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Chapter 1

Introduction

Since the discovery in the early 1950s that pions could be produced by photon beams
on nuclei [1], electromagnetic (EM) probes on nucleons have been a very important
source of information in the study of hadron interactions, being also crucial in the
research of baryonic resonances and their properties. Moreover, hadron interactions
are of great interest in the understanding of the fundamental strong interaction. They
are described by quantum chromodynamics (QCD), a local non-abelian gauge theory
developed in the 1970s in terms of the basic constituents of hadrons, quarks and
gluons.

In the study of pion production processes, many theoretical and experimental
efforts have been addressed to the intermediate energy region going from the threshold
to the region where baryon resonances play an important role. In this work, I focus
on the near threshold pion electromagnetic production on nucleons. In detail, I study
the effect of the ∆(1232) resonance for the different charge channels in photo- and
electroproduction of pions. I calculate the relevant cross sections, their angular and
energy dependence in order to compare with current data. Subsequently, the results
obtained from these studies are applied to a sample nuclear reaction, namely the pion
photoproduction on the 12C nucleus, where the effect of the ∆ can be handled in
terms of the elementary amplitude (pion photoproduction on nucleons).

Although QCD successfully describes strong interacting processes at high energies,
it cannot be directly applied to the low energy region of hadron processes. This is due
to the energy dependence of the strong coupling, αS . At higher energies, its size is
small and QCD is treated as a perturbative quantum field theory (QFT). This is what
we know as the asymptotic freedom of quark fields. On the other hand, the running
αS is considerably large at low energies and QCD is non-perturbative. This makes the
typical perturbative tools of QFT practically useless. Thus, the application of QCD
divides into different energy regions, typically separated at the scale Λχ = 1 GeV.
This scale sets the lower limit where the perturbative series of QCD breaks down.

In fact, the energies of the hadron processes investigated here are far below the
scale Λχ, and they belong to the non-perturbative regime of QCD. The scale Λχ
can also be understood as the upper limit where quarks interact strongly enough to
arrange in confined states, i.e. to form hadrons as effective degrees of freedom. We
consider, in consequence, an effective field theory (EFT) approach that describes the
low energy behaviour of QCD but in terms of interacting hadron fields.

First theoretical attempts to address electromagnetic low energy hadronic pro-
cesses were made using some phenomenological models that required only gauge and
Lorentz invariance, as well as current algebra and partial conservation of the axial
current (PCAC). However, these models lacked a systematic way to describe the dif-
ferent processes and failed to reproduce neutral pion photoproduction at some low
energy regions.
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In this work, we use Chiral Perturbation Theory (ChPT), an EFT that has been
developed over the last 40 years. This is a powerful tool for describing the low-energy
dynamics of strong processes in terms of effective hadron states. ChPT was formulated
as a systematic EFT that fulfills chiral symmetry, its breaking, and all other funda-
mental properties of QCD. This EFT is aimed to be applied in the non-perturbative
energy region, sufficiently lower than 1 GeV. Moreover, ChPT has been shown to
reproduce satisfactorily the experimental data for the charged and neutral pion pro-
duction on nucleons very close to threshold.

The ChPT Lagrangian is written in terms of baryon and meson fields as relevant
degrees of freedom, instead of quarks and gluons. Here, we will focus on the lightest
baryons and pseudoscalar mesons in the isospin limit: pions, nucleons and the ∆
resonances that follow an approximate isospin SU(2) symmetry. Additionally, from the
point of view of QCD, those baryons and mesons are composed by the u and d quarks
accommodated in a SU(2) flavor symmetry. The quarks fields can be decomposed in
left and right components qL and qR and in the relativistic limit of vanishing quark
masses those components are decoupled in the QCD Lagrangian leading to a global
chiral symmetry.

However, the phenomenological observation that the lightest mesons have mass
suggests that the chiral symmetry is broken. The masses of the baryon and meson
spectra are interpreted as a consequence of the quark masses producing an explicit
chiral symmetry breaking. In addition, given that the light meson masses are small
compared to the scale Λχ, the corresponding pseudoscalar mesons are associated to
the Goldstone bosons of a spontaneous symmetry breaking (SSB). Also in the baryon
spectrum, the spontaneous symmetry breaking is confirmed by the absence of baryon
partners of negative parity with the same masses as the positive parity ones.

Spontaneous and explicit symmetry breaking are basic properties in building the
effective Lagrangian of ChPT.
As in any proper effective field theory, the ChPT Lagrangian is ordered according
to an expansion in terms of powers of small parameters. In this case, the expansion
parameters are given by the small momenta, p/Λχ, and the lightest pseudo Goldstone
masses, Mπ/Λχ. This is a suitable approximation method for energies well below the
Λχ = 1 GeV, instead of the running coupling αS . Also, the relevant degrees of freedom
in the small momenta expansion (long distances) are those of asymptotically observed
hadrons, since they are the confined states produced by the strong interaction.

