5.4. The width of
this resonance is as large as its mass and then there are many terms in eq. (3.3). In fact,
while the o pole is around 500+ 7250 MeV, the 77 phase shifts reach 90° around /s =~ 900
MeV as can be seen in Fig. 4.5.

Another fact which distorts the simple Breit-Wigner picture is the presence of a close
threshold to which the resonance couples strongly. To see how this effect arises let us
consider a single two particle channel. Then from eq. (1.31) we see that all the dynamics
is contained in the K-matrix. Since the branch point at s; is associated to the phase
space p, which is explicitly separated, the K-matrix does not contain this branching point.
On the other hand, the K-matrix contains the unphysical cuts of Ty and the threshold
singularities of the other channels with higher threshold. If we used coupled channels, the
K-matrix would not have these later singularities. Provided that the unphysical cuts are
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sufficiently distant, K ! can be approximated by a few terms of a power series expansion
about s = s;.

_ EUT S
pI" K pl" = a 1—|—§rp2-1—... (3.9)

This is called an effective range expansion (e.r.a), with a/(8m/s) the scattering length
and —8m\/sr the effective range. The factor |p]?L on the left hand side (L.H.S), allows for
the threshold behaviour of 7;,. It follows from eqgs. (1.31) and (3.9) that the effective range
approximation for the amplitude is

|pT*"

Ty =
L= a1+ %rﬁg + ip |p)*-

(3.10)

The resonance situation happens for a < 0 and r > 0. Indeed let us rewrite the former
equation as

) "
T, = — 3.11
L=y P2 —pr%2+ip|p)?2/r (3-11)
with
-9 -1 M2 _ 2 M2 _ _ 2
gp? = 220 (Mg = (ma 4 me)") (M = (m1 = ma)”) (3.12)

r 4 M3

the square of the c.m. three-momentum of the particles in the mass of the resonance.
Solving eq. (3.12) one obtains the resonance mass, Mg. Expanding p? around s = M3 up
to order s — M?%, we have

s— M3
4 M},

—

PP =pr°+ (Mp — (m? —m2)?) + ... (3.13)

Substituting this in eq. (3.11), after elementary algebraic manipulations:

8 |p|*" My/(Mf — (mi — m3)*)r

T, = 3.14
ET ST MR IS MM = f — B 1

Comparing with egs. (3.5) and (3.7) we see that
L(s) = p|o1* 8Mpy/(My — (mi — m3)*)r (3.15)

Note that we need r > 0 for T" positive and a < 0 to have pr? in eq. (3.12) also greater
than zero.

If the resonance is close to threshold the |p dependence in the width, recall the |p|
factor in p, makes it to be skewed towards higher energies. In particular, note that below
threshold ip in the former equation, is purely real and negative so that the above equation
behaves like a function close to a real pole. But when the threshold is open ip is purely
imaginary and it behaves like a Breit-Wigner with a width strongly energy dependent.

2L+1
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These aspects where discussed for the a((980) resonance in [28]. Note that the former
resonance appears very close to the K K threshold to which it couples strongly.

In the generation of a resonance from eq. (3.10), we have only required that ¢ < 0 and
r > 0. The dynamical reasons why this actually happens can be very different. Generally
speaking, one can distinguish two cases.

A) Presence of a preexisting resonance before unitarization.

As an example, consider the p meson. From [7] we can calculate easily the contribution
of the O(p?) plus the exchange in the s-channel of the p meson in the I = L = 1 7w
scattering, Fig. 3.2.

+

Oo(P?) P

Figure 3.2: Lowest order xyPT plus the exchange of the p meson in the s-channel.

We can identify the former real contributions as the K-matrix in eq. (1.31). Thus, we
have:

2p% , 2 sp?
372 s -
with fr = 92.4 MeV, the pion decay constant and M, = 770 MeV, the mass of the p meson.

The KSFR relation [29] establishes that from vector meson dominance (VMD) and chiral
Symmetry:

(3.16)

g5 =1 (3.17)
Then the K-matrix for the former process simplifies to

2p%2 M
325 M7

(3.18)

Doing an effective range approximation of the former result, one has:

_ 3 f? 4m?
b= 22m(p— — 1
a (-5 (3.19)
12 f2

M;
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Note that in this case the e.r.a is exact. It is also interesting to see that the xPT value
at O(p?) for a ' is
32

1= 3.20
a ; (3.20)

Then it receives from the p meson a correction of around me 0 13%. Hence, the xPT

4
M2
series works very well for quantities around the threshold of piO;IS. It is interesting to note
that in this case the effective range approximation, eq. (3.10), with the values of eq. (3.19)
gives rise to a resonance with a width, which is the preexisting one included in eq. (3.16).
Note that if the input resonance disappears(i.e. M, — 00), it also fades away in the e.r.a.
since 1 — 0.

B) Resonances generated by forces between mesons.

The typical example of application of eq. (3.10) is the deuteron pole below threshold
in the I = L=0 p — n interaction. In this case a < 0 but r < 0 so that pr? < 0 and hence
a bound state appears. This deuteron pole can be well described in terms of one pion
exchange between the nucleons. In more general terms, this problem was addressed in [30]
arriving to the same conclusion, that is, the deuteron is a bound state not an ‘elementary’
particle as the nucleons.

We will see in chapter 5 of the present work, that for the meson-meson scalar sector
one can find both types of resonances: preexisting and generated from a given set of forces.
In the first case, we will have the first scalar octet around 1.4 GeV and a singlet around 1
GeV and in the second case one has the o, k and a((980) resonances.

Finally, it is interesting to note that the term proportional to ¢ in the denominator of
eq. (3.14), comes from the imaginary part of the diagram given in Fig. 3.3.

m

AN
/l—\

Figure 3.3: Loop function with two meson propagators.

However, this diagram has also a real part which can have great importance in the final
mass of the resonance because it dresses the bare mass Mg present in eq. (3.14). These
effects have been found to be crucial in the S-wave resonances, see for instance ref. [31, 32].
This is also telling us that unitarity corrections will play an important role in the scalar
sector.



Chapter 4

The Inverse Amplitude Method
(IAM).

The effective chiral Lagrangian techniques have become a widespread tool to address
the problem of the low energy interactions of Goldstone bosons [4, 5]. We have presented
in section 2, the xPT formalism [4, 5] which is the low energy effective theory of the
strong interactions (QCD). Another example is the standard model strongly interacting
symmetry breaking sector (SISBS) [33] or the effective chiral Lagrangians in solid-state
physics for high-T, superconductors [34]. In all the cases, the chiral symmetry constraints
are a powerful tool to determine the low energy matrix elements in a systematic way.

These Lagrangians consist of an expansion on the powers of the external momenta of
the Goldstone bosons over some typical scale, A, which is related to the masses of the
heavier particles. For instance in xP7T, resonances appear for /s =~ 0.8 GeV, so that
Aypr = 1 GeV. Of course, when a resonance appears, there is no way to reproduce it form
the expansion since it is associated to a pole. Furthermore, as explained in section 2.2,
there are also higher order corrections, as chiral loops, which make that Ay pr < 47 fr =~ 1.2
GeV [6]. These facts make that the yPT expansion is typically valid up to energies around
500 GeV. Nevertheless, the constraints imposed by chiral symmetry breaking are rather
powerful and not restricted to the region where yPT is meant to converge [35].

Another drawback of the effective chiral theories, is the appearance of a fast increasing
number of free parameters (not fixed by the symmetry) as one increases the order of the
calculation. At O(p?) the xPT Lagrangian only contains the masses of pions, kaons and
etas and f,. At O(p*) several new free parameters appear; for instance in yPT there are
12 parameters and in the SISBS one needs 13. At O(p®) in xyPT there are more than 100
new parameters. That is, the predictive power of the theory is lost as we go higher in
order.

Because of the former reasons, nonperturbative schemes become necessary in order to
go to higher energies and to maintain the predictive power of the theory.

An attempt to extend the ideas of chiral symmetry to the non-perturbative regime, con-
structing a unitary 7-matrix, is the Inverse Amplitude Method (IAM)[25]. This approach
proved efficient in reproducing low energy data and produced poles in the amplitudes asso-

29
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ciated to the p and K™ in the vector channel as well as the ¢ in the scalar one. It has also
been applied to study the SISBS resonances that could appear at LHC [36]. Since only
elastic unitarity was imposed in the IAM, multichannel problems could not be addressed.
As a consequence, neither the fy and ag resonances, nor the inelasticities could be obtained.
A similar problem with coupled channels could also appear in the SISBS if the top quark
couples strongly to longitudinal gauge bosons.

The treatment of coupled channels has proved to be crucial in order to reproduce the
basic features of the fy and ay resonances [37, 38] and in general for all the scalar sector
with I =0,1,1/2 [31].

4.1 The IAM with Coupled Channels.

The generalization of the IAM to coupled channels was given in [26]. The results can
be applied to any system whose low energy dynamics is given by effective O(p?) and O(p?)
chiral Lagrangians. The free parameters will be those of the O(p*) Lagrangian. The
method will be applied to the meson-meson interactions, giving a remarkable agreement
with phenomenology as we will see in the next sections. Let us go first with the derivation.

The idea is to exploit egs. (1.30), (1.31) and (1.32) with the information contained in
xPT up to O(p*). As it is clear from the former formulas, the dynamical information is
contained in the inverse of the partial wave amplitude under consideration, the K-matrix.
Furthermore, while the standard yPT series fails close to a resonance pole, the inverse of
Ty, will have only a zero. As a consequence, one might try to calculate the expansion of
T, ! which will have zeros at the poles of Ty, and in principle does not present convergence
problems in this case. Note also that making use of this method, the final partial wave
amplitude will be unitary and hence we also reproduce the loop corrections coming from
unitarity.

In the following, in order to simplify the notation, we will denote just by 7" a partial
wave amplitude with definite isospin (/) and angular momentum (L).

Expanding T~! in powers of p?, as one would do for T using xPT, one has:

T2T2+T4+...

T Tyt I+ Ty Ty e Ty 1 =Ty - Ty ] (4.1)

where T5 is lowest order x PT" amplitude and 7} the next to leading one.

This expression requires the inversion of 75 which might not be invertible, as it happens,
for instance in the (I, L) = (1,1) channel. In order to avoid the use of T, ' we modify eq.
(1.31) by formally multiplying by T5 - T, * on the right and 7, ' - T, on the left. All the
steps are justified using the continuity of the functions involved in the derivation, starting
from a matrix close to Ty, which can be inverted. Thus, eq. (1.31) can be rewritten as

T=T, [T, -ReT ' Ty +iTy-p-To] Ty (4.2)
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Now, using the expansion for 7! of eq. (4.1) we find

TQ'RGTﬁl'TQ 2T2-R€T4+... (43)

and recalling that

we finally obtain, within the O(p*) approximation

T=T T, -T)) " T, (4.5)

From eq. (1.32) and (4.3) we also obtain the expression for the K-matrix

K= T2 . [T2 — Re T4]71 . TQ (46)

which is very similar to eq. (4.5) but using Re T} instead of Ty, which appears in the T
matrix formula.

Note, as it is clear from eq. (4.2), that what we are expanding is actually T5-Re T~ - T5,
which is also convergent for low energies.

In another context, the above equation can also be derived using Padé approximants
[39]. This equation is a generalization to multiple coupled channels of the IAM of ref. [25].
It makes the method more general and powerful and also allows one to evaluate transition
cross sections as well as inelasticities.

The coupled channel result has additional virtues with respect to the single channel
TAM. Indeed, in this latter case the expansion of eq. (4.1) is meaningless if |T5| < |T}| or
Ty = 0 [40]. In particular, if T, vanishes, eq. (4.5) yields T = T2 - T, ", which has a double
zero, whereas the correct result would be T' ~ T);. This indeed occurs in the L = ( partial
waves below threshold (Adler zeros). However, within the coupled channel formalism, if a
matrix element, say (73);;, vanishes, it is sufficient that (73);2 # 0, since then eq. (4.5)
gives (T)11 ~ (T4)11, which is the correct result. In conclusion, while the single channel
[AM gives a double zero whenever T, = 0, the coupled channel method leads to single zeros
close to the zeros of T5. Of course, our formalism does not improve the yPT result for
partial waves with L > 2 since 75 is identically zero for all the channels.

The single channel TAM has another related problem, since close to the Adler zero it
presents an spurious pole when 75 = T;. The coupled channel method also avoids this
problem, although it runs into a similar one when the determinant of the 7, — T; matrix
vanishes below threshold. This happens indeed for L = 0, I = 0 around /s ~ 120 MeV.
Excluding the neighborhood of this zero of the determinant, we can still recover from eq.
(4.5) the usual xPT expansion, T' ~ Ty + T + ... valid for low energies. In any case we
concentrate here on results above the two pion threshold.
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4.2 The IAM and Vector Meson Dominance (VMD).

Let us consider the example given in section 3.1.A. From eq. (3.16) we can calculate
T, and ReTy. Taking into account that at O(p?) and O(p*) Ty = Ky and ReTy = Ky,
where K, and K are the O(p®) and O(p*) terms of the chiral expansion of K, respectively,
the results are:

2p?
2p?% s
ReTy — —g227 %
3 f2 M2
Then, after applying eq. (4.6) one has:
2p2 M}
K=-2L __"r (4.8)

_§f_,%Mg —g2s

Chiral Symmetry plus VMD require g? = 1, the well known KSFR relation [29], which
gives the coupling of the vector mesons p or K*, in terms of f, as can be seen from eq.
(3.16) for the p meson. If this is the case, which phenomenologically is well established,
then the reproduction of the vectors mesons p or K* through the IAM is a fact, compare
eq. (4.8) with eq. (3.18). This explains the success of the IAM for the vector channels.
This close relation among the IAM and VMD was already realized in [41].

However, in a general scenario with g2 very different form 1 one cannot guarantee the
applicability of the TAM. This point should be considered when making use of the TAM in
other situations beyond QCD, as the ESBS [36].

Note that the IAM has come from an expansion of the inverse of the K-matrix, as was
also the case for an er.a. eq. (3.9). The difference is that the IAM relies on a chiral
expansion in powers of p?, where p? can be a linar combination of masses squared, s, ¢ or
u, while the e.r.a. involves powers of p2. On the other hand, the input for the e.r.a., a and

r, is experimental while in the TAM the input comes from the chiral Lagrangians of O(p?)
and O(p*).

4.3 Unitarization of 77 and K K.

In this section we are going to present the results of applying the IAM to the study of
the 77 partial wave amplitudes with (7, L)=(0,0), (1,1) and (2,0). The pions couple with
the KK channel in the waves (0,0) and (1,1), although, as we will see below, this coupling
is negligible in the (1,1) case. This study was developed in [42]. However, in this work,
instead of the minus sign in front of the T-matrix in eq. (1.13) a plus sign was chosen.
Hence, the sign of the T-matrix must be changed when using all the equations above for
this section.



4.3. Unitarization of 7m and KK. 33

In order to apply eq. (4.5) we need the O(p*) yPT amplitudes. For 7w — 77 this
calculation was done in [5] for the SU(2) case and extended to SU(3) in [43]. The 77 —
KK amplitude can be obtained by crossing from the K7 — K7 one calculated in [43].
However, the KK — KK was not calculated before we did it in [42].

In principle, this calculation seems to be unreasonable since the K K threshold is almost
1 GeV, and furthermore, for /=0,1 at this energy the f,(980),a((980) resonances appear
which couple strongly to the KK channel. In fact, after making this O(p?) calculation,
we will see that, at this energy, the O(p?*) result is larger than the O(p?) one. Obviously,
what all this is telling us is that one cannot rely in the perturbative chiral expansion at
these energies. This implies that one cannot compare the predictions directly with the
experiment, using the O(p?) plus O(p!) ChPT amplitudes, and hence, one needs to use
some nonperturbative method in order to obtain a proper resummation of the yPT' series.

4.3.1 The KK — KK scattering amplitude at O(p*) in xPT.

In order to calculate the K K amplitude, one needs to consider two isospin amplitudes,
I=0 and 1, which cannot be connected by crossing symmetry because they have different
absolute values for the strangeness. This is opposite to what happens in K7 scattering
with [ =3/2 and 1/2.

We calculate the amplitudes KT K~ — KTK~ and KTK~ — K°K° which we denote
by T.. and T, respectively.

The scattering amplitudes with definite isospin T(!) can be written in terms of T,, and
T, in the following way:

TW(s,t,u) = Tols,t,u) — Ten(s, t,u) (4.9)

We now proceed to describe the calculation scheme for these amplitudes up to O(p*).
At lowest order one has the ChPT lagrangian at O(p?)

L= f; (0,UT0"U + M (U +U")) (4.10)

where () stands for the trace of the 3 x 3 matrices built from U(®) and M,

U(®) = exp (Qq,> (4.11)

where @ is expressed in terms of the Goldstone boson fields as

%7‘(0 + %77 nt K+
O(z) = ™ —gm+en K° (4.12)
K- K?° -2
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The mass matrix M is given by

>
N
o O

M

I
o
3

(4.13)
0 0 2% —m

in the isospin limit. Where m means bare masses.
From this lagrangian we can evaluate the lowest order contribution to the K K scattering
amplitudes

1 |2 4
Teco(s, t,u) =— {—m";{ + —m%{ — u}

213 3
1 [2 4
Tena(s,t,u) = oTE [gmi + gm“}( — u] (4.14)

where the subindex 2 means O(p?).

At O(p?) f =~ fr = 92.4 MeV and g = mg = 495.7 MeV. But when we go to next
order these equalities do not hold. This is the reason why we keep the distinction between
bare and physical masses.

T TU TP
Figure 4.1: Diagrams at O(p?)

At O(p*) one has to calculate the diagrams schematically shown in Fig. 4.1. T}
represents contributions coming from the £, ChPT lagrangian with six fields and a tadpole
loop. The T} represents the loops constructed from the £, amplitudes with four fields
appearing in the vertices of the loop. We will call this contribution unitarity loops because
it makes the amplitude unitary at O(p*). These loops include contributions from loops in
the s,t and u channels, as shown in Fig. 4.2.

Finally the T/ amounts for the O(p*) polynomial contribution coming for the £, ChPT
lagrangian, which can be written as,

Ly =L (9,UM0"U) + L, (8,U'0,U) (8"Ut9"U) (4.15)
+L3(0,UT0"Ud,U'0"U) + Ly (0, UT0"U ) (UM + M'U)

+L5 (9,UT0"U (UM + MIU)) + Ls (UM + MU’
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K K K K
K K K K

s-channel t-channel u-channel

~
A

Figure 4.2: Diagrams for the s, t and u channels

+L; (UM — MUY’ + Ly (MIUMIU + Ut MUT M)

When taking into account the wave function renormalization, Fig. 4.3, and the relation
between bare and physical masses and decay constants in the lowest order amplitudes,
other O(p*) contributions appear.

KX

Figure 4.3: Wave function renormalization

The relation between mg and mx and the one between f and f, at O(p*) can be
obtained from [5].

The final amplitude up to next to leading order is then obtained summing all the former
contributions. We express it divided in four parts: Ty, T7 , TV and T} where the subindices
indicate the order in powers of momentum.

In T} and T} we have also included, in addition to the one coming from Fig. 4.1,
the O(p*) contributions from the renormalization of the wave function, masses and decay
constants. The ones with L; parameters are included in 7} and the rest, of tadpole type,
in T} .

The amplitude for KTK~ — KTK~ is

2
2mi —u

ch,2(37 t: U,) = f2

(4.16)

’I" ’I'
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In the above formulas we have used the quantities

(4.23)

Al = —m? {—1 +1n (m—%’ﬂ (4.24)
P — P ,U,Q '

Bj =
Po(s) 2s mp +mg — s — A/2(s,mp, m)

m2 m% —m% + s m?
+2—1In (—f) +-2 € " <—§> (4.25)
Iz 2s mp

A2 (s, mp, mg) | (m% +md — s+ AV2(s,m3, mé))

In the equal mass limit (4.25) reduces to

Bi(s) =2 —In (”;—%) — o(m3,s) In (%) (4.26)
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where

A(s,mp,mg) = [s — (mp +mq)?][s — (mp — mq)?]
o(md,s) = 4/1— 4’;‘%’ (4.27)

The functions (4.24) and (4.25) come from the Passarino-Veltman integrals with one and
two propagators [44].

It is interesting to note that L; does not appear in T} . This also happens in 77 — 77
and K7 — Km O(p*) scattering amplitudes. Lg and Lg appear in the combination 2Lg+ Lg
as a consequence of the Kaplan and Manohar symmetry [45].

As it was stated before, the corrections coming from the O(p*) calculation are, at least,
as large as the lowest order contribution itself. For example in the K K threshold:

Toosr = 56.5
Toes = 73.6 +036.74

Unambiguously this means that a perturbative calculation is useless in this region and that
some non perturbative scheme should be used in order to compare with the experimental
phenomenology.

4.3.2 Results: Fit, Phase Shifts and Inelasticities.

Once, we have calculated the O(p*) xPT amplitude and using the elastic 7w and K7
ones, given in [43] we can now apply eq. (4.5). Taking into account the normalization
introduced in eq. (1.41), we will have a = 2 for 7 — 77w, @ = 1 for 7w — KK and a = 0
for KK - KK.

With this normalization, for the different (I, L) partial waves amplitudes, unitarity
reads, from eq. (1.26)

For (I, L)=(0,0)

477131. <s < 4m%( . Im Tll = p(mfr, S) |T11|2 (428)
4mi < s < 4m] Im Ty = p(m?2, ) Tiu Ty + p(mi, s) T Ty,
Im Tyy = p(m3, s) [Tua|* + p(mi, 5) | Toal”
(m3,s)

Im Ty = p(m2,s) |Tul” + p(m%, s) | Tia|’ (4.29)

For (I,L)=(1,1)
4m2 < s < 4m? : Im Ty, = p(m2,s) |Tn |’ (4.30)
4m3 < s: Im Ty = p(m2,s) T Ty + p(mi, s) TiaTy,
Im Ty, = p(m3, s) [Tha|” + p(mi, ) | Toa|”
In Ty, = p(m3, s) [Tul* + p(m., s) [Tia|” (4.31)
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And for (I, L)=(2,0)

4m2 < s: Im Ty, = p(m?2,s) [T (4.32)

with p(m?,s) given by eq. (1.28), where m is the mass of the particle to be used in
evaluating the three-momentum in this equation.
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Figure 4.4: Phase shift for 7w — 77 in I = L = 1. Data: [50].

o

In deriving (4.5) one was concerned essentially with the right hand cut, responsible for
unitarity in the corresponding channel. As a result, the imaginary part of the amplitudes
to be used in (4.5), above the lightest threshold (in our case the 77 one, s = 4m?) and
below the highest one (s = 4m?), was restricted to come only from unitarity, (4.29),
neglecting the left hand cut contribution to the imaginary part that appears in 7.4 and
Tepa for s < 4m%{ — 4m,2r. However, we have maintained the left hand cut contribution to
the imaginary part of T, 4 and T, 4 below the K K threshold. One way to see how large is
the resulting deviation from unitarity is to check the value of the inelasticity in the energy
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region 4m2 < s < 4m? for (I,L)= (0,0) and (1,1) where two channels appear. In both
cases the deviation from 1 is smaller than 1%.

The 77 intermediate state has been included in the O(p*) ChPT amplitudes. However,
for the (0,0) channel for /s > 2m,, this state gives further contribution to the imaginary
part of our amplitudes in addition to the one expressed in (4.29). This means that eq.
(4.5) with only the 7w and KK states does not fulfill unitarity strictly for /s > 2m, ~
1.1 GeV. The influence of the nn state is particularly significative in the KK — 77 S-wave
phase shifts, Fig. 4.6. We will come back to this point later.

From eqs. (1.36) and (1.40) we obtain the phase shifts for 77 — 77 (6;) and 77 — KK
(01 + 93) for (I,L) = (0,0) and (1,1). For (I,LL)=(2,0) only the 77 channel is necessary,
when omitting multipion states. In this case, it is sufficient to take eq. (1.39) with n = 1.

In ChPT the experimental values for the L; coefficients come from O(p*) fits to low
energy experimental data. Here we fit the L; constants to experiment in a much broader
energy interval and with an expression valid to all orders. Hence, differences are expected
between our fitted L; parameters and the values quoted from ChPT.

Furthermore, our approach is not cross symmetric. This implies that contributions
from the left hand cut of order higher than O(p?) are effectively reabsorbed in the values
of our L; coefficients. This point has been studied in [40] with the conclusion that the value
of the L; obtained from a non cross symmetric method are influenced by this reabsorption
procedure of the left hand cut. In this way, the value we quote for our L; constants has to
be taken with care when comparing with the values of the L; from ChPT.

