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como Tesis para obtener el grado de Doctor en F́ısica.
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Su estancia aqúı sirvió para aprender bastantes cosas acerca de las funciones
de estructura del nucleón y para estrechar lazos de amistad y colaboración
para posteriores trabajos en común.
Supongo que, fruto del buen ambiente de trabajo que Sajjad encontró aqúı
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Introduction

Neutrino physics has been at the heart of many major discoveries in the
field of theoretical/particle physics like weak interaction, solar and super-
nova physics or parity violation to name a few.
When Wolfgang Pauli proposed the existence of a spin-1

2 neutral particle
which would share energy and momentum with the β particles emitted by
some nuclei in the process called β-decay, he doubted that such a particle
would ever be observed. In 1956, many years later, the neutrino was first
detected in an experiment by Reines and Cowan [1]. Enrico Fermi had pro-
posed a theory for the β-decay with a four fermion vertex [2,3]. Soon it was
found that the form of the interaction postulated by Fermi should be gener-
alized to include spin-dependent interactions as pointed out by Gamow and
Teller [4, 5]. After many attempts to find out the tensor structure of the
weak interaction, Richard Feynman and Gell-Mann [6], based on previous
work and conversations with Sudarshan and Marshak [7, 8], proposed the
V − A form for the vertex. This kind of structure for the weak current
was suggested after the experimental observation of parity violation in the
β-decay of 60Co [9].
A few years later, Lederman, Schwartz and Steinberger [10] discovered a
new kind (flavour) of neutrino related to the muon. A third flavour of neu-
trino (the tau neutrino) was first detected by the DONUT collaboration in
2000 at Fermilab [11].
One of the most important recent discoveries is the fact that neutrinos are
massive. When neutrinos are produced, they are in an eigenstate of flavour.
That can be expressed as a linear combination of mass eigenstates, which
propagate with a well-defined energy. Having different energies, the phases
of the different components do not evolve equally with time. Thus the initial
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12 Introduction

flavour eigenstate evolves to another state which is not simply the initial
state multiplied by a global phase. Therefore, there is a probability of tran-
sition from one flavour state to another. There have been and there are
enormous theoretical and experimental efforts with the aim of measuring
absolute masses of the neutrinos [12–16], oscillation parameters [17–21], etc.
For reviews on neutrino oscillations, see e.g., Refs. [22–26].
Nowadays, we are entering into an era of precision measurements of the
parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix: the
mixing angles and the CP-violating phase in the leptonic sector.
A good understanding of the neutrino interactions at intermediate ener-
gies (around 1 GeV) is essential for future, current and past neutrino os-
cillation experiments like Super-Kamiokande [27,28], T2K [29], NOνA [30],
OPERA [31], MiniBooNE [32], MicroBooNE [33]... For this purpose, dedi-
cated neutrino scattering experiments have been planned: MINERνA [34]
and others. These experiments are typically carried out at intermediate
energies, i.e, around 1 GeV. This is because these energies maximize the
oscillation probability (once the length for the oscillation has been set).
In this energy region, usually, the selected process to measure the oscillation
parameters is the Charged Current Quasi-elastic (CCQE) scattering off nu-
clei νl + A → l− + A′. One of the reasons is that Neutral Current Elastic
(NCE) scattering is flavour-blind. Indeed, if one has to detect a νµ → νe

oscillation, one must be able to detect a muon or an electron in the final
state. If one deals with the Neutral Current (NC) scattering, it is impossible
to know if there has been any flavour oscillation because the interaction in
this channel is the same for νµ than for νe and the neutrino in the final state
is not detected. Other reason for the choice of Quasi-elastic (QE) scattering
is because it has the largest cross section in this energy range, between the
threshold and a few GeV (see for instance fig 1 in Ref [35]).
Neutrinos only interact weakly with matter and therefore their cross sec-
tions are very small. To measure them, very large detectors where neutri-
nos collide with nuclear targets like iron, mineral oil, water are commonly
used. This fact introduces a new difficulty related to nuclear effects in
neutrino scattering. Indeed, particles produced in the interaction can be re-
scattered or absorbed before leaving the nucleus. Therefore, these nuclear
re-interactions can lead to a misidentification of the reaction channel and
change the topology of the measured hadronic final state. Nuclear effects
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are among the largest source of systematic uncertainties in oscillation neu-
trino experiments.
As mentioned before, the oscillation probability depends on the neutrino
energy. However, this energy cannot be directly measured but it has to be
reconstructed from the final state particles that are detected. But these
particles are affected by in-medium effects. Thus, the experimental analysis
has to rely on models for the neutrino-nucleus interaction. The theoretical
understanding of nuclear effects is, therefore, essential for the interpretation
of the data.
In addition to the interest for the properties of the neutrinos, these exper-
iments draw the attention of nuclear and hadronic physics community due
to the fact that neutrinos provide a very valuable tool to obtain more infor-
mation on the structure of the nucleon and baryonic resonances, since they
probe the vector but also the axial structure of the hadrons. The vector
form factors are relatively well-known from electron scattering experiments.
Current and future experiments will provide information on the nucleon and
baryonic resonances axial form factors. As an example, the cross section of
the CCQE processes depends on two vector and one axial-vector form fac-
tors. The Q2-dependence of the axial form factor is usually assumed to have
a dipole form with one free parameter (the so-called axial mass) to be fitted
from the Q2-distributions.
The aim of this thesis is to participate in the development of a reliable the-
oretical framework to analyze neutrino scattering on hadronic targets.
Starting from threshold we have the mentioned QE scattering and later the
inelastic channels: π production, hyperon production, baryonic resonances,
kaons... In nuclei we also have multi-nucleon mechanisms. And at higher
energies, Deeply Inelastic Scattering (DIS) is dominant. Let us start dis-
cussing QE.
The basic ingredient for QE scattering in a model is the excitation of a
nucleon by the weak probe. This is called the 1p1h (one-particle one-hole)
description of QE scattering. There are many models for QE scattering
in nuclei that contain several nuclear effects: SuperScaling approximation
and meson exchange currents [36]; Final State Interactions (FSI) and Super-
Scaling [37]; FSI and Random Phase Approximation (RPA) corrections [38];
inside the framework of the GiBUU transport model [39] and many others.
There is almost a theoretical consensus in the fact that all QE models in
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nuclei are below the recently reported results by the MiniBooNE collabo-
ration [40], where the analysis favored an increase of the axial mass in the
axial-vector form factor in order to match the data both in the shape of the
flux-averaged Q2 distribution and in the total cross section as a function
of the neutrino energy. This increase of the effective axial mass enters in
contradiction with the world average value MA = 1.016 ± 0.026 GeV [41],
this latter value of MA being extracted from early CCQE measurements on
deuterium targets. From π electro-production amplitudes, after applying
hadronic corrections that can be calculated at low Q2 using chiral pertur-
bation theory [42], the resulting MA = 1.014 ± 0.016 GeV is obtained.
Several theoretical efforts have been made to go beyond this 1p1h descrip-
tion of the QE scattering. This means to consider 2p2h (two-particle two-
hole) excitations that might contribute to the CCQE cross section defined by
MiniBooNE. See for instance Refs [43] (for electron scattering) and [44–46]
(for neutrino and antineutrino scattering).
In Ref. [38], CCQE was studied in the framework of a Many-Body approach
keeping only the 1p1h contribution to QE scattering but including RPA
corrections and FSI with the inclusion of realistic nuclear spectral functions.
One of the aims of this thesis is to extend the work of Ref. [38] to higher
transferred energies, where resonance degrees of freedom are important. It
is also a goal of this thesis to extend the previous work of Ref. [47] for weak
pion production from free nucleons to nuclei.
In addition to QE scattering, other processes like single pion production
can be used to detect neutrinos. The production and decay of nucleon reso-
nances in neutrino interactions is a significant part of the total neutrino cross
section in the few GeV region. These resonances have also been explored
using electron scattering experiments, but different form factors contribute
in the case of neutrino scattering. Resonance production is the least certain
part of the neutrino cross section picture; and experiments like NOνA and
T2K expect this interactions to be a large fraction of the cross section in
the energy region in which they are most interested.
Pion production in nuclei can be either coherent or incoherent. In the latter
case, the final nucleus is excited. The most popular model for this process
in neutrino interaction simulations was developed by Rein and Sehgal [48].
It assumes that pion production on the nucleon is dominated by baryon res-
onance excitation, which is described using the relativistic quark model of
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Feynman, Kislinger and Ravndal [49] for resonances with invariant masses
up to 2 GeV. The original model neglected final lepton masses. However,
finite mass corrections in kinematics and currents have been recently in-
vestigated [50–52]. The wealth of pion photo- and electro-production data
available from several experiments at MIT/Bates, MAMI/Mainz and spe-
cially JLab have been used to extract the electromagnetic transition helicity
amplitudes [53,54]. This valuable empirical information should be incorpo-
rated to the analysis of neutrino experiments.
In contrast, there is almost no information about the axial part of the weak
nucleon-to-resonance transition current. Partial Conservation of the Axial
Current (PCAC) and pion-pole dominance of the pseudoscalar form factor
can be applied to relate the axial coupling for the dominant contribution at
low Q2 to the resonance πN decay coupling. For small values of Q2, only
the axial CA

5 form factor is relevant and some effort has been devoted to its
extraction from ANL and BNL bubble chamber data.
Pion production in nuclei is coherent when the nucleus remains in its ground
state. It takes place predominantly when the momentum transferred to the
nucleus is small, so that the nucleus is less likely to break. Weak coherent π
production has a very small cross section compared to the incoherent case,
but relatively larger than equivalent reactions induced by photons or elec-
trons. This is due to the non-vanishing contribution of the axial current at
the relevant kinematics [55].
A good knowledge of pion production is very important for the interpreta-
tion of oscillation experiments. It is well known that charged current π+

production represents the major background to the QE “signal”. Indeed, if
the pion, for instance, is absorbed in the nucleus or not detected, the event
seems QE-like.
There are, of course, models for weak pion production off the nucleon
[47, 48, 56–58] and even for two pion production induced by neutrinos [59].
These models contain the main mechanism for pion production, namely the
excitation of ∆(1232) isobars but also background terms that become im-
portant at threshold and can be obtained using Chiral Perturbation Theory
(χPT ). We will use the model for pion production off a nucleon of Ref [47]
as a base to develop a model for pion production in nuclei.
One could also mention some models for hyperon production, like the works
of Refs [60–62]. The first work deals with weak QE production of hyperons
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induced by antineutrinos, whereas the second and third ones deal with as-
sociated production of strange particles.
For higher neutrino energies, other channels involving strange particles could
become relevant, for instance the single kaon production off the nucleon in-
duced by neutrinos or single antikaon production off the nucleon induced
by antineutrinos (in this latter case including the excitation of resonances
with strangeness S = −1, like the Σ∗). One must mention that, although
Cabibbo suppressed (∆S = ±1), these cross sections are larger (up to ∼ 1.5
GeV) than the ones for associated production (∆S = 0 and not Cabibbo
suppressed) due to the different thresholds.
Studies of exclusive strange-particle production induced by neutrinos will
be possible at MINERνA. They expect to accumulate thousands of these
events, depending of course on the channel. These cross section measure-
ments will probably impact other areas of particle physics as well. For
example, in estimation of atmospheric neutrino ∆S = 1 backgrounds to
nucleon-decay searches. Exposure to antineutrino beam will help in the
study of ∆S = −1 single hyperon production and would permit a novel
measure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In
this experiment, other cross sections will be measured, as those of associated
production ∆S = 0, induced either by neutral or charged currents.
Existing data on neutrino resonance-production are insufficient for the task
of specifying the complex overlapping between ∆ and N∗ resonance ampli-
tudes and related form factors which characterize the 1− 5 GeV Eν regime.
Neutrino Monte Carlo programs try to simulate this kinematic region using
early theoretical predictions by Rein and Sehgal [48] or results from electro-
production experiments. The theoretical and experimental picture of the
resonance region is more obscure than the QE and deep inelastic scattering
(DIS) regions that border it. And much of the relevant MINOS [63] event
sample falls inside this resonance region.
At higher energies, the cross section is dominated by Deeply Inelastic Scat-
tering (DIS) (see fig 1 in Ref. [35]) where the nucleon structure functions
can be written in terms of Parton Distribution Functions (PDFs) for quarks,
antiquarks and gluons.
Neutrino scattering also plays an essential role in extraction of fundamental
PDFs. The weak charged current ability to “taste” only particular quark
flavours significantly enhances the study of parton distribution functions.
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It is also important the fact that weak interactions explore other structure
functions (F3), in contrast with purely electromagnetic probes.
Nuclear effects in DIS have been extensively studied using muon and elec-
tron beams, but only superficially for neutrinos. High-statistics neutrino
experiments have only been possible using heavy nuclear targets such as
iron-dominated target-calorimeters. For the analysis of these experiments,
parameterizations of the nuclear effects obtained from e/µ−A experiments
have been applied to the results. However, there are strong indications that
the nuclear corrections for e/µ−A and ν −A are different.
Within the impulse approximation, the nuclear structure functions can be
expressed as a convolution of the nucleon ones with the nuclear spectral func-
tion. This accounts for effects like Fermi motion and nuclear binding. Other
effects like shadowing [64,65] and Target Mass Corrections (TMC) [66], and
the influence of mesonic degrees of freedom are also relevant. We will de-
velop a model based on the many body approach developed by Marco and
Oset in Ref. [67]. We will compare this model with the above mentioned
improvements with the recent results of JLab about the EMC effect in light
nuclei [68].
The structure of this thesis will be the following: in the first chapter we will
develop a model for kaon/antikaon production induced by neutrinos/antineutrinos
off free nucleons [69]; in the second chapter, we will discuss several low en-
ergy processes in nuclei such as QE scattering, pion production and 2p2h
excitations [46]; and finally, in the third chapter we will study DIS of leptons
with nuclei [70].
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Chapter 1

Weak kaon/antikaon
production

1.1 Kaon production induced by neutrinos

1.1.1 Introduction

The weak kaon production off the nucleon induced by neutrinos is the first
inelastic reaction creating strange quarks. In this chapter we are going to
focus in single kaon production (without accompanying hyperons). This
latter process where a kaon and a hyperon are produced is called associated
production (with ∆S = 0) and has been more studied. See, for instance,
Ref. [61]. In single kaon production induced by neutrinos there is a net
change in strangeness between the final and initial states (∆S = 1). This
channel is particularly appealing for several reasons: firstly, because it can
be the main source of background, due to atmospheric neutrino interactions,
in the analysis of one of the main decay channels the proton has in many
supersymmetric grand unified theories (p → ν + K+), see Refs. [71–73];
secondly, because at low energies, it is possible to obtain model independent
predictions using Chiral Perturbation Theory (χPT); and thirdly, because
due to the absence of S = 1 baryonic resonances, the range of validity of
the calculation could be extended to higher energies than for other channels
(like, for instance, antikaon production induced by antineutrinos).
From the theoretical point of view, there are very few calculations which deal
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20 CHAPTER 1. WEAK KAON/ANTIKAON PRODUCTION

with a single strange particle production at low neutrino energies. There
are works on QE hyperon production induced by antineutrinos [60,74] and
also the work of Dewan, who studied in the 80’s several kaon and hyperon
production channels [75].
In the coming years of precision neutrino physics, the knowledge of the cross
sections for these processes is important for the data analysis, apart from
their own intrinsic interest related to the role played by the strange quarks
in hadronic physics.
In part as a consequence of the scarcity of theoretical work, the Monte Carlo
generators used in the analysis of the experiments use models that are not
very well suited to describe the strangeness production at low energies. For
instance, NEUT only considers associated kaon production implemented by
a model based on the excitation and later decay of resonances [76] (see
discussion in Ref. [77]).

1.1.2 Formalism

The basic reaction for the neutrino induced charged current kaon production
is

νl(k) +N(p) → l−(k′) +N ′(p′) +K(pk), (1.1)

where l = e, µ and N&N ′=n,p. The expression for the differential cross
section in the laboratory (lab) frame for the above process is given by,

d9σ =
1

4ME(2π)5
d3~k′

(2El)

d3~p ′

(2E′
p)

d3~pk

(2EK)
δ4(k + p− k′ − p′ − pk)Σ̄Σ|M|2,

(1.2)

where ~k and ~k′ are the 3-momenta of the incoming and outgoing leptons in
the lab frame with energy E and El respectively. The kaon lab momentum
is ~pk having energy EK , M is the nucleon mass, Σ̄Σ|M|2 is the square of
the transition amplitude matrix element averaged (summed) over the spins
of the initial(final) state. At low energies, this amplitude can be written in
the usual form as

M =
GF√

2
j(L)
µ Jµ

(H) (1.3)

where j
(L)
µ and Jµ

(H) are the leptonic and hadronic currents respectively,

GF = 1.16639(1)× 10−5 GeV−2 is the Fermi constant. The leptonic current
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Figure 1.1: Feynman diagrams for the elementary processW++N → N ′+K.
First row, from left to right: contact term (CT) and kaon pole term (KP).
Second row: u-channel diagrams with an hyperon in the intermediate state
(Crossed Sigma and Crossed Lambda). Third row: pion or eta in flight (πP
or ηP)
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can be obtained from the Standard Model Lagrangian, and it reads:

jµ(L) = ūl(~k
′)γµ(1 − γ5)uν(~k) (1.4)

We consider five different channels that contribute to the hadronic current.
They are depicted in Fig. 1.1. The fourth Feynman diagram (depicted in
second row of fig. 1.1) can be considered as a correction to the third one.
There is a contact term (CT), a kaon pole (KP) term, a u-channel process
with a Σ or Λ hyperon in the intermediate state and finally a meson (π, η)
exchange term. For the specific reactions under consideration, there are not
s-channel contributions given the absence of S = 1 baryonic resonances. The
current of the KP term is proportional to qµ. This implies, after contraction
with the leptonic tensor, that the amplitude is proportional to the lepton
mass and therefore very small.
The contribution of the different terms can be obtained in a systematic
manner using χPT. This allows to identify some terms that were missing
in the approach of Ref. [75], which only included the u-channel diagrams
in the calculation and the diagram with a pion exchange. The lowest-order
SU(3) chiral Lagrangian describing the pseudoscalar mesons in the presence
of an external current is

L(2)
M =

f2
π

4
Tr[DµU(DµU)†] +

f2
π

4
Tr(χU † + Uχ†), (1.5)

where the parameter fπ = 92.4 MeV is the pion decay constant, U is the
SU(3) representation of the meson fields

U(x) = exp

(
i
φ(x)

fπ

)
,

φ(x) =




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η


 , (1.6)

and DµU is its covariant derivative

DµU ≡ ∂µU − irµU + iUlµ . (1.7)

Here, lµ and rµ correspond to left and right-handed currents, that for the
CC case are given by

rµ = 0, lµ = − g√
2
(W+

µ T+ +W−
µ T−), (1.8)
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with W± the W boson fields and

T+ =




0 Vud Vus

0 0 0
0 0 0



 ; T− =




0 0 0

Vud 0 0
Vus 0 0



 .

Here, Vij are the elements of the Cabibbo-Kobayashi-Maskawa matrix. The
second term of the Lagrangian of Eq. 1.5, that incorporates the explicit
breaking of chiral symmetry coming from the quark masses [78], is not
relevant for this study.
The lowest-order chiral Lagrangian for the baryon octet in the presence of
an external current can be written in terms of the SU(3) matrix

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 (1.9)

as

L(1)
MB = Tr

[
B̄ (i /D −M)B

]
− D

2
Tr
(
B̄γµγ5{uµ, B}

)
− F

2
Tr
(
B̄γµγ5[uµ, B]

)
,

(1.10)
where M denotes the mass of the baryon octet, and the parameters D =
0.804 and F = 0.463 can be determined from the baryon semileptonic de-
cays [79]. The covariant derivative of B is given by

DµB = ∂µB + [Γµ, B], (1.11)

with the connection

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, (1.12)

where we have introduced u2 = U . Finally,

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
. (1.13)

The next order meson baryon Lagrangian contains many new terms (see
for instance Ref. [80]). Their importance for kaon production will be small
at low energies and there are some uncertainties in the coupling constants.
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Nonetheless, for consistency with previous calculations (especially with that
of [75]), we will include the contribution to the weak magnetism coming from
the pieces

L(2)
MB = d5Tr

(
B̄[f+

µν , σ
µνB]

)
+ d4Tr

(
B̄{f+

µν , σ
µνB}

)
+ . . . , (1.14)

where the tensor f+
µν can be reduced for this study to

f+
µν = ∂µlν − ∂ν lµ − i[lµ, lν ]. (1.15)

In this case, the coupling constants are fully determined by the proton and
neutron anomalous magnetic moments. This same approximation has also
been used in calculations of single pion production induced by neutrinos [47].
Now, writing the amplitude for the coupling of the W boson to the hadrons
for each of the terms in the form g

2
√

2
(Jµ

HW
+
µ + h.c.), for consistency with

Eq. 1.3, we get the following contributions to the hadronic current.

jµ
∣∣
CT

= −iACTVus

√
2

2fπ
N̄(p′)(γµ + γµγ5BCT )N(p),

jµ
∣∣
CrΣ

= iACrΣVus

√
2

2fπ
N̄(p′)

(
γµ + i

µp + 2µn

2M
σµνqν

+(D − F )(γµ − qµ

q2 −M2
k

q/)γ5

)
/p− /pk +MΣ

(p − pk)2 −M2
Σ

/pkγ
5N(p),

jµ
∣∣
CrΛ

= iACrΛVus

√
2

4fπ
N̄(p′)

(
γµ + i

µp

2M
σµνqν

−D + 3F

3
(γµ − qµ

q2 −M2
k

q/)γ5

)
/p− /pk +MΛ

(p− pk)2 −M2
Λ

/pkγ
5N(p),

jµ
∣∣
KP

= iAKPVus

√
2

4fπ
N̄(p′)(q/+ /pk)N(p)

1

q2 −M2
k

qµ,

jµ
∣∣
π

= iAπPVus(D + F )

√
2

2fπ

M(qµ − 2pk
µ)

(q − pk)2 −M2
π

N̄(p′)γ5N(p),

jµ
∣∣
η

= iAηPVus(D − 3F )

√
2

2fπ

M(qµ − 2pk
µ)

(q − pk)2 −M2
η

N̄(p′)γ5N(p), (1.16)

where, q = k − k′ is the four momentum transfer, Vus = sin θC = 0.226
where θC is the Cabibbo angle, N(· ), N̄(· ) denote the nucleon spinors, µp =



1.1. KAON PRODUCTION INDUCED BY NEUTRINOS 25

Table 1.1: Values of the parameters appearing in the hadronic currents.

Process ACT BCT ACrΣ ACrΛ AKP AπP AηP

νn→ lKn 1 D-F -(D-F) 0 1 1 1

νp→ lKp 2 -F -(D-F)/2 (D+3F) 2 -1 1

νn→ lKp 1 -D-F (D-F)/2 (D+3F) 1 -2 0

1.7928 and µn = −1.9130 are the proton and neutron anomalous magnetic
moments. The value of the various parameters of the formulas are shown
in Table 1.1.

One can notice the induced pseudoscalar form factor in the jµ
∣∣
CrΣ,CrΛ

currents, which takes into account the coupling of theW boson to the baryon
through a kaon. However, as for the KP term, its contribution is suppressed
by a factor proportional to the final lepton mass and it is negligible. Now,
we discuss in some detail the terms that appear in the coupling of the weak
currents to the octet baryons in the u-channel diagrams. With very general
symmetry arguments, this coupling can be described in terms of three vector
and three axial form factors. Following the notation of Ref. [79] we have

Oµ
V = f1γ

µ +
f2

MB
σµνqν +

f3

MB
qµ, (1.17)

Oµ
A = (g1γ

µ +
g2
MB

σµνqν +
g3
MB

qµ)γ5 , (1.18)

where MB is the baryon mass. At the order considered, the chiral La-
grangian provides finite values for f1, the weak magnetism form factor f2,
g1 and a pole contribution to g3. The scalar f3 and a non-pole part of the
pseudoscalar g3 form factors would only appear at higher orders of the chiral
expansion. Furthermore, their contribution to the amplitude is suppressed
by a ml (lepton mass) factor and they are usually neglected. The value of
g2 vanishes in the limit of exact SU(3) symmetry and there is very little
experimental information about it. In fact, it is also neglected in most anal-
yses of hyperon phenomenology [81]. The values of f1 and g1 obtained from
the lowest order chiral Lagrangians describe well the hyperon semileptonic
decays [79,81,82].
Eventually, if the cross sections for the discussed processes were measured
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with some precision, one could use them to explore these form factors at sev-
eral q2 values. The current experimental information, based on the semilep-
tonic decays, covers only a very reduced range for this magnitude.
Finally, we consider the q2 dependence of the weak current couplings pro-
vided by the chiral Lagrangians discussed earlier. we should remark that,
even at relatively low energies and low momenta of the hadrons involved in
this study, q2 reaches moderate values. The q2 dependence of the needed
form factors (e.g. Kπ, YN) are poorly known if at all. Several prescriptions
have been used in the literature. For instance, in quasielastic scattering and
single pion production, the vector form factors are usually related to the
well known nucleon electromagnetic ones (see e.g. [47,83,84] and references
therein). This procedure is well suited for these two cases because of isospin
symmetry. However, in the SU(3) sector we expect to have some symme-
try breaking effects. Similarly, for the axial form factors, a q2 dependence
obtained from the nucleon-nucleon transition obtained in neutrino nucleon
quasielastic scattering is normally used. However, the axial mass is not well
established and it runs from values around 1 GeV [85, 86] up to 1.37 GeV
recently obtained by the MiniBooNE [40, 87] and K2K [88] collaborations.
Again here, we expect a different behavior for the hyperon-nucleon vertices.
One of the possible choices (e.g. [89]) is to use a dipole form with the mass
of the vector(axial) meson that could couple the baryon to the current. In
this work, in view of the present uncertainties, we adopt a global dipole
form factor F (q2) = 1/(1 − q2/M2

F )2, with a mass MF ≃ 1 GeV that multi-
plies the hadronic currents. Its effect, that should be small at low neutrino
energies will give an idea of the uncertainties of the calculation and will be
explored in the next section.

1.1.3 Results

We consider the following reactions:

νl + p → l− +K+ + p (l = e, µ) (1.19)

νl + n → l− +K0 + p

νl + n → l− +K+ + n

We show results for the total cross section σ as a function of the neutrino
energy in the laboratory (LAB) frame. For each channel, the different con-
tributions coming from every diagram are shown, except those of the Kaon
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Figure 1.2: Contribution of the different terms to the total cross section for
the νµp→ µK+p reaction.

Pole term alone, which are negligible at the energies considered. One can
observe the importance of the contact term (CT) alone, not included in pre-
vious calculations. As observed by Dewan [75], the u-channel Σ contribution
is much less important than the Λ one. This is due to the larger coupling
(NKΛ ≫ NKΣ) of the strong vertex. The band in fig 1.2 corresponds to
a change of 10% in the mass MF of the form factor. A similar effect is
found in the other channels and we will only show the results for the central
value of 1 GeV. These uncertainties, due to the vector/axial mass of the
dipole form factor, would partially cancel in ratios of cross sections, such
as σ(K0)/σ(K+). This cancellation is not total because of the different q2

dependence of each channel. The uncertainty bands for the ratios, when the
mass MF is changed by 10%, is less than 5%.
The process νµ +n→ µ− +K0 + p has a cross section of a similar size and

the contact term is also the largest one, followed by the π exchange diagram
and the u-channel (Λ) term. The rate of growth of the latter is somehow
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Figure 1.3: Contribution of the different terms to the total cross section for
the νµn→ µK0p reaction.

larger and could become more important at higher energies.
Finally, the reaction νl + n → l− + K+ + n has a smaller cross section.

The pion exchange term is substantially bigger than the u-channel mech-
anisms, as already noted in Ref. [75]. The contact term is also dominant
for this channel and the total cross section calculated only with this term
practically coincides with the full result. Therefore, we have found that the
contact terms, required by symmetry, play a major role in the description
of the kaon production induced by neutrinos at low energies.
Above the energy threshold for the production of kaons accompanied by

hyperons, this latter kind of processes could have larger cross sections due
to the larger coupling for ∆S = 0, (Vud vs Vus). To explore this question
and the range of energies where the processes we have just studied are rele-
vant, we compare our results in Fig. 1.4, with the values for the associated
production obtained by means of the GENIE Monte Carlo program [90].
We observe that, due to the difference between the energy thresholds, single
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Figure 1.4: Cross sections as a function of the neutrino energy for single
kaon production vs. associated production obtained with Genie [90].
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Table 1.2: Cross sections averaged over the neutrino flux at different labora-
tories in units of 10−41 cm2. Theoretical uncertainties correspond to a 10%
variation of the form factor mass.

Process ANL MiniBooNE T2K

νµn→ µ−K+n 0.06(1) 0.07(1) 0.09(1)

νµp→ µ−K+p 0.28(5) 0.32(5) 0.43(8)

νµn→ µ−K0p 0.17(3) 0.20(3) 0.25(5)

kaon production for the νl +p→ l− +K+ +p is clearly dominant for neutri-
nos of energies below 1.5 GeV. The consideration of these ∆S = 1 channels
is therefore important for the description of strangeness production for all
low energy neutrino spectra and should be incorporated in the experimental
analysis.
At higher energies, the dominance of associated production seems to be well
established experimentally. Although this model is not appropriate for those
energies, we have tested that at 20 GeV, single kaon production channels
would be less than 1% of the charged current total cross section.
In Table 1.2 we show the total cross section results for the three channels

averaged over the ANL [91], the MiniBooNE [40] and the off-axis (2.5 de-
grees) T2K [92] muon neutrino fluxes, all of them peaking at around 0.6
GeV. After normalization of the neutrino flux φ we have

σ̄ =

∫ Ehigh

Eth

dE φ(E)σ(E), (1.20)

where Eth is the threshold energy for each process and Ehigh is the max-
imum neutrino energy. As discussed previously, in these three cases, the
neutrino energies are low enough for single kaon production to be relevant
as compared to associated kaon production. Also the invariant mass of the
hadronic system and the transferred momentum only reach the relatively
small values where this model is more reliable.
We can get an idea of the magnitude of these channels by comparing their
cross section to some recent results. For instance, the cross section for
neutral current π0 production per nucleon has been measured by the Mini-
BooNE collaboration [93] obtaining σ̄ = (4.76 ± 0.05 ± 0.76) × 10−40 cm2
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Table 1.3: Number of events calculated for single kaon production in water
corresponding to the SuperK analysis for atmospheric neutrinos.

Process Events e− Events µ−

νln→ l−nK+ 0.16 0.27
νln→ l−pK0 0.45 0.73
νlp→ l−pK+ 0.95 1.55

Total 1.56 2.55

with a data set of some twenty thousand valid events. The cross sections
predicted by this model with the same neutrino flux are around two orders
of magnitude smaller, what means that a few hundreds of kaons should have
been produced.
The atmospheric spectrum [94] also peaks at very low energies and this
model should be very well suited to analyse the kaon production. In Ta-
ble 1.3, we show the number of kaon events that we obtain for the 22.5
kTons of a water target and a period of 1489 days as in the SuperK anal-
ysis [72] of proton decay. As in the quoted paper, we include cuts in the
electron momentum (pe > 100 MeV) and muon momentum (pµ > 200 MeV).
We find that single kaon production is a very small source of background.
In the SuperK analysis the kaon production was modeled following Ref. [48]
and only included associated kaon production. Although some of the cuts
applied in their analysis, such as looking for an accompanying hyperon, are
useless for this case, we find that this source of background is negligible,
given the smallness of our results and the totally different energy distribu-
tion of kaons and final leptons in the production and decay reactions.
Finally, we study the values of Q2 involved in the reaction for the typical
neutrino energies we have considered. If high values of this magnitude are
relevant, the results would be sensitive to higher orders of the chiral La-
grangians and/or a more precise description of the form factors. We show
the Q2 distribution in Fig. (1.5) for the three studied channels at a neutrino
energy Eν = 1 GeV. The reactions are always forward peaked (for the final
lepton), even in the absence of any form factor (F (q2) = 1), favouring rela-
tively small values of the momentum transfer. In this figure, we also show
the dependence of the cross section on the mass of the final lepton that re-
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duces the cross section at low Q2 values. The process νe +n→ e− +K0 + p
shows a slightly different behavior that reflects an important (and Q2 de-
pendent) interference between the pion exchange and the contact term.
Until now we have discussed the kaon production off free nucleons. However,
most of the experiments are carried out on detectors containing complex nu-
clei such as iron, oxygen or carbon. On the other hand, nuclear effects are
known to be quite large for pion production induced by neutrinos. Fortu-
nately, this question is much simpler for the kaons. First, because there is
no kaon absorption and the final state interaction is reduced to a repulsive
potential, small when compared with the typical kaon energies. Second, be-
cause of the absence of resonant channels in the production processes. We
should remember here that some of the major nuclear effects for pion produc-
tion are originated by the modification of the ∆(1232) properties on nuclei.
Other nuclear effects, such as Fermi motion and Pauli blocking will only
produce minor changes on the cross section and can easily be implemented
in the Monte Carlo codes.