Although the idea of an approximation in a series of expansion parameters seems
inexact since we cannot calculate infinite terms, the convergence of the series is under
control and does not necessarily mean a lack of accuracy. The quality of the conver-
gence depends on the small size of the Goldstone boson masses, which in the flavor
SU(2) case is considered a good assumption since Mπ << 1 GeV. Hence, the ChPT
approach is accurate enough for the SU(2) multiplet of pseudoscalar pions at low en-
ergy. The inclusion of nucleon fields in ChPT as degrees of freedom is also possible
at the small momenta limit, but this introduces a new scale, the nucleon mass, which
is of similar size to the chiral breaking scale, m ∼ Λχ.

Within the ChPT frame, loop amplitudes can also contribute to amplitude calcu-
lations at a given chiral order. Loop amplitudes contain ultraviolet (UV) divergences
that can be renormalized with the inclusion of higher order lagrangian counterterms.
UV divergences in ChPT, thus, can be renormalized systematically order by order.
Furthermore, each of the terms in the infinite series of the ChPT Lagrangian is pro-
portional to a low-energy-constant (LEC). These LECs, lacking a direct extraction
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from the low-energy QCD dynamics, are fixed by fitting to a data sample. Then, the
resulting Lagrangian can be directly used for further predictions.

However, a technical difficulty arises when loop calculations involving baryons are
implemented in ChPT. The inclusion of loops with baryons is known to spoil the chiral
power counting in terms of p and Mπ for a given amplitude. In particular, nucleon
loops can give large contributions of the type mN/Λχ given by the similar size of the
nucleon mass to the scale Λχ. This conflict was resolved first in the heavy-baryon
ChPT approach (HBChPT) at the expense of losing Lorentz invariance, while the
original covariant ChPT was abandoned. Then HBChPT became standard in analy-
ses of hadron processes like pion electro- and photoproduction.
While in the non-relativistic HB approach the power counting of nucleon loops was re-
stored , the fact that relativistic corrections may be large in some processes questioned
the applicability of this framework. The interest in relativistic methods was renewed
and eventually, the conciliation of a consistent power counting with baryon-loops was
possible in the original relativistic formulation of ChPT with novel regularization
schemes, namely the infrared (IR) [2] and the extended on-mass-shell (EOMS) [3, 4]
schemes.
Both solutions, IR and EOMS, extract the conflicting power counting breaking terms
(PCBT) from one-loop contributions and reabsorb them into the LECs in addition
to the UV renormalization terms. The main difference between the EOMS and the
IR schemes is that in EOMS one subtracts exclusively the conflicting terms at lower
orders while in the IR renormalization the subtraction also includes higher order terms.

In this thesis, we implement the EOMS renormalization in our calculations. The
reasons are twofold: EOMS usually converges faster than HB and (IR)ChPT. As a
consequence, this framework has become popular and has been successfully used to
describe many observables involving baryons [5–22]. On the other hand, both HB
and IRChPT had shown good agreement to EM pion production off nucleons only
at very low energies. Extensions to higher chiral orders in IRChPT showed a better
agreement for these processes. However, as in the case of HBChPT, the agreement
was acceptable only for a still limited range of energies [20] compared to the EOMS
approach [21]. Furthermore, the situation became technically complicated due to the
large number of still unknown LECs involved at those higher orders.

Besides, recent studies have shown that, in some cases, a simple way to improve
the convergence of the chiral series in relativistic ChPT is to include the spin-3/2
resonance ∆ as an additional degree of freedom. In fact, the quality and convergence
of a given amplitude calculation at higher energies depends on the degrees of freedom
taken into account. Moreover, it is well known that additionally to the pion and
nucleon fields, the contribution of the ∆(1232) plays an important role in the neutral
pion production off nucleons process due to its proximity to the πN threshold.
The ∆(1232) resonance, which couples strongly to nucleon and pion, can be easily
incorporated in our framework. That means that ∆ will be propagated explicitly as
an intermediate state in the processes studied here. This particular degree of freedom
implies an additional expansion parameter in the chiral series given by the difference
between the nucleon and the ∆ masses, δ = m∆ −mN ≈ 300 MeV. This parameter
induces an extension to the power counting rules of the chiral series with nucleon and
pion degrees of freedom.

The purpose here is to make a comprehensive analysis within the aforementioned
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framework of the pion photo- and electroproduction off nucleons and study the contri-
bution of the ∆(1232) resonance on them. The neutral pion photoproduction channel
has already been investigated in EOMS covariant ChPT with ∆ contributions [21,22].
Here, the previous study is extended by adding the photoproduction of charged pions
and including the pion electroproduction process for all the neutral and charged pion
channels. This allows for the exploration of more interaction vertices with both real
and virtual photons and therefore to examine some additional pieces of the chiral
Lagrangian.
In this manner, a more complete and better determination of the relevant LECs can
be made by comparing the theoretical results with a more complete set of experimen-
tal data. Furthermore, some recent data has been incorporated for photoproduction
of neutral [23] and charged pions [24], and explicit isospin breaking in the loop calcu-
lations has been considered. This latter point considerably improves the agreement
with data at low energies.
Finally, a better determination of a more complete set of LECs could be used for
predictions as in weak pion production and many other processes.
In particular, the examination of the vector couplings of the nucleons with both real
and virtual photons might reduce the large uncertainties that currently hinder the
efforts to provide a theoretically well founded prediction of the neutrino induced pion
production [25,26], a very important process in many of the neutrino experiments.