We have used simultaneously the phase shifts of the 7w — 77w with I = 0 and 1,
Figs. 4.4 and 4.5, to fit the value of our free parameters: Ly, Lo, L3, Ly, L5 and 2Lg +
Lg. The fit has been done using MINUIT. In the energy region /s = 500-950 MeV the
data from different experiments for S-wave 7w phase shifts are incompatible. Given that
situation, we have taken as central value for each energy the mean value between the
different experimental results [44-48]. For /s = 0.95-1 GeV, the mean value comes from
[47, 49]. In both cases the error is the maximum between the experimental errors and the
largest distance between the experimental points and the average value.

The quoted errors in the value we have obtained for the L; coefficients is just the
statistical one.

The fit is pretty good, as can be seen in Figs. 4.4 and 4.5, with a x? = 1.3 per degree
of freedom. The values we obtain at the M, scale and in units of 102 are

L, = 1.36%992

Ly = 072150

Ly = —3.24+0.04
Ly = 0.20+0.10
Ly = 0.0%9%

2Lg+Lg = 0.007028 (4.33)

The small errors for Ly, Ly and Lz are due to the strong constraints imposed by the small
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errors in the experimental data of the 11 ., phase shift, Fig. 4.4.
The values of ChPT are

Ly = 04+£03

Ly = 14 +03
Ly = —-35+ 1.1
Ly, = —-03+0.5
Ly = 14 +05
2L +Lg = 0.5 £ 0.7
(4.34)
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Figure 4.5: Phase shift for 77 — 77 in I = L = 0. Data: Empty pentagon [51]; empty
circle [46]; full square [49]; full triangle [47]; full circle represents the average explained
above.
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We can see that our values, taking errors into account, are compatible with those from
ChPT, and then we can guarantee a good behaviour at low energies for our predictions.

Using these values for L; we also describe correctly phase shifts, scattering lengths and
form factors for the I = L =0 and I = L = 1 channels, as we will see later.

In Fig. 4.4 we show our fitted é; for I = L = 1, from the two pion threshold up to
1.2 GeV and we see a good agreement with the experimental data which are dominated
by the presence of the p(770) that we reproduce nicely. In this channel we obtain that the
influence of the KK channel coupled to 77 is negligible.

In Fig. 4.5 we show ¢, for I = L = 0, also from two pion threshold to 1.2 GeV. The
agreement with experiment is quite satisfactory showing clearly the presence of the f;(980)
resonance as a strong jump in the phase shift around 1 GeV. To get this resonance it is
essential to include the kaons, and then to unitarize with coupled channel as we do. In
this figure we also have plotted data from [51], but since no error is quoted we have not
included this data in the fit.

Now, once we have fixed the L; from the fit we predict other magnitudes.
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100 — —

50 — —

L 6OO,KK7T7T i

‘ L1 1 ‘ L1 1 ‘ L1 1 ‘ 1 L1 ‘ 1 L1 ‘ 1 L1 ‘ L1 1 ‘ L1 1 ‘ L1 1 ‘ 1 1 1 ‘ 1
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

E.n[MeV]

Figure 4.6: Phase shift for 77 — KK in I = L = 0. Data: full square [52], full triangle
[53].

In Fig. 4.6 the phase shift for the KK — 77 scattering, §; + d5, is shown for I = L = 0.
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In this figure one sees clearly the nn threshold. This process is the most sensible to the
nn intermediate state, contrary to what happens with the 77 phase shifts, Fig. 4.5, where
its inclusion is almost negligible. One way to realize the influence of this channel in the
former phase shifts is to cancel the imaginary part to 7, coming from the intermediate nn
s-channel loop for /s > 2m, =~ 1.1 GeV. In this way the dashed line curve in Fig. 4.6
is obtained, which agrees very well with data. This is telling us that the inclusion of the
nn channel in the unitarization procedure for the (0,0) channel is important for studying
the KK — 7 scattering. In any case, as explained above, the threshold is very close to
1.2 GeV where other intermediate states, as four pions, are also important and should be
included as well. Hence, we think that the inclusion of the nn threshold in eq. (4.5) should
be done when going to higher energy, that is, when extending the model for energies higher
than 1.2 GeV.

In Fig. 4.7, (1 — (n00)?)/4 is shown. Our results display the same tendency as the
experimental data, particularly when taking into account the large experimental errors.

3 T ‘ 1 1 1 1 T 1 1 1 T T 1 1 T T 1 1 T T 1 1
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Figure 4.7: (1 — (n90)?)/4, where nq is the inelasticity in I = L = 0. Data: starred square
[51], full square [52], full triangle [53], full circle [54].



44 Chapter 4. The Inverse Amplitude Method (IAM).

0 \\\\\\\\\\\\\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

—20 — i
—30 —

620,7T1T
,40‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

300 400 500 600 700 800 900 1000 1100 1200
E(MeV)

Figure 4.8: Phase shift for 77 — 77 in I = 2, L = 0. Data: cross [55], empty square [56].

In Fig. 4.8 we show the 77 phase shift with /=2, L=0. The agreement with experi-
mental data is fair. Contrary to the other channels that we have shown, in this case no
resonances appear and there is only the 77 channel. So, in this case our result (apart of
differences on the L; values) is the same than in the IAM [25].

We have also calculated the scattering lengths for the three channels unitarized in this
work, (I, L)=(0,0), (1,1) and (2,0). We denote them by af. In Table 4.1 we show the value
we obtain for al together with the experimental and the ChPT values to O(p*). We see
in this table that a good agreement with experiment is accomplished. Our values are also
close to the ones from ChPT as one should expect because for low energies we recover the
chiral expansion.

4.4 'Two-meson scattering below 1.2 GeV.

In the former section the IAM with coupled channels was applied with the full O(p*)
xPT amplitudes. This calculation is rather involved and it is not done in all two-meson
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Table 4.1: Comparison of scattering lengths in different channels

| ap | ChPT | Ourresults | Experiment |
ag 0.20 £+ 0.01 0.210 £ 0.002 0.26 +0.05
ai | 0.037£0.002 | 0.0356 + 0.0008 | 0.038 + 0.002
aZ | —0.041 +0.004 | —0.040 £ 0.001 | —0.028 4 0.012

channels, for instance, in those channels with the 1 meson. In this section, following the
work done in ref. [57], we are going to present an approximation to calculate the full
O(p*) amplitude which turns out to be technically much simpler and rather accurate at
the phenomenological level. We also come back to the sign of the T-matrix given in eq.
(1.13)

In section 4.2 and in the former one, we have already seen the tight relation between
the vector mesons and the counterterms present in the O(p*) chiral Lagrangian, and how
the vector resonances can be reproduced from the O(p*) yPT Lagrangian through the
IAM due to VMD. This is complementary to what we have commented in section 2.3
with respect to ref. [7], where they show the chiral version of VMD, that is, those L; to
which vector resonances contribute are saturated by such contributions.

For the scalar sector it is not phenomenologically clear if a Scalar Meson Dominance
exists nor to which states should be applied. In fact, in the following chapters we will try
to address this problem. There, sections 5.2 and 5.4, we will see that the unitarization
of the lowest order x P71 amplitudes in this sector is an extremely important contribution.

We can take into account both factors, counterterms for the vectors channels and uni-
tarity of the O(p?) for the scalar ones, by approximating the O(p*) xPT amplitude as:

Re Ty ~ Tf +T,-Re G(s) - Ty (4.35)

where T, is the lowest order xPT amplitude, T} is the polynomial tree level contribution
from the O(p*) Lagrangian and G(s) is a diagonal matrix corresponding to the loop integral
with two meson propagators, given by:

dq 1 1
Gunl(s) =1 - - 4.36
(5) Z/ (2m)* ¢2 —m?, +ie (P —q)? —m2, +ic (4.36)

where P is the total initial four-momentum of the two meson system. This G matrix has
the property

Im Gn(s) = —pun(s) (4.37)

as can be easily checked.
The real part of G(s) is divergent and requires regularization. We evaluate it making
use of a cut-off regularization with a maximum value, ¢4, for the modulus of the three-
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momentum in the integral. An analytical expression for G,,(s) is given in Appendix A,
where we also connect with the Dimensional Regularization Scheme.
The K-matrix corresponding to eq. (4.35) follows immediately from eq. (4.6)

K:TQ' [TQ—Tf—TQ’ReG'TQ]_l 'T2 (438)

The polynomial 77 is given in terms of the L; coefficients of the O(p*) Lagrangian. Within
our approach, these coefficients will be fitted to data and denoted by L; since they do not
have to coincide with those used in xPT, as we shall see. Actually, the L; coefficients
depend on a regularization scale (x). In our scheme this scale dependence appears through
the cut-off.

In addition, there are also differences between our renormalization scheme and that
of standard yPT. Indeed, our approach considers the iteration of loop diagrams in the
s-channel, but neglects loops in the u or t channels. However, the smooth structure of these
terms for the physical s-channel, since we are far away from the associated singularities,
allows them to be approximately reabsorbed when fitting the L; coefficients. Concerning
tadpoles, they would be exactly reabsorbed in the L; in the equal mass case. Therefore,
when masses are different, we are omitting terms proportional to differences between the
actual masses squared and an average mass squared. In fact, in eq. (4.35) we have fac-
torized out of the loop integral the vertices 75 with their on-shell value. In doing this, see
ref. [58] and section 4.2, we are also neglecting tadpole contributions which always go to
renormalize physical masses and couplings of the lowest order amplitude, when calculating
such tadpoles terms at next to leading order. Thus, all these contributions will make the
L; differ from the L;, although we expect them to be of the same order.

This way of dealing with tadpoles has an additional advantage. Apart from the usual
tadpole diagrams that would also appear in standard y PT there are some additional tad-
pole terms. They come from the determinant of the SU(3) metric that should be included
in the path integral measure in order to make the generating functional SU(3) covariant
[59]. With dimensional regularization such contributions vanish, but that is not the case
when using a cutoff regularization [60]. Nevertheless, we have just described how tadpoles
are absorbed within our approximation and thus we do not have to calculate them.

With these approximations our calculations have been considerably simplified at the
expense of losing some precision at low energies with respect to the full O(p*) xPT calcu-
lation. As far as we are mostly interested in resonance behavior as well as higher energies
this is not very relevant. Nevertheless, if the complete O(p*) calculations were available,
we could directly use eq. (4.5), and have both an accurate low energy description and a
good coupled channel unitarity behavior, as we have already done in the former section.

Using eq. (4.5), the formula for the 7" matrix in this section is given by

T:TQ'[TZ_TI_TQ'G'TQ]_I 'T2 (439)

The calculation of T, and T} is done making use of the Lagrangians £, and £, given
in section 4.3.1.
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The states with definite isospin, with the phases |[77) = —|[1,1), |K~) = —|1/2 — 1/2),
are given by

I=0,
|KK) = f|K+((i)K (@) + K (9K °(=9))

|77) = \flﬂ (@ (=) +7 (@7 (=) + 7 (§)7(=7))

I=1,1;=0,
KK) = —%IW@K(—@ — Y@K (-)

|7r77>=|7T°(61")77( )
) = \flﬁ (7 (=) — 7 (D7 (=1))

I = 2,13 = 2,
7)) = [ (@) (=)

1=1/2,1s=1/2,
1K) = -1 @R + e DK (-0)
) = K (@0l —0)

I=3/2,1;=3/2,
|Km) = —| K (§)7" (—q))

The resulting amplitudes which we obtain are compiled in Appendix B.

4.4.1 Results

We have carried out a fit to the data, which is shown in Figs. 4.9 to 4.16, using as free
parameters the L; with i = 1,2,3,4,5,7 and 2L + Ls. In Table 4.2 the different channels
which appear in each partial wave amplitude are shown. The cut-off is fixed to g4, = 1.02
GeV. The values that we obtain for the L; are shown in Table 4.3 (after Fig. 4.16). We
compare them with the standard values for the L; coefficients obtained in xyPT at the scale
U= 2 Qmaz/+/€ (see appendix A.2) and we see that they are of the same order.
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Table 4.2: Channels used in the different I, J channels

I=0 |I=1/2| I=1 |I=3/2|1=2
_ T Kn n

J=0 KK K KK Kr | 7
- Knr T
J=1| KK K KK
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Figure 4.9: Results in the I = L = 0 channel. (a) phase shifts for 77 — 77 as a fraction
of the c.m. energy of the meson pair: full triangle [47], open circle [48], full square [49],
open triangle [61], open square [62] (all these are analysis of the same experiment [63]),
cross [50], full circle [64], empty pentagon [51]. (b) phase shifts for KK — 77 full square
[52] , full triangle [53]. (c) Phase shifts for KK — KK. (d) Inelasticity: results and data
for (1 — n?)/4: starred square [51], full square [52] , full triangle [53], full circle [65].

We show first the results on phase shifts and inelasticities in the different channels and
later on we discuss about the pole positions, widths and partial decay widths.
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4.4.2 Phase shifts and inelasticities

We will now go in detail through the results in each (I, L) channel.

Channel (0,0)

As we can see in eq. (1.40) we have three independent magnitudes d1,d, and 7. In
Figs.(4.9.a) and (4.9.c) we show the &; and &, corresponding to 7w — 77 and KK — KK
elastic scattering. In Fig.(4.9.b) we plot the phase shift for KK — 7. This is actually
01 + 02, which is therefore redundant information. However, there are data for this process
but not for elastic KK, and that is why we are plotting 6; + d». The agreement with
experiment is good, with small discrepancies in the KK — 7 phase shifts. In Fig.(4.9.a)
we see a bump around 600 MeV which is due to the o resonance, whose associated pole
appears around 442 — 1225 MeV, as we shall see below. The fast raise in the phase shift
at 1 GeV is caused by the f; pole around 980 — 714 MeV, which translates in an apparent
mass of >~ 980 MeV and a 30 MeV width. Small discrepancies with data start showing up
around 1.2 GeV. The omission of the nn and four meson states should limit the validity of
the approach at high energies since then these channels start being relevant.

Channel (1,1)

In Fig.(4.10.a) we display the 77w — 77 phase shifts which clearly show the p meson.
The perfect coincidence of the results with the very precise data indicate that both the
position and the width of the p are very well described. In Fig.(4.10.c) we show the phase
shifts for K K — KK scattering, for which there are no data. As we can see, they are very
small, which implies a weak K K interaction. Therefore the 6; +J, phase shift of KK — 7w
is essentially that of 7w — 7. The fact that the inelasticity is practically one, indicates
that there is almost no mixture of 77 and K K. This feature makes the p to behave as a
pure 77 elastic resonance. That is why the single channel IAM gave essentially the same
results as obtained here [25].

Channel (2,0)

The I = 2 7w scattering contains only one state as shown in Table 4.2. In Fig.(4.11)
we show the resulting phase shifts, whose agreement with experimental data is remarkably
good up to 1.2 GeV

Channel (1,0)

In Fig.(4.12.a) the 7 — 7y phase shifts are shown. Those of KK — 7 are plotted
in Fig.(4.12.c) and the inelasticities in Fig.(4.12.d). In the latter, it can be seen that there
is an appreciable mixture between 7 and KK above KK threshold. In Fig.(4.12.b) we
compare a mass distribution for 77 around the region of the ay resonance. The data are
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Figure 4.10: Results in the ] = L = 1 channel. (a) phase shifts for 7w — 77. Data: open
circle [50], black square [48]. (b), (c) same as in Fig. 4.9. (d) inelasticity.

obtained from [67] using the K~ p — X7 (1385)7n reaction, whose cross section (following
[28]) can be written as

dU 2
— =0T 4.4
Tl (4.40)

where m is the 777 invariant mass, ¢ the 7 momentum in the 777 c.m. frame, T the
m~n — w1 scattering amplitude and C' a normalization constant. We observe a fairly
good agreement with the experimental numbers.
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Figure 4.13: Results in the I = 1/2, L = 0 channel. (a) phase shifts for K7 — Kr. Data:
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Figure 4.12: Results in the I = 1, L = 0 channel. (a) phase shifts for 7p — 5. (b)
Invariant mass distribution for 77 data from [67]. (c) Phase shifts for KK — 7n. (d)
inelasticity.

The two coupled states are now K7 and K7. In Fig.(4.13.a) we plot the phase shifts
for Km — Kwn. The theoretical curve follows the same trend as the experimental data,
although it lies a bit above them. The results and the data show a broad bump, which is
related to the presence of a pole which appears around 770 — 4250 MeV. Such a resonance,
whose existence has been claimed in a recent data analysis [73], is predicted in quark
models of ¢?¢ systems [74] and is usually denoted by x(900) from this last reference. This
resonance bears some similarity with the o in the (0,0) 77 elastic scattering channel, which
is also very broad. Finally, the K — K7 phase shifts are small as shown in Fig.(4.13.c)
and the inelasticities given in Fig.(4.13.d) are not distant from unity. This fact indicates a
small mixture of K7 with K.

Channel (1/2,1)

In this case we also find a resonance in Fig.(4.14.a), analogous to the p, but in the K7
system. This resonant state, known as the K*(892), is as clean as the p, and the agreement
of our results with the data is remarkably good over the whole range of energies up to 1.2
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Figure 4.14: Results in the I = 1/2, L = 1 channel. (a) phase shifts for K7 — Kn. Data:
full triangle [68], open circle [71]. (b) phase shifts for Km — K. (c) phase shifts for
Kn — Kn. (d) inelasticity.

GeV. In Fig.(4.14.c) we plot the K — Kn phase shifts, which are very small. Finally, in
Fig.(4.14.d) we can notice that n ~ 1 which means that there is practically no mixture of
K7 and K7 in this channel. This justifies the success of [25] reproducing this resonance
using only the K7 state and elastic unitarity.

Channel (3/2,0)

In Fig.(4.15) we show the K7 phase shifts. As we can see in the figure, the agreement
with the data is quite good up to about 1.2 GeV.

The channel (3/2,1) in K7 (see Table 4.2) is such that 75 = 0, since there is only S-wave
there. In this case our method cannot be applied, as discussed above, and we should just
take the T, contribution. That also happens for the L = 2 channels, since the structure
of Ty, which is O(p?), is a linear combination of s, ¢, u and squared masses. Therefore
there is only L = 0,1 in 75, but not L = 2. Hence, the lowest contribution can only be
obtained from the T, terms and our method has nothing to improve there with respect to



54 Chapter 4. The Inverse Amplitude Method (IAM).

0 T R I I
—5 — —
O3z oxn % i
_o5 \7 T T T T T T S T T O RN S A S RO N
700 800 900 1000 1100 1200

Figure 4.15: Phase shifts for K7 — K in the I = 3/2, L = 0 channel. Data: open
triangle [71], open circle [75].

XPT. The phase shifts in these channels are small and have been discussed in [25]. Hence
we omit any further discussion, simply mentioning that the agreement with data found in
[25] is fairly good.

There is another interesting result in the (0,1), channel which is the appearance of a
pole around 990 MeV, that we show in Fig.(4.16). Below 1.2 GeV there are two resonances
with such quantum numbers. They are the w and the ¢, which fit well within the ¢g
scheme, with practically ideal mixing, as %(uﬂ + dd) and s3, respectively. In the limit
of exact SU(3) symmetry these resonances manifest as one antisymmetric octet state and
a symmetric singlet state. Since the spatial function of the KK state is antisymmetric
its SU(3) wave function does also have to be antisymmetric and therefore it only couples
to the antysimmetric octet resonance. Of course, our Lagrangians do contain some SU(3)
breaking, but, in this channel we are only dealing with the KK state, neglecting states
with other mesons (like the three pion channel) and, hence, our formulae for this process do
not contain any SU(3) symmetry breaking term. Thus, we just see one pole, corresponding
to the antisymmetric octet state of the exact SU(3) limit. Because the ideal mixing angle
is around 20 degrees the pole we obtain should be closer to the physical ¢(1020) than to
the physical w(782). This is in fact what happens since we obtain a mass of 990 MeV. It
seems then plausible that the small coupling to three pions (an OZI suppressed coupling
of third class) which we are not taking into account, could be enough to bring our pure
octet state to the physical ¢ resonance.
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Figure 4.16: (|T;j=01|)? for KK — KK showing a singularity corresponding to a resonance
belonging to the antysimmetric vector octet. Due to the smallness of the mixing angle
between the ¢ and the w this singularity is much closer to the ¢ meson.

Table 4.3: Fit parameters L; - 10> and comparison with the LI - 10® of xPT

Gmaw = 1.02 GeV | I, L, Ls L, Ls 2L + Lg L;
0.5 1.0 -32 | —06 1.7 0.8 0.2

=12 GeV L L Ly L L 2L: + L L;
0.1 0.9 —35 | =07 | 04 0.0 —0.4
+0.3 | +£0.3 | +1.1 | +£05 | +0.5 +0.3 +0.2

4.4.3 Pole positions, widths and partial decay widths.

We will now look for the poles of the 7" matrix in the complex plane, that should appear
in the unphysical Riemann sheets. The notation for the different sheets is the following:
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Sheet I: Imp, >0, Impy>0
Sheet [I: Imp; >0, Impy <O
Sheet III: Im p; <0, Im ps <O
Sheet IV: Im p; <0, Impy, >0

where the labels 1,2 stand for KK, w7 in the I = 0 case and KK, 7 for the I = 1.

Let us remember that the mass and the width of a Breit-Wigner resonance are defined
from the position of its complex pole by |/Spoe ~ M — il'/2. However, the phenomeno-
logically seen mass and width of a resonance depend on the process under consideration.
In Table 4.4 we give the results for the pole positions as well as the apparent or “effec-
tive” masses and widths that can be estimated from phase shifts and mass distributions in
scattering processes.

We shall make differentiation between the p and K*, which are clean elastic Breit-
Wigner resonances, and the rest. For the p and K* their mass is given by the energy at
which § = 90° and the width is taken from the phase shifts slope around § = 90°, by means
of

(4.41)

2

I'p= MJ}\}; ® tan 3(s) (4.42)

We also saw that, in practice, the p and K* only couple to 77w and K7, respectively. The

o decays only to 77 and the x only to K due to phase space and dynamical suppression

of other channels (see Fig.(4.13d)). The case of the fy and qq is different, since they can

decay either to 7w or KK (the fy), and 7 or KK (the ag). In order to determine the

partial decay widths of these resonances we follow the procedure of [58], where we show

that, assuming a Breit Wigner shape for the amplitudes around the resonance pole, the
partial decay widths are given by

r 1 /EdequMI T
= - — m
Rl 1672 |, 72 tMplm Ty,
]_ Emaz q (Im T21)2
Try — — ap-L qpr, B0 A2) 4.43
2 1672 /Em B2 Im Ty, (4.43)

where F stands for the total c.m. energy of the meson-meson system, ¢ is the momentum of
one meson in the c.m.. The masses of the final mesons are my, my. The upper limit in the
integral, E,,qz, is ~ Mg+ T'g where I'g is the total width [58] and E,,;;, = Mg — g, unless
the threshold energy (m; 4+ mg) for the decay is bigger than that quantity, in which case
E,.i;n, = m1 4+ my. In this way we largely avoid the contribution of the backgrounds in the
amplitudes. One caveat must be raised concerning eq. (4.43), which was already pointed
out in the study of the fy — 7 decay [76]. The subtlety is that the background phase
shifts around this resonance, coming from the broad ¢ pole, are about 90°, see Fig. 4.9a.
This background makes the fy — w7 coupling constant to appear effectively multiplied
by a m/2 phase (i factor) and in this way the T} amplitude around the fy looks like an
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Figure 4.17: Imaginary part of the 77 amplitude in the (I, L)=(0,0) channel in the second
Riemann sheet. On the left we show a three dimensional plot were we can observe the
different structure of the ¢ and fy poles. On the right we show a contour plot of the lower
half plane of the second sheet. The o pole is very far away from the real (physical) axis
and its lines of maximum gradient are parallel to it, in contrast with the fy. That is why
the effect of both poles in the phase shifts (Fig. 4.9) is so different.

ordinary Breit Wigner multiplied by 7. This means that the real part has a peak around
the resonance and the imaginary part changes sign. In this case the arguments used in
[58] and [76] lead to a trivial modification in I'g o, where Im 75 should be substituted by
Re Tlg.

It is also very instructing to see the representation of the poles in a three dimensional
plot. In Fig.(4.17) we are showing on the left the imaginary part of the (0,0) 77w — 77
scattering amplitude on the second Riemann sheet. It is possible to see very clearly the
appearance of two poles that correspond to the o and the fy; resonances. The former is
located at 442 — 4227 and thus is very far away from the real axis, which implies a huge
effective width. In contrast, the other pole is located at 994 — i14 MeV accordingly to the
narrow width of the fy resonance.