1.1.4 Summary

In summary, we have developed a microscopical model for single kaon pro-
duction off nucleons induced by neutrinos based on the SU(3) chiral La-
grangians. This model should be quite reliable at low and intermediate
energies given the absence of S = 1 baryonic resonances in the s-channel.
The parameters of the model are well known: fπ, the pion decay constant,
Cabibbo’s angle, the proton and neutron magnetic moments and the axial
vector coupling constants for the baryons octet, D and F . For the latter
ones, we have taken the values obtained from the analysis of the hyperon
semileptonic decays. The importance of higher order terms has been esti-
mated using a dipole form factor with a mass around 1 GeV and exploring
the dependence of our results on this parameter.
We obtain cross sections that are around two orders of magnitude smaller
than for pion production for neutrino spectra such as those of ANL or Mini-
BooNE. This can be understood because of the Cabibbo suppression and
of the smaller phase space. Nonetheless, the cross sections are large enough
to be measured, for instance, with the expected Minerva and T2K fluxes.
We have also found, that due to the higher threshold of the associated kaon
production, the reactions we have studied are the dominant source of kaons
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for a wide range of energies, and thus their study is important for some low
energy experiments and for the atmospheric neutrino flux.
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1.2 Antikaon production induced by antineutrinos

In the previous section we have discussed single kaon production induced
by neutrinos at low and intermediate energies using Chiral Perturbation
Theory (χPT). We found that at Eνµ < 1.2 GeV, it is the single kaon pro-
duction which dominates over the associated production of kaons along with
hyperons which is mainly due to threshold effect (1.10 GeV vs. 0.79 GeV).
Therefore, in the energy region of MiniBooNE or T2K neutrino spectrum,
the lepton production accompanied by a single kaon production has larger
contributions in comparison to the associated production processes. While
the associated production has been taken into account in the Monte Carlo
generators, the single kaon production is absent. This has motivated us to
study the antineutrino induced single antikaon production off nucleons and
to compare the results with the cross section available for the associated
production in these energy regions. Its study may be useful in the analysis
of antineutrino experiments at MiniBooNE or MINERνA and NOνA.
The theoretical model is necessarily more complicated than for kaons be-
cause resonant mechanisms, absent for the kaon case, could be relevant.
On the other hand, the threshold for associated antikaon production corre-
sponds to the K − K̄ channel and it is much higher than for the kaon case
(KY ). This implies that the process that will be discussed in this section
is the dominant source of antikaons for a wide range of energies. We shall
present the results for the cross sections as well as the flux averaged cross
section for the MiniBooNE experiment at Fermilab and the lepton event
rates for atmospheric neutrino experiment at SuperK.

1.2.1 Formalism

The basic reaction for antineutrino induced charged-current ∆S = −1 an-
tikaon production is,

ν̄l(k) +N(p) → l(k′) +N ′(p′) + K̄(pk), (1.21)

where l = e+, µ+ and N&N ′=n,p.
The expression for the differential cross section in the LAB frame will be
the same than for kaon production, Eq. (1.2).
At low energies, again, the invariant transition matrix element can be writ-
ten as the product of the leptonic current with the hadronic one, see Eq.
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Figure 1.6: Feynman diagrams for the process ν̄N → lN ′K̄. First row from
left to right: s-channel Σ,Λ propagator (labeled SC in the text), s-channel
Σ∗ Resonance (SCR), second row: kaon pole term (KP); Contact term (CT)
and last row: Pion(Eta) in flight πP (ηP ).

(1.3). The leptonic current in this case reads:

jµ(L) = v̄ν(~k)γ
µ(1 − γ5)vl(~k

′) (1.22)

We consider five different channels that contribute to the hadronic current.
They are depicted in Fig. 1.6. There are s-channel Σ,Λ(SC) and Σ∗(SCR) as
intermediate states, a kaon pole (KP) term, a contact term (CT), and finally
a meson (πP,ηP) exchange term. We take only the Σ∗(1385) resonance. Al-
though we know that other baryonic resonances, beyond the Σ∗(1385) and
also close to the K̄N threshold, could contribute to the cross section, we
are not going to consider them because their weak couplings are basically
unknown, and because their theoretical estimations are still quite uncertain.
Nonetheless, recent advances on the radiative decays of these resonances,
both experimental and theoretical (see, e.g., Refs. [95,96]) are very promis-
ing and may help to develop a more complete model in the future.
The contribution coming from the different terms can be obtained from χPT.
We are going to use the same lagrangians in the presence of an external cur-
rent than in the previous section. With one additional piece, we need the
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lagrangian that couples the decuplet to the baryon and meson octets.
The SU(3) Lagrangian coupling the pseudoscalar mesons with decuplet-
octet baryons in presence of external weak current is given by (where a
sum over repeated indices must be understood),

Ldec = C
(
ǫabcT̄ µ

ade(uµ)dbB
e
c + h.c.

)
(1.23)

where T µ is the SU(3) representation of the decuplet fields. The physical

states of the decuplet are: T111 = ∆++, T112 = ∆+√
3
, T122 = ∆0√

3
, T222 =

∆−, T113 = Σ∗+√
3
, T123 = Σ∗0√

6
, T223 = Σ∗−√

3
, T113 = Ξ+√

3
, T133 = Ξ0√

3
, T333 = Ω−.

And uµ is a SU(3) matrix given by Eq. (1.13). To calculate C we fit the
∆++ width (Γ ∼ 112 MeV) and obtained C ∼ 1.0.
As it is the case for the ∆(1232) in pion production, we expect that, at
intermediate energies, the weak excitation of the Σ∗(1385) resonance and
its subsequent decay into NK̄ is also important. To calculate amplitudes
associated with Σ∗ we first parameterize the W−N → Σ∗. For this, we can
write the most general form of the vector and axial-vector transition matrix
elements as,

〈Σ∗;P = p+ q |V µ|N ; p〉 = Vusūα(~P )Γαµ
V (p, q) u(~p ),

〈Σ∗;P = p+ q |Aµ|N ; p〉 = Vusūα(~P )Γαµ
A (p, q) u(~p ) (1.24)

where

Γαµ
V (p, q) =

[
CV

3

M
(gαµq/− qαγµ) +

CV
4

M2
(gαµq · P − qαPµ)

+
CV

5

M2
(gαµq · p− qαpµ) + CV

6 g
µα

]
γ5

Γαµ
A (p, q) =

[
CA

3

M
(gαµq/− qαγµ) +

CA
4

M2
(gαµq · P − qαPµ) + CA

5 g
αµ

+
CA

6

M2
qµqα

]
(1.25)

In the above expression CV
3,4,5,6 and CA

3,4,5,6 are the q2-dependent scalar and
real vector and axial-vector form factors and uα is the Rarita-Schwinger
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spinor. Our knowledge of these form factors is quite limited. The La-
grangian of Eq. (1.23) gives us only CA

5 (0) = −2C/
√

3 (for the Σ∗− case).
However, using SU(3) symmetry we can relate all other form factors to those
of the ∆(1232) resonance, such that CΣ∗−

i /C∆+

i = −1 and CΣ∗−

i /CΣ∗0

i =
√

2.
See Refs. [39,47,97–99] for details of the WN∆ form-factors. In the ∆ case,
the vector form factors are relatively well known from electromagnetic pro-
cesses and there is some information on the axial ones from the study of
pion production. In case of axial-vector part of the current the most domi-
nant term is CA

5 [97]. We can obtain the kaon pole contribution to CA
6 by

evaluating the Feynman diagram in which the W− couples the nucleon to
Σ∗ through a kaon. But this contribution will be very small as it is propor-
tional to qµqν

M2 and can be neglected. Since there is not any other theoretical
constraints on the CA

3,4, they are fitted with the available neutrino scattering
data and are found to be negligible.
Here we consider only the contribution coming from the CA

5 , C
V
3 and CV

4

form factors for the N−Σ∗ weak vertex. We follow the conventions used for
the N −∆ form factors (see Refs. [47,97] for details of N − ∆ form factors
and for the dominance of CA

5 ).
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The hadronic currents are given by

jµ|CT = iACTVus

√
2

2fπ
N̄(p′) (γµ +BCT γµγ5) N(p)

jµ|Σ = iAΣ(D − F )Vus

√
2

2fπ
N̄(p′)pk/ γ5

p/+ q/+MΣ

(p+ q)2 −M2
Σ

×
(
γµ + i

(µp + 2µn)

2M
σµνqν

+ (D − F )

{
γµ − qµ

q2 −Mk
2 q/

}
γ5

)
N(p)

jµ|Λ = iAΛVus(D + 3F )
1

2
√

2fπ

N̄(p′)pk/ γ
5 p/+ q/+MΛ

(p+ q)2 −M2
Λ

×
(
γµ + i

µp

2M
σµνqν − (D + 3F )

3

{
γµ − qµ

q2 −Mk
2 q/

}
γ5

)
N(p)

jµ|KP = iAKPVus

√
2

2fπ
N̄(p′)q/ N(p)

qµ

q2 −M2
k

jµ|π = iAπ
M

√
2

2fπ
Vus(D + F )

2pk
µ − qµ

(q − pk)2 −Mπ
2 N̄(p′)γ5N(p)

jµ|η = iAη
M

√
2

2fπ
Vus(D − 3F )

2pk
µ − qµ

(q − pk)2 −Mη
2 N̄(p′)γ5N(p)

jµ|Σ∗ = iAΣ∗
C
fπ

1√
6
Vus N̄(p′)

pα
k P

RS
αβ (P )

P 2 −M2
Σ∗ + iΓΣ∗MΣ∗

Γ̃βµ(p, q)N(p);

where P = p+ q and Γ̃βµ ≡ Γβµ
Σ∗−

with the constants given in the following table 1.4.
For the Σ∗ resonance we have used the usual spin-3/2 propagator in the

momentum space, given by

Gµν(P ) =
Pµν

RS(P )

P 2 −M2
Σ∗ + iMΣ∗ΓΣ∗

, where (1.26)
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Process BCT ACT AΣ AΛ AKP Aπ Aη AΣ∗

ν̄n→ l+K−n D-F 1 -1 0 -1 1 1 2
ν̄p→ l+K−p -F 2 −1

2 1 -2 -1 1 1
ν̄p→ l+K̄0n -D-F 1 1

2 1 -1 -2 0 -1

Table 1.4: Table with the values of the different constants used for the
hadronic currents.

Pµν
RS is the spin-3/2 Rarita-Schwinger projection operator,

Pµν
RS(P ) =

∑

spins

ψµψ̄ν = −( /P+MΣ∗)

[
gµν − 1

3
γµγν − 2

3

PµP ν

M2
Σ∗

+
1

3

Pµγν − P νγµ

MΣ∗

]

(1.27)
with MΣ∗ is the resonance mass (∼ 1385 MeV) and ψµ is the Rarita-
Schwinger spinor for spin-3/2 particles.
The Σ∗ decay width ΓΣ∗ is around 40 MeV (see Ref. [100]), however, we
have taken P-wave decay width which is given as

ΓΣ∗(W ) = ΓΣ∗→Λπ(W ) + ΓΣ∗→Σπ(W ) + ΓΣ∗→NK̄(W ) where,

ΓΣ∗→Y M (W ) =
CY

192π

( C
fπ

)2
(
(W +MY )2 −m2

M

)

W 5
λ3/2(W 2,M2

Y ,m
2
M )

× Θ(W −MY −mM ) (1.28)

where MY is the mass of the baryon Y(Λ, Σ or N) in which the Σ∗(1385)
decays; mM is the mass of the meson M(π or K̄); CY is a SU(3) Clebsch-
Gordan coefficient and it is 1 for Λπ decay and 2

3 for Σπ and K̄N decays.
λ(x, y, z) = (x− y − z)2 − 4yz is Callen lambda function and Θ is the step
function. C is the K̄NΣ∗ coupling strength taken to be 1.0 in the present
calculation.
Finally, we consider the q2 dependence of the weak current couplings pro-
vided by the chiral Lagrangians. In this section, we follow the same proce-
dure as in the previous one and adopt a global dipole form factor F (q2) =
1/(1 − q2/M2

F )2, with a mass MF ≃ 1 GeV that multiplies all the hadronic
currents, except the resonant one, that has been previously discussed. Its
effect, that should be small at low neutrino energies will give an idea of the
uncertainties of the calculation and will be explored in the next subsection.
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1.2.2 Results

We consider the following charged-current reactions:

ν̄l + p → l+ +K− + p (l = e, µ)

ν̄l + p → l+ + K̄0 + n

ν̄l + n → l+ +K− + n (1.29)

In Fig. 1.7, we show their total cross section for electronic and muonic

1 1.5 2
Eν (GeV)

0

1

2

3

σ 
 (

10
-4

1  c
m

2 )

ν+p → e+
+p+K

-

ν+n → e+
+n+K

-

ν+p → e+
+n+K

0

ν+p → µ+
+p+K

-

ν+n → µ+
+n+K

-

ν+p → µ+
+n+K

0

Figure 1.7: Cross-section for the processes ν̄µN → µ+N ′K̄ and ν̄eN →
e+N ′K̄ as a function of the antineutrino energy

antineutrinos as a function of energy. We obtain similar values for the cross
sections of kaon production induced by neutrinos of the previous section,
even when there are no resonant contributions. The electronic antineutrino
cross sections are slightly larger, but they do not present any other dis-
tinguishing feature. For all channels, the cross sections are very small, as
compared to other processes induced by antineutrinos at these energies, like
pion production, due to the Cabibbo suppression and to the smallness of
the available phase space.
Before discussing in more detail each of the channels, we will make some
comments. First, the lowest energy antikaon associate production, (KK̄,
∆S = 0), has a quite high threshold (≈ 1.75 GeV) and thus, it leads to



42 CHAPTER 1. WEAK KAON/ANTIKAON PRODUCTION

Table 1.5: < σ > (10−41cm2) for K̄ production with MiniBooNE ν̄µ flux and
neutral current π0 production (per nucleon) measured at MiniBooNE [93]

.

Process < σ >

ν̄µ + p→ µ+ +K− + p 0.11
ν̄µ + p→ µ+ + K̄0 + n 0.08
ν̄µ + n→ µ+ +K− + n 0.04

ν̄µ +N → ν̄µ +N + π0 14.8 ± 0.5 ± 2.3

even smaller cross sections in the range of energies we have explored. For
instance, at 2 GeV, GENIE predicts antikaon production cross sections at
least two orders of magnitude smaller than our calculation.
As it was expected, our results would lead to a very minor signal in past ex-
periments. For instance, we have evaluated the flux averaged cross section
< σ > for the MiniBooNE antineutrino flux [101] in the sub GeV energy
region. The results are given in Table 1.5 and compared with the recent
measurement of the neutral current π0 production per nucleon with the
same flux [93].
We find that the antikaon production cross section is around two orders of

magnitude smaller than the NC π0 one at MiniBooNE. Given the number
of neutral pions observed for the antineutrino beam we expect that only a
few tens of antikaons were produced in this experiment. One should notice
here that the average antineutrino energy at MiniBooNE is well below the
kaon threshold. Thus, we are only sensitive to the high energy tail of the
flux.
One could expect a relatively larger signal for the atmospheric neutrino ν̄e

and ν̄µ induced events at SuperK, given the larger neutrino energies. But
even there we find a very small background from antikaon events. Taking
the antineutrino fluxes from Ref. [94] we have calculated the event rates for
the 22.5kT water target and a period of 1489 days as in the SuperK analysis
of Ref. [27]. We obtain 0.8 e+ and 1.5 µ+ events. Although the model has
large uncertainties at high energies, the rapid fall of the neutrino spectrum
implies that the high energy tail contributes very little to the background.
Our results correspond to relatively low antineutrino energies, where our
model is more reliable. However, the model could also be used to com-



1.2. ANTIKAON PRODUCTION INDUCED BY ANTINEUTRINOS 43

pare with data obtained at much higher neutrino energies selecting events
such that the invariant mass of hadronic part is close to antikaon-nucleon
threshold and the transferred momentum q is small. This procedure has
been used, for instance, in the analysis of two pion production induced by
neutrinos [102,103].
In Fig. 1.8, we show the size of several contributions to the ν̄µp → µ+pK−

reaction.
The cross section is clearly dominated by the non–resonant terms, provid-
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Figure 1.8: Cross-section for the process ν̄µp→ µ+pK−.

ing the CT term the largest contribution. We see the destructive interfer-
ence that leads to a total cross section smaller than that predicted by the
CT term alone. We could also remark the negligible contribution of the
Σ∗(1385) channel. This fact is at variance with the strong ∆ dominance
for pion production and it can be easily understood because the Σ∗ mass is
below the antikaon production threshold.
We have also explored, the uncertainties associated with the form factor.
The curve labeled as “Full Model” has been calculated with a dipole form
factor with a mass of 1 GeV. The band corresponds to a 10 percent variation
of this parameter. The effect is similar in the other channels and we will
only show the results for the central value of 1 GeV.
In Figs. 1.9 and 1.10, we show the other two channels. As in the previous

case the CT term is very important. We observe, however, that the pion-
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Figure 1.9: Cross-section for ν̄µn→ µ+nK−.

pole term gives a contribution as large as the CT one for the ν̄µp→ µ+nK0

process. For the ν̄µn → µ+nK− case, we find a substantial contribution of
the Σ∗ resonance, due to the larger value of the couplings (see Table 1.4).
As in the first case, there is some destructive interference between the dif-
ferent mechanisms participating in these processes.

1.2.3 Summary

In this section we have developed a model for K̄-production off free nucleons
that includes all the background terms obtained from the chiral lagrangians
and also the resonant mechanism with the corresponding member of the
baryon decuplet (Σ∗(1385)) in resemblance with the models for weak pion
production off the nucleon.
The only parameter of the model that has been fitted is the coupling con-
stant between the baryon decuplet, the baryon octet and the octet of pseu-
doscalar mesons. This coupling constant has been adjusted to reproduce the
∆(1232) width and then used to obtain the width of the Σ∗(1385) resonance
and also the coupling CA

5 (0) for the N − Σ∗ weak vertex.
We have calculated cross sections as a function of the antineutrino en-
ergy that could be helpful in the analysis of strange particle production
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Figure 1.10: Cross-section for ν̄µp→ µ+nK̄0.

in MINERνA experiment.
We have also obtained the number of events for K̄ production at SuperK
with the atmospheric antineutrino flux.
In the case of K̄ production event rates at MiniBooNE we have estimated
that they are very small as compared to the kaon case because the average
energy of the antineutrino flux in MiniBooNE is below the threshold for sin-
gle K̄ production and the size of the flux for antineutrinos is smaller than
for neutrinos.
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Chapter 2

Inclusive reactions in nuclei
at low and intermediate
energies

2.1 Introduction

The interaction of neutrinos with nuclei at intermediate energies plays an im-
portant role in the precise determination of neutrino properties such as their
masses and mixing parameters. It can also provide relevant information on
the axial hadronic currents. However, the data analysis needs to consider
a large number of nuclear effects that distort the signals and produce new
sources of background that are absent in the elementary neutrino-nucleon
processes.
The aim of this chapter is the elaboration of a theoretically well founded and
unified framework in which the electroweak interactions with nuclei could be
systematically studied. Furthermore, the recent measurements of the cross
sections for several channels [40, 104–106] provide a serious benchmark to
the theoretical models. An excellent review of the current situation can be
found in Ref. [107].
A suitable theoretical model should include, at least, three kinds of contri-
butions: (i) quasielastic (QE)1 for low energy transfers, (ii) pion production

1A word of caution is needed here, because the same words could refer to somehow
different magnitudes in the literature. For instance, whereas in most theoretical works

47
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and two-body processes from the QE region to that around the ∆(1232) res-
onance peak, and (iii) double pion production and higher nucleon resonance
degrees of freedom induced processes at even higher energies.
The QE processes have been abundantly studied in the literature. Simple
approaches using a global Fermi gas for the nucleons and the impulse approx-
imation are good enough to describe qualitatively electron scattering, but
more sophisticated treatments of the nuclear effects are necessary to get a
detailed agreement with data. There are different kinds of models like those
based on the use of proper nucleon spectral functions [83,108,109], others in
which nucleons are treated in a relativistic mean field [110,111] and models
based on a local Fermi gas including many body effects such as spectral
functions [39] and Random-Phase Approximation (RPA)2 [38, 112–114].
Concerning the elementary process, ν + N → l + N ′, the hadronic vector
current is well known from electron scattering. The axial-vector current,
after the use of the partial conservation of the axial current (PCAC) to
relate the two form factors and assuming a dipole form, depends on two
parameters: gA, that can be fixed from neutron beta decay; and the axial
mass MA. The value of MA established from QE data on deuterium targets
is MA = 1.016 ± 0.026 GeV, see Ref. [41]. A consistent result is obtained
from π electro-production after chiral corrections are incorporated [42,115].
The predicted cross sections for QE scattering are very similar for most mod-
els, see the compilation shown in Fig. 2 of Ref. [116]. On the other hand,
these theoretical results are clearly below the recently published MiniBooNE
data [40]. Some works try to understand these new data in terms of a larger
value of MA. For instance, in Ref. [40] a value of MA = 1.35 ± 0.17 GeV,
that also fits the Q2 shape, is extracted. Consistent values are obtained in
Refs. [117–119]. This idea enters in conflict with higher energy NOMAD
data [120] (MA = 1.06± 0.02(stat)± 0.06(syst) GeV). Another idea, which

QE is used for processes where the gauge boson W± or Z0 is absorbed by just one
nucleon, which is emitted together with a lepton, in the recent MiniBooNE papers, QE is
related to processes in which only a muon is detected. This latter definition could make
sense because ejected nucleons are not detected in that experiment, but it also includes
multinucleon processes and others like pion production followed by absorption. However,
it discards pions coming off the nucleus, since they will give rise to additional leptons
after their decay. In any case, their experimental results cannot be directly compared to
most previous calculations.

2In this dissertation, for QE scattering, our work will be based on the model of Ref. [38]
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has been explored in Refs. [44, 45], is to include two-nucleon mechanisms
(and others related to ∆ excitation). These results reproduce the Mini-
BooNE flux-unfolded CCQE cross section data without the need of a larger
value of MA. The calculation of these contributions will be explained with
detail in this chapter.
The matter of π production is also of much interest [47,56,84,98,99,121,122].
The elementary reaction on the nucleon, at low and intermediate energies,
includes both background and resonant mechanisms. The background terms
can be obtained from the chiral lagrangians. The resonant terms contain
some free parameters that have been adjusted to ANL and/or BNL old
bubble chamber data. These experimental data have large normalization
uncertainties which are certainly reflected in the theoretical models. At low
energies, the ∆(1232) resonance plays a very important role in this process,
and for small Q2 values only one form factor (CA

5 ) is relevant. Thus, spe-
cial attention has been paid to its study with recent results ranging from
CA

5 (0) = 1.19±0.08 [122], obtained neglecting the non-resonant background,
up to CA

5 (0) = 1.00± 0.11 [99] in a more complete model. In nuclei, several
effects are expected to be important for the π production reaction. Indeed,
the elementary process is modified by Fermi motion, Pauli blocking and
by the changes of the spectral function of the ∆ resonance in the medium.
In addition, the final pion can be absorbed or scattered by one or more
nucleons. This latter kind of effects does not modify the inclusive neutrino-
nucleus cross section and thus it is out of the scope of this chapter.
Our aim in this chapter is to extend the model of Ref. [38], which studied
QE scattering. We will include two nucleon processes and π production in a
well established framework, that has been tested in electron [43] and photon
scattering [123]. This will extend the range of applicability of the model to
higher transferred energies (and thus higher neutrino energies) and it will
allow for the comparison with inclusive data which include the QE peak,
the ∆ resonance peak and the dip region between them.
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ν

µ

N

X

W

Figure 2.1: Feynman diagram for CC muon neutrino induced processes

2.2 Formalism

2.2.1 Selfenergy of the neutrino

We will focus on the inclusive nuclear reaction, corresponding to the Feyn-
man diagram of fig. 2.1.

νl(k) +AZ → l−(k′) +X (2.1)

Neglecting the four momentum transferred with respect to the mass of the
intermediate W boson, the following invariant amplitude is obtained

T =
GF√

2
ūl(~k′)γ

µ(1 − γ5)uν(~k) 〈X|jcc+µ (0)|N〉 (2.2)

whereGF = 1.16639(1)×10−5 GeV−2 is the Fermi constant and 〈X|jcc+µ (0)|N〉
stands for the weak CC transition matrix element.
After calculating |T |2 and summing (averaging) over the polarizations of
the final (initial) states, one obtains

∑∑
|T |2 = 4G2

F Lµν(k, k′)
∑

spin N

∑

spin X

〈X|jcc+µ (0)|N〉〈X|jcc+ν (0)|N〉∗

(2.3)
where Lµν(k, k′) is the leptonic tensor given by3

Lµν(k, k′) = kµk′ν + k′µkν − gµν(k · k′) ± iǫµναβkαk
′
β = Lµν

s ± iLµν
a (2.4)

3We will use the convention in which ǫ0123 = 1
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Figure 2.2: Feynman diagram for the selfenergy of a neutrino

with Lµν
s (Lµν

a ) standing for the symmetric (antisymmetric) part of the lep-
tonic tensor; and the plus (minus) sign in the antisymmetric piece referring
to neutrino (antineutrino) scattering.
Given the Feynman diagram for the selfenergy of the neutrino, see fig. 2.2,
this selfenergy can be calculated applying the Feynman rules to give

−iΣr
ν(k) =

∫
d4q

(2π)4

(−ig
2
√

2

)2

ūr(~k)γ
α(1 − γ5)

i(/k′ +ml)

k′2 −m2
l + iǫ

γβ(1 − γ5)ur(~k)

× (−i)gβη

q2 −M2
W + iǫ

(
−iΠηµ

W (q)
) (−i)gµα

q2 −M2
W + iǫ

(2.5)

In the above equation, neglecting the four-momentum q carried by the W
boson with respect to its mass (in fact this has been already assumed be-
cause in the numerators of the bare propagators for the W boson, we have
discarded terms like

qβqη

M2
W

) and after performing the contractions of Lorentz

indices, we obtain

−iΣr
ν(k) =

∫
d4q

(2π)4
GF√
2M2

W

ūr(~k)γ
α(1−γ5)

(/k′ +ml)

k′2 −m2
l + iǫ

γβ(1−γ5)ur(~k)Π
W
βα(q)

(2.6)
where ΠW

βα(q) is the selfenergy of the W boson in the nuclear medium and the

relation between the Fermi constant and the gauge coupling is GF√
2

= g2

8M2
W

.

If now we perform the sum over the two polarizations of the neutrino (what
is justified because the chirality projectors (1 − γ5) filter only the physical
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polarization), then a trace over the leptonic line is obtained.

Σν(k) =
iGF√
2M2

W

∫
d4q

(2π)4
Tr

(
γα(1 − γ5)(/k

′ +ml)γ
β(1 − γ5)/k

)

k′2 −m2
l + iǫ

ΠW
βα(q)

=
8iGF√
2M2

W

∫
d4q

(2π)4
Lβα(k, k′)ΠW

βα(q)

k′2 −m2
l + iǫ

(2.7)

If now we separate the tensor ΠW
βα(q) in its symmetric and antisymmetric

parts, namely:

ΠW
βα(q) =

1

2

(
ΠW

βα + ΠW
αβ

)
+

1

2

(
ΠW

βα − ΠW
αβ

)
≡ Πs

βα + iΠa
βα (2.8)

where the superscript s (a) stands for the symmetric (antisymmetric) part
of ΠW

βα(q).
We can easily insert eq. (2.4) into the selfenergy of the neutrino, eq. (2.7)
and perform the contractions. Thus, the following expression is obtained:

Σν(k) =
8iGF√
2M2

W

∫
d4q

(2π)4

(
Lβα

s Πs
βα − Lβα

a Πa
βα

)

k′2 −m2
l + iǫ

(2.9)

Following the steps of Ref. [38], it can be shown that the cross section is
related to the imaginary part of the selfenergy of the neutrino by means of
the formula

σ = − 1

|~k|

∫
d3r ImΣν(k; ρ(~r)) (2.10)

We have considered Σν as a function of the nuclear density in every point.
Thus, we are working in the Local Density Approximation (LDA).
To obtain the imaginary part of the selfenergy of the neutrino in the nuclear
medium, we will make use of the Cutkosky rules. These rules mean that we
put on-shell the intermediate states. Technically they reduce to make the
following substitutions in eq. (2.9)

Σν(k) → 2i ImΣν(k)

Π
s(a)
βα (q) → 2iθ(q0) ImΠ

s(a)
βα (q)

1

k′2 −m2
l + iǫ

→ 2iθ(k′0) · (−π) · δ(k′2 −m2
l ) (2.11)
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where θ(· · · ) is the step function and δ(· · · ) is the Dirac delta function.
With the aid of the Dirac delta function, the integral in q0 in eq. (2.9)
can be carried out and we obtain (after a change of variable) the following
expression for ImΣν(k)

ImΣν(k) =
8GF√
2M2

W

∫
d3k′

(2π)3
θ(k0 − E′

l)

2E′
l(
~k′)

×
{
Lβα

s ImΠs
βα(q)

− Lβα
a ImΠa

βα(q)
}

q0=k0−E′
l

(2.12)

where E′
l(
~k′) =

√
m2

l + ~k′2 is the on-shell energy for a charged lepton of

mass ml and momentum ~k′.
Inserting eq. (2.12) in eq. (2.10) and letting the kinematic variables of the
outgoing lepton without integrating, we get the following expression for the
double differential cross section:

dσ

dΩk̂′ dE′
l

= −|~k′|
|~k|

G2
F

4π2

1

2π

(
2
√

2

g

)2 ∫
d3r θ(k0 − E′

l) ×
(
Lβα

s Im
(
ΠW

βα + ΠW
αβ

)

+ Lβα
a Re

(
ΠW

βα − ΠW
αβ

) )
(2.13)

The hadronic tensor is given (except phase space factors) basically by:

Wµν =
∑

spin N

∑

spin X

〈X|jcc+µ (0)|N〉〈X|jcc+ν (0)|N〉∗ (2.14)

and it accomplishes

W µν = W µν
s + iW µν

a (2.15)

with W µν
s (W µν

a ) real symmetric (antisymmetric) tensors.
Thus, the double differential cross section can be cast as (see eq. 3 in
Ref. [38]):

dσ

dΩk̂′ dE′
l

=
|~k′|
|~k|

G2
F

4π2
LαβWαβ =

|~k′|
|~k|

G2
F

4π2

(
Lβα

s W s
βα − Lβα

a W a
βα

)
(2.16)
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Comparing the above equation with eq. (2.13), we can obtain the following
assignments:

W s
βα = −θ(q0)

(
2
√

2

g

)2 ∫
d3r

2π
Im
(
ΠW

βα + ΠW
αβ

)
(2.17)

W a
βα = θ(q0)

(
2
√

2

g

)2 ∫
d3r

2π
Re
(
ΠW

βα − ΠW
αβ

)
(2.18)

The in medium gauge boson (W±) selfenergy now depends on the nuclear
density ρ(r). We propose a many body expansion for Πµν

W , where the rele-
vant gauge boson absorption modes would be systematically incorporated:
absorption by one nucleon, or a pair of nucleons or even three nucleon mech-
anisms, real and virtual meson (π, ρ,...) production, excitation of ∆ isobars
or higher resonance degrees of freedom, etc. In addition, nuclear effects
such as Random Phase Approximation (RPA) or Short Range Correlations
(SRC) will be also taken into account. Some of the basic W -absorption
modes are depicted in Fig 2.3.

2.2.2 Quasielastic scattering

It is not the purpose of this thesis to discusse in detail the QE scattering,
this was done in Ref. [38]. But as we are going to use their results, we must
devote some words to it.
The virtual W+ can be absorbed by one nucleon leading to the QE contribu-
tion of the nuclear response function. Such a process corresponds to a one
particle-one hole (1p1h) nuclear excitation (first of the diagrams depicted
in fig 2.3). We are going to briefly discuss the main features of the model
of Ref. [38]. Starting from a Local Fermi Gas (LFG) picture of the nucleus,
which automatically accounts for Pauli blocking and Fermi motion, several
nuclear corrections were incorporated, among others:

1. A correct energy balance, using the experimental Q-values, was en-
forced.

2. Coulomb distortion of the charged leptons, important at low energies,
was implemented by using the so called ”modified effective momentum
approximation”.
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Figure 2.3: Diagrammatic representation of some mechanisms contributing
to the W+-selfenergy
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3. Medium polarization (RPA), including ∆-hole degrees of freedom and
explicit pion and rho exchanges in the vector-isovector channel of the
effective nucleon-nucleon force, and SRC effects were computed.

