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Chapter 1

Introduction

1.1 Motivation and outline

Quantum Chromodynamics (QCD), the theory of the strong interaction,

governs the dynamics of quarks and gluons, binding them in hadrons.

The properties of the latter are very interesting, not only to investigate

the underlying strong interaction, but also, since hadrons are omnipresent

in particle physics processes, they are fundamental in any experimental

analysis.

As composite particles, hadrons are extended bodies with a certain

structure. Their composition can be probed experimentally, and in this

regard nucleons, i. e. protons and neutrons, are special. The proton is

the only stable hadron (within experimental limits) and the neutron is the

second most stable one, with a mean lifetime of about 15 minutes. This

makes the nucleon the most suitable target for scattering experiments,

which is the most straightforward way to probe the internal structure.

In particular, electron-nucleon elastic scattering is sensitive to the distri-

bution of electric charge within this hadron, as well as to its magnetic

properties. On the other hand, weak probes, such as neutrinos scattering

quasi-elastically on nucleons, give access to the so-called axial structure

of the nucleon. This is related to the spin distribution within the nu-

cleon and is a key input for the analysis neutrino physics. In general,

the cross sections of these processes are decomposed in functions of the

momentum transfer, each of these different functions is called form factor

(FF) and encodes the information on the hadron structure. Lately even
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1.1. Motivation and outline

gravitational FFs, related to the mass distribution, are under study.

In this thesis we have studied the electromagnetic and the axial form

factor of the nucleon at low energies, since they provide the following

information: a determination of fundamental nucleon properties; insight

on the underlying QCD interaction; necessary input for the analysis of

many relevant experimental processes. However, there is a complication

intrinsic to the QCD interaction: since the strong coupling is large at low

energies, these form factors can not be calculated perturbatively. This is

circumvented by simulating a discretized spacetime where hadronic ma-

trix elements can be computed numerically, what is called lattice QCD

(LQCD). The recent progress in LQCD is one of the main motivations of

this thesis. This invaluable source of theoretical information suffers from

some artifacts and systematic uncertainties. The emphasis of this work

is put on the effective field theory (EFT) approach to these and other

problems. An EFT is a theoretical framework which simplifies the prob-

lem of the fundamental theory. It does it by examining the scales at play

and the symmetries of the problem, using the most convenient degrees

of freedom in order to account only for the most relevant dynamics. In

this way, one can escape from the complications of the complete theory

and obtain a description which has two beneficial features: being model

independent and systematically improvable.

The EFT of QCD at low energies is called Chiral Perturbation Theory

(ChPT). It takes advantage of the chiral symmetry of the fundamental

interaction, as will be explained below, and has been very successful in

the analysis of hadron physics. In particular, it is useful to describe the

dependence on lattice artifacts, such as the use of quark masses heavier

than the physical ones to ease the computation. This dependence will

be at the center of the thesis, however ChPT can also account for other

LQCD effects due to the size (finite volume) of the simulated universe,

the finite spacing between lattice points, among others. By means of

this helpful theory, the nucleon axial form factor is studied in Ch. 2,

extracting it from a combined set of several recent LQCD data.

Complementary to ChPT, dispersion theory, which exploits the uni-

tarity and analyticity of amplitudes, is also a powerful tool to study

nonperturbative dynamics in quantities such as the form factors. In par-

ticular, in Ch. 3 we assessed the electromagnetic FF of the nucleon, using

dispersion theory in combination with ChPT to study LQCD data and

its quark mass dependence.

10



Chapter 1. Introduction

Finally, also new physics (NP) contributions to hadronic processes are

studied. The search of beyond the Standard Model phenomena is one of

the main efforts in current fundamental physics, with no clear evidence

found yet. In Ch. 4 we study how possible NP contributions may affect

the decay of a charmed baryon, the Λc. We analyze the weak semilep-

tonic decay, Λc → Λ `+ν`, motivated in part by very recent results from

the BESIII collaboration. Again the approach is to use EFTs to gain

phenomenological knowledge. On the one hand, the NP is parametrized

in a model independent way using the so-called Standard Model Effec-

tive Field Theory (SMEFT). On the other hand, to obtain the relevant

hadronic matrix element, we also employ another effective theory ap-

proach: we start from the matrix element of the Standard Model current,

which has been simulated in the lattice, and employ the heavy quark spin

symmetry (HQSS) approximation, which exploits the large value of the

charm quark mass, to estimate the matrix elements of the other currents

accounting for the NP interaction.

Before discussing the results of our works, we start by introducing the

theoretical framework in the current chapter.

1.2 Chiral Perturbation Theory

Hadrons are QCD bound and resonant states. Their qualities can not

be calculated perturbatively because QCD is strongly coupled at low

energies. However, in this regime the QCD Lagrangian of light quarks

is approximately invariant under rotations in the flavor space, the chi-

ral symmetry. In particular, the spontaneous breaking of this symme-

try leads to a theory where the lowest lying mesons are the Goldstone

bosons. This allows to build a perturbative effective field theory, where

the hadrons are the degrees of freedom. Once the free parameters, aka

low energy constants (LECs), are fixed experimentally or from LQCD,

such theory has predictive power. This is Chiral Perturbation Theory

(ChPT), the effective field theory of QCD at low energies. This formal-

ism will be introduced throughout the section, and to do so, first some

symmetry considerations are necessary.

11



1.2. Chiral Perturbation Theory

1.2.1 The Lagrangian of light quarks

Quark currents in the massless limit: chiral symmetry

Before presenting the EFT it is important to study the symmetries of

QCD. The somewhat intricate discussion of this section will pay off ob-

taining a very powerful effective theory. The QCD Lagrangian of the

light quarks (u, d and s), in the limit in which they are massless (chiral

limit) reads:

L0
QCD = iqL /DqL + iqR /DqR , (1.1)

with qT = (u, d) or qT = (u, d, s) depending whether we are in the nf = 2

or nf = 3 scenario, qL/R = PL/Rq = 1
2(1 ∓ γ5)q, and Dµ contains the

gluon interactions. This Lagrangian owns global G ≡ SU(nf )L⊗SU(nf )R
so-called chiral symmetry, with nf quark flavors. The transformations

are:

qL −→ gLqL, qR −→ gRqR, (1.2)

with gL ∈ SU(nf )L, gR ∈ SU(nf )R. The group elements are gL,R =

eiε
a
L,R

Ta

2 with T a the τa Pauli (λa Gell-Mann) matrices for nf = 2 (nf =

3).

On top of this symmetry, there is another invariance given by the

singlet transformations: qL,R −→ g
(s)
L,RqL, with g

(s)
L,R = eiε

(s)
L,R , and ε

(s)
L ,

ε
(s)
R independent constants. This has no flavor structure, and makes the

symmetry group be: G⊗U(1)L⊗U(1)R = SU(nf )L⊗SU(nf )R⊗U(1)L⊗
U(1)R.

The group G can be constructed joining vector and axial transforma-

tions, respectively:

q −→ eiε
a
V

Ta

2 q, q −→ eiε
a
A

Ta

2
γ5q . (1.3)

From eiε
a
V

Ta

2 eiε
a
A

Ta

2
γ5q = gLqL + gRqR it follows that εV,A = (εR ± εL)/2.

The same can be done for the singlet transformations, using ε
(s)
V,A = (ε

(s)
R ±

ε
(s)
L )/2.

According to Noether’s theorem, the symmetry implies the conserva-

tion of certain quantities. To extract the Noether current we promote

the global transformation to a local one, as explained in Ref. [1], which

yields Jµ = ∂δL
∂∂µε

and ∂µJ
µ = ∂δL

∂ε . The conserved vector and axial(-

12



Chapter 1. Introduction

vector) currents1 and charges of G are (if not stated differently, we study

the nf = 3 scenario):

V a
µ ≡ qγµλ

a

2
q, Aa

µ ≡ qγµγ5
λa

2
q ,

Qa
V =

∫
d3xV a0, Qa

A =

∫
d3xAa0.

(1.4)

Analogously, the conserved flavor-singlet currents are V
(s)
µ ≡ qγµq, A

(s)
µ ≡

qγµγ5q, where the latter is not conserved at loop level, what is called the

U(1)A anomaly.

Quark currents with mass: explicit symmetry breaking

We now introduce the light quark masses, which enter in the following

term, which is added to the Lagrangian of Eq. (1.1):

LM = −q̄Mq = − (q̄RMqL + q̄LMqR) , (1.5)

with the mass matrix M = diag(mu,md,ms). This term breaks the

chiral symmetry. It constitutes the so-called explicit breaking, not to

be confused with the spontaneous symmetry breaking responsible of the

appearance of Goldstone bosons, which will be discussed later.

The divergences of the currents are now:

∂µV
µ
a = iq̄

[
M,

λa

2

]
q ,

∂µA
µ
a = iq̄γ5

{
λa

2
,M

}
q ,

∂µV
(s)µ = 0 ,

∂µA
(s)µ = 2iq̄γ5Mq +

3αs

4π
F a
µνF̃

aµν . (1.6)

This leads us to the following remarks:

• The vector current V µ
a is conserved in the limit of SU(3) symmetry,

where the masses of the light quarks are all the same. Taking mu =

md 6= ms yields SU(2) isospin symmetry. Given that hadrons are

composed by quarks, approximate isospin symmetry is inherited

1A current, Jµ, is said to be conserved if ∂µJµ = 0.
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1.2. Chiral Perturbation Theory

by hadrons. However, it should be remarked, that SU(2) chiral

symmetry, i.e. mu,d = 0, is actually a more reasonable limit than

isospin symmetry, mu = md 6= 0. mu = md is approximately a

100% violated2, and the discrepancy is much larger if one compares

mu,d with ms.

• The axial current, Aµ
a , is not conserved even in the aforementioned

SU(3) limit. However the breaking, as for the rest of the currents, is

proportional to the light quark masses and therefore relatively small

(this is why it is denoted partial conservation of the axial current).

A notable consequence of this is the pion decay, where a spin zero

pion can be annihilated by a an axial vector weak current which

has spin one (see discussion of Eq. 2.50 of [3]).

• The flavor-singlet vector current, V (s)µ, is conserved, given that

the corresponding transformation is flavor independent and the two

chiralities are transformed equally. This symmetry is the one that

leads to baryon number conservation.

• The divergence of the flavor-singlet axial current, A(s)µ, receives a

contribution from the quark masses and another from the aforemen-

tioned U(1)A anomaly, given by the gluon field strength tensors (see

definitions of Ref. [4]). This has implications for the masses of the

η and η′3.

• The current divergences are not only affected by the masses, but also

by other external sources, such as the electroweak interactions. We

will not discuss these corrections in detail, but we do introduce the

coupling of quarks to the electroweak force in the following section.

This leads to the definition of the form factors, which are central to

this thesis.

Electroweak interaction

The Standard Model is built upon the symmetries of color SU(3), the

weak isospin SU(2)L and the hypercharge U(1)Y . The latter two groups

2From the ChPT Lagrangian that will be introduced in Eq. (1.41), one can extract that at
leading order (md−mu)/(mu+md) = (M2

K0 −M2

K±
)/M2

π0 which is approx. 0.3 experimentally,

implying that md ' 2mu [2].
3This is not to be confused with the QED anomalous SU(nf )A breaking observed in π0 → γγ.
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Chapter 1. Introduction

are spontaneously broken to electromagnetic U(1) below the electroweak

energy scale:

SU(3)C ⊗ SU(2)L ⊗U(1)Y → SU(3)C ⊗U(1)EM . (1.7)

The left handed components of the leptons and quarks are SU(2) doublets

of the weak isospin, T :
(
νl

`

)

L

,

(
qu

qd′

)

L

, `R , quR , qdR , (1.8)

structured in three families: ` = e, µ, τ , νl = νe, νµ, ντ for the charged

leptons and neutrinos; qu = u, c, t, qd′ = d′, s′, b′, for the up and

down-type quarks. The primes indicate that the weak eigenstate quarks

are combinations of the mass eigenstates, d, s, b, what is accounted by

the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The same can be said

about νe, νµ and ντ , however their masses are negligible for our purposes,

and they are considered massless in the simple SM.

The fermions couple to the electroweak interaction in the following

way:

L = −eJµ
EMAµ −

g

2 cos θW
Jµ
NCZµ −

g

2
√
2

(
Jµ
CCW

†
µ + h.c.

)
, (1.9)

where Aµ is the photon field (not to be confused with the axial currents)

and Wµ and Zµ are the massive bosons. The Jµ indicates the correspond-

ing currents, made by lepton and quark bilinears. The weak angle θW
satisfies the following relation between the electron and the weak charges:

sin θW = e/g, where e is the charge of the positron (e > 0).

For the charged leptons, the currents are:

Jµ
EM = ¯̀γµ` ,

Jµ
CC = 2ν̄lγ

µPL` ,

Jµ
NC = ν̄lγ

µPLνl +
1

2
¯̀γµ (cV − cAγ5) ` , (1.10)

with cV = −1 + 4 sin2 θW , cA = −1 and the same PL as in Eq. (1.1).

With respect to the quarks, we restrict ourselves to the light ones, u,

d and s, so that we employ the quark vector qT = (u, d, s). Therefore we

present the electromagnetic (EM) quark current, which is given by:

Jµ
EM = q̄Qγµq , Q = diag(2/3,−1/3,−1/3) . (1.11)
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1.2. Chiral Perturbation Theory

The operator Q can be separated in terms of the third component of the

u and d isospin, I3, and the hypercharge, Y , as follows:

Q = I3 + Y/2 . (1.12)

Hypercharge is defined by the baryon and strangeness content: Y =

B + S, which depended on the number of quarks and antiquarks, B =

(nq − nq̄)/3, S = −(ns − ns̄). In the (u, d, s) space one has: I3 =

λ3/2 = diag(1/2, 1/2, 0), Y = λ8/
√
3 = diag(1/3, 1/3,−2/3) and S =

diag(0, 0, 1). One can therefore define the vector currents of isospin and

hypercharge as:

V µ
3 = q̄I3γ

µq , V µ
Y = q̄Y γµq , V µ

S = q̄Sγµq , (1.13)

and rewrite the Q decomposition (1.12) in terms of quark currents:

Jµ
EM = V µ

3 + V µ
Y /2 . (1.14)

Turning now to the so-called neutral current, we separate it in vector

and axial components:

Jµ
NC = V µ

NC −Aµ
NC , (1.15)

where the vector term is

V µ
NC = (1− 2 sin2 θW )V µ

3 − 2 sin2 θW
1

2
V µ
Y −

1

2
V µ
S , (1.16)

while the axial one reads

Aµ
NC = Aµ

3 −
1

2
Aµ

S , (1.17)

with the axial isovector current Aµ
a defined in Eq.(1.4) and the axial

strangeness current given by Aµ
S = q̄Sγµγ5q.

Finally we will discuss the quark charged current, Jµ
CC , momentarily

including the heavy quarks for completeness. The interaction is purely

left-handed (L = V −A), but no longer diagonal in flavor: it couples up

and down-type quarks. On top of that, one has to account for the fact

that d, s and b are not weak eigenstates. The interaction term reads:

Jµ
CC = 2 (q̄u, q̄c, q̄t) γ

µPLVCKM




qd

qs

qb


 , (1.18)
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Chapter 1. Introduction

where VCKM is the Cabibbo-Kobayashi-Maskawa matrix, accounting for

the change of eigenstate basis, is given in Ref. [5]. In the light quark

sector, VCKM can be written in terms of the Cabibbo angle, θC , so that

one gets:

Jµ
CC = 2q̄uγ

µPL(cos θCqd + sin θCqs) . (1.19)

Form factors

Form factors describe the interaction between particles and external

fields, such as electroweak bosons. They contain the dependence in mo-

mentum transfer of the vertex. Moreover, they provide information on

the structure of composite particles. In this work we focus on the elec-

troweak interaction on nucleons: on the one hand, we study the vector

form factor (Ch. 3), which gives information relevant for the electromag-

netic interaction, but also for the weak one, since the latter also has a

vector part as we have seen; on the other hand, we investigate the axial

form factor (Ch. 2), which is relevant for the weak interaction only.

Starting by the electromagnetic form factor, we study the EM cur-

rent (1.11) with two flavors, qT = (u, d):

Jµ
EM(x) = q̄(x)

(
1

6
+

τ3
2

)
γµq(x) . (1.20)

The form factors are defined by the matrix element between on-shell

nucleon states of four-momenta p, p′. According to the symmetries of

the SM, one parametrizes the matrix element as (see Ref. [6] for detailed

derivation):

〈N(p′)|Jµ
EM(0)|N(p)〉 = ū(p′)

(
γµF

(N)
1 (q2) +

iσµνqν
2mN

F
(N)
2 (q2)

)
u(p) ,

(1.21)

where −Q2 = t = q2 = (p′−p)2 and mN and u are the nucleon respective

mass and spinor. F
(N)
1 and F

(N)
2 are the Pauli and Dirac form factors

of the proton and neutron, for N = p, n respectively (they are real due

to time reversal symmetry). In general we will refer to them as diagonal

matrices F1,2 in the isospin space. In our work we separate in isoscalar

and isovector components, Fi = 1
2F

(s)
i + F

(v)
i

τ3
2 , F

(s/v)
i = F

(p)
i ± F

(n)
i ,

with i = 1, 2, and we calculate only the isovector one.

The Dirac and Pauli form factors are related to the electric and mag-
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1.2. Chiral Perturbation Theory

netic ones, GE, GM, as:

GE = F1 −
Q2

4m2
N

F2, GM = F1 + F2 , (1.22)

F1 = GE +
Q2

4m2

(GM −GE)

(1 +Q2/(4m2
N ))

, F2 =
GM −GE

(1 +Q2/(4m2
N ))

.

One has to notice that GE(0) = F1(0) = (1 + τ3)/2 = diag(1, 0) is the

electric charge. In addition, the magnetic moment, µ(N), is

µ(N) = G
(N)
M (0)µN = (diag(1, 0) + κ(N))µN , (1.23)

with κ(N) = F
(N)
2 (0), the anomalous magnetic moment, which is due to

the nucleon extended structure (µN is the nuclear magneton).

Moreover, one can define the proton and neutron radii, which are re-

lated to the nucleon charge distribution and its magnetism. The Dirac

and Pauli quadratic radii, 〈r(s,v)2i 〉, in the isospin decomposition are de-

fined by the following low energy expansion:

F
(s,v)
i (q2) = F

(s,v)
i (0)

[
1 +

1

6
〈r(s,v)2i 〉 q2 +O(q4)

]
. (1.24)

Particularizing for the different cases in the physical basis one has:

〈r(p)2E 〉 = − 6

G
(p)
E (0)

dG
(p)
E (Q2)

dQ2

∣∣∣∣∣
Q2=0

,

〈r(p)2M 〉 = − 6

G
(p)
M (0)

dG
(p)
M (Q2)

dQ2

∣∣∣∣∣
Q2=0

,

〈r(n)2E 〉 = −6 dG
(n)
E (Q2)

dQ2

∣∣∣∣∣
Q2=0

,

〈r(n)2M 〉 = − 6

G
(n)
M (0)

dG
(n)
M (Q2)

dQ2

∣∣∣∣∣
Q2=0

, (1.25)

where 〈r(N)2
1 〉 = 〈r(N)2

E 〉 − 3
2m2

N

(µ(N)/µN − 1) is a useful expression.

Finally, we turn to the axial form factor, FA, which is relevant for

CC as well as NC lepton scattering on nucleons. In Ch. 2 we study the

current of Eq. (1.4) in SU(2), given by the isovector structure:

Aa
µ(x) = q(x)γµγ5

τa

2
q(x) . (1.26)
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The form factor decomposition reads:

〈N(p′)|Aa
µ(0)|N ′(p)〉 = ū(p′)

[
FA(q

2)γµ +
qµ

2mN
FP (q

2)

]
γ5

τa

2
u(p) .

(1.27)

FA and FP are the axial and pseudoscalar isovector form factors. The

latter is dominated by the pion pole, and at LO satisfies the so-called

Goldberger-Treiman relation. On the other hand, focusing on the axial

FF, which is receiving much attention, it can be decomposed in the axial

charge, gA, and the axial quadratic radius, 〈r2A〉, as

FA(q
2) = gA

[
1 +

1

6
〈r2A〉q2 +O(q4)

]
, (1.28)

and therefore gA = FA(q
2 = 0), and 〈r2A〉 = 6

gA
d

dq2 FA|q2=0 .

1.2.2 Spontaneous symmetry breaking and the σ model:

a didactic introduction

We will now discuss the spontaneous symmetry breaking (SSB) and

the effective field theory treatment that follows from it. As explained

before, the QCD Lagrangian with massless quarks (1.1) is symmetric

under the chiral group G ≡ SU(nf )L ⊗ SU(nf )R (as well as under

U(1)L⊗U(1)R). However, the vacuum is not invariant under axial trans-

formations, Qa
A |0〉 6= |0〉, while it is under vector ones, Qa

V |0〉 = |0〉 (see

Ref.[1]). Thus, it is said that the symmetry is spontaneously broken,

with the pattern:

G ≡ SU(nf )L ⊗ SU(nf )R → H ≡ SU(nf )V . (1.29)

Evidence of this fact can be found in the hadronic spectrum: chiral sym-

metry, i.e. symmetry under G, which should be approximately good for

the light u, d, s quarks, would imply degenerate mirror hadronic multi-

plets with opposite chiralities. But these are not present in nature. On

top of that, another evidence of SSB is the fact that the quark conden-

sate, 〈0| qq |0〉, an order parameter of this symmetry breaking, has a non

zero vacuum expectation value (v.e.v.).

In consequence, due to the Goldstone Theorem [7, 8], for nf = 3 the

spectrum contains eight Nambu-Goldstone bosons (NGB)4, as many as

4For nf = 2 the NGB are just the three pions.
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broken generators or charges. These particles have the same quantum

numbers as Qa
A: odd parity, and transform under the adjoint represen-

tation of SU(nf ). These correspond to the lightest octet of pseudoscalar

mesons (π±, π0, η, K±, K0, K
0
). While NGB are massless, these mesons

are pseudo-Goldstone bosons, because their masses are small compared

with the scale of the SSB, Λχ ∼ 1 GeV. Their masses are proportional

to the square root of the quark masses, and therefore are related to the

aforementioned explicit symmetry breaking (explained in Sec.1.2.3).

Toy example: the σ model

Before discussing ChPT, we start with a toy example, the σ model,

which describes the pions, the scalar meson σ and implements the chi-

ral SSB in the nf = 2 case5. According to their quantum numbers, the

aforementioned mesons correspond to the following currents: σ ∼ qq,

πa ∼ iqτaγ5q. From Eq. (1.2) they transform under G at LO as:

πa −→ πa − εaAσ − εabcε
b
V π

c, σ −→ σ + εaAπ
a . (1.30)

In a first step we study the parametrization in which the field trans-

formations are lineal in the fields themselves (linear realization). This

corresponds to embedding the mesons in a multiplet: Φ(x)T = (~π, σ),

therefore the Lagrangian of the so-called linear σ model reads

Lσ =
1

2
∂µΦ

T∂µΦ− λ

4

(
ΦTΦ− v2

)2
, v2 > 0 . (1.31)

The Lagrangian is invariant under G (with nf = 2), which is an equiva-

lent of the rotational group SO(4). In fact, L is invariant under rotations

of the four components.

At tree level, where one can think of Φ as a classical field, the potential

is at its minimum when ΦTΦ = v2. This corresponds to a degenerate

ground state, Φ0. We then choose our vacuum to be the one satisfying

〈0|σ |0〉 = v and 〈0|~π |0〉 = 0. Therefore the chosen ground state, ΦT
0 =

(~0, v), is not invariant under the symmetry of the Lagrangian, but only

under SO(3). In general, this symmetry rupture is called spontaneous

symmetry breaking.

5See Ref. [9] for a review on theories with Nambu-Goldstone modes.
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After this, one redefines the field σ̂ = σ − v around its vacuum, ob-

taining

Lσ =
1

2

(
∂µ~π∂

µ~π + ∂µσ̂∂
µσ̂ − 2λv2σ̂2

)
− λv σ̂

(
σ̂2 + ~π2

)
− λ

4

(
σ̂2 + ~π2

)2
.

(1.32)

One can see that three massless Nambu-Goldstone bosons ~π have arisen

after the breaking. They correspond to the generators of the coset SO(4)

/ SO(3) , the three broken generators in the SSB. On the other hand σ̂

has a mass M2 = 2λv2.

Figure 1.1: σ model potential of Eq. (1.32), where the three πi are rep-

resented by the π axis (edited from Fig. 4.11 of Ref. [10]).

To see this in terms of the SU(2) group, one can rewrite Lσ as

Lσ =
1

4
〈∂µΣ†∂µΣ〉 − λ

16

(
〈Σ†Σ〉 − 2v2

)2
, (1.33)

with Σ(x) ≡ σ(x) I2+i ~τ ~π(x) and 〈...〉 a trace. According to Eq. (1.2), Σ

transforms as Σ→ gLΣg
†
R under G. Now it is evident that Lσ is invariant

under G = SU(2)L ⊗ SU(2)R. The vacuum choice, 〈0|Σ|0〉 = v I2, is un-

changed only under H = SU(2)V . This corresponds to the SSB of QCD.

The fact that we have just changed variables demonstrates the equiva-

lence between SU(2)L ⊗ SU(2)R → SU(2)V and SO(4) → SO(3). This

breaking is key in the formulation of ChPT and its characteristics are

an object of study in the realm of QCD at finite (non zero) temperature

and chemical potential.

In order to walk towards ChPT, we introduce now another parameter-

ization of the same model, the nonlinear realization. This comes through

a change of variables which introduces the fields S (in the typical form
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1.2. Chiral Perturbation Theory

after SSB) and φa:

Σ = (v + S)U ,

U = exp

{
i~τ ~φ

α(z)

vz

}
= cosα(z) + i~τ ~φ

sinα(z)

vz
, (1.34)

with z2 = ~φ2 and α(z) a function which encodes the particular rep-

resentation. For instance for α(z) = z one gets the exponential form

U = exp
{

i~τ ~φ
v

}
, whereas sinα(z) = z corresponds to the square root

one, U =
√
1− z2 + i~τ ~φ

v . However, it is important to remark that all

we have done is renaming the fields. Indeed one can show that on-shell

scattering amplitudes obtained from the linear or any of the nonlinear

representations are identical (equivalence theorem [11, 12, 13]).

The Lagrangian in this terms is:

Lσ =
v2

4

(
1 +

S

v

)2

〈∂µU †∂µU〉+1

2

(
∂µS ∂µS −M2S2

)
−M2

2v
S3−M2

8v2
S4 .

(1.35)

The following remarks on SSB and the σ model are relevant at this

point:

• Nonlinearity: An interesting feature of the nonlinear realization is

that the scalar S and the new pions, i.e. the NGB φa, are no

longer mixed by the chiral transformation G. From Eq. (1.2), S

is invariant under G, while U transforms as Σ: U → gLUg†R. The

transformation is linear in U , however the model is called nonlinear

because the transformation of φa is nonlinear in φa itself.

• Universality: In the nonlinear NGB sector, there are vertices with

an arbitrary even number of external Goldstones, but these are

always derivative vertices. Then the NGB scattering amplitudes

vanish at zero momenta. As stated before, observables computed in

the nonlinear realization are equal to the ones in the linear version.

Therefore the nonlinear formulation has made explicit a cancellation

that was happening among πa scattering diagrams in the linear one

(see Ref. [4] for an explicit calculation).

In addition, given the transformation properties in the nonlinear

model, it is straightforward to study the M →∞ limit and integrate
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the scalar S in the Lagrangian6. If one does so, all that is left is the

Goldstone Lagrangian:

LM→∞ =
v2

4
〈∂µU †∂µU〉 . (1.36)

This Lagrangian is universal for the NGBs of theories with the pat-

tern of symmetry breaking of Eq. (1.29) in the following sense: it

is a model-independent interaction of the Goldstones at very low

energies.

• The σ model is not realistic: the example presented here has been

discarded by the community as a model of QCD. The main reason

of this is that the attempts performed in the σ model do not agree

well with experiment beyond the leading terms7.

• Nonrenormalizability: In the nonlinear model, the separation of the

transformations of S and φa and the integration8 of S comes at a

price. The couplings of the Goldstone vertices have negative mass

dimension and therefore the Lagrangian (1.36) is not renormaliz-

able. This means that one needs infinite renormalization conditions

and has no predictive power.

• The effective field theory approach: The main conclusion of the

discussion can be taken from Weinberg’s The Quantum Theory of

Fields II [15] p. 192-193. The model that will inspire ChPT is the

one in which the fields transform nonlinearly under G (nonlinear σ

model). When one builds an effective theory, instead of a model,

one includes all operators allowed by the symmetries. A power

counting is needed in order to retain only the relevant terms of the

Lagrangian, and only the nonlinear realization has purely derivative

Goldstone couplings, which correspond to a counting in powers of

energy. Therefore, one can keep only the smaller powers in order

to study low energy phenomena. This is the simplest motivation

6It is not possible to perform this integration in the linear model without breaking chiral
symmetry in the Lagrangian.

7A one loop calculation in the linear σ model (see Ref. [14]) fails to describe the πN scattering
data. Analogously, in the foundational work by Gasser and Leutwyler [2], the linear model fails
to reproduce the experimental data in the pionic sector. It has to be said that in the latter
calculation, the authors signal problems due to the value of the σ mass, M . They show that in
the linear model the couplings scale with M , what is troublesome. Already M = 500 MeV would
break perturbation theory at one loop, and integrating it out is problematic.

8Before the integration of S the linear and nonlinear Lagrangians are connected by field re-
definition and both are renormalizable.
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of the adoption of the nonlinear realization as the suitable for the

description of the chiral symmetry breaking in Chiral Perturbation

Theory. In fact, the Lagrangian of Eq. (1.36) is the leading order

Lagrangian of ChPT (in the chiral limit)9.

In addition, the renormalization problem is circumvented by the

EFT. As will be shown, also the loops have a counting in terms of

energy. At the loop order, also higher order terms of the Lagrangian

enter the calculation, so that one can renormalize without problems.

One can fix the necessary renormalization constants at that order

and still have predictive power. This is how the next to leading order

Lagrangian and its low energy constants (LECs) arise in Chiral

Perturbation Theory.

1.2.3 Chiral Perturbation Theory for mesons

Chiral Perturbation Theroy is the effective field theory of QCD at low

energies. It is almost 60 years ago that Steven Weinberg’s seminal pa-

per [16], which builds the Lagrangian of the nonlinear realization, came

out (among different related works by others such as [17]). Ten years

later, the same author elevated the model to a theory, by elucidating

how to systematically compute quantities at one loop level [18]. Later,

Juerg Gasser and Heinrich Leutwyler applied the theory calculating ππ

scattering at one loop in their exhaustive work of Ref. [2]. Here it is not

our intention to give a comprehensive explanation of the theory. One can

find a very accurate one in Ref. [1]. We will present a brief overview of

the main features.

The theory is based on the assumption of what Weinberg calls a "the-

orem" in Ref. [18]:

The "theorem" says that [...] quantum field theory itself has no content

beyond analyticity, unitarity, cluster decomposition10, and symmetry. [...]

If one writes down the most general possible Lagrangian, including all

terms consistent with assumed symmetry principles, and then calculates

matrix elements with this Lagrangian to any given order of perturbation

9Curiously, the electroweak symmetry breaking is analogous to the chiral pattern. We will
present later the Standard Model Effective Field Theory, which is a linear realization of the
symmetry breaking. Interestingly, there is a more general EFT which is a nonlinear realization,
with a leading Lagrangian similar to Eq. (1.36). It is called Electroweak Effective Theory, and it
does not assume the Higgs to be in a doublet with the gauge bosons (look [9] for a review).

10Cluster decomposition is equivalent to locality.
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theory, the result will simply be the most general possible S-matrix con-

sistent with analyticity, perturbative unitarity, cluster decomposition and

the assumed symmetry principles.

ChPT follows this idea to build a Lagrangian where the degrees of

freedom are the octet mesons, the Goldstone bosons of the spontaneous

symmetry breaking. To construct it, all the independent operators invari-

ant under Lorentz, charge conjugation, parity, and chiral transformations

should be included.

However, as this makes an infinite set, an expansion rule must be used

in order to retain the most relevant operators up to a given perturbative

order. In ChPT, this ordering is given by Weinberg power counting the-

orem [18]. Since the NGB have derivative couplings, and derivatives cor-

respond to momenta in the amplitude, one can expand the Lagrangian in

terms of the number of derivatives. Let us denote L =
∑

d Ld the ChPT

Lagrangian, where Ld are the terms in the Lagrangian with vertices of d

derivatives (or powers of the meson mass that will be introduced below).

If a general amplitude depends on external meson momenta pi, which set

the small scale pi ∼ p, and on meson masses, which must be Mφ ∼ O(p),
then the scaling D of the amplitude is defined by

A(λp, λMφ) = λDA(p,Mφ) . (1.37)

For illustrative purposes, one can study the scaling of the tadpole loop:

Atadpole(Mφ) =

∫
dnk

1

k2 −M2
φ

. (1.38)

One scales Mφ and changes variables:

Atadpole(λMφ) =

∫ ∞

−∞
dnk

1

k2 − λ2M2
φ

=︸︷︷︸
k=λk′

∫ λ∞

−λ∞
λndnk′

1

λ2

1

k′2 −M2
φ

=︸︷︷︸
λ 6=0

λn−2Atadpole(Mφ) . (1.39)

From this analysis, one sees that the internal line has an n − 2 scaling,

with n the number of dimensions. This is in fact general independently

of the topology. It can be deduced from the fact that the only scales

in a properly renormalized loop amplitude are pi and Mφ, and therefore

the dominant contribution of the loop momentum is also order p [15].

In consequence, the amplitude of a general loop graph will have the
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Weinberg power counting (at n = 4 dimensions):

D = 4L− 2I +
∑

d

dnd = 2(1 + L) +
∑

d

(d− 2)nd , (1.40)

where the diagram contains nd vertices with d derivatives, L ≡# loops,

I ≡# internal lines, and p represents a generic momentum. Notice that

in the right hand side I has been eliminated thanks to the topological

relation L = 1 + I −∑nd. Equation (1.40) determines which diagrams

should be included to calculate up to a certain accuracy. It is straightfor-

wardly related to the effective Lagrangian, which is organized in terms

of a certain order.

The LO Lagrangian, O(p2), is in fact [2, 1]:

L2 =
F 2
0

4
〈DµU

(
DµU †)〉+ F 2

0

4
〈χU † + Uχ†〉, (1.41)

where U = exp
{

iφ
F0

}
in line with (1.34) and φ = φaT a, with T a the Pauli

or Gell-Mann matrices for nf = 2, 3 respectively11. Including strangeness

one has the following connection with the physical basis:

φ = φaλa =




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√
2K0

√
2K− √

2K̄0 − 2√
3
η


 . (1.42)

The following gauge elements are also needed:

DµU = ∂µU − irµU + iUlµ , χ = 2B0(s+ ip) , (1.43)

where lµ, rµ, s and p are external c-number fields, the external currents

used to couple the mesons to the electroweak interaction (promoting the

global chiral symmetry to a local one [1]) and to introduce the meson

masses. The Lagrangian has two LECs, F0 is the pion decay constant in

the chiral limit12 and B0 = −∑3
i=1 〈0| q̄iqi |0〉 /(3F 2

0 ). The transforma-

tion properties of these objects are given in Ref. [1].

The meson masses are introduced taking s =M, withM =diag(mu,md)

orM = diag(mu,md,ms) the mass matrix in the corresponding nf case.

11The standard transformation convention is U → gRUg†
L

, as in Ref. [1]. This is different than
the one presented below Eq. (1.35) (the difference arises from the choice of left and right group
representatives, (U, 1) vs (1, U)).

12The parameter F0 corresponds to v of the σ model in Eq. (1.31) at LO.
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This explicitly breaks chiral symmetry, in the exact same way as it is

broken in the QCD Lagrangian of Eq. (1.5). Therefore the effective the-

ory implements realistically the symmetry breaking (electromagnetism

and other interactions also break it). In the SU(2) isospin symmetric

limit this leads to M2
π = 2B0mq (Gell-Mann–Oakes–Renner relation)

and χ = M2
πI2 + ... . Given that the light-quark mass, mq, and the

pion mass, Mπ, are related as stated, discussing the mq or Mπ will be

interchangeable in what follows (up to higher orders).