Apart from the position of the poles, there is an additional piece of information which
also determines the observed shape of a resonance. It also explains some of the differences
between the “effective” masses and the real part of the pole position. On the right of
Fig.(4.17) we give a contour plot, again of the imaginary part of the (0,0) amplitude in the
second Riemann sheet. Notice that both poles are oriented differently, almost transversally,
on the complex plane. On the one hand, the fy pole is oriented almost perpendicularly
to the real axis, which is the relevant one in this work. As a consequence, in the positive
real axis, the imaginary part of the amplitude first grows rapidly and then drops very fast
again, giving rise to the dramatic variation of the phase shift typical of resonances. A
similar orientation is found for the p, K* and ay resonances too. On the other hand, the o
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Figure 4.18: The poles associated to the p (left) and ag (right) are oriented differently.
The p mass seen on the (I, L)=(1,1) phase shifts is slightly bigger than the real part of the
position of the p pole, whereas the peak of the mass distribution where the aq is observed
(see Figure 4.12) is smaller than the real part of the ay pole. Concerning the widths, they
are obtained as twice the imaginary part of the associated pole position.

pole is oriented so that in the real axis we only see a slow and smooth increase, but almost
no decrease, of the imaginary part. That is also the case of the k resonance. This feature,
together with the fact that both the o and the k are very far from the real axis explains
why it is so hard to establish firmly their existence and their physical parameters.

Finally, in Fig.(4.18) we present a very detailed contour plot of the p and ay poles.
Both of them are almost perpendicular to the real axis, but the former is tilted clockwise,
whereas the latter is tilted anti-clockwise. Let us now remember that the real part of the
pole position, roughly, should give us the apparent mass of the resonance. However, the
lines of maximum gradient of each pole cross the real axis at a point which is slightly
different from the real part of its position. Therefore, those poles rotated clockwise, as the
p or the K* have an apparent mass a little bit higher than that given by the pole position.
In contrast those tilted anti-clockwise, yield a resonance whose mass is somewhat lower
that the one obtained from the pole. That is the case of the f; and the a,.

4.5 Conclusions.

We have used a coupled channel unitary approach, together with the dynamical in-
formation contained in the O(p?) and O(p*) chiral amplitudes, which allows us to study
the meson-meson interaction up to about /s = 1.2 GeV. This non-perturbative method
generates poles in the complex plane corresponding to physical resonances. With the O(p?)
xPT counterterms as degrees of freedom we are able to fit, up to 1.2 GeV, all the exper-
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Table 4.4: Masses and partial widths in MeV

99

Channel Resonance Mass Width Mass Width Partial
(1,J) frompole | frompole | effective effective Widths
(0,0) o 442 454 ~ 600 | very large | wm — 100%
(0,0) £2(980) 994 28 ~ 980 ~ 30 ;7;-{__6355(7(;0
©,1) $(1020) 980 0 980 0

(1/2,0) K 770 500 ~ 850 | very large | Km — 100%

(1/2,1) | K*(390) 892 1 895 1 K — 100%
(1,0) 1 (980) 1055 42 980 40 ;}7(__52(?%
1,1 p(770) 759 141 771 147 7 — 100%

imental information in seven meson-meson channels. Moreover, in our results, we obtain
the position and widths, partial decay widths, etc.... of all the resonances that appear in
those channels below 1.2 GeV. Apart from the standard fy, ag, p, K* resonances, we find
poles in the 7" matrix for the o in the 7w I = L = 0 channel and for £ in the (1/2,0)
channel, both of them very broad.

The method has proved very efficient to extend the ideas of chiral symmetry at energies
beyond the realm of applicability of xPT. However, at energies higher than 1.2 GeV, the
limitations of the model show up, since, among other things, we have restricted ourselves
only to two meson states. The restrictions in the space of states precluded the appearance
of the w resonance which couples dominantly to three pions.

One of the weakness of the approach is that it is not crossed symmetric. In practice,
the effect of the unphysical cuts has been reabsorbed in the fit of the O(p?) parameters,
whose values can then be altered by those contributions.

Applications of the method to other physical problems are also in order. Indeed, it can
be easily extended to deal with processes where meson pairs appear in the initial or final
state, like meson pair photoproduction [76]. It looks likely that it could also prove useful
describing the meson-nucleon interaction [77] complemented with Heavy Baryon Chiral
Perturbation Theory. In addition, the method, non perturbative in nature, is equally well
suited to study the meson-meson interaction in a nuclear medium where there has been
some speculation about the appearance of bound 77 pairs [78].

Finally the approach could be extended to the effective chiral Lagrangian description
of the Standard Model Strongly Interacting Symmetry Breaking Sector, where the single
channel approach has already been applied [36].
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Chapter 5

The N/D method and Chiral
Symmetry.

In this section we are going to discuss a method to unitarize y PT supplied with the
exchange of resonances which we introduce following [7]. In this section we follow the work
ref. [27]. In this work the same convention for the T-matrix than in ref. [42] was used.
Hence, as in section 4.3, to use the equations introduced in the former chapters the sign
of the T-matrix must be changed. This will be also the case for the next chapter.

In ref. [7], the question surrounding the meson-meson dynamics was not considered.
In ref. [79] the elastic 77 and K scattering is studied, although the authors use a naive
“unitarization” method, based in the relation

6(s) = tan™" (%Re TL(3)> (5.1)
which strictly only holds up to O(p?), while in the resonance region, considered also in
[79], all orders are needed. As the authors of [79] say in their work, a more thorough
investigation of loop effects to generate imaginary parts is needed. This is precisely the
aim of this chapter.

Another interesting point which we want to discuss is the problemmatic situation of
the scalar sector which is still so controversial that there is not even a consensus about
how many low lying states (with masses <1 GeV) are there. The main difficulties which
appear in this sector are: First, the possible presence of large width resonances, as the
fo(400 — 1200) = o in 77 scattering or the K;(900) = k in the I=1/2 K7 amplitude,
which cannot be easily distinguished from background contributions. Second, the existence
of some resonances which appear just in the opening of an important channel with which
they couple strongly, as for example the f;(980) or the ao(980) with the KK threshold
around 1 GeV. All these aspects make that, for instance, it is not clear how many states
are present, which is their nature and why simple parameterization of the scalar physical
amplitudes in terms of standard Breit-Wigner resonances are not adequate, as stressed in
several works [31, 80, 81] and also discussed in section 3.1.

61
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The conflictive situation for the scalar sector contrasts with the much better under-
stood vector channels. In this latter case, one can achieve a sound understanding of the
physics involved just from first principles [82], namely, chiral symmetry, unitarity and re-
lations coming from the QCD limit of infinity numbers of colors (large N. QCD). This
is accomplished thanks to the leading role of the p(770) and K*(890) resonances, in ac-
cordance with vector meson dominance, very well established from particle and nuclear
physics phenomenology. The issue is whether such a basic understanding for the scalar
sector is possible, and, at the same time, is able to reproduce the associated phenomenol-
ogy. Connected with the former, it should be also interesting to see if some kind of scalar
meson dominance remains, in analogy with the above mentioned vector meson dominance.

There have been many studies of the scalar sector but none in the basic lines we outlined
before. These studies have led to a variety of models dealing with the scalar meson-meson
interaction and its associated low energy spectroscopy. The low energy scalar states have
been ascribed [83] to conventional qg mesons [31, 84], ¢*¢® states [74, 85], KK molecules
[37, 38], glueballs [86] and/or hybrids [87].

One can think in two possible ways in order to avoid the former explicit model depen-
dence for the scalar sector, apart, of course, of solving QCD in four dimensions for low
energies which, nowadays, is not affordable.

One way to proceed is to make use only of general principles that the physical ampli-
tudes must fulfill, as unitarity and analyticity. There are a series of works by Pennington,
Morgan et al. [80, 88] which fit nicely the experimental data available for the scalar-
isoscalar sector and try to obtain also some understanding of the associated spectroscopy.
Another work in this line is presented in [89]. However, these approaches have also problems
as, for example, the specific way in which the amplitudes are parametrized and the lack of
enough precision in the experimental data in order to discard other possible solutions.

Another alternative is the use of effective field theories which embody and exploit the
symmetries of the underlying dynamics, in this case QCD. In this sense, xPT [4, 5] is the
effective field theory of QCD with the lightest three quark flavors. This approach has been
extensively used in the last years for the meson sector and allows to calculate any physical
amplitude in a systematic power momentum expansion. A brief summatry of yPT was
given in chapter 2.

This latter point of view will be the one adopted here. First, we will derive, making use
of the N/D method [9], the most general structure for an arbitrary partial wave amplitude
when the unphysical cuts are neglected. In this way, our method can be seen as the zero
order approach to a partial wave when treating the unphysical cuts in a perturbative sense.
After neglecting the unphysical cuts we then match the general structure we obtain from
the N/D method with the lowest order yPT Lagrangian, O(p®) [5], and its extension to
include heavier meson states with spin < 1 [7], beyond the lightest pseudoscalars (7, K, 7).
Making use of this final formalism, we will study the scalar sector with =0, 1 and 1/2,
being able to reproduce the experimental data up to about /s < 1.4 GeV. In order to say
something for higher energies, more channels, apart from the ones taken here, should be
added. This is not considered in this work, although it can be done in a straightforward
way, albeit cumbersome, in terms of the present formalism. We will come back to this
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point in chapter 6. We also study the vector 7w and Kn(/=1/2) scattering and compare
it with the scalar sector to illustrate some important differences between both cases.

Some words about the unphysical cuts are in order. We expect they can be considered
small in those partial wave amplitudes which are dominated by unitarity and the presence of
resonances in the s-channel with the same quantum numbers of the partial wave amplitude.
For example, the case of the p and K* resonances in the P-wave n7m and K7 scattering
respectively or the scalar channels with isospin 0, 1/2 or 1, where several resonances appear.
In fact, for the p(K*) meson-meson channels, at least up to /s = 1.2 GeV, one can
describe accurately the associated wm (K 7) phase shifts just in terms of simple Breit-Wigner
parameterizations with the coupling of the p(K*) with 77 (K 7) given by the KSFR relation
[29] and their masses taken directly by experiment. In this way one has a free parameter
description for these processes without the unphysical cuts, since it only has the physical
or right hand one as required by unitarity. Thus, one can deduce that for these processes
the contribution from the unphysical cuts is certainly much smaller than the one coming
from the exchange of these resonances in the s-channel and from unitarity. Otherwise, a
free parameter reproduction of these channels with only the right hand cut could not be
possible. This type of description for the p and K* meson-meson channels is given below in
section 3.3 and it was also given in ref. [82] for the case of the p. For the scalar channels
with I=0,1 and 1/2 there have been a number of previous studies [31, 57, 58, 81, 85] which
neglect the contribution from the unphysical cuts establishing clearly the great importance
of unitarity for the scalar sector. In particular, in the work of ref. [58] the I=0,1 S-
wave channels were described in terms of just one free parameter up to /s =~ 1.2 GeV,
indicating that the contribution from the unphysical cuts should be small enough to be
reabsorbed in this free parameter. The connection between the work of ref. [58] and the
present one is discussed in section 3.2. It is also interesting to indicate that in [25, 42]
the S-wave scattering was also studied including the unphysical cuts up to O(p?) in xPT
and the results obtained were very similar to the ones of the former works, refs. [57, 58],
without any unphysical cuts at all. Apart from these considerations, we approach in the
last section the influence of the unphysical cuts from xPT and the exchange of resonances
in crossed channels taking into account the results of ref. [79]. In this reference, the wr
and K elastic amplitudes are calculated up to one loop including explicit resonance fields
[7]. In this way the range of applicability of xPT is extended up to /s ~ 700 — 800 MeV.
The loops are calculated as in YPT at O(p*). We conclude that the contributions of the
unphysical cuts are small and soft enough to be reabsorbed in our free parameters in a
convergent way when treating the unphysical cuts in a perturbative way. It is important to
indicate that such a small value for the influence of the unphysical cuts, as can be seen in
Table 5.3, is due to a cancellation between the contributions coming from the loops and the
exchange of resonances in crossed channels. In chapter 6 we will enlarge the formalism to
include also up to O(p*) the unphysical cuts making use of the loops calculated in [43, 79]
at O(p?).

The main conclusion of this chapter is that one can obtain a rather accurate description
of the scalar sector compared to experiment, in a way consistent with yPT and large N,
QCD [90], if the tree level structures coming from large N, QCD for the meson-meson
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scattering are introduced in a way consistent with xP7T" and then are properly unitarized
in the way we show here. Contrary to what happens for the vector channels, where the
tree level contributions determine the states which appear in the scattering, we will see
that for the scalar sector the unitarization of the O(p*) xPT amplitude is strong enough
to produce meson-meson states, as for example, the o(500), a((980), x£(900) and a strong
contribution to the f5(980). All these states, except the f,(980), disappear for large N,
QCD because they originate from effects which are subleading in 1/N, counting rules (loops
in the s-channel). We will see below that the origin for such a different behavior between
the p and the o will be just a numerical factor 1/6 between the P and S-wave O(p?) xPT
amplitude. Note that in a n-loop calculation this gives rise to a relative suppression factor
of 1/6™"! of the P-wave loops with respect to the S-wave ones.

5.1 Formalism.

Let us consider in the first place the elastic case, corresponding to the scattering of two
particles of masses m; and my respectively. We will also allow for several coupled channels
at the end of the section.

Let Ti(s) be a partial wave amplitude with isospin I and angular momentum L. Since
we are dealing with 7, K and n as asymptotic particles, which have zero spin, L will also
be the total spin of the partial wave. The projection in a definite angular momentum is
given by eq. (1.41).

A T (s) partial wave amplitude has two kinds of cuts. The right hand cut required by
unitarity and the unphysical cuts from crossing symmetry. In our chosen normalization, the
right hand cut leads to the equation (in the following discussions we omit the superindex
I, although, it should be kept in mind that we always refer to a definite isospin):

ImT,;' = —p(s) (5.2)

for s > Sipreshoida = Stn- In the case of two particle scattering, the one we are concerned
about, s;, = (my + mg)? and p(s) is given by:

p

ps) = o 7

(5.3)

with

_ V(s = (ma+me)?)(s — (ma —my)?) _ X/2(s,mi, m3)
b= NG N
the c.m. three momentum of the two meson system.

The unphysical cuts comprise two types of cuts in the complex s-plane. For processes
of the type a + a — a + a with m; = my = m,, there is only a left hand cut for s < sr.y;.
However for those ones of the type a +b — a + b with m; = m, and my = m,, apart from
a left hand cut there is also a circular cut in the complex s-plane for |s| = m3 —m?, where
we have taken mgy > my. In the rest of this section, for simplicity in the formalism, we

(5.4)
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will just refer to the left hand cut as if it were the full set of unphysical cuts. This will be

enough for our purposes in this section. In any case, if we worked in the complex p?-plane

all the cuts will be linear cuts and then only the left hand cut will appear in this variable.
The left hand cut, for s < sp.p, reads:

Tr(s+ie) — Tr(s —ie) = 2ilm Ty(s) (5.5)

The standard way of solving eqgs. (5.2) and (5.5) is the N/D method [9]. In this method
a Tp(s) partial wave is expressed as a quotient of two functions,

_ NL(S)
Dy (s)

with the denominator function Dy (s), bearing the right hand cut and the numerator func-
tion Nz (s), the unphysical cuts.

In order to take explicitly into account the behavior of a partial wave amplitude near
threshold, which vanishes like p?L = vl we consider the new quantity, T, given by:

T (s) = L242) (5.7)

vl

Tr(s) (5.6)

which also satisfy relations of the type of egs. (5.2) and (5.5). So that we can write:

T, (s) = gig (5.8)

From egs. (5.2), (5.5) and (5.7), N7, (s) and D', (s) will obey the following equations:

Im D}, =Im T, ' N}, = —p(s)N, vk, s> sy

Im DIL = 07 S < Stn (59)

Im N}, =Im T}, D}, s < spep

Im N} =0, S > Speft (5.10)

Since N, and D’ can be simultaneously multiplied by any arbitrary real analytic func-
tion without changing its ratio, T7, nor eqs. (5.9) and (5.10), we will consider in the
following that N’ is free of poles and thus, the poles of a partial wave amplitude will
correspond to the zeros of DY .

Using dispersion relations for D7 (s) and N7 (s), we write from eqgs. (5.9) and (5.10):

D) (s) = _=s)” /00 ds'V(SI)Lp(SI)N’L(S)Iz + ”Z U™ (5.11)

T (s' = s)(s' — so

where n is the number of subtractions needed such that

lim () _ (5.12)

§—00 S”*L
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since, from eq. (5.3)
. vEp(s) 1
BT = e (>:19)

On the other hand, from eqgs. (5.5) and (5.7), consistently with eq. (5.12)

1
a,,s™ (5.14)

bs

m=0

Ny(o) = S [ g T

s ds v(s")(s" — so)" L (s — s) *

Egs. (5.11) and (5.14) constitute a system of integral equations the input of which is
given by Im T} (s) along the left hand cut.

However, egs. (5.11) and (5.14) are not the most general solution to egs. (5.9) and
(5.10) because of the possible presence of zeros of T which do not originate when solving
those equations. These zeros have to be included explicitly and we choose to include them
through poles in D} (CDD poles after ref. [91]). Following this last reference, let us write
along the real axis

dA(s
Im DY (s) = % (5.15)
Then by eq. (5.9),

dA ,
i —p(s)VENL, s> sy,
o (5.16)
15 =0, s < Sy

Let s; be the points along the real axis where T (s;) = 0. Between two consecutive
points, s; and s;,1, we will have from eq. (5.16)

Als) = — / v(s')“p(s' )N (s)ds" + A(si) (5.17)

%

with A(s;) unknown because the inverse of T’ (s;) is not defined. Thus, we may write

A(s) = — /5 v(s)Ep(s" N (s")ds" + Z A(s:)0(s — ;) (5.18)

with 6(s) the usual Heaviside function.
From eqs. (5.15) and (5.18), it follows that

_ n o I DI Idl n— 7
D (s) = (s 50)/ m D7 (s')ds +Zam5mzzam5m

n th (SI B 8) (SI B So)n m=0 m=0

_ w—%ﬁ/mvaMﬂNuﬂd, (s = 50" [* TS —50)

T (s" = s)(s" — so)™ T sy (8 —5)(s" — s0)"

+
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(S—So)"/“’ v(s') p(s' )N (s
= d + ams™
™ s (8= 8)(s" — s0)" Z

+ Z (5 = 50)" (5.19)

—S() S; — S

Eq. (5.19) can also be obtained from eq. (5.9) and use of the Cauchy theorem for
complex integration and allowing for the presence of poles of D (zeros of T7) inside and
along the integration contour, which is given by a circle in the infinity deformed to engulf
the real axis along the right hand cut, s;; < s’ < co. In this way one can also consider
the possibility of there being higher order zeros and that some of the s; could have non-
vanishing imaginary part (because of the Schwartz theorem, si will be another zero of
T7.(s)). However, as we will see below for L < 1, when considering chiral symmetry in the
large N, QCD limit, the zeros will appear on the real axis and also as simple zeros. In
general, using T’ instead of T, we avoid working with L™ order poles of Dy, at threshold
in the dispersion relation given by eq. (5.19).

The last term in the right hand side of eq. (5.19) can also be written in a more
convenient way avoiding the presence of the subtraction point sy. To see this, note that

(8—50)" _ (5_5)"—1S_Si+si_80
S — S; 0 S — S5
n1 5i — 50 n1 (s —s0)""
= - 1 — (s — o
(s—so)" " (1+ p— ) =(s—=50)" "+ (si — o) pa—

S
—

= . (5 — 50)" 17 (s5; — 80)" + (51 — 50)"

S — S;

(5.20)

i
(==}

The terms

—_

e
(s — so)"_l_i(si — so)i

-
Il
)

can be reabsorbed in

n—1
g am S

3

As a result we can write

D’ (s) :_@/m ’(’S(ISE Sp)(sl o +Zams +Zsfsl (5.21)

with @, (n—1>m > 0) and 7;, s; (i > 0), arbitrary parameters. However, if some of the
s; is complex there will be another s; such that s;=s} and 7; = 7;, as we explained above.
Each term of the last sum in eq. (5.21) is referred as a CDD pole after [91]. Note that in
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principle one can have an arbitrary number of CDD poles in eq. (5.21) for a given Im 77,
along the left hand cut. This is why the CDD poles are also called CDD ambiguites.

Egs. (5.21) and (5.14) stand for the general integral equations for D’ and N, re-
spectively. Next we do the approximation of neglecting the left hand cut, that is, we set
Im Ty (s) =01in eq. (5.14). Thus one has:

N (s) = a,,s™ (5.22)

As a result, N, (s) is just a polynomial of degree <n — L —1 ' . So we can write,

Ny(s)=C i (s —s;) (5.23)

j=1

In eq. (5.23) it is understood that if n — L — 1 is zero N is just a constant. Thus, the
only effect of N’ will be, apart from the normalization constant C, the inclusion, at most,
of n — L — 1 zeros to T7 (s). But we can always divide N and D by eq. (5.23). The net
result is that, when the left hand cut is neglected, it is always possible to take N (s) = 1
and all the zeros of T’ (s) will be CDD poles of the denominator function. In this way,

Tl = B

Ni(s) = 1
L My,

DIL(S) — _M/oo ds' V(SI)LIO(SI) +Zamsm+z R; (5-24)

m s (8= 8)(s' = s)F ! s — s

The number of free parameters present in eq. (5.24) is L + 1 + 2p, where p is the
number of CDD poles, M;,, minus the number of complex conjugate pairs of s;. These free
parameters have a clear physical interpretation. Consider first the term 2o which comes
from the presence of CDD poles in D (s), eq. (5.24). In [92] the presence of CDD poles
was linked to the possibility of there being elementary particles with the same quantum
numbers as those of the partial wave amplitude, that is, particles which are not originated
from a given ‘potential’ or exchange forces between the scattering states. One can think
that given a D} (s) we can add a CDD pole and adjust its two parameters in order to
get a zero of the real part of the new D' (s) with the right position and residue, having
a resonance/bound state with the desired mass and coupling. In this way, the arbitrary
parameters that come with a CDD pole can be related with the coupling constant and
mass of the resulting particle. This is one possible interpretation of the presence of CDD
poles. However, as we are going to see below, these poles can also enter just to ensure the
presence of zeros required by the underlying theory, in this case QCD, as the Adler zeros

'One can always make that 7 > L + 1 just by multiplying N, and D/, by s* with k large enough.
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for the S-wave meson-meson interaction. The derivative of the partial wave amplitude at
the zero will fix the other CDD parameter, 7;. With respect to the contribution L + 1
to the number of free parameters coming from the angular momentum L, it appears just
because we have explicitly established the behavior of a partial wave amplitude close to
threshold, vanishing as v%. This is required by the centrifugal barrier effect, well known
from Quantum Mechanics.

It should be stressed that eq. (5.24) is the most general structure that an elastic
partial wave amplitude, with arbitrary L, has when the left hand cut is neglected. The
free parameters that appear there are fitted to the experiment or calculated from the
basic underlying theory. In our case the basic dynamics is expected to be QCD, but eq.
(5.24) could also be applied to other scenarios beyond QCD as the Electroweak Symmetry
Breaking Sector (which also has the symmetries [93] used to derived eq. (5.24), as far as
it is known).

Let us come back to QCD and split the subtraction constants a,, of eq. (5.24) in two
pieces

am = ak + aSt(so) (5.25)

The term aZ will go as N,, because in the N, — oo limit, the meson-meson amplitudes go
as N, ! [90]. Since the integral in eq. (5.24) is O(1) in this counting, the subleading term
asl(sg) is of the same order and depends on the subtraction point so. This implies that
eq. (5.24), when N, — oo, will become

R

S — S;

L Mg
Dy (s) =Dfo(s) = Y aks™+ ) (5.26)
m=0 i
where R$° is the leading part of R; and M;° counts the number of leading CDD poles.
Clearly eq. (5.26) represents tree level structures, contact and pole terms, which have
nothing to do with any kind of potential scattering, which in large N, QCD is suppressed.
In order to determine eq. (5.26) we will make use of xPT [5] and of the paper [7]. In
this latter work it is shown the way to include resonances with spin < 1 consistent with
chiral symmetry at lowest order in the chiral power counting. It is also seen that, when
integrating out the resonance fields, the contributions of the exchange of these resonances
essentially saturate the next to leading xPT Lagrangian. We will make use of this result
in order to state that in the inverse of eq. (5.26) the contact terms come just from the
lowest order xPT Lagrangian and the pole terms from the exchange of resonances in the
s-channel in the way given by [7] (consistently with our approximation of neglecting the
left hand cut the exchange of resonances in crossed channels is not considered). In the
latter statement it is assumed that the result of [7] at O(p?*) is also applicable to higher
orders. That is, local terms appearing in yPT and from eq. (5.26) of order higher than
O(p*) are also saturated from the exchange of resonances for N, >> 1, where loops are
suppressed.
Let us prove that eq. (5.26) can accommodate the tree level amplitudes coming from
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lowest order xPT [5] and the Lagrangian given in [7] for the coupling of resonances (with
spin < 1) with the lightest pseudoscalars (7, K and 7).