4. The nucleon propagators were dressed in the nuclear medium, which
means to work with nucleon spectral functions (a LFG of interacting
nucleons) and it also accounts for some reaction mechanisms where
the gauge boson is absorbed by two nucleons.

This model is a natural extension of previous studies on electron [43], photon
[123] and pion [124–128] dynamics in nuclei.
The theoretical errors which affect the predictions of Ref. [38] were discussed
in Ref. [129]. There, it was concluded that it is sound to assume errors of
about 10-15% on the QE neutrino-nucleus (differential and integrated) cross
section results of Ref. [38].
The LFG description of the nucleus has been shown to be well suited for
inclusive processes and nuclear excitation energies of around 100 MeV or
higher. The reason is because in these circumstances one should sum up over
several nuclear configurations, both in the discrete and in the continuum.
This inclusive sum is almost insensitive to the details of the nuclear wave
function. This is in sharp contrast to what happens in the case of exclusive
processes, when the final nucleus is left in a determined nuclear level. On
the other hand, the LFG description of the nucleus allows for an accurate
treatment of the dynamics of the elementary processes (interaction of gauge
bosons with nucleons, nucleon resonances and mesons, interaction between
nucleons or between mesons and nucleons, etc.) which occur inside the
nuclear medium. Within a finite nuclei scenario, such a treatment becomes
hard to implement, and often the dynamics is simplified in order to deal
with more elaborated nuclear wave functions.

2.2.3 ∆(1232) Dominance in pion production

The first diagram that we are going to consider is the second one depicted in
Fig 2.3. This corresponds to a Nucleon-∆ transition. The transition matrix
element is given by:

〈
∆+; p∆ = p+ q|jµcc+(0)|n; p

〉
= ūα(~p∆)Γαµ(p, q)u(~p) cos θc (2.19)



2.2. FORMALISM 57

where ūα(~p∆) is the Rarita-Schwinger spinor for the ∆; θc is the Cabibbo
angle for the transition of a down quark into an up quark; and the weak
vertex function is given by:

Γαµ(p, q) =
[CV

3

M
(gαµq/− qαγµ) +

CV
4

M2
(gαµ(q · p∆) − qαpµ

∆)

+
CV

5

M2
(gαµ(q · p) − qαpµ) + CV

6 g
αµ
]
γ5

+
[CA

3

M
(gαµq/− qαγµ) +

CA
4

M2
(gαµ(q · p∆) − qαpµ

∆) +CA
5 g

αµ

+
CA

6

M2
qαqµ

]
(2.20)

where p∆ = p+ q and the CV,A
i are scalar and real vector (V) and axial (A)

form factors depending on q2. The determination of the form factors follows
from general principles and also from experimental results. We will use the
set of form factors from Ref. [47] with only one exception, namely the value
for CA

5 at q2 = 0. For CA
5 (0) we will take advantage from a recent analysis

of the pion production process induced by neutrinos, done in Ref. [99], to
set it to 1.0 and for MA∆ (the axial mass that governs the q2 dependence)
we will take 0.93 GeV. In summary, that we are going to use the set IV
given in table I of Ref. [99].
Let us begin with the following Feynman diagram for the ∆-hole contri-
bution, depicted in fig 2.4. Its contribution to the W+ selfenergy can be
written as:

−iΠµν
∆h = − cos2 θc

(
g

2
√

2

)2 ∫ d4p

(2π)4
G(p; ρn)

1

p2
∆ −M2

∆ + iM∆Γ∆
Aµν

∆ (p, q)

(2.21)
with p∆ = p + q, M∆ the resonance mass and Γ∆ its width, which can
be found for instance in Eq. (45) of Ref. [47]. G(p; ρn) is the neutron
propagator given by4:

G(p; ρ) =
1

p0 + E(~p) + iǫ

(
n(~p)

p0 − E(~p) − iǫ
+

1 − n(~p)

p0 − E(~p) + iǫ

)
(2.22)

In the above equation, n(~p) stands for the hole occupation number, i.e,
n(~p) = θ(kF −|~p|). And finally, the tensor Aµν

∆ (p, q) is given by the following

4In appendix A it will be shown a derivation of Eq. (2.22)
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Figure 2.4: Diagrammatic representation of the ∆h weak nuclear excitation
term

trace:
Aµν

∆ (p, q) = Tr
[
(/p+M)γ0Γαν†γ0Pαβ(p∆)Γβµ

]
(2.23)

Pαβ(p∆) is the spin-3/2 on-shell projection operator:

Pαβ(p∆) = (/p∆ +M∆)

[
−gαβ +

1

3
γαγβ +

2

3

p∆αp∆β

M2
∆

− 1

3

p∆αγβ − p∆βγα

M∆

]

(2.24)
The tensor Aµν

∆ (p, q) accomplishes the following fundamental relation:

Aµν∗ = Aνµ (2.25)

This relation means that the symmetric part of such a tensor is real and that
its antisymmetric part is purely imaginary. And furthermore, the statement
is also valid in the opposite direction, i.e, the real part of such a tensor is
symmetric and the imaginary one is antisymmetric.
Therefore, the tensor Aµν

∆ (p, q) can be written like the hadronic one, eq.
(2.15). These properties of symmetry are very useful to obtain the contribu-
tions of this absorption mode to the hadronic tensor, eqs. (2.17) and (2.18).
Coming back to eq. (2.21), we can take the symmetric or antisymmetric
parts of the W+ selfenergy, just replacing the tensor Aµν

∆ (p, q) by its sym-
metric or antisymmetric parts. Thus, it is trivial to obtain the following
expression:

Πµν
s(a)(q) = −i cos2 θc

(
g

2
√

2

)2 ∫ d4p

(2π)4
G(p; ρn)G∆(p∆)Aµν

s(a)(p, q) (2.26)
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where Aµν
s(a)(p, q) stands for the symmetric (antisymmetric) part of Aµν

∆ (p, q).

Now, we can perform the integration in p0 and we would pick up the pole for
the hole state in the nucleon propagator, eq. (2.22). After that integration,
we easily obtain the following expression for a neutron hole:

W µν
n = −θ(q0)

∫
d3r

2π
cos2 θc

∫
d3p

(2π)3
θ(kn

F (r) − |~p|)
E(~p)

ImG∆(p+ q) |p0=E(~p)

× Aµν
∆ (p, q) |p0=E(~p) (2.27)

What would happen if the W+ is absorbed by a proton? Well, invoking
isospin symmetry, the weak transition vertex for proton to ∆++ is a factor√

3 bigger than the one in eq. (2.19). As this weak vertex appears twice
when folding it with its complex conjugate, we would have a factor 3 with
respect to the previous equation:

W µν
p = −3 θ(q0)

∫
d3r

2π
cos2 θc

∫
d3p

(2π)3
θ(kp

F (r) − |~p|)
E(~p)

ImG∆(p + q) |p0=E(~p)

× Aµν
∆ (p, q) |p0=E(~p) (2.28)

The sum of both hadronic tensors, eqs. (2.27) and (2.28), can be written in
a compact way:

W µν
∆h(q) = −θ(q0) cos2 θc

∫
d3r

2π

∫
d3p

(2π)3

∑

N

C2
N

θ(kN
F (r) − |~p|)
E(~p)

× ImG∆(p + q) |p0=E(~p) A
µν
∆ (p, q) |p0=E(~p) (2.29)

where the isospin factor CN takes the values 1 and
√

3 for neutron and
proton hole contributions, respectively. And we have defined G∆(p∆) as
the ∆-propagator, namely:

G∆(p∆) =
1

p2
∆ −M2

∆ + iM∆Γ∆
(2.30)

2.2.4 Addition of background terms in pion production

In this subsection we are going to calculate the contribution to the cross
section from W+ gauge boson selfenergy diagrams which contain pion pro-
duction in the intermediate states. We will use the model for the CC pion
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production reaction off the nucleon induced by neutrinos,

νl(k) +N(p) → l−(k′) +N(p′) + π(kπ) (2.31)

derived in Refs. [47, 99]. This process, at intermediate energies, is tradi-
tionally described in the literature by means of the weak excitation of the
∆(1232) resonance and its subsequent decay into Nπ. In Ref. [47], some
background terms required by the pattern of spontaneous chiral symmetry
breaking of QCD were also included. Their contributions are sizable and
lead to significant effects in total and partially integrated pion production
cross sections even at the ∆(1232)-resonance peak, and they are dominant
near pion thresold. The model consists of seven Feynman diagrams for the
W+N → N ′π reaction (see right panel of Fig. 2.5). The contributions of
the different diagrams are calculated by using the effective Lagrangian of
the SU(2) nonlinear σ-model, supplemented with some form factors (see
Ref. [47] for details). As we have mentioned in the previous subsection, in
this work, we will use the set IV of form factors compiled in Table I of
Ref. [99]. The available data set on neutrino and antineutrino pion pro-
duction on nucleons is described reasonably well. Nonetheless, we must
mention that the experimental data still have large uncertainties and there
exist conflicting data for some channels.
The discussed model can be considered an extension of that developed in

Ref. [43] for the eN → e′Nπ reaction. For the latter case, the model, which
contains a theoretically well founded description of the background ampli-
tudes, provides the same level of accuracy [56] as the MAID model [53],
which ensures its applicability to the leptoproduction processes at least up
to W < 1.4 GeV, being W the outgoing πN invariant mass.
We move now to the computation of the W+-selfenergy diagrams which

contain pion production in the intermediate states. This can be accom-
plished by taking the W+N → N ′π amplitudes of Fig. 2.5 and folding
them with themselves. One thus obtains the diagram of Fig. 2.6 where the
circle stands for the total amplitude (sum of the seven terms of the elemen-
tary model for W+N → N ′π) that connects the states N → N ′πλ.
Let us do the calculation only for one channel, for instance for the p→ pπ+

channel. The generalization to all the channels is simply the sum of the
W+-selfenergies for every channel. Just applying the Feynman rules, we
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Figure 2.5: Left: Definition of the kinematical variables. Right: Model
for the W+N → N ′π reaction. It consists of seven diagrams: Direct and
crossed ∆(1232)-pole (first row) and nucleon-pole (second row) terms; con-
tact term and pion pole contribution (third row); and finally the pion-in-
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Figure 2.6: W -selfenergy obtained by folding the WN → N ′π amplitude
with itself (λ is the charge of the pion).
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obtain for the selfenergy:

−iΠµν
p→pπ+(q) = −i

(
g

2
√

2

)2 ∫ d4kπ

(2π)4
D0(kπ)

∫
d4p

(2π)4
G(p; ρp)G(p + q − kπ; ρp)

× Aµν
p→pπ+(p, q, kπ) (2.32)

where D0(kπ) is the pion propagator:

D0(kπ) =
1

k2
π −m2

π + iǫ
(2.33)

and Aµν
p→pπ+(p, q, kπ) is given by the trace of the fermionic loop:

Aµν
p→pπ+(p, q, kπ) = Tr

[
Jµ

p→pπ+(/p+M)γ0Jν†
p→pπ+γ

0(/p+ q/− /kπ +M)
]

(2.34)
where Jµ

p→pπ+ is the total amputated amplitude (without nucleon spinors)

for theW+p→ pπ+ process, i.e, the sum of the seven amputated amplitudes
of the right panel of Fig. 2.5 for this channel. The contribution to Jµ

p→pπ+

from every diagram is given by their relation with the full amplitudes given
in Eq. (51) of Ref. [47],

jµcc+|i = ū(~p ′)jµAi
(p, q, p′ = p+ q − kπ, kπ)u(~p), (2.35)

i = ∆P,C∆P,NP,CNP,CT, PP, PF

and

Jµ =
∑

i

jµAi
i = ∆P,C∆P,NP,CNP,CT, PP, PF (2.36)

Performing the integration in p0 in eq. (2.32) and neglecting the contri-
bution coming from the antiparticle pole (p0 = −E(~p) − iǫ), i.e, we must
replace the propagator of eq. (2.22) by the following one:

G(p) =
1

2E(~p)

{
n(~p)

p0 − E(~p) − iǫ
+

1 − n(~p)

p0 − E(~p) + iǫ

}
(2.37)

then, we obtain

Πµν
p→pπ+(q) = i

(
g

2
√

2

)2 ∫ d4kπ

(2π)4
D0(kπ)

∫
d3p

(2π)3
1

2E(~p)

1

2E(~p ′)
Aµν

p→pπ+|p0=E(~p)

×
{

n(~p)(1 − n(~p ′))
q0 − k0

π + E(~p) − E(~p ′) + iǫ
+

(1 − n(~p))n(~p ′)
−q0 + k0

π − E(~p) + E(~p ′) + iǫ

}

(2.38)
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where ~p ′ = ~p+ ~q − ~kπ.
A simplification can be done by evaluating the Jµ

p→pπ+ amplitudes at an

average momentum, which allows us to take out the spin trace (tensor Aµν)
from the d3p integration. This latter integration can now be done, and
it gives, up to some constants, the Lindhard function ŪR(q − kπ; kp

F , k
p
F )

defined in appendix B of Ref. [38]. We take 〈|~p|〉 =
√

3
5k

p
F (where kp

F =

(3π2ρp(r))
1/3, being ρp(r) the density of protons normalized to the number

of protons) and a direction orthogonal to the plane defined by the pion and
the virtual gauge boson. Within this approximation, we find

Πµν
p→pπ+(q) =

i

8M2

(
g

2
√

2

)2 ∫ d4kπ

(2π)4
D0(kπ)ŪR(q−kπ; kp

F , k
p
F )Aµν

p→pπ+|<~p>
p0=E(~p)

(2.39)

where Aµν
p→pπ+|<~p>

p0=E(~p)
stands for the following expression

Aµν
p→pπ+|<~p>

p0=E(~p)
= Tr

[〈
Jµ

p→pπ+

〉
(〈/p〉 +M)γ0

〈
Jν†

p→pπ+

〉
γ0(〈/p〉 + q/− /kπ +M)

]

(2.40)

and the amputated amplitudes
〈
Jµ

p→pπ+

〉
have been calculated with the

average hole momentum 〈~p〉. We remind that, by construction, the tensor
Aµν

p→pπ+ accomplishes eq. (2.25) and thus, it can be decomposed in the
following form

Aµν = Aµν
s + iAµν

a (2.41)

with Aµν
s (Aµν

a ) real symmetric (antisymmetric) tensors. And furthermore,
given the decomposition in eq. (2.8), we readily obtain

Im (Πµν + Πνµ) = 2 ImΠµν
s (2.42)

Re (Πµν − Πνµ) = −2 ImΠµν
a (2.43)

Here, Πµν
s(a) is defined as in Eq. (2.39) but replacing the full tensor Aµν

by its symmetric (antisymmetric) Aµν
s(a) parts. The imaginary part of Πµν

s(a)
can be obtained by following the prescription of the Cutkosky’s rules. In
this case we cut with a straight horizontal line the intermediate particle and
hole states and the pion. These states are then placed on-shell by taking the
imaginary part of the propagator. Considering that the Lindhard function
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plays the role of a particle-hole propagator, then the Cutkosky’s rules reduce
to make the following substitutions:

Πµν
s(a) → 2i ImΠµν

s(a)

D0(kπ) → 2i θ(k0
π)ImD0(kπ) = −2πiδ(k2

π −m2
π)θ(k0

π)

ŪR(q − kπ; kp
F , k

p
F ) → 2i θ(q0 − k0

π)ImŪR(q − kπ; kp
F , k

p
F ) (2.44)

With the aid of the imaginary part of the bare pion propagator, we can
perform the integration in the variable k0

π and then we are left with the
integration in the 3-momentum of the pion. Until now, we have focused on
the channel p→ p+ π+. The kind of calculation is similar for the channels
n → n + π+ and n → p + π0. There are some different isospin factors in
the amputated amplitudes (currents) in each vertex, because these currents
depend on the particular channel that one is considering. And there will be
changes in the Lindhard’s functions as well because of the dependence of
these functions on the local Fermi momenta for hole and particle states. The
final contribution to the hadronic tensor will be the sum of the contributions
for every channel. This can be written in a compact way like this 5

W µν
1ph1π(q) = − 1

8M2
θ(q0)

∫
d3r

2π

∫
d3kπ

(2π)3
θ(q0 − Eπ)

Eπ(~kπ)

×
∑

N,N ′,λ

ImŪR(q − kπ; kN
F , k

N ′

F )Aµν
N→N ′πλ (2.45)

2.2.5 Two-particles two-holes (2p2h) absorption modes

2p2h mechanisms driven by the longitudinal part of the effective
spin-isospin ph-ph interaction

In this section we are going to deal with diagrams in which the pion is
allowed to excite a particle-hole. This leads us to the diagram of Fig. 2.7.
This is still a generic diagram which actually contains 49 diagrams when in
the shaded circle we put each one of the terms of the W+p→ π+p amplitude
of the right pannel of Fig. 2.5.

5In appendix B it will be shown that this hadronic tensor fulfills the Impulse Approx-
imation in the Low Density Limit
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Figure 2.7: W-selfenergy obtained from the one in Fig. 2.6 when the pion
line is allowed to excite a particle-hole. This is one of the four channels that
we have.

For the πNN vertex that couples the pion to a particle-hole pair in the right
bubble of Fig 2.7, we are going to take the following lagrangian:

L =
gA

2fπ
ψ̄(x)γµγ5~τ · ∂µ

~φ(x)ψ(x) (2.46)

where gA = 1.26, fπ is the pion decay constant, ψ(x) is the isospin doublet
which contains the Dirac fields of the nucleons, ~φ(x) are the pionic fields
and ~τ are the three Pauli matrices acting in isospin space. If we expand the
scalar product ~τ ·∂µ

~φ in the spherical basis, then we finally get the following
couplings

L =
gA

2fπ

(
p̄(x)γµγ5p(x)∂µφ0(x) − n̄(x)γµγ5n(x)∂µφ0(x)

+
√

2 p̄(x)γµγ5n(x)∂µφ−(x) +
√

2 n̄(x)γµγ5p(x)∂µφ
†
−(x)

)
(2.47)

where φ0(x) is the field that creates or annihilates a π0 and φ−(x) is the
field that creates a π− or annihilates a π+.
Just applying the Feynman rules, we can obtain the selfenergy associated
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to the diagram of Fig. 2.7. It reads

−iΠµν(q) = −
∫

d4p

(2π)4
d4kπ

(2π)4
d4l

(2π)4

(
g

2
√

2

)2

Aµν
p→pπ+G(p; ρp)G(p′; ρp)

× D2
0(kπ)

(
gA

2fπ

)2 (√
2
)2

Tr [/kπγ5(l/+M)/kπγ5(l/+ /kπ +M)]

× G(l; ρn)G(l + kπ; ρp) (2.48)

where Aµν
p→pπ+ is the same than in Eq. (2.34); and p′ = p+ q − kπ.

The trace of the second fermionic loop (the one that does not involve the
amputated amplitudes) is a scalar function of kπ and l and simplifies to
−8M2k2

π when one assumes that the pair particle-hole is on-shell, i.e, that
the following relations hold:

l2 = M2 (l + kπ)2 = M2 ⇒ l · kπ = −k
2
π

2
(2.49)

Then, with these assumptions, the trace gives:

B(kπ, l) = Tr [/kπγ5(l/+M)/kπγ5(l/+ /kπ +M)]

= 8 (l · kπ)2 − 4M2k2
π + 4k2

π (l · kπ) − 4k2
πl

2

= −8M2k2
π (2.50)

This allows us to take out this trace from the integral in d4l and we easily
obtain (when performing the integral in d4l) the Lindhard function of kπ.
Let us remind the relation between the relativistic Lindhard function and
the following integral
∫

d4l

(2π)4
G(l; ρN )G(l + kπ; ρN ′) =

i

8M2
ŪR(kπ; kN

F , k
N ′

F ) ≡ i

8M2
ŪN,N ′

R (kπ)

(2.51)
where N and N ′ stand for n (neutron) or p (proton). In the case of Fig. 2.7,
the Lindhard function is Ūn,p

R (kπ).
With this, Eq. (2.48) gets simplified to

−iΠµν(q) = i

(
g

2
√

2

)2( gA

2fπ

)2 (√
2
)2
∫

d4kπ

(2π)4
k2

πD
2
0(kπ)Ūn,p

R (kπ)

×
∫

d4p

(2π)4
Aµν

p→pπ+(p, q, kπ) G(p; ρp)G(p + q − kπ; ρp)(2.52)
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Figure 2.8: The only differences between this Feynman diagram and the one
of Fig. 2.7 are the couplings (amputated amplitudes) in the first bubble.
One must substitute the currents Jµ

p→pπ+ by the currents Jµ
n→nπ+

The integral in d4p has been already done in the previous section. See dis-
cussion to obtain eq. (2.39) starting from eq. (2.32). With the assumption
of taking an average momentum and a direction orthogonal to the plane
defined by ~q and ~kπ, we can again take the tensor Aµν out of the integral
in d4p and the Lindhard function with argument q − kπ appears again. It
is straightforward to obtain

Πµν
1 (q) = − i

8M2

(
g

2
√

2

)2( gA

2fπ

)2 (√
2
)2
∫

d4kπ

(2π)4
k2

πD
2
0(kπ)Ūn,p

R (kπ)

× Ūp,p
R (q − kπ)Aµν

p→pπ+|<~p>
p0=E(~p)

(2.53)

Until now, we have been discussing the calculation for one isospin channel,
but there are more channels. For instance, we could have the following
Feynman diagram (Fig. 2.8) where the amputated amplitudes now are for
the process W+n→ nπ+. The result for this channel is

Πµν
2 (q) = − i

8M2

(
g

2
√

2

)2( gA

2fπ

)2 (√
2
)2
∫

d4kπ

(2π)4
k2

πD
2
0(kπ)Ūn,p

R (kπ)

× Ūn,n
R (q − kπ)Aµν

n→nπ+ |<~p>
p0=E(~p)

(2.54)
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Figure 2.9: W-selfenergy diagram in which the exchanged meson is a π0

where now Aµν
n→nπ+ is given by the same trace as in Eq. (2.34) but replacing

Jµ
p→pπ+ and Jν

p→pπ+ by Jµ
n→nπ+ and Jν

n→nπ+ , respectively.
There are two more isospin channels and in both the exchanged meson is
a π0. Furthermore, these two channels involve the charge-exchange current
(Jµ

n→pπ0) for the process W+n → pπ0 (see Fig. 2.9). With few changes, we
can write the contribution to the selfenergy coming from the diagrams in
Fig. 2.9. It reads

Πµν
3+4(q) = − i

8M2

(
g

2
√

2

)2( gA

2fπ

)2 ∫ d4kπ

(2π)4
k2

πD
2
0(kπ)

(
Ūn,n

R (kπ) + Ūp,p
R (kπ)

)

× Ūn,p
R (q − kπ)Aµν

n→pπ0 |<~p>
p0=E(~p)

(2.55)

Now again, the selfenergy will be the sum of the four channels that we
have explicitly written (Πµν

W (q) =
∑4

i=1 Πµν
i (q)). Separating the symmetric

and antisymmetric parts of the W-selfenergy with the aid of the symmetry
properties of the tensors Aµν , and applying the Cutkosky’s rules putting
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on-shell the 2p2h states, the result is

W µν
2p2h(q) = −θ(q0) 1

M2

(
gA

2fπ

)2 ∫ d3r

2π

∫
d4kπ

(2π)4
k2

πD
2
0(kπ)F 4

π (kπ)

× θ(k0
π)θ(q0 − k0

π)

{
ImŪn,p

R (kπ)
[
ImŪp,p

R (q − kπ)Aµν
p→pπ+

+ ImŪn,n
R (q − kπ)Aµν

n→nπ+

]
+

1

2
ImŪn,p

R (q − kπ)

×
[
ImŪn,n

R (kπ) + ImŪp,p
R (kπ)

]
Aµν

n→pπ0

}
(2.56)

where now, the pion form factor F 4
π (kπ) appears because the pions are off-

shell. We will use

Fπ(kπ) =
Λ2

π −m2
π

Λ2
π − k2

π

(2.57)

with Λπ = 1.2 GeV.

Several improvements for 2p2h mechanisms

We could have considered as well the Feynman diagram of Fig. 2.6, but
instead of taking the bare pion propagator, we could have taken the dressed
pion propagator and after that, we would have applied the Cutkosky’s rules
to obtain the imaginary part of the W-selfenergy. The dressed pion propa-
gator reads

Dπ(kπ) =
1

k2
π −m2

π − Π(kπ)
(2.58)

where for the selfenergy of a pion6 of charge λ, we take [127]

Π(kπ) = F 2
π (kπ)

(
gA

2fπ

)2
~k2

π

U(kπ)

1 −
(

gA

2fπ

)2
g′U(kπ)

(2.59)

6Quite often in the literature it is written fπNN

mπ
instead of gA

2fπ
. This equality (known

as the Goldberger-Treiman relation) is satisfied phenomenologically better than a 5% [47].
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In Eq. (2.59), U(kπ) = UN (kπ) + U∆(kπ) is the non-relativistic Lindhard
function for ph + ∆h excitations7 including direct and crossed bubbles
[130, 131], in contrast to ŪR, which only contains the direct bubble of a
particle-hole excitation (the only one which contributes to ImUN for q0 > 0).
When we apply the Cutkosky’s rules with the dressed pion propagator, we
obtain

ImΠµν
s(a) = −

(
g

2
√

2

)2 1

4M2

∫
d4kπ

(2π)4
θ(k0

π)θ(q0 − k0
π)ImDπ(kπ)

×
∑

N,N ′,λ

ImŪN,N ′

R (q − kπ)Aµν
s(a),N→N ′πλ (2.60)

Using Eqs. (2.42) and (2.43), and putting their results into Eqs. (2.17) and
(2.18), we easily obtain for the hadronic tensor

W µν =
1

2M2
θ(q0)

∫
d3r

2π

∫
d4kπ

(2π)4
θ(k0

π)θ(q0 − k0
π)ImDπ(kπ)F 2

π (kπ)

×
∑

N,N ′,λ

ImŪN,N ′

R (q − kπ)Aµν
N→N ′πλ (2.61)

It seems that Eq. (2.61) is lacking a factor F 2
π (kπ) with respect to Eq. (2.56),

but that factor is hidden in ImDπ(kπ). Indeed, we have

ImDπ(kπ) =
ImΠ(kπ)

|k2
π −m2

π − Π(kπ)|2
(2.62)

And for ImΠ(kπ) I have

ImΠ(kπ) = F 2
π (kπ)

(
gA

2fπ

)2
~k2

π

ImU(kπ)
∣∣∣∣1 −

(
gA

2fπ

)2
g′U(kπ)

∣∣∣∣
2 (2.63)

Therefore, for ImDπ(kπ) we will have

ImDπ(kπ) =
F 2

π (kπ)
(

gA

2fπ

)2
~k2

π ImU(kπ)D2
0(kπ)

|1 − Vl(kπ)U(kπ)|2
(2.64)

7The functions UN and U∆ are defined, for instance, in Eqs. (2.9) and (3.4) of Ref. [130].
UN incorporates a factor two of isospin with respect to ŪR, such that ImUN = 2 ImŪR

for symmetric nuclear matter, up to relativistic corrections.
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where Vl(kπ) is an effective longitudinal interaction which, besides pion ex-
change, includes Short Range Correlations (SRC) driven by the Landau-
Migdal parameter g′. We will assume that this parameter has no k-dependence
(actually it has a smooth k-dependence, see Refs. [124, 131]) and that it is
equal for the effective transverse interaction Vt(k), which will be discussed
later. For the longitudinal and transverse channel interactions we will take

Vl(kπ) =

(
gA

2fπ

)2
(
F 2

π (kπ)
~k2

π

k2
π −m2

π

+ g′l(kπ)

)
(2.65)

Vt(k) =
f2

πNN

m2
π

(
CρF

2
ρ (k)

~k2

k2 −m2
ρ

+ g′t(k)

)
(2.66)

We will take g′l(k) = g′t(k) = g′ = 0.63, as it was done in the study of
inclusive nuclear electron scattering carried out in Ref. [43], and also in the
previous work on the QE region of Ref. [38]. Furthermore, Cρ = 2 and

Fρ(k) =
Λ2

ρ −m2
ρ

Λ2
ρ − k2

(2.67)

is the ρ-meson form factor with Λρ = 2.5 GeV and mρ = 0.77 GeV.
When we evaluate ImDπ(kπ) in Eq. (2.64), in the numerator we have not
considered the part that arises from putting the ∆h excitation on-shell that
would correspond to a 2p2h+1π mechanism. In other words, in the nu-
merator of Eq. (2.64) we have only considered the imaginary part of the
non-relativistic nucleon Lindhard function UN (kπ). We expect that the con-
tribution coming from taking into account the imaginary part of U∆(kπ) is
small at the considered energies. Note also, that by using U to compute the
pion selfenergy, we have neglected small relativistic and ρp 6= ρn corrections
which could be important for non-symmetric nuclei. By means of Eq. (2.62),
we have implemented the Dyson re-summation of the pion selfenergy, and
we have improved on this latter one by incorporating the Lorentz-Lorenz
effect, driven by the short range Landau-Migdal parameter g′ [126], going
in this way beyond 1p1h excitation8 in the evaluation of Π(kπ).

When in one (or both) of the weak vertices of Fig. 2.7 the NP term is

8This corresponds to replace the ph excitation of the right-hand side in Fig. 2.7 by a
series of RPA excitations through ph and ∆h excitations, driven by the longitudinal part
of the effective spin-isospin interaction. We will do something similar for the case of 2p2h
mechanisms driven by ρ-meson exchange.
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q

p

p+q

Figure 2.10: W-selfenergy diagram obtained from the QE 1p1h excitation
term (first of the diagrams depicted in Fig. 2.3) by dressing up the nucleon
propagator of the particle state in the ph excitation. It can be also consid-
ered as coming from the generic diagram of Fig. 2.7 when in both shaded
circles the NP amputated amplitudes are selected.

considered, the prescription of taking an average nucleon momentum of the
Fermi sea that led us to Eqs. (2.56) or (2.61) turns out to be not adequate.
The reason is because when placing the 2p2h excitation on-shell, through
Cutkosky’s rules, we still have the nucleon propagator with momentum p+q
(this is part of the amputated amplitude jµANP

), see Fig. 2.10. This prop-
agator can be still placed on-shell for a virtual W and thus, there exists a
single pole in the d3p integration9. In this situation, we cannot take an av-
erage for ~p, as we have implicitly assumed in Eqs. (2.56) or (2.61). We have
improved such prescription as follows. In these latter equations, the tensor
Aµν appeared, which in turn is defined in Eq. (2.40) by using an average
for the hole 3-momentum ~p to calculate both, the amputated W+N → N ′π
amplitudes Jµ

N→N ′πλ and /p, that also appears in the trace that defines Aµν .
Instead of this, we have computed an average of the whole trace. To this
end, we have numerically performed the integral over the angle formed by ~p
and ~q, using still an average for the modulus of ~p. All pathologies arise from

9This cut will also contribute to the nuclear response to the weak probe. But, while
it will affect to the QE region, it is expected to be small and considerably difficult to
calculate from the computational point of view (see Eq. (80) in Ref. [43]). Thus, for the
sake of simplicity we have not considered such contribution.
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π

Figure 2.11: W-selfenergy diagram in which one of the vertices contains the
NP term of the WN → N ′πλ amplitude, while the other one (filled circle)
contains all terms except that one.

the p + q nucleon propagator hidden in the amputated amplitudes, which
can be put on the mass shell and thus the contribution of these diagrams
depends critically on the angle formed by ~p and ~q, while it shows a very
smooth dependence on the rest of kinematical variables of the hole momen-
tum ~p. Thanks to the approximations of using an average for the modulus of
~p and fixing the (~p,~q)-plane, we avoid to perform two nested integrals, with
the obvious benefit in computation time. We have checked that the results
are accurate at the level of 5-10%. To speed up the numerical integration,
we have also given a small width (∼ 10 MeV) to the p + q nucleon. The
results do not depend significantly on this choice. For consistency, we have
also performed this angular average for all contributions implicit in Fig. 2.7,
although the prescription of using an average for ~p leads to accurate results
in all cases except those involving the NP amputated amplitude discussed
above.
In the terms involving the NP amputated amplitude (interferences with

the rest of amplitudes of Fig. 2.5) there always appears a pion emitted after
the WN vertex that couples to the second ph excitation (see for instance
the line labeled as π in Fig. 2.11). There, we are assuming a pion exchange
interaction among the two ph excitations. We have improved on that, and
we have replaced it by the effective longitudinal interaction Vl, eq. (2.65),
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Figure 2.12: Same as Fig. 2.7, but showing the cut that places one particle-
hole and the pion on-shell

which besides pion exchange includes SRC driven by the Landau-Migdal
parameter g′l (see Refs. [126,127,131]). To achieve this, we have multiplied
the amputated amplitude jµANP

by a suitable factor

jµANP
=⇒ jµANP

×
(

1 +
g′l

F 2
πD0

~k2
π

)
(2.68)

We have taken the same prescription also for those terms that include the
CNP, ∆P and C∆P amputated amplitudes.
The cut which places the two ph on-shell in the diagrams of Figs. 2.7, 2.8
and 2.9 is not the only possible one. In Fig. 2.12, we show a different cut
(dotted line) which places one ph and the pion on-shell. As done for real [123]
and virtual [43] photons, we neglect this contribution in the non-resonant
terms. This is because at low energies, where these pieces are important, the
(W,π) channel is small; and at high energies, where the (W,π) contribution
is important, this channel is dominated by the ∆ excitation and there this
correction will be properly incorporated.