1.2.4 Chiral Perturbation Theory for baryons

The theory can be extended to describe the lowest lying baryon octet, in

what is called baryon ChPT (BChPT). The construction of the effective

Lagrangian with two octet baryons resembles the one for the mesons.

However the fact that the baryons are not chiral NGBs and that they

carry a relatively large mass represents a theoretical challenge. Never-

theless, it has been shown that it is possible to extend the theory to this

sector, as reported below. The Lagrangian should have the same symme-

tries as the mesonic one, with the chiral symmetry gauged analogously

to introduce external currents.

We will restrict ourselves to the two flavor case here, i. e. nucleons,

and direct the interested reader to Ref. [1] for nf = 3. The pion-nucleon

Lagrangian is discussed in Refs. [19] and [20] and the baryon transfor-

mation properties are discussed in Ref. [21]. We present now the LO,

O(p), Lagrangian following Ref. [20]13:

L(1)
πN = Ψ̄

(
i /D − m̊+

g̊A
2
/uγ5

)
Ψ , Ψ =

(
p

n

)
. (1.44)

The pions enter as u = exp{iφ/(2F0)}. The baryon covariant derivative

is given by DµΨ = (∂µ + Γµ)Ψ, and the so-called connection and chiral

vielbein are

Γµ = 1
2 [u†(∂µ − irµ)u+ u(∂µ − ilµ)u

†] ,

uµ = i [u†(∂µ − irµ)u− u(∂µ − ilµ)u
†] , (1.45)

13It is worth noting that there are some convention differences in the literature. In Ref. [20]
e < 0, but we follow the opposite choice, which is more common. In Ref. [1] and [22] the external
fields are presented separating them in isospin components, and some higher order couplings are
different.
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where also the vector/axial basis is sometimes used, with vµ = (rµ+lµ)/2,

aµ = (rµ − lµ)/2. Finally m̊ and g̊A are the mass and the axial charge

of the nucleon, both in the chiral limit. For instance, to couple to the

photon field Aµ, one takes vµ = −eAµQ, with Q = (1+ τ 3)/2 and e > 0,

the charge of the positron.

By construction, ChPT is limited to the energy domain below the

hadronic resonances, however, accounting for these as explicit degrees

of freedom (instead of just absorbing its effect in the LECs) can result

in a powerful extension of the theory. If such fields couple strongly to

pions and nucleons and/or have relatively low masses, the convergence of

the perturbative series can be improved including these relevant d.o.f.s.

This is the case of the ∆(1232) resonance, which is known to couple

strongly to π-N from phenomenology. The ∆ is an I(JP ) = 3/2(3/2+)

baryon which is close to the nucleon in mass and has a relatively large

decay rate to photon. It is key that these states are relatively light:

δ = m∆ − mN ∼ 300 MeV. This allows to establish a power counting

for the diagrams with intermediate resonances (the inclusion of resonant

states beyond the baryon decouplet is problematic). The explicit inclu-

sion of the ∆ is beneficial [23, 24, 25, 26, 27] and can extend the range

of applicability of ChPT. In general, the study of nucleon properties in

ChPT (polarizabilities, couplings and form factors) is improved by the

dynamical treatment of the ∆ resonance, as can be appreciated from this,

by no means exhaustive, list of references [28, 29, 30, 31].

Being a spin 3/2 particle complicates the treatment of its field. A mas-

sive fermion of spin 3/2 requires 2× 4 = 8 independent complex fields to

account for it. The Rarita-Schwinger formalism [32] allows to describe

this kind of particle by means of a vector spinor Ψµ, with a Dirac field for

each value of the Lorentz index µ. However, this encodes 4×4 = 16 com-

plex fields, so that one needs to implement constraints in order to retain

only the physical degrees of freedom. To this end, a Dirac’s constraint

analysis is performed for the π∆ Lagrangian in Ref. [33], resulting in the

elimination of LECs g2 and g3 from it. Therefore, we follow Refs. [22, 1]

and write:

L(1)
π∆ = Ψ̄µξ

3
2Λ

(1)µν
π∆ (A = −1, g2,3 = 0)ξ

3
2Ψν , (1.46)

where ξ
3
2
ij = δij − τiτj

3 , Ψµ = Ψµ,i,r has implicit SU(2) indices i = 1, 2, 3,

r = ±1/2, and its relation to physical ∆ states is given in Ref. [1].
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A is a so-called off-shell parameter, related to a certain symmetry of

the Lagrangian called point transformation. In line with [22, 1], we set

A = −1. Consequently, Λ
(1)µν
π∆ is given by:

Λ
(1)µν
π∆ (A = −1, g2,3 = 0) = −

[
(i /D − m̊∆)g

µν

−i(γµDν + γνDν − γµ /Dγν) + m̊∆γ
µγν +

g1
2
/uγ5g

µν
]
, (1.47)

and the covariant derivative reads, with explicit indices,

(DµΨν)i,r = Dµ,ij,rsΨν,j,s ,

Dµ,ij,rs = δijδrs∂µ − 2iεujkγµ,kδrs + δij (Γµ)rs , (1.48)

with Γµ,i =
1
2〈τ iΓµ〉, and Γµ given in Eq. (1.45).

For the πN∆ interaction, there are two versions in the literature,

called the consistent [34] and the simple interaction [35]. On the one

hand, the consistent interaction is constructed such that only the spin

3/2 degrees of freedom are introduced, therefore it is consistent in the

counting of d.o.f.s. On the other hand, the simple formalism includes

spin 1/2 d.o.f.s. However, as shown in Ref. [36], the formalisms are

equivalent in ChPT, up to changes in the values of LECs, because they

are connected via field redefinition. Denoting LRS the free ∆ Lagrangian,

and L(c)/(s)
πN∆ , the consistent/simple interaction Lagrangians respectively,

there is a field redefinition which brings from the consistent formalism to

the simple one,

LRS + L(c)
πN∆ ←→ LRS + L(s)

πN∆ − LππNN , (1.49)

where LππNN corresponds to a ππNN contact which arises from the field

redefinition and satisfies the symmetries of ChPT. The details are givem

in Ref. [36]. As explained there, one can then recall the equivalence

theorem [11, 12, 13] mentioned in Sec. 1.2.2, which holds to arbitrary

number of loops. Thanks to it, one can introduce the ∆ in ChPT in

the simple formalism, and ignore the −LππNN , absorbing its contribu-

tions in the terms present in the chiral Lagrangian. In consequence,

the parametrization of observables will be the same as if one would have

used the consistent interaction, up to values of LECs, i. e. contact terms.

This is the strategy that we follow. Consequently, we employ the simple

interaction Lagrangian, L(1)
πN∆, of Ref. [1] with A = −1, but denoting the
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πN∆ coupling as hA
14 instead of g:

L(1)
πN∆ = hA Ψ̄i

µξ
3
2
ij(g

µν − z̃γµγν)uν,jΨ+ h.c. , (1.50)

with uµ,i =
1
2〈τ iuµ〉 and z̃ 6= −1/4 (see [1] for additional discussion).

1.2.5 Higher orders and loops in ChPT

So far we have presented only the ChPT LO Lagrangians. In order to

make a more precise description and to extend the energy range, one

needs to calculate higher order corrections. However, this comes with

two main complications.

On the one hand, one needs NLO Lagrangians, which come with a

higher number of new LECs, than the LO ones. More independent com-

binations of derivatives and external sources can be arranged in an op-

erator of higher order in energy. For instance, only with DµU building

blocks, O(p2) allows for 〈DµU (DµU)†〉, whereas O(p4) accommodates

〈DµU (DµU)†〉2, 〈DµU (DνU)†〉2 and 〈(DµU (DµU)†)2〉. These LECs add

to the LO ones, and therefore more experimental or LQCD results are

needed to fix their values, before one has predictive power. The NLO

Lagrangians of meson and baryon ChPT can be found in Ref. [1]. The

pion-nucleon Lagrangian in particular can be found in Ref. [20] up to

O(p4) (some of its terms are given here in Eqs. (2.5),(2.4), (3.14), (3.15)

and (3.16)).

On the other hand, loops enter at this order. They carry divergent

terms that are renormalized in dimensional regularization redefining the

LECs. Here, baryon ChPT has an additional complication, the baryon

mass in the loop propagators breaks the desired power counting. How to

solve this problem is explained in the following section.

Extended on Mass Shell Renormalization Scheme

The fact that the baryon mass does not vanish in the chiral limit in-

troduces a heavy scale in the propagator. At first sight, it seems that

the correspondence between chiral and loop expansions is lost [19], [37].

Nevertheless, one can establish a power counting for the loops by sep-

arating the hard and soft components of the baryon momentum. This

14Note that hA in Ref. [34] is two times the one here.
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is called the heavy baryon-approach (HB) [38]. However it comes at a

price: Lorentz invariance is lost (it is nonrelativistic) and the analytic

structure of the amplitudes is distorted.

The HB propagator contains only the soft part of the baryon momen-

tum in the denominator, so that it counts as O(p−1). The counting is

therefore:

D = 4L− 2IM − IB +
∑

d

dnd , (1.51)

where the only difference with Eq. (1.40) is the distinction between IM
and IB indicating internal mesons and baryons respectively.

A more recent relativistic formalism that enforces the HB power count-

ing without breaking Lorentz invariance and preserving the analytic

structure is the so-called extended on mass shell (EOMS) renormalization

scheme [39]. It has been successful in describing low energy baryon phe-

nomenology in these years ([40], [41] among others). In this scheme, one

first performs dimensional renormalization and then an additional renor-

malization. In the latter, the terms that break the HB ChPT power

counting of Eq. (1.51) are absorbed in a redefinition of the LECs. This

can be done because these terms are always analytic in the expansion

parameters: energy and quark masses (or equivalently M2
π).

ΣC2

2

ΣN3

1 1

Figure 1.2: Nucleon selfenergy diagrams up to O(p3) in ChPT (figure

taken from Ref.[42]).

An example of this is given in Ref. [1] with the nucleon mass depen-

dence on the pion mass, mN (Mπ). If one calculates the nucleon mass

including the Fig. 1.2 loop, which is O(p3) according to Eq. (1.51), one

obtains before renormalization:

mN (Mπ) = m̊− 4c1M
2
π +Σloop|/p=m̊(Mπ) , (1.52)

Σloop|/p=m̊(Mπ) =
3̊g2A

32π2F 2
0

[
−m̊3R− m̊M2

πR+ m̊M2
π − πM3

π

]
+O(M4

π) ,

where c1 corresponds to an insertion of the O(p2) Lagrangian of Ref. [20]

and Σloop is the O(p3) loop (ΣC2 and ΣN3 in Fig. 1.2 respectively). Here
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1.3. Unitarity and dispersion theory

R is the divergent term which one subtracts in the M̃S = MS− 1 scheme

redefining m̊ and c1. After the dimensional renormalization, one per-

forms the EOMS renormalization, where the third term in the bracket in

Eq. (1.52), which breaks the power counting of Eq.(1.51), is subtracted

in a redefinition of c1. Therefore, in the end one has the following ex-

pression:

mN (Mπ) = m̊− 4c1M
2
π −

3̊g2A
32π2F 2

0

M3
π +O(M4

π) , (1.53)

where m̊ and c1 have been redefined in M̃S and c1 additionally in EOMS,

so that mN (Mπ) is finite and respects the power counting. On top of

this, if one writes Eq. (1.53) without expanding on Mπ, the full analytic

structure of the loop is preserved. Equation (1.53) describes the Mπ

dependence that can be observed in the lattice, especially the M3
π term,

which is non-analytic in mq, is a prediction of one loop ChPT from LO

parameters.

Finally, with respect to the ∆, different power counting rules for the

δ difference and therefore for the ∆ propagator have been assumed de-

pending on the situation under study. In this work, the small-scale ex-

pansion [24] is followed, according to which O(δ) ∼ O(p). This leads to

a counting of O(p−1) to the ∆ propagator, and therefore, it is considered

a regular baryon in our power counting in Eq. (1.51).

1.3 Unitarity and dispersion theory

1.3.1 The Optical Theorem

This section introduces some relevant features derived from the unitarity

and analyticity of the S matrix. The dispersion theory that will be

addressed constitutes a suitable framework to account for resonances and

nonperturbative effects in general. This discussion is motivated by our

work on the electromagnetic form factor of the nucleon (Ch. 3), where the

ρ resonance plays a key role. The ρ meson is an I = 1, J = 1 resonance

which appears in elastic ππ scattering around mρ ' 770 MeV (as the ∆

does in πN scattering). It decays almost exclusively to ππ. Therefore,

from the point of view of S-matrix theory with its focus on asymptotic

states, the ρ meson can be included in ππ scattering via the two-pion

p-wave phase shift, as we will see. In fact, it can be implemented in this
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fashion to other observables, as long as one couples correctly the external

states to the pions. This is what we will do in the calculation of the

electromagnetic form factor. It is worth mentioning here the existence

of a simplified picture, the so-called vector meson dominance, in which

the ρ can be seen as interpolating between two nucleons and a photon.

This simplification is not completely unrealistic, and gives an idea of the

importance of the ρ meson in the EM form factor.

One speaks of unitarity because, given that probability is conserved,

the S matrix is unitary, S†S = 1, with its element denoted 〈f |S |i〉 ≡ Sfi.

If one writes S in terms of an interaction matrix, 〈f |T |i〉 ≡ Tfi,

Sfi = δfi + i(2π)4δ(pf − pi)Tfi , (1.54)

with pi,f the momentum of the initial and final states, unitarity can be

rewritten as a sum over all possible intermediate states, n:

ImTfi =
1

2

∑

n

(2π)4δ(pf − pi)T
∗
fnTni . (1.55)

This is known as the optical theorem. In perturbation theory, an imme-

diate consequence of this is that one can calculate the imaginary part of

an NLO amplitude from an LO one, i.e. to partially compute a loop from

tree level. We will discuss how this is realized in the case of scalar λφ4

theory, by the calculation of the 2 → 2 scattering amplitude at O(λ2),

A = Atree+Aloop, following Ref. [43]. According to Eq. (1.55), one would

get that ImAloop ∼ |Atree|2.
The main idea is that amplitudes are real in quantum field theory

unless the denominators of the propagators approach zero, so that the

iε prescription becomes essential. In fact, it is easy to show that the

imaginary part is equivalent to a discontinuity of the amplitude and has

a physical origin. Consider an amplitude A(s) which is real below the

2-particle threshold s = 4m2. Therefore for real s < 4m2, A(s) = A(s∗)∗
is satisfied. The principle of analyticity states that the amplitude is

analytic apart from isolated singularities, i.e. poles and branch points

(which are generated by unitarity). Given that the previous equation is

analytic in s, we can analytically continue it to the vicinity of the real

axis for s > 4m2, yielding

ReA(s+ iε) = ReA(s− iε) , ImA(s+ iε) = − ImA(s− iε) . (1.56)

The above expression is the so-called Schwarz reflection principle. It

shows that our amplitude acquires a discontinuity after the threshold
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1.3. Unitarity and dispersion theory

which is proportional to its imaginary part:

DiscA(s) = 2i ImA(s+ iε) . (1.57)

k

2
− `

k

2
+ `

Figure 1.3: Bubble loop diagram.

To see it explicitly one can calculate the 2→ 2 s-channel bubble loop

of Fig. 1.3:

iA(k) = λ2

2

∫
d4`

(2π)4
1

[(k/2− `)2 −m2 + iε]

1

[(k/2 + `)2 −m2 + iε]
, (1.58)

where k is the total momentum of the external states, so that s = k2 and

we work the CM frame, where kthr0 = 2m. In particular, the discontinuity

can be obtained by focusing on the zeros of the denominators. One can

compute first the `0 integral by residues. In the complex `0 plane the

integrand has four poles and one picks up these two: `0± = ±k0/2+E~̀−
iε′, with E~̀ =

√
m2 + ~̀2, by closing the contour below the real axis. For

brevity we discuss only the `0− contribution, A−, since it is the one that

will be relevant for the imaginary part (in total A = A+ + A−). Then

one has to compute the ~̀ integral

iA− = −2πiλ
2

2

∫
dΩ d|~l| ~l2
(2π)4

1

2E~̀

1[
k0(k0 − 2E~̀) + iε′

] . (1.59)

Depending on the total energy of the external states, there will or will

not be a value of |~̀| which will make the denominator approach the

singularity and pick up the iε′. It is evident that in this case, the |~̀| goes

over the singularity only if k0 > 2m. Therefore the amplitude acquires an

imaginary part for
√
k2 > 2m, and

√
k2 = 2m is a branch point. In this

way, we have seen that the amplitude behaves as predicted in Eq. (1.57).
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One can write the discontinuity that we have discussed in the following

form at O(λ2):

DiscA(k) = 2i ImA(k) (1.60)

=
i

2

∫
dp1
(2π)3

1

2E1

dp2
(2π)3

1

2E2
|A(k)|2 (2π)4δ(p1 + p2 − k) ,

with p1,2 the momenta of the two propagators and E1,2 =
√

m2 + ~p21,2.

The above equation is a realization of the (1.55) identity.

This kind of calculation of discontinuities is generalized to arbitrary

diagrams by a procedure known as the Cutkosky rules. To compute the

physical discontinuity of a given topology one can follow these steps:

1. Perform all the possible cuts to a diagram so that the cut propaga-

tors can be put on-shell.

2. For each cut propagator, make the following replacement in the

integrand:

1

p2a −m2 + iε
→ −2πiδ(p2a −m2)θ(p0a) , (1.61)

with pa, the momentum of each cut propagator, defined in such a

way that all p0a cross the cut in the same direction.

3. Sum the contributions of all possible cuts.

1.3.2 Introduction to dispersion theory: the pion vector

form factor

We follow our discussion of unitarity and analyticity by reviewing the

pion vector form factor (see chapter 5 of Ref. [3] for further details).

This is a clear example of hadronic matrix element for which a dispersion

relation (DR) proves to be useful. It also constitutes an input for our

study of the electromagnetic FF in Ch. 3. We will see how to resum a

particular set of diagrams (the elastic scattering ones), in order to recover

unitarity, this is known as unitarization. The fact that this technique

is key in the description of this form factor is illustrated in Fig. 1.4.

To reproduce the pion-pion p-wave amplitude phase shift at medium

energies (where ChPT does not hold), unitarization is of great help. The

same applies to the pion vector form factor in the timelike region, where
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1.3. Unitarity and dispersion theory

the resonant contribution dominates. In the figure the inverse amplitude

method (IAM) is employed, but its discussion, together with other details

of the depicted curves, is postponed to the end of this section.

The pion vector form factor, F spcl
π , is a real function defined trough

the matrix element of the EM quark current of Eq. (1.20):

〈
π+(p2)

∣∣ JEM
µ (0)

∣∣π+(p1)
〉
= (p1 + p2)µF

spcl
π (q2) , (1.62)

where q2 = (p2 − p1)
2 ≤ 0, i.e. space-like region. On the other hand, the

annihilation process e−e+ → π−π+, corresponds to the following matrix

element:

〈
π−(p1)π

+(p2)
∣∣ JEM

µ (0) |0〉 = (p2 − p1)µF
tml
π (q2) , (1.63)

with q2 = (p1 + p2)
2 ≥ 4M2

π , i.e. time-like. The aforementioned an-

alyticity of the S matrix and the fact that the form factor is related

to the annihilation process by crossing symmetry implies that they are

parametrized by a single function, Fπ(q
2). Such function can be defined

even along the non physical region and it is continuous for q2 ∈ R,

Fπ(q
2) =





F spcl
π (q2), q2 ≤ 0

F non−phys
π (q2), 0 < q2 < 4M2

π

F tml
π (q2), q2 ≥ 4M2

π .

(1.64)

This can be explicitly shown writing the pion states in terms of the

pseudoscalar current acting on the vacuum (see chapter 5 of Ref. [3]).

In the exact same way as the scattering amplitude in Eq. (1.57),

Fπ(q
2) develops a discontinuity in the complex q2 plane for q2 > 4M2

π .

The form factor is an analytic function in the q2 complex plane except

for this cut along the real axis. Since the cut extends to the right in

the standard way of displaying the complex plane (positive real part to

the right), it is called right-hand cut. This information allows us to for-

mulate a dispersive relation, useful to obtain the form factor in terms

of the e+e− annihilation amplitude. We just apply the Cauchy integral

formula:

Fπ(q
2) =

1

2πi

∮

C

ds
Fπ(s)

s− q2
, (1.65)

and take C to be a radial contour which circumvents the discontinuity
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along q2 > 4M2
π . Extending the contour to infinity one obtains:

Fπ(q
2) =

1

2πi

∫ ∞

4M2
π

ds lim
ε→0

Fπ(s+ iε)− Fπ(s− iε)

s− q2

=
1

π

∫ ∞

4M2
π

ds
ImFπ(s)

s− q2 − iε
, (1.66)

where an iε is included in the final term to account consistently for the

imaginary part when the relation is applied for q2 > 4M2
π . This is the an-

ticipated dispersion relation: for q2 ≤ 0 it yields the standard (space-like)

pion form factor from the annihilation matrix element, and in general it

describes Fπ(q
2) in the whole complex plane.

The Watson theorem and the Omnès function

We further investigate the consequences of unitarity for the pion form

factor. In the first place we rewrite the optical theorem in a suitable

way. The relevant T matrix element for γ∗ → π+π− is, from Eq. (1.63)

and the Lagrangian of Eq. (1.9):

Tfi = eAµ(q)Fπ(q
2)(p2 − p1)µ . (1.67)

In the optical theorem, Eq. (1.55), a sum over intermediate states ap-

pears. In the Fπ case, we consider hadrons as intermediate states, |n〉.
One has two general transitions, the |n〉 → π+π− and the γ∗ → 〈n| one,

with the corresponding matrix elements:

T ∗
fn =

〈
π−(p1)π

+(p2)
∣∣T |n〉∗ , Tni = eAµ(q) 〈n| JEM

µ |0〉 . (1.68)

The optical theorem becomes then:

2(p2−p1)µ ImFπ(q
2) =

∑∫

n

dτN
〈
π−(p1)

∣∣π+(p2) |n〉∗ 〈n| JEM
µ |0〉 , (1.69)

with
∫
dτN the N -particle phase space15. In particular, if one focuses

only on a small interval of the time-like semiaxis, the elastic region

4M2
π ≤ q2 < 16M2

π , where only π+π− intermediate states can occur,

15The two body phase space is dτ ′2π = δ(p1 + p2 − p′1 − p′2)Πi
d3p′i

(2π)3p′
i0

, with i = 1, 2.
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then Eq. (1.69) reduces to

2(p2 − p1)µ ImF elastic
π (q2) =

=

∫
dτ ′2π

〈
π+(p2)π

−(p1)
∣∣T
∣∣π+(p′2)π

−(p′1)
〉 〈

π+(p′2)π
−(p′1)

∣∣ JEM
µ |0〉

=

∫
dτ ′2πTππ(q

2, t)(p′2 − p′1)µ
(
F elastic
π (q2)

)∗
. (1.70)

Here the ππ scattering amplitude, Tππ = 〈π+π−|T |π+π−〉 has been in-

troduced, together with t ≡ (p′1−p1)
2 = (p2−p′2)

2, s ≡ q2 = (p1+p2)
2 =

(p′1 + p′2)
2. Within the elastic region Tππ has the analytic structure of

the bubble of Eq. (1.58), with an s > 4M2
π branch cut. Equation (1.70)

is a realization of the optical theorem, and for instance one could think

of using it to obtain the NLO ImF elastic
π just from a LO approximation

of Tππ and F elastic
π . However, it turns out to be much more useful, as we

will see in what follows.

One can decompose Tππ in partial wave amplitudes (PWA) in the

convention of Ref. [44] and [45]16:

t`(s) =
1

32π

∫ 1

−1

d cos θP`(cos θ)Tππ(s, cos θ), (1.71)

with P` the Legendre polynomials, θ defined between ~p1 and ~p′1 in the

CM and t`(s) the partial wave amplitudes with δ` phases:

t`(s) = |t`(s)| exp (iδ`(s)) . (1.72)

Employing unitarity further, this time for Tππ, and taking advantage of

the fact that (p′2 − p′1)µ in Eq. (1.70) leads to cos θ′ = P1(cos θ
′) and the

orthogonality of the P`, one arrives to the so-called Watson theorem [47]

(see [3] for further details). Applied to this case, it states that, in the

elastic region, the phase of the pion form factor is the same as the p-wave

ππ amplitude:

F elastic
π (s) =

∣∣F elastic
π (s)

∣∣ exp (iδ1(s)) . (1.73)

Notice that from now on we drop the subindex of the p-wave phase shift

for simplicity.

One can take the so-called elastic approximation and neglect higher

cuts beyond the 2π one, since they are less relevant in the study of the

16For reference, we report the leading order amplitude t`=1 = (s − 4M2
π)/(96F

2) with the
definition of [45]. This compares with the amplitudes of Ref. [46], TOller

`
, as TOller

`
= −16πt`.
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form factor at low energies. Then the dispersive relation (1.66) becomes

simpler and the results turn out to be reasonably good. In the end

the entire form factor is described in terms of the δ(s) phase. The FF

computed in this manner is called the Omnès function, Ω. To see how

this is obtained, one starts by recalling that, since it is real below the 2π

cut, Fπ satisfies Schwarz’s reflection principle,

Fπ(s+ iε) = Fπ(s− iε)∗ , s < 4M2
π . (1.74)

Expressing it in the elastic approximation, the principle reads

lim
ε→0+

Ω(s± iε) = |Ω(s)| exp (±iδ(s)) , (1.75)

which leads to

Ω(s− iε) = Ω(s+ iε)e−2iδ(s) , (1.76)

and therefore

Disc log [Ω(s)] ≡ log [Ω(s + iε)]− log [Ω(s− iε)] = 2iδ(s) . (1.77)

Inputting this in Eq. (1.66) one gets

log Ω(s) =
1

π

∫ ∞

4M2
π

ds′
δ(s′)

s′ − s− iε
. (1.78)

To improve the convergence of the integral one subtracts the charge term,

Ω(0) = 1:

log Ω(s)− log Ω(0) =
1

π

∫ ∞

4M2
π

ds′ δ(s′)

[
1

s′ − s− iε
− 1

s′ − iε

]

=
s

π

∫ ∞

4M2
π

ds′
δ(s′)

s′(s′ − s− iε)
. (1.79)

In this manner, within the elastic approximation, one arrives to the so-

called Muskhelishvili-Omnès17 representation of the form factor [48, 49]:

FOmnes
π (s) ≡ Ω(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ(s′)

s′(s′ − s)

}
. (1.80)

A brief explanation of how to compute Ω is given in App. A.1. The only

remaining ingredient is the p-wave phase shift. We explain how to deal

with it in the next section.
17Finding the solution of Eq. (1.73) is called Omnès problem. The solution provided here could

be multiplied by an arbitrary polynomial and would still hold. Some times the unitarity condition
is stated equivalently as ImFπ(s) = Fπ(s)ε−iδ(s) sin δ(s).
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Resummation: the inverse amplitude method

The discussion of dispersion theory in this thesis has been motivated by

the necessity to describe the resonant beaviour present in the isovector

channel of the nucleon EM form factor in Ch. 3, related to the ρ meson.

In particular, a theoretical parametrization of the pion FF is needed,

since it is an input required for the description of the pion mass depen-

dence of the nucleon form factor in the dispersive approach. However,

no resummation of loop contributions, necessary to obtain a resonant

result, has been performed yet. This is addressed in the present sec-

tion, where the approach called inverse amplitude method (IAM) [50]

is introduced to calculate the ππ scattering amplitude. There are other

manners to work with unitarized ChPT, however we restrict ourselves to

the aforementioned technique which is the one that we employ in Ch. 3.

To determine FOmnes
π (s) in Eq. (1.80) it is necessary to know the phase

shift, δ(s), which can be extracted from ππ scattering. What follows

is based on the book [44], and provides a didactic introduction to the

problem. To begin with, we write the optical theorem for ππ scattering

above threshold in terms of the partial waves, t` (Eq. (1.71)), and the

phase space, σ =
√

1− 4M2
π/s, obtaining

Im t` = σ|t`|2 . (1.81)

This is an identity to all orders in the loop expansion and we will refer

to it as elastic unitarity. The idea is to use it in a dispersion relation to

obtain a resonant result from ChPT input. The amplitude is decomposed

as

t(s,Mπ) = t2(s,Mπ) + t4(s,Mπ) +O(p6) , (1.82)

where the expression applies to each PWA18, and the subindex refers now

to the ChPT order, with a real t2 ∼ O(p2) and the one loop correction

t4 ∼ O(p4) (recall that s,M2
π ∼ O(p2)). Applying directly elastic uni-

tarity (1.81) gets only one loop further, for instance from tree level to

1-loop, as we saw in Eq. (1.60):

Im t = Im(t2 + t4 +O(2-loop)) = Im t4 +O(2-loop)

= σt22 +O(2-loop) . (1.83)

The advantage of the IAM is that applying the optical theorem to the

inverse of the amplitude leads to a particular arrangement shown below,

18The I = ` = 1 ππ scattering PWA is the one entering in the pion form factor.
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which results in an expression valid to all loop orders. One satisfies elastic

unitarity for the right hand cut to all orders (resumming the infinite

intermediate bubbles). This is more precise than applying the optical

theorem directly to the amplitude and leads to good agreement with

experiment [46]. Therefore, one defines G = t22/t, which has the same

analytic structure as t since t2 is real, and obtains the following for the

right hand cut:

ImG = t22 Im
1

t
= t22

1

2

(
1

t
− 1

t∗

)
= −t22

Im t

|t|2
= −t22σ , (1.84)

which is valid to all loop orders and can be computed in ChPT.

To extract from this the real and imaginary parts of t one uses dis-

persion relations. Since our ChPT input goes up to O(s2), growing as s2

at large s, it is convenient to write a twice subtracted DR. In terms of

the ChPT amplitudes one obtains from Eq. (1.83) the following DRs:

t2 = a0 + a1s

t4 = b0 + b1s+ b2s
2 +

s3

π

∫ ∞

4M2
π

ds′
σ(s′)t22(s

′)

s′3(s′ − s− iε)
, (1.85)

where the ai and bi depend on Mπ. There is also a left hand cut, but we

neglect it in the introduction for simplicity, given that it is subdominant.

Now we write the DR for G applying Eq. (1.84)

G = G0 +G1s+G2s
2 − s3

π

∫ ∞

4M2
π

ds′
σ(s′)t22(s

′)

s′3(s′ − s− iε)
. (1.86)

To fix the unknown Gi, which are Mπ dependent, we match to the ChPT

expression writing G = t22/t ≈ t22/(t2 + t4) and expanding in s and Mπ.

In this way one finds G0 ≈ a0 − b0, G1 ≈ a1 − b1, G2 ≈ −b2. From

Eq. (1.85) this implies that

G = t22/t ≈ t2 − t4 , (1.87)

and therefore

t =
t22

t2 − t4
= t2 + t4 +

t24
t2

+ ... . (1.88)

This is the anticipated resummation and satisfies elastic unitarity (1.81)

to all loop orders. It is more accurate than Eq. (1.85) which is perturba-

tive. The desired IAM phase shift is therefore given by δ = arctan(Im t/Re t).
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Finally, to illustrate the improvement obtained by unitarization, a

comparison between ChPT and the IAM is shown in Fig. 1.4. We dis-

play the p-wave phase shift and the pion vector FF, and compare results

from plain ChPT with the ones from IAM. On the left panel, the dashed

curve is a parametrization of experimental data [51]. In red, the NLO

ChPT δ(s) from Ref. [45]. In blue, the IAM δ(s) using Eq. (1.88) and

same ChPT input as previous curve; in addition our improved IAM ver-

sion is shown in gray (details in Ch. 3). It is clear that the IAM is needed

here to account for the ρ in the phase shift. A similar scenario is depicted

on the right for the form factor. The points are data from Belle II [52]. In

red, the one loop ChPT result from Eq. (15.3) of Ref. [2] is shown (even

if not apparent due to the log scale, it predicts the positive s-curvature

at threshold). In blue, the Omnès approximation, Ω, from Eq. (1.80),

with the NLO IAM δ(s) of [45] (calculation details in App. A.1). In

black and gray our improved versions of Ω and the FF respectively (ex-

plained in Ch. 3). Again, it is evident that unitarization, already in a

simple approach as the Omnès approximation, is able to account for the

ρ resonance, whereas ChPT is not. This is not intended as a criticism

towards ChPT, but as an illustration of the necessity of unitarization in

the resonance region.

As mentioned before, in Ch. 3 we seek to describe the Mπ depen-

dence of the nucleon EM form factor, and for that purpose an empirical

parametrization of the pion FF is not enough, we need to predict its de-

pendence on Mπ. As detailed in Ch. 3 and App. C.1, the IAM with the

NLO ChPT ππ scattering amplitudes provides the Mπ dependence. For

illustrative purposes, we display in Fig. 1.5 the pion p-wave scattering

phase shift for different values of Mπ. It is apparent from the figure that

for Mπ ≈ 0.45 GeV, mρ < 2Mπ and the ρ width approaches zero19. In

other words, the ρ-meson becomes a bound state. Of course, above this

Mπ value the formalism is not valid. On top of that, the ρ mass can be

extracted from the crossing of δ(s) at π/2. As shown in Fig. C.2 of the

appendix, we predict the LQCD mρ(Mπ) [54] very precisely. It is also

in agreement with the three-flavor IAM results of Ref. [55].

With this being said, we move now to the last section of the introduc-

tion, where we comment on the topic of new physics beyond the Standard

Model and its effect at low energies on hadronic processes.

19The ρ mass increases with Mπ [53] as shown in our Fig. C.2. However, it is slower than 2Mπ ,
the threshold energy.
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Figure 1.4: Left panel: two pion p-wave phase shift, δ(s). In red, deter-

mined by the NLO ChPT amplitude from Ref. [45] (LECs fitted therein).

In blue, the IAM δ(s) following Eq. (1.88) and same ChPT input as previ-

ous curve. In gray the refined δ(s) from our paper (Ch. 3), which includes

a Blatt-Weisskopf form factor, fitted to the Madrid parametrization of

experimental data [51] (dashed black). Right panel: pion vector form

factor and Omnès function,
∣∣F V

π (s)
∣∣2 and |Ω(s)|2 respectively. Points are

data from Belle II [52]. In red, the one loop ChPT result from Eq. (15.3)

of Ref. [2] (even if not apparent due to the log scale, it predicts the pos-

itive s-curvature at threshold). In blue, the Ω from Eq. (1.80), with the

NLO IAM δ(s) of [45] (calculation details in App. A.1). In black, the

improved Ω from our paper (Ch. 3). In gray, the F V
π from Ch. 3, which

includes the αV phenomenological correction.
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Figure 1.5: Pion p-wave scattering phase shift δ from Eq. (C.1) as a

function of the Mandelstam variable s for different values of Mπ.
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1.4 New physics and effective field theories

The properties of hadrons are interesting not only for their content on the

underlying strong and electroweak interaction, but also because they may

encode information on new physics (NP) yet to be discovered. There is

a huge ongoing effort dedicated to the search of these phenomena, which

ideally would solve other problems of the formulation of the Standard

Model.

Decays of heavy hadrons are analyzed in this context, with bottomed

and charmed hadrons receiving a lot of attention [56]. In this thesis, we

study a charmed one, the Λc baryon, characterized by I(JP ) = 0(1/2+),

positive charge and mΛc
' 2286 MeV. In particular we compute its weak

semileptonic decay: Λc → Λ `+ν` (see Ref. [57] for a review on c decays).

Recall that the Λ is the lightest baryon which contains strangeness, with

mΛ ' 1115 MeV and it is also 0(1/2+). Partly motivated by very re-

cent results from the BESIII collaboration [58], our study takes advan-

tage again of existing effective field theories to analyze the decay. This

leads us to briefly introduce the Standard Model Effective Field The-

ory (SMEFT), which parametrizes the NP fingerprints and Heavy Quark

Spin Symmetry (HQSS), a useful approach to estimate heavy hadrons

matrix elements.