Following [7], one can write the exchange of a resonance (with spin < 1) divided by v
as:

(cis + cim?)?
M? —s

d;
e - - L=1 (5.27)

where M; is the mass of the i** resonance, m? is some combination of squared masses of
the lightest pseudoscalars and ¢;, ¢, and d; are arbitrary constants with d; > 0.

The lowest order yPT partial wave amplitude (L < 1), divided again by %, can be
written schematically as:

as+a'm?* ;L=0
boL=1 (5.28)

with m? another combination of squared masses of the lightest pseudoscalars.

Thus, in large N, QCD, the partial wave amplitudes will have the following structure,
after omitting the exchange of resonances in crossed channels and contact terms of order
higher than O(p?)

s + chm?)?
TI = Tloo — 1.~ 2 (CZS 1
0(s) o (s) =as+a'm —I-Z_1 MZ—s
B dis
Ti(s) = T(s) = b+ E M;— . (5.29)

In the former equation it is understood that if R;, = 0 the sum does not appear.
Let us now study the inverse of eq. (5.29) in order to connect with D°. With &, the
number of zeros of T?°, we can write:

Ry, 2
/oi _ AL Hi:l(s — Mz ) (530)
TZ(s) [T (s — s,)

In the former equation, if R, = 0 or £, = 0, the corresponding product must be
substituted by 1. Ay is just a constant. Note that from eqs. (5.29) § < Ro+1and & < Ry,
from simple counting of the degree of the polynomials that appear in the numerators after
writing eqs. (5.29) as rational functions.

On the other hand, note from eqs. (5.27) that, for s > 0, the amplitude from the
exchange of resonances, both for L = 0 and 1, is positive below the mass of the resonance
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and negative above it. This implies that in the interval, M2, > s > M?, by continuity,
there will be a zero of Tt°. In this way,

§L > Ry — 1 (5.31)

For L = 0, apart from the zeros between resonances, one has also the requirement from
chiral symmetry of the presence of the Adler zero, along the real axis and below threshold.
Thus, & > Ry and we can write

R,—L+1>¢, >R, —L (5.32)

Note that since the Ry, — L zeros of T are real, the possible single additional zero
from the upper limit of eq. (5.32) must be also real, since a complex one would imply its
conjugate too. This is so because all the coefficients in eq. (5.29) are real.

Let us do the counting of zeros and resonances from eq. (5.26). The number of zeros
of T is equal to the number of CDD poles of D7°, Ms°. Hence

§ = Mp® (5.33)

On the other hand the number of poles of T° is equal to the number of zeros of D°
which has the following upper limit

Ry <MP+L=¢+L (5.34)
Thus,

>Ry —L (5.35)

which gives the same lower limit as in eq. (5.32). Let us recall that the zeros of eq. (5.30)
are real, as discussed above. This, together with the requirement of T7°(s) being a real
function on the real axis, forces all parameters in eq. (5.26) to be real. Then the number
of free parameters in eq. (5.26) are 2M° + L +1 = 26, + L + 1. When fixing the s;
parameters in eq. (5.26) to the s, parameters in eq. (5.30) this reduces in &, the number
of free parameters in eq. (5.26). By fixing the arbitrary constant A, of eq. (5.30) this
leaves us with &, + L free parameters in eq. (5.26). Imposing now the position of the Ry,
resonances of eq. (5.30) to be at M? we have R;, additional constraints. Hence we should
have

&0+ L—Rp >0 (5.36)

which actually holds, as seen above in eq. (5.35). As a consequence eqs. (5.29) can always
be cast in the form of eq. (5.26)
Let us define the function gr(s) by

u(s)" = Z aSL(s0)s™ — (5= s0)"" /oo ds'(s, _VSI(L,p_(S;()))LH

m
m=0

(5.37)
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and using the notation

L ML R
T®(s) = v* L gm )t 5.38
PO = e+ 3 (5.38)
results that from eq. (5.24) one has
To(s) = [1/TF(s) +gu(s)] (5.39)

The physical meaning of Eq. (5.39) is clear. The T{° amplitudes correspond to the
tree level structures present before unitarization. The unitarization is then accomplished
through the function gz (s). It is interesting at this point to connect with the most popular
K-matrix formalism to obtain unitarized amplitudes. In this case one writes:

Ti(s) = [Kr(s) ' —ip(s)] (5.40)

we see that the former equation is analogous to eq. (5.39) with T*~'(s) + Regp(s) =
K, (S) -1

From the former comments it should be obvious the generalization of eq. (5.39) to
coupled channels. In this case, T?°(s) is a matrix determined by the tree level partial wave
amplitudes given by the lowest order y PT Lagrangian [5] and the exchange of resonances
[7]. For instance, [T(s)]i; = T 4+ TE, [T2°(s))12 = T2 + TE and so on. Where T® is
the matrix of the O(p?), xPT partial wave amplitudes [5] and T® the corresponding one
from the exchange of resonances [7] in the s-channel. Once we have T{°(s) its inverse is the
one which enters in eq. (5.39). Because N/, (s) is proportional to the identity, g1,(s) will be
a diagonal matrix, accounting for the right hand cut, as in the elastic case. In this way,
unitarity, which in coupled channels reads (above the thresholds of the channels i and j)

is fulfilled. The matrix element gy,(s); obeys eq. (5.37) with the right masses corresponding
to the channel ¢ and its own subtraction constants a3 *(so).

In the present work the coupling constants and resonance masses contained in T7°(s)
are fitted to the experiment. The same happens with the af” although, as we will discuss
below, they are related by SU(3) considerations.

In Appendix C the already stated coupled channel version of eq. (5.39) is deduced
directly from the N/D method in coupled channels [94].

5.2 Reinterpretation of the results of ref. [58].

The most simple application of eq. (5.39) occurs when one only includes the lowest
order Y PT amplitudes and forgets about explicit resonance fields. This was the situation
considered in ref. [58] for L = 0, although there we arrived to the same eq. (5.39) by a
different argumentation. This work was already reported in my master’s thesis.
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Let us note that we are not including any explicit resonance and hence we are in the
situation described in section 3.1.B. Thus, let us change momentarily the notation and
instead of T7” we take the symbol V, which usually denotes a potential. In this way, eq.
(5.39) can also be written as:

To(s) = V(s) + V(s) - (=g(s)) - To(s) (5.42)
which is like a Lippmann-Schwinger(LS) equation but with relativistic propagators. How-
ever, while eq. (5.42) is an algebraic equation a LS equation is an integral one. The point
is that in eq. (5.42) V(s) and Ty(s) are factorized and simply multiply the loop function
—g(s). In a LS equation one should have instead the following integral

4 1

Y B T s
(V(—g)TL)ag—/(27r)4V(k,p, C])m(qZ_m%i)((P_q)Q_mgi)To(q,k,p)zg (5.43)

where P is the total momentum, k£ and p represent the inital momenta of the ingoing
mesons and k' and p’ the final momenta of the outgoing ones. Only when V and T, are
factorized outside the integral eq. (5.42) and a LS equation are equivalent.

In ref. [58], it was discussed that this was in fact the case. Writting

V= Von—shell + Voff—shell (544)

the Vo, snen(p;) part, with p? = m?, factorizes out of the integral in eq. (5.43) since it
only depends of the Mandelstam variable s. For V¢ pen it was realized that it only gives
rise to tadpole like contributions which can be reabsorbed in the physical values of masses
and decay constants. So that, at the end, one only needs V,, e and hence, eq. (5.42)
follows.

This result is clear from the formalism developed in the former section, since one needs
the physical values for the positions and residues of the CDD poles and the constant ay,
eq. (5.24).

Other works that also use LS equations are [95] in the meson-baryon system and [96]
in the meson-meson one. In fact, the former reference inspired our work [58].

In ref. [58] the go(s) function was calculated making use of a cut-off regularization.
In appendix A the relation between cut-off and dimensional regularization is given. The
cut-off, A, was fixed to reproduce the experimental points, or in other words, to give the
right value for the substraction constant a3’ in eq. (5.37). In Fig. 5.1 we show the results
compared with data. The agreement is rather good and surprising. In this work we also
found poles corresponding to the f(980), ag(980) and o(500) resonances. Their masses,
partial and total decay widths were in agreement with the experimental values [19].

Hence, we see that for the scalar sector with /=0,1 the unitarization of the lowest order
xPT amplitudes plays a very important role and also that the resonances which appear
there with masses <1 GeV will have a large meson-meson component in their nature. The
same results are expected to hold in the I=1/2 S-wave amplitude by SU(3) symmetry. We
will investigate further these points in section 5.4 where we will also have the presence
of explicit scalar resonances.
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Figure 5.1: Results from [58]. References to experimental papers are also given in this
paper.

5.3 The ideal case: elastic vector channels.

In this section we are going to study the 77 and K= scattering with /=L=1 and
I=1/2,L=1, respectively. It will be shown, as mentioned in the introduction, that these
reactions can be understood just by invoking:

1) Chiral Symmetry
2) large N, QCD
3) Unitarity

A priori, one could think that relations coming from the N, — oo limit should work
rather accurately at the phenomenological level in these channels due to the predominant
role of the p and K* poles over subleading effects in 1/N,, as unitarity loops.

Since the zero at threshold is a simple zero for L=1, we will use, instead of eq. (5.24),
the slightly modified formula:

_ Vi g 3% = o p(s")
Di(s) = + /Sth d 5 = )5 —s0) (5.45)
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where the threshold zero has passed to poles in the denominator function, D;. This equa-
tion can be derived as eq. (5.24) but working directly with T; rather than T}. Another
advantage of using eq. (5.45) instead of eq. (5.24) is that the comparison with the scalar
sector will be more straightforward, because the dispersive integral will be the same.

The integral in eq. (5.45) will be evaluated making use of dimensional regularization.
It can be identified up to a constant to the loop represented in Fig. 5.2. This identification
is consequence of the fact that both the integral in eq. (5.45) and the loop given in Fig. 5.2
have the same cut and the same imaginary part along this cut, as it can be easily checked.

Tm N
Pos MRy
. Pa
m,

Figure 5.2: Loop giving rise to the gy function.

Following eq. (5.37) we define

SL s—so %,  p(s)
= — d
9o(s) @™ (%0) 7r /sth ° (s" — 8)(s' — s0)
1 CNLSL(/L)+IOg@— m%_mg_l_slogm_%_ )‘I/Z(Samimg) .
(47)2 u2 2s m? 2s
g (=0t My

m2 +m3 — s — A\/2(s, m?, m3)

(5.46)

for s > sy,. For s < sy, or s complex one has the analytic continuation of eq. (5.46).
The function \/2(s,m?, m2) was already introduced in eq. (5.4). The regularization scale
u, appearing in the last formula of eq. (5.46), plays a similar role than the arbitrary
subtraction point s¢ in the first formula of eq. (5.46). This similarity is consequence of
the fact that both p and sy can have any arbitrary value but the resulting function go(s)
is independent of this particular value because of the change in the subtraction constant,
a®L(u) for dimensional regularization or a”%(sp) for the dispersion integral. The a°%(u)
‘constant’ will change under a variation of the scale y to other one p' as

2

- " 1
a*"(u') = a°"(u) + log 7 (5.47)
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in order to have go(s) invariant under changes of the regularization scale. We will take
pw = M, = 770 MeV [19]. The function go(s) is also symmetric under the exchange
my <> mo and for the equal mass limit it reduces to

I 1. m} o(s)+1
go(s) = e [a (1) + log "l +o(s)log o)~ 1 (5.48)
with
ols) = /1 - "1 (5.49)

After this preamble, let us consider in first place the n7 scattering with I=L=1. As
can be seen from Fig. 5.3 this process is dominated by the p exchange. From eq. (5.45)
one has

T ’Y{m ~L T Vi ]_1
T =|—— .
1 (5) S—4m72r+a7m+go (S)_‘_;S_Si (550)
The first term in the R.H.S of the last equation fixes the zero at threshold for a P-wave
amplitude.
The tree level part of 77" (s) from ref. [7] and lowest order x PT [5], in the way explained
in the last section, is given by:

2 p? 2 p? s
ﬁm@zﬁgﬁggw_s (5.51)
with p?_ the three-momentum squared of the pions in the ¢.m., f = 87.3 MeV the pion
decay constant in the chiral limit [5]. The deviation of g with respect to unity measures
the variation of the value of the p coupling to two pions with respect to the KSFR relation
[29], g2 = 1. In [24] this KSFR relation is justified making use of large N, QCD (neglecting
loop contributions) and an unsubtracted dispersion relation for the pion electromagnetic
form factor (a QCD inspired high-energy behavior).
Comparing eqs. (5.50) and (5.51), one needs only one additional CDD pole apart from
the one at threshold and we obtain

abt = 0
6f2(Mp2—4m3r)

iy

=
(M2 — 4m2(1 — ¢2))
o 6f 9. M;
T T2 M2 (1— g2)dm?2
M2
— p 5.52
%2 1—g? (5:52)

Thus, we can write our final formula for the isovector 77 scattering in the following
way
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gi V3" -
T (s) = + + g™ (s 5.53
1 (s) s—4mZ | s — s, 95" (s) ( )
in terms of the parameters g2 and a®L(u). Since g2 is expected to be close to unity as
discussed above, it is useful to consider the limit when g2 — 1, in which case sy — oo such
that

V5" 6f2 ~1L

in which case the second CDD pole in eq. (5.53), at sy, moves to infinity and the CDD
pole contribution gives rise to a constant term, @'~ . In this limit we can write

T7™(s) = [—D— + ™ + g7 (s)] " (5.55)

— 4m2
s —4m?2

Our calculated phase shifts for the vector 77 scattering are represented in the dashed
line of Fig. 5.3, when g2 is taken equal to one and @°* = 0. The agreement with the
experimental data is rather good. If we had just taken the imaginary part of gJ™(s) in
the former equation we would have obtained basically the same curve. This last case
corresponds just to the Breit Wigner amplitude

2p, My
3 f2 MZ—s—iM,y(s)
3
p7r7r Mp
r = — 5.56

For the I=1/2, L=1 K= scattering, the tree level amplitude T{">, is just given by

by 2 2
multiplying eq. (5.51) by 3/4 and substituting p?_ by p%. = w and M, by
s
M3;=896 MeV [19], the mass of the neutral K*(890). Now mg is the mass of the kaon,
495.7 MeV [19]. On the other hand, since mg # m, instead of having just a single pole in
the denominator function, as in eq. (5.50), for the zero at threshold, one has two simple
poles

T AT s s
2 = (5.57)
dpje. Sy —s_ls—s. s—s_

with s, = (mg +m,)? and s = (mxg — m,)? That is, we will have two CDD poles but
both entering with just one parameter because the behavior at threshold is proportional
to p%,. In our notation

lim T{(W(S) = 4

S—>Sth p%(,,r ,.}/1K7r
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Figure 5.3: Isovector 77 elastic phase shifts from threshold up to /s < 1.2 GeV. The
dashed line corresponds to taking g2 = 1 and @°Y = 0. The continuum line corresponds
to the simultaneous fit to the p and K* channels, given by eq. (5.61). Data: circles [65],
squares [66]

For the simple and realistic case, g2 = 1, we have, analogously to the case of the p,

Kn
T (s) = | jpz a4 gl(s)) ! (5.58)
K

™

with

kr _ 8fH(Mi. — (mk + mx)?)

’Y =
1 MIQ{*
812
~L

In the general case when g2 # 1, one proceeds in the same way as for the p introducing
an extra CDD, but we shall omit the details here and the evaluations are done directly
using the final formula
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1 =
1/T7 + g5 (s)

T = [ (5.60)
with T*™* evaluated as mentioned above.

In Fig. 5.4, the calculated phase shifts for the /=1/2, P-wave K scattering are shown
in the dashed curve for g2 = 1 and @°Y = 0. The same remarks, as done before for the p
when commenting Fig. 5.3, are also valid for the K*. It is worth stressing that the dashed
lines of Fig. 5.3 and 5.4 have no free parameters at all, and depend only on f and the
masses of the resonances K* and p.

200

150 —

Km

100 —

61/21

50 —

700 800 900 1000 1100

Figure 5.4: P-wave elastic K7 phase shifts with 1=1/2, from threshold up to /s < 1.2
GeV.The dashed line corresponds to taking g2 = 1 and a°* = 0. The continuum line
corresponds to the simultaneous fit to the p and K* channels, given by eq. (5.61). Data:
triangles [68], circles [71]

The subleading constant a°” present in go(s), eq. (5.46), should be the same for the 77
and K7 states because the dependence of the loop represented in Fig. 5.2 on the masses
of the intermediate particles is given by eq. (5.46). This point can be used in the opposite
sense. That is, if it is not possible to obtain a reasonable good fit after setting @°% to be
the same in both channels, some kind of SU(3) breaking is missing.
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From egs. (5.53) and (5.60) we do a simultaneous fit to the experimental P-wave
7r (I=1) and K7 (I=1/2) phase shifts with g2 and @°l as free parameters using the
minimization program MINUIT. In order to make the data from different experiments
consistent between each other, a systematic relative error of a 5% is given to each data
point if its own error is smaller than this bound. The result of the fit is:

g2 = 0.87940.016
a’t = 0.34140.042 (5.61)

the errors are just statistical and are obtained by increasing in one unit the x? per degree
of freedom, x7, . The x7, ; obtained is:

Xd.op = 0.74 (5.62)

with 81 experimental points.

The continuum line corresponds to the fit given by eq. (5.61). We see that the agree-
ment with data is very good. Note also that g2 is very close to unity. To consider the
discrepancy with the KSFR result, which refers to the value of the coupling constant, it is
better to use g, which results to be, from eq. (5.61), 0.94. That is, only a 6% of deviation
respect to unity.

It is interesting and enlightening to see the value that the regularization scale p should
have in order to generate the p pole at 770 MeV when removing @'~ from eq. (5.55) and
setting a° = 0. In this way we are taking the regularization scale as a cut-off, as done in
the former section for the S-waves. The eq. (5.55), neglecting 4m? with respect to Mpg,
transforms to:

6f2 -1
— + 90(5)| 5.63
s —4m?2 90(s) (5.63)
The resulting 1 will be around by 0.7 TeV, a value completely senseless 2. Its natural
value is u ~ 1 GeV, where typically resonances appear. A similar conclusion about these
unrealistic high values of the cut-off was also obtained in [97]. This value of pu makes it
manifest that, as we have already seen in this section, the origin of the vectors K* and p
is attached to tree level structures, preexisting before unitarization.
For the scalar sector, which we will study in further detail in the next section, we have
only to do the following change in eq. (5.63),
6./ J?
_ s —— 5.64
s —4m?2 s —m2/2 (5.64)
that is, basically a factor 6 of difference for s around MZ. This makes that the ‘cut-off’
needed in the 77 S-wave to get a resonance of the same mass than the p is just 1.8 GeV.

*Witout neglecting 4m2 compared with M? one has to multiply the quotient 6 in eq. (5.63) by

bl
) , s—4m?2
M7 —4m3

Mz 0.87, as one can check from eq. (5.55). The resulting p is 0.3 TeV
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The change has been drastic due to the logarithmic dependence of the regularization scale
in eq. (5.63).

5.4 The scalar sector.

In this section we want to study the S-wave /=0,1 and 1/2 amplitudes. For the partial
wave amplitudes with L=0 and 7=0 and 1, coupled channels are fundamental in order
to get an appropriate description of the physics involved up to /s < 1.3 GeV. This is
an important difference with respect the former vector channels, essentially elastic in the
considered energy region. Up to /s = 1.3 GeV the most important channels are:

I=0 7r(1), KK(2), m(3)
I=1 m(l), KK(2) (5.65)
I=1/2 Kx(l), Kn(2)

where the number between brackets indicates the index associated to the corresponding
channel when using a matrix notation as the one introduced in section 5.1.

For the /=0 S-wave, the 47 state becomes increasingly important at energies above
1.2 — 1.3 GeV, so that, in this channel, we are at the limit of applicability of only two
mesons states when /s is close to 1.4 GeV. In the I=1/2 channel, the threshold of the
important Kn' state is also close to 1.4 GeV. Thus, one cannot go higher in energies in a
realistic description of the scalar sector without including the K7’ and 47 states.

Two sets of resonances appear in the former L=0 partial wave amplitudes [19]. A first
one, with a mass around 1 GeV, contains the /=0 f,(400 — 1200) and f,(980) and the
I=1 a((980). A second set appears with a mass around 1.4 GeV as the I=0 f,(1370) and
the fo(1500), the I=1 a(1450) or the I=1/2 K} (1430). As a consequence, one could be
tempted to include the exchange of two scalar nonets, with masses around 1 and 1.4 GeV.
Before discussing whether this is the case, let us write the symmetric T{® matrix of tree
level amplitudes for the different isospins. This matrix, T, is determined, as explained
at the end of section 5.1, from the lowest order yPT amplitudes, T and from the
exchange of scalar nonets in the s-channel as given by ref. [7], T¥, see also eqs. (2.21)
and (2.22) where the corresponding Lagrangians are given. In the following formulas we
consider the exchange of only one nonet. If more nonets are needed, they have only to be
added in the same way as the first nonet is introduced

I=0

28—m3r_|_3 (041)2 3(5(0)1)2
2f2 2M? —s 2M82—s

V3 s Q10 £(0)15(0)2
Toe Voo _e2 PAV)LPAV)2
52 4f2+\/§M12_8+\/§ s

o _
T0,11 =
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my V3 ey V3B0LA(0)s

JI2f2 2 M2P—s 2 MZ—s

(3s—2m2—2/3m2  asa3  $(0)28(0)s
M? —s Mg —s

4f fn
1 (e5)* | 1(B(0)s)”

16m3 — Tm?
1812 2ME—s 2 MZ-—s

(5.66)

with M; and Mg the masses of the singlet and octet in the SU(3) limit, m,, is the mass

of the n, 547.45 MeV [19],

[ is the decay constant of the 7, set to the value f, = 1.3f;

according with the xPT prediction [5], f, = 92.4 MeV is the pion decay constant and «;

and ((0); are given by:

65)

a3

4 s 2
\/_TfQ[Cdi + (em — ca)mi]
V2
V3r?

S
[Cd§ + (¢ — cd)miy]

_\/ng[ dg + §(2cm cml — (56 — ca) ™

%[aig + (ém — Ea)m?]

%[@g + (ém — Ca)mik]

%[@g + (6m — Ga)ym?) (5.67)

the constants ¢y, ¢, ¢4 and ¢, characterize the coupling of a given scalar nonet to the
pseudoscalar pairs of pions, kaons and etas as given in [7].

o
T0,11

(o]
T0,12

(o]
T0,22

m; (8(1)1)?

32 M- s
3/2 B(1).8(1
S A UL
B(1),)?
= 4iﬁ+28\4227)_2{9 (5.68)

with the function 5(1); given by:
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_ V2 N
g(1); = NETE [ca(s —mz —my) + 2¢,m; ]
B1): = g[cdg + (e — ca)mi] (5.69)

1=1/2

5% — 2s(m2 + m%) — 3(m3% — m2)? N 3 (8(1/2)1)*

TOO — K
o1 8sfz 2 MZ—s
—_— —9s% + 2smi + 3sm2 + Tsm2 — 9Imje + Imy (m2 + m?) — Imim?
012 24sf2
+\/§5(1/2)1ﬂ(1/2)2
2 Mi-s
022 24sf2 M —s

with fx the kaon decay constant with the value fx = 1.2f, according to experiment [98].
The functions (3(1/2); are given by

B/21 = rleas + (on — ca)me +m2)
K
B(1/2), = _\/élf}( [cas + e (B — 3m2) — cq(mi +m?)] (5.71)

Note that the introduction of a nonet implies six new parameters, two masses and four
coupling constants, which we fit to the experiment.

According to eq. (5.39), we also need the function go(s), given by eqs. (5.46) and
(5.48), with its corresponding a® for the S-wave channels. By SU(3) arguments, the a°
constant can be different for vector and scalar channels. The reason is that a two meson
state has different SU(3) wave functions in S- and P-wave, because under the exchange of
both mesons the spatial P-wave is antisymmetric while the S-wave is symmetric and the
total wave function must be symmetric. That is, the two mesons are in different SU(3)
representations.