Another 2p2h absorption mode

We have also considered two-body diagrams where each W boson couples
to different pairs particle-hole, see Fig. 2.13. Let us take the first diagram
of Fig. 2.13. Applying the Feynman rules, we easily obtain the following
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Figure 2.13: Two particle-two hole (2p2h) W -selfenergy Feynman diagram
where the outgoing gauge boson couples to the second pair particle-hole

contribution for the selfenergy of the W boson

−iΠµν
1 (q) = −

(
g

2
√

2

)2( gA
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∫
d4kπ

(2π)4
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(2π)4

∫
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× Tr
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p→pπ+(/p +M)(q/− /kπ)γ5(/p+ q/− /kπ +M)
]

× Tr
[
/kπγ5(l/+M)γ0Jν†

n→pπ0γ
0(l/+ /kπ +M)

]
G(p; ρp)

× G(p + q − kπ; ρp)D0(kπ)D0(q − kπ)G(l; ρn)G(l + kπ; ρp)

(2.69)

where Jµ
p→pπ+ is function of (p, q, kπ), and Jν†

n→pπ0 is function of (l, q, q−kπ).
And now, let us do the following changes of variables in the integrals of the
four-momenta

kπ = q − k′π
l = p′

p = l′ (2.70)
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As k′π, p′ and l′ are dummy arguments, we can redefine them without the
symbol (′) and the result for the W -selfenergy of Eq. (2.69) is

−iΠµν
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(2.71)

Again, just applying the Feynman rules, we easily can obtain the contribu-
tion to the W -selfenergy from the diagram on the right-hand side of Fig.
2.13
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(2.72)

And then, summing both contributions, we get
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1 (p, l, q, kπ) (2.73)
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Figure 2.14: Two particle-two hole (2p2h) W -selfenergy Feynman diagram
where the outgoing gauge boson couples to the second pair particle-hole.
This figure contains the two Feynman diagram not displayed in Fig. 2.13

where now, the tensor Aµν
1 (p, l, q, kπ) is

Aµν
1 (p, l, q, kπ) = Tr

[
Jµ

n→pπ0(p, q, kπ)(/p+M)(q/ − /kπ)γ5(/p+ q/− /kπ +M)
]
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n→pπ0(p, q, kπ)γ0(/p+ q/− /kπ +M)
]

(2.74)

And this last tensor can be decomposed in a symmetric part which is real
plus an antisymmetric part which is pure imaginary. In other words, this
tensor fulfills the condition expressed by Eq. (2.25)10.
Analogously, we can do the same trick done in eq. (2.70) for one of the
Feynman diagrams of Fig. 2.14. When we sum the two contributions to the
W -selfenergy coming from the diagrams in Fig 2.14, we obtain
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2 (p, l, q, kπ) (2.75)

10This will be shown in Appendix C.
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Where now, the tensor Aµν
2 (p, l, q, kπ) is given by the following expression
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(2.76)

And again, this last tensor fulfills the requirement expressed by Eq. (2.25).
If we sum the four contributions to theW -selfenergy, then we get the general
expression
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(2.77)

If we take average momenta for both hole nucleon momenta 〈~p〉 and
〈
~l
〉
,

then we can take the tensors Aµν out of the integrals in d4p and d4l and we
obtain two relativistic Lindhard functions in this approximation. The final
result for the W -selfenergy is
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(2.78)

where in the tensors 〈Aµν
i 〉 we have performed an average of the whole trace,

i.e, we have numerically performed the integral over the angle formed by the
hole momenta (~p,~l) and ~q, to avoid all the pathologies related to the NP
amputated amplitude and the p + q or l + q nucleon propagator hidden in
the amputated amplitudes. We have also considered the improvement of
multiplying the amputated amplitudes (∆P, C∆P, NP and CNP) by the
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suitable correction factor of Eq. (2.68) that takes into account, besides
pion exchange, the Short Range Correlations driven by the Landau-Migdal
parameter g′l. As in Ref. [43] for the inclusive electron-nucleus case, we
have only considered the contributions stemming from the longitudinal part
of the effective spin-isospin ph-ph interaction and we have neglected those
induced by the transverse one.
Now, from eq. (2.78), we can separate the W -selfenergy into its symmetric
part and its antisymmetric one and then apply the Cutkosky’s rules to
obtain the imaginary part of the selfenergy. The final result for the hadronic
tensor is

W µν
2p2h−2b = −θ(q0)

(
gA

2fπ

)2 4
√

2

64M4

∫
d3r

2π

∫
d4kπ

(2π)4
D0(kπ)D0(q − kπ)

× θ(q0 − k0
π)θ(k0

π)ImŪn,p
R (q − kπ)

(
ImŪn,n

R (kπ) 〈Aµν
2 〉

− ImŪp,p
R (kπ) 〈Aµν

1 〉
)
F 2

π (kπ)F 2
π (q − kπ) (2.79)

where now the pion form factors F 2
π (kπ) and F 2

π (q− kπ) appear because the
pions are off-shell.

2p2h mechanisms driven by the transverse part of the effective
spin-isospin ph-ph interaction

In this subsection we evaluate the contribution to the weak nuclear response
of the 2p2h absorption terms driven by the transverse part of the effec-
tive spin-isospin ph-ph potential used in previous studies of electron [43],
photon [123] and pion [124–128] interactions with nuclei. In the model of
Ref. [124], this transverse interaction arises from ρ-exchange modulated by
SRC. The major difficulty here, as compared with the previous works men-
tioned above, arises from the fact that we are using a relativistic description
of the weak transition process. Thus, the first step is to model NNρ and
N∆ρ relativistic Lagrangians, which give rise, in the non-relativistic limit,
to the transverse potential of Eq. (2.66). A convenient set of interaction
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Lagrangians is,

LNNρ =
fπNN

mπ

√
CρΨ̄(x)σµν (∂µ~ρ ν(x) · ~τ) Ψ(x) (2.80)

LN∆ρ = −if
∗
πN∆

mπ

√
CρΨ̄ν(x)γ5γµ

(
~T † · (∂µ~ρ ν(x) − ∂ν~ρ µ(x))

)
Ψ(x) + h.c.

(2.81)

where Ψ =

(
p
n

)
is the isospin doublet that contains the nucleon fields,

~ρ ν is the ρ-meson Proca field11, Ψν =




∆++

∆+

∆0

∆−




ν

is the isospin 4-plet that

contains the Rarita-Schwinger Jπ = 3/2+ fields for the ∆, ~T † is the isospin
transition operator12, ~τ are the isospin Pauli matrices and f∗πN∆ = 2.14.
Next, we consider the W+N → N ′ρ process and we find the NP, CNP,
∆P and C∆P amputated amplitudes obtained from the above Lagrangians.
The Feynman diagrams for these four amplitudes are depicted in Fig. 2.15.
We will denote the amputated amplitudes by tµα

Ai
. They are defined by their

relation to the full amplitudes

tµα
cc+|i = ū(~p ′)tµα

Ai
(p, q, p′ = p+ q − k, k)u(~p), i = ∆P,C∆P,NP,CNP

(2.82)
where, if one wants to calculate the full amplitude, the Lorentz index µ
must be contracted with the polarization vector of the W (ǫµ(~q)) and the
Lorentz index α must be contracted with the ρ-meson polarization vector

11Here ρν
− = (ρν

x− iρν
y)/

√
2 is the field that creates a ρ− from the vacuum or annihilates

a ρ+. And ρν
0 = ρν

z is the field that creates or annihilates a ρ0.
12It is a vector under isospin rotations and its Wigner-Eckart irreducible matrix element

is taken to be one.
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N(p)

W+(q)

µ
α

ρ(k)

N(p′)∆

W+(q)

µ
α ρ(k)

N(p) ∆ N(p′)

N(p)

W+(q)

µ α

ρ(k)

N N(p′)

W+(q)

µ
α

ρ(k)

N(p) N N(p′)

Figure 2.15: Feynman diagrams for the process W+N → N ′ρ. First row,
from left to right, ∆P and C∆P diagrams. Second row, also from left to
right, NP and CNP diagrams

(ǫ∗α(~k)). We find the following amplitudes

tµα
∆P = −

√
Cρ

f∗πN∆

mπ

√
3C∆P cos θc

p2
∆ −M2

∆ + iM∆Γ∆

× ū(~p ′)γ5

(
/kgνα − kνγα

)
Pνβ(p∆)Γβµ(p, q)u(~p), p∆ = p+ q

tµα
C∆P =

√
Cρ

f∗πN∆

mπ

1√
3
CC∆P cos θc

p2
∆ −M2

∆ + iM∆Γ∆

× ū(~p ′)γ0Γνµ†(p′,−q)γ0Pνβ(p∆)γ5

(
/kgβα − kβγα

)
u(~p), p∆ = p′ − q

tµα
NP = −i

√
Cρ

gA√
2fπ

CNP cos θc

(p + q)2 −M2 + iǫ

× ū(~p ′)σναkν

(
/p+ q/+M

)(
V µ

N (q) −Aµ
N (q)

)
u(~p)

tµα
CNP = −i

√
Cρ

gA√
2fπ

CCNP cos θc

(p − k)2 −M2 + iǫ

× ū(~p ′)
(
V µ

N (q) −Aµ
N (q)

)(
/p− /k +M

)
σναkνu(~p) (2.83)

The isospin coefficients are:

C∆P =

(
1 for p ρ+

1
3 for n ρ+

)
(2.84)
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CC∆P =

(
1 for p ρ+

3 for n ρ+

)
(2.85)

CNP =

(
0 for p ρ+

1 for n ρ+

)
(2.86)

CCNP =

(
1 for p ρ+

0 for n ρ+

)
(2.87)

In Eqs. (2.83), Γ∆ is the width of the ∆ resonance; Pνβ(p∆) is the spin-3
2

projection operator defined in eq. (2.24); Γβµ is the weak N −∆ transition
vertex already defined in eq. (2.20). And finally, V µ

N (q) and Aµ
N (q) are the

weak vector and axial-vector nucleon currents, respectively; and they can
be found in Eq. (34) of Ref. [47]. We are going to use the vector and axial
form factors given in this last reference.
The weak currents are related among themselves. Only two of them are
independent. We are going to take as the independent currents those that
connect the states p → pρ+ and n → nρ+. We will also need the current
that connects the states n → pρ0. This last current is related to the two
previous ones by the relation [47]:

〈
p ρ0|jµcc+(0)|n

〉
= − 1√

2

[〈
p ρ+|jµcc+(0)|p

〉
−
〈
n ρ+|jµcc+(0)|n

〉]
(2.88)

where the currents jµcc+|i are related to the amplitudes tµα
i by

jµcc+|i = tµα
i ǫ∗α(~k), i = ∆P,C∆P,NP,CNP (2.89)

An important property of the amplitudes given in Eq. (2.83) is the fact
that they are orthogonal to k (four-momentum of the ρ-meson). Indeed, we
have

tµα
i (p, q, k)kα = 0, i = ∆P,C∆P,NP,CNP (2.90)

With all these properties for the amputated amplitudes of Eq. (2.83), we can
calculate the contribution to the W -selfenergy coming from the Feynman
diagram depicted in fig. 2.16. Let us assume that it is a ρ+ which excites
a ph and let us assume that in the fermion loop in the left of fig. 2.16 we
have a proton hole. With this, applying the Feynman rules, we obtain for
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ρ

ρW

W

Figure 2.16: Two particle-two hole W -selfenergy Feynman diagram driven
by ρ-exchange. The cut (dotted line) that places the 2p2h on-shell is also
displayed. The empty circle contains the direct and crossed nucleon and
∆-pole terms of the W+N → N ′ρ amplitude.

the W -selfenergy

−iΠµν(q) = −
(

g

2
√

2

)2 (√
2
)2 f2

πNN

m2
π

Cρ

∫
d4p

(2π)4

∫
d4k

(2π)4

∫
d4l

(2π)4

× Tr
[
T µα

p→pρ+ (/p+M) γ0T νη†
p→pρ+γ

0 (/p+ q/− /k +M)
]

× Tr
[
σβ′βkβ′ ( l/+M) σδ′δkδ′ ( l/+ /k +M)

]
gαβgηδ

× D2
0ρ(k)G(p; ρp)G(p + q − k; ρp)G(l; ρn)G(l + k; ρp) (2.91)

where

T µα
p→pρ+ =

∑

i

tµα
Ai

i = ∆P,C∆P,NP,CNP for p→ pρ+ (2.92)

D0ρ(k) =
1

k2 −m2
ρ

(2.93)

Some remarks must be here: Firstly, the factor
(√

2
)2

appears because it is
a ρ+ which excites the second ph. It comes from isospin counting. Secondly,
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the second trace in Eq. (2.91) comes from the trace of the second fermion
loop in the right-hand side of fig. 2.16. And thirdly, the factor gαβgηδ is
the only one which survives from the product of the tensorial components

of the ρ-meson propagators
(
−gαβ +

kαkβ

m2
ρ

)(
−gηδ +

kηkδ

m2
ρ

)
13.

The second trace in Eq. (2.91) is a symmetric Lorentz tensor given by

Bβδ(k, l) = −4kβkδM2 + 4gβδk2M2 − 8gβδ(k · l)2 − 8lβ lδk2

+ 4kβkδ(k · l) + 8lβkδ(k · l) + 8kβlδ(k · l) − 4gβδk2(k · l) − 4kβkδl2

+ 4gβδk2l2 (2.94)

It accomplishes that is orthogonal to k. Indeed, we have the following
relations:

Bβδ(k, l) · kβ = 0 (2.95)

Bβδ(k, l) · kδ = 0 (2.96)

If now we assume that the second pair ph is on-shell, i.e

l2 = M2, (l + k)2 = M2 =⇒ k · l = −k
2

2
(2.97)

Then the tensor reduces to

gαβgηδB
βδ(k, l) ≡ Bαη(k, l) = −8kαkηM

2 + 8gαηk
2M2 − 2kαkηk

2

− 4lαkηk
2 − 4kαlηk

2 − 8lαlηk
2 (2.98)

It can be demonstrated that the tensor

Aµν(p, q, k, l) ≡ Tr
[
T µα (/p+M) γ0T νη†γ0 (/p+ q/− /k +M)

]
Bαη (2.99)

accomplishes the fundamental relation expressed by Eq. (2.25).
In the contraction of Eq. (2.99), only the terms that do not contain either
a kα or a kη survive, so we are left with the following reduced expression

Aµν(p, q, k, l) = Tr
[
T µα (/p+M) γ0T νη†γ0 (/p+ q/− /k +M)

]
8k2M2

×
(
gαη − lαlη

M2

)
(2.100)

13One should remember that T µαkα = 0, and the same for T νη†kη.
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And neglecting the contribution coming from the contraction with
lαlη
M2 , Eq.

(2.91) reads

−iΠµν(q) = −
(

g

2
√

2

)2 (√
2
)2 f2

πNN

m2
π

Cρ

∫
d4p

(2π)4

∫
d4k

(2π)4
G(p; ρp)

× G(p + q − k; ρp)D
2
0ρ(k)8k

2M2Aµν
p→pρ+(p, q, k)

×
∫

d4l

(2π)4
G(l; ρn)G(l + k; ρp)

︸ ︷︷ ︸
(2.101)

where the expression over the symbol ︸︷︷︸ is i
8M2 Ū

n,p
R (k). And now

Aµν
p→pρ+(p, q, k) = gαηTr

[
T µα

p→pρ+ (/p+M) γ0T νη†
p→pρ+γ

0 (/p+ q/− /k +M)
]

(2.102)
Therefore, the final result is

−iΠµν(q) = (−i)
(

g

2
√

2

)2 (√
2
)2 f2

πNN

m2
π

Cρ

∫
d4k

(2π)4
D2

0ρ(k)k
2Ūn,p

R (k)

×
∫

d4p

(2π)4
G(p; ρp)G(p + q − k; ρp)A

µν
p→pρ+(p, q, k) (2.103)

If one compares the above equation with Eq. (2.52) one sees the following
replacements

1. A minus global sign with respect to the 2p2h selfenergy diagram with
pions.

2. gA

2fπ
is replaced by fπNN

mπ

√
Cρ.

3. kπ −→ k,

4. D0(kπ) is replaced by D0ρ(k).

5. And finally Aµν
p→pπ+ is replaced by Aµν

p→pρ+

Therefore, summing all the isospin channels, the result will be the same
than in Eq. (2.56) with the above replacements and a minus global sign
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with respect to Eq. (2.56).

W µν
2p2h−t(q) = θ(q0)

1

M2

f2
πNN

m2
π

Cρ

∫
d3r

2π

∫
d4k

(2π)4
k2D2

0ρ(k)F
4
ρ (k)

× θ(k0)θ(q0 − k0)

{
ImŪn,p

R (k)
[
ImŪp,p

R (q − k)Aµν
p→pρ+

+ ImŪn,n
R (q − k)Aµν

n→nρ+

]
+

1

2
ImŪn,p

R (q − k)

×
[
ImŪn,n

R (k) + ImŪp,p
R (k)

]
Aµν

n→pρ0

}
(2.104)

The form factor F 4
ρ (k) appears because the ρ-mesons are off-shell. Also

here, when placing the 2p2h excitations on-shell, we have that the nucleon
propagator with momentum p+ q (this is part of the amputated amplitude
tµα
ANP

) can be placed on-shell for a virtual W . Thus, we perform an angular
average of the traces that appear in the evaluation of the diagram, namely

Aµν
N→N ′ρλ =

1

2

∫ 1

−1
dµ gαηTr

[
T µα

N→N ′ρλ (/p+M) γ0T νη†
N→N ′ρλγ

0 (/p+ q/− /k +M)
]

(2.105)

with µ = cos(~̂p, ~q). To simplify the numerical integration, we have given a
small width (∼ 10 MeV) to the p+ q nucleon propagator and we have used
an average for the modulus of ~p and fixed the (~p, ~q)-plane, avoiding thus to
perform two nested integrals.
We could have deduced Eq. (2.104) by approximating the ph ρ-selfenergy
(right-hand part of the diagram depicted in Fig. 2.16) by

Παβ(k) =

(
−gαβ +

kαkβ

k2

)
Π̂λ(k), Π̂λ(k) = F 2

ρ (k)Cρ
f2

πNN

m2
π

~k2Uλ(k)

(2.106)
with λ the charge of the ρ-meson, and Uλ(k) the Lindhard function for a
particle-hole excitation by an object of charge λ: this is, twice Ūp,n

R or Ūn,p
R

for the excitation by a charged ρ-meson or Ūp,p
R + Ūn,n

R for the excitation by
a neutral ρ-meson.
Eq. (2.106) is obtained by neglecting higher order terms, O(~l2/M2), being
~l = ~p, ~q or ~k. This is consistent with the non-relativistic reduction that leads
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to the effective potentials given in Eqs. (2.65) and (2.66).
As previously done in the case of the 2p2h mechanisms driven by the longi-
tudinal spin-isospin ph-ph interaction, we replace in Eq. (2.104),

ImŪN,N ′

R (k) ⇒ ImŪN,N ′

R (k)

|1 − VtU(k)|2
(2.107)

By including the non-relativistic Lindhard function for ph + ∆h excitations
in the denominator, we replace the ph excitation of the right-hand in Fig.
2.16 by a series of RPA excitations through ph and ∆h excitations, driven
by Vt.
We also multiply every amputated amplitude tµα

Ai
by a suitable factor which

allows us to replace the ρ-exchange interaction in Fig. 2.16 by the transverse
part (Vt) of the effective ph-ph potential.

tµα
Ai

⇒ tµα
Ai

×
(

1 +
g′t

F 2
ρ (k)D0ρ(k)Cρ

~k2

)
(2.108)

2.2.6 Final remarks

Some remarks are here in order. We must be careful to avoid double count-
ing. Indeed, for instance, the contribution to the hadron tensor of the ∆h
excitation term arises from the imaginary part of the ∆ propagator and in
particular from the ∆-width, see Eq. (2.29). One of the terms implicit in
Fig. 2.6 (depicted diagrammatically in Fig. 2.17(a)) is the one that picks
up the ∆P term both in Jµ and in Jν†. This term gives precisely the same
contribution than the bare ∆h diagram (Fig. 2.4) plus some medium cor-
rections that take into account the Pauli blocking effects. Thus, if we would
naively add it to the hadronic tensor, the contribution of Eq. (2.29) would
be counted twice. Indeed, the term of Fig. 2.17(a) can be cast in the form
of the diagram of Fig. 2.4, but with a ∆-selfenergy insertion constructed
from a pion loop. When the pion is put on the mass shell to build the
hadron tensor, we obtain the ∆-width and thus qualitatively the equiva-
lence is shown14. In a similar way, the diagram of Fig. 2.17(b) is one of the
terms implicit in the diagram of Fig. 2.7 that produces a 2p2h excitation.
However, given the importance of the ∆-pole contribution and since the ∆

14In Appendix D, this equivalence will be shown quantitatively.
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(e)

   

(a) (c)(b)

(d)

Figure 2.17: Diagrammatic representation of the different contributions of
the ∆h weak-nuclear excitation term.
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properties are strongly modified inside the nuclear medium [43,55,124,126,
132–134], a more careful treatment of the ∆ mechanisms is advisable. This
implies some additional nuclear corrections to eq. (2.29) to include the full
effect of the selfenergy of the ∆ in the medium Σ∆(ρ(~r)) in a systematic
manner. In addition, these correction provide genuinely new contributions
to the hadronic tensor (e.g. 3p3h mechanisms). Here, we follow the same
approach as in Ref. [43], which is based on Refs. [126, 127, 131]. In the
nuclear medium, the resonance selfenergy is modified because of several ef-
fects such as Pauli blocking of the final nucleon and absorption processes:
∆N → NN , ∆N → NNπ, or ∆NN → NNN . This is done using a ph-ph
interaction that includes, besides pion exchange, short range correlations, a
transverse channel driven by ρ-exchange and a RPA re-summation.
Following this approach, in the ∆-propagator, we approximate

1

p2
∆ −M2

∆ + iM∆Γ∆
∼ 1

(W +M∆)(W −M∆ + iΓ∆/2)
(2.109)

with W 2 = p2
∆. In the propagator of the right-hand side of the above

equation, we make the substitution: Γ∆/2 → ΓPauli
∆ /2− ImΣ∆ and we take

ImΣ∆(ρ(~r)) and ΓPauli
∆ /2 as follows. Firstly, the Pauli blocking of the πN

decay reduces the Γ∆ free width to ΓPauli
∆ , which can be found in Eq. (15)

of Ref. [127]. Next, the imaginary part of the selfenergy accounts for the
diagrams depicted in Fig. 2.17, where the double dashed line stands for
the effective spin-isospin interaction, while the wavy line accounts for the
induced interaction. The effective spin-isospin interaction is originated by
π and ρ exchange in the presence of short range correlations. It is obtained
by substituting [126,127,131]

(
fπNN

mπ

)2

q̂iq̂j~q
2D0(q) → q̂iq̂jVl(q) + (δij − q̂iq̂j)Vt(q) (2.110)

with q̂i = qi/|~q|. The induced interaction accounts for the series of diagrams
depicted in Fig. 2.18. There is an RPA sum through particle-hole and ∆h
excitations and it is readily obtained as

Vind = q̂iq̂j
Vl(q)

1 − U(q)Vl(q)
+ (δij − q̂iq̂j)

Vt(q)

1 − U(q)Vt(q)
(2.111)
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+ ...

= + + +

+ +

Vind V , V l      t 

Figure 2.18: Diagrammatic representation of the induced interaction

where U(q) is the non-relativistic Lindhard function por ph + ∆h excita-
tions15. The evaluation of Σ∆ was done in Ref. [131]. The imaginary part
of Σ∆ can be parameterized as

−ImΣ∆(ρ(~r)) = CQ

(
ρ

ρ0

)α

+ CA2

(
ρ

ρ0

)β

+ CA3

(
ρ

ρ0

)γ

(2.112)

where the different coefficients are given16 in Eq. (4.5) and Table 2 of
Ref. [131]. The separation of terms in Eq. (2.112) is very useful because the
term CQ comes from the ∆N → NNπ process (diagrams (c) and (d) of Fig.
2.17 when the lines cut by the dotted line are placed on-shell, and hence
this term is related to the (W ∗, π) channel). While, CA2 and CA3 come from
diagrams (b) and (e) respectively and are related to two (W ∗NN → NN)

15The different couplings for N and ∆ are incorporated in UN and U∆ and then the
same interaction strenghts Vl and Vt are used for ph and ∆h excitations [124].

16The parameterizations are given as a function of the kinetic energy in the laboratory
system of a pion that would excite a ∆ with the corresponding invariant mass and are
valid in the range 85 MeV < Tπ < 315 MeV. Below 85 MeV the contributions from CQ

and CA3
are rather small and are taken from Ref. [127], where the model was extended

to low energies. The term with CA2
shows a very mild energy dependence and we still

use the parameterization from Ref. [131] even at low energies. For Tπ above 315 MeV
we have kept these selfenergy terms constant and equal to their values at the bound.
The uncertainties in these pieces are not very relevant there because the ∆ → Nπ decay
becomes very large and absolutely dominant.
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Figure 2.19: Irreducible pieces in the ∆h channel from the ∆h interaction

and three (W ∗NNN → NNN) body absorption. Therefore, the separation
in this formula allows us to separate the final cross section into different
channels.
To avoid double counting, we must substract the contribution of the ∆P −
∆P diagram of Fig. 2.17(a) from Eq. (2.45), because this has been taken
into account through the ΓPauli

∆ piece of the ∆ selfenergy. We must also sub-
stract the contribution of the ∆P − ∆P diagram of Fig. 2.17(b) from Eqs.
(2.61) and (2.104), because these terms were already taken into account in
the evaluation of the CA2 contribution of the ∆-selfenergy [131].
To end this subsection, we would like to devote a few words to the real part
of the ∆-selfenergy and the RPA sum of ∆h excitations shown in Fig. 2.19.
Both of them produce effects on the nuclear response to the weak probe that
partially cancel out. In Ref. [131], the dispersive contributions to ReΣ∆ as-
sociated to the diagrams that gave rise to ImΣ∆ were also computed. There,

it was found ReΣ
(0)
∆ ∼ −50ρ/ρ0 [MeV] at Tπ = 50 MeV and a smooth de-

pendence on the pion energy. In principle, ReΣ
(0)
∆ could have been taken

into account by replacing M∆ →M∆ +ReΣ
(0)
∆ in the particle propagator of

the right-hand side of Eq. (2.109). On the other hand, it is easy to realize
that the RPA sum of ∆h excitations, shown in Fig. 2.19 can be cast as a
contribution to the real part of the ∆-selfenergy [43]. Actually, the latter
depends on the particular component of the hadron tensor which is being
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evaluated. Thus, for instance, the RPA series depicted in Fig. 2.19 can be
taken into account, when computing W xx

∆h or W yy
∆h (transverse components

to the direction of the W -boson) by replacing ReΣ
(0)
∆ by ReΣ

(0)
∆ + 4ρVt/9.

This latter sum, in good approximation, is positive for the whole range of
energies studied here. This was the situation for the inclusive (e, e′) nuclear
reaction studied in Ref. [43], since there, the excitation of the ∆ resonance
by the virtual photon selected the transverse mode of the RPA series (see
discussion of Eq. (44) in Ref. [43]). However, when the longitudinal com-
ponent W zz

∆h is evaluated, the longitudinal part of the effective spin-isospin
interaction is selected and now, this RPA sum is taken into account by

substituting ReΣ
(0)
∆ by ReΣ

(0)
∆ + 4ρVl/9, which shows a more pronounced

q2-dependence than the combination that appeared in the RPA renormaliza-
tion of the transverse components of the hadronic tensor. Indeed, it turns

out that the ReΣ
(0)
∆ + 4ρVl/9 combination does not have a well defined sign

for the whole kinematical range of energies studied in this work. Setting to
M∆ the position of the pole of the ∆-propagator, or changing it by adding or
substracting to M∆ about 30 MeV, as it could be inferred from the typical

values that ReΣ
(0)
∆ +4ρVl(t)/9 takes for the relevant kinematics to this work,

leads to trivial shifts in the position of the ∆-peak, moderately changes in
the strength (around 20 %) at the maximum and very tiny changes in the
q0-differential shape. Of course, all these effects induced by the RPA resum-
mation might be properly taken into account, as it was done for the case of

the QE-region17 in Ref. [38], but they, in conjunction with ReΣ
(0)
∆ , would

induce changes smaller than both, the precision in the current experimental
determination of cross sections, and the uncertainties due to our lack of a
precise knowledge of the axial N − ∆ transition form factor CA

5 [99]. For
simplicity, in this work we will not renormalize the real part of the position
of the ∆-peak, which eventually could be studied in the future when more
accurate measurements will become available.

17For QE kinematics, taking into account properly the RPA effects is much more im-
portant [38] than in the ∆-region, since the cancellation of their effects with the difference
between particle and hole selfenergies is much less effective.
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2.2.7 CC antineutrino induced reactions

If we now focus in the antineutrino induced nuclear reaction

ν̄l(k) +AZ → l+(k′) +X (2.113)

and we calculate the selfenergy of the antineutrino, we will obtain the same
equations than in the previous sections with the following changes:

1. A change of the sign for the antisymmetric part of the leptonic tensor
(Lµν

a ).