1.4.1 Standard Model Effective Field Theory

The Standard Model Effective Field Theory constitutes a parametriza-

tion of high energy NP modes in terms of operators made of Standard

Model fields. The idea is that the heavy fields are integrated out in the

generating functional, which produces the appearance of new effective

terms in addition to the SM Lagrangian. This approach has the advan-

tages of an EFT: it is model-independent and has a systematic expansion

in terms of power counting. The latter is based on the fact that the new

operators are suppressed by inverse powers of the NP heavy scale, Λ (this

happens in virtue of the Appelquist-Carazzone decoupling theorem [59];

see the introductory notes [60] and the review [61] for details20). The

suppression is estimated as v/Λ to the respective power, where v is the

Higgs vacuum expectation value [62] and represents the SM scale.

20It should be said that there is a more general theory than SMEFT, the so-called Electroweak
EFT, which implements a chiral formalism. See Ref. [9] for an introduction.
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In SMEFT one considers a generic high energy theory which is as-

sumed to have at least the symmetries of the Standard Model. Then one

works in the framework in which the heavy new physics modes have been

integrated out in the generating functional, and therefore the degrees of

freedom are just the SM fields. One then builds the effective Lagrangian

which is Lorentz invariant, and has the SU(3)C⊗SU(2)L⊗U(1)Y symme-

try mentioned in Sec. 1.2.1. This leads to the following terms, in addition

to the SM Lagrangian:

LSMEFT = LSM +
1

Λ

∑

k

C
(5)
k O

(5)
k +

1

Λ2

∑

k

C
(6)
k O

(6)
k +O

(
1

Λ3

)
. (1.89)

Here Ck and Ok are the so called Wilson coefficients and the effective

operators respectively. The fields have a dimension, given by energy to

a certain power. A Lagrangian has dimensions of energy to the fourth

power, while the new effective operators are of higher dimension (in-

dicated by the superindices). The Λ scale reflects the aforementioned

suppression and makes the Wilson coefficients dimensionless (as the SM

couplings). These constants encode the new physics that has been in-

tegrated out, playing a role analogous to the low energy constants in

ChPT21. If a Wilson coefficient results to be nonzero, then information

on the characteristics of the high energy theory beyond the Standard

Model can be deduced.

In our study, we just need a subset of operators and we work below

the electroweak scale, so that our Hamiltonian has a different appear-

ance as compared to SMEFT. The only dimension-five SMEFT operator

produces a Majorana mass term for the left-handed neutrino, which is be-

yond the reach of experiments for the Λc decay, given that it is suppressed

by the neutrino mass. We will only consider SM left-handed neutrinos,

which leads to the following dimension-six effective Hamiltonian for our

quark level transition, c→ s `+ νl (see for instance Ref. [64]):

Heff =
GF√
2
Vcs4

[
(1 + ε`L) (s̄γαPLc) (ν̄`PRγ

α`)

+ε`R (s̄γαPRc) (ν̄`PRγ
α`) +

1

2
ε`S(s̄c) (ν̄`PR`)

+
1

2
ε`P (s̄γ5c) (ν̄`PR`) + ε`T (s̄σαβPRc) (ν̄`σ

αβPR`)
]
. (1.90)

21In SMEFT the LSM is also an effective term and the definition of couplings and masses
changes, see [63].
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1.4. New physics and effective field theories

Notice that at the decay energies, q2 � m2
W , the W boson can be

integrated out, leading to the GF Fermi decay constant. Vcs is the

pertinent Cabibbo-Kobayashi-Maskawa (CKM) matrix element, while

PL,R = (1 ∓ γ5)/2 denotes the projectors onto left and right chiralities,

respectively. The flavor (`) dependent Wilson coefficients are denoted

here ε`X , and they have a suppression of v2/Λ2. Index X = L, R, S, P ,

T denotes the left-handed, right-handed, scalar, pseudoscalar and tensor

structure of the corresponding c→ s transition operators22. A tensor op-

erator with PL instead of PR vanishes identically as can be shown with

the help of Dirac algebra. Although these Wilson coefficients are in gen-

eral complex, we adopt the CP-conserving limit and treat them as real

in our work.

This formalism allows us to compute contributions to the decay from

different new physics currents at the order ε ∼ v2/Λ2. However, since

the process takes place within hadrons, it is still necessary to account

for the hadronic matrix elements. This is challenging due to the familiar

nonperturbative nature of QCD at low energies, and is assessed in the

next section.

1.4.2 Heavy quark approximation

To study of the Λc → Λ `+ν` decay, the quark current has to be eval-

uated among the Λ and Λc hadronic states. This is a nonperturbative

calculation, and LQCD constitutes the necessary technique to compute

it. However, only the transition form factors related to the SM current

have been extracted from the lattice in Ref. [65]23. To be precise these are

vector and axial form factors calculated with LQCD using gauge field con-

figurations generated by the RBC and UKQCD collaborations with 2+1

flavors of dynamical domain-wall fermions. Two different lattice-spacings

are analyzed and the physical pion mass is reached for one ensemble. To

account for all the NP currents in Eq. (1.90) we compute the additional

form factors from the lattice ones under some approximations. We take

advantage of the fact that the c quark has a large mass as compared

with the rest of scales. Different ways of approximating the form factors

are studied, in order to obtain an estimation of the size of the neglected

22Notice that the Wilson coefficient for the term proportional to the left-handed quark current
is denoted ε`

L
differing with the notation of Ref. [64] where it is represented as ε`

V
.

23A very recent extraction of the form factors in the framework of QCD sum rules is also of
interest [66].
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terms.

This kind of approximation, i. e. taking advantage of the large value

of the mass of the c and b quarks, is a common practice in the study of

heavy hadrons. It is based on the small value of Λχ/mh << 1, where

h = c, b and Λχ ∼ 1 GeV. In the limit of the mass of the heavy quark

mh → ∞, the system has the so called heavy quark symmetry, which is

the combination of:

• heavy quark spin symmetry (HQSS): the dynamics are independent

of the spin of the heavy quark confined within the hadron.

• heavy flavor symmetry: obvious invariance of the QCD Lagrangian

under the interchange c↔ b if mh →∞.

The aforementioned symmetries constitute the basis of the Heavy Quark

Effective Theory (HQET), a useful framework to describe heavy hadrons

(see the book [67] for an introduction). In particular, for our Λc → Λ

matrix element, we work in the spirit of this effective theory, even though

a weaker limit is considered in the first place, denoted on-shell heavy

quark (OSHQ) approximation. In the following lines our approximations

are discussed, and it should be noticed that they are general in the sense

that they apply to any spin 1/2 heavy to light baryon transition.

Let us consider the transition between a heavy (H) and a light (L)

spin 1/2 baryon induced by a general current l̄(x)γh(x), in terms of

heavy and light quark fields, h and l, and the Dirac structures γ =

1, γ5, γ
µ, γµγ5, σ

µν . Of course in the end we will make the following

replacements: H = Λc, L = Λ, h = c, l = s. There are 12 real q2

dependent form factors: scalar and pseudoscalar FS,P , vector F1,2,3, axial-

vector G1,2,3 and tensor T1,2,3,4 for this kind of transitions. Adopting the

notation of Ref. [68] and references therein, one has
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1.4. New physics and effective field theories

〈L(p′)|l̄ (1− γ5)h|H(p)〉 = ūL(p
′) (FS − γ5FP )uH(p), (1.91)

〈L(p′)|l̄γα (1− γ5)h|H(p)〉 =

= ūL(p
′)

{
γα (F1 − γ5G1) +

pα

M
(F2 − γ5G2) +

p′α

m
(F3 − γ5G3)

}
uH(p) ,

〈L(p′)|l̄σαβh|H(p)〉 = ūL(p
′)

{
i

M2

(
pαp′β − pβp′α

)
T1

+
i

M

(
γαpβ − γβpα

)
T2 +

i

M

(
γαp′β − γβp′α

)
T3 + σαβT4

}
uH(p) ,

where M(m) denote the H(L) mass. The translation of the form factors

from the helicity basis adopted in Ref. [65] to the one adopted here is

given by Eq. (E1) of Ref. [69] once the baryon masses are changed ac-

cordingly. Note that there are no additional form factors related to the

matrix element of the operator l̄σαβγ5h. This is because of the relation

σµνγ5 = − i
2ε

µναβσαβ (with ε0123 = 1), which allows to express the afore-

mentioned matrix element in terms of the tensor form factors, Ti (see

App. D.1.1 for details).

The first method to derive the form factors is presented below.

On-shell heavy quark approximation

The first two assumptions of this approach are:

• h can be treated as a free field obeying the Dirac equation

(i/∂ −mh)h(x) = 0, with mh the heavy quark mass.

• |H(s, p)〉 can be factorized as |H(s, p)〉 = |h(s̃, p̃)〉 |λ〉, where |λ〉 is a

residual light system. p̃ stands for the fraction of the H momentum

p carried by the heavy quark, satisfying the on-shell condition p̃2 =

m2
h; s̃ is the corresponding fraction of the spin projection s of H.

We show now how one can relate the scalar form factor to the vector

ones. For the similar derivation for the pseudoscalar and tensor FFs

the reader is referred to App. D.1.1. Relying on the standard second

quantization decomposition of h(x), the two assumptions lead to the

following decomposition of the vector current, Jµ
V (x) = l̄(x)γµh(x):

〈L(s′, p′)| Jµ
V (x) |H(s, p)〉 = 〈L| l̄(x)γµu(s̃, p̃)e−ip̃·x |0〉h |λ〉 . (1.92)
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Proceeding analogously for the scalar current, JS = l̄(x)h(x), one gets

〈L| JS(x) |H〉 = 〈L| l̄(x)u(s̃, p̃)e−ip̃·x |0〉h |λ〉 . (1.93)

We finally assume that

• p̃ ≈ p or, more specifically, that the heavy quark spinor, u(s̃, p̃),

satisfies /pu(s̃, p̃) = mhu(s̃, p̃).

In consequence, contracting with pµ one obtains

pµ 〈L| Jµ
V (x) |H〉 = 〈L| l̄(x)/pu(s̃, p̃)e−ip̃·x |0〉h |λ〉

= mh 〈L| l̄(x)u(s̃, p̃)e−ip̃·x |0〉h |λ〉 . (1.94)

This result, together with Eqs. (1.92,1.93), provides the following con-

nection between the matrix elements of the vector and scalar currents:

pµ 〈L| Jµ
V (x) |H〉 = mh 〈L| JS(x) |H〉 . (1.95)

This leads to

FSūL(p
′)uH(p) =

1

mh
ūL(p

′)pµΓ
µ
V uH(p) , (1.96)

where

Γµ
V = γµF1 +

pµ

M
F2 +

p′µ

m
F3 , (1.97)

[see Eq. (1.92)]. With the help of the Dirac equations for baryons,

Eq. (1.96) allows to write FS in terms of F1−3. This relation is given

in the mh/M → 1 limit:

FS = F1 + F2 +X(q2,M,m)F3 , (1.98)

with X = (M2 +m2 − q2)/(2Mm).

After extracting the remaining form factors as shown in App. D.1.1,

the OSHQ prescription results read:

• OSHQ

FS = F1 + F2 +X(q2,M,m)F3 ,

FP = G1 −G2 −X(q2,M,m)G3 ,

T1 = −M

m
(F3 +G3) ,

T2 = F1 −G1 −G3 ,

T3 =
M

m
G3 ,

T4 = G1 −
[
X(q2,M,m)− 1

]
G3 . (1.99)
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HQSS relations

If one implements all the consequences of having a static heavy quark

with respect to the heavy hadron system, then stronger constraints are

derived. Working in the leading order HQET, where HQSS is exact and

the spin of the heavy quark is conserved, we follow Sec. 2.10 of Ref. [67]

and approximate the matrix element as

〈L(p′)|l̄γh|H(p)〉 → 〈L(p′)|l̄γhv|H(v)〉 = ūL(p
′)ΓuH(v) , (1.100)

where /vuH(v) = uH(v) and v = p/M ; γ = 1, γ5, γ
µ, γµγ5, σ

µν while Γ

denotes the corresponding representation in terms of form factors given

by Eq. (1.92). In this scenario, the most general matrix element has the

generic form

〈L(p′)|l̄γhv|H(v)〉 = ūL(p
′)(F̃1 + F̃2/v)γuH(v) . (1.101)

Therefore, in the HQSS limit, all form factors introduced in Eq. (1.92)

can be expressed in terms of two, F̃1,2. For instance, for γ = 1 one can

read off

FS = F̃1 + F̃2 . (1.102)

Straightforward Dirac algebra manipulations lead to the determination

of the rest (given in App. D.1.2). There is certain freedom on the choice

of the two form factors in terms of which all the rest are expressed. We

denote HQSSV the prescription in which all form factors are a function

of F1,2 and HQSSA the one where all depend on G1,2:

• HQSSV

FS = F1 + F2 , FP = F1 ,

T1 = 0 , T2 = −F2 , (1.103)

T3 = 0 , T4 = F1 + F2 .

• HQSSA

FS = G1 , FP = G1 −G2 ,

T1 = 0 , T2 = −G2 , (1.104)

T3 = 0 , T4 = G1 .
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With this we close the general introduction to the thesis. The theo-

retical grounds have been established and we can move to the discussion

of the different studies. We start by the pure ChPT calculation of the

intriguing nucleon axial form factor at low energies. Its comparison to

LQCD and the results obtained are described in detail in the next chap-

ter.
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The nucleon axial form factor

2.1 Introduction

The axial form factor, FA, has been introduced in Sect. 1.2.1 (Eq. (1.27)).

It is a fundamental property of the nucleon, in particular its value at

zero momentum transfer, gA, carries information on the spin distribution

within it. Given that the weak interaction is left-handed, i. e., V − A,

to describe its effect on the nucleon, not only the electromagnetic FFs

are needed, which accounts for the vector term, but FA is also required

(and the pion pole dominated FP (Eq. (1.27))). Therefore the axial form

factor is a key ingredient in the analysis of weak processes.

We focus on the low energy regime, and our results are relevant for

the analysis of neutrino elastic and quasielastic scattering on nucleons,

important for neutrino oscillation experiments1. In particular, the axial

radius, 〈r2A〉 of Eq. (1.28) (recall that we denote the momentum trans-

fer q2 = t = (p′ − p)2 = −Q2), connects with pion-electroproduction

in the chiral limit, where q2 = 0. Experimental extractions of the axial

form factor are challenging, and might suffer from a certain model depen-

dence. It can be studied in neutrino-deuteron scattering (νD) [70, 71], in

pion-electroproduction (also considered in [70]) and in weak muon cap-

ture in muonic hydrogen (µH) [72]. Any extraction of the form factor

1As a general remark on the hot topic of neutrino oscillation experiments, the most wanted
information is the mass hierarchy and CP violation in the leptonic sector. The ability to recon-
struct the neutrino energy is crucial for this program, since oscillation probabilities depend on
the neutrino energy Eν . However, this is a difficult challenge indeed, since neutrinos are usually
generated in broad energy fluxes.
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requires a certain functional form to be fitted to the data. Different

choices can be studied. Historically, the dipole parametrization has been

used, which employs only one free parameter, the axial mass, MA, even

though it is not physically justified. The so-called z-expansion, which re-

lies on the analytic structure of the FF dictated by QCD, has been also

widely employed, and is considered to yield more reliable results. The

z-expansion has a different number of free parameters depending on the

order at which one truncates the expansion and leads to different sizes

of the uncertainties. For instance in the low Q2 regime in which we are

interested, different parametrizations lead to different uncertainties for

the axial radius, as one can see in Fig. 2.13. Moreover, neural networks

have been used to assert this problem [73], even though the results were

not completely satisfying. In the end, the main problem seems to be the

lack of precise experimental data at low Q2.

Another source of valuable information are lattice QCD simulations,

which extract the form factor directly from the interactions dictated by

the QCD Lagrangian. In the last ten years, the progress in this field

has been significant [74], thanks to better computational resources, im-

proved algorithms and techniques to lower systematic errors. In partic-

ular in the axial sector for baryons, the uncertainty due to excited-state

contamination can be considerable, what has received a lot of recent at-

tention [75, 76]. Unfortunately, in general several artifacts are present

in LQCD computations, causing systematic errors: the lattice finite vol-

ume, L; the discretization spacing, a; the values of the light quark masses

higher than the physical ones. Reaching the physical limit from simu-

lations with the aforementioned artifacts is known as chiral continuum

extrapolation, and again relies on a certain parametrization of the de-

pendencies which is nontrivial.

Therefore, some theoretical input would be very useful in order to

describe not only the Q2 dependence of the form factor, but also the effect

of the lattice artifacts. In this matter ChPT is of great help, since it is

not an ad hoc parametrization, but is based on the symmetries of QCD.

Once its low energy constants are fixed, it parametrizes the dependence

of the axial form factor on the momentum transfer and the light quark

mass, which are expansion parameters of the theory. Chiral Perturbation

Theory can also account for lattice-volume and lattice-spacing corrections

in a systematic way [77, 78]. It also results helpful to deal with the

contamination from excited states [75, 76, 79]. It can be said that there
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is a synergy between ChPT and LQCD, since the latter constrains the

values of the low energy constants, some of which could be difficult to

obtain from experiment. These constants appear in ChPT together with

the quark mass dependence, and lattice results at nonphysical quark

masses disentangle the values of the individual constants, which provide

a valuable input to predict other observables.

Furthermore, the study of the light quark mass dependence is interest-

ing in its own right because it provides theoretical insight that might not

be accessible from experimental data. It discriminates between different

low energy contributions such as the pion cloud and high energy terms

(long-range forces mediated by Goldstone bosons as compared to stan-

dard short-range forces caused by confinement). This remains a complex

subject though, elucidating the properties of confinement constitutes a

difficult question and only limited insight can be obtained from these

kind of analyses.

These questions have motivated us to perform a meta-analysis of a

combined set of recent LQCD data using NNLO ChPT as parametriza-

tion. The main goal is to describe the axial form factor at low energies

without relying on ad-hoc parametrizations. On top of that, we deter-

mine important LEC values and keep track of the truncation error of

ChPT, aiming for consistent results while testing the convergence of the

chiral approach.

As discussed below, past works have employed the non-relativistic ap-

proximation or have computed contributions only up to the leading loop

correction, O(p3) in the chiral expansion. Our aim here is to outper-

form the previous analyses thanks to the relativistic EOMS renormal-

ization [39] and the explicit inclusion of the ∆ up to O(p4) (NNLO). In

fact, the EOMS scheme guarantees that not only power counting but

also analytic properties of loop functions are properly preserved. More-

over, the inclusion of O(p4) leads to a better estimation of the truncation

uncertainty, since it is given by differences between orders.
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2.2. The nucleon axial form factor in relativistic BChPT

2.2 The nucleon axial form factor in relativistic

BChPT

2.2.1 Relevant terms of the effective Lagrangian

We present now the Lagrangian, Leff , needed for our computation. The ∆

is introduced as an explicit degree of freedom within the aforementioned

small scale expansion power counting [80, 24] (Secs. 1.2.4, 1.2.5). In total

one needs

Leff ⊃ L(1)
πN + L(1)

π∆ + L(1)
πN∆ + L(2)

πN + L(2)
πN∆ + L(2)

π∆ + L(3)
πN , (2.1)

where subscripts indicate the degrees of freedom and superscripts the

chiral order.

We employ the L(1)
πN , L(1)

π∆ and L(1)
πN∆ discussed in Sect. 1.2.4, with

z̃ = 0 in L(1)
πN∆. Regarding L(2)

πN , we follow Ref. [20], which denotes the

required terms as

L(2)
πN ⊃ Ψ̄

(
c1〈χ+〉 −

c2
8m̊2

(〈uµuν〉{Dµ, Dν}+ h.c.)

+
c3
2
〈uµu

µ〉+ ic4
4
[uµ, uν ]σ

µν
)
Ψ . (2.2)

If one includes only the isovector axial external fields aiµτ
i/2 ≡ aµ, with

rµ = −lµ = aµ, the building blocks of Eq. (1.45) read

DµΨ = (∂µ + Γµ)Ψ ,

Γµ =
1

2
[u†(∂µ − iaµ)u+ u(∂µ + iaµ)u

†] ,

uµ = i[u†(∂µ − iaµ)u− u(∂µ + iaµ)u
†] ; (2.3)

χ+ = u†χu† + uχ†u and χ = diag(M2
π ,M

2
π). In what follows we will

also need FL
µν = ∂µlν − ∂ν lµ − i[lµ, lν ], FR

µν = ∂µrν − ∂νrµ − i[rµ, rν ],

with F±
µν = u†FR

µνu ± uFL
µνu

†, and the isospin traces F±,i
µν = 1

2〈F±
µντ

i〉,
ωµ,i = 1

2 〈τ iuµ〉.
Given the accuracy of the calculation, one needs also the NNLO La-

grangian from [20]:

L(3)
πN ⊃ Ψ̄

{
d16
2

γµγ5〈χ+〉uµ +
d22
2

γµγ5[Dν , F
−
µν ]

}
Ψ . (2.4)

The two LECs in the above Lagrangian are relevant for the Mπ and q2

dependence of the form factor at tree level.
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In L(2)
πN∆, after redundant terms are eliminated from Eq. (67) of

Ref. [81] (see also Sec. 3.1 of Ref. [82] and the Appendix of Ref. [83])

only the following monomials contribute:

L(2)
πN∆ ⊃ Ψ̄kαξ

3

2

ki

{
−ib1

2
F+i
αβ γ

5γβ + ib2F
−i
αβ γ

β

+
b4
2
ωi
αω

j
βγ

βγ5τ
j +

b5
2
ωj
αω

i
βγ

βγ5τ
j

}
Ψ+ h.c. (2.5)

and L(2)
π∆ [81],[84],

L(2)
π∆ ⊃ Ψ̄i

µξ
3

2

ij

{
a1〈χ+〉δjkgµν

}
ξ

3

2

klΨ
lν . (2.6)

introduces an Mπ dependent correction to the ∆ mass, in the same way

as the term proportional to c1 does for the nucleon mass.

2.2.2 Calculation

The diagrams that contribute to FA are depicted in Fig. 2.1 and 2.2.

The LECs that each of these diagrams introduces are listed in Table 2.1.

At O(p4), there are contributions from O(p2) vertices but also baryon

(N,∆) mass insertions. The later are calculated perturbatively, i.e. we

evaluate directly diagrams (i), (j), (l)-(n) of Fig. 2.2, avoiding Dyson

resummations to all orders in the propagators. Alternative choices have

been considered in Refs. [85, 86].

(a) (b) (c) (d) (e) (f) (g)

Figure 2.1: Diagrammatical contributions at orders O(p), (a), and O(p3),
(b)-(g), to the nucleon axial form factor. Dashed, solid single and double

lines denote pions, nucleons and ∆ resonances in that order; wiggly lines

stand for external axial fields. The open circle represents an O(p3) vertex,

while the rest of the vertices are O(p). Permutations of diagrams (d) and

(f) have been omitted in the figure.

Even if not depicted, the nucleon wave-function renormalization is

included in the standard way. To the order of the calculation, only the
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(h) (i) (j) (k) (l) (m) (n) (o)

Figure 2.2: O(p4) contributions to the nucleon axial form factor. Line

styles are the same as in Fig. 2.1. Filled circles denote O(p2) vertices.

Permutations of all these diagrams are taken into account but not ex-

plicitly represented.

Table 2.1: FA LECs introduced by Feynman diagrams in Figs. 2.1, 2.2

and by wave-function renormalization (wfr).

Diagrams O(p) O(p2) O(p3)
(a), (c), (d) g̊A - -

(b) - - d16,22

(e) g̊A - -

(f) g̊A, hA - -

(g) g1, hA - -

(h) g̊A c2−4 -

(i) g̊A c1 -

(j) g̊A c1 -

(k) hA b1,4,5 -

(l) g̊A, hA a1 -

(m) g1, hA a1 -

(n) g̊A, hA c1 -

(o) g̊A, hA b2 -

wfr g̊A, hA c1, a1 -

O(p) diagram (a), corresponding to the axial charge in the chiral limit

g̊A, should be multiplied by the wave-function renormalization constant

ZN , calculated from the O(p4) nucleon self-energy (see App. B.1 for a
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more detailed explanation),

ZN ≈ 1 +
∂Σ

(4)
N

∂/p

∣∣∣∣∣
/p=mN

. (2.7)

Additional O(p3) and O(p4) contributions to gA are generated in this

way.

As commented in Sec.1.2.4, due to the presence of baryons in the

loops, the power counting of such diagrams is broken. To restore it,

we subtract the power counting breaking (PCB) terms by redefining the

LECs. This finite renormalization, developed in Ref. [39], is called ex-

tended on mass shell (EOMS) renormalization. The LECs’ shifts are

lengthy, so that we provide them in the supplementary material2. No-

tice that, as in previous works [28, 87], PCB terms are identified and

subtracted in an expansion in powers or Mπ and t but not in δ.

Following this procedure, we obtain the axial form factor within the

EOMS renormalization scheme up to O(p4) with explicit ∆. Its structure

is the following, with superindices indicating the chiral order and the

inclusion of the ∆:

FA = g̊A + 4d16M
2
π + d22t

+F
(3) /∆
A(loop)(̊gA;Mπ, t) + F

(3)∆
A(loop)(̊gA, hA, g1;Mπ, t)

+F
(4) /∆
A(loop)(̊gA, c1, c2, c3, c4;Mπ, t)

+F
(4)∆
A(loop)(̊gA, hA, g1, c1, a1, b1, b2, b4, b5;Mπ, t)

+O(p5) . (2.8)

Reading this formula one might notice the following nomenclature

issue: the calculation of an O(p) diagram such as (a) in Fig. 2.2 yields an

O(p0) contribution to the form factor, g̊A. This is due to the fact that the

external field aµ enters in L(1)
πN together with the partial derivative in the

chiral vielbein as shown in Eqs. (1.44) and (1.45), and as a consequence

the form factor has a chiral order p factorized out. When discussing the

order of the calculation, the power counting of the diagram is taken as

reference, and not the scaling of the contribution to the observable, in

this case FA.

2The Mathematica notebook with the expressions relevant for the axial form factor calculation
can be found on the website shorturl.at/bAEGL (clickable link).
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2.2. The nucleon axial form factor in relativistic BChPT

We do not truncate the form factor, but preserve the complete analytic

structure of the loops. The O(p3) part of FA is given in Eqs. (A4-5) of

Ref. [87]. The O(p4) contribution from wave-function renormalization

is given in Eq. (B1) of Ref. [31]. The length of the rest of the O(p4)
expression, which depends on several LECs, discourages us from giving

it explicitly but is available in a Mathematica notebook as supplementary

material 3. We nonetheless identify that at O(p4), i. e. at O(M3
π) for gA,

c3 and c4 enter in the following combination c̃4 = c4−c3/2, while c2 enters

only at O(p5) [O(M4
π) in gA]. Although the rather involved contribution

of diagram (k) does not, a priori, show the factorization of any mixture of

b4 and b5 LECs, after expanding in Mπ, one finds that the combination

which actually enters at O(p4), is b̃4 = b4 + (12/13) b5. At O(p3) we

reproduce the results of Eq. (A4-5) of Ref. [87], except for a global factor

36 in 〈r2A〉, pointed out in Ref. [86]. However the sign of the pion tadpoles

in [87] is correct, contrary to what is stated in Ref. [86]. The reason of the

confusion is probably the different sign in the definitions of the integral.

At O(p4) our gA coincides with the /∆ EOMS expressions in Ref. [85,

88] except for the different treatment of nucleon mass insertions, which

in our work, do not include resummations. In consequence, c1M
2
π factors

appear only linearly in our computation but not at all orders. Finally,

a PCB term proportional to c4 present in Ref. [88] after the EOMS

renormalization is absent in our result.

Once we have overviewed the axial form factor in ChPT, we first focus

on the limit of zero momentum transfer, the axial charge. We devote the

next section to analyze the quark mass dependence of the axial charge,

which constitutes an interesting puzzle in itself. What follows is based

on our article of Ref. [31]. Of course, the general considerations made

until now hold also for gA. In fact, the convergence of the chiral series is

more easily studied in the axial charge since there is only one expansion

parameter, the pion mass.

3See footnote 2.
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2.3 The nucleon axial charge: its light quark mass

dependence and pion-nucleon phenomenology

2.3.1 Introduction to the axial charge

The axial isovector charge, gA (gu−d
A to be precise), is a fundamental

property of the nucleon related to the difference in the spin fractions

carried by u and d quarks. It is defined as the form factor value at

zero momentum, Eq. (1.28). Given that its magnitude is precisely deter-

mined from neutron β decay4, it constitutes a benchmark for studies of

Quantum Chromodynamics in the lattice (LQCD) together with other

nucleon properties, such as scalar and tensor charges, electromagnetic

form factors and parton distribution functions (see Ref. [91] and Sec. 10

of Ref. [74] for recent reviews).

As mentioned before, ChPT provides a systematic and model inde-

pendent parametrization of the lattice results, while LQCD is useful to

determine certain LECs of ChPT. This applies to the d16 of L(3)
πN of

Eq. (2.4). Trough a 4d16M
2
π term (Eq. (2.8)), this LEC controls the

slope of the quark mass dependence of the axial charge, given that mq

and Mπ are related as stated after Eq. (1.43). Consequently, its deter-

mination from LQCD data at low Mπ is only natural. The LEC d16 is

considered one of the most important sources of uncertainty in the quark

mass dependence of nuclear properties such as ground-state and binding

energies through long-range nuclear forces [92, 93, 94].

Otherwise, LECs have been determined from experimental data5 on

various processes such as pion photo- and electroproduction [95, 96, 97,

98] but, mostly, from pion-nucleon (πN) scattering [99, 100, 101, 102,

103, 88, 40, 28, 104]. Even though d16 cannot be determined from πN

elastic scattering, it contributes to the πN → ππN inelastic process.

In fact, in a joint fit to elastic and inelastic πN scattering data, d16
has been extracted, albeit with a large uncertainty [105]. ChPT has

been used to calculate the axial charge in the non-relativistic heavy-

baryon [106, 107, 108, 109, 110] and relativistic [111, 85, 109, 40, 88,

87, 86] approaches both without and with the ∆(1232) as an explicit

degree of freedom. In the relativistic framework, both infrared and

4Taking into account radiative corrections, a numerical value of gA = 1.2754(13)exp(2)RC has
been recently extracted [89] from the PDG average gA/gV = 1.2756(13) [90].

5Throughout this work LECs obtained from experimental data are called phenomenological
or empirical to distinguish them from those extracted from LQCD simulations.
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the aforementioned EOMS regularization methods have been employed.

Some of these works also compute the axial form factor at low four-

momentum transfers squared [111, 85, 87, 86]. In particular, the Mπ

dependence of the axial charge has been specifically investigated in these

works [107, 108, 109, 110, 87, 86].

In the following, we study the ChPT calculation at different orders,

and investigate the tension that we encounter when comparing with πN

ChPT calculations without explicit ∆. Afterwards we analyze the lattice

data with O(p4) ChPT with ∆ in EOMS, which we retain more consis-

tent than previous analysis. As a result, we extract d16 and discuss the

convergence of ChPT.

2.3.2 Light-quark mass dependence of the axial coupling

from phenomenological input

Once the expression of the axial charge has been obtained up to a given

order, one needs to assign values to the low energy constants. The

strength of the effective field theory consists in the fact that these param-

eters relate different observables, in this case gA(Mπ) and πN scattering.

However, the higher the order in the calculation, the more LECs appear

and the predictive power is weakened. In Tab. 2.2 the LECs that con-

tribute to gA are reported. In Ref. [105], elastic πN and πN → ππN

scattering has been studied up to O(p4) in ChPT using a modified ver-

sion of the EOMS approach [104]. The LECs that enter gA(Mπ) at O(p4)
in the ∆-less model were extracted, including d16, thanks to the inclusion

of low energy total and double differential πN → ππN cross section data

in the combined analysis. To make a prediction of gA(Mπ) based on this

phenomenological input, we should translate the LECs from the modified

EOMS of Refs. [104, 105] to the conventional one adopted here. To the

order we are working at, this transformation only changes the value of

d16 but not of c1−4 (see details in App. B.2). The axial charge in the

chiral limit, g̊A, which is not determined in Refs. [104, 105], is extracted

from the experimental value, precisely known from β decay [89] as

gA(Mπ = Mπ(phys), g̊A, d16, ci) = gA(phys) = 1.2754(13)exp(2)RC . (2.9)

Up to higher order corrections, the rest of chiral limit parameters have

been fixed as, F0 ≈ Fπ(phys) = 92.2 MeV for the pion decay constant and

m̊ ≈ mN(phys) + 4c1M
2
π(phys), with Mπ(phys) = 135 MeV and mN(phys) =
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939 MeV. The numerical values for d16, c1−4 as well as g̊A and their

uncertainties are summarized in Table 2.3.

Table 2.2: gA LECs introduced by Feynman diagrams in Figs. 2.1, 2.2

and by wave-function renormalization (wfr).

Diagrams O(p) O(p2) O(p3)
(a), (c), (d) g̊A - -

(b) - - d16

(e) g̊A - -

(f) g̊A, hA - -

(g) g1, hA - -

(h) g̊A c2−4 -

(i) g̊A c1 -

(j) g̊A c1 -

(k) hA b4,5 -

(l) g̊A, hA a1 -

(m) g1, hA a1 -

(n) g̊A, hA c1 -

wfr g̊A, hA c1, a1 -

Table 2.3: LECs employed to determine the gA(Mπ) dependence in the
/∆ case.

O(p3) O(p4)
g̊A 1.251± 0.051 1.089± 0.030

d16 (GeV−2) −2.2± 1.1 −1.86± 0.80

c1 (GeV−1) - −0.89± 0.06

c2 (GeV−1) - 3.38± 0.15

c3 (GeV−1) - −4.59± 0.09

c4 (GeV−1) - 3.31± 0.13

Our resulting gA(Mπ) at O(p3) and O(p4) are depicted in Fig. 2.3 ac-
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companied by a subset of recent LQCD determinations6. The curves are

accompanied by 1σ statistical error bands arising from the uncertainties

in the LECs of Table 2.3 assuming they are Gaussian-distributed. We

do not account for correlations among LECs since they are negligible be-

cause the uncertainty is strongly dominated by the d16 uncertainty. The

0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

Mπ (GeV)

g
A

O(3)

O(4)

Figure 2.3: Pion-mass dependence of gA at O(p3) (red) and O(p4)
(blue) employing phenomenological input from Ref. [105] and 1σ error

bands. The LQCD data points are from CalLat 18 [112] (black cir-

cles), Mainz 19 [113] (red crosses), RQCD 19 [79] (green triangles) and

NME 21 [114] (blue squares).

O(p3) result shows a partial agreement with the lattice determinations,

albeit with increasing tension as Mπ grows and a curvature in the central

value that is absent in the LQCD points. On the other hand, it is evident

that the O(p4) prediction, far from improving the O(p3), plainly fails to

describe the Mπ dependence of LQCD data. We have checked that al-

ternative c1−4 extractions from earlier πN analyses using EOMS [88, 28]

do not attenuate the steep increase of gA(Mπ) at O(p4). We have shown

then that the inability to reconcile the light-quark mass dependence of g̊A
at O(p4) with phenomenology, earlier observed in non-relativistic heavy-

6The selection criteria for the lattice data are explained in 2.3.4

64



Chapter 2. The nucleon axial form factor

baryon ChPT [108, 109], is also an issue of the relativistic version of the

theory.

This problematic O(p4) result might be due to a fortuitous slow con-

vergence of gA in ChPT. However, one could state that additional de-

grees of freedom lying above the nucleons, such as the ∆ [109], or even

the N(1440) Roper resonance, might solve the problem. A somewhat

intermediate step would be the choice taken in Ref. [105], where only

the ∆ pole is incorporated to the theory. However, in order to predict

gA(Mπ) up to O(p4) with explicit ∆, additional LECs absent in that

study are necessary. For this reason we do not discuss the role of the ∆

in the gA(Mπ) dependence from purely empirical input, but delay it to

Sec. 2.3.4, where our fits to recent LQCD data are presented.