The present thesis includes three main studies: pion photo- and electroproduction
on nucleons, as well as pion photoproduction on the 12C nucleus. They are developed
through the following chapters: In Chapter 2, the basics of hadron interactions in the
relativistic ChPT framework are introduced to be used in the amplitude calculations.
In Chapter 3, the general formalism for the pion EM production on nucleons is pre-
sented, which includes the parametrizations of the matrix elements and their general
properties. Also, the theoretical expressions to calculate the relevant observables to be
compared with experimental data are shown. Chapter 4 is dedicated to the tree and
loop amplitude calculations within the ChPT approach and the procedure followed
in the limit of SU(2) flavor symmetry. Then, the results obtained from the fitting
procedure of relevant LECs with data are shown in Chapter 5. Also, the compar-
ison of theoretical observables in ChPT with data is presented here. In this work,
we compare two models: one with the inclusion of ∆(1232) resonance and the other
in the ∆-less case. I show the results obtained for the charged and neutral channels
of pion photo-and electroproduction on nucleons. Then, Chapter 6 shows a sample
study for the neutral pion photo production on nuclei of 12C as an application of the
studies from the previous chapters. Finally, I discuss the final results and conclusions
in Chapter 7.



5

Chapter 2

Theoretical framework: Chiral
Perturbation Theory

In this chapter, I briefly present the theoretical formalism and methods on which the
work throughout this thesis is based. In particular, at the low energies considered,
the process of pion production induced by electromagnetic sources on nucleons will
be investigated using Chiral Perturbation Theory, an effective field theory based on
the underlying symmetry properties from QCD and appropriate for that energy re-
gion. Good reviews of ChPT and very detailed presentations can be found in the
references [27–31].
Due to the large size of the strong coupling at low energies, it remains a challenge
to calculate with perturbative methods and understand the dynamics of the hadrons
directly from the QCD Lagrangian in terms of quarks, antiquarks and gluons. This
implies that an expansion on the coupling constant for the strong interactions is not
viable. Instead, an EFT, such as ChPT, represents the best alternative approach.
In section 2.1, I introduce some QCD properties. I review the chiral symmetry and
its spontaneous breaking as a preliminary step for building the effective field theory
of QCD in terms of hadronic degrees of freedom. Then, in section 2.2, I present the
ChPT Lagrangian, with the inclusion of external electromagnetic fields. It has been
formulated systematically in a perturbative expansion of Lagrangian terms organized
in powers of small external momenta and light pseudoscalar meson masses. Here, I
cover only the Lagrangian terms that describe the interactions between the baryons
and mesons involved in the pion production on nucleons. These terms have been for-
mulated for the case of SU(2) flavor fields: pseudoscalar pions, nucleons and ∆(1232)
resonances. Along this section, I outline the power counting rules for the amplitude
calculations with ChPT. The power counting problem for diagrams with loops includ-
ing nucleons will be discussed here, as well as the δ-counting rules when including the
∆(1232). Additionally, I treat the renormalization methods used in this work.

2.1 QCD and its chiral symmetry

Quantum Chromodynamics (QCD) is believed to be the theory of strong interactions,
the gauge field theory that describes the color interactions of quarks and gluons.
QCD is based on the color SU(3) local gauge symmetry that leads to the strong
interactions through the exchange of colored-gluons. Additionally, there are several
symmetries. Among them there are the discrete global symmetries related to space-
time coordinates transformations such as C, P and T . Then, we can also find other
continuous global symmetries such as the chiral symmetry, related to the invariance
under U(nf )L×U(nf )R transformations of the left- and right components of the quark
fields, for nf flavors. Chiral symmetry, as I will detail below, plays a central role in the
properties of hadron processes driven by the strong interaction, for example the pion
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production processes treated in this work. Besides this, the global chiral symmetry
is only approximate in the QCD Lagrangian. In fact, it is broken by the quark mass
terms. In the particular case of light quarks, this symmetry is softly broken, and thus,
one can make many model-independent predictions for physical processes.