We have included f, in the S-wave isoscalar O(p?) xPT amplitude for KK — nn and
[x in the S-wave, [=1/2 tree level amplitudes, to obtain, after the fit, that the ¢ constant
was the same for all the scalar channels. These changes come from the SU(3) breaking of
the octet of (m,K,n) and cannot be taken into account, a priori, in our way of fixing Dy, (s)
making use of lowest order xPT' [5] and the exchange of resonances given by [7].
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The fit will be done for the following experimental data: the elastic S- Wave T phase
shifts with =0, 6%, the KK — nm, I=L=0 phase shifts, 69, the I=L=0 "00, with

Moo the inelasticity in that channel, the elastic S-wave, I=1/2 Kr phase shifts, 511 and
a distribution of events around the mass of the a((980) resonance, corresponding to the
central production of w7 in 300 GeV pp collisions [99] for the /=1, L=0 channel.

011

Because results coming from different experimental analyses are not compatible, we
have taken as central value for each energy below /s = 1 GeV the mean between the
different experimental results [45-48] and [46]. For /s > 1 GeV, the mean value comes
from [46, 54]. In both cases the error is the maximum between the experimental one and
the largest distance of the experimental values to the mean one. This procedure will be

the one adopted, when needed, for the rest of the experimental magnitudes included in the
fit.

013

For this quantity there are two sets of data below /s = 1.2 GeV. Higher in energy both
sets converge. One group will be represented by [52] and the other one by [100, 101]. The
experimental results from [52] are larger than the data of the other works [100, 101] below
1.2 GeV. We will distinguish between both cases when doing a fit referring it as high /low
respectively. The change in the value of the fitted parameters will be very small when
changing from one set of data to another, so that, this experimental ambiguity will not be
relevant for our final values. We will average the experimental data of the second set of
works for /s < 1.2 GeV in the way explained above. When /s > 1.2 GeV the average
will be done between all the quoted analyses [52, 100, 101].

1150
4

There are a series of analyses and experiments about the inelastic cross section 7w —
K K, which agree between each other in the values for 1% We have taken the data from
[52, 100] as representatlve for such situation.

The quantlty "00 has been used instead of the inelasticity, 799, because the former is
much better measured and all the experiments [52, 100, 101] agree on that quantity.

=

0

J

We distinguish between the more recent experiment [72] and the older results [68, 69,
71]. We have averaged the data from the latter analyses up to /s = 1 GeV. Above this
energy, in the latter group of experimental works, only [71] offers data. The statistical
errors in this latter experiment are very small. We have enlarged them at the level of those
in the most recent experiment [72] which would make the different experiments compatible.
Thus, the final points used in the fit for this magnitude will be the ones from [72] and the

=l

1
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average between [68, 69, 71| as described above.

I=1, L=0 data.

The experimental data is very scarce for this channel. We will take a distribution of
events corresponding to the central production of 777 in 300 GeV pp collisions [99]. We
will study the data points around the mass of the ag(980), where one could think that the
energy dependence will be dominated by the exchange of that resonance. We add in an
incoherent way with respect the a((980) resonance, the same background as in [99]. The
a0(980) contribution is parametrized as:

dN
dE.,

with pr, the three momentum of the 77 state in the c.m. corresponding to a total energy
E,, and N is just a normalization constant.

= N Dy [(To)12]? (5.72)

The fit.

Let us now discuss the fits obtained when including: (1) two scalar nonets with masses
around 1 and 1.4 GeV or (2) only one nonet with a mass around 1.4 GeV. Of course, the
final value for the tree level, ‘bare’, masses of the octet and singlet will be given by the fit.
The fits have been done using the MINUIT minimization program. The output value for
the parameters are written with the same precision as given by MINUIT.

The fit that results when two nonets are included and also with the high 69 data is:

First Nonet (MeV) Second Nonet (MeV)

cg = 1.80 ¢, =19.51 aSt = —.72

cm = 0.66 c, =19.61 N =9.2210"° MeV ™2

Mg =1003+600 M} = 1379

g = 20.99 &, = 0.33

&, = 8.49 ¢ =272 (5.73)
M, = 1032 M! = 1000 =+ 600

X = 0.97

188 points

A very striking aspect appears when observing the value of the parameters given in
eq. (5.73). The value of the constants ¢4, ¢, and &, and ¢, are, at least, one order of
magnitude smaller than ¢4, ¢, and ¢}, ¢;, respectively. This makes that the first octet and
second singlet are phenomenologically irrelevant. Note that their masses are essentially
undetermined. This is shown by the need to increase them by 600 MeV in order to make
the x2 s to increase by 0.5 units. In this way, they do not originate or participate in the
poles corresponding to the physical resonances mentioned at the beginning of the section.
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Figure 5.5: Elastic isoscalar 77 phase shifts, 6%). The circles correspond to the average of
[45-48] and [46, 54], as discussed in the Y subsection. We have also included the triangle
points form [51] to have some data close to threshold, although these points have not been
included in the fit because they are given without errors.

They only give rise to poles very close to the real axis, with a width of only a few MeV.
These poles manifest themselves as very narrow peaks in the partial waves, which are not
observed by experiment.

From the latter discussion we will just introduce a scalar nonet. The resulting values,
after a new fit to the data, are:

High 4%

Nonet (MeV)

cg = 19.1131 a’t = —7540.2

cn=15+30 N =(94+45)107° MeV~?

Mg = 1390 + 20 (5.74)
Ga=209710 X, =107

ém = 10.6732 188 points

M; = 1021+3
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00
Low 047,

Nonet (MeV)

cqg = 19.18
cm = 15.25
Mg = 1390
cq = 20.94
cm = 10.64
M, =1021

a’t = —.74
N =9.43107° MeV ™2

Xao. F=121
196 points
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Figure 5.6: S-wave KK — 77 isoscalar phase shifts, 9. The triangles points are from
[52], circles correspond to the average of [100, 101] and squares to the one of [52, 100, 101].

We have also shown the statistical errors for the parameters of the high §% fit obtained
by increasing the x2 7 by one unit, in order to appreciate the precision in the value of the
parameters given by the last fits. The large error on ¢, is because this constant, as can
be seen from eqs. (5.67), (5.69) and (5.71), enters through the multiplication of squared
masses of the lightest pseudoscalars which are much smaller than s ~ M2, around the
resonance region of the octet. Thus, its influence in the final value of the amplitudes is
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very small. This also happens to ¢,,, although to a lower extension because M; < Mg. One
can see, comparing the last two fits, that the variation in the value of the parameters is
very small when changing from one set of data to the other. The resulting fit for the high
679 data is shown in Figs. 5.5-5.9. The results obtained before also favor the high solution
for the 6% phase shifts because its corresponding x3 . s 1s smaller than the one for the low
6% solution.
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Figure 5.7: % with 799 the I=L=0 S-wave inelasticity. Circles [52], triangles [100].
This fit has 8 free parameters, 6 constants from the nonet®, a°” and the normalization
constant N. In our former work [58], see also section 5.2, we were able to describe §%9, §9)

and % up to /s < 1.2 GeV and a distribution of events around the a((980) mass [28],
using only 2 free parameters: a cut-off (which plays the role of the regularization scale p
and at the same time generates a concrete value for a®%) and a corresponding normalization
constant for the ag(980) event distribution. In fact, if we remove the resonance contribu-
tions in eqs. (5.66) and (5.68) the formalism of ref. [58] follows from the present one. It

3If the singlet and the octet introduced form really a nonet is something we cannot say. However, we
will denote the global contribution of the introduced octet plus the singlet by using the word nonet as a
shortcome. In this way, we also follow the nomenclature of [7], inspired in the U(3) symmetry which holds
for N, — co. We will say something more about this issue in the next chapter.
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might look surprising that a good fit to the data for /s < 1.2 GeV could be obtained in [58]
with just one free parameter and a normalization constant for the mass distribution, while
here one has needed 7 parameters, apart from the normalization constant. One reason is
that now we have pushed the fit up to /s = 1.4 GeV, while in [58] only data up /s = 1.2
GeV was considered. The fact that new resonances appear around /s = 1.4 GeV has
forced us to include an octet, which implies 3 new parameters, two couplings and a mass.
However, the effect of this octet below /s = 1.2 GeV is very small, hence only the singlet
appearing with a mass around 1 GeV is relevant for energies below /s = 1.2 GeV. The
present fit to the data has led us to the inclusion of this singlet resonance in Tg" apart from
the lowest order x PT Lagrangian, while in [58] only the latter contribution was considered.
The reason that forced us to include now the mentioned singlet is the consideration of the
nn channel in /=0, which was omitted in [58], and is not negligible above 1 GeV, as can
be seen in its strong coupling to the f3(980) resonance that we will obtain below. The nn

channel affects mostly the magnitude %. Should one have taken the available data for
7o instead of those for 1_;"2)0, which are measured with better precision from the 7w — KK

inelastic cross section, the effect of the nn channel would be masked by the large errors in
Moo -

It is quite interesting to recall that an /=0 elementary state around 1 GeV has been
predicted from QCD inspired models [8, 102] and has also been advocated in phenomeno-
logical analyses [80, 88]. Such state could be associated with the preexisting singlet state
that we need. On the ohter hand in [104] making use of QCD sum rules the authors also
deduce that the a((980) cannot be considered as the first ¢g scalar resonance with I=1.
They consider it to be the ay(1450) as we also conclude in our study. They also claim an
I=0 scalar resonance with a mass around 1 GeV.

Resonances.

Let us now concentrate on the resonance content of the fit presented in eq. (5.74). The
octet around 1.4 GeV gives rise to eight resonances which appear with masses very close to
the physical ones, f,(1500), ay(1450) and K (1430) [19]. Thus, the correlation between tree
level resonances, poles and physical resonances is clear around /s ~ 1.4 GeV. However,
this correlation is not so clear around 1 GeV. This issue will be the object of the following
discussions *.

From Figs. 5.5 and 5.8, one can easily see two resonances with masses around 1 GeV,
the well known f,(980) and a((980) resonances. The first one could be related to the
singlet bare state with M; = 1020 MeV, but for the second we have not bare resonances to
associate with, because the tree level resonance was included with a mass around 1.4 GeV
and has evolved to the physical a¢(1450). The situation is even more complex, because we

4We do not give a detailed study for the resonances with masses around 1.4 GeV because we have not
included channels which become increasingly important for energies above ~ 1.3 GeV as 47 in I=0 or
K for I=1/2. This makes that the widths we obtain from the pole position of the former resonances are
systematically smaller than the experimental ones [19]. Thus, a more detailed study, which included all
the relevant channels for energies above 1.3 GeV, should be done in order to obtain a better determination
of the parameters for this octet around 1.4 GeV. This will be one of the aims in chapter 6.
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also find in our amplitudes other poles corresponding to the f3(400 —1200) = o and to the
K{(900) = k. In Table 5.1 the pole positions of the resonances in the second sheet® are
given and also the modulus of the residues corresponding to the resonance R and channel
i, CE, given by

|CiRCJR| = sliglR |(s — sr)Tij| (5.76)

where sy is the complex pole for the resonance R.

400

300

200

Events

100

800 850 900 950 1000 1050
Eom[MeV]

Figure 5.8: Distribution of events around the a¢(980) mass corresponding to the central
production w77 in 300 GeV collisions [99]. The abscissa represents the 77 invariant mass,
E.,,. The dashed line represents the background introduced in the same reference.

While for the f,(980) one has a preexisting tree level resonance with a mass of 1020
MeV, for the other resonances present in Table 5.1 the situation is rather different. In
fact, if we remove the tree level nonet contribution from eqs. (5.66), (5.68) and (5.70) the
a0(980), o and k poles still appear as can be seen in Table 5.2. For the f(980), in such
a situation, one has not a pole but a very strong cusp effect in the opening of the KK
threshold. In fact, by varying a little the value of a®” one can regenerate also a pole for

51 sheet: Im p; >0, Im ps >0, Im p3 >0; II sheet: Im p; <0, Im py >0, Im p3 >0
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Table 5.1: Pole position and residues for the full amplitude.

Ve, = dd5+i221 Mev | Von = 98THI14MeV

fo
7= 4.26 GeV Co = 3.63 GeV
A fo

S 0.254 g = 0.51
T KK

7 s

ar = 0.036 % _ 11

V5., = 1053.13+1i24 MeV Vs, = T79+1i330 MeV

KK = 5.48 GeV G o= 499 GeV
LR 0.70 S 0.62
Sk ' G '

Table 5.2: Pole position and residues when the bare resonant contributions are removed

V5, = 434+i244 MeV Vs, = cusp effect

fo _
o = 4.21 GeV KK —
4 fo
g};k — 0.301 C}r—OW, = 0.38
<1r1r KK
o . fo
ﬁ = 0.033 ﬁ _ 1.04

V54, = 1081.95+1i13.3 MeV Vs, = 77041341 MeV

aq CR
- = 0.74 X = 0.61

ag
CKI? C?(ﬂ'
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the f,(980) from this strong cusp effect. In Table 5.2 we have not given an absolute value
for the coupling of the f;(980) to the KK channel because one has not a pole for the
given value of a°F. However, the ratios between the different amplitudes are stable around
the cusp position. As a result, the physical f,(980) will have two contributions: one from
the bare singlet state with M; = 1020 MeV and the other one coming from meson-meson
scattering, particularly KK scattering, generated by the lowest order yPT Lagrangian.

200
150 |-
k=
« 100 — —
>
“«Q = _
50 —
L Iy J
0 ! ! ! !
800 1000 1200 1400
E..[MeV]
1/20

Figure 5.9: S-wave I=1/2 K elastic phase shifts, 6;1"". The triangles correspond to the
average, as described in 511{20 subsection, of [68, 69, 71]. Circles correspond to [72].

In egs. (5.66), (5.68) and (5.70) when the resonant tree level contributions are removed,
only the lowest order, O(p?), xPT contributions remain. Thus, except for the contribution
to the fy(980) coming from the bare singlet at 1 GeV, the poles present in Table 5.2
originate from a ‘pure potential’ scattering, following the nomenclature given in [9]. In
this way, the source of the dynamics is the lowest order y PT amplitudes. The constant
a®" can be interpreted from the need to give a ‘range’ to this potential so that the loop
integrals converge. These meson-meson states are shown in Fig. 5.10 in the chiral limit,
setting all the masses of the pseudoscalars to zero and all the fp = f, where P denotes

any pseudoscalar meson 7, K or . We see in this last figure a degenerate octet for 1=0,1



5.5. Estimations of the unphysical cut contribution from x PT and the exchange of resonances.93

and 1/2 with a mass around 500 MeV and a singlet in /=0 with 400 MeV of mass. In both
cases these meson-meson resonances are very broad.

The situation is very different to that of the former studied vector channels where all
the physical resonances, the p and K*, originate from the preexisting tree level resonances.
We already saw, at the end of the last section, when comparing the S- and P-wave 7m
scattering, that the O(p?) xPT amplitude is 6 times larger for L=0 than for L=1 around
the resonance energy region. This implies that n-loops in L=1, with the O(p?) xPT

e with respect to L=0. The

suppression of loops is expected from large N, QCD and this is in fact what happens for
the vector channels, but for the scalar ones unitarity is unexpectedly large, giving rise to
these meson-meson resonances.

As can be seen from eq. (5.39), these meson-meson poles, without tree level resonant
contributions, originate from the cancellation between the inverse of the O(p?) xPT am-
plitude and the gy function. As a consequence, the following relation between the masses
of those resonances with f results

amplitudes at the vertices, will be suppressed by a factor

M? x /g, (5.77)

since gy is O(1) and f? is O(N,) [90], these masses will grow as N,. Thus for N, — oo
these resonances will go to infinity. This movement can be followed by suppressing the
go function by a factor 7 from 1 (physical situation) to 0 (N, = oco). It is then observed
how the resonances in Table 5.2, without the preexisting resonant contributions, disappear
going to infinity.

o K
AT AT LR TT
D e a & S
L OO O\ T < 27
AT A LR &2z

77
L7 R
...0.~"~

7000 7000

Figure 5.10: Chiral limit. From left to right, Figs. 5.10a,b,c respectively. In Fig. 5.10a
the poles of T found in the unphysical sheet are shown for 7=0. Analogously for I=1/2
and 1 in Figs. 5.10b,c respectively.

5.5 Estimations of the unphysical cut contribution
from yPT and the exchange of resonances.

In this last section we estimate the influence of the unphysical cuts for the elastic 7
and K7 S-waves with =0 and 1/2 respectively. The unphysical cuts will be approximated
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by means of yPT supplied with the exchange of resonances [7] with spin <1 in the t- and
u-channels. The loops are calculated from YPT at O(p*) and the exchange of resonances
in the crossed channels accounts for a resummation of counterterms up to an infinite order,
in the way explained in section 5.1 after eq. (5.26). The result can be taken directly from
ref. [79], where the 7w — 77 and K7 — K amplitudes are calculated up to one loop
including explicit resonance fields [7].

In order to extract, from ref. [79], the contribution of the unphysical cuts, which
we design by Tres, we have made use of egs. (3.2), (3.10), (3.13), (3.14) for the 7w
scattering and of eqs. (3.6), (3.16), (3.19) and (3.20) for the K7 one. We calculate the
loop contributions at the same regularization scale than in [79], that is, p = M, = 770 MeV,
the same one we have taken in this work. In the following, when we refer to an equation
in the form (m.n), it should be understood that this equation is the corresponding one
from ref. [79]. The work of [79] contains loops and the exchange of resonances in the
s, t and u-channels. The exchange of resonances in the s-channel is also present in our
work where the masses and couplings of the scalar resonances, eqs. (5.74), were fitted to
data. Obviously the loops and the exchange of resonances in crossed channels, absent in
our work, go to Tres. On the other hand, we must also include in Ty.s a polynomial
contribution of O(p*) because the loop functions used in [79], Jpo, Mpq and Jpq, where
P, @Q are 7, K or 1, and our loop functions, (—)go(s), differ in a constant. This polynomial
contributions can be interpreted as subtraction terms from a dispersion relation of Ty ;.
Since the loops are calculated with ImT at O(p*) one needs three subtractions, which fix
the order of the subtraction polynomial. Let us explain first the n7 scattering.

From eq. (3.2) one has the expression of the elastic 77 amplitude with /=0 in terms of
the amplitude A(s,t,u), eq. (3.10). Making use of egs. (3.2) and (3.13) the contribution
of the loops in the s-channel is given by

(28 — m72r)2 r 382 T mjlr r

It is straightforward to see that the imaginary part of eq. (5.78) is the one required by
unitarity up to O(p*) for the I=0 S-wave 7 elastic partial wave with pions, kaons and
etas as intermediate states. The squared amplitudes in front of the loop functions are the
lowest order yPT amplitudes since loops are calculated at O(p?). This is the same kind
of result we would obtain for the loop contributions in the s-channel from the expansion
of the generalization of eq. (5.39) to coupled channels up to the order considered in eq.
(5.78), after dividing eq. (5.78) by a global factor 2 to match with our normalization in
eq. (1.41) with o = 2. However, as we discussed above we use (—)go(s)y; instead of J/;(s)
in eq. (5.78) in order to evaluate the loop contributions in the s-channel. Hence, we must
include in Ty, the following expression

2¢ — 22 3 2 4
BT 2000+ 000) + 53 e 9) + nloh) + 75

The former contribution, together with the exchange of resonances and loops in the

(J;W(S) +g()(8)33) (579)
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Table 5.3: Influence of the unphysical cuts for the I=L=0 77 and I=1/2, L=0 K partial
waves. The three first columns refer to 77 and the last three to K.

\/g TLeft TLeft \/g TLeft TLeft
[ [e)
Toul | Toh Tol | Tou

MeV % % MeV | % %

276 3.7 4.8 634 7.1 8.7
376. 3.5 5.1 684 3.7 4.7
476 4.1 5.7 734 0.3 0.4
576 5.7 6. 784 -2.5 -3.3
676 8.1 6.1 834 -5.7 -7.2
776 11.2 5.6

crossed channels, after projecting over the S-wave using eq. (1.41) with a = 2, define Tr.y,
in our approach.

For the I=1/2, L=0 K~ partial wave one has essentially the same situation than for
7. From egs. (3.6) and (3.19) one calculates the contribution of loops, which we project
over the S-wave. The loops in the s-channel give the corresponding result to eq. (5.78) for
the Km I=1/2 S-wave. In this case, instead of having the loop function J},(s), one can
write it in terms of Jg(s) and Jg,(s). After taking into account the difference between
Jpo(s) and our loop functions, one obtains the analog result to eq. (5.79) for Km. This
contribution, together with the projection over the S-wave of loops and the exchange of
resonances (eqs. (3.6), (3.20)) in crossed channels, give Tpre;.

We have not considered the tadpole contributions coming from pseudoscalar loops with-
out flux of energy and the coupling of scalar resonances to the vacuum ( Fig. 2.b of [79])
because they are reabsorbed into the residues and positions of the CDD poles and the
subtraction constant ag, eq. (5.24), which we have phenomenologically fixed.

Including explicit resonance fields as done in [79] increases the range of safe applicability
of Chiral Symmetry from /s ~400 MeV, accomplished in xPT, up to /s =~ 700 — 800
MeV, as can be seen in [79] when comparing their results with the experimental data.

The results which we obtain for the contribution of Tpr.s, in the range of energies of
[79] are shown in Table 5.3. In the second and fifth columns we show, respectively, the
ratio between Tr.s, and the absolute value of our calculated I, L=0 n7 and I=1/2, L=0
K7 partial wave amplitudes up to /s ~ 800 MeV. In Table 5.3 we also compare Ty,
with the tree level amplitudes T¢%;. This ratio is also significative because the procedure
which we have followed to arrive to a unitarized amplitude from T¢; would not be much
affected by the addition of Tpr.s which is a small correction with respect to T(Cfll. We see
that these ratios are rather small. Therefore, this supports our point of view of treating
the left hand cut as a perturbation in the range of energies we have considered.

It is worth mentioning that this smallness of the unphysical cuts, as shown in Table
5.3, is a consequence of a cancellation between the contributions to Tr.s from the loops
and the exchange of resonances in crossed channels. In fact, the individual contributions
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in the 77 case, for energies around /s = 600 MeV, are of the order of 15-20% with respect
to Tgo-

5.6 Conclusions.

Making use of the N/D method, we have developed the most general structure that an
elastic partial wave amplitude has when the unphysical cuts are neglected. After matching
this result with lowest order, O(p?), xPT [5] and with the exchange of resonances with
spin <1, in a way consistent with chiral symmetry as given in ref. [7], we extend the
formalism to handle also coupled channels. Then, 77 and K7 (I=1/2) P-wave amplitudes
are described up to y/s = 1.2 GeV. It is shown that these amplitudes can be given rather
accurately in terms of m,, mg, f and the masses of the p and K* resonances, when
restrictions coming from large N, QCD and unitarity are considered, in the lines of what
was observed in [82].

Next, the scalar sector is studied and good agreement with experiment up to /s =
1.4 GeV is found. An octet and a singlet are included with masses around 1.4 and 1
GeV respectively. The former originates the observed f,(1500), ao(1450) and Kj(1430)
resonances, the latter an important contribution to the physical pole of the f3(980). Other
poles appearing in our amplitudes, the a¢(980), o, k and an important contribution to the
final f,(980), originate from meson-meson scattering with the lowest order x PT amplitudes
plus the constant a°” as dynamical source. This situation is very different from the one
observed in the vector channels where tree level structures dominate the scattering process
and a strong suppression of unitarity loops occurs, as indicated at the end of section 5.4.
As a consequence, the present study supports that a concept like scalar meson dominance,
analogous to the well known vector meson one, is not suited at the phenomenological level
for the first scalar nonet with a mass < 1 GeV.

In the last section we have made some estimations in order to investigate the influence
of the unphysical cuts. The results obtained support our picture of treating the unphysical
cuts in a perturbative way and then establishing the stability of our conclusions in sections
5.3 and 5.4 against the corrections coming from cross symmetry.



Chapter 6

S-wave K7 and K7’ scattering.

The S-wave I=1/2 and 3/2 amplitudes are studied in this chapter. For the [=1/2 we
will consider the channels K7 and K7'. In this way, we can go to higher energies than in
chapter 5 and study properly the octet of scalar resonances found there with a bare mass
of around 1.4 GeV. Remember that there we did not include the K7’ channel which, as we
will see below, is essential for energies higher than /s = 1.3 GeV. In this chapter we also
follow the same sign for the T-matrix than in the former one. The material presented in
this chapter is based on a recent work [103].

6.1 Inclusion of the ' meson.

In the large N, limit the U(1)4 anomaly [105, 106, 107] is absent. The massless QCD
Lagrangian eq. (2.1) has then a larger U(3), ® U(3)g chiral symmetry, and there are
nine Goldstone bosons associated with the spontaneous chiral symmetry breaking to the
diagonal subgroup U(3)y. These Goldstone excitations can be conveniently collected in
the 3 x 3 unitary matrix

VG

U(p) =€'7 (6.1)

with
o = + A q? (6.2)
f s '
where I3 is the identity matrix in three dimensions and 71 is a pseudoscalar singlet. Hence,
we see from the former equation than the matrix ®, introduced in eq. (2.5) and the one
used in standard xPT, is modified just by adding a diagonal term proportional to the 7,
meson. _ _ B
Under the chiral group, U (¢) transforms as U — gr U g} (9r. € U(3)r,1). The point is
that at lowest order in the chiral expansion, the interactions of the nine Goldstone bosons
are described by the same chiral Lagrangians given in eq. (2.7) and egs. (2.18)-(2.23),

with U(¢) instead of U(g).