In the next section we describe our procedure to fit to the lattice. In

particular, we introduce an estimation of the theoretical error in the χ2

and we correct for lattice-spacing effects.

2.3.3 General fit strategy

We will discuss now how the fit to the lattice data is performed. Given

that the form factor will be analyzed later, and not only the charge, we

explain the general case of the form factor fit.

First of all, we avoid model dependence by considering only data that

have not been extrapolated in Q2, Mπ nor to the continuum. As we

will detail later, we restrict to ensembles with a large enough volume so

that size effects are negligible. When possible, we correct for the lattice-

spacing, a, and to do so we introduce the following dependence:

FA(ti,M
i
π, ai) = FA(ti,M

i
π) + (xj + tiyj)a

nj

i , (2.10)

where t is the momentum transfer squared and i labels the LQCD data

point. The x and y are free parameters, j is the label of the lattice action

and n is the exponent of the corresponding discretization correction.

Different low energy constants appear in the form factor, some of

which are well known and can be fixed, while others are left as free fitting

parameters. To improve our description of the LQCD data and reduce

correlations [115], we implement naturalness constraints, Λn−1 cn ∼ 1,
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encoded in Gaussian priors:

χ2
prior =

∑

free LECs

(
Λn−1 cn

5

)2

. (2.11)

Here, cn stands for a generic LEC of chiral order pn; the breakdown scale

is set to Λ = 1 GeV∼ 4πF0 [116, 1]. We foresee that a prior on g̊A is

superfluous, since its value is inescapably driven to a natural one by low

Mπ LQCD results for gA.

The large size of the O(p4) term discussed before is a clear indication

that the theoretical error associated with truncation of the chiral series

should be considered. To that aim we follow the procedure of Ref. [117].

Let X be an observable with a chiral expansion

X = X(0) +
∞∑

m=1

∆X(m) , (2.12)

where ∆X(m) = X(m) −X(m−1) refers to all the monomials that start at

order m. If X is computed up to order n, X ≈ X(n), assuming that the

truncation error is dominated by order n + 1, its contribution ∆X(n+1)

can be estimated in a conservative way as [117, 104]

|∆X(n+1)| = max
{
εn+1|X(0)|, εn|∆X(1)|, ..., ε|∆X(n)|

}
, (2.13)

where ε indicates a general chiral expansion parameter.

In the case of the axial charge, the only expansion variable ε is Mπ/Λ,

which is considered O(p) in ChPT. Recalling that in this case diagram-

matic O(p5) corresponds to O(M4
π) at the level of gA(Mπ), Eq. (2.13)

yields for our O(p4) computation:

∆g
(5)
Aχ = max

{(
Mπ

Λ

)4

|̊gA| ,
(
Mπ

Λ

)2 ∣∣∣∆g
(3)
A

∣∣∣ ,
Mπ

Λ
|∆g

(4)
A |

}

∼ ε4 = O(p5) . (2.14)

According to Eq. (2.8), these terms are ∆g
(3)
A = 4d16M

2
π + g

(3)
A(loop) and

∆g
(4)
A = g

(4)
A(loop). After the discussion of Sec. 2.3.2 it is easy to anticipate

that at larger Mπ, ∆g
(5)
Aχ will be given by the last term in Eq. (2.14). In

our O(p3) fits we do not assume any prior knowledge about O(p4) and,

therefore, the truncation error is given by

∆g
(4)
Aχ = max

{(
Mπ

Λ

)3

|̊gA| ,
Mπ

Λ

∣∣∣∆g
(3)
A

∣∣∣
}
∼ ε3 = O(p4) .(2.15)
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If the whole form factor is considered, one just has to take into account

that there is an additional expansion parameter, the momentum transfer

t, which has chiral order p2. Therefore, for the O(p4) calculation, the

truncation error is given by:

∆F
(5)
Aχ = max

{
ε4g̊A, ε

2|∆F
(3)
A |,

(
Mπ

Λ

)
|∆F

(4)
A |

}
∼ ε4 = O(p5) , (2.16)

where ε2 ≡ max{M2
π ,−t}/Λ2 [117].

Since we also study the agreement of the leading one loop calculation

O(p3), the truncation error in such fits is defined without implementing

any information from the O(p4) computation, and reads

∆F
(4)
Aχ = max

{(
max{M3

π ,−Mπt}
Λ3

)
g̊A,

(
Mπ

Λ

)
|∆F

(3)
A |

}
∼ ε3 = O(p4) .

(2.17)

Altogether our χ2 is

χ2 =
∑

i

(
FA(ti,M

i
π, ai)− F i

A

)2

(∆F i
A)

2
+ χ2

prior . (2.18)

Here the truncation error is added in quadrature to the LQCD one:

(∆F i
A)

2 = (∆F i
ALQCD)

2 + (∆FAχ(ti,M
i
π))

2 . (2.19)

This procedure assigns larger uncertainties to points at high ε, where the

convergence of the chiral expansion is poorer, therefore reducing their

impact on the fit. We perform the fits iteratively, evaluating the ∆FAχ

with the LECs of the previous iteration until convergence is reached

(∆FAχ = 0 in the first step). With this method, truncation and LQCD

errors are not independent and it is not trivial how to combine them in

the error for a given quantity. In consequence, following Ref. [104], we

plot them separately in the error bands for FA, gA and 〈r2A〉. On top of

that, as a complementary measure of the agreement of our fit with the

LQCD data, we also provide the χ2
0 value, defined without ∆FAχ nor

priors:

χ2
0 =

∑

i

(
FA(ti,M

i
π, ai)− F i

A

)2

(∆F i
ALQCD)

2
. (2.20)

Once we have made clear our method to analyze the lattice data and

the ChPT description of the form factor, we will first focus on the limit

of zero momentum transfer, the axial charge.
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2.3.4 Analysis of LQCD results and LEC extraction: the

axial charge

Historically LQCD simulations have predicted a smaller axial charge than

the experimental one (see for example Fig. 2 of Ref. [118]). However,

thanks to progressive improvements, most of LQCD contemporary re-

sults agree with the empirical value at the level of a few percent [74].

Particularly significant has been the recent progress in the treatment

of excited-state contamination. In consequence, we only consider data

from works with an improved analysis of these effects. We study renor-

malized {giA} data at different {M i
π, ai} values, where a indicates the

lattice-spacing, from7 CalLat 18 [112], Mainz 19 [113], RQCD 19 [79]8

and NME 21 [114]9. Our analysis treats 2+1+1 (CalLat 18) and 2+1

(Mainz 19, RQCD 19, NME 21) ensembles on the same footing, assuming

that the c-quark sea content plays a negligible role. As aforementioned,

we discard LQCD determinations of gA coming from Q2, finite volume,

lattice-spacing or Mπ extrapolations. Since we do not account for finite

volume corrections, we take only large volumes, satisfying MπL ≥ 3.5,

so that the neglected extrapolation is small and can be absorbed in the

uncertainties.

In order to describe the data, we perform a fit of the ChPT compu-

tation, aiming to extract the contact LECs g̊A and d16. We account for

lattice-spacing corrections following Eq. (2.10), which in the case of the

charge reduces to

gA(M
i
π, ai) = gA(M

i
π) + xja

nj

i . (2.21)

The free parameters xj dictate the leading a-correction, with j = 1, 2, 3, 4

corresponding to points from CalLat 18, Mainz 19, RQCD 19, NME 21

respectively. This term is specific of each lattice action: n1,4 = 1, while

n2,3 = 2. In any case, these corrections do not alter significantly the

extracted LECs, but do reduce the χ2/dof. All the remaining fit details

and definitions of the previous section are taken to the t→ 0 limit in the

axial charge analysis.

Finally, we have studied the convergence range of the ChPT by vary-

7The lattice works names follow the FLAG Review 2021 [74].
8From RQCD 19 [79] only the data with ms ∼ ms(phys) is considered, the one suitable for an

SU(2) ChPT study.
9From NME 21 [114] we consider the results from the fit method labeled as {4Nπ , 3∗}, used

to control excited-state contamination, averaging over the two renormalization methods Z1 and
Z2.
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ing the maximum Mπ of the lattice data accepted in the fits in the range

of Mπcut ∈ [200, 402] MeV. A plateau in the χ2 and the fitted LECs is

reached towards the end of the interval. Therefore in the following fits

we consider data up to Mπ = 402 MeV10. Notice that ease the compari-

son between orders we use always the Mπcut and Q2
cut determined in the

O(p4) analysis with ∆. As will be discussed in Sec. 2.3.4, the theoretical

uncertainty increases at higher Mπ where the chiral convergence is poorer

and, in consequence, the corresponding LQCD points weight less in the

fits.

Now that the fit procedure has been established, we discuss the per-

formance of the ChPT description at the different orders in the next

sections.

/∆ O(p3) fit results

At O(p3) without explicit ∆ the only free parameters (apart from xj

controlling the a-correction) are g̊A and d16. The results of the fit are

shown in the upper left panel of Fig. 2.4 and the first column of Tab. 2.4.

At least in appearance, this model describes the LQCD data well, with a

good χ2/dof, relatively small uncertainties and natural g̊A and d16 values.

Comparing the first columns of Tabs. 2.3 and 2.4, the d16 value is slightly

above the phenomenological one extracted in Ref. [105] and has a much

smaller error. Instead, g̊A is in tension with the value obtained from

experimental input, Eq. (2.9). In consequence gA(Mπ(phys)) = 1.205 ±
0.010, well below the experimental result (red filled triangle in Fig. 2.4).

In truth, if one studies the results for the O(p4) model described below,

a large contribution from the O(p4) terms at Mπ & 200 MeV is obtained,

in line with the discussion of Sec. 2.3.2. The fact that these terms are

considerably larger than the error band of the O(p3) result implies that,

in this case, the theoretical uncertainty determined from O(p) and O(p3)
terms falls short in estimating for the O(p4) contribution. The fit of

gA(Mπ) at O(p3) with LQCD data appears then as misleadingly good,

while the errors in the LECs can be regarded as underestimated. In other

words, to be realistic, an O(p3) analysis should be constrained to small

Mπ < 200 MeV, which would be impossible due to lack of LQCD data

in this interval.

10This limit makes possible to incorporate available data close but above Mπ = 400 MeV.

69



2.3. The nucleon axial charge: its light quark mass dependence and

pion-nucleon phenomenology

/∆ O(p4) fit results

Increasing one order in the computation, including the O(p4) /∆ contri-

bution, implies the appearance of NLO LECs c1−4. They were initially

allowed to evolve in the fits under the constrains set by their empirical

determination [105] (second column of Table 2.3) applied as Gaussian

priors. However, as these LECs are quite well determined, this proce-

dure yields substantially the values favored by the priors. Therefore, we

report here the results of a simpler fit with c1−4 held fixed to their central

phenomenological values (second column of Table 2.4).

Anyway, as apparent from the lower left panel of Fig. 2.4 the O(p4)
/∆ model fails to describe the light-quark mass dependence of gA

11. The

small χ2 is merely a consequence of the large theoretical error, which

reduces the impact of high Mπ points on the fit. Nonetheless, the poor

agreement is reflected in the magnitude of χ2
0 and also in the quite un-

natural d16 in spite of its prior. This large d16 is inconsistent with its

phenomenological value and nonetheless unable to correct the Mπ depen-

dence at Mπ & 300 MeV, which is largely dominated by the O(p4) con-

tribution and, consequently, very similar to the one displayed in Fig. 2.3.

The fact that the very wide theoretical error band covers the LQCD

points indicates that the disagreement would be removed by a (large)

contribution of O(p5) compensating the O(p4) ones. In fact, it has been

shown within HB ChPT [108] that the curve may be bent down by ad-

ditional contributions of orders O(p5,6) with LECs of natural size (see

also Fig. 1 of Ref. [93]). We choose a different strategy and introduce

the ∆(1232) explicitly as suggested in Ref. [109] based on the Adler-

Weisberger sum rule [119, 120] and a HB computation for gA.

Including the ∆ explicitly: O(p3) fit results

When the ∆ is implemented as an explicit degree of freedom, new terms

with extra LECs arise. We fix the L(1)
πN∆ coupling hA to its large-Nc

value, hA = 3gA
2
√
2
' 1.35 [121], which is near to its empirical value [28].

For the L(1)
π∆ coupling g1, whose impact on gA is small, the large-Nc limit

leads to |g1| = 9
5gA ' 2.29 [24]. We can not discern its sign in our fits

to gA LQCD data and adopt g1 = −2.29, preferred both by πN elastic

11Lattice-spacing corrections were neglected in this fit once they become unnaturally large (and
uncertain) causing overfitting.
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Figure 2.4: Mπ dependence of gA determined from the fits to LQCD data

with O(p3) and O(p4) relativistic BChPT without and with ∆(1232)

as explicit degree of freedom. Gray (dark) bands correspond to uncer-

tainties determined by propagating LEC errors. Blue bands represent

the estimated theoretical uncertainties ∆g
(4,5)
Aχ . The LQCD points from

CalLat 18 [112] (black circles), Mainz 19 [113] (red crosses), RQCD 19 [79]

(green triangles) and NME 21 [114] (blue squares) are shown at their

non-zero a values, i.e. without (small) discretization corrections. The

experimental value [89] corresponds to the red filled triangle.

scattering [28] and our own studies of the nucleon axial form factor at low

q2 of the next sections. In addition, similarly to the nucleon case, m̊∆ ≈
m∆(phys) − 4 a1M

2
(phys) with m∆(phys) = 1232 MeV and a1 = 0.90 GeV−1

from the LQCD Mπ dependence of the ∆ mass [42].

In the end, the result of this model closely resembles the O(p3) /∆

one as is evident from the upper panels of Fig. 2.3. However, the value

of d16 changes notably, including its sign, with respect to the O(p3) /∆
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Table 2.4: LEC values for gA, both fixed and fitted to LQCD data, in

the four different models under study. The χ2/dof for each fit is given at

the bottom; χ2
0, defined in Eq. (2.20), does not include theoretical errors

or naturalness priors.

O(p3) /∆ O(p4) /∆ O(p3) ∆ O(p4) ∆
g̊A (free) 1.1302± 0.0098 1.453± 0.048 1.1383± 0.0099 1.240± 0.046

d16 (GeV−2) (free) −0.925± 0.055 −9.77± 0.87 1.224± 0.040 −0.88± 0.88

hA - - 1.35 1.35

g1 - - −2.29 −2.29
c1 (GeV−1) - −0.89± 0.06 - −1.15± 0.05

c2 (GeV−1) - 3.38± 0.15 - 1.57± 0.10

c3 (GeV−1) - −4.59± 0.09 - −2.54± 0.05

c4 (GeV−1) - 3.31± 0.13 - 2.61± 0.10

a1 (GeV−1) - - - 0.90

b̃4 (GeV−2) (free) - - - −12.3± 1.0

x1 (fm−1) 0.39± 0.68 - 0.38± 0.07 0.21± 0.07

x2 (fm−2) −8.10± 1.80 - −8.17± 1.80 −7.27± 1.80

x3 (fm−2) 2.25± 1.83 - 2.17± 1.83 3.28± 1.84

x4 (fm−1) 0.61± 0.11 - 0.60± 0.11 0.51± 0.11

m̊ (GeV) 0.874 0.874 0.855 0.855

m̊∆ (GeV) - - 1.166 1.166

χ2/dof 36.06/(43− 6) = 0.98 13.31/(43− 2) = 0.33 37.60/(43− 6) = 1.02 11.14/(43− 7) = 0.31

χ2
0/dof 424.87/(43− 6) = 11.48 122820.67/(43− 2) = 2995.63 439.19/(43− 6) = 11.87 501.62/(43− 7) = 13.93

one. The same feature was recognized when this LEC was extracted from

LQCD results for the axial form factor at low Q2 with O(p3) relativistic

BChPT [87]. The O(p4) fit described in the next section produces O(p4)
corrections larger than the truncation uncertainty estimated here just

from O(p) and O(p3) terms (although to a lesser extent than in the /∆

case). The extension to O(p4) is in fact desirable for a more realistic

determination of the LECs and their errors.

O(p4) with explicit ∆ fit results

In the fit of the O(p4) theory with explicit ∆ we fix the c1−4 LECs

to the values extracted from πN scattering [104] (see the last column

of Table 2.4). In the cited analysis the ∆ pole is taken into account

and results in good agreement with the combined πN + ππN fit from

Ref. [105] are obtained. In addition to g̊A and d16 we now have O(p2)
b4 and b5 LECs as free parameters. As mentioned in Sec. 2.2.1, these

LECs appear at O(p4) [more precisely, at O(M4
π/δ)] in the combination

b̃4 = b4 + (12/13) b5. Therefore we keep only b̃4 as a free parameter of

the fit and neglect remaining higher order monomials proportional to b5.
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The result of the fit, shown in the lower right panel of Fig. 2.4, sat-

isfactorily describes the trend of gA(Mπ) as predicted by LQCD up to

relatively high Mπ. The theoretical error is large and rapidly increasing

with Mπ due to the big contribution of O(p4) terms. Nevertheless, the

description of LQCD data and convergence are notably improved with

respect to the O(p4) /∆ model.

The obtained LECs are given in Table 2.4. The b̃4 value might

seem unnatural but one should keep in mind that it is a combination

of LECs. As shown in Table 2.5 the correlations among LECs are siz-

able; they are an indication of degeneracy among the parameters. The

Table 2.5: Correlation matrix for the O(p4) ∆ fit.

g̊A d16 b̃4

g̊A 1 -0.97 0.79

d16 1 -0.92

b̃4 1

d16 value obtained from this analysis, d16 = −0.88 ± 0.88 GeV−2, is

in good agreement with the determination from inelastic πN → ππN

with explicit ∆ pole [105], which, transformed to standard EOMS, is

d16(pheno) = −1.0 ± 1.0 GeV−2. Even though, as argued before, the Mπ

dependence of gA is in principle better suited to determine d16 than

the available experimental πN → ππN data, the convergence issues of

the former lead to large errors, comparable to those of the phenomeno-

logical extraction. The g̊A LEC has a higher value than in the O(p3)
fits and with a larger uncertainty. Furthermore, at the physical point

gA(Mπ(phys)) = 1.260 ± 0.012 is now close to the experimental value al-

though with a much larger error.

In addition, the stability of the results for g̊A and d16 as a function of

the maximum Mπ accepted, Mπcut, is depicted in Fig. 2.5. It can be seen

that for both quantities the numerical values and uncertainties stabilize

for Mπ & 300 MeV.

Owing to the inclusion of the truncation uncertainty, the study could

be extended to higher Mπ, because points at higher Mπ, where the con-

vergence is worse, have a larger combined error (Eq. (2.19)) and influence

less the fit.
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Figure 2.5: Results of the fits for the O(p4) model with explicit ∆ as a

function of the maximum accepted pion-mass, Mπcut.

2.3.5 Conclusions on the axial charge light quark-mass

dependence

As a result of the investigation of the Mπ (or light quark-mass) depen-

dence of the nucleon axial coupling we have drawn several conclusions re-

garding its description in ChPT. The axial charge has been computed up

to O(p4) (NNLO) in relativistic EOMS renormalization with and without

explicit ∆. We have shown that up to O(p4), the pion mass dependence

of gA predicted using LECs determined from phenomenological studies

of pion-nucleon elastic and inelastic (πN → ππN) scattering cannot pro-

duce the rather flat behavior predicted by recent LQCD results, if the

∆ is not explicitly considered. The disagreement is evident from pion

masses right above the physical one. This feature, earlier observed in

non-relativistic heavy-baryon ChPT [108, 109], is therefore also present

in the relativistic theory. The fact that O(p4) terms become large from

relatively small Mπ & 200 MeV implies that O(p3) studies of gA(Mπ)

probably underestimate theoretical errors.

In line with the HB work of Ref. [109], we are able to describe satisfac-

torily the LQCD data for gA(Mπ) at O(p4) only after the ∆ is included as

an explicit degree of freedom. It must be acknowledged that, although in

a much smaller degree than in the /∆ case, a fast increase in the relative

size of O(p4) terms with Mπ is observed and reflected by the estimate of

theoretical uncertainties. This fact jeopardizes the precision of the ChPT

description of gA(Mπ) at Mπ & 300 MeV and negatively influences the

extraction of LECs based on LQCD data at such Mπ. Together with

the sizable correlations, this feature implies that O(p5) and/or heavier
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resonances are required to reach a complete convergence and minimize

theoretical uncertainties. The effect of setting the baryon masses in the

loops to the values obtained by the LQCD simulations may be also worth

exploring as suggested in Ref. [86], even though this would correspond

to the resummation of baryon selfenergy insertions of higher order. To

accomplish this in a consistent way, it would be relevant to have more in-

formation about the ∆ pole position for the different lattice simulations.

From our most solid analysis (O(p4) with ∆) of state-of-the-art LQCD

data we obtain gA(Mπ(phys)) = 1.260 ± 0.012, closer to the experimen-

tal extraction [89] and with less error than the one from the FLAG re-

port [74]. A d16 = −0.88 ± 0.88 GeV−2, in agreement with πN phe-

nomenology, is obtained. As a result of the previously discussed issues,

errors are still large, particularly for d16, which is naturally extracted

from the light-quark mass dependence of the nucleon axial coupling.

New LQCD results at Mπ . 250 MeV would improve the precision of

the extracted LECs. In the next section we will move to the axial form

factor, seeking a more integral analysis by the addition of the Q2 dimen-

sion. This will lead not only to the acquisition of useful information on

a relevant quantity such as FA, but also to the extraction of other LECs

such as d22.

2.4 Analysis of LQCD results and LEC determi-

nation: the axial form factor

As anticipated, we perform a meta-analysis of a combined set of recent

LQCD data. The accounted LQCD studies only partially overlap with

the ones used to investigate the axial charge, but again we only consider

simulations in which the excited-state contamination is taken into ac-

count. These would be RQCD [79], NME [114], "Mainz" [122], PACS

[123] and, at the physical point, also ETMC [124] (see Fig. 2.7(a)).

In order to conduct the fit, we proceed as explained in Sec. 2.3.3.

Different actions correspond to different lattice-spacing corrections in

Eq. (2.10). The index j corresponds now to j = { Mainz, RQCD, NME}
and the nj exponent depends on the lattice action: n = 1 for NME, while

n = 2 for the other two. As for gA, we anticipate that these corrections

do not affect the extracted physical quantities or LECs substantially, but

only reduce the χ2/dof. The lattice-spacing dependence from PACS and
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ETMC can not be corrected because only one value of the spacing is

used in the respective simulations. According to the respective publica-

tions [123, 124] (and our analysis of lattice-spacing effects of other data)

the systematic uncertainty corresponding to such dependence should not

be significant for our fit.
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Figure 2.6: In blue, χ2/dof vs Q2
cut (GeV2) in O(p4) with explicit ∆. In

red, the same for χ2
0/dof of Eq. (2.20).
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Figure 2.7: Left panel: lattice FA(Q
2) (without continuum extrapolation

and at different Mπ). Red, green, pink, black and blue points correspond

to "Mainz" [122], RQCD [79], PACS [123], ETMC [124] and NME [114]

respectively. Right panel: our FA(Q
2) O(p3) /∆ fit curve at the physical

point. Analogously to Fig. 2.4, gray (dark) bands correspond to uncer-

tainties determined by propagating LEC errors. Blue bands represent

the estimated theoretical uncertainties ∆FAχ.

For the purpose of establishing the range in Mπ and Q2 for the analysis

we search for a plateau in the χ2/dof. The truncation error assigns a

lower weight to the points at higher Mπ or Q2. Therefore the question

of the fit range is connected to this uncertainty. We set Mπcut = 402

MeV as in our analysis of gA in Sec. 2.3.4. Regarding the momentum, we

determine Q2
cut = 0.36 GeV2 from the χ2/dof plateau (Fig. 2.6), similarly
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to Ref. [87]. As in the axial charge analysis, the cuts are determined

from the analysis of the O(p4) model with explicit ∆ and are kept for

the simpler models in order to make a straightforward comparison among

them. In the following the fit results are presented, separated by chiral

orders.

2.4.1 /∆ case

O(p3) fit results
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Figure 2.8: Pion mass dependence of gA (left) and of the slope at the

origin, 6 dFA

dt

∣

∣

t=0
= gA〈r2A〉, (right) both in the O(p3) /∆ scheme. The red

triangle in the left panel indicates the experimental gA value [89]. Again,

gray (dark) bands correspond to uncertainties determined by propagat-

ing LEC errors, while blue bands represent the estimated theoretical

uncertainties ∆FAχ. In the right panel, the violet triangle (red circle)

represents the empirical extraction from neutrino scattering on deuteron

with a z-expansion [71] (dipole) [70] parametrization of FA(Q
2), whereas

the brown diamond corresponds to the one from muon capture in muonic

hydrogen [72]. These experimental determinations are also included in

the rest of figures corresponding to different versions of the theory.

In the O(p3) calculation without ∆ there are only three free ChPT

LECs: g̊A, d16 and d22. The resulting FA(Q
2,Mπphys), gA(Mπ), gA〈r2A〉(Mπ)

(recall Eq. (1.28)) are shown in Figs. 2.7(b), 2.8(a), (b) respectively. One

should notice that in this scheme gA〈r2A〉 is constant in Mπ. However, in

general the LQCD FA(Q
2) is steeper at Q2 = 0 for ensembles with lower

Mπ. In this fit one can see the impact of the truncation uncertainty.

77



2.4. Analysis of LQCD results and LEC determination: the axial form factor

This error assigns a lower weight to the high Mπ points, and therefore,

the 〈r2A〉 obtained with truncation error is higher than the one without

it. The main issue of the O(p3) description is that the fit to the data is

misleadingly good, as has been shown for gA in 2.3.4. The O(p4) con-

tributions which are unaccounted are large and therefore O(p3) is not a

satisfactory parametrization.

O(p4) fit results

As seen before, at O(p4) the c1−4 enter in the calculation through gA.

We proceed as in the gA fit, fixing them to [105] (second column of our

Table 2.3). However, as explained in Sec. 2.3.4, the O(p4) /∆ calculation

fails to describe the light-quark mass dependence of gA. Therefore we do

not report a fit to the form factor at this order, since the result does not

agree with the data.

2.4.2 ∆ case

O(p3) fit results
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Figure 2.9: Left panel: lattice FA(Q
2) (without continuum extrapolation

and at different Mπ). See caption of Fig. 2.7 for details. Right panel:

FA(Q
2) at O(p3) with explicit ∆. Notice that the χ2 error (gray) and

the pure truncation one (blue) overlap almost exactly.

At O(p3) the inclusion of the ∆ introduces two parameters: hA and

g1, this is the same situation as for gA(Mπ); the Q2 dependence does

not introduce new LECs. LEC hA is fixed to the large-Nc value [121] as
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Figure 2.10: Results at O(p3) in the theory with explicit ∆. Same nota-

tion as in Fig. 2.8 is used.

in the gA analysis of Sec. 2.3.4. As mentioned there, large-Nc leads to

|g1| ' 2.29 [24]. We use the large-Nc value for hA, whereas we do not

fix g1 to any of its two a priori values. LEC g1 appears as an important

coefficient in the radius in the chiral limit, so that it is strongly correlated

with d22
12 (Eq. (2.8)). We can not determine exactly d22 and g1 from the

chiral limit radius. The main effect of leaving g1 free is the large error

of d22, with which it is correlated. We choose to prioritize the extraction

of the axial radius without further assumptions on the LECs. Therefore,

we leave free g1 and d22, obtaining a rough estimation of their individual

values, in part thanks to their naturalness priors.

The results of this fit are shown in Figs. 2.9 and 2.10. One can see in

Fig. 2.10(b) that the ∆ is important to account for the M2
π slope to the

radius. However, as for the O(p3) /∆ case, the ∆ O(p3) fit underestimates

the truncation error, especially in gA(Mπ). Therefore the description is

misleadingly accurate. That is why we focus now in the O(p4) calculation

with explicit ∆, which yields more realistic results.

O(p4) fit results

The situation in the O(p4) analysis with explicit ∆ resembles the one

for gA, since many LECs only contribute to the charge. We fix the c1−4

LECs as in the axial charge case, to the values extracted from the πN

12LEC g1 also appears with a much smaller coefficient in gA at O(M2
π). To be precise the g1

impact in gA is almost negligible so that it does not strongly affect the extraction of d16.
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Figure 2.11: Left panel: lattice FA(Q
2) (without continuum extrapolation

and at different Mπ). See caption of Fig. 2.7 for details. Right panel:

FA(Q
2) at O(p4) with explicit ∆. Same notation as in Fig. 2.7(b).
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Figure 2.12: Results at O(p4) in the theory with explicit ∆. Same no-

tation as in Fig. 2.8 is used. Notice that in the radius (right panel) the

error propagated from the LECs dominate over the pure truncation one.

elastic scattering [104] including the ∆ resonance (all fit parameters are

given in the last column of our Tab. 2.6). The contribution from the ∆

at this order introduces the following LECs: a1 (fixed to the Ref. [42]

value as in the gA study), and the free b1, b2 and b̃4. The combination of

LECs b̃4 only appears in gA, and is necessary to compensate the O(p4)
/∆ term, as has been discussed in Sec. 2.3.4. As mentioned for the O(p3)

calculation, the loops with internal ∆ are important to describe the Mπ

dependence of the axial radius. The b1 and b2 LECs enter at O(t×M2
π).

Their impact in the calculation is limited and we just see that the fit

behaves well when they have the natural values given in Tab. 2.6.
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Table 2.6: LEC values for FA, both fixed and fitted to LQCD data, in

the four different models under study. The χ2/dof for each fit is given at

the bottom; χ2
0, defined in Eq. (2.20), does not include theoretical errors

or naturalness priors.

O(p3) /∆ O(p3) ∆ O(p4) ∆

g̊A (free) 1.1782± 0.0073 1.2041± 0.0074 1.274± 0.041

d16 (GeV−2) (free) −1.021± 0.048 0.983± 0.062 −1.46± 1.00

d22 (GeV−2) (free) 1.275± 0.086 3.77± 1.96 0.29± 1.69

hA - 1.35 1.35

g1 (free) - −0.69± 0.69 0.66± 0.56

c1 (GeV−1) - - −1.15± 0.05

c2 (GeV−1) - - 1.57± 0.10

c3 (GeV−1) - - −2.54± 0.05

c4 (GeV−1) - - 2.61± 0.10

a1 (GeV−1) - - 0.90

b1 (GeV−2) (free) - - −0.27± 4.96

b2 (GeV−2) (free) - - 2.27± 2.28

b̃4 (GeV−2) (free) - - −12.48± 1.28

x1 (fm−2) (free) −8.4± 5.8 −5.6± 5.9 −0.25± 16.5

x2 (fm−2) (free) −8.6± 2.6 −7.1± 2.6 −6.36± 4.20

x3 (fm−1) (free) −0.25± 0.21 −0.08± 0.22 0.36± 0.47

y1 (fm−2 GeV−2) (free) −100± 40 −76± 44 −64± 121

y2 (fm−2 GeV−2) (free) −31± 21 −21± 22 −15± 46

y3 (fm−1 GeV−2) (free) −0.63± 1.49 0.36± 1.63 2.54± 3.98

m̊ (GeV) 0.874 0.855 0.855

m̊∆ (GeV) - 1.166 1.166

χ2/dof 46.13/(127− 9) = 0.391 39.17/(127− 10) = 0.326 14.64/(127− 13) = 0.129

χ2
0/dof 857.31/(127− 9) = 7.27 533.87/(127− 10) = 4.45 196.58/(127− 13) = 1.724

The output of the fit is displayed in Figs. 2.11 and 2.12. The low

χ2/dof is due to the large truncation error at high Mπ. In fact, by setting

a lower Mπcut one could obtain a higher χ2/dof . Regarding the trunca-

tion error, one can see that it is large for the axial charge (Fig.2.12(a)),

suggesting that a complete O(p5) calculation is needed to achieve a full

convergence in the charge. This is challenging, because at this order

two loop contributions are present. The radius has a slightly decreasing

slope in M2
π , accompanied by a sizable uncertainty (Fig. 2.12(b)). In

summary, we consider this calculation a good description of the form

factor, especially at the physical point.

Regarding the LEC d16, which governs the Mπ dependence of the

charge, we extract d16 = −1.46 ± 1.00 GeV−2. The large uncertainty is
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due to the truncation error and reflects the slow convergence of gA(Mπ)

in ChPT. This determination is in agreement with the extraction from

πN → ππN of Ref. [105]. Their value translated to the standard EOMS

scheme is d16 = −1.0±1.0 GeV−2. It is also very similar to our extraction

from the axial charge fit (to other ensembles) of Sec. 2.3.4, d16 = −0.88±
0.88 GeV−2. In addition, the g̊A and b̃4 extracted are in good agreement

with the ones determined by the gA fit (Tab. 2.4).

Regarding d22, the LEC that enters at tree level in the radius, we ex-

tract d22 = 0.29±1.69 GeV−2. Since this LEC is correlated with g1, it has

a large uncertainty. The determinations of d22 and g1 in Tab. 2.6 should

be interpreted as a range of valid results, and one LEC value should not

be adopted independently of the other. Nevertheless, d22 is compatible

with the extraction from the O(p3) analysis of π-electroproduction of

Ref. [97]: d22 = 0.95± 0.13 GeV−213. The fact that we extract LECs in

line with determinations from different physical processes indicates that

our calculation is assessing the ChPT series in a robust way and that the

convergence is good for the different observables.

Turning now to the extraction of the physical charge and radius, we re-

call that the axial charge is well determined experimentally from β-decay:

gexpA = 1.2754(13)exp(2)RC [89]. The FLAG review reports gFLAG
A =

1.246 ± 0.028 [74]. We obtain a value, gA(Mπphys) = 1.273 ± 0.014,

in fine agreement with experiment, closer than the FLAG one. It is also

compatible with our previous extraction from Q2 = 0, gA(Mπ(phys)) =

1.260 ± 0.012. Our two gA determinations from LQCD results have a

relatively small error because the truncation uncertainty affects mostly

the prediction at high Mπ.

With respect to the axial radius, we extract: 〈r2A〉(Mπphys) = 0.293±
0.044 fm2 from our ChPT O(p4) analysis with explicit ∆. The situation

regarding the experimental and LQCD determinations of this quantity

is more complex than for gA. We dedicate the following section to the

analysis of the different results.

13One has to be aware that in Ref. [97] the ∆ is introduced only at tree level, following the
so-called δ-counting.
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2.5 Comparison with other 〈r2A〉 determinations

The axial radius is a challenging quantity from the experimental point of

view. In Fig. 2.13 we show the experimental results discussed in Sec. 2.1.

In the same plot, we have reported recent LQCD determinations. One

can see that the LQCD predictions are in general below the experimental

extractions. The origin of this mismatch is not understood. There is

a strong dependence on the Q2 parametrization employed in both the

experimental and LQCD determinations. In the experimental case, it is

evident that the dipole parametrization leads to small error bars, while

the z-expansion leads to very large ones. In the LQCD results this also

happens, but, in addition, the central value can be substantially affected

by the Q2 parametrization.

Table 2.7: 〈r2A〉 determined from our ChPT fit to LQCD compared with

empirical extractions.

O(p4) fit with ∆ νD z-exp. [71] νD dip. [70] µH z-exp. [72]

〈r2A〉 (fm2) 0.293± 0.044 0.46± 0.22 0.454± 0.013 0.46± 0.24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

νD+electroprod. dip. (Bodek)
νD z-exp. (Meyer)
µH (Hill)

z-exp. NDME 21
dip. RQCD 19
z.-exp. RQCD 19
z.-exp. Mainz
z.-exp. Cyprus
dip. PACS
χPT Fit

Experiments

Lattice

〈r2
A
〉 (fm2)

Figure 2.13: Summary of modern LQCD and empirical determinations

of 〈r2A〉 determinations. (Bodek), (Meyer) and (Hill) correspond to [70],

[71] and [72] respectively.