2. To relate the W−N → N ′πλ amplitudes to the W+ ones by means of
the equations (11), (12) and (13) of Ref. [47].

3. In the asymmetrical Lindhard functions, make the replacement p↔ n,
π+ → π− and π0 → π0.

4. We take the ν̄-QE cross sections from Ref. [38].

2.3 Results

We will mainly focus here in the dip and ∆−peak regions, since the QE
contribution was discussed at length in Ref. [38]. In Fig. 2.20, we show re-
sults for both muon neutrino (top) and antineutrino (bottom) induced CC
differential cross sections at 30 degrees as a function of the energy trans-
ferred to the nucleus (16O). The incoming neutrino (anti neutrino) energy is
750 MeV. We clearly observe both the ∆(1232) and the QE peaks; for this
scattering angle, the QE contribution turns out to be significantly larger
than that of the ∆ resonance. We split the full contribution into the QE
and non QE (∆+1p1h1π+ 2p2h) parts. General features are the same for
both neutrino and antineutrino induced cross sections, and the main differ-
ence is an homogeneous reduction in the size of the differential cross section.
For comparison, in the upper panel (blue dashed-dotted line) we also display
some results from Ref. [39], obtained within the Giessen Boltzmann-Uehling-
Uhlenbeck (GiBUU) framework, which takes into account various nuclear
effects: the local density approximation for the nuclear ground state, mean-
field potentials, and in-medium spectral functions, but does not those due
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Figure 2.20: Muon neutrino (up) and antineutrino (down) CC differential
cross section dσ

dΩdEµ
in oxygen, at 30 degrees of scattering angle in 16O and

with an incident neutrino energy of 750 MeV, plotted against the transferred
energy to the nucleus. Different contributions are displayed, standing the
solid lines for our full model results. Besides in the upper panel, we also
show results (blue dash-dotted line) from Ref. [39] and obtained within the
GiBUU framework.
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to RPA correlations. We note first, some discrepancies between these re-
sults and ours in the QE region, which origin can be traced back to the
implementation of RPA corrections in our scheme [38]. Indeed, the found
differences (small shift in the position and reduction in size (about 25%) of
the QE peak) are qualitatively identical to those existing between data and
GiBUU predictions for the case of inclusive electron cross section at a simi-
lar kinematics (incident electron energy of 700 MeV and scattering angle of
32 degrees), and showed in the upper panel of Fig. 9 of Ref. [39]. On the
other hand, in this latter figure can be also appreciated the limitations of the
GiBUU model to describe the dip region. Indeed, we see in Fig. 2.20 that
in the dip region, our model predicts also larger cross sections than those
obtained within the GiBUU scheme. This is due to the 2p2h mechanisms
of Figs. 2.7 and 2.16 included in our model. Actually, these contributions
make also our cross section at the ∆−peak larger than the one predicted by
the GiBUU model, despite we use a value of CA

5 (0) smaller than that used
in Ref. [39] (1 vs 1.2). For larger scattering angles, the dip-region cross sec-
tion becomes relatively much more important, and thus the inclusion of the
2p2h contributions would turn out to be of larger relevance. This is clearly
appreciated in Fig. 2.21, where we show now results at 60 degrees. In this
figure, and besides the separation between QE and non QE contributions
to the differential cross section, the 2p2h part18 of this latter contribution
is shown (orange double dashed-dotted curves). The blue dash-dotted lines
stand in this figure for the results obtained from only the ∆h weak–nuclear
excitation term of Fig. 2.17(a), neglecting also there, Pauli blocking effects
affecting to the in medium resonance width. We note, that the the system-
atic many body W−absorption modes and the in medium effects considered
here change drastically the nuclear response function in the ∆−peak as well,
and it was also the case in the QE region [38].
The 2p2h cross section accounts for events were the gauge boson is absorbed
by a pair of nucleons, in contrast to QE events for which it is absorbed by
one nucleon, and furthermore no pions are being produced in this first step.
Up to re-scattering processes which could eventually produce secondary pi-
ons, those events will give rise to only one muon to be detected. Thus, they
could be experimentally misidentified as QE events. Yet, 1p1h1π events, in

18A small three body absorption (3p3h) contribution, induced by CA3
in the

∆−selfenergy of Eq. (2.112) is also included under the label 2p2h in Fig. 2.21.
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which the resulting pion from the W absorption is subsequently absorbed
and does not come off the nucleus, could be also misinterpreted as QE events,
if only leptons are being detected. A correct identification of CCQE events,
which is the signal channel in oscillation experiments, is relevant for neu-
trino energy reconstruction and thus for the oscillation result. By looking
at the 2p2h contribution in Fig. 2.20, We see that at least about 10% of the
quasielastic cross section might be misidentified in present-day experiments
and need to be corrected for by means of event generators. As mentioned
above, 1p1h1π mechanisms followed by the absorption of the resulting pion,
will even make worse the situation [135].
In Fig. 2.22, we show CC q2 differential cross sections in carbon and for an

incident energy of 1 GeV. We observe that the 2p2h contribution is sizeable
for both, neutrino and antineutrino induced reactions, and that it shows a
less pronounced q2 dependence than the QE or the ∆+1p1h1π components
of the total result. On the other hand, the antineutrino distribution is much
more narrower than the neutrino one. Neglecting lepton masses, both dis-
tributions should be equal at q2 = 0, and since antineutrino cross sections
are smaller than neutrino ones, is reasonable to expect ν distributions to be
wider than ν̄ ones.
The MiniBooNE collaboration has measured [40] the muon neutrino CCQE

cross section on 12C. The flux-unfolded results as a function of the neutrino
energy are depicted in the upper panel of Fig. 2.23, together with differ-
ent predictions from the scheme presented here. The first observation is
that our QE curve misses the data-points, being our predicted cross section
significantly smaller than those reported by the MiniBooNE collaboration.
Actually in [40], and to achieve a reasonable description of the data, an
unexpectedly high effective axial mass M eff

A (entering in the axial-vector
WNN form-factor) of 1.35 GeV had to be used in the relativistic FG model
implemented in the NUANCE event generator employed by the MiniBooNE
collaboration. This value of MA is significantly larger than the world av-
erage value MA = 1.03 GeV. It is interesting to note, however, that in
Ref. [40] is also pointed out the NOMAD [120] and LSND [136] high energy
(Eν > 4 GeV) CCQE cross sections are better described with the world
average value for MA. The situation become even more worrying, after the
work of O. Benhar et al. [118]. The authors of that work find that their the-
oretical approach based on the impulse approximation and realistic spectral
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Figure 2.21: Muon neutrino (up) and antineutrino (down) CC differential
cross section dσ

dΩdEµ
in oxygen, at 60 degrees of scattering angle in 16O and

with an incident neutrino energy of 750 MeV, plotted against the transferred
energy to the nucleus. Different contributions are displayed, standing the
solid lines for our full model results.
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Figure 2.22: Muon neutrino (up) and antineutrino (down) CC differential
cross section dσ

dQ2 in carbon for an incident neutrino energy of 1 GeV (Q2 =

−q2). Different contributions are displayed, standing the solid lines for our
full model results.
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functions, successfully applied to QE electron scattering, fails to reproduce
the CCQE neutrino-nucleus cross section, unless the value of the nucleon
axial mass resulting from deuteron measurements is significantly increased.
In addition, they also rule out the possibility, advocated in Ref. [40], of
interpreting the large MA resulting from the MiniBooNE analysis as an ef-
fective axial mass, modified by nuclear effects beyond the FG model [137].
Actually, in [118], it is suggested that the same many body techniques suc-
cessfully applied in QE electron-nucleus scattering are not able to explain
neutrino induced cross sections and it is even argued that the development
of a new paradigm, suitable for application to processes in which the lepton
kinematics is not fully determined, will be required.
Our results do not support this last statement/interpretation at all, and
rather support the picture that emerges from the works of M. Martini et
al. [44,45]. These latter works, in our opinion, constituted a significant step
forward to clarify the situation. As mentioned above, in the MiniBooNE
analysis, ejected nucleons are not detected and the QE cross section is de-
fined as the one for processes in which only a muon is detected in the final
state. The MiniBooNE analysis of the data corrects (through a Monte Carlo
estimate) for events, where in the neutrino interaction a pion is produced,
but it escapes detection because it is reabsorbed in the nucleus, leading to
multinucleon emission. However, in [44, 45] it is pointed out that 2p2h
or 3p3h mechanisms are susceptible to produce an apparent increase in the
“QE” cross section, since those events will give rise to only one muon to be de-
tected, and the MiniBooNE analysis does not correct for them. Within the
scheme followed by Benhar and collaborators in Ref. [118], the occurrence
of 2p2h final states is described by the continuum part of the spectral func-
tion, arising from nucleon-nucleon correlations, and there, this contribution
is found to be quite small (less than 10% of the integrated spectrum). This
is not surprising, since our QE results (dashed line) in the upper panel of
Fig.2.23 contain also this contribution19, and as we mentioned above we un-
derestimate the data. However, the 2p2h contribution considered in [118] is
far from being complete and it corresponds only to the many body diagram
depicted in Fig. 2.10. Here, we compute all the contributions contained in

19The CCQE cross sections calculated in Ref. [38], were obtained using both particle and
hole dressed propagators, determined from a realistic in medium nucleon selfenergy [138],
and thus account for the spectral function effects considered in [118].
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the generic diagrams of Figs. 2.7, 2.13 and 2.16, as it was previously done
in Ref. [43] for electron scattering, obtained from a realistic model for the
weak pion production off the nucleon. When these latter contributions are
added to the QE prediction of Ref. [38], we obtain the solid green line in the
upper plot of Fig. 2.23 in a better agreement with the MiniBooNE data.
Note that the spectral function model of Ref. [118], though successful to
account for the QE electron–nucleus scattering, at intermediate energies,
badly fails to describe both the dip and the ∆−regions, as can be appre-
ciated for instance in Figs. 5-8 of Ref. [83] or in the Fig. 1 of Ref. [118].
This is because the lack of a proper model to account for the absorption of
the virtual photon for two or three nucleons in this model. As commented
before, these multinucleon knockout events are likely part of the CC“QE”
cross section measured by MiniBooNE, and that naturally explains the fail-
ure of the scheme of Ref. [83].
Coming back to the upper panel of Fig. 2.23, there we also display the band
of theoretical uncertainties affecting to our results. To estimate this band,
we have summed in quadratures a 15% relative error of our QE results, as
discussed in Ref. [129], with the error induced by the uncertainties on the
parametrization of the CA

5 (q2) form factor used here (set IV in Table I of
Ref. [99]). Once our theoretical uncertainties are taken into account, we
find a reasonable agreement with the MiniBooNE data. We would like to
stress that we have not fitted here any parameter, and that we have just
extended our previous work on electron-scattering of Ref. [43] to the study
of CCQE cross sections.
In Fig. 2.23, we also show the results of Martini and collaborators (blue
dashed-dotted line), taken from the QE+np-nh RPA curves of Fig. 5 of
Ref. [44], which nicely fall within our band of theoretical predictions. Details
of the model used by M. Martini and collaborators can be found in Ref. [45].
The evaluation of the nuclear response induced by this 2p2h mechanisms
carried out in Ref. [45] is approximated, as the same authors recognize. The
contributions in [45] that can be cast as a ∆−selfenergy diagram should be
quite similar to those obtained here in Subsect. 2.2.6, since in both cases
the results of Salcedo and Oset of Ref. [131] for the ∆−selfenergy are being
used. However, some other contributions included here are, either not con-
sidered or not properly taken into account in [45]. For example, we believe
that none of diagrams of Fig. 2.13 or those in Fig. 2.7 involving the CT ,
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PP and PF vertices of Fig. 2.5 have been considered in the work of Martini
and collaborators. Moreover, the NP − NP , CNP − CNP , NP − CNP ,
NP−∆P , NP−C∆P , CNP−∆P , CNP−C∆P and ∆P−C∆P diagrams
implicit in Fig. 2.7, are not directly evaluated in [45], but instead there, a
rough indirect estimate is given for them by relating their contribution to
some absorptive part of the p−wave pion-nucleus optical potential. Given,
all this, we find remarkable the agreement exhibited in Fig. 2.23 between
our results and those previously published in Refs. [44,45].
On the other hand, we see that in our calculation the relative contribution

of the 2p2h mechanisms with respect to the QE cross section, is quite similar
for both neutrino and antineutrino induced processes. Thus, our results do
not support the claims of Ref. [44] of a minor role of the 2p2h mechanisms
in the antineutrino mode.
We should mention that the MiniBooNE collaboration has also published the
flux-integrated CC”QE” double differential cross section d2σ/dEµd cos θµ in
bins of muon energy Eµ and cosine of the muon scattering angle with respect
to the incoming neutrino direction. We must be careful before comparing
with these valuable data. The reason is that the MiniBooNE flux remains
sizeable up to neutrino energies too high to make meaningful the predictions
of the model presented here. Indeed, neutrino energies of 1 or 1.2 GeV at
most, is a clear upper limit of validity of our predictions.

To end this section in Fig. 2.24, we show total and QE inclusive cross
sections for both neutrino and antineutrino modes. In the neutrino case, we
compare our results with the recent data published by the SciBooNE col-
laboration. We display SciBooNE data-sets based on NEUT and NUANCE
Monte Carlo event generators. We find a reasonable description, taking into
account experimental and theoretical uncertainties, until neutrino energies
around 1 GeV. At larger energies, we underestimate the cross section, as
anticipated above. For instance, we see how some 2p2h1π contributions
neglected in our model, become relatively important at Eν = 1 GeV. More
specifically, the blue empty circle is obtained when the ∆−resonance contri-
bution to the imaginary part of U is kept in the evaluation of the imaginary
part of the π− and ρ−selfenergies in Eqs. (2.64) and (2.107). There are some
other W+NN → NNπ mechanisms which should be taken into account, as
well as the contribution of higher resonances or two pion production chan-
nels to end up with a robust and theoretical model above 1 GeV.
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Figure 2.23: Up: Flux-unfolded MiniBooNE νµ CCQE cross section per neu-
tron as a function of neutrino energy (data-points) from Ref. [40], together
with different theoretical predictions from this work. Down: Different the-
oretical calculations for antineutrino cross sections per proton off 12C as
a function of the antineutrino energy. For comparison, in both plots, we
also show the results (blue dashed-dotted line) of Martini and collaborators
taken from Ref. [44].



2.3. RESULTS 103

0 0.25 0.5 0.75 1 1.25
Eν[GeV]

0

0.5

1

1.5

2
σ in

cl
/A

 [1
0-3

8 cm
2 ]

NUANCE based
Full Model (C

5

A
=1.2)

Including 2p2h1π
QE

Full Model (C
5

A
=1.0)

NEUT based

νµ + 
12

C

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Eν[GeV]

0

0.1

0.2

0.3

0.4

σ in
cl
/A

 [1
0-3

8 cm
2 ]

Full Model (C
5

A
=1.0)

QE

νµ + 
12

C
_

(b)

Figure 2.24: Up: Data points stand for the SciBooNE neutrino CC inclusive
interaction cross section per nucleon [106]. We also show our QE and full
model results, and in this latter case the theoretical uncertainty band is
also displayed. At 1 GeV, we depict the full model cross sections obtained
when the GTR value of 1.2 for CA

5 (0) is used instead of 1 (violet triangle),
and when some 2p2h1π contributions (blue empty circle), neglected in the
present work, are taken into account (see text for some more details). Down:
QE and full model predicted antineutrino CC inclusive cross section per
nucleon, as a function of the antineutrino energy.
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2.4 The problem of the axial mass

Elastic neutrino nucleon scattering can be described by three dominant form
factors. The two vector form factors F1,2(Q

2) are well known from electron
scattering (see, e.g. [139], for a review). The axial-vector form factor at
Q2 = 0, GA(0), is determined from neutron β decay. Assuming a dipole
form, the Q2 dependence of GA = GA(0)(1 +Q2/M2

A)−2 can be character-
ized by the axial mass MA. The value MA = 1.03±0.02 is usually quoted as
the world average [85,120], although a recent analysis claims an even smaller
uncertainty (MA = 1.014 ± 0.014 [41]). It should be remarked that there
are two independent experimental sources of information for this parameter,
neutrino/antineutrino induced reactions and pion electroproduction. In the
first case, bubble chamber data for ν-deuterium quasielastic (QE) scattering
play a dominant role. The initial apparent disagreement between the val-
ues of MA obtained with weak and electromagnetic probes was solved after
correcting for hadronic effects [85] and now both sets of data are consistent.
With these ingredients it looked straightforward to describe ν QE scattering
in nuclei with the high precision required by the new and coming neutrino
experiments, that aim to measure parameters such as the θ13 mixing angle
or the leptonic CP-violating phase.
In this context, the charged current QE MiniBooNE data [40] have been
quite surprising. First, the absolute values of the cross section are too large
as compared to the consensus of prior theoretical models [116]. Actually,
the cross section per nucleon on 12C is clearly larger than for free nucleons.
Second, their fit to the shape (excluding normalization) of the Q2 distri-
bution leads to an axial mass, MA = 1.35 ± 0.17 GeV, much larger than
the previous world average. In fact, the large value of MA also implies a
substantial increase in the total cross section predicted by the Relativistic
Fermi Gas (RFG) model used in the analysis, improving the agreement with
the size of the cross section.
Similar results have been later obtained analyzing MiniBooNE data with
more sophisticated treatments of the nuclear effects that work well in the
study of electron scattering. For instance, Refs. [118,137] using the impulse
approximation with state of the art spectral functions for the nucleons fail
to reproduce data with standard values of MA. Large axial mass values have
also been obtained in Ref. [119] in a Fermi gas model and using spectral
functions and in Ref. [117], where data have been analyzed in a relativis-
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tic distorted-wave impulse approximation and with a relativistic Fermi gas
model.
Certainly, there are some caveats that should be kept in mind like the flux
uncertainty or inadequacies on the subtraction of background processes such
as pion production. However, the associated uncertainties have been esti-
mated and are properly included in the error bands provided in Ref. [40]
and in the previously quoted analyses. Nonetheless, being the axial mass
relatively well established by electron data, the failure to describe the Mini-
BooNE data with standard values of MA could point out more to the in-
completeness of the theoretical models than to the need of reconsidering the
value of the parameter.
As a consequence, several new approaches incorporating new mechanisms
that could contribute to the QE signal have been explored. An important
step was undertaken in Refs. [44,45] with the inclusion of two nucleon mecha-
nisms and other multinucleon excitations related to the ∆ resonance. These
works could reproduce the MiniBooNE total QE cross section without mod-
ifying the axial mass, suggesting that a good part of the experimental cross
section was not properly QE scattering. The importance of meson exchange
currents and multinucleon excitations has also been explored in Ref. [36].
The microscopic model for two nucleon excitation and pion production, dis-
cussed in the previous sections, was studied in Ref. [46], supporting the
findings of Refs. [44, 45]. This latter model was a natural extension of the
work in Refs. [38,43,112], where the purely quasielastic contribution to the
inclusive electron and neutrino scattering on nuclei had been analyzed. We
should remark that there are no free parameters in the description of nu-
clear effects, since they were fixed in previous studies of photon, electron,
and pion interactions with nuclei [43,123–127].
In Refs. [44–46] only the total cross section was evaluated and compared
with the so called “unfolded” data of Ref. [40]. Certainly, the experimental
data include energy and angle distributions and therefore provide a much
richer information. Furthermore, the unfolded cross section is not a very
clean observable after noticing the importance of multinucleon mechanisms,
because the unfolding itself is model dependent and assumes that the events
are purely QE. The same limitation occurs for the differential cross section
dσ/dQ2, given that Q2 is also deduced assuming the events are QE. From
that point of view, the best observable to compare with theoretical models,
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and possibly constrain parameters, is the double differential cross section
dσ/dTµdcosθµ because both the muon angle and energy are directly mea-
sured quantities.
For the QE part we will use here the full model of Ref. [38], as discussed in
the previous sections, but without the inclusion of FSI interaction. The rea-
son is that FSI was implemented in a nonrelativistic approach that makes it
unsuitable for the large momenta transferred that are reached in the exper-
iment under study. As it was discussed in [38], this FSI effects are always
smaller than 7 percent for the total cross section20 but could be more im-
portant in the angle and energy distributions. In Ref. [118], it was found
that the main effect of FSI is a shift of ∼ 10 MeV of the QE peak, although
that could depend on details of the model [140].
To estimate the quality of the fit we use the following definition of χ2 that
properly takes into account the global normalization uncertainty (∆λ =
0.107) following the procedure of [141],

χ2 =
137∑

i=1




λ
(

d2σexp

dTµd cos θ

)

i
−
(

d2σth

dTµd cos θ

)

i

λ∆
(

d2σ
dTµd cos θ

)

i




2

+

(
λ− 1

∆λ

)2

, (2.114)

where λ is a global scale. d2σexp

dTµd cos θ is the experimental cross section and

∆
(

d2σ
dTµd cos θ

)
its uncertainty, both taken from Ref. [40]. The sum runs over

the 137 angle-energy bins with a cross section different from zero in Ref. [40].
As a first test, we have minimized χ2 as a function of the axial mass in a sim-
plified version of the model without multinucleon mechanisms and without
RPA. This model should be quite similar to the one originally used in the
MiniBooNE analysis. The main difference being that we use a local rather
than global Fermi gas in the calculation. We obtain MA = 1.32± 0.03 with
χ2 = 35. The fit is obviously very good and in agreement with Ref. [40].
The fitted scale is λ = 0.97+0.03 also supporting MiniBooNE findings, that
a shape-only fit was also consistent with the total cross section.
As a second test, we consider the full model with the same axial mass used
in our previous works (MA = 1.049 GeV). The results corresponding to
these two versions of the model are shown in Fig. 2.25. The full model also

20Thus, the results for the total cross section without FSI are still inside the uncertainty
band of Ref. [46]
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Table 2.1: Fit results for various models. See description in the text.
Model Scale Ma (GeV) χ2/# bins

LFG 0.96±0.03 1.321±0.030 33/137

Full 0.92±0.03 1.077±0.027 50/137

Full, qcut = 400 MeV 0.83±0.04 1.007±0.034 30/123

agrees remarkably well with data. For this case we have χ2 = 53. This
could look much worse, but it is still a very good agreement with χ2 per
degree of freedom much lower than one and it contains no fitted parameter.
Furthermore, the shape is very good and χ2 strongly depends on the nor-
malization (scale and axial mass are strongly correlated). Therefore, from
the quality of the fit only, one could not discriminate between the two ver-
sions of the model. However, we should recall that the RPA correlations
and multinucleon mechanisms correspond to real nuclear effects that must
be incorporated in the models.

Although, we think the consistency of MiniBooNE data with standard
values of MA has been established, one could still go further and try to use
our full model to fit the data letting MA to be a free parameter. We get
MA = 1.077 ± 0.027 and λ = 0.917 ± 0.029 with a strong correlation be-
tween both parameters. For this case, χ2 = 50. The 1 and 2 σ contours are
plotted in Fig. 2.26. This is somewhat large a value for MA but we think,
the uncertainty size could be grossly underestimated. Notice first that, in
the absence of a proper correlation matrix, the experimental uncertainties,
except for the normalization, have been treated as fully uncorrelated. In
addition, one should include in the minimization procedure not only the
experimental but also the theoretical uncertainties related to other param-
eters of the model (e.g. πNN form factors, short range correlations, ∆ in
medium selfenergies, etc.).
The consideration of RPA and multinucleon mechanisms means that the

present model is more appropriate than a pure impulse approximation for
the low momentum transfer region. Nonetheless, at very low momenta a
more detailed treatment of the nuclear degrees of freedom could be neces-
sary. As done in Ref. [119], we could exclude from the analysis the bins with
a large contribution of small momentum transfer. There is some arbitrari-
ness in the actual choice of the cuts, but to allow for an easy comparison
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Figure 2.25: Muon angle and energy distribution dσ/d cos θµdTµ. Different
panels correspond to the various angular bins labeled by their cosinus central
value. Experimental points from Ref. [40]. Green line (no fit) is the full
model (including multinucleon mechanisms and RPA) and calculated with
MA = 1.049 GeV. Red line is best fit (MA = 1.32 GeV) for the model
without RPA and without multinucleon mechanisms.
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Figure 2.27: Muon angle and energy distribution dσ/d cos θµdTµ for 0.80 <
cos θµ < 0.90. Experimental data from Ref. [40] multiplied by 0.9. Axial
mass is fixed to MA = 1.049 GeV.

we have followed the procedure of Ref. [119] and implemented a transfer
momentum threshold qcut = 400 MeV. This eliminates 14 of the 137 mea-
sured bins (see Fig. 3 from [119]). The fitted axial mass is then reduced to
MA = 1.007 ± 0.034 GeV and λ = 0.83 ± 0.04. As it is the case for the full
calculation, the inclusion of multinucleon mechanisms and RPA is essential
to obtain axial masses consistent with the world average.

Finally, for illustration purposes, we show the contribution of the vari-
ous mechanisms to the differential cross section at 0.80 < cos θµ < 0.90
in Fig. 2.27. We have taken MA = 1.049 GeV as in our previous works
[38, 46, 112] and scaled the experimental data to help in the discussion.
The simple impulse approximation, without RPA or multinucleon effects
is depicted by the dashed curve. Except for the scale correction it is an
acceptable description of the data. One should remark that whereas the
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model agrees well for low and medium muon energies, it is systematically
below data at high energies. The inclusion of collective effects (RPA), dot-
ted line, slightly improves the agreement at these high energies. However,
RPA strongly decreases the cross section at low energies. Multinucleon
mechanisms, which in average get a larger energy transferred and thus ac-
cumulate their contribution at low muon energy compensate that depletion.
Therefore, the final picture for this observable is that of a delicate balance
between a dominant single nucleon scattering, corrected by collective effects,
and other mechanisms that involve directly two or more nucleons. It is also
clear from this figure, that the proportion of multinucleon events contribut-
ing to the “QE” signal is quite large for low muon energies and thus, the
algorithm commonly used to reconstruct the neutrino energy is badly suited
for this region. This could have serious consequences in the determination of
the oscillation parameters (see, e.g., discussion in Ref. [135] and Ref. [142]).

2.5 Summary

We have extended the QE contribution of the nuclear inclusive electron and
neutrino scattering model developed in Refs. [38, 43] to the study of elec-
troweak CC induced nuclear reactions, at intermediate energies of interest
for future neutrino oscillation experiments. The model is based on a sys-
tematic many body expansion of the gauge boson absorption modes that
includes one, two and even three body mechanisms, as well as the excita-
tion of ∆ isobars. The whole scheme has no free parameters, besides those
adjusted to the weak pion production off the nucleon cross sections in the
free space, since all nuclear effects were set up in previous studies of photon,
electron and pion interactions with nuclei.
We have discussed at length, the recent CCQE MiniBooNE cross section
data. To understand these measurements turns out to be essential mecha-
nisms, where the W−boson is being absorbed by two or more nucleons with-
out producing pions, as first suggested by M. Martini and collaborators [45].
Our evaluation of these pionless multinucleon emission contributions to the
cross section is fully microscopical and it contains terms, which were either
not considered or not properly taken into account in [45]. We end up with a
reasonable description of the neutrino CC”QE” MiniBooNE and total inclu-
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sive SciBooNE cross section data up to neutrino energies of around 1 GeV.
On the other hand, we disagree on the apparent incompatibility among neu-
trino and electron-nucleus inclusive data, suggested by O. Benhar et al.,
since our neutrino model is just a natural extension of that developed in
Refs. [43] and [123] to study electron– and photo-nuclear inclusive reactions.
Indeed, we believe that the origin of the confusion can be traced back to
the inability of the spectral function model advocated in [118] to properly
describe the dip and ∆− regions, together with the mismatch existing in
the definition of the quasielastic contribution between the theory and the
experimental neutrino communities.
We have also analyzed the MiniBooNE CCQE double differential cross-
section data using the theoretical model of Refs. [38, 46, 112]. The model,
that starts from a local Fermi gas description of the nucleus, includes RPA
correlations and multinucleon effects. The same model is quite successful
in the analysis of nuclear reactions with electron, photon and pion probes
and contains no additional free parameters. RPA and multinucleon knock-
out have been found to be essential for the description of the data. Our
main conclusion is that MiniBooNE data are fully compatible with former
determinations of the nucleon axial mass, both using neutrino and electron
beams in contrast with several previous analyses. The results also suggest
that the neutrino flux could have been underestimated. Besides, we have
found that the procedure commonly used to reconstruct the neutrino energy
for quasielastic events from the muon angle and energy could be unreliable
for a wide region of the phase space, due to the large importance of multin-
ucleon events.
It is clear that experiments of neutrino reactions on complex nuclei have
reached a precision level that requires for a quantitative description of so-
phisticated theoretical approaches. Apart from being important in the study
of neutrino physics, these experiments are starting to provide very valuable
information on the axial structure of hadrons.



Chapter 3

Nuclear structure functions
in Deep Inelastic Scattering

3.1 Introduction

Until now we have been discussing microscopical models for neutrino inter-
actions with hadrons at low and intermediate energies. But there are also
processes carried out at higher energies where a description in terms of elas-
tic neutrino-parton collisions is more adequate.
These experiments are usually carried out with heavy or medium-size nu-
clear targets. Thus, understanding the nuclear effects is very important
to extract information about the underlying parton distribution functions
(PDFs).
For the case of Deep Inelastic Scattering (DIS) with neutrinos, these nuclear
effects have not been widely studied, and to characterize them, results of
DIS with electrons are quite often used.
Although our aim is to face this problem for neutrino scattering, we have
taken advantage from recent high precision measurements of electromag-
netic DIS on light nuclei to test our model, with the final goal of extending
it to neutrino/antineutrino scattering.
Recently Jefferson Lab(JLab) [68] using a high intensity electron beam of
energy 5.767 GeV has measured the nuclear dependence of the structure
function in some nuclei by studying the ratio R(x,Q2)= 2σA

AσD , where σA is

the inclusive cross section in nuclei and σD is the inclusive cross section

113
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in deuterium. The experimental results for the ratio R(x,Q2) have been
presented by them [68] for 0.3 < x < 0.9 and have re-confirmed the older
EMC results [143–145] that the structure function of a nucleon is modified
when it is placed inside a nucleus. This experiment shows that the slope of
the EMC effect does not scale with the nuclear density and therefore the
simple models to implement these nuclear effects, based on A or average
density fits, for example as described by Gomez et al. [146], fail to describe
the new and precise results for light nuclei.
The behavior of RA

F2(x,Q
2) can be broadly divided into four categories viz.

x ≤ 0.1 is the shadowing region, 0.1≤ x ≤0.3 is the anti-shadowing region,
0.3≤ x ≤0.8 is the EMC region and beyond x ≈ 0.8, known as the Fermi
motion region. Theoretically, many analysis have been done to study the
EMC effect and various models have been proposed and discussed in the
literature [147–150]. Several phenomenological parameterizations for the
nuclear parton distribution functions(NPDFs) have been discussed in the
literature like the works of Hirai et al. [151], Eskola et al. [152], Schienbein
et al. [153, 154] which successfully reproduce the nuclear modifications in
the deep inelastic lepton-nucleus and neutrino-nucleus scattering.
In this chapter, we study the nuclear medium effects on the structure func-
tion within a model based on the theoretical calculation of Ref. [67] with
the aim of comparing it with the recent JLab data. The spectral function
that describes the energy and momentum distribution of the nucleons in
nuclei is obtained by using the Lehmann’s representation for the relativistic
nucleon propagator and nuclear many body theory is used to calculate it
for an interacting Fermi sea in nuclear matter [138]. A local density ap-
proximation is then applied to translate these results into finite nuclei. The
contributions of the pion and rho meson clouds are taken into account in a
many body field theoretical approach which is based on Refs. [67,155]. The
model from Ref. [67] has been improved in several ways. The old model
used the Bjorken limit and assumed the Callan-Gross relationship for nu-
clear structure functions FA

2 (x) and FA
1 (x). Due to the fact that JLab data

have been taken in a region of relatively low Q2 (Q2 ∼ 3− 6 GeV2) we have
not assumed the Bjorken limit. Also, for low Q2 and moderate x values
Target Mass Corrections (TMC) might play an important role. We have
incorporated them following Ref. [66]. Another difference with respect to
Ref. [67] is the fact that for the ratios we divide by the deuteron struc-
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Figure 3.1: Feynman diagram for the deep inelastic lepton-nucleon scatter-
ing

ture function, rather than the nucleon one. This only implies substantial
changes at moderate and high x values. We have also considered shadowing
because it reduces the contribution coming from the pion and rho meson
clouds [64,65]. For the numerical calculations, next to leading order (NLO)
Parton Distribution Functions (PDF) for the nucleons have been taken from
the parameterization of Martin et al. (MSTW) [156]. The NLO evolution
of the deep inelastic structure functions has been taken from the works of
Vermaseren et al. [157] and van Neerven and Vogt [158,159]. In the case of
pions we have taken the pionic parton distribution functions given by Gluck
et al. [160,161]. For the rho mesons, we have applied the same PDFs as for
the pions as in Ref. [67].
The structure of the chapter is as follows: In Sect. 3.2 we introduce some
basic formalism for lepton-nucleon scattering, in Sect. 3.3 we analyze the
different nuclear effects, in Sect. 3.4 we consider the deuteron case and we
end by comparing our results with data in Sect. 3.5.

3.2 Deep inelastic lepton-nucleon scattering

The double differential cross section for the reaction of scattering of a
charged lepton from an unpolarized nucleon in the one photon exchange
approximation,

l−(k) +N(p) → l−(k′) +X(p′), l = e, µ (3.1)
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depicted in Fig. 3.1 is given, in terms of the Bjorken variables x and y, by

d2σ

dxdy
=

8MEπα2

Q4

{
xy2F1(x,Q

2) +

(
1 − y − xyM

2E

)
F2(x,Q

2)

}
(3.2)

where

x =
Q2

2Mν
, y =

ν

El
(3.3)

and ν is the energy transferred to the hadronic system. Fi(x,Q
2) are dimen-

sionless structure functions. In the Bjorken limit, i.e. Q2 → ∞, ν → ∞, x
finite, the structure functions Fi(x,Q

2) depend only on the variable x and
satisfy the Callan-Gross relation [162] given by 2xF1(x) = F2(x). Using this,
the cross section of Eq.(3.2) can be expressed in terms of F2(x) and thus the
ratio of cross sections is equal to the ratio of structure functions F2. Even
far from the Bjorken limit or when one goes beyond the lowest order (LO),
where the Callan-Gross relation does not hold, the ratio of cross sections
still equals the ratio of structure functions F2 if the ratio of longitudinal
to transverse cross sections R = σL/σT does not depend on A. There is
a considerable amount of experimental evidence supporting this fact (e.g.
Fig. 6 of Ref. [148]). Therefore, in the following we only consider F2 and
compare directly F2 ratios with cross section ones.
The nucleon structure functions are determined in terms of parton distribu-
tion functions for quarks and antiquarks. In this chapter, for the nucleons we
work at NLO1 and we have used the Parton Distribution Functions (PDF)
of Martin et al. (MSTW) [156]. At this order, the expression for the F2

and FL structure functions can be expressed as functions of the PDFs by
[157–159,163]

x−1F2,L =
∑

f=q,g

C2,L ⊗ f, (3.4)

where C2,L are the coefficient functions for the quarks and gluons [157–159,
163] and f represents the quark and gluon distributions [156].