2.1.1 The chiral symmetry of the QCD Lagrangian

Let us consider nf flavors of quarks, collected in a vector field in flavor space: qT =
(u, d, . . . ). Color indices are omitted for simplicity. The corresponding SU(3) gauge
invariant QCD Lagrangian can be compactly written in the form:

LQCD = q
[
i /D −M

]
q︸ ︷︷ ︸

LqQCD

−1

4
GaµνG

µν
a , (2.1)

where the covariant derivative Dµ = ∂µ−igsGcµ λ
c

2 includes the gluon interaction fields
Gcµ and the strong coupling constant gs. Note that λc are the SU(3)-color Gell-Mann
matrices, then Dµ acts on the color space and is flavor independent. The quark mass
matrix M is defined in the flavor space as M = diag(mu,md,ms, . . . ,mnf ). The
next term in the Lagrangian (2.1) contains the gluon tensor Gµνa = ∂µG

a
ν − ∂νGaµ +

gsf
abcGbµG

c
ν with fabc the SU(3) structure constants.

We see that LQCD can be separated into two parts: the quark interaction term
LqQCD that describes the quark propagation and the quark-gluon interactions, and
the GcµνG

µν
c part that governs the gluon self-interactions. The fundamental parame-

ters of QCD are the coupling gs (or αs = g2
s

4π ) and the quark masses mq.
The analysis of the running of the strong coupling constant given by the renormal-

ization group equation leads to the fact that QCD is a theory with a weak coupling at
high energies (asymptotic freedom) and with a strong one at low-energies [32, 33]. In
this low energy non-perturbative regime, QCD appears to be confining. This is sup-
ported by the experimental evidence that the asymptotically free strong interacting
particles at these energies are not quarks and gluons but clusters of them organized
in color singlets called hadrons.

In order to treat the strong dynamics at the non-perturbative regime it is useful
to analyze the global symmetries of QCD. To do so, we will restrict ourselves to the
so-called light sector of QCD, with nf = 3 light quark flavors. Those are the u, d, s
quarks, that are much lighter than the so-called heavy quarks: c, b, t. The character-
istic hadron scale Λχ lies in between both regimes.

To visualize the chiral symmetry properties of the QCD Lagrangian, one decom-
poses the quark field vector into the left- and right hand fields, q = q

L
+ q

R
, where

q
R

=
1

2
(1 + γ5)q, q

L
=

1

2
(1− γ5)q. (2.2)

Then, the quark Lagrangian term LqQCD indicated in Eq. (2.1) can be rewritten as

LqQCD = iq̄
L
/Dq

L
+ iq̄

R
/Dq

R
−q̄

L
M q

R
− q̄

R
M q

L︸ ︷︷ ︸
LM

, (2.3)
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where LM indicates the masses part of the QCD Lagrangian. Given the flavor inde-
pendence of the QCD covariant derivative, Dµ, all the terms in LQCD (2.1), except
for LM , fulfill a global U(nf )L × U(nf )R symmetry related to the invariance under
the transformations

q
L
7−→ q′

L
= u

L
q
L

= e−iΘ
L
a
λa

2 eiΘ
L
q
L

q
R
7−→ q′

R
= u

R
q
R

= e−iΘ
R
a
λa

2 eiΘ
R
q
R

(2.4)

where uL,R ∈ U(nf )L,R are unitary nf × nf matrices in the flavor space1. The matri-
ces λa are the SU(nf ) generators with Lie algebra [λa, λb] = ifabcλ

c 2. As shown in
Eqs. (2.4), the unitary transformations uL,R are written with separated factors eiΘL,R

given that they are related to the invariance with respect to a global phase, and
both form independent subgroups U(1)L,R. In this way, the global symmetry group
U(nf )L × U(nf )R decomposes into SU(nf )L × SU(nf )R × U(1)L × U(1)R transfor-
mations.
In particular, we refer to the invariance under the subgroup G ≡ SU(nf )L×SU(nf )R
as the chiral symmetry. The chiral group G is composed by the chiral transfor-
mations g

L
= exp (−iΘL

a
λa

2 ) ∈ SU(nf )L and g
R

= exp (−iΘR
a
λa

2 ) ∈ SU(nf )R as in
Eqs. (2.4).

In the massless quark limit, when M → 0, the QCD Lagrangian, Eq. (2.1), is
invariant under chiral G transformations and the global phase groups U(1)L,R. Then,
it posses a total of 2× n2

f conserved Noether currents. Namely, from the uL and uR
transformations (2.4), the conserved currents are: Rµa , Lµa , correspondingly to the left
and right-handed chiral transformations, gR and gL. In addition, we have Rµ and
Lµ that derive from the unitary transformations e−iΘR,L . Nevertheless, instead of the
separated right and left-handed currents, the description that results more naturally
linked with phenomenology (parity) is that in terms of the vector, V , and axial-vector
A currents. Specifically,

V µ
a =Rµa + Lµa = q̄γµ

λa

2
q, (2.5)

Aµa =Rµa − Lµa = q̄γµγ5λ
a

2
q, (2.6)

V µ =Rµ + Lµ = q̄γµq, (2.7)

Aµ =Rµ + Lµ = q̄γµγ5q (2.8)

Those vector and axial currents transform under parity as V µ(t, ~x) 7→ Vµ(a)(t,−~x) and
Aµ(a)(t, ~x) 7→ −Aµ(a)(t,−~x). The corresponding invariant charges QaV and QaA serve as
generators of the Lie algebra of SU(nf )V and SU(nf )A and have a different behavior
under parity