97
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Our strategy will be to calculate the tree level amplitudes with the K7’ channel in
large N., where the 7' is a Goldstone boson. This calculation will be done making use
of the lowest order chiral Lagrangians £, and of the resonance chiral Lagrangians, egs.
(2.18)-(2.23), to take into account the contributions from the exchange of resonances.

For the K7 channel we will calculate the same contributions than in the K7’ one but
we will also include the chiral loops calculated at O(p*) in ref. [79]. In this way, the elastic
K amplitudes will coincide with the Y PT amplitudes at O(p*) calculated in [43].

Thus, the results we present in this chapter are an extension with respect chapter 5
for the Km I = 1/2 scattering, not only because we have included more channels, but
also because we will allow for the presence of the unphysical cuts from the exchange of
resonances in the crossed channels and also from the chiral loops at O(p*).

As we will see immediately below, the n; and ng mix at O(p*) both in the kinetic and
mass terms. In this section we will obtain the wave function renormalization leading in
large N, for the pseudoscalars after diagonalizing the kinetic Lagrangian at O(p*).

The bilinear terms coming from Lo, eq. (2.7), when including the 7; meson are:

1
Ly = 3 w00t + OOt + 9, KoMK~ (6.3)

- 1 1

+0,K°0"K° + 3 0,ms0"ng + 3 0umo*m

1

—§mfr (T2 —m2rtr —mi KK~
- 1 /4 1 1 /2 1

—mj K°K° — 2 (gm%( - g”ﬁ) (n®)? - 3 (gm%( + g”ﬁ) (m)?

8

+\/—1_8 (m%k —m2) nsm + O(¢%)

Notice that the n; kinetic term decouples at this order and also that the mixing between
the 7; and the 7s mesons vanishes in the SU(3)y limit.

¢ ¢

S| S

1

Figure 6.1: Contributions to the bilinear meson terms from the resonance chiral La-
grangians of section 2.3.
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Apart from the terms coming from L, we also consider the contributions from the
chiral Lagrangians with resonance fields introduced in section 2.3, eqs (2.18)-(2.23). In
particular, the scalar resonances (S and S1) through the diagram depicted in Fig. 6.1,
where they couple to the vacuum, give contributions of O(p?) to the former kinetic and
mass terms. In writing these contributions we just consider the case with one singlet and
one octet of scalar resonances. If more than one nonet is present, one only has to add it
in the same way as we have done here for the first one.

8 cqcm 1 B _

72 2 [ 2 (5 0,77 + O, T ) +m3 (8HK+8“K (6.4)
- 1 /4 1 1 /2 1

+8NK08“LKO) + 5 (gm% — gTﬂi) 8un88“n8 + 5 (gm%( + gmi) 8u7718“771

4
——= (m% —m3) 8un88“n1}

V18
8 2 1
2 % [mfr <§ ()2 + 7r+7r)
S
= 1 /1 2
ok (KK + KVRY) 43 (k43 (o= 2)”) ()

1 /2 1 2 2 2
+3 (gmi%—g (2mi —m3) )(771)2+\/—1—8 (m;lr_ (2mi —m3) )771778]

Since we are in large N, one has to consider the relations given in eqs. (2.33) of
section 3.3. This makes that only the former contributions survive. In the xPT language
of counterterms L;, what is happening is that the contributions coming from L, and Lg
vanishes since these couplings are subleading in large N.., see also eq. (2.32).

Together with the former contributions there is another one from the U(1)4 anomaly.
The anomaly to lowest order non-trivial in 1/N,, can be taken into account in the effective
low-energy theory through the term [108]

f2a (i [ ~ ~ 2
a2 —1 f } .
Lu)a AT og(det U) — log(det U") (6.5)
which breaks U(3); ® U(3)g but preserves SU(3);, ® SU(3)g ® U(1)y. The parameter a
has dimensions of mass squared and, with the factor 1/N, pulled out, is booked to be O(1)
in the large N, counting rules. In the presence of the term eq. (6.5), the 7, field becomes

massive even in the chiral limit through a term

13a

~5 ﬁc(m)Z (6.6)

which should be added to eqgs. (6.3) and (6.4). Because the large mass of the 7', the effect
of the U(1) 4 anomaly cannot be treated as a small perturbation and has to be considered
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together the lowest order Lagrangian eq. (2.7). It is possible to build a consistent com-
bined expansion in powers of momenta, quark masses and 1/N,, by counting the relative
magnitude of these parameters as [109]:

M ~1/N, ~ p* ~ O(6) (6.7)

Summing up egs. (6.3), (6.4) and (6.6) we have the kinetic and mass Lagrangian in
terms of the fields 7, K, n; and ng. We will first diagonalize the kinetic Lagrangian which
will provide us with the wave function renormalization of the fields.

The fields 7 and K remain unmixed both in the kinetic and mass Lagrangian. However
they have no the physical normalization since the kinetic terms have a generic factor

CdCm ~9
1+ m’ #1 (6.8)
f? Mg

with m? a combination of masses of pions and kaons. In this way we have to multiply the
pion and kaon fields by a factor in order to obtain the right normalization. This factor is
called the wave function renormalization and is given by

op = Z;,/Z ¢ (6.9)

where the subindex P means ‘physical’. Hence, the wave function renormalization for pions
and kaons, from egs. (6.3) and (6.4),are:

4m2 cyc
1/2 _ g d Cm
4m?2 c4c
Zl2 _ 14 K CdCm
K 2 M3

where we have made the approximation /1 + ¢ = 1 + e + O(€?), which is numerically
very accurate since Mg >> m3% with m% a pseudoscalar mass squared. In fact, we will

work always up to the same order in the calculation of the tree level amplitudes, that is,
(coupling constat)?
up to e
R
of counterterms this means that we work up to terms linear in the L; couplings, the
resummation to higher orders is done, at the tree level amplitudes, by the inclusion of
explicit resonance propagators. Remember the tight relation between the O(p?) xPT
counterterms and the resonance contributions at O(p*) discussed in section 3.3.
For the case of the 7, and 7y fields the situation is a little more involved since they mix.

Making use of a matrix notation, we can write the kinetic term as:

, with the subindex R indicating an arbitrary resonance. In terms

1
EGM\IITICEJW\II (6.11)

with
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U= ( 'Is ) (6.12)

T
and

= 1+ eg A B 1+$Cﬁ§t (4m%(_m3r) 3\}352]020}1\/[02” (mgr_m%()
- gt (my —mY) 1+ g (2mi +m?)

(6.13)
We now define the physical Up field by
Up = Z/%0 (6.14)
such that
Lo korw = Lo, vt or v 6.15
5 1% - 5 [T & P ( : )
which is the correct normalization. Hence, the Z&/ % 92 x 2 matrix must fulfill
(2, K2, = I (6.16)
with I, the 2 x 2 identity matrix. Up to the order considered one has
—_ & _A
Z\;l/2 — ( _é2 . _25_1 ) (6.17)
2 2

The physical n and 7' mesons are obtained from nl and n contained in ¥p after
diagonalizing the mass matrix My. From egs. (6.3), (6.4) and (6.6), we can write

1 1 . B 1
SV My U= 0 0} (2497 My 2,2 Up = —5 Vb My Tp (6.18)

The diagonalization of the mass matrix My introduces a sizeable mixing angle 0p
defined through the relation

n\ [ cosfp —sinfp n¥
( n' ) - ( sinfp  cosfp ) ( nf (6.19)

This diagonalization is dominated by the term coming from the U(1)4. Taking the
nonet version of the Wess-Zummino-Witten term [21] and [22] one obtains

cosOp = ? (6.20)

sinfp = -3

which implies that 0p ~ —20° refs. [110, 109).
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We can now calculate the needed matrix elements from £, and the resonance La-
grangians given in eqs. (2.18)-(2.23). First one calculates the matrix elements using the
bare fields 7w, K, n; and 7ng. Then we take into account the wave function renormalization
deduced in this section by multiplying the calculated amplitudes by [] s 2o 1 2, note that
in the case of the n; and ng the wave function renormalization is a matrix. Finally, one has
to take into account the rotation given in eq. (6.19).

6.2 Large N. amplitudes.

The different contributions to the tree level amplitudes are depicted in Figs. 6.2-6.4.

In Fig. 6.2 the lowest order xPT amplitudes from Ly , eq. (2.7), is represented . In
Fig. 6.3 the exchange of vector (V) and scalar (S and S;) resonances is depicted. Of
course, this exchange can occur in any of the three channels s, t or u. Finally, for the case
of the scalar resonances there are also tadpole-like terms, i.e. the scalars can couple to the
vacuum. This is represented in Fig. 6.4.

¢ ¢

¥ o ¢

Figure 6.2: L, contributions.

Figure 6.3: V, S and S; exchange.

In L5, the masses from the matrix M correspond to the bare O(p®) masses. These
masses are corrected at O(p*) in large N, through terms linear in Lz and Lg, in terms of
the resonance parameters these couplings are given in eq. (2.32). We will express the bare
masses of the 7 and K, m, and m respectively, the ones which appear in M, in terms of
the physical ones m, and mg. The relations up tp O(p*) are [111]:



6.2. Large N. amplitudes. 103

¢ ¢
S| s,

@

Figure 6.4: Tadpole-like diagram from the coupling of the S and S; to the vacuum.

2
8my ¢y

m2 =2 [1 + 7 2 (em — cd)} (6.21)

2
8mi Cm

7 o _C‘”}

When expressing the lowest order in terms of the physical masses new terms will appear
which sum to the contributions coming from Fig. 6.4.

On the other hand, one has also to consider the wave function renormalization. At
leading order in large N, this wave function renormalization can be reabsorbed to a large
extend in the physical decay constants f, and fx, which in this limit fulfill:

mﬁ(:m}{wr

fo = ZM7f (6.22)
fx = ZLF

In this way, in the amplitudes with terms of order p! and higher, we transform the f
constants, which appear in the denominators of the amplitudes, according to the former
equation. For instance, for each pion field will appear a Z, 2 constant which can be
attached to one of the four f. Hence we will write f; instead of f. The analog for the K
fields. This recipe to take into account higher orders is also used in [79].

However, for the lowest order amplitudes, in which only two f appear it is not possi-
ble to do the same procedure than before. Typically we will be able to reabsorb in the
physical decay constants some of the wave functions renormalization constants but not
all. In particular, this will be the case for the 7; and ng for which we have not done such
resummations since the wave function renormalization constant is a matrix. In these cases
there will appear further O(p*) contributions which will be summed to the ones coming
from Fig. 6.4.

The final tree level amplitudes with definite isospin are given below:

ISOSPIN=3/2
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T(Kn — Kn) f3 [2 =

2
Fof m3 +m2 —s ¢yt (—mi +m?2)
™

_ 2
. T + (6.23)
2LY MZ [t (s —u) N (s —1) u—(—m%%—mi)Q n
3 M2 —t M —u
(cm (3 +m?2) — ca (M +m2 — u))”
MZ —u
K (2Cm m% +Cq (—2m% +1)) (2Cnm2 +¢4 (=2m2 + 1))
M ¢
(emmi +ca (=2m 1)) 2¢mm2 +ca (—2m2 +1)))
3 (Mg —1)

ISOSPIN=1/2

T(Kn — Kn) f3 [2 =

2 (m% +m2)+s—3u A (—m% + mfr)2
foﬂ' -

(6.24)
4 M}
CLYME (4t(s—u)  (—mk+md)’—(s—tu
3 Mz —t Mz —u

3 <—(—m%< +m2) 45 (—t + u))
B Mz —s
+4 (2Cnm% + ¢y (—2m3% +1)) (2¢,m2 + ¢4 (—2m2 + 1))

M —t
(2emmik +ca (F2mE +1) (2cmmi +cq (—2mF +1)))
3 (M2 —1t)
(em (m2 +m2) — cq (Mm% +m2 —u))’ N 3((—ca+ cm) (M 4+ m2) +cqs)’
2 (M§ — u) 2 (Mg — s)

T(Kr — Kny) fic fo f =

2 2
2my +my

Irf EEW R (6.25)
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C4V2e,° (mk — m2)? B V2cqcnm (mi —m?2) (m2, —m2 — 3t)

3 M2 3 M2 *
/2 (=2cmm2 +cq (MY +m2 —1t)) (2cami —2¢mmi — cqt)
MZ —t
/2 (=2cmmi +cq (M +mik —u)) (—cm (Mk +m2) + cqg (M +m2 — u)) N
M2 —u
N (2emmi + ca (—m2 —mi 4 5)) (cm (ME +m2) +cq (—mE —m2 +5))
M —s
T(Kr — Kng) fi fx f =
—3m2 —8m% —m2 + 91t
fop My = Sk 00 (6.2
2 (m% —m2)®  cacm (Mm% —m2) (2 (m%, —m2) + 3t)
3M? 3M?2
v mic +m2 mZ —mi (m2 +m2) + (=s+t)u
3 14 M‘Q/_u
v miy +ml mk —mi (m +m2) + (—u+1t)s
3 v M‘2/_S
(=2cmm2 +cq (MY +m2 —1t)) (2cami — 2¢mmi — cqt)
MZ —t
B (cm (=5mE +3m2) 4 cq (M2 +my —u)) (—cm (M +m2) + cq (Mg +m2 — u))
2 (M2 — u)
(em (=5mk +3m2) +cq (MY +mi —5)) (—cm (M +m2) + ¢4 (M +m2 —s))
2 (Mg —s)
T(Kny — Kng) f f* =
2m2 16 cqcm (mi —m2)?
2 K dtm \"""Kg m
_ 6.27
4 (=6Caml + 4 mi 4+ 2Cnm2 +3¢4t) (2¢, mi + Cq (—2mi +1))
3 (M2%—1t)
2 2 2 2 2 2 2 2
8cm (M3 —m2) (2emmik +ca (=2m% +1)) 4 (=2cami +cq (M) +mi — u)) N
9 (Mg —1) 3 (Mg — u)

4 (—2¢mmi +ca (m2 +mi — s))2
3(Mg — s)
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T(Kny — Kng) [z 2 =

—2m2 +m2  4y2¢,2 (mk —m2)?

V2cicm (Mm% —m?2) (16 (m% —m?2) +91)
9 M2
1628, (mg —m2) (2 (=Ca + Cm) mik + Cal) N
3 (M} —t)
5 (—60dm%,+80mm§(—20mm2+3cdt) (2¢mmi +cq (—2m3 +1))
9 (Mg —1)
_ﬁ(_Qcmm%(—{_cd(  +my —u)) (em (=5mi +3m2) 4+ ¢4 (Ml +mi —u))
3 (M2 —u)
5 (2emmik +cq (—mi —mik +5)) (cm (3mk —3m2) +cq (—m2 —mik +5))
3 (Mg — s)

T(Kng — Kng) [z f* =

2 2
, —6my, —2m; + 9t

.2
f D + (6.29)
7cm? (m2 — mfr)2  Calm (m% —m?2) (32m% — 32m2 + 9¢)
3 M2 9 Mg
— _m2/+m2 2+ s—1t)u — _m2/+m2 2+S —t+u
ME —u M —s
4( 6cdm +80mm1{ 2Cmm +3cdt) (2Emm%(+5d (_2m%(+t))
3 (M} —1t)
( 6cdm + 16 ¢y m% — 10 ¢,y m2 +3cdt) (2emmi + ca (—2mi +1))
9 (Mg —1t)
(cm (=5mi 4+ 3m2) 4 cq (m2 +mi —u))2 N
6 (Mg —u)
(cm (5mi —3m2) +cq (—m3 —mk +5))°
6 (M2 — s)

In the former equation we have maintained the distinction between the S and the S,
contributions for the direct exchange of such resonances, Fig. 6.3, as we did in section

5.4. However, in the numerical results we will always use the large N, constraints given in
eq. (2.33).
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The constant L} was given in eq. (2.28) in terms of the parameters describing the octet
of vector resonances in the chiral limit. As explained below the former equation, My ~ M,
and Gy = Iz eq. (2.29).

Furthermore, in egs. (6.23)-(6.29) we have always written m?, for the square of the
four-momenta of the n{ and n{’ fields. We have done this because in the S-wave [=1/2
amplitude we consider the K7 and K7’ channels, neglecting the K7 one. As one can
check from the experimental points in Figs. 6.6 and 6.7, the modulus of this amplitude
(ne*®2 — 1) /(2i), above the Kn and below the K7 one, is given by |sind; /| as in the
elastic case with n = 1.

In the case of the elastic K7, our amplitudes coincide at O(p*) with the calculations
done in [79].

We will now consider the restrictions to the values of ¢; and ¢, imposed by the scalar
form factor of K7 and K7 in large N,.

6.3 Short distance constraints.

We now present a calculation for the scalar K7 , Kn' and K7 form factors leading in
large N, counting rules . As in the case of the scattering amplitudes presented in the former
section we use Lo and the chiral resonance Lagrangians eqs. (2.18)-(2.23). However, only
the S and S| resonances will contribute.

The scalar form factor is defined [112] through the divergence of the vector current

u(s)yus(z):

< 0|6"(11(37)fy“s(3:)~)|K’ ¢° >= —i(m, —m,) < 0lu(z) s(z)|K~ ¢° >  (6.30)
— i, — 2) CoFS ()

where u(z) and s(z) represent the quarks up and strange respectively, ¢° is a 7%, n or
n' meson, Cy is just a number, g (1m,) represents the bare mass of the K () from the

lowest order x PT Lagrangian, Lo, eq. (2.7) and ﬁi(s) is the scalar form factor for the K ¢°

channel. If as in [112] C,0 = %, then from explicit calculation or simple game with the

Clebsch-Gordan coefficients and eq. (6.19) one obtains C,) = —% and C,; = % Note that

the scalar current @s is purely /=1/2. It is obtained by doing the functional derivation

oL
68(1’)13

with s(x) now referring to the scalar current introduced in eq. (2.1)

In Figs. 6.5 the different diagrams which contribute are shown. Fig. 6.5.a. represents
the Lo contribution. Fig. 6.5.b corresponds to the direct resonance exchange of the S
resonances and Fig. 6.5.c. represents a tadpole-like contribution with the resonances S
and S; coupled to the vacuum. Note that our Lagrangians are given in terms of the fields

(6.31)
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11 and 7ng, so that first we have to calculate in terms of these degree of freedom. Then,
these contributions have to be corrected by multiplying by [] 6 Zs /2 each meson field, in
the same way as explained for scattering amplitudes. Finally, making use of eq. (6.19), we
will obtain the desired results in terms of the n and 7’ mesons.

K~ K~ K~

@ @ @
a) b) C)

Figure 6.5: Diagrams which contribute to the scalar form factor eq. (6.30). The circle
with a cross inside depicts the scalar current. Fig. 6.5.a. represents the Lo contribution.
Fig. 6.5.b corresponds to the direct resonance exchange of the S resonances and Fig. 6.5.c.
represents a tadpole-like contribution with the resonances S and S; coupled to the vacuum.

On the other hand, the results from the former diagrams are multiplied by a global
factor By eq. (2.8). Remember that this factor appears also in the relations between the
quark masses and the square of the masses of the pseudoscalars eq. (2.10). But now since
the scalar form factor, from eq. (6.30) is multiplied by mg; — m, we can write

By (ms —my) = m3 —m2 (6.32)

this is why this factor appears in eq. (6.30). Expressing the former result in terms of the
physical K and 7 masses, we will have up to O(p*):

~9 A0
i —m2 = (mk —m?) H (6.33)
K g
8 m2 + m?
= (mk —m2) (1 - FiKMg " Cm (Cm — Cd))

instead of the final equality in eq. (6.30) we can write

< 010, (a() (@) K~ ¢° >= i (m3 —m?) Cy F3(s) (6.34)

2 2 ~
with Fj (s) = ( — J%mfﬁgm” Com (Con — cd)) F.
Taking into account all the former preliminaries given in this section the final results

are:
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4c m2 + m? S
S m K s
Froo(s) = 1+ N [cd + (e — ¢a) e } 2=
s - sin 0p sinfp_, g dem [ s cm M?
Fhoy(®) = (eostr = D) (1 S ) | - (10
dc, Cd(s +2m7 —mi —mi, — 32](4"5) + 2¢(m3 —m2 + 53"4—%)
I? M2 —s
dey [ c c M?2
S : m d m S

Imposing that these form factors vanished for s — oo, one has,

1= > o (6.36)
ZJ\%% - ZMg.

where Mg, is the mass of the i resonance and

4 1 bmyi
o = % (6.37)
403,%1-

The Kr scalar form factor coincides at O(p*) with the counterterm part of the calcu-
lation done in [112].

In the former equation we have allowed for the presence of more than one octet of scalar
resonances which have only to be added in the same way as the first one considered in egs.
(6.35).

Coming back to the case of only one resonance, one has from eq. (6.36) the simple
result:

Ca=Cn=Ff/2r f;/2=46.2 MeV (6.38)

These kind of relations work very well in the case of the vector channels where there is
a proof that the vector pion form factor vanishes at infinity. For this case one also has the
requirements [24], as already commented in eq. (2.29):

Y R Gy = f (6.39)

7
;Mg (2Gy, - Fy) = 0

i
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where V; refers to the i octet of vector resonances with masses My;. In the case of only
one octet eq. (2.29) is recovered.

As we saw in section 3.3, from the values of ¢4 and ¢, given in eq. (6.38) and with
a value for the Mg of around 1.2 GeV the scalar contribution to the L; coefficients is the
needed to saturate these O(p*) couplings. Hence, it is interesting to see if we are also
able to reproduce the K7 scattering up to energies which embody the first resonance,
which is the K (1430). This resonance appears very close to the Kn' threshold which is an
important channel and then we have to make use of a coupled channel formalism to study
properly the I=1/2 S-wave amplitude up to energies around 1.5-1.6 GeV. For the exotic
I=3/2 we will consider only the elastic case.

6.4 Unitarization.

The unitarization procedure is basically the one developed in [27], already presented
in section 5.1. However, we will slightly modify it in order to get the full xPT result at
o).
In a O(p*) xPT calculation there are loops in the crossed channels which give an
imaginary part for the partial waves for non-physical values of the s variable. Furthermore,
we have also included resonance fields in the t and u-channels. Both contributions give rise
to the unphysical cuts not considered in [27], although fair estimations were done about
these contributions for the I = 1/2 case.

The tree level amplitudes considered in ref. [27] were the O(p?) xPT amplitudes, T?,
plus the exchange of resonances in the s-channel included in the same way than here. We
called the sum of both contributions 7°, since it is leading in large N.. We did not include
resonances nor loops in crossed channels nor tadpoles since tadpoles are subleading effects
in large N.,.

In the sixth row of eq. (3.19) of ref. [79] one can see the square of the lowest order
xPT amplitude, see eq. (3.17) of the same reference, times a loop function, Jj . in the
s-channel. For the I=1/2 S-wave amplitude one can also arrive to the same kind of result
in the s-channel. Writing it in terms of the Jg(s) function one has:

2 23\2\ 12
Jia(5) [8 fi - (55 _o(m 4+ m2) — 3%)} (6.40)
—%(2582 +4(m3 +m2)? — 20 s (m3 +m?2))

All these loop functions, which appear in refs. [79, 43] and that are also mentioned
here, can be obtained from egs. (8.8), (8.9) and (8.10) of ref. [111] and also at the end of
the Appendix of the same reference.

Coming back to eq. (6.40) one obtains the same type of result, up to O(p*), than
expanding eq. (5.39) with —go(s)(T®)2. However, the loop function is different. Note
that the loop functions need a subtraction constant, see eq. (5.46). In fact one can add
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and subtract a constant in J(s) in eq. (6.40), and the analog can be done for the [=3/2 in
J"(s). One continues having the square of the lowest order amplitude times a loop function
which guarantees the unitary requirement given by eq. (1.26). Thus, one cannot fix the
value of the subtraction constant present in go(s), making use of the full O(p*) xPT result.
We will make the following identification for the go(s) = g(s) function:

!

T a/ﬂ'
I = 82 gls) = ~Tikls) ~ o (6.41)
_ x
I = 1/2 gka(s) = —Jrk(s) — 167

For the K7 channel in the I=1/2 we will use the same notation than in eq. (5.46), since
there are no full O(p*) xPT calculations with this channel. We will denote by a, the
subleading constant present in eq. (5.46) for this channel.