Our extraction is depicted in blue in the figure. It is in line with the

individual LQCD results, as it should, and illustrates the global mismatch
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between LQCD and experiment. We want to emphasize the fact that we

are not using any ad hoc Q2 parametrization. Since we use ChPT our

parametrization is based on the symmetries of QCD and we can estimate

the theoretical uncertainty that comes with it.

2.6 Conclusions and outlook

We have investigated the nucleon axial form factor, a key quantity in

the study of neutrino oscillations. We have calculated it up to O(p4) in

relativistic ChPT with explicit ∆. Then, we have fitted the unknown

LECs to a set of different LQCD determinations, accounting also for the

truncation error of ChPT. We have seen that at this order, our calculation

is able to describe data up to ∼ 0.6 GeV in
√

Q2 and Mπ ∼ 400 MeV.

From our fit, we conclude that the ∆ baryon is a necessary d.o.f.,

especially to account for the Mπ dependence. From our parametriza-

tion we extract an axial charge of gphysA = 1.273 ± 0.014 in good agree-

ment with the experimental determination (more precise and closer to

experiment than the one from the FLAG report [74]). We have also ex-

tracted the following important LECs of the O(p3) Lagrangian: d16 =

−1.46 ± 1.00 GeV−2 and d22 = 0.29 ± 1.69 GeV−2, in agreement with

different phenomenological determinations.

It has been shown that the slow convergence of ChPT calls for the

inclusion of the higher O(p5), which is difficult because two loop dia-

grams should be taken into account. The implementation of higher order

resonances such as the N(1440) Roper resonance could be a more fea-

sible solution. Besides, we argue that a global fit of LQCD results for

the axial form factor combined with pion-nucleon scattering experimen-

tal data could improve the description of both processes. In particular

correlations among LECs would be reduced.

We have investigated the axial radius, a quantity which constitutes a

challenge for QCD theory and experiment. From our LQCD fit we obtain

〈r2A〉phys = 0.291±0.052 fm2, without using ad hoc parametrizations. The

known mismatch between lattice and experimental determinations is dis-

played by the analysis. This motivates both sides to keep improving their

studies. With respect to the experiments, there are significant systematic

uncertainties related to the determination of the neutrino fluxes. New

experiments with hydrogen targets would be beneficial in this regard.
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Chapter 3

The nucleon electromagnetic

form factor

3.1 Introduction

The electromagnetic form factor has been introduced in Sec. 1.2.1, setting

the ground for the calculation reported in this section (based on our

article [125]). We use ChPT improved with dispersive relations to study

the EM form factor, accounting also for its light quark mass (or pion

mass) dependence. The implementation of unitarity through dispersive

theory is motivated by the prominence of the ρ resonance in this form

factor.

Electron (or lepton) elastic scattering of nucleons is one of the sim-

plest processes sensitive to the nucleon’s inner composition [126]. In

consequence, the electromagnetic form factors are fundamental quanti-

ties to understand the nucleon structure and the strong interaction itself.

Even if fundamental, this form factors constitute an important challenge

from the theoretical perspective due mainly to its nonperturbative na-

ture. There are many open problems regarding it, such as whether the

electric FF of the proton have a zero crossing in the spacelike region

or not [127, 126]? and why does the neutron have a negative transverse

charge density not only at the periphery but also at the center [128, 129]?

In recent years the most significant question was probably the one

related to the so-called proton radius puzzle [130]. The form factor de-

termination has been assessed in two different types of experiments. One
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is electron-proton scattering, from which cross section one can extract

the radius. The other consists in the study of the energy levels of the

hydrogen atom, which are also sensitive to the proton size. The latter

type of extraction, can be also performed on a muonic hydrogen atom (the

muon replaces the electron in the proton’s orbit). Due to the much larger

muon mass, the muon sits closer to the proton and is more sensitive to its

structure. The puzzle was originated by the incompatibility between the

radius measured in muonic hydrogen with respect to ordinary hydrogen

and electron scattering. The extraction of the radius from ep scatter-

ing led to different results, again depending on the parametrization used

to extrapolate to Q2 = 0, where the radius is defined [131, 132, 133].

Recent experimental results align with the muonic hydrogen measure-

ment [130] and with determinations based on dispersion relations (see

Fig. 5 of Ref. [134] and references therein), however the experimental

question remains not completely clear as shown in Fig. 1 of Ref. [135].

From the QCD theory side, many LQCD groups have determined the

nucleon FFs. Although results are now available even at physical quark

masses [136], state-of-the-art analyses still suffer from different system-

atics, and the extraction of the radius is nontrivial due to the aforemen-

tioned Q2 extrapolation. As a matter of fact, LQCD determinations are

not precise enough to rule out the original electronic hydrogen data [136].

Our approach to this problem is similar to the one taken for the

axial form factor. We employ ChPT to analyze the results simulated

in the lattice at relatively low Q2. Our goal is again to describe the

form factor as a function of Q2 and Mπ minimizing model dependence.

As aforementioned, the light-quark mass dependence is crucial in lattice

determinations, and, on top of that, it is a window to deepen our insight

on QCD. In addition the values of ChPT LECs are extracted (not only

in our unitarized version of ChPT, but also in its plain realization).

A relativistic treatment of ChPT is performed, thanks again to the

EOMS renormalization scheme, preserving covariance and the analytic

properties of loop amplitudes. We work on the basis of previous ChPT

studies of these form factors [137, 138, 111, 139, 22, 140, 29] and introduce

the ∆ explicitly in the small-scale expansion power counting (Sec. 1.2.5).

Virtual photons couple to pion pairs in a p-wave state. On the other

hand, as introduced in Sec. 1.3.2, two pions in a p-wave are strongly

correlated by the ρ meson. We will account for this implementing uni-
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tarity, however, one might wonder if the inclusion of the ρ as an explicit

d.o.f. would be satisfactory. Even if the coupling is also strong, this

case is actually different from the ∆ one, where the momentum scales

with another small quantity. The momentum of a pion resulting from

the decay of an on shell ∆ (i.e. with an invariant mass equal to the res-

onance Breit-Wigner mass) to πN is proportional to δ, which is then

taken as an expansion parameter of ChPT. One can picture this as the

hard scale, the nucleon mass, flowing trough the baryon lines in the ver-

tex. In the case of the ρ, the resonance mass can be considered a hard

scale as well, it seems a sensible choice in view of mπ � mρ ∼ Λχ. Then

what happens is that in the ρ → ππ decay, a hard momentum must be

provided to one or both of the pions. Therefore, it is difficult to imple-

ment the ρ meson as an explicit degree of freedom in ChPT or similar

theories. Some works have investigated in this direction, for instance in

Refs. [141, 142, 143], and many analyses have adopted phenomenological

models to include the ρ, mainly based on the concept of vector-meson

dominance [144, 145, 146, 147].

In this work, we want to conserve the virtues of EFTs: model inde-

pendence, power counting and controlled errors. In terms of the effective

theory, accounting for the ρ can be seen as considering terms ∼ p2/m2
ρ,

where p denotes some typical pion momentum (or photon virtuality). In

practice, the objective is to enlarge the range of applicability concerning

momenta and pion mass and improve the precision of ChPT.

The ρ dynamics can be introduced in the nucleon electromagnetic

form factor by further developing the dispersive method of Sec. 1.3.2,

provided one understands how the asymptotic states (here the nucleons)

and the external sources (virtual photons in the present case) couple to

pion pairs. This has been investigated in several studies, for instance [148,

149, 150, 133, 151]. In our case, we aim to account for the pion mass

dependence, and therefore we ensure that the inputs of the dispersive

calculation contain the correct pion mass parametrization.

To account for both the Q2 and Mπ dependence over a relatively large

range, we combine relativistic ChPT with explicit ∆ with the dispersive

treatment of the two-pion (ρ) channel. This simply means that those

ChPT diagrams where the photon couples to pion pairs are dispersively

improved. In particular, we ensure that such modification is consistent

with systematic ChPT power-counting scheme and does not create renor-

malization problems.
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Equivalently, our calculation can be seen as an approximation of a

dispersive calculation by means of ChPT. Recalling the optical theorem

introduced in Eq. (1.55) of Sec. 1.3.1, the particular case of the nucleon

form factor reads:

ImTγ∗→NN̄ =
1

2

∑

n

(2π)4δ(pf − pi)T
∗

NN̄nTnγ∗ . (3.1)

Here the intermediate states n represent all possible hadronic interme-

diate states: 2π, 3π, 4π, . . . , KK̄, KK̄π, . . . , NN̄ , NN̄π, . . . (hadronic

resonances are not included as single-particle states but are accounted

by the scattering amplitudes of asymptotic states). It is known that

for isovector FFs the 2π intermediate state constitutes the largest con-

tribution at low energies Q2 ≤ 1GeV2. The basic idea of this work

is therefore to treat the two-pion state via dispersion theory, relying on

standard baryon ChPT for the rest. The optical theorem (3.1) relates the

imaginary part of a loop diagram to the product of amplitudes, as stated

by the Cutkosky cutting rules of Sec. 1.3.1. For ChPT diagrams this im-

plies to relate one-loop FF diagrams to products of tree-level FF terms

and scattering diagrams. For baryon-antibaryon intermediate states we

keep just the ChPT expression, but for pion-nucleon scattering we mod-

ify the tree-level diagrams of pion-nucleon scattering and the pion vector

FF. These corrections account for the pion rescattering in a unitary way.

This can be understood as a resummation of multi-loop diagrams.

The work is organized as follows. In section 3.1.1 the dispersive and

ChPT formalisms are described. Relying on the combined approach, we

calculate the Dirac and Pauli FFs. The comparison of our results with

LQCD data will be presented in section 3.2 and section 3.3 for Dirac and

Pauli FF respectively, with concluding remarks summarized in Sec. 3.4.

3.1.1 The Nucleon Form Factor in dispersion theory

General expressions

Since the ρ resonance contributes only to the isovector channel, we re-

strict ourselves to the isovector form factor, F = F p−F n (here we do not

specify if we refer to Dirac or Pauli form factors, defined in Eq. (1.21)).

Starting from perturbative QCD [152], all FFs decrease at large q2. One

can then write an unsubtracted dispersion relation identical to the pion
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one (Eq. (1.66)):

F (q2) =

∞∫

4M2
π

ds

π

ImF (s)

s− q2 − iε
. (3.2)

In principle, the nucleon electromagnetic FFs satisfy unsubtracted dis-

persion relations such as this one. However, we do not have a formula

for the imaginary part that is accurate at arbitrary energies
√
s. ChPT

applies only at low enough energies. The scattering amplitudes on the

right-hand side of Eq. (3.1) are simpler the smaller the number of relevant

channels. In consequence, also dispersion theory is generally restricted

to low energies (or to an energy regime where perturbation theory in

coupling constants suppresses many-particle states).

Typically, dispersion relations are oversubtracted [148, 149, 153, 151,

154] to strengthen the sensitivity to the low-energy regime and demote

the impact of the short distance part. A once-subtracted DR for the FFs

reads

F (q2) = F (0) + q2
∞∫

4M2
π

ds

π

ImF (s)

s(s− q2 − iε)
. (3.3)

The aforementioned suppression of high energies is performed by the

additional s denominator at the price of introducing a subtraction con-

stant F (0). Recall that for the Dirac and Pauli FFs, this quantity cor-

responds to the electric charge and anomalous magnetic moment respec-

tively (Sec. 1.2.1).

Given that we pursue a description of the pion mass dependence of

lattice data, the subtraction constant F (0) has to be carefully treated.

If it depends on the pion mass, we have to employ an unsubtracted

dispersion relation (3.2). If not, a subtracted formula is implemented

(3.3).

The isovector channel and the ρ meson

For |q2| ≤ m2
ρ, the dispersion relation can be approximated by

F (q2) ≈
Λ2∫

4M2
π

ds

π

ImF2π(s)

s− q2 − iε
+ FChPT without 2π cut(q

2) . (3.4)
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The first term is the dispersive one, and accounts for pion rescattering,

with the cutoff Λ > mρ. The second stays for other diagrams without

two-pion cut, and it is covered by ChPT contributions. In the rest of

the section we will focus on the dispersive term, whose contributions are

represented in Fig. 3.1, introducing the NNππ vertex at leading order

in ChPT and an explicit ∆ baryon.

The 2π discontinuity is given by:

ImF2π(s) = F ∗

π (s)
pcm(s)

3

12π
√
s
T (s) , (3.5)

T (s) are the reduced NN̄ → 2π p-wave amplitudes [153, 151], while F ∗
π is

the conjugate of the vector FF of the pion. Finally, pcm =
√

s− 4M2
π/2

is the momentum of a pion in the frame where the two-pion system with

invariant mass
√
s is at rest; pcm appears to the power of 2l + 1.

Obviously, the left-hand side of Eq. (3.5) is real. Therefore the phases

of T and F ∗
π must cancel each other. This is the Watson Theorem in-

troduced in Sec. 1.3.2 and prohibits the use of a purely perturbative

calculation of the scattering amplitude T . As for the pion form factor,

we use here an Omnès function to solve the problem ([155, 156, 151, 154]

for further details).

N

N

ππ Fv
γ∗

N

N

ππ Fv
γ∗N/∆

Figure 3.1: Dispersively modified diagrams with a 2π cut. Solid, dashed

and wiggly lines denote nucleons, pions and virtual photons. Double

solid lines stand for nucleon or ∆ propagators. The “ππ” circle represents

the pion-pion scattering S-matrix, while the “Fv” circle denotes the pion

vector FF.

The NN̄ annihilation amplitude has a right and a left hand cut terms,

KR and K respectively, T (s) = KR(s) +K(s). The discontinuity along

the right hand cut satisfies the unitarity relation:

Im (T (s)−K(s)) = T (s)e−iδ(s) sin δ(s) , (3.6)
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with δ(s), the two pion phase shift introduced before. To solve it we

introduce the following ansatz:

T (s)−K(s) = Ω(s)H(s) , (3.7)

with Ω(s) defined in Eq. (1.80) and H(s) an arbitrary function. Therefore

one has:

Im (Ω(s)H(s)) = (K(s) + Ω(s)) e−iδ(s) sin δ(s) . (3.8)

Using the fact that Ω(s) satisfies Ω(s) = |Ω(s)|eiδ(s), one can determine

from the above equation the imaginary part of H(s):

ImH(s) =
K(s) sin δ(s)

|Ω(s)| . (3.9)

Therefore, it is possible to describe H(s) by means of a dispersion rela-

tion:

H(s) = P +

Λ2∫

4M2
π

ds′

π

sin δ(s′)K(s′)

|Ω(s′)| (s′ − s− iε)
, (3.10)

with P a constant in s given by tree level ChPT. In this way, we obtain

the expressions below for the annihilation amplitude. We will consider

the subtracted and unsubtracted versions of the above equation, as we

do for the form factors, yielding:

T (s) = K(s) + Ω(s)P unsubtr +Ω(s)

Λ2∫

4M2
π

ds′

π

sin δ(s′)K(s′)

|Ω(s′)| (s′ − s− iε)
(3.11)

and

T (s) = K(s) + Ω(s)P subtr +Ω(s)s

Λ2∫

4M2
π

ds′

π

sin δ(s′)K(s′)

|Ω(s′)| (s′ − s− iε)s′
. (3.12)

To determine the phase shift, we rely on the IAM at NLO as explained

in App. C.1. Both the δ(s) and F V
π employed in this work are depicted

in Fig. 1.4 (improved IAM curves).

Finally for the last piece in Eq. (3.5), the pion form factor, Fπ(s), we

have introduced an additional term, αV , accounting for a phenomenolog-

ical correction following [157, 149, 151]:

Fπ(s) = (1 + αV (Mπ)s) Ω(s) . (3.13)
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In particular, we need to account for the Mπ dependence of αV . This, as

the pion mass dependence of the other dispersive inputs is addressed in

App. C.1.

The ChPT calculation

We have calculated the Dirac and Pauli FFs in ChPT with explicit ∆

up to O(p3). In addition, O(p4) contributions without ∆ are included

for F2 because we find that O(p3) ChPT yields unsatisfying results. On

the other hand, it is not our ambition to go beyond state-of-the-art and

provide a full-fledged O(p4) calculation that includes the ∆. Therefore

we make sure that we reproduce the O(p4) ∆-less ( /∆) result of Ref [138]1.

In Ref. [22] the FF is calculated up to O(p3) with explicit ∆ and vector

mesons. We reproduce the corresponding results without vector mesons.

The baryon-mass difference δ ≡ m∆ − mN is counted as O(p) (small-

scale expansion [24]). This counting determines the O(p3) ∆ loops to be

included. We proceed in the same way as for the axial form factor in

Sec. 2.2.2. We work in relativistic ChPT in the EOMS renormalization

and again, for the identification of the PCB terms, the δ difference is not

considered as an expansion parameter.

For the /∆ terms, we take L2 of Eq. (1.41) and L(1−4)
πN from Ref. [20]

with the definitions of our Sec.2.2.1:

L(2)
πN ⊃ Ψ̄

(
ic4
4
[uµ, uν ]σ

µν +
c6
8m̊

F+
µνσ

µν

)
Ψ , (3.14)

L(3)
πN ⊃ Ψ̄

(
id6
2m̊

[
Dµ, F̃+

µν

]
Dν + h.c.

)
Ψ, (3.15)

L(4)
πN ⊃ Ψ̄

(
−e74

2

[
Dλ,

[
Dλ, F̃

+
µν

]]
σµν − e106

2
F̃+
µν〈χ+〉σµν

)
Ψ, (3.16)

with F̃+
µν = F+

µν − 〈F+
µν〉/2.

The inclusion of the ∆ is important. In fact certain degree of can-

cellation with the nucleon has been observed [151]. For the ∆ loops, we

employ L(1)
π∆, L(1)

πN∆ from Sec.1.2.4 with z̃ = −1 in L(1)
πN∆. The chiral limit

masses m̊ = 0.855 GeV, m̊∆ = 1.166 GeV are taken from our work on the

1Note that our c6 LEC is 4m̊ times the one used in Ref. [138].
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3.1. Introduction

axial form factor, and the chiral-limit value F0 = 0.0856 GeV from [74].

We set g̊A = gphysA = 1.2754, given that we have seen from LQCD that it

is almost Mπ independent; we set hA ≈ 3̊gA/(2
√
2) = 1.35 as predicted

by large-Nc [121], again as in our axial form factor work.

For reference, the computed ChPT diagrams are depicted in Fig.3.2,

and we report the leading ChPT terms of the isovector components of

the quantities defined in Eqs. (1.23), (1.24) (in agreement with [22]):

〈r21〉ChPT = −12d6 +
1

16π2F 2
0

{
− 2 log

(
Mπ

µ

)
− 1

−g̊2A

[
10 log

(
Mπ

µ

)
− 12 log

(
m̊

µ

)
+

41

2

]

+ h2
A

[
379

54
− 80

27
log

(
m̊

µ

)
+

80

9
log

(
Mπ

µ

)
− 80δ log (X)

9
√

δ2 −M2
π

]

+ . . .

}
, (3.17)

with X = (δ −
√
δ2 −M2

π)/Mπ; the ellipsis stands for higher orders in

Mπ and δ. The full expressions are given in the supplementary material

of our work [125].

As already discussed, we include some O(p4) diagrams in our F2 calcu-

lation. Here we explicitly display the full tree-level but just the leading-

loop isovector terms:

κChPT = c6 − 16e106m̊M2
π +

1

4π2F 2
0

{
− g̊2Am̊Mπ (3.18)

+
8

9
h2
Am̊

[
δ log

(
Mπ

2δ

)
−
√
δ2 −M2

π log (X)

]
+ . . .

}
,

(κ〈r22〉)ChPT = 12(d6 + 2m̊e74) (3.19)

+
1

8π2F 2
0

{
πg̊2Am̊

Mπ
− 8h2

Am̊

9
√

δ2 −M2
π

log (X) + . . .

}
.
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Figure 3.2: ChPT diagrams for the nucleon EM form factors. Line styles

are defined as in Fig. 3.1. Diagram 3.2a represents tree level vertices up

to O(p4). Diagrams 3.2b-3.2j account for O(p3) in a ChPT version with

∆ and also O(p4) in a ∆-less ( /∆) theory. The open and filled circles

denote O(p2) and O(p) vertices, respectively.

3.2 The Dirac form factor

The Dirac isovector FF at the photon point q2 = 0 is given by the proton

charge:

F1(q
2 = 0) = 1 . (3.20)

Since the charge is protected by gauge invariance, it is not renormalized,

and therefore does not have any Mπ dependence. Consequently, this is a

clear case in which it is convenient to study the subtracted form factor.

Then, our dispersively improved FF reads

F1(q
2) = 1 +

q2

12π

Λ2∫

4M2
π

ds

π

T1(s) p
3
cm(s)F

∗
v (s)

s3/2 (s− q2 − iε)

+F two-baryon cut
1 (q2)− F two-baryon cut

1 (0) + 2q2d6 , (3.21)
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3.2. The Dirac form factor

where the two-pion cut is accounted by a once-subtracted dispersion re-

lation. We also employ a subtracted annihilation amplitude:

T1(s) = K1(s) + Ω(s)P1 +Ω(s) s

Λ2∫

4M2
π

ds′

π

sin δ(s′)K1(s
′)

|Ω(s′)| (s′ − s− iε) s′
. (3.22)

Diagrams 3.2d, 3.2e, 3.2i, 3.2j of Fig. 3.2 contribute only to the charge.

Diagrams 3.2b, 3.2c, 3.2f, and parts of 3.2a are covered by the disper-

sive integral. Diagrams 3.2g and 3.2h constitute F two-baryon cut
1 . These

interrelations are further discussed in Appendix C.2.

In this work, we want a precision of at least the one-loop order, O(p3),

i.e. NNLO. The Dirac FF starts at leading order, but just with the trivial

contribution of the charge. The next contributions appear at NNLO and

all of them are proportional to q2. Therefore, the dispersive integral

in (3.21) needs only an LO input, since the q2 factor yields an overall

NNLO. Hence, in P1 we only include the LO ChPT terms

P1 = PN
1 + P∆

1 + PWT
1

= − g̊2A
F 2

+
2h2

A(m̊∆ + m̊)2

9F 2m̊2
∆

+
1

F 2
,

(3.23)

where PN
1 , P∆

1 , and PWT
1 come from the nucleon exchange, the ∆ ex-

change and from the Weinberg-Tomozawa term [158, 159], respectively.

Correspondingly, K1 is obtained from the parts of the nucleon- and ∆-

exchange diagrams where a propagator appears (after partial-fraction

decomposition) as explicitly covered in Refs. [153, 151]. Details on the

expressions are given in App. C.3.

Corrections to LO P1 are proportional to s or M2
π , and therefore two

orders higher than what is strictly necessary for us. This can be deduced

from the results in Ref. [19] using a Ward identity that relates diagrams

where one photon line is replaced by two pion lines.

To be precise, it should be noticed that since the NN̄ annihilation

amplitude is once-subtracted, the integral in Eq. (3.22) is nominally of

higher order. However it is kept to respect Watson’s theorem. Finally,

regarding the specific interrelation with ChPT, we have checked that the

once-subtracted DR for F1 reproduces the non-analyticity of the ChPT

2π cut at O(p3).

96



Chapter 3. The nucleon electromagnetic form factor

3.2.1 Comparison to LQCD results with fixed parameters

We have explored how different theories describe the LQCD results for

the isovector Dirac form factor, F1. In the present subsection we discuss

results where all parameters are previously determined from experimental

data, so that the FF is a prediction (no LEC is fitted here to the lattice

simulations). The following approaches are tested:

• A purely dispersive calculation where we neglect the contributions

with a two-baryon cut and set d6 = 0 in (3.21). We denote this

version as “disp”.

• A plain O(p3) ChPT computation without dispersive modifications

[in this case the radius 〈r21〉 is given by Eq. (3.17)]. Two alternatives

are considered:

– retaining the higher order contributions to the loops, i.e. with-

out a further expansion in small parameters. This approach is

denoted “full ChPT”.

– truncating the 2∆ diagram in Fig. 3.2g keeping only O(p3).

We label this just “ChPT”.

• Dispersion theory supplemented with ChPT two-baryon loops and

the d6 O(p3) contact term; this is the full version of Eq. (3.21). We

test again two versions:

– “disp+full ChPT” includes the full 2∆ loop.

– “disp+ChPT” contains the 2∆ diagram truncated up to O(p3).

The purely dispersive calculation, “disp”, yields a prediction for F1

without further input, whereas all the other choices depend on the LEC

Table 3.1: LEC d6 values obtained from the experimental Dirac radius

quoted by the Particle Data Group (PDG) [5] within the various ap-

proaches (see text). In addition, the dependence on the renormalization

point is illustrated by showing the numbers for two typical scales. For

our plots we have taken µ = mρ.

ChPT (truncated) full ChPT disp+ChPT (truncated) disp+full ChPT

dexp6 (µ = mρ) (GeV−2) −0.385 −0.353 0.216 0.248

dexp6 (µ = mN ) (GeV−2) −0.733 −0.701 −0.045 −0.013
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3.2. The Dirac form factor

d6. In any case, this LEC can be pinned down from the experimental

value of 〈r21〉 (see Table 3.1). We compare to the LQCD determinations

of Ref. [136]. We study only these data, and no other recent simulations

such as [114], because the former have a smaller dependence on lattice

artifacts. Accounting for these additional dependencies would complicate

the analysis and is beyond the purpose of the present work.

F1(Q
2) is shown in Fig. 3.3 at the low Mπ values of different ensem-

bles from Ref. [136]. Whereas the Mπ dependence of 〈r21〉 is shown in a

corresponding figure, 3.4(a). These plots show that the purely dispersive

scheme (“disp”) is close to the LQCD data in both the Q2 and Mπ vari-

ables. The nonperturbative treatment is responsible for the generation

of a realistic Q2 curvature. The Mπ dependence of the radius is also well

described up to Mπ ∼ 400 MeV. As aforementioned, the logMπ diver-

gence of 〈r21〉 at Mπ → 0 predicted by ChPT is also obtained from the

dispersive integral.

Looking now at the ChPT curves, one can see in Fig. 3.3 that none of

the two alternatives (“ChPT” and “full ChPT”) describes the Q2 behavior

of F1 in the different ensembles beyond Q2 & 0.3GeV2. The obtained

curvature is insufficient. In particular, we notice that the experimen-

tal FF also has a significant Q2 curvature, as apparent from the dashed

orange curve in Fig. 3.7(a), which corresponds to the Kelly empirical

parametrization [160]. In Fig. 3.4(a) it is also shown that the Mπ de-

pendence of the radius is described better by the computation with the

truncated ∆ contribution.

In comparison to the ChPT versions, the scheme “disp+ChPT” im-

proves the Q2 behavior of the Dirac FF, though the curvature is still

underpredicted. By contrast, the scheme “disp+full ChPT” (dispersive

result combined with untruncated ChPT) produces an excessive curva-

ture in Q2. In both versions, the combination of the dispersive approach

and ChPT does not cause a change in the Mπ dependence of 〈r21〉. In-

deed, the curves for “ChPT” and “disp+ChPT” overlap in Fig. 3.4 and

so do the “full ChPT” and “disp+full ChPT” ones.

These comparisons display that the higher order contributions from

the loop with two ∆ propagators lead to a worse description of LQCD

results at higher Q2 and Mπ. In consequence, we have decided to retain

from the loop with two ∆ propagators only the part that is strictly O(p3).

To further support our prescription, we note that the relativistic ∆ prop-
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Figure 3.3: F1(Q
2) for different Mπ, corresponding to the LQCD ensem-

bles of [136] (belonging to summation and two-state method in green and
blue resp.). The curves are the approaches described in the text (when
present d6 is fixed from the experimental value for the Dirac radius [5]).
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Figure 3.4: The Dirac radius 〈r21〉 as a function of Mπ. LQCD points in
green (summation method) and in blue (two-particle method) were ob-
tained in Ref. [136] using the z-expansion to parametrize the Q2 depen-
dence of F1. The black point is the 〈r21〉 value at the physical Mπ obtained
in Ref. [136] employing Heavy Baryon ChPT to extrapolate LQCD results
for F1 in Mπ and Q2. The red cross (with negligibly small error bars)
corresponds to the experimental value quoted by PDG [5]. Top panel:

results obtained with the five strategies introduced in Sec. 3.2.1, fixing
d6 at the physical Mπ with the experimental value quoted in Ref. [5] for
〈r21〉. Bottom panel: results obtained by fitting d6 to the LQCD values
of Ref. [136] for F1(Q

2,Mπ) with “ChPT” and “disp+ChPT” versions, as
discussed in the text. The bands account only for the statistical error.
The “disp” (black) curve is the same in both panels.
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agators contain unphysical spin-1/2 contributions. In principle, those
must be absorbed by LECs [36]. But for the two-∆ contributions beyond
O(p3), we have not included the aforementioned LECs. Eventually, a
justification for our choice can only come from a complete calculation at
O(p4), which is beyond our scope here.

3.2.2 Fit to LQCD

In the previous section, by fixing d6 from the experimental 〈r21〉, com-
patibility between the LQCD results and experiment has been implicitly
assumed. It is worthwhile to remove this constraint and attempt to fit
F1 with our theory (a χ2 fit), considering d6 as a free parameter. On the
basis of the results obtained so far we regard the dispersive calculation
combined with truncated ChPT (“disp+ChPT”) as the most promising
scheme for this exercise. We also fit (truncated) “ChPT” as a reference
for comparison.

With the purpose to avoid correlations, we limit our fit to the LQCD
results obtained with one of the methods, the summation one. We how-
ever disregard possible correlations among different data points, conced-
ing that this might slightly distort our analysis. After studying the vari-
ation of χ2 with the accepted range of Q2 and Mπ, we find it reasonable
to include data with Q2 < 0.6GeV2. We fit to all available ensembles, so
that we reach Mπ ' 350MeV. Regarding the Mπ dimension, the χ2/dof
value vs the variation of the largest Mπ included is shown in Fig. 3.5 for
reference, keeping the maximum Q2 set to 0.6GeV2.

The results using “disp+ChPT” and “ChPT” are presented in Fig. 3.7
for the Dirac FF at different Mπ (Fig. 3.6 shows the evaluation at Mπ ∼

Mphys
π ). The parameter-free purely dispersive prediction, “disp”, is also

displayed for reference. The band widths correspond to a 1σ uncertainty
in d6. We regard our errors to be underestimated, since they do not
account for theoretical uncertainty, in particular for the truncation error
of the chiral series. However, a reliable estimation would require imple-
menting one additional order in ChPT, which goes beyond our scope here.
We prefer to focus on describing the main features of the LQCD data.
The results of the three schemes for d6, χ2, and 〈r21〉phys are reported in
Tab. 3.2.

Comparing Figs. 3.3 and 3.7 we distinguish a clear improvement when
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Figure 3.5: The value for χ2/dof as a function of the largest pion
mass M cut

π included in the fit. The two schemes are “ChPT” (red) and
“disp+ChPT” (blue). For both we use Q2

cut = 0.6GeV2 as the largest
included value.

Table 3.2: Results from the F1(Q
2,Mπ) fit to LQCD.

disp (prediction) ChPT disp+ChPT HB from [136] exp. (PDG [5])

d6(µ = mρ) (GeV−2) - 0.074± 0.010 0.416± 0.010

d6(µ = mN ) (GeV−2) - −0.422± 0.010 0.155± 0.010

χ2/dof 108.9/47 = 2.32 73.9/(47− 1) = 1.61 24.6/(47− 1) = 0.53

〈r21〉phys (fm2) 0.4541 0.3626± 0.0047 0.4838± 0.0047 0.554± 0.035 0.577± 0.0018

d6 is fitted to the LQCD results rather than to the experimental value
of the radius. It is apparent in Fig. 3.7 that both “disp+ChPT” and
“ChPT” are in good agreement with the LQCD data, especially, but not
only, in the Q2 < 0.6GeV2 regime where data was fitted. However,
it should be noticed that fitting the plain “ChPT” computation to Q2

values as high as 0.6 GeV2 does not make the most of the theory. The
region Q2 ∈ [0.4, 0.6] GeV2 is beyond the reach of O(p3) ChPT but we
keep the same cut as for the dispersively modified scheme to simplify the
comparison. The previous ChPT result with dexp6 (mρ) = −0.385 GeV−2

fixed to experiment (Tab. 3.1) is better to rate the ChPT performance.
The use of this LEC value is indeed advised for plain ChPT. In fact, to
compensate the lack of Q2 curvature in the ChPT fit, one extracts a d6
which yields a too small radius.

In the dispersively modified approach, one should first recall that the
pure dispersive calculation is already quite good a result. The main
benefit of supplementing it with ChPT contributions is the possibility
to increase the radius. The added ChPT term mostly corresponds to a
shift of the radius, 〈r21〉

disp → 〈r21〉
disp − 12d6 + 〈r21〉

2-baryon loops as shown
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Figure 3.6: F1(Q
2) for Mπ = 0.130 ∼ Mphys

π , corresponding to the LQCD
ensemble E250 of Ref. [136]. Line and point styles match the ones in Fig.
3.3 but, in contrast, the “ChPT” and “disp+ChPT” curves have been
obtained with a global fit of the d6 LEC to the LQCD points of all the
ensembles. The vertical dashed line is the maximum Q2 adopted in the
fits. The dashed orange curve is the Kelly empirical parametrization of
F1 [160].

in Fig. 3.4(b), (a specific discussion is reported below). In addition,
regarding now the F1 Q

2-curvature, it remains essentially the same as the
pure dispersive. That is to say, the “disp+ChPT” F1(Q

2) and the “disp”
curves are approximately obtained from each other by rotations around
the photon point. It should be noticed that the Q2 dependence of the
LQCD results is well described with “disp+ChPT” up to Q2 values even
larger than Q2

cut = 0.6GeV2. In fact, this scheme outperforms “ChPT”
and “disp”, yielding a smaller χ2 as shown in Tab. 3.2. In addition, at
the physical Mπ the “disp+ChPT” curve is close to the empirical Kelly
parametrization, as shown by Fig. 3.7(a).

On top of this, the Mπ dependence of 〈r21〉 for the fitted d6 values
is displayed in Fig. 3.4(b). Both schemes yield the same shape but the
“disp+ChPT” curve is closer to the results of the extrapolations of the
LQCD points to Q2 = 0 performed in Ref. [136] employing the z ex-
pansion. At the physical point, 〈r21〉

disp+ChPT
phys = 0.4838± 0.0047 fm2 also

agrees better to the PDG value and to the HB ChPT extrapolation of
Ref. [136] (〈r21〉

HB = 0.554 ± 0.035 fm2) but falls short by ∼ 20%. This
disagreement could be due to the lack of a more realistic theoretical error
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3.2. The Dirac form factor
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Figure 3.7: Same as in Fig. 3.6, showing now all the LQCD ensembles of
Ref. [136].
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Chapter 3. The nucleon electromagnetic form factor

in our computation. Our results for 〈r21〉 together with other reference
values are summarized in Tab. 3.2.

Finally, we would like to briefly discuss the d6 LEC. As usual, it
depends on µ, the scale of the ChPT dimensional regularization. It also
appears in the disp+ChPT calculation, although in this case its running
comes only from the 2∆ loop. In general, d6 is of the same order of
magnitude in “ChPT” and in “disp+ChPT”. In addition, it has always a
relatively small value, |d6(µ)| < 2 GeV−2 for µ ∈ [0.5, 2] GeV, in both
schemes. The µ dependence of d6 is explicitly reported in App. C.4.

3.3 The Pauli form factor

3.3.1 Selection of diagrams

Turning now to the Pauli FF, given that its value at Q2 = 0 is nontrivial
and has an Mπ dependence which we want to assess, we do not perform
any subtraction. An unsubtracted dispersion relation, both for the form
factor

F2(q
2) =

1

12π

Λ2∫

4M2
π

ds

π

T2(s) p
3
cm(s)F

∗

v (s)

s1/2 (s− q2 − iε)

+FChPT without 2π cut
2 (q2) (3.24)

and the annihilation amplitude

T2(s) = K2(s) + Ω(s)P2 +Ω(s)

Λ2∫

4M2
π

ds′

π

sin δ(s′)K2(s
′)

|Ω(s′)| (s′ − s− iε)
(3.25)

is employed.