1On the other hand, the leading order (LO) pionic parton distribution functions of
Gluck et al. [160,161] have been used for pions as well as for rho mesons.
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3.3 Nuclear effects

We have used the local density approximation (LDA) to incorporate nuclear
medium effects2. Inside the nucleus, when the reaction given by Eq.(3.1)
takes place, several nuclear effects like Fermi motion, binding, pion and
rho meson cloud contributions must be taken into account. Fermi motion
and nucleon binding are implemented through the use of a nucleon spectral
function. The relativistic nucleon propagator in a nuclear medium can be
cast as [67,138]:

G(p) =
M

E(p)

∑

r

ur(p)ūr(p)

[∫ µ

−∞
dω

Sh(ω,p)

p0 − ω − iη
+

∫ ∞

µ
dω

Sp(ω,p)

p0 − ω + iη

]
(3.5)

where Sh(ω,p) and Sp(ω,p) are the hole and particle spectral functions re-
spectively. Full details can be found in Ref. [138]. We ensure that the spec-
tral function is properly normalized and we get the correct Baryon number
for the nucleus. Furthermore, we have also calculated the kinetic energy and
the binding energy per nucleon and have found that the theoretical binding
energy is very close to the experimentally observed ones for 9Be, 12C, 40Ca
and 56Fe.
Our base equation for the nuclear structure function FA

2 in an isoscalar
target is:

FA
2 (x,Q2) = 4

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
dω Sh(ω,p, ρ(r))

(
1 − γ pz

M

)

γ2

×
(
γ′2 +

6x′2(p2 − p2
z)

Q2

)
FN

2 (x′, Q2) (3.6)

with p0 = M + ω, γ′2 = 1 + 4x′2p2/Q2 and x′ is Q2/(2p · q). This expres-
sion is equivalent to that of Ref. [64] after trivial algebraic transformations
and taking into account the different normalization of the spectral function
P0(ǫ,p) used in [64] such that

A P0(ǫ,p) −→ 4 · 2π
∫
d3r Sh(ω,p, ρ(r)) . (3.7)

In an earlier study, the behaviour of different nucleon spectral functions has
been analysed [165]. In particular, the spectral functions given by Fernández

2The nuclear densities have been taken from Ref. [164].
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de Córdoba and Oset [138], Kulagin and Petti [64], and Ankowski et al. [108]
were used and compared. It was found that the results do not change
appreciably. Finally, we should comment that the present formalism has
also been used to study the nuclear effects in the F3 structure function [166].

3.3.1 π and ρ mesons contribution to the nuclear structure
function

The pion and rho meson cloud contributions to the F2 structure function
have been implemented following the many body field theoretical approach
of Refs. [67,155]. The pion structure function F2A,π(x) is written as

FA
2,π(x) = −6

∫
d3r

∫
d4p

(2π)4
θ(p0) δImD(p)

x

xπ
2M F2π(xπ) θ(xπ−x) θ(1−xπ)

(3.8)
where D(p) the pion propagator in the medium given in terms of the pion
self energy Ππ:

D(p) = [p2
0 − ~p 2 −m2

π − Ππ(p0, p)]−1 , (3.9)

where

Ππ =
f2/m2

πF
2(p)~p 2Π∗

1 − f2/m2
πV

′
LΠ∗ . (3.10)

Here, F (p) = (Λ2 −m2
π)/(Λ2 + ~p 2) is the πNN form factor and Λ=1 GeV,

f = 1.01, V ′
L is the longitudinal part of the spin-isospin interaction and Π∗

is the irreducible pion self energy that contains the contribution of particle
- hole and delta - hole excitations. In Eq.(3.8), δImD(p) is given by

δImD(p) ≡ ImD(p) − ρ
∂ImD(p)

∂ρ
|ρ=0 (3.11)

and
x

xπ
=

−p0 + pz

M
(3.12)

Assuming SU(3) symmetry and following the same notation as in Ref. [160],
the pion structure function at LO can be written in terms of pionic PDFs
as

F2π(xπ) = xπ

(
5

9
vπ(xπ) +

12

9
q̄π(xπ)

)
(3.13)
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where vπ(xπ) is the valence distribution and q̄π(xπ) is the light SU(3)-
symmetric sea distribution.
Similarly, the contribution of the ρ-meson cloud to the structure function is
written as [67]

FA
2,ρ(x) = −12

∫
d3r

∫
d4p

(2π)4
θ(p0)δImDρ(p)

x

xρ
2MF2ρ(xρ)θ(xρ−x)θ(1−xρ)

(3.14)
where Dρ(p) is the ρ-meson propagator and F2ρ(xρ) is the ρ-meson structure
function, which we have taken equal to the pion structure function F2π using
the valence and sea pionic PDFs from reference [160]. Λρ in ρNN form
factor F (p) = (Λ2

ρ −m2
ρ)/(Λ

2
ρ + ~p 2) has also been taken as 1 GeV.

Further details concerning the pion and ρ-meson propagator can be found
in Ref. [67]. This model for the pion and ρ selfenergies has been abundantly
used in the intermediate energy region and provides a quite solid description
of a wide range of phenomenology in pion, electron and photon induced
reactions in nuclei, see e.g. Refs. [43,123,124,126,127] and references in [67].
In particular, a careful study of the in medium pion propagator used here
was carried out in Ref. [155]. There, several tests concerning the fulfillment
of sum rules, and the preservation of the analytical properties of the meson
propagator and the consistency of the results with similar calculations were
considered.
In addition, the balance of light-cone momentum between bound nucleons
and pions can be studied by means of a momentum sum rule as done in
Ref. [64]. The pion < y >π and nucleon < y >N fractions of the light cone
momentum are related by

< y >π + < y >N=
MA

AM
, (3.15)

where MA is the nucleus mass. See section 5.3 of Ref. [64] for details. The
sum rule should be valid for a nuclear model where the Hamiltonian would
contain only pions and nucleons. In fact, our model for the nucleon spectral
function is based on a phenomenological approach that also contains many
other pieces in the nucleon-nucleon interaction and thus the sum rule is not
directly applicable. Nonetheless, it can provide further constraints on the
size of the mesonic contribution and it will be discussed in the results sec-
tion.
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The mesonic cloud contribution is expected to be negligible for deuteron
as it depends, roughly speaking, quadratically on the baryon density which
is quite small for this case3. Therefore, these contributions have not been
included in the evaluation of the deuteron structure function.

3.3.2 Target mass corrections

Target mass corrections have been incorporated by means of the approxi-
mate formula [66]

F TMC
2 (x,Q2) ≃ x2

ξ2 γ3
F2(ξ,Q

2)

[
1 +

6µx ξ

γ
(1 − ξ)2

]
, (3.16)

where µ = M2

Q2 , γ =
√

1 + 4x2M2

Q2 and ξ is the Natchmann variable defined
as

ξ =
2x

1 + γ
. (3.17)

3.3.3 Coherent nuclear effects

Furthermore, we have taken into account the shadowing effect following the
works of Kulagin and Petti [64]. We are interested in the relative effect in
FA

2 that can be written as

δR2 =
δFA

2

FN
2

=
1 +R2

1 +R
δRT (3.18)

where R(x,Q2) is calculated for the free nucleon. For δRT we use expres-
sion 63 in Ref. [64]. The most general expression for R(x,Q2), taking into
account the target mass is:

R(x,Q2) =
FL

FT
=
γ2F2 − 2xF1

2xF1
=
γ2F2

2xF1
− 1. (3.19)

3A direct application of our model to deuteron, produces a mesonic contribution that
is always lower than a 0.6 percent of the nucleonic contribution for the analysed x range.
Thus, its inclusion would have a very minor effect in the ratios. Nonetheless, we should
mention that our formalism, which starts from selfenergies calculated in nuclear matter,
is not expected to be very reliable for the calculation of the mesonic effects in deuteron.
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3.4 Derivative expansion of F2

The difference between dividing by the deuteron FD
2 or by the free isoscalar

FN
2 structure function to calculate the ratios of structure functions is of only

a few percent in the x < 0.7 region. However, the quality of data requires
a proper description of FD

2 . On the other hand, our local density approach
is not appropriate for such a light nucleus (or even for 4He). Therefore, we
need another method to calculate F2 in these cases. In terms of the deuteron
wave function, FD

2 can be written as

FD
2 (x,Q2) =

∫
d3p

(2π)3
|ΨD(p)|2

(
1 − γ pz

M

)

γ2

(
γ′2 +

6x′2(p2 − p2
z)

Q2

)
FN

2 (x′, Q2).

(3.20)
Alternatively, a particularly appealing approach because of its simplicity, is
the use of derivative expansions4 that provide the structure function per
nucleon of a nucleus in terms of the free nucleon one, its derivatives and a
few expected values of nuclear observables [165,167–170]. We can write

FD
2,DEx(x,Q

2) ≃ FN
2 (x,Q2) + xFN ′

2 (x,Q2)
< E > + < TR >

M

+
x2

2
FN ′′

2 (x,Q2)
2 < T >

3M
, (3.21)

The above equation is the derivative expansion for F2 in the Bjorken limit.
If one does not assume the Bjorken limit, the result is [165]

FA
2

(
x,Q2

)
≃ FN

2

(
x,Q2

) [
1 +

(
γ2 − 1

) < p2 >

3M2

]

+ xFN ′

2 (x,Q2)

(
< E >

M
+ (2γ2 − 2)

< p2 >

3M2

)

+
x2

2
FN ′′

2 (x,Q2)γ2< p2 >

3M2
(3.22)

where < T > is the mean nucleon kinetic energy taken as 11.07 MeV, < E >
is the nucleon removal energy taken as 2.226 MeV, < TR >≃

〈
p2
〉
/2M with〈

p2
〉

= 0.533 fm−2 the average of the square of the nucleon momentum.

4In appendix E it will be shown how to obtain the derivative expansion for F A
2 and

also for F A
3 .
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One can see that, in the Bjorken limit (γ2 → 1), Eq. (3.22) reduces to Eq.
(3.21) except for the recoil term < TR >, which is negligible for medium and
heavy nuclei (for which the work of Ref. [165] was done), but it is important
for deuteron5 and we have kept it in the calculations.
To include TMC, one must substitute in Eq. (3.21) the free nucleon struc-
ture function and its derivatives by the approximate one given in Eq. (3.16).
The derivative expansions have some intrinsic limitations and it has been
shown that they fail to converge to the results obtained by folding with the
nuclear spectral functions for x & 0.5, for the case of medium and heavy
nuclei. A detailed study can be found in Ref. [165]. The convergence is ex-
pected to be much better for a loosely bound nucleus such as the deuteron.
Indeed, FD

2 obtained using the Paris wave function [171] and the results of
the derivative expansion differ by less than 0.6 percent up to x = 0.6 as
shown in Fig. 3.2.
In Fig. 3.2, we also include for comparison the same ratio from Ref. [172],
which uses a different set of PDFs. We have observed that the main differ-
ence with that calculation comes from the inclusion of a parametrization of
the off-shell effects (see dashed-dotted line) absent in our model.

3.5 Results and discussion

Our aim in this section is to confront the model with the recent JLab results
of Ref. [68] that correspond to ratios of cross sections in nuclei with cross
sections in deuteron and more precisely with the slope of the x dependence
that is more insensitive to the normalization uncertainties. Nonetheless, we
will also show some results for the deuteron FD

2 (x,Q2) structure function

as well as the ratio R(x,Q2)=
2F A

2

AF D
2

in intermediate mass nuclei like 40Ca and
56Fe.

In Fig. 3.3, we compare the theoretical calculation obtained using Eq.
(3.20) with the experimental results of Benvenuti et al. [173]. Overall, we
find a good agreement in the x region relevant for our study. Although the
data correspond to large Q2 values, this gives us confidence in the quality of
this approach for the evaluation of the ratios with respect to other nuclei. In

5This is because < TR >= <T>
(A−1)

, so for light nuclei it cannot be ignored.



3.5. RESULTS AND DISCUSSION 123

0.1 0.2 0.3 0.4 0.5
x

0.95

1

1.05

F 2D
/(

F
2p +

F 2n )

Full convolution 
Full convolution + Off-Shell
Ref. [42]
Derivative Expansion

Figure 3.2: FD
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Derivative expansion. Dashed line: Eq. 3.20. Dashed dotted: Eq. 3.20
including off-shell effects following the prescription of Ref. [64]. Dotted line:
Ref. [172].
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Figure 3.3: Electromagnetic structure function in deuteron FD
2 at different

x values. The theoretical curves are obtained by using Eq. (3.20). Experi-
mental data are taken from Ref. [173].

Fig. 3.4, we compare our results with data obtained with a muon beam on
a deuterium target [174]. We also show the results for the free nucleon case.
The nuclear corrections are very small for the range of x values analysed in
the experiment.

One of the most interesting results of the recent JLab data is that for
both Beryllium and Carbon the cross section ratios show a similar slope
even when they have a quite different average nuclear density. This con-
flicts with some simple fits that describe well the slope for medium and
heavy nuclei as a function of the average nuclear density or with simple A
dependences [146]. On the other hand, the slope of the ratio in the region
0.3 < x < 0.6 is particularly well suited to analysis because from the exper-
imental point of view it is quite unaffected by normalization uncertainties.
Also theoretically it is relatively simple because shadowing, or Fermi motion
are of a little importance over this region of x.
In Fig. 3.5, we show the results for Beryllium. The dashed line has been

calculated using Eq. (3.6) with TMC and the solid line corresponds to the
full model, including the meson cloud contributions, shadowing and TMC.
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. Full model (solid line), without shadowing

(dotted line) and without pion, rho and shadowing contributions (dashed
line). For each value of x, Q2 has been calculated using an electron beam
of 5.767GeV and scattering angle of 400 corresponding to JLab kinematics.
Data are cross section ratios from Ref. [68].
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Figure 3.6: Ratio R(x,Q2)=
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. Full model: solid line with Λ, Λρ =

1GeV; the band corresponds to ±20% variation on Λ and Λρ. Full model
without pion, rho and shadowing: dashed line. Q2 for calculation and JLab
data [68] as described in previous figure. SLAC data [146] correspond to
Q2 = 5 GeV2.

We show explicitly the effect of shadowing. It reduces the structure func-
tion ratio by around 1% at x ∼ 0.3 and even less for higher x. We have
found that TMC has a really minor effect in the ratio for these x values
(less than 1% at x ∼ 0.6 and even smaller for lower x values). Therefore,
the difference between the base curve and the full one comes basically from
the π and ρ contributions that play an important role. The size of the rho
meson correction is about half that of the pion. We find that the full model
agrees quite well with data both in slope and the size of the ratio.
A good agreement with data is also obtained for Carbon as shown in Fig. 3.6.
The slope and size of the nuclear effects are similar to the Beryllium case.
This could look surprising given the quite different average density as dis-
cussed in [68]. This points out to the fact that ”average density” could
not be the appropriate parameter for the description of the EMC effect in
light nuclei. For example, this has been discussed in Sect. IV of Ref. [175].
Again, a determining factor in the agreement is the mesonic cloud contri-
bution. Given this, some words of caution are needed here. Firstly, the
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parton distribution functions are poorly known for the mesons and possible
off-shell effects have not been included in the calculation. Secondly, the
results depend on the meson selfenergies in the medium that also contain
some uncertainties such as the specific form of the spin-isospin interaction,
specially for the ρ meson. A full analysis of these uncertainties is beyond
of the scope of this chapter. To give an idea of their size, we have shown in
this figure the results for the ratio using the full model with Λ, Λρ=1GeV
and Λ, Λρ=1.2GeV and 0.8GeV. We find that a 20% variation in the Λ’s,
results in a 2-3% change in the ratio.
We have also tested the momentum sum rule discussed in section 3.3.1. The
mesons carry a light-cone momentum fraction of 3 percent for Λ = 1 GeV.
The 2 percent prescribed by the sum rule can be obtained for a cut-off
Λ = 0.8 GeV. This suggests that lower cut-off values should be preferred
but one must be careful before reaching such conclusion. For instance, the
nucleon momentum fraction is very sensitive to parameters like the expected
value of the nucleon kinetic energy that are not very well known and has
some uncertainty. We have used the values obtained with our nucleon spec-
tral function. The same results are obtained for 9Be. Heavier nuclei, such
as iron and calcium, have a mesonic momentum fraction of 5 percent and
fulfill the sum rule for Λ = 0.75 GeV.
In Fig. 3.6, the systematic difference in size between JLab and SLAC data is
consistent with the normalization uncertainties quoted in Refs. [68,146]. It
may be noted, however, that the slope is very similar for both experiments
and in good agreement with our results. These normalization differences
have been recently discussed in Ref. [172].
For both nuclei, our results slightly overestimate data by around 2% at x
around 0.6 and more above that. However, that region is much affected by
possible off-shell effects [172], not included in our approach, and by high
momentum components of the nucleons wave function. Therefore, we can-
not make any strong statement about this discrepancy apart from the fact
that we are reaching one of the limits of validity of our model.
We have also checked that the use of next to next to leading order PDFs,
that considerably lengthens and complicates the calculation, does not ap-
preciably change the results, at the level of precision of the current data
and the size of other theoretical uncertainties.
There are JLab results even for lighter nuclei like 3He and 4He. Our local
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density model is certainly not adequate for these cases that would require a
more microscopical approach for the calculation of a proper nucleon spectral
function and of the meson cloud contribution. Also, good data for larger
x values are available. They are particularly sensitive to TMC and to high
momentum components of the nucleon spectral functions. In order to anal-
yse these data, further work would be required to extend the validity of the
theoretical approach describing the nucleon spectral function.
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. Full model: solid line. Full model without

pion, rho and shadowing: dashed line. Dotted curve is the full result scaled
by a factor 0.97. Calculations have been done for Q2 = 5 GeV2. The
experimental points are taken from Ref. [146] (averaged Q2).

As a further test, we have also studied the results for the ratio R(x,Q2)=
2F A

2

AF D
2

for intermediate mass nuclei like calcium and iron. The results are shown
in Figs. 3.7 and 3.8. In both cases, we have compared with SLAC results
from Ref. [146], with averaged Q2. No significant Q2 dependence was found
in Ref. [146] for their kinematic range. The theoretical curves have been
calculated for Q2 = 5GeV2 and we observe little sensitivity to that value. In
the case of calcium, our results overestimate the data by around 3%. This
is larger than the normalization uncertainties quoted in Ref. [146]. Nonethe-
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Fig. 3.7. Calculations have been done for Q2 = 5 GeV2. Experimental
points from Ref. [146] (averaged Q2).

less, scaling our theoretical curve, we observe a good agreement with the
slope of the structure function. The situation is much the same for heavier
nuclei, such as iron. The slope is well reproduced and calculation overesti-
mates again data by around a 3%. Similar results are obtained for silver
and gold. This overestimation seems to be consistent with the results of
recent global fits to the nuclear parton distribution functions (see e.g. Fig.
4 of Ref. [154]). Their results might point out to some normalization uncer-
tainty in the SLAC results such that the medium and heavy nuclei ratios
are too small. However, the recent more microscopical analysis of Ref. [172]
that also finds normalization inconsistencies between light and heavy nuclei
favours the interpretation that the recent JLab data should be rescaled by a
global factor of around 0.98 and that the SLAC data are correct. We should
also mention that the two discussed experiments had significantly different
lepton energies and the simple A dependence assumed for the σL/σT ratio
could have to be revised.
Certainly, these normalization issues should be settled with new and better
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experiments. From the theoretical point of view, it seems that microscopi-
cal models are hardly able to reproduce at the same time the high statistic
data from light nuclei at JLab and medium and heavy nuclei from other
collaborations. In any case, this does not affect the main point discussed in
this section, namely the slope produced by the nuclear effects that is well
reproduced in our model.

3.6 Summary

In summary, the electromagnetic nuclear structure function FA
2 has been

studied including nucleonic and mesonic degrees of freedom for a x region
where shadowing, antishadowing and Fermi motion are not too important.
We have started from up to date nucleonic PDFs. Nuclear effects like Fermi
motion and binding have been incorporated by means of the use of a spec-
tral function obtained for nuclear matter and implemented in nuclei using
the local density approximation. A similar approach has been used for the
inclusion of the contribution of mesonic clouds. Also shadowing and TMC
have been considered. The deuteron structure function has been calculated
using a derivative expansion and with the Paris wave function. The results
successfully reproduce recent very precise JLab results for light nuclei at
relatively low Q2 values. Also the slope of previous experiments for heavier
nuclei is well reproduced although we fail to agree with them on the absolute
size by up to a 3%, larger than the quoted experimental uncertainty. We
have found that the mesonic cloud (basically pion) gives an important con-
tribution to the cross section ratios but it still has considerable uncertainties.
Even small changes of the pion nuclear selfenergy can produce appreciable
changes in the cross section ratios.
The success of this local density model for light nuclei is in contrast with the
failure of simple models/parametrizations that fit well for the nuclear effects
for medium and heavy nuclei as a function of average density or the mass
number A [68]. The use of an approach that incorporates in an adequate
manner the nucleon and meson properties in the nuclei is clearly mandatory
for the analysis of the EMC effect in these cases.
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Chapter 4

Conclusions

In this thesis we have explored the weak interaction on hadronic systems
at intermediate energies. We have focused in processes not widely studied
previously and whose knowledge can be relevant for the analysis of neutrino
oscillations experiments as well as to widen our knowledge about the struc-
ture of the hadrons.
Beginning with neutrino reactions off free nucleons, we have extended pre-
vious models to account for strangeness production, in particular single
kaon/antikaon production.
For single kaon production induced by neutrinos, we have developed the first
model that properly incorporates all background terms required by chiral
symmetry. The model has no free parameters and due to the absence of res-
onant mechanisms, it will describe the weak kaon production process for a
wide range of energies, until associated kaon production becomes dominant.
We have studied total cross sections (as a function of neutrino energy) as
well as differential dσ

dQ2 ones for several channels. We have also calculated
flux-folded total cross sections for different experimental neutrino fluxes and
have estimated the number of kaons that could have been produced in ex-
periments like MiniBooNE. We have also estimated the number of kaons
produced by the atmospheric neutrino flux in the Super-Kamiokande exper-
iment because these kaons could be a source of background in experiments
that search for proton decay. We think that these cross sections are large
enough to be measured with the expected fluxes of Minerνa and T2K. The
main improvement of the model with respect to previous ones is the inclu-
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sion of contact term Feynman diagrams required by chiral symmetry. They
are in fact the dominant term.
Next, we have studied single antikaon production off nucleons induced by
antineutrinos. This is a more complicated process due to the presence of
resonant mechanisms. For the pion case, the ∆(1232) plays a dominant role.
We have developed a model that resembles those used for the pion produc-
tion. We have included the background terms obtained from the chiral
lagrangians and the resonant mechanisms with the corresponding member
of the baryons decuplet, namely, the Σ∗(1385). We have included these Σ∗

resonant amplitudes and have found that, although their contribution alone
is small, for some channels there is a sizable interference between this mech-
anism and the others we have considered. The fact that the contribution
of the Σ∗ alone is very small for total cross sections is a novel feature with
respect to one pion production, where the resonance is in fact dominant.
We have also found that the number of antikaons produced in experiments
like MiniBooNE is smaller than the number of kaons. This is due to the
fact that the averaged energy of the antineutrino spectrum is below the
threshold for antikaon production and also because the size of the flux for
antineutrinos is considerably smaller than the corresponding one for neutri-
nos in this experiment. However, these predicted cross sections could be
well measured in other experiments like MINERνA.
Once we have studied models for strangeness production, we have focused
on neutrino and antineutrino inclusive reactions at low and intermediate
energies. We have studied these processes in a many-body approach start-
ing from QE region to the ∆-peak region, with especial emphasis to the
dip region between them. The model is based on a systematic many body
expansion of the gauge boson absorption modes that includes one, two and
even three body mechanisms, as well as the excitation of ∆ isobars.
We have given full details of the calculation of our 2p2h contribution to the
inclusive cross section, and also to the ”CCQE” cross section as measured
by the MiniBooNE collaboration, where they define ”QE” as the process
in which only a muon is detected. We must mention that our model has
no free parameters except those previously adjusted from photon, electron
and pion interactions with nuclei and those adjusted from the weak pion
production cross sections in the deuteron.
Furthermore, we have analyzed the CCQE double differential cross section
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dσ̄
dTµ d cos θµ

, published by the MiniBooNE collaboration. It was reported in
their analysis a quite large effective axial mass from a fit to the shape of the
Q2-distribution. It was argued that such increase in the value of the axial
mass is compatible also with the large flux-unfolded cross section that they
also reported (larger than the prior theoretical consensus). However, this
value for the axial mass enters into contradiction with the quoted world
average value of MA = 1.03 ± 0.02 GeV. In our analysis, including 2p2h
mechanisms, we do not need to increase that value to reproduce reasonably
well the double differential cross section, although we systematically under-
estimate the data, but within the quoted normalization error. If we fit the
axial mass to minimize the χ2, we obtain MA = 1.077 ± 0.027 GeV.
Other important point to discuss is the reliability of the algorithm used
to estimate the four-momentum transfer squared or the energy of the neu-
trino. The MiniBooNE collaboration assumes that all the events in which
a muon is identified are purely QE. We have shown that the contribution
of multi-nucleon mechanisms is sizable for wide regions of the phase space
and therefore a measure of the kinetic energy of the muon and its scatter-
ing angle is not enough to characterize the energy of the incoming neutrino
unless some assumptions are made for the interaction, like assuming purely
QE scattering. But if one assumes purely QE scattering for events that
come from multi-nucleon knockout, one is obtaining a wrong energy for the
neutrino.
Let me mention some work which is currently in progress or is planned to do.
In the field of neutrino/antineutrino interactions with free nucleons, we plan
to review the models for associated production implemented in the Monte
Carlo generators. There is also the possibility of extending the model of
weak kaon/antikaon production off nucleons to complex nuclei and we want
to calculate cross sections for coherent kaon/antikaon production off nuclei.
In the topic of inclusive nuclear reactions at low and intermediate energies,
we want to explore higher transferred energies. This means to include higher
lying barionic resonances and processes of two pion production, where there
are models in the literature for these mechanisms in free nucleons. Also, we
plan to compute the Neutral Currents (NC) processes, where there are also
valuable experimental data. And, of course, we will compare our Charged
Current (CC) one pion production off carbon cross sections with the very
valuable data reported very recently by the MiniBooNE Collaboration.
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Finally, we have also studied the nuclear structure functions in the regime of
DIS for electrons as a first test to develop the model for neutrino/antineutrino
DIS. Much theoretical and experimental work has been made on the topic
of DIS with electrons; but neutrino/antineutrino DIS has been less studied.
We must also mention that neutrino/antineutrino DIS explores different
flavour combinations in the structure functions than the ones explored with
electron scattering. Furthermore, neutrino/antineutrino DIS is sensitive to
other structure function F3 which cannot be probed by electrons.
We have studied the nuclear medium effects on the electromagnetic struc-
ture function F2. We have worked in the impulse approximation using a
spectral function that describes the energy and momentum distribution of
the nucleons in nuclei. This spectral function is obtained by using the
Lehmann’s representation for the relativistic nucleon propagator and nu-
clear many body theory is used to calculate it for an interacting Fermi sea
in nuclear matter. The contributions of the pion and rho meson clouds are
taken into account in a many body field theoretical approach. We have
also incorporated Target Mass Corrections (TMC) that might play an im-
portant role. We have included shadowing, that reduces the contribution
coming from the pion and rho meson clouds. Finally, we have explored the
relevance of including higher order next to leading order (NLO) Parton Dis-
tribution Functions (PDFs) for the nucleons.
Our model successfully reproduces the recent and very precise data from
JLab on light nuclei and shows a quite clear inconsistency between the nor-
malization of JLab and some of the older experiments performed at SLAC.
In the field of Deep Inelastic Scattering, our primary goal was to develop a
model to calculate lepton event rates and fully integrated cross sections. To
accomplish this, we have firstly tested our model with the recent data on
light nuclei reported by JLab for electromagnetic DIS. Now we are about
to obtain predictions for neutrino/antineutrino DIS cross sections off 12C to
compare with NOMAD results, which are still in phase of data analysis.



Chapter 5

Resumen de la tesis

5.1 Introducción

Cuando, en 1930, Wolfgang Pauli propuso la existencia de una part́ıcula
neutra de esṕın 1

2 que conservaŕıa enerǵıa y momento con las part́ıculas β
emitidas por algunos núcleos en el proceso llamado desintegración beta, él
mismo dudó de que tal part́ıcula fuera a ser detectada algún d́ıa.
En 1956, muchos años después de esta propuesta, el neutrino fue detectado
por primera vez por Reines y Cowan [1] en un experimento. Costó tantos
años el descubrir el neutrino porque no lleva carga eléctrica y, por tanto, no
ioniza la materia cuando pasa a través de ella.
La primera teoŕıa de esta interacción fue propuesta por Enrico Fermi en
1933 [2, 3]. Enrico Fermi propuso una teoŕıa efectiva para la desintegración
beta con un vértice de cuatro fermiones. Muy pronto se descubrió que la
forma de la interacción postulada por Fermi deb́ıa ser generalizada para in-
cluir interacciones dependientes de esṕın, hecho que fue señalado por Gamow
y Teller [4, 5].
Después de muchos intentos para averiguar la estructura tensorial de la
interacción débil, Richard Feynman y Murray Gell-Mann [6], basándose
en trabajos previos y conversaciones con Sudarshan y Marshak [7, 8], pro-
pusieron la forma V −A para la corriente débil.
Esta clase de estructura para la corriente débil fue pensada después de la
observación experimental de la violación de paridad en la desintegración
beta del 60Co [9].