QaV → QaV ; QaA → −QaA. (2.9)

1The sum over the indices a = {1, 2, . . . , n2
f − 1} for the transformations exp

(
−iΘL,R

a
λa

2

)
in

Eq. (2.4) is implicit.
2In particular, the generators λa are represented by the Pauli (Gell-Mann) matrices for the case

of nf = 2 (nf = 3)
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2.1.2 Chiral Symmetry Breaking

Explicit χ Symmetry Breaking

The corresponding divergences for the currents (2.5)-(2.8) are [30]

∂µV
µ
a =iq̄

[
M ,

λa

2

]
q, (2.10)

∂µA
µ
a =iq̄

{
M ,

λa

2

}
q, (2.11)

∂µV
µ =0, (2.12)

∂µA
µ =2iq̄γ5M q +

3g2
s

32π2
εµνρσG

µν
c Gρσc . (2.13)

From here, we observe that in the limit of vanishing quark masses (M → 0), the
vector and axial currents, V µ

a and Aµa , are conserved and the chiral symmetry G =
SU(nf )L×SU(nf )R is then fulfilled. This is why the massless limit is called the chiral
limit.

However, since the quarks u, d, s, ... have not zero masses [34], the nonzero matrix
M originates an explicit breaking of the chiral symmetry G, governed by the commu-
tation relations of Eqs. (2.10) and (2.11). Nonetheless, there is a particular situation
suggested by the hadron spectrum patterns, where one considers that their constituent
quarks have approximately the same mass. It is the case of the low energy regime of
QCD with an upper limit scale Λχ ' 1 GeV and restricted to the three lightest quark
flavors u, d, s (nf = 3). At the scale Λχ, these quarks have approximately the same
mass, mu ≈ md ≈ ms << Λχ, thus the assumption of equal quark masses could be a
good approximation. In this limit, given that M is diagonal, the vector currents V µ

a

are conserved, see Eq. (2.10). This is not the case for the axial currents Aµa which are
broken whenever the mass term M 6= 0, Eq. (2.11).
The singlet vector current V µ, being the sum of nf flavor currents, is trivially con-
served (2.12) whereas the singlet axial Aµ has an explicit divergence, Eq. (2.13), due
to the quark masses and the anomaly due to the quantum loop corrections [35–37].
In consequence, we find that the U(1)A symmetry will appear always broken. The
vector symmetry U(1)V leads to the conservation of the so-called baryon number,
B. This quantum number is used for the classification of the hadron spectrum into
mesons (B = 0) and baryons (B ≥ 1). Equivalent considerations applied to indepen-
dent phase transformations on the different quark flavors lead to the conserved flavor
quantum numbers.

In summary, the global symmetry for QCD in the chiral limit is SU(nf )L ×
SU(nf )R × U(1)V . On the contrary, for the massive case and at low energies, the
non-zero matrix M in the LM term (2.3) breaks explicitly the chiral symmetry with
pattern:

G = SU(nf )L × SU(nf )R −→ H = SU(nf )V . (2.14)

In the physical world, one shall expect chiral symmetry G to be approximately realized
for the light quarks and it is natural to explore its breaking pertubatively [33]. Thus,
one may consider the massless QCD Lagrangian and later on introduce the quark
masses as a small perturbation.
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Spontaneous χ Symmetry Breaking and Goldstone Bosons

In addition to the explicit breaking due to the quark masses, chiral symmetry is
also spontaneously broken. Since chiral symmetry is a global symmetry, then the
Goldstone theorem applies. The Goldstone theorem states as follows: Given a global
continuous symmetry of the Lagrangian; either the vacuum shares the symmetry of
the Hamiltonian; or there appear scalar massless particles as a display of Spontaneous
Symmetry Breaking. In the last case, for every spontaneously broken symmetry, the
theory must contain a massless particle, the so-called Golstone boson.3

In the usual Wigner–Weyl realization of the chiral symmetry, the vector charges
annihilate the vacuum,

QaV |0〉 = 0, (2.15)

so that it remains invariant under the group of transformations, UV = exp {iθaQaV )}4.
This implies the existence of degenerate multiplets φa in the spectrum. For nf = 3,
we can find evidence of this in the hadron spectrum [39], where low-lying baryons and
mesons sharing the same quantum numbers and approximately the same mass can be
grouped into irreducible representations of SU(3)V [40].
Since parity exchanges left and right, a normal Wigner–Weyl realization of the symme-
try would imply degenerate mirror multiplets with opposite chiralities and the chiral
symmetry G should be approximately good for the light u, d, s quarks.

On the other hand, when applying an axial transformation UA over a particle
of the lightest meson spectrum, lets say of the pseudoscalar meson octet, we would
generate a state with a component of opposite parity. But these mirror states are not
observed in nature. Moreover, the octet of pseudoscalar mesons is much lighter than
all other hadronic states. These empirical facts clearly indicate that the vacuum is
not symmetric under the full chiral group. Specifically, the vacuum is not invariant
under axial transformations, i.e.