In ref. [79] the loops with energy flux are collected as T((]4). On the other hand the
tadpoles are given by T However, since in eqs. (6.23) and (6.24) we have expressed the

bare masses and decay couplings in terms of the physical ones, T:(F4) is modified. When

)

taking into account such modifications one has the T}4 term given in eq. (3.14) of ref.

[43]. In the expression for T,(J4) given in eq. (3.19) of [79] the K channel is included. Since
in our unitarization process we are going to discard this channel we have not included the
Kn loops. In any case, we have checked that numerically its influence is negligible.

We design by T((f) to T, [(]4) without the unitarity term given by the loop function J" for
[=3/2 and J for [=1/2, times the square of the lowest order xPT amplitude. In order to
maintain the same O(p*) xPT result, we have to add to Tv((]‘l) + T}@ the piece:

I = 32 (6.42)
ar
_(47)2( (2))2
I = 1/2
i k 2 2
_‘(4a7r—)2 (7)) — %(2582 +4(my +m3)? =205 (mf +m3))

the last term in I=1/2 comes from eq. (6.40). We denote he sum of T, [(]4) + Tj(fl) plus the
terms in eqs. (6.42) by Tpey, since this is the piece we did not consider in ref. [27]. In our
notation, the result of [79] is written as:

T3 + Theps — g(s) (T)? (6.43)

We can now make an N/D representation of the former amplitude. This representation
will contain the unphysical cuts up to order considered in ref. [79], that is, up to one loop
calculated at O(p*). In matrix formalism:
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N = T2 +Tpes (6.44)
D = I+Ng
T D' N

with g(s) a diagonal matrix whose elements are the ones introduced above. Expanding the
former result one has:

T=N-N-g-N+O@5 1) =T+ Treye —T? - g- TP + O, i) (6.45)

reproducing eq. (6.43) up to one loop calculated at O(p*). One can also check that up to
the same order in the unphysical cuts, the N and D functions satisfy egs. (5.9) and (5.10):

ImD = N-Img s> s (6.46)
ImN = D-ImT =1Im Tpep + O(° h*) s in unphysical cuts

We can reabsorb T¢° in D just by multiplying NV and D at the same time by (75°)!).
In this way, neither their ratio is modified nor their cut structure since 75° is just a matrix
of real rational functions. Then one has

N = I+(Tg°) " Trep (6.47)
D = (I°)' + I+ (I5°) " Trept) - 9(5)

In ref. [27] we did not include T}z so that N was the identity eq. (5.24), as happens
in the former equation making 77z = 0.
In any case eq. (6.44) can also be written as:

T = [(T5° + Trepe) " +9(s)] (6.48)

setting Tres, to zero we recover once again the limit case of eq. (5.24).

6.5 Results for the S-wave /=1/2 scattering.

Making use of the final formulae given in eqs. (6.23)-(6.29) and eq. (6.48), we are
going to study the S-wave I=1/2 partial wave amplitude up to around /s = 1.6. Up to
this energy only one clear resonance appears, the so called K3(1430) [19] and apart of the
elastic channel K7 the other important one is the K7’ with a threshold of 1.45 GeV. In
this way, we will be able to study this resonance which appears around 1.4 GeV in an
adequate way. In particular we will see if the values given in eq. (6.38) are consistent with
the data coming from the K7 scattering.
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We take the data for the /=1/2 S-wave K7 phase shifts from the experiments [71]
and [72]. The errors are taken to be the size of the dot in Fig. 15 of [72] which cor-
responds to £8° for the phase shifts and £0.05 for the modulus of the partial wave
(m26*72 = 1) /(24).

In general we will have as free parameters, once the values for the couplings ¢, and ¢,
have been fixed, the mass of the octet of scalar resonances in the chiral limit Mg and the
subleading constants a, and a;. For the pure elastic case with only the K7 channel the
last parameter does not appear.
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Figure 6.6: The dotted line corresponds to a fit of [72] with only the elastic channel. The
continuum line is a fit to the same data but including also the K7’ channel. Data: Empty
circle [72]. Full circle [71].

In Fig. 6.6 we show different curves compared with the data from the solution C of
[71](full circle) and [72] (empty circle). In all the curves the couplings constants are given
by eq. (6.38). The dotted line corresponds to a fit to the data of [72] with only the
elastic channel K. The continuum one comes from a fit to the same data but with the
Kn' channel included. It is clear from this figure that the inclusion of the Kn' channel
makes the phase shifts to go down with respect to the elastic case and the data from [72].
However, there is a remarkable agreement with the solution C of [71]. It is worth noting
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that in this reference, for energies higher than 1.5 GeV, four solutions are possible, A, B,
C and D. The only one which agrees with our curves, once the K7’ channel is included, is
the solution C. It is also worth mentioning that the oscillations in the data of [71] for low
energies puts of manifest the presence of large systematic errors in the way to extract the
K scattering data from the production mechanism K~p — K~ 7w tn. The same technique
is also used in [72].

Taking into account the former results we do a fit to the solution C of [71]. Since we
are using values for the couplings based in large N, estimations we will give to the data a
30% of relative error. The resulting fit is:

Ms = 1531{3° MeV (6.49)
ar = 0.096+0.13

ay = —2.697440.7

Xios = 017

Numer of points = 66

this fit is telling us that the predictions coming from eq. (6.38) work much better than in
a 30% of relative error. In fact, one obtains xj, ; smaller than 1 up to a relative error of a
12% in the solution C of [71]. For this particular case the central values of the parameters
in eq. (6.49) are the same although the associated errors are reduced. For the mass the
error now is +50 MeV and for a;, is £0.3. This last fit is represented in Fig. 6.7 by the
dotted line where the data of the solution C of [71] is presented with a relative error of
a 12%. For comparison the data from [72] is also included. In the same figure by the
continuum line we represent the fit to the solution C of [71] but now allowing for a change
in a 30% in the couplings constants from the values given in eq. (6.38). The fit is:

cg = 32.003T MeV (6.50)
cm = 52.377%%, MeV
Mg = 1339751 MeV
a; = 0.2466 + 0.1
ay = —1.107840.7
Xooy = 076
In Fig. 6.7 the dashed line represents the former fit but with the couplings put to zero.
In this way we see the crucial importance that the presence of the preexisting resonance
with a mass around 1.3-1.4 GeV has in order to reproduce the experimental data.

Taking directly the values of eq. (6.50) to calculate the S contribution to the L,
coefficients one has from egs. (2.32) and (2.33):

Ly = 093x107° (6.51)
Ly = 0.76 x 107°
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in good agreement with their experimental values in Table 2.1.
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Figure 6.7: The continuum line corresponds to the best fit (6.50) to solution C of [71], the
full circles points, allowing for a relative deviation of a 30% from the values in eq. (6.38).
The dashed line corresponds to the former fit but with the couplings of the resonance
puts to zero. The dotted line is the fit (6.49) to the same data with the values for the
couplings in eq. (6.38). The bump in the modulus of the amplitude for this type of line is
a consequence of the K7’ threshold. The data from [72] are depicted by the empty circles.

We see that we are able to reproduce the S-wave I=1/2 scattering making use of the
short distance constraints, eq. (6.38) imposed in section 6.3 when requiring the scalar
form factors eq. (6.30) to vanish for s — oc.

Making use of eq. (2.33) we fix also the parameters for the singlet resonance. We have
also fitted these parameters in section 5.4. In that section we obtained:

Cq = 20918710 ¢, =10.567732 Mg, = 1021.11750 MeV (6.52)

Taking into account the large N, estimations eq. (6.38) one should have

Ca=Cn = 26.7+9 MeV (6.53)
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where as usual a % of relative error has been allowed from their central values. Both sets
of values are compatible when considering the errors. On the other hand, if we take the
nonet mass as the average among the masses of the singlet and of the octet we have fitted
in this work, one has:

Myoner ~ 1200 MeV (6.54)

this is the value taken for the mass of the nonet in section 2.3.

We can also try to find the resonance pole position from the former fits when going to the
unphysical sheets. First we consider the resonance region for /s ~ 1.4—1.6 GeV. The pass
from one sheet to the other one can be done following eq. (34) of [58]. This equation can
also be deduced by taking into account the analytic expression for g(s) where multivalued
logarithms appear. The sheet can be associated with the ¢ 27 K indetermination from the
logarithms, and the factor K can be fixed by continuity when passing from one sheet to
the oher. At the end one obtains the same result than in eq. (34) of ref. [58].

Changing gxr — gir + 1 Dir/(474/S), one goes to the II-sheet, which corresponds to
changing the sign in the square root defining the three momentum of the lightest threshold,
Kn. The poles are:

Fit (6.49): 1603 — i 73 MeV (6.55)
Fit (6.50): 1555 — i 185 MeV

we see that the mass is more or less the same, however the width changes by a factor 2.
But even more, when going from the second to the third Riemann sheet by changing
9ry — 9y + i pky /(474/s) one finds the pole at:

Fit (6.49): 1368 — i325 MeV (6.56)
Fit (6.50): 1233 — i 358 MeV

we have seen that this pole is linked to the one in (6.55) by continuously passing from
the third to the second Riemann sheets by multiplying by a factor A € [0, 1] the factor
i Py /(4m/s). Hence, when A = 0 we are in the second sheet and when A = 1 one is in
the third one. The end points of such track are the poles in (6.55) and (6.56). The large
variation of the pole position when passing from one sheet to another, means that the 7'
couples strongly to that resonance, as one also guesses when studying Figs. 6.6 and 6.7.
Note that the second and third Riemann sheets are the close ones to the physical sheet
since they are reached by continuity when crossing below and above the K7’ threshold,
which is very close to the K resonance.
If we average the pole positions from egs. (6.55) and (6.56) one has:
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1440.75 £ 148 — 4235 £ 113 MeV (6.57)

However one has to keep in mind the obvious difficulty to characterize the K;(1430)
resonance by the position of just one pole because as we have seen the change from the
second to third sheet has large influence. In fact, this resonance is a combination of two
pole effects, one in the second and another in the third sheet due to the proximity of the
Kn' threshold.

In the PDG [19] the parameters for the K;j(1430) come from the fit given in [72] for
their data. In this fit they use a simple Breit-Wigner parametrization for the Kj resonance
and the mass and width are those of the Breit-Wigner. In this way, they disregard the
differences that can appear when moving to the final pole position of the resonance, which
can be important as we have seeen. They quote:

r
MR+’£§:(1429i4j:5+i143.5:|:5:|:10) MeV (6.58)

In the second sheet there is also another pole corresponding to the k resonance, already
introduced in chapter 5. For the values given in (6.55) and in the second sheet (note that
this resonance is far away from the K7’ threshold) one has

700 — 323 MeV (6.59)

in the line of the values given in Table 5.1.

6.6 Results for the /=3/2 K7 elastic amplitude.

We are going to distinguish data between the sets of experiments [75, 113, 114, 115]
and [71]. The differences are very important for low energies around a factor 2-3 as can be
seen in Fig. 6.7 for \/s < 0.8 GeV.

Once we have fixed all the values for the scalar resonances, take for instance the fit in
eq. (6.50) we proceed to the I = 3/2 case where we have only the a! eq. (6.41) as free
parameter. We have fixed this parameter from the data up to /s ~ 1 GeV giving a value
of af. = 2.5+ 0.08. In Fig. 6.8 the continuum line corresponds to this calculation. Note
that for low energies we are in agreement with the data from [75, 113, 114, 115] and not
with the one from [71]. This in fact was also the case in Fig. 4.15 of chapter 4, where we
also discussed this channel making use of the IAM method. For energies higher than 1.2
GeV our results begin to disagree with the trend in the data. Note that in this channel
for higher energies there are no resonances or thresholds which dominate the scattering, as
in the I = 1/2. The latter contributions can be reproduced making use of our techniques.
However we go into difficulties when taking into account all the possible soft contributions
which appear in the /=3/2 for higher energies.
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Figure 6.8: Full square: [75]. Full triangle: [113]. Full circle: [114]. Cross: [115]. Empty
triangle: [71].

6.7 Conclusions.

In this chapter we have implemented the study of the K7 channel done in chapter 5
by allowing the presence of the inelastic threshold K7’ and contributions coming from the
unphysical cuts, which have been included perturbatively. We have discussed the inclusion
of the K1/’ channel, which has been done in large N, limit where the 7’ is also a Goldstone
boson. An extension of the unitarization method of section 5.1 has also been done in
order to take into account the unphysical cuts contributions strictly up to O(p*).

We have seen that one is able to understand the I=1/2 and 3/2 scattering with values
for the coupling constants ¢, and ¢, that saturate the L; coefficients, see egs. (2.32) and
(2.33). The values of these couplings has been fixed in large N, by requiring that the scalar
Kr, Kn and Kn' form factors vanish at infinity. These values are ¢4 = ¢, = f/2. The
mass of the first scalar nonet has been established to be around 1.2 GeV. With this value
for the mass and the former values for the couplings, the contributions to the L; coefficients
given in Table 2.1 are obtained.

In this sense the results of this chapter agree with the conclusions in [7]. However,
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in that work the authors consider the first scalar nonet with a mass around 1 Gev and
including the a¢(980) resonance. From the results of this chapter and of the former one
we can say that this is not the case. The picture is that there is a lighter nonet scalar
which embodies the o, k, ag(980) and a strong contribution to the f,(980) resonance which
is of dynamical origin and hence subleading in large N.. The scalar nonet, leading in
this counting and responsible for the saturation of the L; couplings, is another one. We
have determined its mass to be around 1.2 GeV. This nonet embodies an octet formed by
the K;(1430), a¢(1450) and the fy(1500) and a singlet which contributes to the f,(980)
resonance.

Finally, we stress that the situation for the experimental data in these channels has
still to be improved both in the I = 1/2 and 3/2 channels, and that an estimation of the
associated systematic errors should be wellcome. We only agree with the solution C of [71]
for energies higher than 1.5 GeV in the case of the I = 1/2 and disagree with this work for
low energies in the I = 3/2 case. However, we agree with the data from [75, 113, 114, 115]
in this latter case. We also disagree with the experimental data from [72] for \/s > 1.5
GeV.
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Chapter 7

Final State Interactions (FSI).

In this chapter we discuss the implementation of the final statej interactions(FSI) in
several electromagnetic processes involving two mesons in the final state.

7.1 The scalar and vector pion form factors.

The scalar and vector form factors of the pion are defined respectively as

(r*(p")"(p) out | (uu + dd)| 0) = 6§*I'(s) (7.1)
and

(v o |, () o] 0) =i ) Fte (7.2

with 7 = (my, + mq)/2 and €% the total antisymmetric tensor with three indices.

Assuming elastic unitarity (valid up to the KK threshold and neglecting multipion
states) and making use of the Watson final state theorem [116] the phase of I'(s) and
Fy (s) is fixed to be the one of the corresponding partial wave strong amplitude:

ImT (s +ie) = tand) Rel'(s)
Im Fy (s +i€) = tand; ReFy(s) (7.3)

The solution of (7.3) is well known and corresponds to the Omnes type [117, 118]:

Fy(s) = Pi(s)(s (7.4)
i s" [ ds' 0Hs)
9i<8>:exp{?/4 : —T} (7.5)

121
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In (7.4) Py(s) and P (s) are polynomials of degree fixed by the number of subtractions done
in In{Q(s)} and In{€2;(s)} minus one, and the zeros of Fyy and T'. For n = 1, P;(s) = 1.
This follows from the normalization requirement that I'(0) = Fy,(0) = 1 and the absence
of zeros for those quantities.

We will calculate the dispersion integral (7.5) and obtain the pion form factors for both
the scalar and vector cases making use of the phase shifts calculated in section 4.3. The
results are shown in Figs. 7.1 and 7.2. The Omnes solution assumes the phase of the form
factor to be that of the scattering amplitude, and that is true exactly only until the first
inelastic threshold. The first inelastic threshold is the 47 one. However, as it was already
said, its influence, in a first approach, is negligible. The first important inelastic threshold
is the KK one around 1 GeV. This is essential in I = L = 0 but negligible in [ = L = 1.
This inelastic threshold, as discussed above, has been included in our approach and it is
responsible for the appearance of the f3(980) resonance, as it is clearly seen in Figs. 4.5
and 7.2.

2\\\\\\\‘\\\‘\\\‘\\\\\\\\\\\\\\\\\\

Logol [Fy(s)[°]

\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘
-400 -200 0 200 400 600 800 1000 1200 1400 1600

S/ECD’I

Figure 7.1: Vector pion form factor. The vertical line shows the opening of the KK
threshold. Data: [119].

We see clearly the appearance in Figs. 7.1 and 7.2 of the p(770) and f,(980) respectively.
In the case of the Fy(s) the agreement with existing data is quite satisfactory. Above
the KK threshold one expects deviations from (7.4) due to the opening of this inelastic
channel. However, for the vector form factor we still see a rather good agreement with
data and the deviation should be ascribed to the presence of the p' resonance above 1.2
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GeV. On the other hand, the result obtained for the vector form factor is similar to the
one recently obtained in [120] using another phase shift expression, taking into account
possible uncertainties coming from orders higher than p* in ChPT. For the ] = L = 0
channel the most dramatic influence of the opening of the K K threshold is the appearance
of the fo(980) resonance, what happens a little below KK threshold. So that we do not
expect large deviations from our results even above the K K threshold up to the appearance
of new I = L = 0, fy, resonances higher in energy, typically around /s ~ 1.3 GeV. In
Fig. 7.2 the dashed line represents the scalar form factor unitarizing only with pions to
obtain the dgo . phase shift, in the line of the works [121, 122, 123] and we see a very large
influence of the KK channel through the fy resonance which is even substantial around
|v/s| = 500 MeV.

[ ‘ T T ‘ T T ‘ T T ‘ T T T T T T T T ]
3 ) —
R Logiol [T'(s)I"] i
2 — —
1 — —
O — B —
71 — —
72 — —
| ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ [ ‘ |
~400  —200 0 200 400 600 800 1000 1200
S/Ecm

Figure 7.2: Scalar form factor. The dashed curve is the result unitarizing only with pions.
The solid line is the full result with both pions and kaons in the intermediate state. The
vertical line shows the opening of the K K threshold.

7.2 The vy -»meson-meson reaction.

The vy — meson-meson reaction provides interesting information concerning the struc-
ture of hadrons, their spectroscopy and the meson-meson interactions, given the sensitivity
of the reaction to the hadronic final state interactions (FSI) [124]. In this sense, the study
of these processes constitute a very interesting test of consistency of our approach for the
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scalar sector in ref. [58], see also section 5.2. This study was done in ref. [76]. Since the
former work was already reported in my master’s thesis, I will only give a brief summary
in this section.

In that work, we were able of presenting, for first time, a unified theoretical description
of the reactions vy — ntn, 7%% KTK , K'K° 7% up to about /s = 1.4 GeV
reproducing the experimental cross sections and angular distributions, see Fig. 7.6.

For calculating the above processes we correct for F'SI the tree level amplitudes coming
from Born terms (Fig. 7.3), in the case of the charged channels, and also from the exchange
of vector and axial resonances in the crossed channels [125] (Fig. 7.4.).

k P, - -
P W
7 \ \
< | |
- AN — L
k’ p.

Figure 7.3: Born term amplitude for vy — MTM~. k and k' are the momenta of the
incoming photons and p (p_) the momentum of the positively(negatively) charged meson.

A"NANNIE — — — - ———
K p

Figure 7.4: Tree level amplitude for vy — M; M, through the exchange of a resonance
R(axial or vectorial) in the t,u channels. k and k' are the momenta of the incoming
photons and p;, ps are the momenta of the final mesons.

7.2.1 FSI: S-wave.

We first consider the one loop corrections of the tree level amplitudes and then we
extend this result to the string of loops represented in Fig. 7.5.

The one loop contribution generated from the Born terms with intermediate charged
mesons can be directly taken from the yPT calculations [126, 127] of the vy — 7%7°

amplitude at O(p*). The important point is that the O(p?) xPT amplitude connecting
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the charge particles with the 77 factorizes on-shell outside the loop. We can schematically
represent this situation by:

Z L(5)a T () (7.6)

where the subindex a represents the pair of intermediate charged mesons, b the final ones
and T® the on-shell O(p?) amplitude.

Our contribution beyond this first loop is to include all meson loops (Fig. 7.5) generated
by the coupled channel Lippmann Schwinger equations of section 5.2, ref. [58]. We also
saw there that the on-shell O(p?) xPT amplitudes factorize outside the loop integrals.
Thus, the immediate consequence of introducing these loops is to substitute the on-shell
O(p?) mm amplitude in eq. (7.6), by our on-shell meson-meson amplitude, Ty (s), evaluated
in ref. [58].

Figure 7.5: Diagrammatic series which gives rise to the FSI from a general vy —M M’
vertex, represented by the full square.

A similar procedure can be done to account for the FSI in the case of the tree level
diagrams with the exchange of a resonance (vector or axial). As explained in [76] one can
justify the accuracy of factorizing the strong amplitude for the loops with crossed exchange
of resonances, since this result is correct for M% — oo. Because we are dealing with real
photons the intermediate axial or vector mesons are always off-shell and the large mass
limit is a sensible approximation. The errors were estimated to be below the level of 5%
for My about 800 MeV.

7.2.2 D-wave contribution.

For the (2,2) component we take the results of ref. [128], obtained using dispersion
relations tgg) _ |:§ X22 =0 41020 + ;XT 2 o022 t(‘?uZ) (77)
For the vy — KTK  reaction the non resonant D-wave contribution is not needed because
we are close to KK threshold and furthermore the functions y;; are nearly zero close to
the mass of the fy and as resonances.

The resonance contribution in the D—wave coming form the f5(1270) and ay(1320)
resonances is parametrised in the standard way of a Breit-Wigner as done in ref. [129].
The parameters of these resonances are completely compatible with the ones coming from
the Particle Data Group [19]

Once we have corrected for FSI the S- and D-waves, which completely dominate the
vy —meson-meson reactions up to the energies considered [76, 128], we compare with
several experimental data.
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7.2.3 Total and differential cross sections.

The experimental data correspond to total and differential cross sections. As can be
seen in Fig. 7.6, the agreement is extraordinary good in all the considered channels. It
is worth to say that the results presented are not a fit, they are calculations since the
parameters of the axial, vector and tensor resonances were taken from the literature.

It is worth remarking that in the figure corresponding to the vy — KK reaction,
that the Born term, indicated by the long-dashed line, reduces to the short-dashed line
when taking into account the FSI.

7.2.4 Partial decay widths to two photons of the f;(980) and
ao(980).

We follow the same procedure that in section 4.4.3 to calculate the partial decay
widths of the f3(980) and a¢(980) in terms of our strong and photo-production amplitudes.
From our amplitudes with isospin I = 1 and 0, we consider the terms which involve the
strong MM — MM amplitude. Then, we isolate the part of the vy — MM which
proceeds via the resonances ay and f; respectively. In the vicinity of the resonance the
amplitude proceeds as MM — R — MM. Hence, we eliminate the R — MM part
of the amplitude plus the R propagator and remove the proper isospin Clebsch Gordan
coefficients for the final states (1 for 7% and —1/v/2 for K*K~) and then we get the
coupling of the resonances to the vy channel.

The results are:

)7 =0.78 KeV T771%

ao 'l

=049 KeV T} =020 KeV (7.8)

The calculated width for the f;(980) is smaller than the average reported in the PDG
[19] (0.56 + 0.11) KeV. In doing this average the PDG refers to the work [128] by Morgan
and Pennington where they quote a width of (0.63+0.14) KeV. However, in a recent work
by Boglione and Pennington they quote the much more smaller width (0.2875%9) KeV,
[130]. When taking into account the errors, the former result and the ours are compatible.
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Figure 7.6: Total and differential cross sections for several photoproduction processes. The
referenes to the experimental data can be seen in [76].
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Our calculation for the second magnitude in eq. (7.8) is larger than the value given in
PDG (0.28+0.04+0.1) KeV. However, this value comes from references where a background
is introduced in order to fit the data. In our analysis we do not need any background and
hence, in a natural way, the strength of the a(980) to two photons is increased.

7.2.5 Conclusions

1) The resonance f(980) shows up weakly in vy — 7%7% and barely in vy — 777,

2) In order to explain the angular distributions of the vy — 777~ reaction we did not
need the hypothetical f;(1100) broad resonance suggested in other works [128]. This also
solves the puzzle of why it did not show up in the vy — 7°7°® channel. Furthermore, such
resonance does not appear in the theoretical work of ref. [58], while the f;(980) showed up
clearly as a pole of the 7" matrix in I = 0.

3) The resonance ay shows up clearly in the vy — 7% channel and we reproduce
the experimental results without the need of an extra background from a hypothetical
ap(1100 — 1300) resonance suggested in ref. [124].