137



138 CHAPTER 5. RESUMEN DE LA TESIS

Hasta ahora, tres diferentes sabores de neutrinos han sido descubiertos. Fue
en 1962 cuando Lederman, Schwartz y Steinberger descubrieron el neutrino
muónico [10] y demostraron que era diferente del descubierto por Reines y
Cowan. El tercer tipo de neutrino, el neutrino tauónico fue detectado por
primera vez por la colaboración DONUT en el año 2000 en el Fermilab [11].
Hoy en d́ıa sabemos que los neutrinos tienen masa porque oscilan de un
sabor a otro. Cuando los neutrinos son producidos, tienen un sabor bien
definido. Este estado de sabor bien definido puede ser expresado como
una combinación lineal de estados propios del hamiltoniano, los cuales se
propagan con una enerǵıa bien definida. Como tienen diferentes enerǵıas,
las fases de las diferentes componentes no evolucionan igualmente con el
tiempo. Por tanto, el estado inicial evoluciona a otro estado el cual no es
simplemente el estado inicial multiplicado por una fase global. Por eso hay
una probabilidad de transición de un estado de sabor a otro. Ha habido
y hay enormes esfuerzos teóricos y experimentales para medir masas abso-
lutas de los neutrinos [12–16], parámetros de la oscilación [17–21]... Para
art́ıculos de revisión sobre oscilaciones de neutrinos, véase [22–26].
Hoy en d́ıa, estamos entrando en una era de medidas de precisión de los
parámetros de la matriz de Pontecorvo-Maki-Nakagawa-Sakata (PMNS): los
ángulos de mezcla y la fase que viola CP en el sector leptónico.
Entender bien las interacciones de neutrinos a enerǵıas intermedias (alrede-
dor de 1 GeV) es esencial para los experimentos pasados, actuales y futuros
de oscilaciones de neutrinos. Entre éstos podemos citar Super-Kamiokande
[27,28], T2K [29], NOvA [30], OPERA [31], MiniBooNE [32], MicroBooNE
[33]... Para este propósito experimentos dedicados espećıficamente a la dis-
persión de neutrinos han sido planeados: MINERνA [34] y otros...
Estos experimentos se llevan a cabo t́ıpicamente a enerǵıas intermedias, es
decir, alrededor de 1 GeV. Esto es aśı porque estas enerǵıas maximizan la
probabilidad de oscilación (una vez que se ha establecido la longitud de os-
cilación).
En esta región de enerǵıas, normalmente, el proceso seleccionado para medir
los parámetros de oscilación es la dispersión cuasielástica por núcleos por
corriente cargada νl +A→ l− +A′. Una de las razones es que la dispersión
elástica por corrientes neutras es ciega al sabor del neutrino. En efecto,
si uno tiene que detectar una oscilación de neutrino muónico a neutrino
electrónico, uno debe ser capaz de detectar un muón o un electrón en el
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estado final. Si uno se dedica a sucesos por corriente neutra, es imposible
saber si ha habido oscilación porque la interacción en este canal es la misma
para neutrino muónico que para neutrino electrónico y el neutrino en el
estado final no es detectado. Otra razón para la elección de la dispersión
cuasielástica es que tiene la sección eficaz más grande en este rango de en-
erǵıas, entre el umbral y unos pocos gigaelectronvoltios (véase por ejemplo
la figura 1 en la referencia [35]).
Como hemos dicho antes, los neutrinos sólo interaccionan débilmente con
la materia y, por tanto, sus secciones eficaces son pequeñas. Para medirlas,
se usan detectores muy grandes donde los neutrinos colisionan con blancos
nucleares como hierro, aceite mineral, agua o incluso agua pesada. Esto
introduce una nueva dificultad relacionada con los efectos nucleares en dis-
persión de neutrinos. En efecto, part́ıculas producidas en la interacción
pueden ser dispersadas de nuevo o absorbidas antes de dejar el núcleo. Es-
tas reinteracciones nucleares pueden conducir a una identificación errónea
del canal de reacción y cambian la topoloǵıa del estado hadrónico final me-
dido. Los efectos nucleares están entre las mayores fuentes de incertidumbre
sistemática en experimentos de oscilaciones de neutrinos.
Como mencionamos anteriormente, la probabilidad de oscilación depende
de la enerǵıa del neutrino. Sin embargo, esta enerǵıa no puede ser medida
directamente sino que tiene que ser reconstruida a partir de las enerǵıas de
las part́ıculas del estado final que son detectadas. Pero estas part́ıculas son
afectadas por efectos del medio nuclear, como he señalado anteriormente.
Por tanto, el análisis experimental tiene que basarse en modelos para la in-
teracción neutrino-núcleo. La comprensión teórica de los efectos nucleares
es esencial para la interpretación de los datos.
Además del interés por las propiedades de los neutrinos, estos experimentos
atraen la atención de la comunidad de f́ısica hadrónica y nuclear porque los
neutrinos son una herramienta muy valiosa para obtener más información
sobre la estructura del nucleón y resonancias bariónicas, ya que exploran
tanto la estructura vectorial como la axial de los hadrones. Los factores
de forma vectoriales son relativamente bien conocidos de experimentos de
dispersión de electrones. Los experimentos actuales y futuros nos darán
más información sobre los factores de forma axiales del nucleón y de las
resonancias bariónicas.
Para que sirva como ejemplo, la sección eficaz de los procesos cuasielásticos
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por corriente cargada depende de dos factores de forma vectoriales y uno
axial. Se asume usualmente que la dependencia en Q2 del factor de forma
axial tiene una forma dipolar con un parámetro libre (la denominada masa
axial) que ha de ser ajustado a partir de las distribuciones en Q2.
El objetivo de esta tesis es participar en el desarrollo de un marco teórico
fiable para analizar dispersión de neutrinos en blancos hadrónicos.
Empezando desde el umbral, tenemos la anteriormente mencionada dis-
persión cuasielástica y después los canales inelásticos: produccion de pio-
nes, producción de hiperones, resonancias bariónicas, kaones... En núcleos
también tenemos mecanismos multinucleónicos. Y a enerǵıas más altas to-
dav́ıa, la dispersión profundamente inelástica es dominante. Empecemos
discutiendo la dispersión cuasielástica.
El ingrediente básico para la dispersión cuasielástica en un modelo es la
excitación de un nucleón por la sonda débil. Esto es conocido como la de-
scripción de una part́ıcula un agujero (1p1h) de la dispersión cuasielástica.
Hay muchos modelos para dispersión cuasielástica en núcleos que contienen
varios efectos nucleares: aproximación de SuperScaling y corrientes de in-
tercambio de mesones [36]; interacciones de estado final (FSI) y SuperScal-
ing [37]; FSI y correlaciones de largo alcance (RPA) [38]; dentro del marco
del modelo de transporte GiBUU [39] y muchos otros. Hay casi un consenso
teórico en el hecho de que todos los modelos de cuasielástico en núcleos están
por debajo de los resultados publicados recientemente por la colaboración
MiniBooNE [40], donde el análisis favorećıa un incremento de la masa axial
en el factor de forma axial para hacer coincidir los datos en un ajuste a la
forma de la distribución en Q2 con la sección eficaz total en función de la
enerǵıa del neutrino. Este incremento de la masa axial efectiva entra en
contradicción con el valor medio mundial MA = 1.016 ± 0.026 GeV [41],
siendo este último valor extráıdo de medidas de dispersión cuasielástica por
corriente cargada llevadas a cabo en blancos de deuterio. De amplitudes
de electroproducción de piones, después de aplicar correcciones hadrónicas
que pueden ser calculadas a bajo Q2 utilizando teoŕıa quiral de perturba-
ciones [42], el valor resultante obtenido es MA = 1.014 ± 0.016 GeV.
Se han hecho muchos esfuerzos teóricos para ir más allá de la descripción
de una part́ıcula un agujero de la dispersión cuasielástica. Esto significa
considerar excitaciones de dos part́ıculas dos agujeros (2p2h) que pueden
contribuir a la sección eficaz de dispersión cuasielástica definida por Mini-
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BooNE. Véase por ejemplo las referencias [43] (para dispersión de electrones)
y [44–46] (para neutrino y antineutrino scattering).
En la referencia [38], la dispersión cuasielástica fue estudiada en el marco
de un enfoque de Teoŕıa de Muchos Cuerpos quedándose sólo con la con-
tribución 1p1h pero incluyendo correcciones de RPA e interacciones de es-
tado final con la inclusión de funciones espectrales nucleares realistas.
Uno de los objetivos de esta tesis es extender el trabajo de la referencia [38] a
enerǵıas transferidas más grandes, donde grados de libertad de resonancias
son importantes. Es también un objetivo de esta tesis extender a núcleos
el trabajo previo de la referencia [47] sobre producción débil de piones en
nucleones libres.
Además de la dispersión cuasielástica, otros procesos como producción de
piones pueden ser usados para detectar neutrinos. La producción y poste-
rior desintegración de resonancias del nucleón en interacciones de neutrinos
es una parte significante de la sección eficaz total de neutrinos en la región
de unos pocos GeV. Estas resonancias también han sido exploradas usando
experimentos de dispersión de electrones, pero diferentes factores de forma
contribuyen en el caso de neutrinos. La producción de resonancias es la
parte menos determinada de la sección eficaz de neutrinos; y experimentos
como NOνA y T2K esperan que estas interacciones sean una gran fracción
de la sección eficaz en el rango de enerǵıas en el que están más interesados.
La producción de piones en núcleos puede ser coherente o incoherente. En
el último caso, el núcleo final queda excitado. El modelo más conocido
para este proceso en simulaciones de interacciones de neutrinos fue desar-
rollado por Rein y Sehgal [48]. Asume que la producción de piones en
el nucleón está dominada por la excitación de resonancias bariónicas, de-
scritas usando el modelo relativista de quarks de Feynman, Kislinger y
Ravndal [49] para resonancias con masas invariantes de hasta 2 GeV. El
modelo original despreciaba las masas de los leptones finales. Sin embargo,
correcciones de masa finita en cinemática y corrientes han sido investigadas
recientemente [50–52]. La riqueza de datos de fotoproducción y electropro-
ducción de piones disponible gracias a varios experimentos en MIT/Bates,
MAMI/Mainz y especialmente JLab ha sido usada para extraer las ampli-
tudes de helicidad de transición electromagnética [53,54]. Esta información
emṕırica tan valiosa debeŕıa ser incorporada al análisis de experimentos de
neutrinos.
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Por contra, no hay casi información sobre la parte axial de la corriente
de transición débil nucleón-resonancia. Conservación parcial de la corri-
ente axial (PCAC) y dominancia del polo de pión del factor de forma pseu-
doescalar pueden ser aplicados para relacionar el acoplamiento axial para la
contribución dominante a bajo Q2 con el acoplamiento de la desintegración
de la resonancia en πN .
Para pequeños valores de Q2 sólo el factor de forma axial CA

5 es relevante y
se le ha dedicado algún esfuerzo a su extracción a partir de datos de cámaras
de burbujas en ANL y BNL.
La producción de piones en núcleos es coherente cuando el núcleo permanece
en su estado fundamental. Tiene lugar predominantemente cuando el mo-
mento transferido al núcleo es pequeño, de modo que es menos probable
que el núcleo se ”rompa”. La producción débil coherente de piones tiene
una sección eficaz muy pequeña comparada con el caso incoherente, pero
relativamente más grande que reacciones equivalentes inducidas por fotones
o electrones. Esto se debe a la contribución no nula de la corriente axial en
el régimen cinemático relevante [55].
Un buen conocimiento de producción de piones es muy importante para la
interpretación de los experimentos de oscilaciones de neutrinos. Se sabe que
la producción de π+ por corriente cargada es el mayor fondo de contami-
nación para la señal cuasielástica. En efecto, si el pión, por ejemplo, es
absorbido en el núcleo o no detectado, el evento parece cuasielástico.
Hay, por supuesto, modelos de producción débil de piones en nucleones li-
bres [47, 48, 56–58] e incluso para doble producción de piones inducida por
neutrinos [59]. Estos modelos contienen el principal mecanismo para la
producción de piones, esto es, la excitación de la ∆(1232) pero también
términos de background que son importantes en el umbral y que pueden ser
obtenidos utilizando teoŕıa quiral de perturbaciones. Usaremos el modelo
de producción de piones de la referencia [47] como base para desarrollar un
modelo de producción de piones en núcleos.
Podŕıamos mencionar algunos otros modelos para producción de hiperones,
como los trabajos de las referencias [60–62]. El primero trata sobre pro-
ducción cuasielástica débil de hiperones inducida por antineutrinos, mien-
tras que el segundo y el tercero tratan sobre producción asociada de part́ıculas
extrañas.
Para más altas enerǵıas, otros canales que involucran producción de part́ıculas



5.1. INTRODUCCIÓN 143

extrañas podŕıan ser relevantes, por ejemplo la producción de un único kaón
en nucleones libres inducida por neutrinos o la de un antikaón inducida
por antineutrinos (en este último caso incluyendo la excitación de resonan-
cias con extrañeza S = −1, como la Σ∗). Se debe mencionar que, aunque
están suprimidas por Cabibbo (∆S = ±1), estas secciones eficaces son más
grandes (hasta 1.5 GeV de enerǵıa del neutrino) que las correspondientes
para producción asociada (∆S = 0 y no suprimidas por Cabibbo) debido a
los diferentes umbrales de producción.
Estudios de procesos exclusivos de producción de part́ıculas extrañas induci-
dos por neutrinos serán llevados a cabo en MINERνA. Se esperan acumular
miles de estos eventos, dependiendo por supuesto del canal. Estas medidas
de secciones eficaces probablemente tendrán impacto también en otras áreas
de la f́ısica de part́ıculas. Por ejemplo, en la estimación, en experimentos
de búsqueda de desintegración del protón, del background de procesos con
∆S = 1 inducidos por neutrinos atmosféricos. La exposición a haces de an-
tineutrinos ayudará en el estudio de ∆S = −1 producción cuasielástica de
hiperones y permitiŕıa una nueva medida de los elementos de la matriz de
Cabibbo-Kobayashi-Maskawa (CKM). En este experimento, otras secciones
eficaces serán medidas, como las correspondientes a procesos de producción
asociada ∆S = 0, inducidos por corrientes neutras o cargadas.
Los datos existentes sobre producción de resonancias inducidas por neutri-
nos son insuficientes para el trabajo de especificar el complejo solapamiento
entre amplitudes de resonancias de ∆ y N∗ y factores de forma relacionados
que caracterizan el rango de enerǵıas entre 1 − 5 GeV. Los programas de
Monte Carlo simulan esta región cinemática utilizando predicciones teóricas
antiguas desarrolladas por Rein y Sehgal [48] o resultados de experimentos
de electroproducción. El esquema teórico y experimental de la región de
resonancias es más complicado que las dispersiones cuasielástica y profun-
damente inelástica que bordean esta región. Y mucha parte de la muestra
de eventos de MINOS [63] está dentro de esta región de resonancias.
A enerǵıas más altas, la sección eficaz está dominada por la dispersión pro-
fundamente inelástica (DIS) (véase fig 1 en la referencia [35]), donde las
funciones de estructura del nucleón pueden ser escritas en términos de fun-
ciones de distribución de partones (PDFs) de quarks, antiquarks y gluones.
La dispersión de neutrinos también juega un papel especial en la extracción
de las distribuciones de partones. La habilidad de la corriente cargada para
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“saborear” algunos sabores concretos de quarks potencia significativamente
el estudio de las distribuciones de partones. Es también importante el hecho
de que las interacciones débiles exploran otras funciones de estructura (F3),
en marcado contraste con sondas puramente electromagnéticas.
Los efectos nucleares en DIS han sido extensivamente estudiados usando
haces de muones y electrones, pero sólo superficialmente con neutrinos. Ex-
perimentos de neutrinos con alta estad́ıstica sólo han sido posibles utilizando
blancos nucleares pesados tales como blancos calorimétricos de hierro. Para
el análisis de estos experimentos, parametrizaciones de los efectos nucleares
obtenidos de experimentos con electrones/muones han sido aplicados a los
resultados. Sin embargo, hay fuertes evidencias de que las correcciones nu-
cleares para e/µ−A y ν −A son diferentes.
En la aproximación de impulso, las funciones de estructura nuclear pueden
ser expresadas como una convolución de las funciones de estructura del
nucleón con la función espectral nuclear. Esto tiene en cuenta efectos
como movimiento de Fermi de los nucleones y enerǵıa de ligadura nuclear.
Otros efectos como shadowing [64, 65] y correcciones por masa del blanco
(TMC) [66], y la influencia de grados de libertad mesónicos son también rel-
evantes. Desarrollaremos un modelo basado en el que desarrollaron Marco
y Oset en la referencia [67], el cual está a su vez basado en un enfoque de
Teoŕıa Cuántica de Muchos Cuerpos. Compararemos este modelo con los
recientes resultados de JLab sobre el efecto EMC en núcleos ligeros [68].
Por tanto, la estructura de esta tesis será la siguiente: en el primer caṕıtulo
discutiremos la extensión de modelos que explican producción de extrañeza
en nucleones libres [69]; en el segundo caṕıtulo discutiremos cómo imple-
mentar el modelo de la referencia [47] para la producción débil de piones
en núcleos, con especial énfasis a las excitaciones de dos part́ıculas dos agu-
jeros (2p2h) [46]; y finalmente en el tercer caṕıtulo trataremos con DIS de
electrones con núcleos [70].

5.2 Conclusiones

En esta tesis hemos estudiado la interacción débil en sistemas hadrónicos a
enerǵıas intermedias. Nos hemos concentrado en procesos no ampliamente
estudiados en el pasado y cuyo conocimiento puede ser relevante para el
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análisis de experimentos de oscilaciones de neutrinos, aśı como para am-
pliar nuestro conocimiento acerca de la estructura de los hadrones.
Empezando con reacciones de neutrinos en nucleones libres, hemos exten-
dido modelos previos para explicar la producción de extrañeza, en particular
la producción de un kaón/antikaón aislado (no acompañado por hiperones).
Para la producción de kaones inducida por neutrinos, hemos desarrollado el
primer modelo que incorpora adecuadamente todos los términos requeridos
por la simetŕıa quiral. El modelo no tiene parámetros libres y debido a
la ausencia de resonancias con extrañeza S = +1, describe el proceso de
producción débil de kaones para un amplio rango de enerǵıas, hasta que la
producción asociada de kaones se hace dominante.
Hemos estudiado secciones eficaces totales (en función de la enerǵıa del
neutrino) aśı como secciones eficaces diferenciales dσ

dQ2 para varios canales.
Hemos calculado secciones eficaces totales convolucionadas con el flujo de
diferentes experimentos y hemos estimado el número de kaones que podŕıan
haber sido producidos en experimentos como MiniBooNE. También hemos
estimado el número de kaones producidos por el flujo de neutrinos atmosféricos
en el experimento Super-Kamiokande, porque estos kaones podŕıan ser una
fuente de contaminación en los experimentos que buscan la desintegración
del protón. Creemos que estas secciones eficaces son lo suficientemente
grandes para ser medidas con los flujos esperados de MINERνA y T2K.
La principal novedad del modelo con respecto a los previos es la inclusión
de diagramas de Feynman de términos de contacto, requeridos por los la-
grangianos quirales. Estos mecanismos son, de hecho, el término dominante.
Después, hemos estudiado producción de antikaones en nucleones libres in-
ducida por antineutrinos. Este proceso es más complicado de estudiar de-
bido a la presencia de mecanismos resonantes. Para el caso de piones, la
resonancia ∆(1232) tiene un papel dominante. Hemos desarrollado un mod-
elo que se asemeja a aquellos usados para la producción de piones. Hemos
incluido los términos de background obtenidos a partir de los lagrangianos
quirales y los mecanismos resonantes con el correspondiente miembro del de-
cuplete bariónico, la Σ∗(1385). Hemos incluido estas amplitudes resonantes
y hemos encontrado que para algunos canales hay una considerable inter-
ferencia entre este mecanismo y los otros que también hemos considerado.
Hemos encontrado que el número de antikaones producidos en experimentos
como MiniBooNE es menor que el número de kaones. Esto se debe al hecho
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de que la enerǵıa media del espectro de antineutrinos está por debajo del
umbral de producción de antikaones y también porque la magnitud del flujo
para antineutrinos es considerablemente menor que para neutrinos en este
experimento. Sin embargo, estas predicciones para las secciones eficaces
podŕıan ser medidas en otros experimentos como MINERνA.
Después de estudiar modelos de producción de part́ıculas con extrañeza,
hemos estudiado dispersión de neutrinos y antineutrinos en núcleos a en-
erǵıas intermedias, con el objetivo primario de estudiar la reacción inclusiva.
Hemos empleado un enfoque de teoŕıa cuántica de Muchos Cuerpos comen-
zando desde la región del pico cuasielástico y terminando en la región del
pico de la ∆(1232). Hemos puesto especial énfasis a la región intermedia
entre ambos picos. Hemos detallado nuestro cálculo de la contribución de
dos part́ıculas dos agujeros (2p2h) a la sección eficaz inclusiva. Y también a
la sección eficaz “CCQE” tal y como la define la colaboración MiniBooNE,
donde ellos definen “QE” como el proceso donde sólo un muón es detectado.
Debemos mencionar que nuestro modelo no tiene parámetros libres excepto
aquellos previamente ajustados a reacciones de fotones, electrones y piones
con núcleos y aquellos ajustados a reacciones de producción débil de piones
en nucleones libres.
Además, hemos analizado la sección eficaz “CCQE” doblemente diferencial

dσ̄
dTµ d cos θµ

, recientemente publicada por la colaboración MiniBooNE. En su

análisis de un ajuste a la forma de la distribución en Q2 se obteńıa una masa
axial efectiva bastante elevada, en contradicción con el promedio mundial.
Se argumentaba que tal incremento en el valor de la masa axial era compat-
ible también con la sección eficaz desconvolucionada, que era anormalmente
elevada (más grande que las predicciones teóricas previas). Sin embargo,
en nuestro analisis, incluyendo mecanismos de excitación de dos part́ıculas
dos agujeros (2p2h), no necesitamos incrementar el valor de la masa axial
para reproducir razonablemente bien la sección eficaz doblemente diferen-
cial, aunque sistemáticamente infraestimamos los datos, pero dentro del
error de normalización experimental. Si nosotros ajustamos la masa axial
para minimizar el χ2, obtenemos un valor de MA = 1.077 ± 0.027 GeV.
Otro importante punto a discutir es la fiabilidad del algoritmo usado para
estimar el cuadrimomento transferido o la enerǵıa del neutrino. La colabo-
ración MiniBooNE asume que todos los eventos en los que un muón es iden-
tificado son puramente cuasielásticos. Hemos mostrado que la contribución



5.2. CONCLUSIONES 147

de mecanismos de multinucleón es considerable para algunas regiones del es-
pacio de fase y, por tanto, una medida de la enerǵıa cinética del muón y su
ángulo de scattering no es suficiente para conocer la enerǵıa del neutrino in-
cidente a menos que se asuman algunas hipótesis sobre la interacción, como
asumir que los eventos son puramente cuasielásticos. Pero si uno asume
dispersión puramente cuasielástica para eventos que proceden de choques
con dos nucleones, se está obteniendo una enerǵıa errónea para el neutrino
incidente. Por tanto, proponemos detectar el nucleón final o los nucleones
finales para desenmarañar una contribución (eventos puramente QE) de la
otra (emisión de dos nucleones).
Finalmente, también hemos estudiado las funciones de estructura nuclear
en el régimen de dispersión profundamente inelástica (DIS) para electrones
como un primer test para desarrollar un modelo para DIS de neutrinos.
Muchos trabajos teóricos y experimentales se han hecho en el campo de
DIS con electrones; pero DIS para neutrinos/antineutrinos ha sido menos
estudiado. Debemos también mencionar que la dispersión profundamente
inelástica de neutrinos/antineutrinos explora diferentes combinaciones de
sabor en las funciones de estructura que las exploradas con dispersión de
electrones. Además, la dispersión inelástica de neutrinos es sensible a otra
función de estructura F3 que no es accesible con electrones.
Hemos estudiado los efectos del medio nuclear en la función de estructura
electromagnética F2. Hemos trabajado en la aproximación de impulso us-
ando una función espectral que describe la distribución de enerǵıa y mo-
mento de los nucleones en núcleos. Esta función espectral es obtenida uti-
lizando la representación de Lehmann para el propagador de nucleón rela-
tivista y la Teoŕıa Nuclear de Muchos Cuerpos es usada para calcularlo para
un mar de Fermi con interacción en materia nuclear. Las contribuciones de
las nubes mesónicas son tenidas en cuenta en un enfoque de Teoŕıa Cuántica
de Muchos Cuerpos. Hemos incorporado correcciones de masa del blanco
(TMC) que podŕıan jugar un papel importante. Hemos incluido shadowing
porque reduce la contribución proveniente de las nubes mesónicas. Final-
mente, hemos explorado la relevancia de incluir funciones de distribución
de partones a Next to Leading Order (NLO).
Nuestro modelo reproduce con éxito los recientes y muy precisos datos de
JLab en núcleos ligeros y muestra una inconsistencia bastante clara entre la
normalización de JLab y algunos de los viejos experimentos llevados a cabo
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en SLAC.
Finalmente, me gustaŕıa mencionar algunos trabajos planeados para el fu-
turo o que actualmente están en proceso de elaboración.
En el campo de interacciones de neutrinos/antineutrinos con nucleones li-
bres, nos gustaŕıa revisar los modelos para producción asociada implemen-
tados en los generadores Monte Carlo. Existe también la posibilidad de
extender el modelo de producción débil de kaones/antikaones a núcleos
complejos y el estudio de las secciones eficaces de producción coherente
de kaones/antikaones en núcleos.
En el campo de reacciones nucleares inclusivas a enerǵıas intermedias, quer-
emos explorar enerǵıas transferidas más altas. Esto implica incluir reso-
nancias de nucleón más pesadas y procesos de producción de dos piones,
donde hay modelos en la literatura para estos mecanismos en nucleones li-
bres. También existe la posibilidad de calcular los mismos procesos que
hemos calculado con corriente cargada, pero ahora con corriente neutra
débil, donde también hay datos experimentales. Y, por supuesto, existe
nuestro objetivo de comparar nuestras predicciones de secciones eficaces de
producción de un pión por corriente cargada en carbono con los muy valiosos
datos publicados muy recientemente por la colaboración MiniBooNE.
Y finalmente, en el campo de dispersión profundamente inelástica, nuestro
primer objetivo es desarrollar un modelo para calcular el número de even-
tos producidos en algunos experimentos y secciones eficaces completamente
integradas con las funciones de estructura nucleares. Para conseguir esto,
primero hemos hecho un test de nuestro modelo con los datos recientes
publicados por JLab en núcleos ligeros para DIS con electrones. Y es-
tamos a punto de obtener predicciones para secciones eficaces de neutri-
nos/antineutrinos en el régimen de DIS en 12C para comparar con resultados
de la colaboración NOMAD, los cuales están todav́ıa en fase de análisis.



Appendix A

A.1 Nucleon propagator in nuclear matter

In this section we are going to derive Eq. (2.22), which is the nucleon
propagator in a non-interacting Fermi sea. Let me start with the wave
plane expansion of the Dirac field

Ψ(x) =
∑

k

2∑

r=1

{
ar(~k)ur(~k)e

−ikx + c†r(~k)vr(~k)e
ikx
}

(A.1)

Ψ̄(x) =
∑

k
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{
a†r(~k)ūr(~k)e

ikx + cr(~k)v̄r(~k)e
−ikx

}
(A.2)

where the symbol
∑

k actually stands for an integral over the momentum ~k

∑
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(2π)3
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d3k

2E(~k)
=

1

(2π)3

∫
d4k δ(k2 −m2)θ(k0) (A.3)

Furthermore, we have the following anticommutation relations between the
creation and annihilation operators

{
ar(~k), a

†
s(
~k ′)
}

=
{
cr(~k), c

†
s(
~k ′)
}

= δrs ∆~k~k ′ (A.4)

being the rest of anticommutation relations equal to zero. Also, ∆~k~k ′ =

(2π)3 2E(~k) δ3(~k − ~k ′).
Now, we perform a separation between states with momentum above or be-
low the Fermi momentum kF and we make a redefinition of the creation and
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annihilation operators for those states that are below the Fermi momentum.

If |~k| > kF then

{
ar(~k) = ar(~k)

a†r(~k) = a†r(~k)

If |~k| < kF then

{
ar(~k) = b†r(~k)

a†r(~k) = br(~k)

The meaning of the above two equations is the following one: to annihilate
a particle below the Fermi momentum is the same than creating a hole in
the Fermi sea; and to create a particle below the Fermi momentum is the
same than annihilating a hole in the Fermi sea.
With the anticommutation relations given in Eq. (A.4), we can easily find
the following ones

{
ar(~k), bs(~k

′)
}

= 0 (A.5)
{
a†r(~k), b

†
s(
~k ′)
}

= 0 (A.6)
{
br(~k), b

†
s(
~k ′)
}

= δsr∆~k ′~k (A.7)

The left-hand sides of eqs. (A.5) and (A.6) are equal to zero because |~k| > kF

and |~k ′| < kF .
Now, we can decompose the “sum” over ~k of Eqs. (A.1) and (A.2) in two
“sums”: one sum for momenta below the Fermi momentum; and other sum
for momenta above the Fermi momentum, for instance:

Ψ(x) =
∑

k<kF

2∑

r=1

[
b†r(~k)ur(~k)e

−ikx
]

+
∑

k>kF

2∑

r=1

[
ar(~k)ur(~k)e

−ikx
]

+
∑

k

2∑

r=1

[
c†r(~k)vr(~k)e

ikx
]

(A.8)

Ψ̄(x) =
∑

k<kF

2∑

r=1

[
br(~k)ūr(~k)e

ikx
]

+
∑

k>kF

2∑

r=1

[
a†r(~k)ūr(~k)e

ikx
]

+
∑

k

2∑

r=1

[
cr(~k)v̄r(~k)e

−ikx
]

(A.9)
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Let me calculate the T-ordered product of the Dirac fields

iGαβ(x, y) =
〈
φ0

∣∣T (Ψα(x)Ψ̄β(y))
∣∣ φ0

〉

= θ(x0 − y0)
〈
φ0

∣∣Ψα(x)Ψ̄β(y)
∣∣φ0

〉
− θ(y0 − x0)

〈
φ0

∣∣Ψ̄β(y)Ψα(x)
∣∣φ0

〉

(A.10)

where we have only used the definition of a time-ordered product for two
Dirac fields. The indices α and β stand for the spinor components of the
fields. And finally, the symbol |φ0〉 stands for the ground state of a non-
interacting Fermi gas.
We must specify how the creation and annihilation operators act on this
ground state. Indeed, we have the following relations

ar(~k) |φ0〉 = 0 ⇐⇒ 0 = 〈φ0| a†r(~k)
br(~k) |φ0〉 = 0 ⇐⇒ 0 = 〈φ0| b†r(~k)
cr(~k) |φ0〉 = 0 ⇐⇒ 0 = 〈φ0| c†r(~k)





The above equations mean that one cannot annihilate a particle above the
Fermi momentum because those states are empty. Also, one cannot anni-
hilate a hole below the Fermi momentum because there are no holes, every
state below the Fermi momentum is occupied.
With these expressions, we can compute the first term in Eq. (A.10)

〈
φ0

∣∣Ψα(x)Ψ̄β(y)
∣∣φ0

〉
=

∑

k,k′>kF

∑

r,s

〈
φ0

∣∣∣ar(~k)a
†
s(
~k ′)
∣∣∣φ0

〉
ur,α(~k)ūs,β(~k ′)

× e−i(kx−k′y) =
∑

k>kF

∑

r

ur,α(~k)ūr,β(~k)e−ik(x−y)

=
∑

k>kF

e−ik(x−y)(/k +m)αβ (A.11)
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And we can also compute the second term in Eq. (A.10)

〈
φ0

∣∣Ψ̄β(y)Ψα(x)
∣∣φ0

〉
=

∑

k,k′<kF

∑

r,s

〈
φ0

∣∣∣bs(~k ′)b†r(~k)
∣∣∣φ0

〉
ūs,β(~k ′)ur,α(~k)

× e−i(kx−k′y)

+
∑

k,k′

∑

r,s

〈
φ0

∣∣∣cs(~k ′)c†r(~k)
∣∣∣φ0

〉
v̄s,β(~k ′)vr,α(~k)ei(kx−k′y)

=
∑

k<kF

∑

r

ur,α(~k)ūr,β(~k)e−ik(x−y)

+
∑

k

∑

r

vr,α(~k)v̄r,β(~k)eik(x−y)

=
∑

k<kF

e−ik(x−y)(/k +m)αβ +
∑

k

eik(x−y)(/k −m)αβ

(A.12)

With this, the expected value of the time ordered product of two Dirac fields
is

iGαβ(x, y) = θ(x0 − y0)
∑

k>kF

e−ik(x−y)(/k +m)αβ

− θ(y0 − x0)
∑

k

eik(x−y)(/k −m)αβ

−
(
1 − θ(x0 − y0)

) ∑

k<kF

e−ik(x−y)(/k +m)αβ

= θ(x0 − y0)
∑

k

e−ik(x−y)(/k +m)αβ

− θ(y0 − x0)
∑

k

eik(x−y)(/k −m)αβ −
∑

k<kF

e−ik(x−y)(/k +m)αβ

= iSαβ(x− y) −
∑

k<kF

e−ik(x−y)(/k +m)αβ (A.13)
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where the last term in the above equation can be written as

∑
k<kF

e−ik(x−y)(/k +m)αβ =
1

(2π)3

∫
d4k δ(k2 −m2)θ(k0)θ(kF − |~k|)

× e−ik(x−y)(/k +m)αβ

= (2π)

∫
d4k

(2π)4
θ(kF − |~k|)

2E(~k)
δ(k0 −E(~k)) θ(k0)e−ik(x−y)(/k +m)αβ

(A.14)

And finally, writing the Feynman propagator, Sαβ, in integral form, we have

iGαβ(x, y) = i

∫
d4k

(2π)4
(/k +m)αβ

k2 −m2 + iǫ
e−ik(x−y)

−
∫

d4k

(2π)4
2π θ(kF − |~k|)

2E(~k)
(/k +m)αβ δ(k

0 − E(~k))θ(k0)e−ik(x−y)

= i

∫
d4k

(2π)4
e−ik(x−y)(/k +m)αβ

×
(

1

k2 −m2 + iǫ
+

2πi θ(kF − |~k|)
2E(~k)

δ(k0 − E(~k))θ(k0)

)
(A.15)

Thus, in configuration space, Gαβ(x, y) is the Fourier transform of Gαβ(k),
which is

Gαβ(k) = (/k+m)αβ

{
1

k2 −m2 + iǫ
+

2πi

2E(~k)
δ(k0 − E(~k))θ(k0)θ(kF − |~k|)

}

(A.16)
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The expression between braces in the above equation can be written in
several ways. One of them is

G(k) =
1

k2 −m2 + iǫ
+

πi

E(~k)
δ(k0 − E(~k))θ(k0)n(~k)

=
1

k0 + E(~k) + iǫ

(
1

k0 − E(~k) + iǫ
+ 2π i n(~k) δ(k0 − E(~k))

)

=
1

k0 + E(~k) + iǫ

(
P
(

1

k0 − E(~k)

)
− iπδ(k0 − E(~k))

(
1 − 2n(~k)

))

=
1

k0 + E(~k) + iǫ

{
n(~k)

(
P
(

1

k0 − E(~k)

)
+ iπδ(k0 − E(~k))

)

+ (1 − n(~k))

(
P
(

1

k0 − E(~k)

)
− iπδ(k0 − E(~k))

)}

=
1

k0 + E(~k) + iǫ

(
n(~k)

k0 − E(~k) − iǫ
+

(1 − n(~k))

k0 − E(~k) + iǫ

)
(A.17)

where E(~k) =
√
~k 2 +m2 and the symbol P stands for the Cauchy principal

value.