QaA|0〉 6= |0〉, (2.16)

which is called the Nambu–Goldstone realization of the symmetry.
Only the transformations with gR = gL remain a symmetry of the physical QCD

vacuum. Thus, it is said that the symmetry is spontaneously broken as G ≡
SU(3)L × SU(3)R → H ≡ SU(3)V [see. Eq. (2.14)].5

In particular, due to the Goldstone Theorem, for nf = 3 the spectrum contains
eight Nambu–Goldstone bosons (NGB), as many as broken generators of SU(3)A.
Those NGB fields have the same quantum numbers as QaA : odd parity, and trans-
form under the adjoint representation of SU(3)V . These are the eight lightest hadronic
states (π±, π0, η,K±,K0,K0), whose mass is generated by the quark masses, the
ones that explicitly broke the chiral symmetry (2.14)6. In this picture, with nf = 2,
qT = (u, d), one recovers the corresponding three NGB identified with the pseudoscalar

3There is another important result around the concept of spontaneous symmetry breaking: the
Higgs-Kibble mechanism [38] relevant for the case of local gauge symmetries.

4In the quantum theory, the conserved charges Qa become symmetry generators that implement
the group of transformations through the unitary operators U = exp(iθaQ

a), being θa the continuous
parameters characterizing the transformation.

5 On top of that, another evidence of Spontaneous Symmetry Breaking is the fact that the
quark condensate, 〈0|q̄q|0〉, the order parameter of this symmetry breaking, has a non zero vacuum
expectation value [41–45].

6If the breaking is small, we could expect the mass of these bosons to be smaller than the rest of
the hadron spectrum.
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SU(2)V pion triplet, (π−, π0, π+).
For a more detailed discussion of the application of Goldstone theorem to the spon-
taneous chiral symmetry breaking, see Refs. [46, 47].

2.1.3 A Low energy Effective Field Theory Approach

As mentioned before, the large value of the coupling limits the applicability of per-
turbative QCD with explicit quark and gluon fields. Given the strong coupling de-
pendence on the energy, a typical energy scale, Λχ ' 1 GeV, separates the strong
interaction into two different regimes: the low energy E << Λχ and the high energy
one, E >> Λχ. The latter is commonly approached as a weakly coupled theory with
the perturbative methods of QFT. There, the strong coupling converges asymptoti-
cally to small values with increasing energy and is the expansion parameter for the
perturbative series. On the contrary, when E << Λχ, the processes driven by the
strong interaction should be treated differently since the coupling increases rapidly
as the energy E decreases. For this reason, these low energy processes are usually
approached within an EFT formulation. There, one implements an alternative ap-
proximation with different expansion parameters and degrees of freedom.

The basic idea to construct an EFT Lagrangian is that all terms compatible with
the QCD symmetries should be included, each proportional to some unknown constant
that should be determined by fitting to data. In the ChPT case, chiral symmetry and
its breaking are the guiding principles in its construction. The Lagrangian terms are
organized according to the power of the dimensionless parameters ptyp/Λ that each of
them contributes to the amplitudes, where ptyp are the typical momenta or energies
in the process and Λ is some energy scale like, for instance, Λ ≈ 1 GeV. There are
infinitely many of those terms in the Lagrangian, but at a given order in ptyp/Λ and
for a given process only a finite number will contribute. Also, quarks and gluons are
integrated out, and the bound states, baryons and mesons, are the relevant degrees
of freedom. By construction, this EFT should be valid for energies significantly lower
than Λ. Some of the most relevant ideas about EFTs can be found in [48–51].

2.2 Chiral Perturbation Theory: The low energy effective
theory of QCD

In this section, I discuss in more detail the fundamentals of the effective theory of
QCD at low energies, Chiral Perturbation Theory, ChPT. See reviews [27–31].

Chiral perturbation theory provides a systematic method for discussing the con-
sequences of the global symmetries of QCD at low energies by means of an effective
field theory. ChPT is based on an effective Lagrangian built in terms of the asymp-
totically observed hadronic fields and consistent with all symmetries of QCD. The
Lagrangian is organized in the form of a chiral expansion, i.e., an expansion in powers
of momenta and light quark masses [52]. Of course, the effective Lagrangian shares
the same symmetries with QCD: C, P , T , Lorentz invariance and, in particular, chiral
SU(3)L × SU(3)R symmetry and its breaking both explicit and spontaneous.

After introducing the lowest-order effective Lagrangian relevant to the sponta-
neous breakdown from SU(3)L×SU(3)R to SU(3)V , I will illustrate how Weinberg’s
power counting scheme allows for a systematic classification of Feynman diagrams in
the so-called chiral expansion. The starting point is the sector of the pseudoscalar
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mesons. The theory can also be extended to baryons, which are presented in the next
subsection. Another important aspect of an effective theory is renormalization, which
will be discussed last. In particular, the incorporation of baryon degrees of freedom
into the theory complicates this process, which is why the required methods will be
explained in more detail.