We aim to obtain a form factor with at least the accuracy of the
O(p3) ChPT diagrams, i. e., NNLO in the ChPT diagrammatic power
counting. According to the ChPT counting, the LO and NLO terms of
the polynomial P2 are required for our accuracy, as discussed below:

P2 = PN
2 + P∆

2 + PNLO
2 +O(p2)

= 0 +
4h2

Am̊(3m̊+ 4m̊∆)

9F 2m̊2
∆

+
4c4m̊

F 2
+O(p2) ,

(3.26)
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3.3. The Pauli form factor

with c4 the already familiar constant from L
(2)
πN of Eq. (3.14).

The leading contribution to the Pauli FF in ChPT appears one order
higher than the dominant term of F1; it is NLO, proportional to the
NLO LEC from L

(2)
πN . In particular it is the c6 term in Eq. (3.18), which

contributes to the chiral limit anomalous magnetic moment [19]. Correc-
tions at NNLO are of the form ∼ Mπ and ∼ Q2/Mπ. As aforementioned,
Mπ is proportional to the light quark mass squared, and therefore even
the first term is not analytic in the quark mass. Such contributions origi-
nate from loops and can not be reproduced by subtraction constants. By
employing a subtracted dispersion relation for F2, one would lose part
of the NNLO contributions. The same applies to Eq. (3.25): by using a
subtracted dispersive integral one would miss part of the (non-analytic)
terms, which are needed to achieve the required NNLO precision in F2

(Eq. (3.24))2.

The use of an unsubtracted dispersion relation implies no demotion
for the high energy part of the integral. Therefore one might worry about
having more cutoff dependence than for the Dirac FF. In any case, if s
is large, then any integrand can be expanded in powers of M2

π/s. This
region of integration does not produce any non-analyticity in the quark
mass. In consequence cutoff dependence can be compensated by changes
in the LECs. In particular, F2 has a constant contribution from c6, Eq.
(3.18). Additional LECs accompanied by powers of q2 or M2

π would
contribute beyond the desired NNLO accuracy.

Regarding now the annihilation amplitude, T2, one can discuss its un-
subtracted nature with analogous arguments. In Eq. (3.25), K2 is taken
from the tree-level nucleon- and ∆-exchange diagrams of pion-nucleon
scattering. One-loop diagrams with left-hand cuts yield two-loop dia-
grams for the FF. This is beyond our accuracy goal. On the other hand,
P2 gets contributions from LO pion-nucleon scattering amplitudes. These
are the nucleon- and ∆-exchange diagrams, given that they contain parts
without propagators (after a partial-fraction decomposition). Looking in
detail to these terms, first, these contributions to P2 are actually NLO;
second, the nucleon contribution cancels, and, third, the ∆-exchange
term depends on the details of how the ∆-N -π interaction vertex is con-
structed [153, 151]. In any case, there is a contact term with a LEC
appearing at NLO for pion-nucleon scattering and contributes with a

2The relation between the power counting and the dispersive integration has been examined
in App. C.2.
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Chapter 3. The nucleon electromagnetic form factor

constant to P2. This four-point interaction term, proportional to c4 in
Eq. (3.26), absorbs the ambiguities from the three-point ∆-N -π vertex
[36, 153, 151]. Therefore we can use P2 (or c4) as a fit parameter of
our scheme. Besides, the dominant part of the cutoff dependence of the
unsubtracted T2 dispersive integral can be compensated by a shift in P2.

In principle, we need LO, NLO, and NNLO terms for T2, but we
have already argued why a tree-level approximation for K2 is sufficient.
What is not covered by K2 are polynomials (in s and M2

π) and loop
contributions without two-pion cuts. Formally at NNLO, the latter are
obtained from diagrams 3.2d, 3.2g, 3.2i, 3.2j in Fig. 3.2 by replacing the
photon line by two pion lines. Again, one can use the Ward identity in
Eq. (A.10) of Ref. [19] and the explicit results at the end of Sec. 3.1.1 to
show that in the end such diagrams do not contribute to T2 at NNLO.

The last remark concerning the dispersive approach is about P2 in
Eq. (3.26). The nominal LO contribution is in practice NLO. LEC c4
from the pion-nucleon NLO contact interaction contributes also with a
constant. Given that NNLO terms are one order higher and therefore can
not be analytic in s or M2

π , they cannot contribute to P2. In consequence,
we restrict P2 to a fit constant in our analysis. It is equivalent to use
as fit parameter P2 or c4, but it might be more informative to employ a
LEC that appears in the ChPT Lagrangian instead of a subtraction con-
stant of a dispersive integral.3 A meaningful purely dispersive approach
(“disp”) starts from Eq. (3.24), but contains only c6 instead of the full
FChPT without 2π cut
2 .

On the plain ChPT side, we now show that the O(p3) calculation
does not describe the LQCD data well. In Fig. 3.10 the O(p3) ChPT
F2 is depicted. As can be concluded from the mismatch at zero Q2

for different Mπ ensembles, O(p3) ChPT predicts a too steep slope for
F2(0,Mπ) ≡ κ(Mπ). Moreover the Q2 dependence does not agree with
the lattice. This result motivates us to include the /∆ contributions of
O(p4). In particular, in the ChPT term we truncate the ∆ contribution
at pure O(p3) following the same criterion as for F1. For this reason,
the only ∆ contribution to F2 comes from diagram 3.2f of Fig. 3.2 (recall
that the leading plain ChPT κ and 〈r22〉 are given by Eqs. (3.18), (3.19)).

Like for the Dirac, we improve the ChPT Pauli form factor combining
it with the dispersive 2π cut. In practice, for the combined approach,

3There is no straightforward argument to implement other LECs in this scheme without 2-
baryon loops, so we do not include them.
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3.3. The Pauli form factor

Table 3.3: ChPT input for F2 from the respective diagrams of Fig. 3.2
that we take include (X) or not (×). We implement all O(p3) and all
Delta-less O(p4) diagrams. Therefore we exclude all ∆ diagrams that
de facto start at O(p4). ∆ denotes diagrams with ∆ propagators in the
loop; /∆ indicates Delta-less contributions; “wfr” stands for wave-function
renormalization.

diagrams ChPT disp+ChPT reason to include/exclude from the (disp+)ChPT scheme

3.2a X X LECs

nucleon 3.2g X X 2-nucleon cut diagram

3.2d - - it is zero (only contributes to F1(0))

nucleon 3.2i, 3.2j - - it is zero (only contributes to F1(0))

nucleon 3.2f X × generated dispersively

3.2b - - it is zero (only contributes to F1(0))

nucleon 3.2h X X O(p4) 2-nucleon cut diagram

3.2e (c6) X X /∆O(p4) without cut

3.2c (c4) X × /∆O(p4) generated dispersively

∆ 3.2i, 3.2j × × de facto ∆O(p4)

∆ 3.2g × × de facto ∆O(p4)

∆ 3.2f X × generated dispersively

wfr /∆O(p3)× c6 X X de facto /∆O(p4) without cut

wfr ∆O(p3)× c6 × × de facto O(p4) with ∆

wfr /∆O(p4)× c6 × × de facto /∆O(p5)

we supplement the dispersive F2 with the addition of /∆ diagrams 3.2a,
3.2g, 3.2h and 3.2e and the O(p3) /∆ wave function renormalization (see
Tab. 3.3). For F2, our truncation criterion implies that no ∆ contribu-
tions are added from the ChPT side to the disp+ChPT calculation. Also
notice that diagram 3.2f of Fig. 3.2 is covered by the dispersion relation.
Now that the computation has been clarified, we can finally discuss how
well the different schemes describe the LQCD data of Ref. [136] (the same
procedure as for the Dirac case).

3.3.2 Fit results for F2, anomalous magnetic moment and

Pauli radius

The three schemes considered are:
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Chapter 3. The nucleon electromagnetic form factor

• the purely dispersive approach (implementing the c6 contact term),
denoted “disp+c6”. It contains LECs c4 and c6 as free parameters.

• plain “ChPT” including diagrams up to O(p4). This includes five
LECs beyond LO (d6, c6, e74, e106 and c4) in Eqs. (3.18), (3.19).
However d6 is fixed from the corresponding “ChPT” fit to the Dirac
FF.

• the combined “disp+ChPT”, which includes the same number of fit
parameters as “ChPT”.

All fits are performed in the same range as for for F1, meaning Q2 < 0.6

GeV2 and covering all Mπ ensembles, i.e. Mπ ≤ 0.350GeV.

There is a conceptual difference between LECs d6, c6, e74, e106 as com-
pared to c4. The latter is inherited from pion-nucleon scattering, while
the others are directly tied to the electromagnetic FFs (tree-level contri-
butions to magnetic moment and radii). Given this and the large number
of free parameters, we implement a Gaussian prior on c4, accounting for
the present information from πN scattering:

χ2 = χ2
0 +

(c4 − cprior4 )2

∆cprior4

, (3.27)

whit χ2
0, the standard χ2. For dispersive approaches, in order to deter-

mine this prior, we study the values of c4 for which our reduced scattering
amplitude T2 agrees well with the results obtained by solving Roy–Steiner
equations for pion-nucleon scattering [103]. The T2 curves are shown in
Fig. 3.8. in consequence, we set cprior4 = cRoy

4 = −0.402 GeV−1 and
∆cprior4 = ∆cRoy

4 = 0.075 GeV−1 in Eq. (3.27). Similarly, we put a prior
to c4 in plain ChPT as well. In this case we use the πN scattering analysis
of Ref. [28] and take cprior4 = cπN4 = 1.200 GeV−1, ∆cprior4 = ∆cπN4 = 0.045

GeV−1.4

We outline now the quality of the three fits:

• “disp+c6”:
From Fig. 3.10 (Fig. 3.9 for Mπ ∼ Mphys

π ) and from the χ2 value in
Table 3.4 it is apparent that dispersion theory reproduces well the
Q2 and Mπ dependence of the LQCD data. There is a large corre-
lation between c4 and c6 because both of them appear in κ(Mπ =

4We take the value from [28] for cπN

4
even if it corresponds to a different off-shell parameter

z̃. Furthermore, the µ running is neglected.
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Figure 3.8: Reduced annihilation amplitude, T2, in the unphysical region.
The bands correspond to the real and imaginary parts of T2 as obtained
from a Roy-Steiner analysis of pion-nucleon scattering [103, 149] in gray
and green, respectively. The curves represent our T2, binding the region
covered by the assumed prior knowledge of c4. The real and imaginary
parts are represented by solid and dashed lines respectively.
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Figure 3.9: F2(Q
2) for Mπ = 0.130 ∼ Mphys

π , corresponding to the LQCD
ensemble E250 of Ref. [136]. LQCD points obtained with the summa-
tion method are shown. Red, black and blue bands are the results for
the “ChPT”, “disp+c6”, and “disp+ChPT” schemes, respectively. Band
widths show the 1σ statistical errors. The dashed red curve represents
the O(p3) ChPT result. As in Fig. 3.7, the vertical dashed line indicates
the maximum Q2 adopted in the fits (fits are global, i. e. to all the
LQCD ensembles simultaneously). The dashed orange curve in panel is
the Kelly empirical parametrization of F2 [160].
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(i) S400 Mπ = 0.350 GeV
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Figure 3.10: Same as in Fig. 3.9, showing now all the LQCD ensembles
of Ref. [136].
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3.3. The Pauli form factor

Table 3.4: Results from our fit to the F2(Q
2,Mπ) LQCD data of Ref.

[136]. The HB column contains the heavy-baryon extrapolation from
Ref. [136]. The experimental values [5] are also reported.

disp+c6 ChPT disp+ChPT HB exp. (PDG)

χ2/dof 49.95
47−2 = 1.110 44.18

47−4 = 1.027 56.08
47−4 = 1.304

χ2
0/dof 1.09 1.027 1.283

κphys 3.632± 0.037 3.423± 0.059 3.605± 0.067 3.71± 0.17 3.706

〈r22〉phys (fm2) 0.792± 0.011 0.61885± 0.0069 0.788± 0.015 0.690± 0.042 0.7754± 0.0080

0). Actually, the LQCD data constrain κ in the chiral limit more
strongly than other quantities such as 〈r22〉. Such a mismatch among
errors drives the correlation towards −1. A fit with free c4 obtains
c4 = −0.600±0.031 GeV−1, which is close but below the Roy-Steiner
value (cRoy

4 = −0.402± 0.075 GeV−1).

• “ChPT”: The theory agrees well with the data, even with better χ2

than the dispersive approaches. in particular, LEC c4 yields the
prior value without causing tensions in the fit.

• “disp+ChPT”: As can be seen in Fig. 3.10, this curve is almost iden-
tical to the “disp+c6” one. We believe that the slight χ2 increase
as compared to the other schemes (see Table 3.4) has no deeper
meaning, since the differences are negligible. More interesting is
the behavior close to Q2 = 0, where there are no LQCD data. The
larger curvature of the “disp+c6” and “disp+ChPT” theories incre-
ments the slope of the corresponding curves at Q2 = 0 compared to
“ChPT”. This leads to the prediction of a larger radius as one can
see in Tab. 3.4. At the physical point, the dispersive descriptions
happen to be closer to the empirical Kelly parametrization than the
ChPT curve, describing better both the trend of the empirical curve
and the LQCD points beyond the Q2 cut [see Fig. 3.9]. Finally, we
regard the combined “disp+ChPT” scheme as the best one because
it is more solid from the theoretical point of view if one aims at
describing the FF up to rather large Q2 ≈ 0.6GeV2.

The extracted LECs are reported in Tab. 3.5. The “ChPT” and
“disp+ChPT” LEC values are different, as expected, since they are re-
lated to the renormalization performed. ChPT dimensional renormaliza-
tion is not the same as the dispersive approach where the influence of
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Figure 3.11: F2(Q
2 = 0) = κ (left) and its slope κ〈r22〉 (right) as a

function of Mπ. Red, black and blue bands are the results for the
“ChPT”, “disp+c6”, and “disp+ChPT” approaches, respectively. Band
widths denote 1σ statistical errors. As in Fig. 3.4, LQCD points in green
(summation method) and in blue (two-particle method) were obtained
in Ref. [136] using the z-expansion to parametrize the Q2 dependence
of F2. The black points are the values at the physical Mπ obtained in
Ref. [136] using Heavy Baryon ChPT to extrapolate LQCD results for
F2 in Mπ and Q2. The red crosses correspond to the experimental values
quoted by PDG [5].

Table 3.5: Resulting values for the fitted LECs for µ = mρ and µ = mN

(purely dispersive scheme is µ independent).

disp+c6 ChPT (µ = mρ) disp+ChPT (µ = mρ)

c4 (GeV−1) (with prior) −0.600± 0.031 1.194± 0.045 −0.479± 0.072

c6 −0.27± 0.12 4.606± 0.057 −0.88± 0.26

d6 (GeV−2) (fixed) - −0.385 0.416

e74 (GeV−3) - 0.178± 0.042 −0.293± 0.075

e106 (GeV−3) - 0.170± 0.050 −0.361± 0.054

χ2/dof 1.110 1.027 1.304

ChPT (µ = mN ) disp+ChPT (µ = mN )

c4 (GeV−1) (with prior) 1.194± 0.045 −0.477± 0.072

c6 4.606± 0.057 −0.88± 0.26

d6 (GeV−2) (fixed) −0.733 0.155

e74 (GeV−3) 0.252± 0.042 −0.140± 0.075

e106 (GeV−3) 0.151± 0.052 −0.4046± 0.060

χ2/dof 1.027 1.291
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intermediate energies is demoted by the Omnès function at the scale of
the ρ-meson mass while the influence of larger energies is cut off by Λ. In
any case, we see that the results do not depend strongly on µ. In fact, the
overall ChPT loop contribution to the radius in the “disp+ChPT” scheme
is negligible. Finally, we observe that in the “disp+ChPT” the fit yields
a c4 consistent with the Roy-Steiner one: c4 = −0.479 ± 0.072GeV−1,
compared to cRoy

4 = −0.402± 0.075GeV−1.

We also report in Fig. 3.11 F2(0) = κ and the FF slope at the photon
point, κ〈r22〉, as a function of Mπ according to the fits for the three
schemes. The “disp+c6” and “disp+ChPT” schemes yield a κ(Mphys

π )

close to the experimental point. Our results are also in agreement with
the HB extrapolation performed in Ref. [136]. However, the “ChPT”
curve stays slightly below the other ones. For 〈r22〉 the dispersive results
at the physical Mπ are compatible with the experimental value. Again
the ChPT computation is slightly below, whereas the HB result lies in
between.

3.4 Conclusions

We have analyzed the nucleon electromagnetic FFs, fundamental quan-
tities which contain information on the nucleon structure and the un-
derlying QCD dynamics. We calculated the isovector electromagnetic
FFs combining dispersion theory and relativistic ChPT, both with ex-
plicit ∆ baryons. In particular, we assess the Mπ dependence: the non-
analyticities are given by ChPT, while the dispersive integral reproduces
the leading ChPT non-analyticities coming from the 2π cut.

In a second step, we have studied how well we describe the LQCD
data from Ref. [136], considering three different approaches, namely (a)
a purely dispersive approach that only implements the two-pion inter-
mediate state; (b) plain ChPT, and (c) our combined scheme. For the
Dirac FF, we realize that even the purely dispersive calculation is able
to predict the FF well. This nonperturbative calculation provides suffi-
cient curvature to the FF, accounting for the ρ-meson dynamics. Later,
we have tested how well O(p3) ChPT and the combined method de-
scribe the lattice results, fitting the d6 LEC. We observe that the com-
bined dispersive and ChPT scheme outperforms the ChPT fit and the
purely dispersive approach. The calculation describes well the data for
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Q2 < 0.6GeV2 and all the LQCD ensembles, i. e., Mπ ≤ 350 MeV. The
value of 〈r21〉

disp+ChPT
phys = 0.4838± 0.0047 fm2 for the Dirac radius, is ex-

tracted from the combined computation, slightly below the experimental
determination.

Next, we have considered the Pauli FF. Being a higher-order quantity,
higher-order LECs were included. We account for LECs and ChPT /∆

loops of O(p4). This leads to a good description of the LQCD data by
both the dispersive and the ChPT computations, in the same range of Q2

and Mπ as for the Dirac case. Combining both theories leads mainly to
the same results as the purely dispersive description. Interestingly, both
the dispersive and the combined results are quite close to the experimen-
tal parametrization, even beyond the Q2 = 0.6GeV2 fit cut. Between
these two schemes, we regard the combined version a more solid result
from a theoretical perspective.

We have extracted κdisp+ChPT
phys = 3.605 ± 0.067, which is close to the

empirical value, and 〈r22〉
disp+ChPT
phys = 0.788±0.015 fm2, in agreement with

experiment. In addition, the values of several LECs have been deter-
mined, which are useful for future calculations. For this first exploration
of the combined scheme, we did not attempt to estimate the theoreti-
cal uncertainty. The reported errors are only statistical and therefore
underestimated.

In summary, the isovector component of the Dirac and Pauli FFs are
successfully described accounting not only for the Q2, but also for the
Mπ dependence in the aforementioned range, obtaining a good agreement
with lattice and experiment. We demonstrate that in the Dirac case
the dispersively modified ChPT outperforms both the dispersive method
where only the 2π channel is considered and the plain ChPT one. The
modified ChPT improves the Q2 description with a good parametrization
of the Mπ dependence.

Turning now to possible extensions of this work, a straightforward
one would be to compute ∆ form factors or ∆−N transition FFs. The
objective would be to improve the Q2 parametrization relative to plain
ChPT while the Mπ dependence is still described well. The ∆ baryon
represents complementary information on QCD, since they differ from
nucleons just by the flip of one of the valence quark spins. It is also con-
ceivable to address strangeness aspects, either along the lines of [153, 154]
where only the two-pion channel is treated dispersively, or by a complete
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three-flavor calculation. In this manner one would investigate the struc-
ture of hyperons as well as the strangeness content of the nucleon.

Regarding the pions and other mesons, it is well known that they dic-
tate the strong interaction at low energies. However, their own structure
is also an important subject. In this study we have obtained as a by-
product the quark-mass dependence of the pion p-wave phase shift and
the pion vector FF. We employ a Blatt-Weisskopf improved IAM and
an extension of the Omnès function that account for corrections beyond
the two-pion channel in the pion vector FF. Such effects are small, but
observable at low energies. We predict well the lattice results for the
Mπ dependence of the mass of the ρ meson. Of course, this approach
could be applied to other mesons and could be further scrutinized by
comparison to phase shifts and meson FFs simulated in the lattice.

This relates to the self-consistency of the comparison to LQCD, in
view of the lattice intrinsic systematics of continuum-limit and infinite-
volume extrapolations. For a more consistent comparison of the effective
theory to lattice data, it might be advisable to employ directly lattice
input (instead of ChPT or IAM) for the quantities that enter our calcu-
lations (mesonic input and pion-nucleon scattering amplitudes).

Finally, with respect to the plain ChPT calculation of nucleon FFs,
we have restricted ourselves mostly to O(p3) calculations, at least when
including the ∆. Full O(p4) calculations in ChPT are in a development
phase. Partly, this is due to the excessively increasing number of LECs.
Moreover, the ∆ role is not so clear at this order, as we have also seen
in the present work where only a restriction of the two-∆ diagram to
its pure O(p3) part leads to a reasonable curvature for the Dirac FF. It
is possible that the dispersive perspective adds some information in this
matter, since the ∆ is an elastic πN resonance. Therefore, one might
think of the inclusion of one ∆ line in a ChPT one-loop diagram as an
important resummation of two- and (higher-)loop effects. However, the
implementation of two ∆ propagators constitutes already a three-loop
effect of ordinary ∆-less ChPT. We have not investigated this and in
particular the specific consequences for the power counting. In any case,
what should be clear is that a reasonable O(p4) calculation combined
with dispersion theory should improve the precision of the calculations,
and also help to estimate the theoretical uncertainty as we did in the
study of the axial FF.
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Chapter 4

The Λc semileptonic decay

with new physics

4.1 Introduction

Here we analyze the impact of possible new physics (NP) signals in the
Λc semileptonic decay as motivated in Sec. 1.4. In this work we use the
general framework to study any hadron semileptonic decay for including
NP contributions introduced in Ref. [69]. The scheme is based on the
Standard Model Effective Field Theory (SMEFT) of Refs. [62, 161], and
allows to analyze any decay driven by a q → q′ l ν̄l quark level CC process
involving massless left-handed neutrinos. We analyze CP-even (real Wil-
son coefficients) scalar, pseudo-scalar, right-handed and tensor NP terms,
as well as corrections to the SM left contribution. The hadronic inputcan
be parametrized in terms of the hadronic structure functions (W ′s), given
by the matrix elements of the operators involved. The structure func-
tions are written in terms of the transition form factors, and depend on
the masses of the initial and final particles and on the invariant mass of
the outgoing lepton pair. The specific expressions needed are detailed in
App. D.2 including formally complex (CP-violating) Wilson coefficients.

In this work, we will focus on the µ channel and disregard the e one.
This is in line with the assumption of the standard flavor hierarchy, in
which the Wilson coefficient is larger the heavier the lepton. In addition,
the (pseudo)scalar and tensor NP contributions are O(m`) suppressed,
what complicates their detection in the e channel.
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Chapter 4. The Λc semileptonic decay with new physics

4.2 The Λc → Λ `
+
ν` weak decay including new

physics

4.2.1 Observables

For the Λ+
c (p) → Λ(p′) `+(k′) νl(k) the double-differential branching ratio

B ≡ Γ/Γtot, in terms of q2 = (k+k′)2 and the angle θ between the Λ and
`+ three-momenta in the leptonic rest frame, where q = (

√

q2,~0), can be
cast as [162, 64, 69]

d2B

dq2d cos θ
= |Vcs|

2
[
c`0(q

2) + c`1(q
2) cos θ + c`2(q

2) cos2 θ
]
, (4.1)

where |Vcs|
2 has been factorized for convenience. The full Λc width Λc

width Γtot = (3.252±0.050) ·10−12 GeV has been obtained from its mean
live τ = (202.4 ± 3.1)10−15 s [90]. Functions ci(q2) entirely characterize
the decay and can be extracted from experimentally measurable quanti-
ties. For example, as shown in Eqs. (D.17)-(D.19), they can be obtained
from the single-differential width dΓ/dq2, the forward-backward asym-
metry, AFB, and the convexity, Aπ/3. Our analysis of NP contributions
is performed in terms of c`0−2(q

2). For this purpose we take advantage
of the general framework developed in Ref. [69] for the study of hadron
semileptonic decays in presence of NP. Appendix D.2 discloses how the
formalism of Ref. [69] is adapted to the present case.

In order to reduce the theoretical and experimental uncertainties, it
is useful to consider lepton flavor universality (LFU) ratios. In our case

Ri ≡
ci(mµ, q

2, εµ)

ci(me, q2, εe)
=
cµi (q

2, εµ)

ceSMi (q2)
+O(εe) '

︸︷︷︸

if εe�εµ

1+O(m2
µ)+O(εµ) . (4.2)

The common assumption εe � εµ arises, for example, in many NP models
which explain the fermion mass hierarchy [163, 164]. In these ratios, not
only VCKM cancels out. An important advantage resides on the fact
that in the SM the deviation from unity enters at O(m2

µ) (recall that
mµ ' 105.7 MeV) and so does the SM uncertainty. There is hence a
significant improvement in the sensitivity to NP in the µ channel, O(εµ).
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4.2.2 QCD input

Functions c0−2(q
2) depend on the NP Wilson coefficients introduced

above and om purely hadronic structure functions which are themselves
given in terms of transition form factors (see Appendix E of Ref. [69]).
For the Λc → Λ transition, the relevant form factors have been defined in
Eq. (1.92) and add up to 12: scalar and pseudoscalar FS,P , vector F1,2,3,
axial-vector G1,2,3 and tensor T1,2,3,4. As detailed in the introduction
(Sec. 1.4.2), the vector and axial form factors have been calculated in
the lattice [65]. Using these form factors, in agreement with Ref. [65] we
obtain:

Γ(Λc → Λe+νe)

|Vcs|
2 = 0.2008(71)LQCD

stat ps−1,

Γ(Λc → Λµ+νµ)

|Vcs|
2 = 0.1945(69)LQCD

stat ps−1, (4.3)

yielding the lepton flavor universality (LFU) ratio

RSM =
Γ(Λc → Λµ+νµ)

Γ(Λc → Λe+νe)
= 0.96884(61)LQCD

stat . (4.4)

We notice the difference between this SM ratio and the value of 0.974(1)
reported by Ref. [165] although both are consistent with the experimental
result of Rexp = 0.98(5)stat(3)syst of Ref. [58] owing to its large error.

Ideally one would also take the rest of form factors from the lattice,
relying in this way on an accurate parametrization of the QCD structure.
However this input is not yet available. Therefore, we express the scalar,
pseudoscalar and tensor form factors in terms of the vector and axial ones
employing approximations based on the fact that the charm quark mass
is considerably larger than the masses of the light ones: mc � ms,u,d

(and higher than the QCD scale Λχ). There is some freedom in the way
one exploits this condition. The resulting differences are used to estimate
the systematic uncertainty of the approximations. As discussed in the
Sec. 1.4.2 of the introduction, HQSS for a heavy-light quark transition
implies that at leading order in 1/mc all possible form factors can be given
in terms of only two independent functions. For this purpose we choose
either F1,2 or G1,2 (F3 = G3 = 0 in the HQSS limit). We refer to these
prescriptions as HQSSV and HQSSA respectively. A less stringent choice
arises from the assumption that the c quark is on-shell. Then, in the
mc/M → 1 limit, one obtains a consistent set of equations which allow to
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Chapter 4. The Λc semileptonic decay with new physics

relate all (pseudo)scalar and tensor form factors to F1,2,3 and G1,2,3. This
solution, labeled OSHQ (for On-Shell Heavy Quark), is consistent with
HQSS in the F3 = G3 = 0 limit. The three form factors corresponding
to the three prescriptions are given in Eqs.(1.103), (1.104) and (1.99) of
Sec. 1.4.2.
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Figure 4.1: Scalar, pseudoscalar and tensor form factors obtained from
the vector and axial ones using HQSS approximations. The continuous,
dashed and dotted lines are obtained with OSHQ, HQSSV and HQSSA
prescriptions, respectively. Notice that T1 = T3 = 0 within HQSSV and
HQSSA.

Figure 4.1 displays FP,S and T1−4 in terms of F1−3 and G1−3 from
LQCD [65] in the q2 range of relevance for the Λc decay using the three
prescriptions. In the following, our theoretical error bands for each of
these form factors cover the results of all three prescriptions including the
LQCD errors given by the bands in Fig. 4.1. This defines a conservative
estimate of the QCD uncertainty.
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4.2.3 New physics contributions

In order to analyze individual new physics contributions to c`0−3 we in-
troduce

c`i(q
2, ε`X) ≡ c`i(q

2, ε`X , ε
`
Y 6=X = 0) , X, Y = L,R, S, P, T , i = 0− 2 ,

(4.5)
which can be cast as

ci(εX) = cSM
i + εXc

Xl
i + ε2Xc

Xq
i (4.6)

= cSM
i + εX

(

cXl
i + εXc

Xq
i

)

≡ cSM
i + εXc

X
i (εX) .

Lepton index and q2 dependence are implicit. The NP part has terms lin-
ear and quadratic in εX . The leading linear part εXcXl

i arises from the in-
terference between SM and NP terms in the decay amplitude squared. On
the other hand, one has to keep in mind that the subleading ε2Xc

Xq
i pro-

vide an incomplete account of the O(ε2) order. It also receives contribu-
tions from the interference between the SM and terms from a higher order
(ε2) SMEFT computation, including additional Wilson coefficients [166].

The structure of the NP perturbation of the SM values is therefore
encoded in cXi (εX), which are depicted in Fig. 4.2 for ` = µ. Propa-
gated QCD uncertainties from LQCD and HQSS prescriptions discussed
in Sec. 4.2.2 give rise to the bands. The dashed lines denote the linear
cXl
i terms that contribute at O(1/Λ2). Although for X = S, P, T these

interference terms are suppressed by the muon mass, the tensor contri-
bution turns out to be comparable or larger than X = L,R ones for c0
and c1 observables.

To account for the residual εX dependence of cXi (εX), we choose as
indicative the central εX values extracted in Ref. [162] from leptonic and
semileptonic decays of pseudoscalar mesons. These εX values and the
correspondence with the notation of Ref. [162] are given in Appendix D.3.
The smallness of the quadratic terms is apparent from the difference
between the dashed and the central solid lines, which can hardly be
discerned except for cT0,2. Indeed, εT c

Tq
0 is relatively large at a typical

εT = 1.2×10−2. The tensor contribution to c2 is purely quadratic (cT l
2 ≡

0) and quite large. The central value of εP is one order of magnitude
lower than the rest of the Wilson coefficients, but we have verified that
εP c

Pq
0 remains negligible for an εP ∼ O(10−2); c0 is the only observable

with a quadratic scalar and pseudoscalar contribution, cSq1,2 and cPq
1,2 are

exactly zero.
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Figure 4.2: q2 dependence of the NP individual perturbations cXi =

cXl
i + εXc

Xq
i , Eq. (4.6) (i = 0, 1, 2 from left to right). Colors denote the

type of interaction X = L (blue), R (red), S (black), P (brown) and T

(green). Wilson coefficients are set to the central values of Ref. [162] (see
also Appendix D.3). The dashed lines originate from the linear terms
cXl
i . The bands represent the QCD uncertainty from the transition form

factors.

The plots of Fig. 4.2 show the magnitude and shape of the individual
contributions. They allow us to identify the NP perturbations that are
in principle more easily revealed in an experiment. The sensitivity to
these NP contributions is carefully studied in Sect. 4.3. To assess the
results of Fig. 4.2 from this perspective it is useful to bear in mind that
cSM
i = cLli /2. For c0 [Fig. 4.2 (a)], tensor and left-handed contributions

prevail, while the right-handed one is also sizable and changes sign. In
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4.2. The Λc → Λ `+ν` weak decay including new physics

c1 [Fig. 4.2 (b)] the tensor interaction is the largest, peaking in the q2

region where the SM has a local minimum. Since the SM relative error
is quite constant in q2, a minimum in the SM magnitude corresponds to
a minimum in the SM error (see the width of the cL1 band). Therefore
one can expect a good sensitivity to tensor NP at low q2 in c1. Finally,
in c2 [Fig 4.2 (c)] the left-handed term dominates, having a maximum
in its absolute value at low q2. The suppression of all contributions
with respect to the left-handed one implies that the latter is the only
potentially relevant NP mechanism in c2. It is also worth noting that
scalar and pseudoscalar contributions are small in c0,1 and exactly zero
in c2.

4.2.4 Phenomenological constraints

In the first row of Fig. 4.4 the ci values allowed by the aforementioned
phenomenological constraints to the Wilsons from Ref. [162] for the µ
channel are depicted. We have varied the εX values in the given ranges
approximating their distributions by Gaussians and neglecting correla-
tions. The LQCD errors of the vector form factors have been propagated
in the same way, while all three prescriptions of the HQSS form factors in
cS,P,Ti are covered by the band (in this case the HQSSV choice practically
covers the bands of the other two prescriptions). Given that the Wilsons
studied are compatible with zero, the SM and NP band would overlap,
even if no additional uncertainty would have been included. However one
can already see where the possible NP contribution is more prominent.
Fig. 4.4 (b) reflects that the SM local minimum is a good place to look for
a NP (tensor) signal: one can see that in the local minimum the central
values are more separated than anywhere else.

Under the assumption of the standard hierarchy, εµX � εeX , one would
expect to observe deviations from the SM only in the muon channel. The
comparison of the differential width in the SM scenario with LQCD input
to the BESIII data of Refs. [167, 58] shown in Fig. 4.3 reveals tensions
not only in the ` = µ channel but also in the ` = e one. Moreover, the
SM fits performed in Refs. [167] produce form factors that clearly differ
from those of Ref. [65], as can be seen in Fig. 3 of Ref. [167]. We have also
obtained that this tension cannot be accommodated by natural εeX 6= 0.
Therefore, the extraction of allowed ranges on eµX under the assumption
of εe � εµ directly from the present data on Λc → Λµ+νµ [58] would be
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undermined by these discrepancies in the ` = e channel that cast doubts
about the QCD input.
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Figure 4.3: Differential decay width for Λ+
c → Λe+νe (left panel) and

Λ+
c → Λµ+νµ (right panel). The grey band is the SM prediction with

1σ errors from the LQCD form factors (neglecting 1% error in Vcs). The
blue points are the experimental data from BESIII [167, 58].

Turning now to the LFU ratios, they are defined according to the
cos θ separation in ci, i = 0− 2:

Ri(ε
µ
X) =

ci(Λc → Λµ+νµ, ε
µ
X)

cSMi (Λc → Λe+νe)
, (4.7)

and depend on all εµX and implicitly on q2. They are shown in the sec-
ond row of Fig. 4.4 with the values of εµX ranging the phenomenological
constraints from Ref. [162]. The case of all Wilsons set to zero, i. e. the
Standard Model, is also depicted. In fact, the reduction of the SM uncer-
tainty is evident here: the SM error bands become negligible compared
with the εµX range of values. This provides a much higher sensitivity to
NP.