4) We have found an explanation to the needed drastic reduction of the Born term in
the vy — KK~ reaction in terms of final state interaction of the K*K~ system.

7.3 The ¢ — YK°K? decay.

The study of the process ¢ — vK°K0 is an interesting subject since it provides a
background to the reaction ¢ — K°K°. This latter process has been proposed as a
way to study CP violating decays to measure the small ratio €'/e [131], but since this
implies seeking for very small effects a BR(¢ — vK°K9 )> 10 will limit the scope of
these perspectives. There are several calculations of this quantity [128-131]. In [136] it is
estimated for a non resonant decay process without including the f, and ag resonances.
The issue is revisited in [137]. In this section we will follow the work done in [138].

Here, a different way to treat the scalar meson-meson sector, and its related f,(980)
and a(980) resonances, is proposed. For this we use a recent approach [58] to the S-wave
meson-meson interaction for isospin 0 and 1 which reproduces the experimental data for
those processes up to about 1.2 GeV and generates dynamically the ay and f, resonances.
In this way, we will consider their interference and the energy dependence of their widths
and coupling constants to the K K system. Furthermore, other possible contributions, non
resonant, are also taken into account. The ideas and amplitudes exposed there were used
in [76] for the vy — 7w, KK and 7% processes and a good agreement with the experiment
was obtained.

As in former works [127-131] we consider the process ¢ — YK°KO through an in-
termediate K™K~ loop which couples strongly to the ¢ and the scalar resonances, see
Fig.7.7.
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Figure 7.7: The loop radiation (a,b) and contact (c) contributions.

For calculating this loop contributions we use the minimal coupling to make the inter-
action between the ¢ and the KK~ mesons gauge invariant, then we have

i = (A + god,)i( K"K~ — QUICHIC™) — 2eg, A4, K H K (7.9)

Where g, is the coupling constant between the ¢ and the KK~ system.

An essential ingredient to evaluate the loop in Fig. 7.7 is the strong amplitude con-
necting K™K~ with K°K°. As we said before we will use the amplitude calculated in [58].
This implies the sum of an infinite series of diagrams which is represented in Fig.7.8 for
the diagram of Fig. 7.7.a, and the analogue corresponding to Figs. 7.7b,c.

This series gives rise to the needed corrections due to final state interactions and in
fact, from the vertex connecting the K+ K~ with the K°K?0, this series is the same one that
in [58] gives rise to the S-wave strong amplitude K*K~ — K°K°. In this approach the
vertex between the loops correspond to the lowest order chiral perturbation theory [4, 5],
xPT. Note that an analogous series before the loop with the emission of the photon is
absorbed in the infinite series of diagrams contained in the ¢ resonance propagator.

Figure 7.8: Diagrammatic series which gives rise to the FSI from a general loop of Fig.
7.7.
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First of all, let us see that the strong amplitude connecting K+ K~ with K°K?° calcu-
lated in the way shown in Fig. 7.8 [58] must factorize out of the integral.

For this consider the diagrams in Fig. 7.7 but with the O(p?) xPT amplitude connecting
the kaons. This amplitude is given by

- 1 1 ami — > p?

< KK KYK™ >= Z[tjzg — ti1] = —— K - 7.10

|¢] 2[1—0 1=1] 4f2[8+ 3 ——=] (7.10)

where f is the pion decay constant, f ~ 93 MeV, I refers to the isospin channel of

the amplitude and the subindex ¢ runs from 1 to 4 and refers to any of the four kaons

involved in the strong interaction. If the particle is on-shell then p? = m%. In our case
Pio = Do = M 80 we have

412 3
The important point for the sequel is that the off-shell part, which should be kept inside
the loop integration, will not contribute.

In order to see this, note that, due to gauge invariance, the physical amplitude for
¢ — yK°KO has the form

(7.11)

M(¢(p) = v(q)K°K®) = [¢" (p-q) — P'¢"]elebH(p - ¢,Q, ¢ - Q) (7.12)

where €] and €/ are the polarisation vectors of the photon and the ¢, Q@ = pgo + pgo
and H is an arbitrary scalar function. In the calculation of this loop contribution the
problem is the presence of divergences in the loops represented in Fig. 7.7. Following refs.
[132, 133, 134] we will take into account the contribution of p*¢” of Figs. 7.7.a,b, since
Fig. 7.7.c,d does not give such type of terms. Then, by gauge invariance, see formula
(7.12), the coefficient for (p - ¢)g"* is also fixed. In fact, as in ref. [132, 133, 134, 137] it is
shown, the p#¢” contribution will be finite since the off shell part of the strong amplitudes
do not contribute, as we argue below, and then we are in the same situation than in the
latter references. On the other hand, depending on the renormalization scheme chosen,
additional tadpole like terms can appear [139]. However, they do not contribute to the
ptq” structure and hence can be ignored.

Take the diagrams of Figs. 7.7.a,b. These diagrams give the same contribution and
this is the reason for the factor 2 in front of the following integral accounting for both
contributions.

¢2eg¢ (2ky—py)(2ku—aqu)
M' = €l e)=; f 27r)4 (k2 —m3 +i€)(k—q)?—mi +ie)((k—p)2 —mi +i€)

(7.13)

(mE—p2 )+ (Mg —p7 _)
Tpl@7 + " e 3 " ]
The momentum for each particle in the loop is indicated in Fig. 7.7.a and so we have
that px+ = k—q, px- = k —p. Concentrating in the off-shell part of the strong amplitude,
we have the integral



7.3. The ¢ — yK°KO decay. 131

d4k (2ky —pv) (2K —qp) 21—
f( (k2—m3+ie)((k—q)2 mf(:ie)(;(bkfp)Qfm%(nLie) (k= q)* = mi + (k = p)* — mi] =

(7.14)
f (2K — pV)(ZkM qu) 4 f d4/€ (2ky —pv ) (2ku—qp)
(2m)? (k2—m2.+ie)((k—p)2—m? +ie) (2m)* (k2—m2, +ie)((k—q)2—m3, +ie)
Taking into account that
62 p' =03 € -¢" =0 (Feynman gauge) (7.15)
then we only have
d4k 4k ky d*k 4k ky
S & )T P—m i) (h—p)P—mZ tig) T J Gy B —mZ 1)) (h—)7 =2 1 ie) (7.16)

The above integrals do not give contribution to ¢#p” since in each integral there is only
one of the two vectors g or p. In this way we see that the strong amplitude O(p?) factorizes
out on-shell in (7.12). Note that the important point in the former argumentation is the
form of the off-shell part of the S-wave strong amplitude at O(p?) and this is common to
any other S-wave meson-meson amplitude at this order, as one can see in [58].

Next we want to sum all the infinite series represented in Fig. 7.8. The intermediate
loops also contain 7w for I = 0 and 7% for I = 1, since in ref. [58] coupled channel
Lippmann-Schwinger equations were used with 77, KK in I = 0 and 7%, KK in I = 1.
In ref. [58] it is shown that the meson-meson amplitude factorizes on-shell outside the
loop integrals and since we have also here the O(p?) strong amplitude factorizing we are
then in the same situation as in [58] and we can substitute the O(p?) strong amplitude by
the one calculated to all orders in this reference. This result is an exact consequence of
the approach used in [58]. Similar ideas were also used in [76] to include the corrections
coming from the final state interaction in 7y —meson-meson giving rise to a very good
agreement with the experimental results. Then to all orders in the approach of [58] we
have the amplitude

1
ts = 5[

Note that the amplitude obtained in [58] contains also the resonances f;(980) and
ao(980) which are generated dynamically.

Then we have for the amplitude ¢(p) — v(¢q) K°K?°

tr=o — tr=1] (7.17)

— Vb 29 dik (2ky —pv)(2ku—qu)
M = €} =%ts | Gyt rmmd i e o L0 (=TT (7.18)

This integral has been evaluated in [132] using dimensional regularization and confirmed
n [137], with the result

M=—9_1ab)[(p-q)(e,-es) — (p-e)a-€)lts (7.19)

2
212im?,

with a = M3 /mj and b = Q*/mj
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I0.h) = 5 ~ g ) — S + () — o) (720
where
—(arcsin(32=))? x> :
f@) = { Hin(Ze) ~inP <1
(4z — 1)%arcsm(ﬁ) > (7.21)
9() = %(1—4x)§[ln("f)—fi7r] r<l

After summing over the final polarisations of the photon, averaging over the ones of
the ¢ and taking into account the phase space for three particles [19] one obtains

dmi,dQ?
(27)3192M

I(a,b)

¢
2m2m?2,

[ 9Kk = [ oy POME = @Plts? (722)

where m?, = (q + pgo)>.

2
Taking i—i = 1.66 from its width to K*K~, M, = 1019.41 MeV, I'(¢) = 4.43 MeV,
BR( ¢ — K°K°) = 0.34 and using the mass of the K for the phase space considerations,
ref. [19], one gets
(¢ —yK°K° = 222 x 1077 MeV
BR(¢ — vK°K% = 0.50 x 1077 (7.23)

D(¢—vK°K?) _7

The uncertainties coming from the range of the possible values for the cut-off give a
relative error around 20%.
Taking only into account the I = 0 contribution

[(¢p — yK°K%) = 8.43 x 1077 MeV
BR(¢ — vK°K% = 1.90 x 1077 (7.24)

D(¢—vK KO —7
LoonICHD — 5,58 x 10

and with only the I =1
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Figure 7.9: Distribution dB/dMj for the decay ¢ — %7y, with M the invariant mass of
the 770 system. The data points are from [141] and only statistical errors are shown. The
systematic errors are similar to the statistical ones [141]. The distribution for ¢ — 777~
is twice the results plotted there.

(¢ — yK°K% = 2.03x 1077 MeV
BR(¢ — vK°K®) = 4.58 x 1078 (7.25)
0 K0
ey = 135x 1077

We see that the process is dominated by the I = 0 contribution and that the interference
between both isospin channels is destructive.

From the former results we see that the ¢ — yK°K° background will not be too
significant for the purpose of testing CP violating decays from the ¢ — K°K0 process at
DA®NE in the lines of what was expected in [137]. All these calculations have been done
in a way that both the resonant and non-resonant contributions are considered at the same
time and taking into account also the different isospin channels.

Finally, I would like to comment the recent calculations for the decay ¢ — y7°7® done in
[140] following the approach developed in this section. The calculation was done just before
the group from Novosibirsk [141] published their data. The agreement is extraordinary as
can be seen in the Fig. 7.9 taken from [140].
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Chapter 8

Final Conclusions.

In this work we have presented two methods of resummation of the chiral series resulting
from xPT [4, 5] or from the xPT amplitudes plus the resonance chiral Lagrangians [7]. In
both cases one obtains a unitary amplitude to all orders in the chiral expansion although
cross symmetry is obtained perturbatively.

The first method is the Inverse Amplitude Method [25], developed in chapter 4. Our
original contribution has been to extended this formalism to the coupled channel case [26].
In this way, the TAM originally restricted to the elastic scattering, could also be applied to
study several S-waves amplitudes for which the coupled channels are very important, for
instance the KK coupled to ww(7n) for the I=0(1). The method has proved to be very
successful from the phenomenological point of view up to /s ~ 1.2 GeV. This success can
be understood through VMD for the vector channels and from the great importance that
the unitarization of the lowest yPT amplitudes has for the scalar channels. The method
also reproduces the resonances which appear in the scattering of two mesons, namely, p,
K*, £0(980), a¢(980), o, k and an octet contribution to the ¢ meson.

The other approach is based in the use of the N/D method. In this way, the unitarization
of the lowest order chiral amplitudes from L, and the exchange of resonances from ref. [7]
was accomplished. This method is specially suited to address the spectroscopic problem
of differentiating between meson-meson versus elementary resonances. In this way, we
concluded that the o, a¢(980) and &, together with a strong contribution to the f;(980),
are meson-meson resonances, while a singlet contribution to the f;(980) and an octet
around 1.4 GeV (ao(1450), K3 (1430) and fy(1500)) are elementary resonances, not meson-
meson ones. This latter nonet would be the responsible of the saturation of the xPT
counterterms at O(p*) [7]. In fact, the lightest meson-meson nonet disappears in the large
N, limit.

On the other hand, in chapter 6, we were able to fix in large N, the values of the
couplings for the scalar nonet from the vanishing at infinity of the scalar K7, Kn and K7’
form factors. In this way the saturation of the L; x PT counterterms at O(p*) is obtained
for a mass of around 1.2 GeV for this nonet. We also saw that with these values one is
able to obtain a good description of the Km I=1/2, 3/2 S-waves up to energies around 1.6
GeV. To accomplish this, the K7’ channel was introduced in large N, where the 7’ is also
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a Goldstone boson, making use of the lowest order chiral Lagrangians [5, 7].

Finally, in chapter 7 we studied several electromagnetic processes corrected from FSI.
We used an Omnes resummation for the scalar and vector 77 form factors. For the vy —
meson-meson and the decays of the ¢ meson we make use of a resummation of loops in the
s-channel, which is based in the factorization of the lowest order chiral amplitudes in the
loops involved in the production mechanisms of the mesons.

We hope in the future to apply these techniques to other scenarios apart from the
meson-meson scattering, as for instance, meson-baryon or baryon-baryon scattering.



Appendix A

Relation between cut-off and
dimensional renormalization.

In this appendix we are showing the relationship between our regularization scheme
and dimensional regularization, which is the usual one when dealing with xPT.

A.1 Analytical formula for G(s) with a cut-off regu-

larization.

In the general case with different masses, M; and M,

A

1
— log
S

3272

M v
+_

2
Ms s

G(s)

{_

+2—log
s

2
M2

14+4/1+

2
ma

2
M;
2

Tmaz

8

14+4/1+

M M%}
4

+ log
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)

2
2

2
mazr

(A1)

where v = /(s — (My + M)?)(s — (M; — My)?) and A = M} — M3. In the case of equal
masses, M| = My = m, the above formula reduces to

1

qmaa:

G(s)

o log

o4/1+ q?;ﬂ
o4/1+ q;"2
where now, o = /1 —4m?/s.

(47)?

+1
— 2log
-1 m
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The numerical evaluation of the principal part of eq. (4.36) is also performed as an
additional check.

A.2 Relation between the cut-off and the dimensional
regularization scale.

In order to obtain the relationship between the cut-off and the renormalization scale
w let us consider, for the sake of simplicity, the case with equal masses (the same result
is obtained with different masses but the formulas are more cumbersome). As far as we
are going to compare the same function calculated in different ways, let us denote by
G°(s) the G(s) calculated with a cut-off regularization and G (s) the one calculated with
dimensional regularization. In this latter case we have

1 1 o+1

GP(s) = =~ —2+logm?® + Ulog (A.3)
(47)?
where 1/é = 1/e — log(4m) + v with D = 4 + 2e.
The scale p in GP(s) appears through the inclusion of the L; [5] at O(p*)
Li = L(p) + TiA (A.4)

where L7(u) is the renormalized value of L; at the p scale, I'; is just a number and

1 (1
= | 4logui—1 A
A= 3002 [e+°g“ } (4.5)

The log 12, and its companion % — 1, are incorporated in GP(s) so that at the end one
has a logarithm of the dimensionless quantity m?/u2. In this way we rewrite GP(s) as:

1 m? o+1
GP(s) = —1+log — 1 A6
() = s | -1+ low T + oty T (A.6)
We expand eq. (A.2) in powers of m?/q?,,, to compare with the cut-off regularization,
as follows
GC(s) = 1 -—2 log qm’n +olog g +
Lol flogett m2 tol o)
= — og e+ 1o olo
(4m)? | g v g Tmas
1 m2e -|—
= —1+1 | A7
(4m)? | o 4q%m roes (qmac)] (A1)

Then comparing eqs. (A.6) and (A.7) one has:
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2qmaa:
= ~ 1.2 ¢z A8
= q (A.8)
Hence, to our cut-off ¢ ~ 1 GeV would correspond a p = 1.2 GeV dimensional

regularization scale. In Table II, we have listed the values of the L; parameters and those
of standard xPT scaled to u = 1.2 GeV. As it is explained in the text, in our fit we have
neglected the crossed channel diagrams and we have treated tadpoles differently. The effect
of these contributions is effectively reabsorbed in our L; parameters, hence some differences
between the L; and L; parameters should be expected and this is indeed the case as can
be seen in Table II. Note that, even if we had used the complete O(p*) xPT calculations,
these parameters could be different, since they have been obtained from a fit over a much
wider range of energies than it is used in yP7T and higher order contributions have been
included.

Finally, note that the terms O(m?/¢?,,) in eq. (A.7) yield O(p®), or higher, contribu-
tions and that is why they are not included in G (s).

It is also worth stressing that the relationship of eq. (A.8) is independent of the physical
process and channel since the function G(s) appears in all them in the same way.
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Appendix B

T5 and Tf Amplitudes.

We have used the following formulae in our calculations.

Masses and decay constants

[ 4m? 8m?
fr = F|1+ 7 (Ls + Ly) + fQKL4]
[ 4m? 4m?
fx = fl1+ f2K (Ls +2L4) + f—;L4]
o dAm? 8m?% + 4m?
fo = f|14+ —F2Ls + —5 ”L4] (B.1)
L S
s g 8m?2 16m?%
m, = Mg 1+ f2 (2L6 + 2L3 - L4 - L5) + f2 (2L6 - L4)
16m> 1 8m?
A2 K T
T — w7 scattering
The definite isospin amplitudes T() are obtained from just one amplitude 7
TO (s, t,u) = 3T(s,t,u) +T(t,s,u)+T(u,t,s)
TW (s, t,u) = T(t,s,u) — T(u,t,s)
T (s, t,u) = T(t, s,u)+T(u,t,s)
(B.3)
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where T' =T, + T} is given by:

2

T, = mf; ° (B.4)
T, = _fi,‘} {(2L1 + L) (s — 2m2)* + Ly [(t — 2m2)* + (u — 2m?2)?

which have been obtained at tree level from £y and L4, respectively.

Km — K scattering

Using crossing symmetry, we can write the I = 1/2 amplitude in terms of that with
I =3/2,as

3 1
T(I/Z)(s,t, u) = §T(3/2)(U, t,s) — §T(3/2)(57 t,u) (B.5)
where
T _ 5= (m2 +m?%) (B.6)
2f7er
2
3/2
e — ~T7 {(4Ly + L3)(t — 2m2)(t — 2m¥) 4 2Ly(m2 + mi — 5)?

4+ (2Ly + L) (m2 4+ my — u)® + 4Ly [(m2 + m7 )t — 4mZmiy]
+ L5 [(m2 + mi)(m2 +my — s) — 4mZm5 | + 8m2imy (2Le + Ls) }

once more, they have been obtained, respectively, from Ly and L4 at tree level.

KK — KK scattering

The definite isospin amplitudes can be written just in terms of two:

TO (s, t,u) = T (s,t,u) + T (s,t,u) (B.7)
TW (s, t,u) = T (s, t,u) — T (s,t, u)

e

where T7 "~ is the amplitude for Kt K~ — K™K, whose respective O(p?) and O(p?)
contributions are

—29m2
T2+7+7(S7 t7 U’) = % (B8)
fi
4
T (s,t,u) = ——1 {2Ls(u—2m%)* + (2L + Lo + L3) [(s — 2m%)* + (t — 2m%)?]
K

—2umj(2Ly + Ls) 4+ 8my (2Lg + Ls) }
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whereas 7%+~ is the amplitude for K K° — KK, which is given by

u— 2m3

O (s, tu) = —0 2 B.9
2 (87 7u) 2f]2( ( )
; 2

T (s,t,u) = —— {(4L1 + Ls)(s — 2m%)* + (2L + L3)(t — 2m%)* + 2Lo(u — 2m5)”

K

—2umj Ls — 8Lym7 (2my — s) + 8mj (2L + Ls) }

nm — KK scattering

Again, we can use crossing symmetry to obtain, from K7 — K, the definite isospin
amplitudes 77 of this process:

3
7O = \[g (TG (u, s,t) + TED(t, 5,u)) (B-10)

7O — 7B/2) (u,s,t) — T(3/2) (t,s,u)

Kn — Kn scattering
This process is pure I = 1/2. We obtain the following contributions to the amplitude:

6m, + 2m2 — 9t

To(s,t,u) = 157 Ix (B.11)
n
Ty(s, t,u) = —ﬁ{w —2mi)(t — 2m2)(12Ly + 5L3) + [(u — m} —mi%)?  (B.12)
n

+(s —mZ —m%)?](12Ly + Ls) + 2(t — 2m% ) [11m7% (2Ls + Ls)

—m?2(Ly + 3Ls)] + 4my [3(2Ly + Ls) + 32(Le + Ly + Lg)]

+2(t — 2m2)[9m% (2Ls + Ls) +m2(3Ly — Ls)] + 4my(16L7 4 8Ls — L)
+6Lsm,, — t{m(24L4 + TLs) + 2m2(6Ly — Ls) + 9Lsm?]
+6mymi(4Ly + Ls) + 2m2m?2(6Ls + Ls)

+2 mim?2 [6Ly + Ls — 8(2L¢ + TLg + 12L7)]}

Kn — K7 scattering
The I = 1/2 amplitude can be obtained as follows:

3
T2 (s, t,u) = \/;TFO”IHK_W_F(S,t, u) (B.13)

The O(p?) and O(p?) contributions to K n — K~ are
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V6 [8m% + 3m2 +m2 — 9t
Ty(s, t,u) = (Smic 36fan ] (B.14)
n
2/3

Tis,t) = 3l {81 [200— )~ 2 ) — s~ i~ s —
n
— (u—mi —m2)(u—mi — mf,)} + Ls [(t +m2 — mf])(7mfK — 5m2)
+  4m3 (3t — 3m?2 — m%) + 2(t — 2m3 ) (m3% +m?2) + 4(m? — m‘}()}
+ +16(2L7 + Lg)(my — 2mj + mim?2)}

nm —nm

This channel is pure I = 1 isospin. The amplitude is given by

—m?

Ty(s,t,u) = 37 f“ (B.15)
nJm
Tu(s,t,u) = —%%2{(15 —2m2)(t — 2m2)(6Ly + L) 4 4t Ly(m}. + 2m5)
n

+ (3Ly+ Ls) [(s — m2 —m2)® + (u—m2 —m?)?]
+ mi(4Ly — Ls — 8Lg + 32L7 + 12Lg) — 16m%m?2(Ly — 2L + 2L;)
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N /D in coupled channels.

In this appendix we make use of a matrix formalism to deal with several coupled
channels. In analogy with the elastic case, eq. (5.7), let us define the matrix T’ as

Ty (s) =p~ " Tuls)p™" (C.1)

with p a diagonal matrix which elements are p;; = p;d;; where p; is the modulus of the CM
. )‘1/2(57 m%w m%z) :
momentum of the channel 7, p; = NE , with my; and mg; the masses of the two
S
mesons in channel .
From the beginning we neglect the unphysical cuts. As a consequence Ty (s);; will be

proportional to pi'p}. This makes that Tp(s);, apart from the right hand cut coming from

unitarity (above the thresholds for channels i and j, s}, and s, respectively), will have
another cut for odd L between s!, and s, due to the square roots present in p; and p;.
In this way, T} will be free of this cut and will have only the right hand cut coming from
unitarity. Thus it will satisfy

Im T (s) = —p"p(s)p” = —p(s)p™" (C2)

where p(s) is a diagonal matrix defined by

pls) = —Sﬁi‘yge(s) (C.3)

with 6(s) another diagonal matrix such that 6(s);=1 above the threshold of channel 7 and
0 below it.

We write T as a quotient of two matrices, N; and Dy making use of the coupled
channel version of the N/D method [94]

T, =D} 'N/, (C.4)

We can always take N, free of poles and also containing all the zeros of T%. In such a
case N} will be just a matrix of polynomials, we then write
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NIL = anLfl (C5)

with Q,_;_; a matrix of polynomials of maximum degree n — L — 1.
In this way, from eq. (C.2) and (C.4) one has

Im D) (s) = —N7,(s)p(s)p™" (C.6)
and making a dispersion relation for D, one has
DIL(S) _ (S B SO)n /oo ds/Qn—L—l(S,)p(Sl)p2L(SI)
T Jo (s" = 5)(s" = s0)"

with P, _; a matrix of polynomials of maximum degree n — 1.
Because N’ is just a matrix of polynomials, it can be reabsorbed in D’ to give rise to

anew D, which will fulfill eq. (C.6) but with N, = 1. In this way

+ P,y (C.7)

~1—1

T, = D,

N, =1

S sl [T )

br = T /0 (S'—S)(S'—So)L+1+R() (C-8)

with R(s) a matrix of rational functions whose poles will contain the zeros of T}. This
fact is in clear analogy with the role played by the CDD poles included in Section 5.1 for
the elastic case.
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