Appendix B

B.1 Low density limit

In this chapter we are going to demonstrate that the hadronic tensor for
π production, in Eq. (2.45), fulfills the impulse approximation in the low
density limit. In this limit we have the following approximation for the
relativistic Lindhard function

ImŪR(q − kπ; kh
F , k

p
F ) ≈ −πρhole(r)

M

E(~q − ~kπ)
δ(q0 − k0

π +M − E(~q − ~kπ))

(B.1)
With this approximation, we obtain the following expression for the hadronic
tensor of Eq. (2.45)

W µν =
π

8M
θ(q0)

∫
d3r

2π

∫
d3kπ

(2π)3
θ(q0 − Eπ(~kπ))

Eπ(~kπ)E′
N (~q − ~kπ)

× δ(q0 +M − Eπ(~kπ) − E′
N (~q − ~kπ))

×
{
ρp(r)

(
Aµν

p→pπ+

)

<~p>→0
+ ρn(r)

(
Aµν

n→nπ+ +Aµν
n→pπ0

)

<~p>→0

}

(B.2)

The differential cross section (with respect to the kinematic variables of the
outgoing lepton) can be cast as [47]

dσ

dΩ(k̂′)dE′
l

=
|~k ′|
|~k|

G2
F

4π2
Lµν

∫
d3kπ

Eπ(~kπ)
W µν

cc π (B.3)
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where

W µν
ccπ =

1

4M

∑

spin

∫
d3p′

(2π)3
1

2E′
N

δ4(p′+kπ−q−p)
〈
N ′π

∣∣jµcc+(0)
∣∣N
〉 〈
N ′π

∣∣jνcc+(0)
∣∣N
〉∗

(B.4)
We can identify the phase space integral in Eq. (B.3) with the hadronic
tensor

W µν
N→N ′π =

∫
d3kπ

Eπ(~kπ)

1

8M

1

(2π)3
1

E′
N (~q − ~kπ)

δ(q0 +M − Eπ(~kπ) − E′
N (~q − ~kπ))

× 1

2
Tr
(
Jµ

N→N ′π(/p+M)γ0Jν†
N→N ′πγ

0(/p′ +M)
)

︸ ︷︷ ︸
(B.5)

where the quantity between ︸︷︷︸ is Aµν
N→N ′π.

If we return to expression (B.2), one can easily see that it can be written as

W µν =

︷ ︸︸ ︷∫
d3r ρp(r)

[
1

8M

∫
d3kπ

(2π)3Eπ E′
N (~q − ~kπ)

δ(q0 +M − Eπ − E′
N (~q − ~kπ))

× 1

2

(
Aµν

p→pπ+

)

<~p>→0

]
+

∫
d3r ρn(r)

︸ ︷︷ ︸

[
1

8M

∫
d3kπ

(2π)3Eπ E′
N (~q − ~kπ)

× δ(q0 +M − Eπ − E′
N (~q − ~kπ))

(
1

2
Aµν

n→nπ+ +
1

2
Aµν

n→pπ0

)

<~p>→0

]

= ZW µν
p→pπ+ +N

(
W µν

n→nπ+ +W µν
n→pπ0

)
(B.6)

And we recover in this way the impulse approximation.



Appendix C

C.1 Tensor A
µν
∆

In this appendix we are going to show that the following tensors fulfill the
property Aµν = Aνµ∗. This property allows me to decompose those tensors
in a symmetric part which is real and in an antisymmetric part which is
purely imaginary.
In section 2.2.3, the tensor Aµν

∆ was defined as

Aµν
∆ (p, q) = Tr

[
(/p+M)γ0Γαν†γ0Pαβ(p∆)Γβµ

]
(C.1)

Let me calculate the complex conjugate of this tensor

Aµν∗
∆ = Tr

[(
(/p+M)γ0Γαν†γ0Pαβ(p∆)Γβµ

)†]

= Tr
[
Γβµ†P †

αβγ
0Γανγ0(/p +M)†

]
(C.2)

With the help of the following relations,

(/p +M)† = γ0(/p+M)γ0 (C.3)

γ0γ0 = 1 (C.4)

We easily find

Aµν∗
∆ = Tr

[
Γβµ†γ0γ0P †

αβγ
0Γαν(/p+M)γ0

]
(C.5)

And finally, using these two last properties,

Tr(AB) = Tr(BA) (C.6)

γ0P †
αβγ

0 = Pβα (C.7)
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we find

Aµν∗
∆ = Tr

[
(/p+M)γ0Γβµ†γ0PβαΓαν

]

= Tr
[
(/p+M)γ0Γαµ†γ0PαβΓβν

]
= Aνµ

∆ (C.8)

where in the last step of Eq. (C.8) we have performed the reshuffling of
dummy indices β ↔ α.

C.2 Tensor A
µν
1

In Eq. (2.74), it is defined the following tensor

Aµν
1 (p, l, q, kπ) = Tr

[
Jµ

n→pπ0(p, q, kπ)(/p+M)(q/ − /kπ)γ5(/p+ q/− /kπ +M)
]

× Tr
[
/kπγ5(l/+M)γ0Jν†

p→pπ+(l, q, q − kπ)γ0(l/ + /kπ +M)
]

+ Tr
[
Jµ

p→pπ+(l, q, q − kπ)(l/+M)/kπγ5(l/+ /kπ +M)
]

× Tr
[
(q/− /kπ)γ5(/p+M)γ0Jν†

n→pπ0(p, q, kπ)γ0(/p+ q/− /kπ +M)
]

(C.9)

Let me calculate the complex conjugate of this tensor

Aµν∗
1 = Tr

[(
Jµ

n→pπ0(/p +M)(q/− /kπ)γ5(/p + q/− /kπ +M)
)†]

× Tr

[(
/kπγ5(l/+M)γ0Jν†

p→pπ+γ
0(l/+ /kπ +M)

)†]

+ Tr

[(
Jµ

p→pπ+(l/+M)/kπγ5(l/+ /kπ +M)
)†]

× Tr

[(
(q/− /kπ)γ5(/p+M)γ0Jν†

n→pπ0γ
0(/p + q/− /kπ +M)

)†]

= Tr
[
γ0(/p+ q/− /kπ +M)γ0γ5γ

0(q/− /kπ)γ0γ0(/p+M)γ0Jµ†
n→pπ0

]

× Tr
[
γ0(l/+ /kπ +M)γ0γ0Jν

p→pπ+γ
0γ0(l/+M)γ0γ5γ

0/kπγ
0
]

+ Tr
[
γ0(l/+ /kπ +M)γ0γ5γ

0/kπγ
0γ0(l/+M)γ0Jµ†

p→pπ+

]

× Tr
[
γ0(/p+ q/− /kπ +M)γ0γ0Jν

n→pπ0γ
0γ0(/p+M)γ0γ5γ

0(q/− /kπ)γ0
]
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where we have used Eq. (C.3) and the fact that γ0 and γ5 are hermitian
matrices. Using now Eq. (C.4), the cyclic propertie of the trace and

{γµ, γ5} = 0 (C.10)

we easily find that

Aµν∗
1 = Tr

[
(q/− /kπ)γ5(/p +M)γ0Jµ†

n→pπ0γ
0(/p + q/− /kπ +M)

]

× Tr
[
Jν

p→pπ+(l/+M)/kπγ5(l/+ /kπ +M)
]

+ Tr
[
/kπγ5(l/+M)γ0Jµ†

p→pπ+γ
0(l/+ /kπ +M)

]

× Tr
[
Jν

n→pπ0(/p +M)(q/ − /kπ)γ5(/p+ q/− /kπ +M)
]

= Aνµ
1

(C.11)
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Appendix D

D.1 Selfenergy of the pion

In this appendix, we are going to calculate the pion selfenergy in a non-
relativistic approximation. Let me write the Yukawa lagrangian for the
vertices. From this lagrangian, we will obtain the non-relativistic reduction
of the vertices.

LπNN = igΨ̄α(x) γ5 τ
i
αβ φi(x)Ψβ(x) (D.1)

where g is the coupling constant, α, β = 1, 2 are indices for the strong isospin,
~τ are the three Pauli matrices, ~φ(x) are the three fields for the pions and

Ψ(x) =

(
p(x)
n(x)

)
is the isospin doublet for the nucleon fields.

Just applying the Feynman rules for the diagram of Fig. D.1, we obtain

−iΠij(q) = g2τ i
β′α′ τ

j
αβ δα′α δββ′

∫
d4p

(2π)4
G(p)G(p + q)

× Tr [γ5(/p +M)γ5(/p+ q/+M)]

= g2Tr(τ iτ j)

∫
d4p

(2π)4
G(p)G(p + q)

×
∑

r,r′

Tr
[
γ5ur(~p)ūr(~p)γ5ur′(~p

′)ūr′(~p
′)
]

(D.2)

where ~p ′ = ~p+ ~q. The traces are

Tr(τ iτ j) = 2δij (D.3)

Tr
[
γ5ur(~p)ūr(~p)γ5ur′(~p

′)ūr′(~p
′)
]

=
(
ūr′(~p

′)γ5ur(~p)
) (
ūr(~p)γ5ur′(~p

′)
)

(D.4)
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πi(q)

N(p)

α′

α β

β ′

N ′(p + q)

πj(q)

Figure D.1: Selfenergy diagram of a pion. The indices α, β, α′, β′ are strong
isospin indices, which are summed. The indices i, j for the pion indicate the
charge of the pion.

If now we consider Dirac spinors normalized in such a way that these can

be written as ur(~p) =
√
E +M

(
ϕr

~σ·~p
E+Mϕr

)
with ϕr a canonical basis of

Pauli spinors, then we have (up to corrections of order ~p 2

M2 )

ūr′(~p
′)γ5ur(~p) = ϕ†

r′ σi(p
i − p′i)ϕr (D.5)

Therefore, Eq. (D.4) can be written in a non-relativistic reduction as

Tr
[
γ5ur(~p)ūr(~p)γ5ur′(~p

′)ūr′(~p
′)
]

=
(
ϕ†

r′ ~σ · ~q ϕr

)(
ϕ†

r ~σ · (−~q)ϕr′

)
(D.6)

Finally, with the aid of

2∑

r=1

ϕrϕ
†
r = 1 (D.7)
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we can write the selfenergy of the pion as

−iΠij(q) = 2g2δij

∫
d4p

(2π)4
G(p)G(p + q)Tr

[
σkq

k 1 σl(−ql) 1
]

= −2g2δijqkql

∫
d4p

(2π)4
G(p)G(p + q)Tr [σkσl]

= −4g2δij~q 2

∫
d4p

(2π)4
G(p)G(p + q) (D.8)

with G(p) given (in the non-relativistic approximation) by

G(p) =
1

2M

{
n(~p)

p0 −E(~p) − iη
+

1 − n(~p)

p0 −E(~p) + iη

}
(D.9)

and the following relation between couplings holds

g

2M
=
fπNN

mπ
=

gA

2fπ
(D.10)

with these replacements, Eq. (D.8) reads

−iΠij(q) = −4g2δij~q 2

∫
d4p

(2π)4
1

2M

{
n(~p)

p0 − E(~p) − iη
+

1 − n(~p)

p0 − E(~p) + iη

}

× 1

2M

{
n(~p+ ~q)

p0 + q0 − E(~p + ~q) − iη
+

1 − n(~p+ ~q)

p0 + q0 − E(~p+ ~q) + iη

}

= −4δij~q 2

(
gA

2fπ

)2

i

∫
d3p

(2π)3

{
n(~p)(1 − n(~p+ ~q))

q0 + E(~p) − E(~p + ~q) + iη

+
n(~p+ ~q)(1 − n(~p))

−q0 − E(~p) + E(~p+ ~q) + iη

}

= −i δij~q 2

(
gA

2fπ

)2

UN (q) (D.11)

where UN (q) is the Lindhard function for the particle-hole (ph) excitation
and is defined as

UN (q) ≡ 4

∫
d3p

(2π)3

{
n(~p)(1 − n(~p+ ~q))

q0 +E(~p) − E(~p + ~q) + iη
+

n(~p+ ~q)(1 − n(~p))

−q0 − E(~p) + E(~p+ ~q) + iη

}

(D.12)
In Eq. (D.11) one can see that the charge of the pion is not changed when
it excites a particle-hole (because of the factor δij).
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∆++(p∆)

α

β

∆++(p∆)

π+(kπ)p(p)

Figure D.2: ∆-selfenergy Feynman diagram.

D.2 Selfenergy of the ∆

To calculate the ∆-selfenergy we need the N∆π lagrangian, which is given
by

LπN∆ =
f∗πN∆

mπ
Ψ̄µ

~T † · (∂µ~φ)ψ + h.c. (D.13)

where f∗πN∆ = 2.14 is the coupling constant, Ψ̄µ is the 4-plet that contains

the Rarita-Schwinger fields for the ∆-isobar, ~T † is the isospin transition op-

erator, ~φ are the pion fields and, finally, ψ =

(
p
n

)
is the isospin doublet

for the nucleon fields.
If we perform the scalar product in the spherical basis and we also perform
the matricial product with the matrix ~T †1, then we are left with the follow-
ing lagrangian (if we only select the piece that goes with ∂µφ−1, which is
the field that creates a π− or annihilates a π+)

L = −f
∗
πN∆

mπ
∂µφ−1

(
∆++

µ p+
1√
3
∆+

µ n

)
+ h.c. (D.14)

1It is actually a 4 × 2 matrix of Clebsch-Gordan coefficients.
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W+(q)

µ

ν

W+(q)

p(p) ∆++(p + q)

µ

ν

W+(q)

W+(q)

p(p)

∆++(p + q)

p(p′) π+(kπ)

∆++(p + q)

Figure D.3: Equivalent Feynman diagrams

Then, applying the Feynman rules, we obtain the following ∆-selfenergy

−iΣαβ(p∆) =

(
f∗πN∆

mπ

)2 ∫ d4kπ

(2π)4
kα

πk
β
π (/p∆ − /kπ +M)G(p∆−kπ; ρp)D0(kπ)

(D.15)
The above equation is a matrix in Dirac space and a symmetric Lorentz ten-
sor and it will be a very helpful expression to show the equivalence between
the diagrams shown in fig. D.3.
Let me write again Eq. (2.32) when in both currents (implicit in the def-

inition of the tensor Aµν of Eq. 2.34) we only select the ∆P amputated
amplitude. This contribution to the W -selfenergy would come from the
diagram in the right-hand side of Fig. D.3, and it would read

−iΠµν
∆P (q) = −i

(
g

2
√

2

)2 ∫ d4kπ

(2π)4
D0(kπ)

∫
d4p

(2π)4
G(p; ρp)G(p + q − kπ; ρp)

× Tr
[
Jµ

∆P (/p +M)γ0Jν†
∆P γ

0(/p+ q/− /kπ +M)
]

(D.16)
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And now, in Ref. [47], one can find the amputated amplitude for the ∆P
mechanism

Jµ
∆P = i

f∗πN∆

mπ

√
3 cos θc

kα
π

(p+ q)2 −M2
∆ + iM∆Γ∆

Pαβ(p + q)Γβµ(p, q)

(D.17)
If we compute the adjoint hermitic of the above equation, we get

γ0Jν†
∆P γ

0 = −if
∗
πN∆

mπ

√
3 cos θc k

δ
π

(p+ q)2 −M2
∆ − iM∆Γ∆

γ0Γσν†(p, q)P †
δσ(p + q)γ0

= −if
∗
πN∆

mπ

√
3 cos θc k

δ
π

(p+ q)2 −M2
∆ − iM∆Γ∆

γ0Γσν†(p, q)γ0γ0P †
δσ(p + q)γ0

= −if
∗
πN∆

mπ

√
3 cos θc k

δ
π

(p+ q)2 −M2
∆ − iM∆Γ∆

γ0Γσν†(p, q)γ0Pσδ(p+ q)

(D.18)

where in the second step we have inserted an identity matrix between Γσν†

and P †
δσ ; and in the last step we have used Eq. (C.7).

Inserting these two currents in Eq. (D.16), we obtain

−iΠµν
∆P (q) = −i

(
g

2
√

2

)2 ∫ d4p

(2π)4

∫
d4kπ

(2π)4
D0(kπ)G(p; ρp)G(p + q − kπ; ρp)

×
(
f∗πN∆

mπ

)2 (√
3
)2

cos2 θc
kα

πk
δ
π∣∣(p+ q)2 −M2

∆ + iM∆Γ∆

∣∣2

× Tr
[
PαβΓβµ(/p+M)γ0Γσν†γ0Pσδ(/p + q/− /kπ +M)

]
(D.19)

Using the cyclic property of the trace, and taking out from the integral in
d4kπ all the possible terms that do not involve the four-momentum kπ, we
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get

−iΠµν
∆P (q) = −i

(
g

2
√

2

)2 (√
3
)2

cos2 θc

∫
d4p

(2π)4
G(p; ρp)∣∣(p+ q)2 −M2

∆ + iM∆Γ∆

∣∣2

× Tr

[
Γβµ(p, q)(/p +M)γ0Γσν†(p, q)γ0Pσδ(p+ q)

·
(∫

d4kπ

(2π)4

(
f∗πN∆

mπ

)2

kδ
πk

α
πD0(kπ)G(p + q − kπ; ρp)(/p+ q/− /kπ +M)

)

︸ ︷︷ ︸
Pαβ

]

(D.20)

where the underbraced expression in the above equation is precisely −iΣδα(p∆),
with p∆ = p+ q.
Therefore, the contribution of the ∆P ⊗ ∆P diagram to the W -selfenergy
can be written as

−iΠµν
∆P (q) = −

(
g

2
√

2

)2 (√
3
)2

cos2 θc

∫
d4p

(2π)4
G(p; ρp)∣∣(p+ q)2 −M2

∆ + iM∆Γ∆

∣∣2

× Tr
[
Γβµ

(p,q)(/p+M)γ0Γσν†
(p,q)γ

0Pσδ(p+ q)Σδα
(p+q)Pαβ(p+ q)

]
(D.21)

In principle, the ∆-selfenergy can be expressed in terms of a linear combina-
tion of the five orthogonal spin projection operators introduced in Eq. (10)
of Ref. [176]. The coefficients, Ai, of such linear combination will be ma-
trices in the Dirac space and Lorentz scalars. We will enormously simplify
the discussion here neglecting ∆-offshell effects. Within this approximation,
the spin-3/2 projector of Ref. [176] reduces to that used here (−Pµν/2M∆)
to construct the ∆-propagator. This on-shell spin-3/2 projection operator
satisfies the following relations

/p∆Pαβ(p∆) = Pαβ(p∆)/p∆ = M∆Pαβ(p∆) (D.22)

Pµν(p∆)Pνα(p∆) = −2M∆P
µ

α(p∆) (D.23)

Since in Eq. (D.21) the ∆-selfenergy always appears contracted between
two on-shell spin-3/2 projection operators, we can assume the following
expansion for the ∆-selfenergy

Σδα(p+ q) = −Σ∆P
δα(p+ q) + · · ·︸︷︷︸ (D.24)

⊥ Pαβ(p+ q)
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where Σ∆ is a scalar quantity. Within this assumption, we easily find

Pσδ(p∆)Σδα(p∆)Pαβ(p∆) = −4M2
∆Σ∆Pσβ(p∆) (D.25)

with p∆ = p+ q. Therefore, Eq. (D.21) can be simplified to

−iΠµν
∆P (q) =

(
g

2
√

2

)2 (√
3
)2

cos2 θc

∫
d4p

(2π)4
G(p; ρp) 4M2

∆Σ∆∣∣(p+ q)2 −M2
∆ + iM∆Γ∆

∣∣2

× Tr
[
Γβµ(p, q)(/p +M)γ0Γσν†(p, q)γ0Pσβ(p + q)

]

︸ ︷︷ ︸
(D.26)

where the underbraced quantity is precisely the tensor Aµν
∆ defined in Eq.

(2.23).
We can, again, decompose the polarization tensor in its symmetric (anti-
symmetric) part, with the aid of the symmetry properties of the tensor Aµν

∆ .
But, when applying the Cutkosky’s rules to obtain the imaginary part of
Πµν

∆P , there always appears the imaginary part of the ∆-selfenergy. If we
carry out all these calculations, we get the following result

W µν = θ(q0)
(√

3
)2

cos2 θc

∫
d3r

2π

∫
d3p

(2π)3
n(~p)

E(~p)

4M2
∆ImΣ∆(p + q)

∣∣(p+ q)2 −M2
∆ + iM∆Γ∆

∣∣2

× Aµν
∆ |p0=E(~p) (D.27)

If the above equation (which is the contribution to the hadronic tensor for
a proton hole) is compared with Eq. (2.28), and taking into account that

ImG∆(p+ q) =
−M∆Γ∆(p+ q)

∣∣(p+ q)2 −M2
∆ + iM∆Γ∆

∣∣2 (D.28)

we get the following relation

ImΣ∆ =
Γ∆

4M∆
(D.29)

And with this, the equivalence between the Feynman diagrams of Fig. D.3
is shown in a quantitative way.



Appendix E

E.1 Derivative expansions for the DIS structure
functions

The advent of new and high statistics deeply inelastic neutrino scattering
experiments apart from providing valuable data on F2 and xF3 [177, 178]
has shown again the importance of nuclear effects that render difficult the
extraction of the nucleon structure functions. Furthermore, the use of nu-
clear targets is necessary due to the smallness of the cross sections. Qual-
itatively, the nuclear effects are well known. Shadowing, antishadowing,
Fermi motion, binding,... have all been widely studied for charged leptons
in the context of the European Muon Collaboration (EMC) effect. For a
review, see [148, 149]. Moreover, it is well known that nuclear effects are
substantially different for neutrino reactions due to the presence of the axial
current and the different valence and sea quark contributions for each observ-
able [153]. This situation asks for a detailed and quantitative microscopical
understanding of the nuclear effects, rather than the parametrizations that
have been used sometimes, like recently by the NuTeV Collaboration [178].
One of the basic ingredients in all calculations is the nuclear spectral func-
tion. This presents some serious difficulties, as these functions are not so
well known to the precision level reached by current experiments. There-
fore, the analysis might introduce unwanted model dependences. However,
it was soon noticed that under some approximations the nuclear structure
functions could be written as simple expansions on the nucleon structure
functions and their derivatives. All the nuclear information would then be
encoded in the expected values of some nuclear magnitudes, like the average

169
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kinetic energy of the nucleons or the mean nucleon removal energy. These
kind of approximations, both for charged lepton and for neutrino induced
reactions, have been widely used in the literature [168, 170, 175, 179–183].
The aim of this appendix is to investigate the quality of these expansions
and to what extent they could be used in the analysis of lepton deep in-
elastic scattering experiments. In order to do that, once the formalism is
established, we will make a comparative study for F2,3 and for a few typical
nuclear spectral functions used in the literature.
The nuclear structure functions can be written as a convolution of the nu-
clear spectral functions and nucleon structure functions. See for instance
[65] and references therein. In the rest frame of the nucleus, the F2 and F3

structure functions are

FA
2 (x,Q2) =

∑

τ=p,n

∫
dǫ d3p

(2π)4
Pτ (ǫ,p)

(1 + γ pz

M )

γ2

(
1 + 4

p2x′2

Q2
+ 6

x′2p2
⊥

Q2

)

× F τ
2 (x′, Q2), (E.1)

FA
3 (x,Q2) =

∑

τ=p,n

∫
dǫ d3p

(2π)4
Pτ (ǫ,p)

(
1 +

pz

γM

)
x′

x
F τ

3 (x′, Q2), (E.2)

where Pp(n)(ǫ,p) is the nuclear spectral function, normalized to the number
of protons (neutrons) in the nucleus, and describes the probability of finding
a proton (neutron) with momentum p and removal energy ǫ. The four-
momentum of the nucleon can be written as p = (M + ǫ,p), with ǫ ≤ 0.
The z axis is oriented in such a way that q lies on it, p⊥ is the transverse
momentum of the nucleon and γ = |q|/q0. Here, x′ is the natural Bjorken
variable for the nucleon in the nucleus, i.e. x′ = Q2/(2p · q); while x is
the Bjorken variable in the nucleon rest frame, x = Q2/(2Mq0). They are
related by

x′ =
x

z
where z = 1 +

ǫ

M
+ γ

pz

M
. (E.3)

For isoscalar nuclei such as 40Ca, only the isoscalar component of the spec-
tral function and the structure function have to be accounted for.
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When this is done in (E.1) and (E.2), these read as

FA
2 (x,Q2) = A

∫
dǫd3p

(2π)4
P0(ǫ,p)

(1 + γ pz

M )

γ2

(
1 + 4

p2x′2

Q2
+ 6

x′2p2
⊥

Q2

)

× FN
2

(x
z
,Q2

)
, (E.4)

FA
3 (x,Q2) = A

∫
dǫd3p

(2π)4
P0(ǫ,p)

(
1 +

pz

γM

)
x′

x
FN

3

(x
z
,Q2

)
, (E.5)

where P0(ǫ,p), which is the isoscalar part of the nuclear spectral function,
is now normalized to unity and we perform the calculations for the nuclear
structure functions averaged over neutrinos and antineutrinos, i.e., we only
consider the symmetric ν + ν̄ combination [64,65].

In a nucleus, the expected values of 〈ǫ〉
M and

〈p2〉
M2 averaged with the nuclear

spectral function are much smaller than unity. Thus, z ≈ 1 and x′ ≈
x. Under these assumptions, we can perform a Taylor expansion of the
integrands in expressions (E.4) and (E.5) around z = 1, keeping terms up
to order ǫ/M and p2/M2. In this way we will be able to take out of the
integral the structure functions and their derivatives and we will be left
with expected values of the removal energy ǫ and momentum squared p2.
This statement is true if the nuclear spectral functions only depend on the
modulus of the momentum |p| (as it is in the case of the nuclear spectral
functions we will consider) and not upon its direction.
Under this assumption we can drop the expected values of pz (or any other
component of the momentum) and ǫ pz because they are identically zero due
to symmetry considerations.
We will begin with the structure function FA

2

(
x,Q2

)
. After performing

the Taylor expansion, keeping terms up to order ǫ/M and p2/M2, and
dropping those terms which go with 〈pz〉 /M or 〈ǫ pz〉 /M2 (because they
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are identically zero as stated above), we obtain

FA
2

(
x,Q2

)

A
≃ FN

2

(
x,Q2

)
[
1 +

(
γ2 − 1

)
〈
p2
〉

3M2

]

− x
∂FN

2

(
x,Q2

)

∂x

[
〈ǫ〉
M

+
(
2 − γ2

)
〈
p2
〉

3M2

]

+

(
x
∂FN

2

(
x,Q2

)

∂x
+
x2

2

∂2FN
2

(
x,Q2

)

∂x2

)
γ2

〈
p2
〉

3M2
, (E.6)

where 〈O〉 is the expected value of the operator O(ǫ,p) averaged with the
isoscalar spectral function P0(ǫ,p):

〈O〉 =

∫
dǫ d3p

(2π)4
P0(ǫ,p) O(ǫ,p). (E.7)

We have also used the fact that, with a nuclear spectral function which
depends only on the modulus of the momentum, the expected value of mo-
mentum squared is shared equally among every squared component, i.e:
〈
p2

i

〉
=

〈p2〉
3 . In the Bjorken limit, (γ → 1), (E.6) coincides with the expan-

sions used by Frankfurt et al. [168] and Ciofi degli Atti et al. [170].
If we do the same for the nuclear structure function FA

3

(
x,Q2

)
, we obtain

FA
3

(
x,Q2

)

A
≃ FN

3

(
x,Q2

)
− 〈ǫ〉
M

{
FN

3

(
x,Q2

)
+ x

∂FN
3

(
x,Q2

)

∂x

}

+

〈
p2
〉

3M2

{(
γ2 − 1

) [
FN

3 + x
∂FN

3

∂x

]
+ γ2

[
x
∂FN

3

∂x
+
x2

2

∂2FN
3

∂x2

]}

, (E.8)

a similar result to that of Kulagin [181]. To allow for an easier comparison,
in the above expressions, γ2 can be rewritten as

γ2 = 1 +
4M2x2

Q2
. (E.9)

Then, the only difference between (E.8) and that of [181] is that, for sim-
plicity, we do not consider the off-shell dependence in the nucleon structure
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function FN
3 . In our calculation, the only source of off-shell dependence is

through the nuclear spectral function P0. Thus, we do not have the term
∂p2FN

3 that appears in [181].
For our study we have selected the 40Ca nucleus, which is isoscalar and
already will show important medium effects. The free nucleon structure
functions have been taken from [184] and we have chosen several different
nuclear spectral functions. The first one (labelled I) is a phenomenologi-
cal model of the spectral function which has a mean field part and high-
momentum components coming from NN-correlations and it is described in
Kulagin et al. [64] where it was used in a global study of nuclear structure
functions. The second one (labelled II), that also contains correlations is
taken from [108] where it has been tested in the calculation of several elec-
tron scattering observables. The third spectral function is taken from the
semiphenomenological model based on a many body calculation and the
local density approximation that is described in [138] (labelled III). Finally,
we also consider the simple mean field spectral function of [183](labelled
IV), which was used in the study of the EMC effect.
In figure E.1, we show the results of the ratio R2 = F2A

F2 for the nuclear
spectral functions (I), (II) and (III). This gives us some idea of the uncer-
tainties related to these functions. The differences are small, even when the
spectral funtions have been obtained with diverse methods and are in fact
quite different if one studies in detail their energy and momentum depen-
dence. However, the expected values of the mean removal energy 〈ǫ〉 and

the mean kinetic energy per nucleon 〈T 〉 =
〈

p
2

2M

〉
are quite similar, as can

be seen in Table E.1. In particular, spectral functions (I) and (III) that

Table E.1: Expected values of the nucleon removal and kinetic energies for
the nuclear spectral functions of Kulagin et al. [64] (I), Ankowski et al. [108]
(II) and Fernandez de Cordoba et al. [138] (III).

Spectral Function (I) (II) (III)

〈ǫ〉 (MeV) -49 -40 -47

〈T 〉 (MeV) 30.1 26.2 28.8

have quite close expected values also produce very similar ratios, whereas
(II) which has an appreciably smaller binding energy gives slightly larger
values for the ratio. In figure E.2, we compare the full results for the same
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Figure E.1: R2 = F2A

F2
ratio for 40Ca at Q2 = 20 GeV2 with the nuclear

spectral functions (I), (II) and (III) described in the text.
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Figure E.2: R2 = F2A

F2 ratio for 40Ca at Q2 = 20 GeV2. Comparison of the
full results with the approximation of (E.6) for the nuclear spectral functions
(I), (II) and (III).

ratio (E.4) whith those obtained making use of the approximation of (E.6).
The use of this expansion has been assumed to be a good approximation
for x ≤ 0.5 [170, 179, 180]. Obviously, the series expansion agrees well at
low values of x with the full results. However, in the three cases produces
lower values for the ratio at intermediate x showing a maximum deviation
of a 3-4% around x = 0.5 − 0.6. This region, with a dip in the ratio, is
dominated by the mean removal energy (or equivalently the binding energy)
per nucleon. Although this could look a small error, we should remark that
it means increasing the deviation due to nuclear effects from the value 1 by
around a 30% . At higher x’s, where Fermi motion of the nucleons provides
the dominant effect, the series expansions grow faster than the full results
and become larger for x & 0.65. Thus, we find that for typical nuclear spec-
tral functions the convergence of the series expansion is not so good except
at very low x, where in any case other effects not considered here, like shad-
owing play a major role. The results for the R3 = F3A

F3
ratio are shown in
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Figure E.3: R3 = F3A

F3
ratio for 40Ca at Q2 = 20 GeV2. Comparison of the

full results with the approximation of (E.8) for the nuclear spectral functions
(I), (II) and (III).
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figure E.3. The full model for R3 is given by (E.5) and the series expansion
by (E.8). As it was the case for R2, there is a dip region dominated by the
binding energy and the Fermi motion of the nucleons produces the large
rising at high values of x. The comparison of the full results and the series
expansions shows the same features as for R2. The expansions systemati-
cally underestimate the ratios at intermediate values of x and overestimate
them for x > 0.7. This overestimation of the effect of the Fermi motion was
already discussed in [181]. There, it was also claimed that in the limit of
high Q2 and for heavy nuclei the expansion should be a good approxiamtion
up to x . 0.75. However, after studying R2 and R3 at different Q2 values,
apart from the one shown in this appendix, we have found that for medium
nuclei the convergence of the series is only good at very low x where other
nuclear effects are very relevant.
In order to obtain a better convergence one would need to reach a higher or-
der in the expansions. This implies also the sensitivity to nuclear expected
values of higher powers of the nucleons momenta as < (p/M)4 >. One
should notice that due to correlations these expected values are not negligi-
ble [185, 186]. The three spectral functions considered above contain high
momentum components and one may expect any expansion up to order p2

to fail to have a good convergence. To test this point, we have also calcu-
lated R2 for the case of a simpler mean field spectral function which does not
incorporate nucleon correlations and does not have those high momentum
components [183]. This function was used to analyse the A dependence
of the position and magnitude of the dip. Here, we have used the same
parton distribution functions as in the original reference [183]. The results
are shown in figure E.4. In this case, there is an almost perfect agreement
between the full results and the expansion.
In summary, we have studied the quality of some series expansions com-
monly used to incorporate approximately the nuclear effects in the analysis
of DIS processes. We have found that for realistic enough nuclear spectral
functions, that include nucleon correlations and have high momentum com-
ponents, the convergence of the series to the full result is poor except at
very low values of x, where in fact, other nuclear effects, like shadowing
or antishadowing, are more relevant. At high x values, in the Fermi mo-
tion region, the expansions clearly overestimate the full result. This was
known and expected. However, even at relatively low x values, where the
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Figure E.4: R2 = F2A

F2 ratio for 40Ca. Comparison of the full results with
the approximation of (E.6) for the nuclear spectral functions (IV).
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expansions were suppossed to provide a good approximation, we have found
that they systematically underestimate the value of F2 and F3, artificially
increasing the size of the nuclear corrections.
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