4.3 Sensitivity to new physics in the µ channel:

LFU ratios

We have posed ourselves the question of how large should be a new
physics signal in order to be classified as such in this framework. We
focus on the µ channel, assuming εµ � εe ' 0 and studying ratios to
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Figure 4.4: q2 dependence of cµi and LFU ratios Ri in the SM and in
presence of NP (with the empirical values obtained in Ref. [162]). The
SM bands (grey) include errors in the LQCD vector form factors. The
NP bands (red) arise from both the uncertainties in all form factors and
in the Wilson coefficients.

reduce the uncertainty. We define the signals to which we are sensitive
as the ones that do not overlap with the SM prediction including the
errors. In other words, if a Wilson coefficient had a given true value, εX ,
we would be sensitive to it at a certain q2 only if its magnitude is large
enough to completely separate the one-σ NP band from the SM one. This
condition has some degree of arbitrariness and would still be insufficient
to claim a discovery in an experiment but serves the purpose of getting
an idea of the discovery potential for each of the LFU ratios, Ri, as
functions of q2. We define εsensX as the minimum εX in magnitude which
satisfies this condition and calculate their values, one by one, setting the
rest of the Wilson coefficients to zero. Recalling the notation of Eq. (4.7)
we define εsensX as the one that satisfies

∣

∣Ri(εX)−RSM
i

∣

∣ > ∆Ri(εX) + ∆RSM
i (4.8)

with a minimal |εX |. Here ∆RSM
i and ∆Ri(εX) denote the one-σ errors

of RSM
i and Ri(εX), which includes NP. It is clear that the larger the εX ,
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the more promising the observable would be to detect a given NP signal.
However, the SMEFT calculation has a worse convergence for larger εX .
We take this into account by introducing a SMEFT truncation error
within ∆Ri(εX), which is defined below.

We explore the condition of Eq. (4.8) for positive and negative εX
separately. In general we do not obtain the same absolute value in both
cases due to quadratic corrections. Quadratic terms in SMEFT are briefly
discussed in Ref. [168], while the theoretical uncertainty of SMEFT is
addressed in Sect. 2.7.6 of Ref. [169]. According to this reference, to
properly account for the truncation error one should calculate to one-
loop order. It is also argued that an estimate can be given without
such a computation, but including Wilson coefficients of the dimension-
eight Lagrangian (Eq. (2.79) therein). Such studies are beyond the scope
of the present work. We content ourselves with a simpler approach,
relying on a common truncation error estimate given by the difference
between linearization and quadratization of the matrix element squared,
and define the following uncertainty for ci (Eq. (4.6)),

∆cSMEFT

i (εX) = ε2X max{|cSMi |, |cXl
i |, |cXq

i |} . (4.9)

It estimates the size of the unaccounted O(ε2) contributions, only with
information from LSM and L6. To simplify the notation, index ` = µ has
been omitted throughout this section. Correspondingly,

∆RSMEFT

i (εX) =
∆cSMEFT

i (εX)

ceSMi

. (4.10)

We do not claim this is a very precise truncation error determination,
but we retain it clear and conservative.

In order to obtain εsensX from Eq. (4.8) we sum in quadratures the
error propagated from the LQCD vector form factors, ∆RLQCD

i , with the
truncation one, yielding

(∆Ri(εX))
2 =

(

∆RLQCD
i (εX)

)2
+
(

∆RSMEFT

i (εX)
)2

. (4.11)

In addition, the HQSS uncertainty in cS,P,Ti is taken into account by
covering all three versions of the form factors as in Sect. 4.2.4. In this
case, this reduces to taking the least favorable choice, meaning the HQSS
prescription associated with the minimum perturbation to the SM and
therefore maximizing |εsensX |.

127



4.3. Sensitivity to new physics in the µ channel: LFU ratios

First of all, we study the ratio of integrated widths, i. e. we in-
troduce NP contributions in the numerator of Eq. (4.4). In this ob-
servable, |εsensL | = 6.3 × 10−4, |εsensR | = 2.1 × 10−3, |εsensT | = 8.0 × 10−4,
|εsensS | = 8.9 × 10−3, but we are not sensitive to εP . This is a very good
sensitivity, beyond the multi-TeV scale. Indeed, the ε value correspond-
ing approximately to a NP scale Λ of 1 TeV is estimated by a naive power
counting to be |ε| = v2/Λ2 ' 0.0625, with v ≈ 250 GeV (see Sec. 2.1 of
Ref. [169]).

Next, we analyze the LFU ratios defined in Eq. (4.7). The first thing
to notice is that in the SM R2 is independent of the form factors. There-
fore ∆RSM

2 = 0. Applying the criterion of Eq. (4.8), we are sensitive to
arbitrarily small NP εL,R,T , which are the ones that contribute to c2. This
has to be understood as a result neglecting O(ε2) and SM one loop cor-
rections (and disregarding the experimental uncertainty). Nevertheless,
this result clearly indicates that R2 is a very sensitive observable. The
drawback is that it might be difficult to measure, because c2 is related
to the angular asymmetry Aπ/3, Eq. (D.19).

We have also observed that R0 is more sensitive than R1. In conse-
quence we put the focus on R0 in the following, which is dominated by
the ratio of decay widths. In Fig. 4.5 we study the sensitivity of R0 to
NP signals of different chirality, εX , as a function of q2. The εsensX (q2)

are reported; they set the boundaries of the sensitive to εX regions. Red
lines denote the Wilson coefficient values corresponding to a NP scale of
2 (dashed) and 10 TeV (solid). The plots reveal an excellent sensitivity
to εL and εT (upper panels). For εR, the sensitivity is higher in the region
of medium to high q2 (lower left panel). We are also sensitive to quite
small εS (lower right panel). The only current to which this ratio is not
sensitive is the pseudoscalar one. In this case the εP signal is too small
to be discerned from the SM, taking into account the O(ε2P ) theoretical
error.

Finally, from our analysis we conclude that the main obstacle to re-
solve a NP signal from the theoretical point of view is the LQCD error
of the (axial)vector form factors, prevailing over the HQSS errors that
accompany some NP contributions, and the SMEFT uncertainty, which
can be sizable for relatively large εX .

One may also wonder about the experimental uncertainty and there-
fore about the real sensitivity in practice. At the present day the exper-
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Figure 4.5: The q2 dependence of the εX to which we are sensitive in R0

is depicted (light blue regions). The blue line represents εsensX defined in
Eq. (4.8). Currents of chirality L, T , R and S are studied in (a), (b), (c)
and (d) respectively. Notice that the axis scale changes by row. The red
continuous (dashed) lines represent the Wilson value for a Λ = 10 TeV
(Λ = 2 TeV) in the naive power counting. Black vertical lines delimit the
phase space. In R0 We are sensitive to Wilsons smaller than the central
values obtained by Ref. [162].

imental error is much larger than the theoretical one. To illustrate this,
we study the integrated ratio R (defined in Eq. (4.4) for the SM case).
For instance, to be sensitive to an εL = 1.2 × 10−2 as the one given by
the central value extracted in Ref. [162] one would need the experimen-
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tal error to be reduced to the 10% of its current size1. As discussed in
Sec. 4.2.4, the tensions that arise in the description of Λc → Λe+νe with
SM LQCD input compromise the extraction of εµX from Λc → Λµ+νµ
data alone. On the other hand, recalling the aforementioned O(m2

µ) sup-
pression of the form factor uncertainty in the SM contribution to LFU
ratios, we find that these ratios are more reliable in order to look for NP
deviations, because systematic differences in the SM form factor largely
cancel out. In Fig. 4.6 we report the LFU ratio for the differential width,
defined in analogy with Eq. (4.7) as

RΓ(ε
µ
X) =

dΓ/dq2(Λc → Λµ+νµ, ε
µ
X)

dΓ/dq2 SM(Λc → Λe+νe)
, (4.12)

compared to the corresponding experimental result from BESIII [58].
The theoretical result carries a black 1σ SM band from LQCD and a
red one accounting for the allowed range in the Wilson coefficients from
Ref. [162]. In line with the previous comments about the ratio of inte-
grated widths, the present experimental uncertainty is still insufficient to
put competitive bounds on the εµ Wilson coefficients.
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Figure 4.6: µ/e LFU ratio for the differential decay width dΓ/dq2 as a
function of q2. The black band denotes the SM prediction from 1σ errors
in the LQCD form factors. The red band corresponds to the inclusion
of NP with the empirical bounds obtained in Ref. [162]. The blue points
are the experimental data from BESIII [58].

1Recall that we set all the εX 6=L = 0 and account for the theoretical uncertainties.
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4.4 Sensitivity to new physics in the µ channel:

c
µ
i functions

Here we report an analysis similar to the one performed for LFU ratios
but at the level of the cµi (q

2) functions. It is free of assumptions on the
flavor hierarchy of Wilson coefficients. Furthermore, cµi (q

2) would not
receive any contribution from the statistical experimental error in the
Λc → Λe+νe decay. Unfortunately, the sensitivity is considerably re-
duced in comparison with the one expected for the LFU ratios explored
in the previous section. We present only the cases where the NP per-
turbation was found to be relatively large in Sec. 4.2.3 (see Fig. 4.2). In
consequence, we do not take into account (pseudo)scalar terms.

The left-handed contributions are studied in Figures 4.7 (a)-(c). In
this case the truncation error is governed by ε2Lc

Ll
i = 2ε2Lc

SM
i and the

convergence is good, from the point of view of the uncertainty that we
have defined. The error is dominated by the one of the LQCD vector
form factors, even at high εL. The plots show that the study of c0−2 for
the present process is mostly insensitive to the εL range constrained by
pseudoscalar meson decays in Ref. [162].

The right-handed contributions are in general modest, being more
prominent in c0 than in c1,2. We show the sensitivity to εR in c0 in
Fig. 4.7 (d). It is much poorer than in the other displayed cases. Indeed
this observable is only sensitive to quite low Λ (below the TeV) in the
naive power counting estimation2. At low q2, c0 is not sensitive to εR at
all. In other words, the condition (4.8) is not satisfied. Actually, due to
the small magnitude of cR0 at low q2, εR needs to be large to be distin-
guishable. However, at such values of εR the truncation error becomes
large enough to make Eq. (4.8) impossible to satisfy. The difference be-
tween positive and negative εsensR is caused by the ε2Rc

Rq
0 term, which is

important at high εR. A similar scenario is encountered for the tensor
contribution to c0 studied in Fig. 4.7 (e). Now the decay under study
is not sensitive to negative εT . This is due to the twofold impact of the
quadratic term in Eq. (4.8), which is relatively large: not only does it
notably increase ∆c0(εT ), it also conspires to cancel the linear contri-
bution to c0(εT ), having the opposite sign. As argued in the previous
section, the quadratic contribution is not complete. Hence, the fact that

2Approaching the electroweak scale, less new physics models survive that have not been ruled

out empirically.
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e2R,T are large implies that our sensitivity estimates are less solid in these
cases. This is partially accounted by the truncation error. In all the
other cXi analyzed in Fig. 4.7, ∆cSMEFT

i is negligible for low values of εX
(εX ≤ 0.1).

The most promising analysis turns out to be the study of εT in c1,
Fig. 4.7 (f). As anticipated in Sec. 4.2.3, the maximum in the tensor
perturbation coincides with a SM minimum (Fig. 4.2 (b)). This leads to
a good sensitivity in the low-medium q2 region as can be seen in Fig. 4.7
(f). The quadratic coefficient cTq

1 is small and the truncation error is
negligible (it is given by ε2T c

T l
1 ). The critical uncertainty in this scenario

is actually the one of the LQCD vector form factors ∆cLQCD
1 . In this

case, the Λc → Λµ+νµ decay is sensitive to a part of the band allowed
by pseudoscalar meson decays [162] without resorting to ratios. Finally,
the tensor contribution to c2 is not discussed because there is no linear
term in εT .

As a final remark, we stress that the key uncertainties to asses in order
to gain sensitivity to NP with the Λc semileptonic decay are the ones of
the LQCD vector form factors because they appear in the leading SM
term. In the case of the tensor contribution to c0, this error competes
with the truncation one. In this sense, a more precise estimate of the
SMEFT uncertainty, taking into account all terms at O(1/Λ4) would be
very useful as well. In addition, it is clear that a reliable determination
of the truncation error would provide more consistency to the analysis in
general, including the left and right-handed contributions. In the tensor
term the HQSS uncertainty is not so critical, since it is part of the NP
correction (hence it is multiplied by εT ) and is therefore small.
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Figure 4.7: The sensitivity regions to εX in selected ci is represented
by the light blue regions. The solid blue line denotes εsensX defined in
Eq. (4.8). Panels (a), (b) and (c) show the sensitivity to εL in c0, c1
and c2, respectively. The (d) panel reports the poor sensitivity to the
right-handed contribution in c0 (note the different scale). The (e) and
(f) panels display the sensitivity to εT in c0 and c1 respectively. The
dashed lines encompass the allowed region obtained in Ref. [162] from
pseudoscalar meson decays. The red lines represent the values of Wilson
coefficients for a Λ = 1 TeV in the naive power counting. Black vertical
lines delimit the phase space.
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4.5 Conclusions and outlook

We have studied the Λc → Λ`+ν` decay, investigating the impact of new
physics currents in the ` = µ channel. To accomplish this task, an effec-
tive Hamiltonian for c → s`+ν`, based on SMEFT has been employed.
We have also relied on the LQCD results for the axial and vector Λc → Λ

form factors obtained in Ref. [65]. The form factors required to describe
the Λc → Λ transitions driven by scalar, pseudoscalar and tensor opera-
tors have been expressed in terms of the axial and vector ones by taking
advantage of the large c-quark mass. Differences arising from alterna-
tive approximations to implement this connection among form factors
are treated as a theoretical uncertainty.

The NP analyses is performed in terms of the ci(q2) functions that
drive the dependence on the angle between the Λ and the µ+ in the
leptonic rest frame. We have first obtained the q2 shapes of the NP
contributions to ci, with their QCD uncertainty bands. Lepton flavor
universality ratios received special attention. In the first place, owing
to the LQCD form factor input, a SM ratio Γ(Λc → Λµ+νµ)/Γ(Λc →

Λe+νe) = 0.96884(61)LQCD
stat is obtained, differing from the one reported

in Ref. [165]. These ratios are particularly advantageous in the search
for NP due to the O(m2

µ) suppression of the SM uncertainty. This is
apparent in the reported Ri = cµi /c

e
i , i = 0− 2.

We have then studied the theoretical sensitivity to a potential NP
current of a certain chirality in the µ channel, accounting also for the
theoretical uncertainty in the SMEFT truncation. Assuming a εµ � εe

hierarchy, we have analyzed different LFU ratios. In the ratio of inte-
grated widths the sensitivity is already very high, probing the multi-TeV
scale, except for the pseudoscalar interaction. However, to realize this
theoretical expectation, the experimental uncertainty should be reduced
as explained in the work. In addition, we have shown that the ratios
R0 and R2 have an excellent sensitivity to NP of any type but the pseu-
doscalar one. Finally, an analogous a sensitivity analysis has been per-
formed on the cµi observables themselves, which are free of the flavor
hierarchy assumption. In this case the sensitivity varies notably depend-
ing on the NP chirality. In particular, the NP tensor contribution to c1
displays a promising discovery potential.

We have identified the LQCD uncertainty of the axial and vector
form factors as the most important one when it comes to improving the
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sensitivity to NP. Besides, we have also seen that a better estimation
of the SMEFT uncertainty would substantially improve the precision of
this kind of analysis.

As a future development, the inclusion of right-handed neutrinos in
the analysis would be interesting, since they are present in a large variety
of NP models and can be implemented in a straightforward way.
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Chapter 5

Conclusions

In this thesis the low energy properties of hadrons have been analyzed
with effective field theory techniques. We have investigated the axial and
electromagnetic isovector form factors of the nucleon for small transfer
of momentum (Chs. 2 and 3 respectively), which contain information
relevant for hadron and neutrino physics. In addition, the Λc semileptonic
decay, Λ+

c → Λ `+ νl, has been studied in order to analyze the possible
impact of beyond the Standard Model signals (Ch. 4).

Regarding the axial structure of the nucleon, we have computed the
axial isovector form factor in relativistic Chiral Perturbation Theory up
to NNLO with the explicit inclusion of the ∆ baryon. In a first work,
we have focused on the axial charge (FA(0) = gA) and the corresponding
lattice QCD results. There, we have studied the compatibility between
the phenomenological analyses of πN → πN and πN → ππN compared
to the pion mass dependence of gA obtained in the lattice. If the ∆

baryon is not explicitly introduced, the low energy constants fixed by
πN scattering predict gA(Mπ) up to NNLO. However, we have seen that
the obtained dependence does not agree with the LQCD simulations. We
have then performed fits to a combined set of LQCD results, and a sat-
isfactory description at O(p4) is only achieved after the ∆ is included as
an explicit degree of freedom. The fact that we include several orders
allows us to implement in the fit a conservative estimation of the theoret-
ical uncertainty of ChPT. In this way, the d16 LEC has been extracted,
albeit with a relatively large error, coming from the slow convergence of
the chiral series.
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Next, we have considered the form factor, performing a meta anal-
ysis of the results of recent lattice collaborations. For this purpose we
obtain a model independent representation of the axial form factor at
Q2 ≥ 0 using ChPT and fit the unknown low-energy constants to the
lattice data. fitting our ChPT FF. At O(p4) with explicit ∆ we are able
to describe data for

√
Q2 . 0.6 GeV and Mπ . 400 MeV. In this man-

ner, we obtain the following LEC values, d16 = −1.46± 1.00 GeV−2 and
d22 = 0.29 ± 1.69 GeV−2, in agreement with different phenomenological
estimations. The first one is important to determine the quark mass de-
pendence of nuclear properties such as ground-state and binding energies
through long-range nuclear forces, whereas the second one is relevant for
the axial radius and for pion electroproduction. From our parametriza-
tion we obtain an axial charge of gphysA = 1.273±0.014 in good agreement
with the experimental determination (more precise and closer to experi-
ment than the one from the FLAG report [74]). The axial radius is also
extracted, 〈r2A〉phys = 0.291± 0.052 fm2. This result does not come from
an ad hoc parametrization, on the contrary, relativistic ChPT has been
used, and its uncertainty, together with different lattice effects, has been
taken into account. This value reflects the general situation of lattice re-
sults, which predict an axial radius slightly lower than the experimental
estimations. Besides, we argue that a combined fit of LQCD results for
the axial form factor together with pion-nucleon scattering experimental
data could improve the description of both processes.

Moving now to the electromagnetic form factor, we have computed
the isovector component of this fundamental quantity combining rela-
tivistic ChPT with dispersion relations. In this way, the important con-
tributions of ππ elastic rescattering in the partial wave dominated by
the ρ meson are implemented. The idea here was to compare the Q2 and
Mπ dependence with LQCD results, and extract nucleon electromagnetic
properties as well as LECs. We have shown how three schemes describe
the lattice data: (a) a purely dispersive calculation accounting only for
the 2π intermediate state in terms of an Omnès function; (b) plain rela-
tivistic ChPT with explicit ∆; (c) our combined scheme. In particular,
we have performed fits of the Dirac and Pauli FFs.

On the one hand, for the Dirac FF, we have observed that the com-
bined theory outperforms the other two, describing well the data in
the relatively large range

√
Q2 . 0.77 GeV and all the simulated Mπ

(Mπ . 350 MeV). From this fit, the value 〈r21〉disp+ChPT
phys = 0.4838±0.0047
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fm2 is extracted, slightly below the experimental determination.

On the other hand, we have analyzed the somewhat more challenging
Pauli FF. Given that the leading term of this quantity is of higher order
in ChPT as compared to the Dirac case, we have observed that an O(p3)

calculation was not sufficient to describe it. Therefore we have added
O(p4) contributions without ∆ to the ChPT term, resulting in a good fit
of the LQCD data in plain ChPT, in the same range as for the Dirac FF.
Given that the purely dispersive approach also leads to a good agreement
with the data, the combined theory does not particularly improve the re-
sult. In any case we regard the latter to be a more complete description,
corresponding to a Q2 dependence of the FF which is remarkably close to
the experimental parametrization at the physical point, even beyond the
fit cut,

√
Q2 = 0.77 GeV. From the combined theory we have obtained

κdisp+ChPT
phys = 3.605±0.067, which is close to the experimental value, and

〈r22〉disp+ChPT
phys = 0.788±0.015 fm2, in agreement with the empirical deter-

mination. In addition, the values of several LECs have been extracted,
which are useful for future computations.

Since it was required for our dispersive study of the nucleon form fac-
tors, we have computed the Mπ dependence of the pion p-wave phase
shift and the pion vector FF. We calculate the phase shift with the IAM
and implementing a Blatt-Weisskopf form factor. For the pion FF the
Omnès function is used, including an additional phenomenological pa-
rameter. We predict well the LQCD results for the Mπ dependence of
the mass of the ρ meson. In the future, this method could be applied to
other mesons and could be further tested by comparison to phase shifts
and meson FFs from the lattice.

Another interesting future development would be to employ the dis-
persively improved ChPT technique to compute ∆ −N transition form
factors. On top of that, the inclusion of the strange quark flavor, shifting
our focus to the structure of hyperons would be another fruitful way to
employ the techniques developed in these analyses.

In the light of our works on nucleon form factors, we think that a
combined fit to several observables in baryon ChPT could be of great
use. This would take the most out of the EFT, in analogy with what has
been already done in the mesonic sector in the last decades. For instance
one could fit pion electroproduction and πN scattering data, together
with experimental (or LQCD) data of the electromagnetic FF. In this
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way the correlations among LECs and the theoretical accuracy could be
assessed in greater detail.

Finally, we have also undertaken the analysis of new physics signals in
hadron phenomenology. Given that there are still several open problems
in the Standard Model, it seems that the latter is in reality an EFT of
some ultraviolet theory, whose fingerprints could be determined in the ex-
isting and future experimental data. Motivated by recent measurements
of BESIII [58], we have focused on the specific case of the Λc → Λν`+

decay. We have studied the possible impact of beyond the SM signals in
the framework of the low energy limit of SMEFT. For the QCD input we
rely, once more, on LQCD data for the (transition) form factors. In this
computation, the large value of the charm quark as compared with the
rest of scales is exploited to express some of the required form factors in
terms of those determined with LQCD. There is a certain arbitrariness
in the way in which one applies the aforementioned heavy quark approx-
imations. This leads us to take the difference between prescriptions as
an estimate of the error of the approximation.

We study lepton flavor universality violation ratios and show the large
cancellation of theoretical uncertainties that they produce. After analyz-
ing the SM case, the standard hierarchy εµ � εe has been considered.
Therefore, we begin by reporting results on the different angular am-
plitudes, c0−2 (Eq. (4.1)), of the µ channel without taking ratios, and
relying on the Wilson coefficients from Ref. [162]. Here the separation in
ci proves to be useful, showing the particular discovery potential of the
c1 amplitude.

Next, we study the sensitivity to different NP currents in the ci am-
plitudes, finding that the tensor contribution to c1 displays a promising
discovery potential. Afterwards, we study LFU ratios, so that we ap-
proximate the BSM contributions to lie only on the muon and not on the
electron channel. The theoretical sensitivity achieved here, disregarding
experimental uncertainties, is very high, probing the multi-TeV scale,
even if the SMEFT error is considered.

As the experimental results are becoming more precise, we have iden-
tified the LQCD uncertainty in the (axial-)vector FFs as the main source
of theoretical error (even though the SMEFT one is also important in
certain regimes).

There are still several hadronic decays to which this kind of analysis
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could be performed, including combined studies of different types of de-
cays, such as baryonic and mesonic ones, which would prove the same
quark transitions. On top of that, the inclusion of right-handed neutrinos
in the theory would be a simple extension of the work, with implications
for many new physics models.

141





Resumen en español

Introducción

La Cromodinámica Cuántica (QCD), la teoría que describe la interac-
ción fuerte, gobierna la dinámica de los quarks y gluones, ligándolos en
hadrones. Las propiedades de estos son sumamente interesantes, no solo
para investigar la interacción fuerte subyacente, sino también porque son
omnipresentes en los procesos de física de partículas, siendo esenciales en
cualquier análisis experimental.

Como partículas compuestas, los hadrones son cuerpos extensos con
estructura. Su composición puede ser investigada experimentalmente,
y en este sentido, los nucleones, es decir, protones y neutrones, son es-
peciales. El protón es el único hadrón estable (dentro de los límites
experimentales) y el neutrón es el segundo más estable, con una vida
media de aproximadamente 15 minutos. Esto convierte al nucleón en el
objetivo más adecuado para experimentos de dispersión, que es la forma
más directa de sondear la estructura interna. En particular, la dispersión
elástica electrón-nucleón es sensible a la distribución de carga eléctrica
dentro de este hadrón, así como a sus propiedades magnéticas. Por otro
lado, experimentos como la dispersión cuasi-elástica de neutrinos en nu-
cleones, un proceso débil, dan acceso a la llamada estructura axial del
nucleón. Esta está relacionada con la distribución de espín dentro del
nucleón y es un elemento clave para el análisis de la física de neutrinos.
En general, las secciones eficaces de estos procesos se descomponen en
funciones del momento transferido, llamadas factores de forma (FF), que
portan la información sobre la estructura del hadrón.

Buena parte de esta tesis se centra en el estudio de los factores
de forma a bajas energías, con la consiguiente información sobre las
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propiedades del nucleón. Sin embargo, existe una complicación intrínseca
a QCD: a bajas energías el acoplo fuerte es relativamente grande, por
lo que no se puede calcular perturbativamente en este régimen. Una
forma de superar este obstáculo consiste en formular la teoría en un es-
pacio tiempo discretizado, lo que se conoce como lattice (retículo) QCD
(LQCD). El reciente progreso en LQCD es una de las principales moti-
vaciones de esta tesis, aunque esta valiosa fuente de información teórica
sufre de algunos efectos artificiales e incertidumbres sistemáticas. Nue-
stro enfoque es emplear teorías de campos efectivas (EFT) y otras her-
ramientas teóricas para obtener resultados de QCD en el régimen no
perturbativo, que posteriormente son utilizados en el análisis de datos de
lattice y experimentales. Una teoría efectiva es aquella que se vale de as-
pectos de la teoría fundamental (por ejemplo QCD) tales como simetrías
o diferencias entre escalas, para calcular cantidades que en general no
son computables en la teoría original. Además, una EFT es en lo posi-
ble independiente de modelos y la precisión de sus resultados se puede
mejorar de manera sistemática.

En particular, en los capítulos sobre los factores de forma del nucleón,
la EFT que hemos empleado se conoce como Teoría Quiral de Pertur-
baciones (ChPT), un formalismo idóneo para estudiar QCD a bajas en-
ergías. Ésta se basa en aprovechar una simetría aproximada de QCD,
relacionada con el sabor de los quarks ligeros (u, d y s), para construir
una teoría cuántica de campos perturbativa, donde los grados de liber-
tad corresponden a los hadrones ligeros. Esta teoría tiene un historial
de éxitos en la descripción de la física de hadrones y puede emplearse
también para estudiar efectos específicos de LQCD. De hecho, en el cen-
tro de esta tesis está el uso de ChPT para analizar la dependencia en
la masa de pión que presentan las simulaciones en el retículo. Además,
ChPT resulta útil para el tratamiento de otros efectos de lattice, tales
como la dependencia en el volumen finito del retículo y en la separación
entre puntos del mismo.

Una teoría complementaria a ChPT es la Teoría Dispersiva o las rela-
ciones de dispersión. Esta herramienta explota la unitariedad y analiti-
cidad de las amplitudes para obtener resultados no perturbativos. En
particular, hemos empleado relaciones de dispersión en combinación con
ChPT para estudiar el factor de forma electromagnético del nucleón,
donde la resumación del estado intermedio de dos piones es fundamen-
tal.
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Por otro lado, el enfoque efectivo ha sido empleado en un problema
distinto en esta tesis, en concreto para considerar posibles señales de
nueva física más allá del Modelo Estándar. Dicho modelo describe las
interacciones entre partículas fundamentales con gran precisión, sin em-
bargo presenta varios problemas que indican que no se trata de la teoría
definitiva de la naturaleza. Para parametrizar posibles desviaciones del
Modelo Estándar, es conveniente utilizar la Teoría Efectiva del Mod-
elo Estándar (SMEFT). Este formalismo permite estudiar de forma sis-
temática y relativamente general dichas desviaciones sin asumir mode-
los específicos de nueva física. Con este formalismo, se ha estudiado el
decaimiento semileptónico de la resonancia Λc, Λc → Λν`+, con la mo-
tivación de nuevos datos de BESIII [58]. Además, para dicho trabajo
se emplea también otra aproximación en la línea de las teorías efectivas,
como es la aproximación de quark pesado (HQ). En este caso se utiliza
dicha simplificación para obtener elementos de matriz hadrónicos a par-
tir de otros extraídos de lattice. Los resultados obtenidos para este y el
resto de problemas tratados se resumen a continuación. Esta tesis está
organizada de forma que los estudios sobre el factor de forma axial y elec-
tromagnético se exponen en los capítulos 2 y 3 respectivamente, mientras
que el análisis del decaimiento semileptónico de la Λc se presenta en el
capítulo 4.

Factor de forma axial del nucleón

El factor de forma axial es una cantidad fundamental del nucleón. En
particular, su valor a Q2 = 0 contiene información sobre la distribución
de espín en su interior. Además, puesto que la interacción débil es de
tipo "left", el factor de forma axial contribuye junto con el electromag-
nético (vectorial). Por lo tanto el FF axial es un ingrediente clave en el
análisis de procesos débiles. Nosotros nos centramos en el régimen de
baja energía, útil para el estudio de la dispersión elástica y cuasielástica
de neutrinos en nucleones que se da en los experimentos de oscilaciones.

En cuanto a las extracciones experimentales hay que decir que son
difíciles, de hecho no están exentas de cierta dependencia del modelo.
Al margen de otras cuestiones, cualquier extracción del factor de forma
requiere que se ajuste una cierta forma funcional a los datos. La llamada
expansión z, se ha utilizado ampliamente, pero no se ha llegado a un
resultado plenamente satisfactorio. Además, no hay datos experimentales
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lo suficientemente precisos a bajo Q2 para determinar con precisión el
factor de forma.

Esto nos ha llevado a realizar un cálculo de la componente isovectorial
del factor de forma axial a bajas energías en ChPT y a estudiar a contin-
uación su ajuste a un conjunto de resultados de LQCD de distintas co-
laboraciones recientes. El hecho de emplear ChPT permite parametrizar
la dependencia en Q2 y masa de quark de los datos de lattice sin basarnos
en ninguna función ad hoc, sino valiéndonos en las simetrías de QCD. En
nuestro cálculo, vamos más allá de los estudios anteriores, puesto que uti-
lizamos la renormalización EOMS relativista e incluimos explícitamente
la resonancia ∆ hasta O(p4) (NNLO). El esquema EOMS garantiza que
no solo el conteo de potencia, sino también las propiedades analíticas
de las funciones de bucle se preserven correctamente. Además, la in-
clusión de O(p4) conduce a una mejor estimación de la incertidumbre de
truncado, ya que está dada por diferencias entre órdenes.

En una primera fase analizamos la dependencia en masa de quark (o
de pión) de la carga axial, gA. Así, mostramos que hasta O(p4), la depen-
dencia de la masa del pión de gA predicha usando LECs determinadas
a partir de estudios fenomenológicos de dispersión elástica e inelástica
pión-nucleón (πN → ππN) no puede producir el comportamiento plano
predicho por los resultados de distintos trabajos de LQCD ([112], [113],
[79], [114]), si no se considera explícitamente la ∆. Una vez incluida la
∆, realizamos un ajuste satisfactorio de los datos de LQCD hasta masas
pión de 400 MeV. Extraemos una carga axial en el punto físico más pre-
cisa que la determinación del informe del FLAG [74]. Hay que reconocer,
sin embargo, que la convergencia de la serie quiral parece ser lenta, pues
el O(p4) es considerable, lo que repercute en el error de truncado y por
tanto en las distintas LECs extraídas. Junto con las correlaciones signi-
ficativas, esta característica implica que se requieren resonancias de O(p5)

y/o más pesadas para alcanzar una convergencia completa y minimizar
las incertidumbres teóricas.

A continuación, estudiamos el factor de forma axial a momentos ba-
jos, ajustando nuestro cálculo a otro conjunto de resultados recientes
de lattice ([79], [114], [122], [123], [124]) que tienen en cuenta la con-
taminación por estados excitados. Observamos pues que a orden O(p4)

con ∆ explícita, nuestro cálculo es capaz de describir los datos hasta
aproximadamente 0.6 GeV en

√
Q2 y Mπ ∼ 400 MeV. De nuestro ajuste

concluimos que el barión ∆ es un grado de libertad necesario, especial-
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mente para tener en cuenta la dependencia de Mπ. A partir de nuestra
parametrización, extraemos una carga axial física de gA = 1.273± 0.014,
concordando bien con la determinación experimental. Extraemos tam-
bién las LECs del Lagrangiano O(p3): d16 = −1.46 ± 1.00 GeV−2 y
d22 = 0.29 ± 1.69 GeV−2, consistentes con diferentes determinaciones
fenomenológicas. La primera constante es importante para determinar
la dependencia en masa de quark de propiedades nucleares como la en-
ergía del estado fundamental y de ligadura debidas a fuerzas nucleares
de largo alcance. La segunda es relevante para el radio axial del nucleón
así como para el proceso de electroproducción de pión.

En el estudio del factor de forma axial, mostramos que como en el
de gA, la lenta convergencia de ChPT requiere la inclusión de términos
de orden superior O(p5), con las posibles soluciones antes mencionadas.
Por otro lado, entendemos que un ajuste combinado de los resultados
de LQCD para el factor de forma axial junto con los puntos experimen-
tales de dispersión pión-nucleón podría mejorar la descripción de ambos
procesos. En particular, las correlaciones entre LECs estarían más bajo
control.

Por último, discutimos el radio axial, una cantidad que constituye
un desafío que abarca la teoría y el experimento de la QCD. A partir
de nuestro ajuste de diferentes resultados de LQCD, obtenemos 〈r2A〉 =
0.291± 0.052 fm2. Consideramos ChPT relativista una parametrización
óptima a bajas energías, mejor que funciones ad hoc. El conocido hecho
de que el 〈r2A〉 de lattice (incluido el nuestro) y extracciones empíricas
no estén del todo alineados ha quedado patente en este trabajo. Esto
motiva a ambas partes a seguir mejorando sus estudios.

Factor de forma electromagnético del nucleón

El scattering nucleón-leptón es uno de los procesos observables más sim-
ples sensibles a la estructura interna del nucleón. Por tanto, los factores
de forma electromagnéticos son fundamentales en el estudio de la es-
tructura del nucleón y de la subyacente interacción fuerte. Estos FFs
suscitan interés por distintos motivos, siendo particularmente notorio el
problema del radio eléctrico del protón en los últimos años ("proton ra-
dius puzzle"). Desde el punto de vista teórico, se han realizado distintos
estudios de los factores de forma electromagnéticos en LQCD en los úl-
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timos años con cada vez mayor precisión. Aunque los resultados ahora
están disponibles incluso a masas de quarks físicas, los análisis de última
generación aún sufren de diferentes errores sistemáticos, y por ejemplo la
extracción de distintas propiedades como el radio se ve dificultada debido
a la mencionada parametrización del Q2.

En el caso de los factores de forma electromagnéticos, nos centramos
en la componente isovectorial y combinamos ChPT con relaciones de dis-
persión, para después comprobar si la descripción de datos de lattice es
satisfactoria. La implementación de la unitariedad a través de la teoría
dispersiva está motivada por la prominencia del "rescattering" de dos
piones (en el canal de la resonancia ρ) en este factor de forma y busca
aumentar el rango de aplicabilidad de la teoría. Nuestra idea fundamen-
tal es implementar el corte de dos piones dispersivamente (incluyendo el
formalismo de la función de Omnès) y aproximar el resto de contribu-
ciones con ChPT relativista con ∆ explícita. Esta estrategia se resumiría
a grandes rasgos en la siguiente fórmula, donde el primer término es el
dispersivo y el segundo es la contribución complementaria de ChPT:

F (q2) ≈
Λ2∫

4M2
π

ds

π

ImF2π(s)

s− q2 − iε
+ FChPT without 2π cut(q

2) . (5.1)

En particular se presta mucha atención a la descripción de la dependen-
cia en la masa de pión, tanto en el término de simple ChPT como en
la parte dispersiva. En lo que respecta a ésta última, se utiliza como
input la amplitud de ππ scattering del método de la amplitud inversa
a segundo orden (NLO IAM). Además se ha implementado un FF de
Blatt-Weiskopf para corregir el comportamiento a altas energías. Una
vez que comprobado que la dependencia en Mπ del input dispersivo está
de acuerdo con datos de LQCD , lo implementamos en los FFs electro-
magnéticos. En particular, al factor de forma de Dirac, F1, se le realiza
una sustracción para mejorar la convergencia de la integral dispersiva,
mientras que el de Pauli, F2, no se substrae, para preservar así su depen-
dencia no trivial en Mπ a Q2 = 0. Respecto a la dependencia de Mπ de
los FFs y comprobamos que las no-analiticidades principales de ChPT
asociadas a los diagramas con corte de dos piones son reproducidas por
la integral dispersiva.