At low energies, the relevant mesons are just the members of the pseudoscalar
octet (π,K, η) which are regarded as the Nambu–Goldstone bosons of the sponta-
neous breaking of the chiral SU(3)L × SU(3)R symmetry down to SU(3)V . The
non-vanishing masses of the light pseudoscalars in the “real” world are related to the
explicit symmetry breaking in QCD due to the light quark masses. In this work,
we further restrict our investigation to QCD with the two lightest flavors, namely
the u and d quarks. Their small masses lead to a faster chiral convergence and the
Nambu–Goldstone bosons are just the pions. In this case we have the chiral symmetry
breaking pattern

G = SU(2)L × SU(2)R −→ H = SU(2)V . (2.17)

2.2.1 Chiral Lagrangian for pions

Lowest Order π Lagrangian

The standard ChPT description of the light pseudoscalar mesons and their interactions
was first formulated by J. Gasser and H. Leutwyler in the 1980s [53,54] based on the
EFT approach of [52]. The group theoretical formalism to construct EFT Lagrangians
with spontaneous symmetry breaking was developed by Callan, Coleman, Wess and
Zumino (CCWZ) and S. Weinberg [55–57]. In that prescription, the pseudo-Goldstone
bosons can be parametrized into a matrix valued field U ∈ O(N) such that

U(x) = exp

(
i
~τ · ~π(x)

F

)
(2.18)

where ~τ are the set of N broken generators. For the light quarks (u, d) case, the chiral
symmetry breaking pattern corresponds to SU(2)V , Eq. (2.17) and ~τ = (τ1, τ2, τ3) are
the Pauli matrices. Hence, ~π = (π1, π2, π3) describes the pion modes in a Cartesian
basis and F is a normalization constant. The pion field representation can also be
given in the physical basis through

~τ · ~π =

(
π3 π1 − iπ3

π1 + iπ2 −π3

)
=

(
π0

√
2π+

√
2π− −π0

)
, (2.19)

where the fields π0, π+, and π− correspond to the physical isospin eigenstates. Given
the chiral group G = SU(2)L × SU(2)R the pions matrix U transforms as

U(x)
G−−→ U ′(x) = gLU(x)g†

R
. (2.20)

In the context of ChPT, the CCWZ formalism is characterized by Eqs. (2.18) and
(2.20) for the pseudoscalar boson fields and their transformation law. The mapping of
Goldstone bosons is not unique, but all are equivalent to the exponential realization
in Eq. (2.18)7. The chiral invariant Lagrangian must be written in terms of the
Goldstone bosons collected in the matrix-valued field U(x) (2.18). The construction

7Any other choice gives the same results for all observables, such as the S-matrix. A clear expla-
nation about the CCWZ procedure and Goldstone boson parametrization can be found in Ref. [49].



12 Chapter 2. Theoretical framework: Chiral Perturbation Theory

of the effective Lagrangian is based on the vanishing interaction of the Goldstone-
bosons at zero momentum. Hence, at low energies the Lagrangian can be organized
in terms of increasing powers of momentum (or derivatives),

Leff(U, ∂U, ∂2U, . . . ). (2.21)

The chiral invariant Lagrangian containing the minimum number of derivatives on the
pseudoscalar fields is uniquely given by

L(2)
χS =

F 2

4
Tr
[
∂µU (∂µU)†

]
. (2.22)

Only even momentum powers will arise since the Lagrangian is a Lorentz scalar which
implies that tensor indices of derivatives appear in pairs. The factor F 2/4 is fixed by
the kinetic term for the pion fields.8

The lowest order Lagrangian (2.22) has an exact chiral symmetry. In the real
world the quark masses do not vanish and introduce the explicit breaking of chiral
symmetry throught the term LM (2.3) in the QCD Lagrangian. Here, we take the
isospin symmetry case for two flavors where mu = md with the corresponding mass
matrix M = diag(mu,md).
At the level of the effective field theory, the chiral symmetry breaking patterns of
QCD can be reproduced. To this end, the quark mass matrix is interpreted as an
external scalar source, s = M ,

−LM = q̄LM qR + q̄RM qL −→ q̄Ls
†qR + q̄RsqL (2.23)

The QCD Lagrangian remains invariant under chiral rotations if the scalar source
transforms as

s
G−−→ gRsg

†
L
. (2.24)

This implies that the effective Lagrangian must also remain invariant in the presence
of s. Hence, the chiral invariant effective Lagrangian Eq. (2.21) is extended with s as
an additional building block. At leading chiral order, the new Lagrangian term reads

L(2)
χSB =

F 2B

2
Tr
[
sU † + Us†

]
, (2.25)

where B is a parameter that relates the quark masses in s with the Goldstone Bosons
masses. The explicit mass matrix for the Goldstone bosons is introduced from the
standard massive Lagrangian term for π as