A continuación comparamos nuestros resultados con datos de lattice
a distintas Mπ que muestran un buen control de los efectos de dis-
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cretización [136]. Consideramos tres enfoques diferentes: (a) un cálculo
puramente dispersivo que solo implementa el estado intermedio de dos
piones; (b) simple ChPT, y (c) nuestro esquema combinado. Para el
FF de Dirac, observamos que incluso el esquema puramente dispersivo
es capaz de predecir razonablemente bien el FF. Este cálculo no per-
turbativo proporciona suficiente curvatura al FF, teniendo en cuenta la
dinámica de la ρ. A continuación observamos que el esquema combinado
dispersivo y ChPT supera al ajuste de ChPT y al enfoque puramente
dispersivo. El cálculo describe bien los datos para

√
Q2 < 0.77 GeV

y todos los conjuntos de LQCD, es decir, Mπ ≤ 350 MeV. El valor de
〈r21〉disp+ChPT

phys = 0.4838 ± 0.0047 fm2 para el radio de Dirac, se extrae
de la versión combinado, ligeramente por debajo de la determinación
experimental.

Posteriormente consideramos el FF de Pauli. Siendo una cantidad de
orden superior, se incluyen LECs de orden mayor. Necesitamos por tanto
incorporar las LECs y los loops de ChPT /∆ de O(p4). Esto lleva a una
buena descripción de los datos de LQCD tanto por los cálculos disper-
sivos como por los de ChPT, en el mismo rango de Q2 y Mπ que para el
caso de Dirac. Combinar ambas teorías lleva principalmente a los mis-
mos resultados que la descripción puramente dispersiva. Curiosamente,
tanto los resultados dispersivos como los combinados están bastante cerca
de la parametrización experimental, incluso más allá del corte del ajuste,√
Q2 = 0.77 GeV. Entre estos dos esquemas, consideramos que la versión

combinada es un resultado más sólido desde un punto de vista teórico.
De esta descripción, extraemos κdisp+ChPT

phys = 3.605±0.067, que está cerca

del valor empírico, y 〈r22〉disp+ChPT
phys = 0.788 ± 0.015 fm2, que concuerda

con el experimento. Además, se han determinado los valores de varias
LECs, que son útiles para futuros cálculos. Para esta primera explo-
ración del esquema combinado, no intentamos estimar la incertidumbre
teórica. Los errores reportados son sólo estadísticos y, por lo tanto, están
subestimados.

En la tesis se discuten posibles mejoras de este cálculo, así como
otros observables en el que el esquema aquí desarrollado sería de gran
utilidad. En particular el cálculo factores de forma de transición N −∆

se podría beneficiar del método propuesto, así como aplicarse a bariones
con extrañeza.
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Nueva física en el decaimiento semileptónico de la

Λc

Los hadrones no sólo son interesantes por sus propiedades relativas a
QCD y a la interacción débil, sino que también pueden revelar infor-
mación sobre nueva física más allá del Modelo Estándar. De hecho dis-
tintas áreas de la física de partículas están trabajando conjuntamente
para encontrar pruebas de dichos fenómenos, que podrían dar respuesta
a problemas del Modelo Estándar. Los decaimientos de hadrones pesa-
dos se analizan en este contexto y han recibido especial atención en los
últimos años. En esta tesis, estudiamos un hadrón con quark c, el bar-
ión Λc, caracterizado por I(JP ) = 0(1/2+). En particular, calculamos
su decaimiento semileptónico débil: Λc → Λ, `+ν`. Motivados en parte
por resultados muy recientes de la colaboración BESIII[58], nuestro es-
tudio aprovecha nuevamente las teorías efectivas existentes para analizar
el proceso.

A nivel de la transición de quarks, consideramos posibles corrientes
de nueva física O(1/Λ2) en SMEFT utilizando un Hamiltoniano efectivo
de bajas energías, en el que no sólo las partículas de NP, sino también
los bosones débiles han sido integrados en el funcional generador. Esto
permite parametrizar el impacto de cada corriente en el correspondiente
coeficiente de Wilson. Además, se tiene en cuenta una estimación de los
órdenes superiores despreciados, como parte de la incertidumbre en el
análisis. En cuanto al elemento de matriz hadrónico, existen resultados
para los factores de forma de transición axial y vector [65]. Para obtener
los factores de forma del resto de quiralidades utilizamos distintas formas
de aproximación de quark pesado. De esta manera, la diferencia entre las
distintas aproximaciones se emplea como estimación del error cometido.

Una vez calculada la amplitud para los canales e y µ, computamos
ratios de violación de universalidad del sabor leptónico (LFU), que can-
celan distintos errores teóricos. En concreto para las anchuras integradas
en el SM obtenemos

RSM = Γ(Λc → Λµ+νµ)/Γ(Λc → Λe+νe) = 0.96884(61)LQCD
stat ,

diferente al de [165] y consistente con la extracción experimental Rexp =

0.98(5)(3) [58], que arrastra una incertidumbre notable.

Pasando al análisis de la nueva física, discutimos la estructura de
las distintas contribuciones de las correientes más allá del SM en las
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amplitudes angulares c0,1,2. En el análisis nos concentramos en el canal
µ, de acuerdo con la jerarquía estándar, en la que los Wilsons de los
leptones más pesados son mayores. Seguidamente mostramos las c0,1,2
con los Wilsons evaluados en los rangos obtenidos en la Ref. [162] a partir
de decaimientos de mesones pseudoescalares. Con los mismos Wilsons
para el canal µ, también se discuten ratios de LFU donde los Wilsons del
canal e se toman como nulos. En este contexto se observa que c1 tiene
más potencial como señal de nueva física.

Posteriormente estudiamos la sensibilidad a una posible corriente de
NP de cierta quiralidad en el canal µ, teniendo en cuenta también la in-
certidumbre teórica de SMEFT. Primero analizamos diferentes cocientes
de LFU. Ya en el cociente de anchuras integradas, la sensibilidad es
muy alta, sondeando la escala multi-TeV, excepto para el pseudoescalar
(se desprecia la actual gran incertidumbre experimental). Además, de-
mostramos que los cocientes R0 = cµ0/c

e
0 y R2 = cµ2/c

e
2 en función de

q2 tienen una excelente sensibilidad a cualquier tipo de NP excepto el
pseudoescalar.

Finalmente, se ha realizamos un análisis análogo de la sensibilidad
en las ci del canal µ, por lo tanto libre de la suposición de jerarquía.
Aquí, la sensibilidad varía notablemente dependiendo de la quiralidad de
la NP. En particular, se muestra que la contribución tensorial de NP a
c1 es muy accesible desde el punto de vista teórico.

Tras este trabajo, identificamos la incertidumbre de LQCD de los
factores de forma axiales y vectoriales como la más importante cuando
se trata de estudiar la sensibilidad a NP, pues aparecen en el término del
Modelo Estándar. Además, hemos visto que una estimación más precisa
de la incertidumbre de SMEFT mejoraría sustancialmente la precisión de
este tipo de análisis. Por último, como desarrollo futuro, consideramos
que la inclusión de neutrinos "right" en el análisis sería interesante, ya
que están presentes en una gran variedad de modelos de nueva física y
pueden implementarse de manera directa.
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Appendix A

Theoretical remarks

A.1 On the computation of the Omnès function

In order to compute the Omnès function one needs to calculate the inte-
gral in Eq. (1.80). First of all one has to remember that the iε appears in
the denominator in order to evaluate the expression above the real axis
in the complex plane. In short, one needs to employ the principal value
(PV), as follows [3]

1

x− x0 − iε
= PV

1

x− x0
+ iπδ(x− x0) , (A.1)

with δ the Dirac δ function and PV for a singularity at x = b defined as:

PV

∫ c

a

dxf(x) = lim
∆→0

(∫ b−∆

a

dxf(x) +

∫ c

b−∆

dxf(x)

)
. (A.2)

Therefore one has in general
∫ ∞

−∞
dx

f(x)

x− x0 − iε
= PV

∫ ∞

−∞
dx

f(x)

x− x0
+ iπf(x0) . (A.3)

Applying this to Eq.(1.80), f(x) would be δ(s′)/s′1. In general it is
easier to integrate numerically, and to that end one can rearrange the
calculation so that the singularity at s = s′ is integrated analytically. It
is enough to add and subtract δ(s) in the numerator of the integrand
in Eq.(1.80). We write the aforementioned integral defining u, Ω(s) ≡

1To integrate precisely in the (−∞,∞) interval, one should write f(x) = θ(s′ − 4M2
π)δ(s

′)/s′.
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expu(s),

u(s+ iε) =
s

π

∫ ∞

4M2
π

ds′
δ(s′)

s′(s′ − s− iε)

=
s

π

∫ ∞

4M2
π

ds′
δ(s′)− δ(s)

s′(s′ − s)
︸ ︷︷ ︸

≡unum

+
sδ(s)

π

∫ ∞

4M2
π

ds′
1

s′(s′ − s− iε)
︸ ︷︷ ︸

≡uanal

.(A.4)

Now one computes unum numerically for any δ(s), and uses Eq. (A.3)
with f(x) = 1/s′ to analytically integrate the singularity:

uanal =
sδ(s)

π
PV

∫ ∞

4M2
π

ds′
1

s′(s′ − s)
+ iδ(s)

=
sδ(s)

π
lim
∆→0

1

s

{[
log

∣∣∣∣
s′ − s

s′

∣∣∣∣
]s−∆

4M2
π

+

[
log

∣∣∣∣
s′ − s

s′

∣∣∣∣
]∞

s+∆

}
+ iδ(s)

=
δ(s)

π
log

∣∣∣∣
4M2

π

4M2
π − s

∣∣∣∣+ iδ(s) . (A.5)
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Details of the axial form

factor calculation

B.1 Mass and wave-function renormalization of

the nucleon

As stated in Ref. [43], the Fourier transform of the two point function
omitting the multiparticle branch cut:

∫
d4x 〈Ω|TΨ(x)Ψ̄(0) |Ω〉 eipx =

iZ(/p+mN )

/p−mN + iε
, (B.1)

which defines the renormalized mass, mN , and the wave-function renor-
malization constant, Z, for the nucleon case. It is given by the sum
infinite 1PI two point amplitude called selfenergy, Σ(/p), with chiral limit
propagators

∫
d4x 〈Ω|TΨ(x)Ψ̄(0) |Ω〉 eipx

=
i

/p− m̊
+

i

/p− m̊

(
Σ(/p)

/p− m̊

)
+

i

/p− m̊

(
Σ(/p)

/p− m̊

)2

+ ...

=
i

/p− m̊− Σ(/p)
. (B.2)

After the resummation, the renormalized mass mN is defined by the pole
position:

/p− m̊− Σ(/p)|/p=mN
= 0 . (B.3)
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Expanding Σ around /p = m̊ (/p − m̊ counts as a small quantity O(p)

off-shell) one obtains

Σ(/p) = Σ(m̊) + (/p− m̊)Σ′(m̊) +
1

2
(/p− m̊)2Σ′′(m̊) + ...

≡ Σ(m̊) + (/p− m̊)Σ′(m̊) +R(/p), (B.4)

where the tilde stays for derivative with respect to /p and R is defined
by the higher orders. Thus, one can express the propagator as:

1

/p− m̊− Σ(/p)
=

1

/p− m̊− Σ(m̊)
1−Σ′(m̊) −

R(/p)

1−Σ′(m̊)

1

1− Σ′(m̊)
. (B.5)

The pole satisfies then

mN = m̊+ ZΣ(m̊) + ZR(mN ) , (B.6)

where Z is the residue

Z =
1

1− Σ′(m̊)
. (B.7)

As in Ref. [42] we calculate the nucleon selfenergy up to O(p4). Sep-
arating in chiral orders it reads

Σ = Σ(2) +Σ(3) +Σ(4) , (B.8)

with the tree level
Σ(2) = −4c1M

2
π , (B.9)

and the rest given as supplementary material in the Mathematica note-
book on the website shorturl.at/bAEGL (clickable link). Expanding the
pole in Eq (B.4) around m̊, the renormalized mass is given by

mN = m̊+Σ(m̊) + Σ(2)Σ(3)(m̊) +O(p5) , (B.10)

neglecting O(p5). This yields a better convergence than just taking the
first recursive solution from tree level, mN = m + Σ(/p = m̊ + Σ(2))

. It corresponds to a minimal inclusion of c1 insertions, just at lineal
order. Including higher c1 orders might be troublesome if not performed
together with the addition of other diagrams.

For the wave-function renormalization constant, we expand Eq. (B.7)
as

Z ≡ 1 + δZ = 1 + Σ′(m̊) . (B.11)
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Then we perform an analogous expansion as for the mass:

δZ = Σ′(m̊) + Σ(2)Σ(3)′′(m̊) +O(p5) (B.12)

neglecting O(p5). This corresponds again to a minimal inclusion of c1
mass insertions.

B.2 LEC conversion

The covariant renormalization prescription adopted in Refs. [104, 105]
differs from EOMS. In EOMS only power-counting breaking terms are
subtracted by a shift in the LECs. To obtain an equivalence between
covariant and heavy-baryon results, the method of Ref. [104] also sub-
tracts infrared-regular terms at the order of the calculation, as well as
terms proportional to log

(
M2

π/m
2
N

)
. After setting λ̄ = 0 and µ = mN in

Eq. (21) of Ref. [104] one is left with a dimensionally regularized LEC,
xr:

xr = x̄cov +
1

F 2
π

(
δx̄

(3)
f + δx̄

(4)
f

)
+

βx
32π2F 2

π

log

(
M2

π(phys)

m2
N(phys)

)

= xEOMS + δxEOMS
f , (B.13)

which makes possible to write the renormalized EOMS LECs xEOMS in
terms of the corresponding ones, x̄cov, from Refs. [104, 105]. The β-
functions βx needed to cancel the mesonic tadpole terms are reported
in Appendix B of Ref. [104] together with the finite shifts δx̄(3,4)f . Our
EOMS finite shifts δxEOMS

f are provided in the supplementary material
of our work [31] as well as on the website shorturl.at/bAEGL (clickable
link). In particular, for the relevant LECs in this study we obtain that

dEOMS
16 = dcov16 +

1

F 2
0

δd̄
(3)
16f +

βd16
32π2F 2

0

log

(
M2

π(phys)

m2
N(phys)

)
, (B.14)

with

δd̄
(3)
16f =

1

32π2
(̊gA + g̊3A) and βd16 =

g̊A
2

+ g̊3A (B.15)

because, in this case, δd̄(4)16f = δdEOMS
16f . Additionally,

cEOMS
1−4 = ccov1−4 , (B.16)
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once βc1−4
= 0 [104], and the finite shifts coincide with those in EOMS.

Equations B.14-B.16 are derived for the /∆ case but hold also for the
model with the ∆ pole of Ref. [104] since it does not include additional
renormalizations.
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Appendix C

Details of the EM form factor

calculation

C.1 Pion-mass dependence of mesonic quantities

In order to compare dispersively modified ChPT to LQCD results, it is
necessary to know the pion-mass dependence of the pion vector form
factor, Fv(s,Mπ), and the pion-pion (p-wave) scattering phase shift,
δ(s,Mπ).

For the phase shift, we employ the IAM, using to some extent the
PWAs of Ref. [45]. However, at next-to-leading order (NLO) the p-wave
phase shifts δNLO

IAM (s) do not approach π asymptotically as they should.
[170, 171]. This problem is remedied at two-loop order by the next-
to-next-to leading order (NNLO IAM) phase shifts. Unfortunately, at
physical pion masses, the ρ-meson peak is not so well reproduced by the
NNLO IAM fit to LQCD data [45]. For this reason, in the present work,
we use NLO IAM, but instead of smoothly extrapolating the phase shift
to π [171], we modify the LO ChPT ππ amplitude t2(s) with a Blatt-
Weisskopf form factor [172]:

t̃2(s) = t2(s)
1

1 + r2p2cm
=

sσ2

96πF 2
0

1

1 + r2p2cm
, (C.1)

with the velocity of the pions σ(s) ≡
√
1− 4M2

π/s. The range parameter
r characterizes the scale that we do not resolve by our effective theory,
i.e. we expect r ∼ 1/Λ. The modified IAM amplitude tBW

IAM is then given
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as

1

tBW
IAM

=
t̃2 − t̃4

t̃22
=
t̃2 − Re t4

t̃22
− iσ , (C.2)

where

Re t4 =

2∑

i=0

bi(s) [L(s)]
i +

2∑

i=1

bli(s)l
r
i , (C.3)

with L(s) defined as

L(s) ≡ log
1 + σ(s)

1− σ(s)
. (C.4)

The coefficient functions are [45]

bl1(s) = −2bl2(s) =
s
(
4M2

π − s
)

48πF 4
0

,

b0(s) = −120M6
π − 197M4

πs+ 61M2
πs

2 − 2s3

27648π3F 4
0 (s− 4M2

π)
,

b1(s) = − 64M8
π − 55M6

πs+ 6M4
πs

2

2304π3F 4
0 s σ(s) (s− 4M2

π)
,

b2(s) = −M
4
π

(
6M4

π + 13M2
πs− 3s2

)

1536π3F 4
0 (s− 4M2

π)
2 . (C.5)

It is easy to check that phase shifts δ(s,Mπ) extracted from tBW
IAM

approach π smoothly. At NLO, the combination of LECs, lr2 − 2lr1, ap-
pears in t4. In Ref. [45], it is found that this combination is roughly in
the range 0.009 < lr2 − 2lr1 < 0.019. For physical pion masses, we fit
δ(s,Mπ = 0.139GeV) in the interval s ∈ (4M2

π , 1.5GeV2) to the phase
shifts extracted from the dispersive analysis of Ref. [51]. We find that
the best-fit values are lr2 − 2lr1 = 0.01 and r = 0.12 fm = 1/(1.6GeV).

The resulting δ(s,Mπ = 0.139GeV) is compared to the corresponding
function from Ref. [51]. Figure C.1b shows the phase shifts at different
pion masses. It is apparent from the figure that for Mπ ≈ 0.45 GeV,
mρ < 2Mπ and the ρ width approaches zero. In other words, the ρ-meson
becomes a bound state. Of course, above this Mπ value the formalism is
not valid.

The ρ mass can be extracted from the crossing of δ(s) at π/2. As
shown in Fig. C.2, with the parameters r and lr2 − 2lr1 obtained at the
physical pion mass, we predict the LQCD mρ(Mπ) [54] very precisely.
It is also in agreement with the three-flavor IAM results of Ref. [55].
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Figure C.1: Pion p-wave scattering phase shift δ from Eq. (C.1) as a
function of the Mandelstam variable s.
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Figure C.2: Mπ dependence of the ρ-meson mass mρ. The lattice data
are taken from Ref. [54].

Regarding the pion-vector FF, Eq. (3.13)

Fπ(s,Mπ) = [1 + αV (Mπ)s] Ω(s,Mπ) , (C.6)

we compute the Omnès function from δ(s,Mπ) with Eq. (1.80). The
correction αV (Mπ) has been introduced on phenomenological grounds to
improve the description of the experimental data for Fπ(s) [157, 149, 151]
and its physical value can be predicted from the pion charge radius. To
determine αV (Mπ), we study the pion radius in NLO ChPT [2]:

〈r2π〉 =
1

16π2F 2
0

(
l̄6 − 1

)
=:

1

16π2F 2
0

[
l̃6(µ

2)− 1− log
(
M2

π/µ
2
)]
. (C.7)

Notice that, contrary to l̄6, LEC l̃6 is Mπ independent but depends on the
renormalization scale [2]. Using the experimental value 〈r2π〉 = 0.434 fm2,
we find l̃6 = 14.26 for µ = 0.770 GeV. On the other hand, the pion charge
radius is defined via the pion vector FF in the usual way, cf. Eq. (1.24).
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Figure C.3: The dependence of the phenomenological parameter αV on
the pion mass.

From Eq. (C.6) one obtains

αV (Mπ) =
〈r2π〉
6

− Ω̇(0,Mπ) , (C.8)

with

Ω̇(0,Mπ) =
1

π

∫ ∞

4M2
π

δ(s,Mπ)

s2
ds . (C.9)

In this way we determine the numerical αV (Mπ) dependence, displayed
in Fig. C.3. Note that the logarithmic pion-mass dependence in (C.7) is
compensated by a corresponding logarithm emerging from (C.9). There-
fore αV has no logarithmic divergence at Mπ = 0. As a cross-check, in
Fig. C.4 we also present the resulting Fπ(s) at the physical pion mass.
It is displayed together with data from Belle [52]. We observe an excel-
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Figure C.4: Our prediction for the pion vector FF Fv(s) at the physical
pion mass. The data are obtained from the process τ− → π−π0ντ as
measured by the Belle experiment [52].
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lent agreement with data up to energies of about 1GeV. A pure Omnès
function (αV = 0) yields a less satisfying description.

In summary, we have obtained reasonable parametrizations of the pion
p-wave scattering phase shift, checking its Mπ dependence with LQCD
mρ data. From δ(s,Mπ) we determine the pion vector FF as a function
of Mπ, which we have checked that reproduces well physical data.

C.2 Diagrams generated by dispersive integrals

In this section, the relation among dispersive and ChPT contributions
is discussed. From the optical theorem (1.55) one could naively think
that a dispersive integral produces only one-loop diagrams from tree-
level amplitudes (also two-loop diagrams from one-loop and tree-level
input and so on). From a purely perturbative perspective (ChPT regime)
this is true. However, this idea would not explain how the whole FF
(including tree level) is generated by the Cauchy integral of Eq. (3.2). In
fact, a careful look at the integration region of the dispersive integrals is
necessary. We distinguish the low-energy region of ChPT, the resonance
region of the ρ meson, and the high-energy region that is actually cut
away by the cutoff Λ (but might leave a Λ dependence). We introduce a
second cutoff ΛL that distinguishes the first two regions, i.e.

4M2
π ≤ s, s′ < Λ2

L ChPT region,

Λ2
L ≤ s, s′,m2

ρ < Λ2 resonance region,

Λ2 ≤ s, s′ high-energy region. (C.10)

In the following semi-quantitative discussion it is enough to cover the
resonance region considering the ρ as a narrow resonance. This means
that in the intermediate region the pion p-wave phase shift δ(s) changes
rather suddenly from about 0 to π, crossing π/2 at s = m2

ρ. Therefore,
we approximate

Fv(s) ≈ Ω(s) ≈
m2

ρ

m2
ρ − s− iε

≈
m2

ρ

m2
ρ − s− imρΓρ

,

Ω(s)F ∗
v (s) ≈ |Ω(s)|2 ≈

πm3
ρ

Γρ
δ(s−m2

ρ) , (C.11)
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with Γρ the ρ width. In addition, we consider the reduced scattering
amplitude T from Eqs. (3.11, 3.12) generically as

T (s) ≡ K(s) + Ω(s)R(s) . (C.12)

This relation defines R as the sum of the polynomial P and the Omnès
integral.

With this at hand, one can decompose the dispersive integral of
Eq. (3.4) as

Λ2∫

4M2
π

ds

π

ImF2π(s)

s− q2 − iε
≈

Λ2∫

4M2
π

ds

12π2

K(s)p3cmΩ
∗(s)√

s(s− q2 − iε)
+

Λ2∫

4M2
π

ds

12π2

R(s)p3cm|Ω(s)|2√
s(s− q2 − iε)

≈
Λ2∫

4M2
π

ds

12π2

K(s)p3cmΩ
∗(s)√

s(s− q2 − iε)
+

Λ2

L∫

4M2
π

ds

12π2

R(s)p3cm√
s(s− q2 − iε)

+
m2

ρ

12πΓρ

R(m2
ρ)p

3
cm(m

2
ρ)

m2
ρ − q2 − iε

. (C.13)

Now we comment on the last three terms individually. Starting by the
first one, for large s, both the left-hand-cut component K and the Omnès
function Ω decrease. Either K drops so fast that the first integral is most
sensitive to the ChPT region or one needs Ω to cut off the s-integration
at

Λ2∫

4M2
π

ds

12π2

K(s) p3cmΩ∗(s)√
s(s− q2 − iε)

. (C.14)

In any case, a tree-level input for K is related to the one-loop diagram
3.2f of Fig. 3.2. If K drops fast enough, this triangle diagram is not very
sensitive to mρ or Λ. In ChPT, the result of the integral will not depend
on the renormalization scale µ. The results (dispersive and ChPT) will
approximately agree. If K does not drop rapidly enough, the disper-
sive expression is effectively renormalized at a scale mρ while the ChPT
diagram calculated in the standard way is renormalized at µ. Then,
differences between the dispersive and pure ChPT treatments can be
compensated by readjusting counter terms (LECs), cf. also Appendix
C.4. At low values of s, one has Ω(s) ≈ 1+O(p2). If K is of order O(pn)

in the chiral counting then the integral (C.14) is of order O(pn+2). This
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matches the usual expectation from ChPT: LO vertices lead to NNLO
one-loop diagrams.

We can then move to the term

Λ2

L∫

4M2
π

ds

12π2

R(s) p3cm√
s(s− q2 − iε)

, (C.15)

which corresponds to the ChPT diagrams 3.2b and 3.2c of Fig. 3.2 and
higher-loop diagrams. It is sensitive to the cutoff ΛL, however this can
be compensated by changes of LECs again.

Until now, we have seen that tree-level input for the scattering am-
plitudes leads to one-loop contributions for the FF. The most interesting
aspects are related to the last term of (C.13). The clear peak structure
of Ω has motivated the term

m2
ρ

12πΓρ

R(m2
ρ) p

3
cm(m

2
ρ)

m2
ρ − q2 − iε

. (C.16)

The polynomial contributions, P , of Eqs. (3.11,3.12) produce polynomial
terms in ChPT when one expands (C.16) in powers of q2/m2

ρ. More
generally, tree-level input for the scattering amplitudes leads to tree-level
contributions to the FF. One-loop input leads to one-loop contributions
and so forth.

This has consequences for the power counting and the accuracy of
the inputs employed. In general, this forces one to have an accuracy of
O(pn) in the reduced scattering amplitudes to reach an O(pn) precision
for the FF. As explained before, this complication is circumvented for F1

by using a subtracted dispersion relation. For F2, however, we require
input beyond LO. We actually cover a significant part of the one-loop
contributions involving an NLO vertex and, in particular diagram 3.2c
of Fig. 3.2. To achieve a fair comparison of pure ChPT and dispersion
theory, we also include ChPT p4 loop diagrams. The details are reported
in Sec. 3.3.
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C.3 The left-hand cut structures K1,2

We report here how to obtain the K1,2 amplitudes of Eq. (3.11):

K1(q
2) =

8m2
N

4m2
N − q2

(
KE(q

2)− q2

4m2
N

KM (q2)

)
,

K2(q
2) =

8m2
N

q2 − 4m2
N

(KE(q
2)−KM (q2)) .

(C.17)

The explicit formulas for the nucleon and ∆ contribution to KE,M can
be extracted from [151, 153]. The polynomials P1 and P2 are computed
in the exact same way as in Eq. (C.17).

C.4 The renormalization-group running of d6

Here the dependence of d6 with the dimensional renormalization scale,
µ, is reported:

d6(µ) = d6(mρ)−
1

12

βd6
(4πFπ)2

log

(
mρ

µ

)
, (C.18)

where in ChPT βd6 = βno∆∆
d6 + β∆∆

d6 , while in disp+ChPT the running is
given just by the loop with two ∆, βd6 = β∆∆

d6 . The β functions read

βno∆∆
d6 = 2− 2̊g2A + 4h2A

(
m̊2 + 2m̊m̊∆ − 8m̊2

∆

)

9m̊2
∆

, (C.19)

β∆∆
d6 = 10h2A

(
7m̊4 + 6m̊3m̊∆ + 9m̊2m̊2

∆ + 16m̊m̊3
∆ − 48m̊4

∆

)

27m̊4
∆

.

The origin of the difference in the runnings in the two schemes is the
fact that the dispersively treated loop diagrams do not require an ex-
plicit renormalization. Instead, the Omnès function cuts off the integrals
approximately at s = m2

ρ.
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Details of the Λc semileptonic

decay calculation

D.1 Heavy quark transition form factors

D.1.1 On-shell heavy quark approximation

Here the pseudoscalar and tensor form factors are related to the (ax-
ial)vector ones following the OSHQ prescription. One follows the same
procedure as in Sec. 1.4.2, replacing JV (x) by the axial current, Jµ

A(x) =

l̄(x)γµγ5h(x), and JS(x) by the pseudoscalar one, JP = l̄(x)γ5h(x).
Therefore one obtains

FP ūL(p
′)γ5uH(p) = − 1

mh
ūL(p

′)pµΓ
µ
AuH(p) , (D.1)

with

Γµ
A =

(
γµG1 +

pµ

M
G2 +

p′µ

m
G3

)
γ5 . (D.2)

The resulting expression for FP in terms of axial form factors G1−3 is
also given in Eq. (1.99).

Next we repeat the procedure with tensor currents Jµν
T (x) = l̄(x)σµνh(x)

and Jµν
TA(x) = l̄(x)σµνγ5h(x) and obtain

ūL(p
′)
[
(pαΓ

α
V )p

µ −m2
hΓ

µ
V

]
uH(p) = imhūL(p

′)ΓµνpνuH(p), (D.3)

ūL(p
′)
[
(pαΓ

α
A)p

µ −m2
hΓ

µ
A

]
uH(p) = −imhūL(p

′)Γµν
A pνuH(p), (D.4)

168



Appendix D. Details of the Λc semileptonic decay calculation

where (ε0123 = 1)

Γµν
A = − i

2
εµναβΓαβ , (D.5)

thanks to the relation

σµνγ5 = − i

2
εµναβσαβ , (D.6)

and

Γαβ =
i

M2

(
pαp′β − pβp′α

)
T1 +

i

M

(
γαpβ − γβpα

)
T2

+
i

M

(
γαp′β − γβp′α

)
T3 + σαβT4 . (D.7)

In the mh/M → 1 limit, Eqs. (D.3,D.4) lead to a consistent and indepen-
dent set of four equations for T1−4 in terms of F1,3 and G1,3, completing
the OSHQ prescription of Eq. (1.99).

D.1.2 Heavy quark spin symmetry approximation

Here the transition form factors are given as a function of the HQSS ones,
F̃1,2, from Sec. 1.4.2. It is a straightforward result from Eq. (1.101):

γ = 1: FS = F̃1 + F̃2

γ = γ5: FP = F̃1 − F̃2

γ = γµ: F1 = F̃1 − F̃2, F2 = 2F̃2, F3 = 0

γ = γµγ5: G1 = F̃1 + F̃2, G2 = −2G̃2, G3 = 0

γ = σµν
: T1 = T3 = 0, T2 = −2F̃2, T4 = F̃1 + F̃2 .

D.2 General framework and observables

With the aim of taking advantage of the general analytic results derived
in Ref. [173], we rewrite the Hamiltonian of Eq. (1.90) as

Heff = 4GF Vcs√
2

[
CV

LROV
LR + CV

RROV
RR + CS

LROS
LR

+CS
RROS

RR + CT
RROT

RR

]
, (D.8)
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where

OV
(L,R)R = (s̄γαPL,R c)(¯̀

cγαPRν
c
` ) ,

OS
(L,R)R = (s̄ PL,R c)(¯̀

c PRν
c
` ) ,

OT
RR = (s̄ σαβPR c)(¯̀

cσαβPRν
c
` ) ; (D.9)

`c, νc` are the charge-conjugated lepton fields. Taking into account that

ν̄`PRΓ` ≡ −¯̀cCΓTC†PRν
c
` , (D.10)

and

CΓTC† = (−1)nΓ ;

{
n = 0 , Γ = I

n = 1 , Γ = γα, σαβ
, (D.11)

where C = iγ2γ0 denotes the charge conjugation matrix, we identify

CV
LR = 1 + ε`V , CV

RR = ε`R,

CS
LR = −ε

`
S − ε`P
2

, CS
RR = −ε

`
S + ε`P
2

,

CT
RR = ε`T . (D.12)

Once the charge conjugated fields play for antiparticles the same role as
the original fields for particles, all the expressions derived in Ref. [173]
for b→ c`−ν̄` are directly applicable.

In particular, one can write the differential decay width as

d2Γ

dωds13
=
G2

F |Vcs|2Mm2

16π3

[
A(ω) + B(ω)k · p

M2
+ C(ω)(k · p)

2

M4

]
. (D.13)

M and m are the masses of the initial and final hadrons, respectively;
s13 ≡ (p − k)2 = M2 − 2k · p; ω ≡ p · p′/(Mm) is the product of the
hadron four-velocities. It is related to q2 = M2 +m2 − 2Mmω. Func-
tions A(ω), B(ω) and C(ω) are given in Appendix D of Ref. [173] as a
combination of Wilson coefficients1 and purely hadronic structure func-
tions. The latter are given in terms of transition form factors: in the
case of 1/2+ → 1/2+ transitions, as the one under study here, explicit
expressions can be found in Ref. [69].

1It is useful to bear in mind that from the definitions of Appendix A of Ref. [173] and Eq. (D.12)
follows that CV

R
= 1 + ε`

V
+ ε`

R
, CA

R
= −(1 + ε`

V
− ε`

R
), CS

R
= −ε`

S
, CP

R
= −ε`

P
, CT

R
= ε`

T
.
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The k · p product can be written as

k · p = M

2

(
1− m2

`

q2

)
(Mω +m

√
ω2 − 1 cos θ) , (D.14)

with Mω =M −mω. Accordingly,

d2Γ

dωd cos θ
=

G2
F |Vcs|2M2m3

16π3

√
ω2 − 1

(
1− m2

`

q2

)2

×[a0(ω) + a1(ω) cos θ + a2(ω) cos
2 θ] , (D.15)

where a0,1,2(ω) are linear combinations of A(ω), B(ω) and C(ω) (see
Eq. (18) of Ref. [69]). Finally, the ci functions introduced in Eq. (4.1)
correspond to ai up to a normalization:

ci =
G2

FMm2

32π3

√
ω2 − 1

(
1− m2

`

q2

)2
ai
Γtot

. (D.16)

The ci functions can be extracted from measurable quantities: the
differential width, dΓ/dq2, forward-backward asymmetry, AFB, and con-
vexity, Aπ/3. They are related as follows [162, 64, 69],

1

Γtot

dΓ

dq2
= |Vcs|2 2(c0 + c2/3) , (D.17)

AFB ≡
(
dΓ

dq2

)−1 [∫ 1

0

d cos θ
d2Γ

dq2d cos θ
−
∫ 0

−1

d cos θ
d2Γ

dq2d cos θ

]

=
c1

2(c0 + c2/3)

= c1 |Vcs|2
(
dB
dq2

)−1

, (D.18)

Aπ/3 ≡
(
dΓ

dq2

)−1
[∫ 1

1/2

d cos θ
d2Γ

dq2d cos θ
−
∫ 1/2

−1/2

d cos θ
d2Γ

dq2d cos θ

+

∫ −1/2

−1

d cos θ
d2Γ

dq2d cos θ

]

=
c2

4(c0 + c2/3)

=
1

2
c2 |Vcs|2

(
dB
dq2

)−1

. (D.19)
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D.3 Wilson coefficients conversion

In Fig. 4.4 we show the prediction employing the values of the Wilson
coefficients extracted in Ref. [162]. It is worth mentioning that the values
used in Ref. [64] contain mistakes. The relation between the Wilsons in
[162] and the ones in this work is, assuming only real component:

εL,R =
gV ∓ gA

2
= gVL,R

, εS,P,T = gS,P,T . (D.20)

These ranges are: εL = (1.2± 2.0)× 10−2, εR = (−0.9± 2.0)× 10−2,
εS = (−1± 2)× 10−2, εP = (0.7± 1.4)× 10−3, εT = (1.2± 1.8)× 10−2.
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