χ = 2Bs (2.26)

where, in the isospin limit and the SU(2) case, χ = diag(M2
π ,M

2
π). Then, the La-

grangian at the lowest order reads

L(2)
eff = L(2)

χS + L(2)
χSB =

F 2

4
Tr
[
∂µU (∂µU)† + χU † + Uχ†

]
, (2.27)

8An expansion of the exponential term U = exp[iΦ
F

] = 1 + iΦ
F
− 1

2F2 Φ2 +O(Φ3) provides all the
interactions at LO for increasing number of Goldstone bosons. Thus, the standard kinetic term reads
L(2)
χS = 1

2
∂µπ

a∂µπa +O(π4) such as deduced from (2.22).
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The Lagrangian leads to second order terms in powers of momenta and pion masses,
the expansion parameters of the EFT at low-energies. Thus, the chiral counting of
L(2)

eff is O(p2).
To this lowest chiral order, the strong interactions are characterized by the two

scales F and B, the low-energy constants (LECs) of the effective Lagrangian. Those
LECs are related to the pion decay constant and to the quark condensate in the chiral
limit respectively. The constant B is related to the vacuum expectation values of the
scalar quark densities through

〈0|q̄q|0〉 = 〈0|∂HQCD

∂mq
|0〉 = −〈0|∂Leff

∂mq
|0〉 = −F 2B +O(mq). (2.28)

The constant B is proportional to the quark condensate in the chiral limit, 〈0|ūu|0〉 =
〈0|d̄d|0〉 = −F 2B, and it is the order parameter of the spontaneous chiral symmetry
breaking. The value of B ' 1800 MeV, is extracted from the sum-rule value 〈0|q̄q|0〉 =
−(250 MeV)3 [42].

We can directly read off from (2.26) and (2.27) the pseudoscalar pion masses to
leading order in mq

M2
π± = M2

π0 = 2mqB, (2.29)

with mq = mu = md in the isospin limit. One finds from Eq. (2.29) that the quark
masses are proportional to the squared mass of the pion9 and thus will be counted as
O(p2).

On the other hand, one realizes the physical meaning of the LEC F in the LO
effective Lagrangian as the pion decay constant. This interpretation of F is directly
inferred by taking the proper matrix element of the axial current from the kinetic
term in L(2)

eff (2.27),

〈0|JµAa|πb(p)〉 = −iFpµδab, (2.30)

with JµAa = JµRa−J
µ
La = −F∂µπa + · · · , for a = 1, 2, 3. The pion decay constant F is

then defined in the chiral limit. The experimental value of the π decay rate, π → µν̄,
determines its value, F = 92.4 MeV [58].10

In summary, the lowest-order L(2)
eff has two LECs: F and B. Moreover, the relation

(2.29) gives the Gell-Mann, Oakes and Renner relation [60]. Also, Eq. (2.30) repro-
duces the hypothesis of the partially conserved axial vector current (PCAC). That is,
ChPT at its lowest order reproduces results that had been previously obtained using
current algebra.

Couplings to external gauge field sources

It is possible to further extend the pion Lagrangian (2.27) to include interactions with
gauge fields, such as photons. Indeed, the mesons do not interact solely among them-
selves. In addition to the strong interaction, they may also experience electromagnetic
and weak interactions.
In our case, this is necessary for the calculation of the pion photo- and electroproduc-
tion process which involves vertices with photon couplings. To this aim, one extends
LQCD (2.1) in the presence of external classical fields coupled to the quark currents

9Moreover, similiar relationships are fulfilled for the SU(3) pseudoscalar mesons [28].
10Quantum corrections when including higher order calculations lead to different values for the

chiral limit F ≈ 88 MeV since the physical one is Fπ = 92.4 MeV. See for instance [59].
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as done in [53,54],

LQCD = L0
QCD + q̄γµ(vµ + γ5a

µ)q − q̄(s− iγ5h)q, q =

(
u
d

)
(2.31)

with L0
QCD the massless QCD Lagragian. The external fields are used to parametrize

the different breakings of chiral symmetry. In detail vµ, aµ, s, and h are Hermitian
matrices denoting the external vector, axial-vector, scalar, and pseudoscalar fields,
respectively. One recovers the original QCD Lagrangian with vµ = aµ = h = 0 and
s = M , see Eq. (2.23). The external photons and W bosons are among the gauge
fileds vµ and aµ. The QCD Lagrangian (2.31) remains invariant under the local chiral
SU(2)L × SU(2)R transformations if we demand the sources to transform like

q
R
→ g

R
(x)q

R
, q

L
→ g

L
(x)q

L
, (2.32)

rµ = vµ + aµ → g
R

(x)rµg
†
R

(x) + ig
R

(x)∂µg
†
R

(x), (2.33)

lµ = vµ − aµ → g
L

(x)lµg
†
L

(x) + ig
L

(x)∂µgL(x), (2.34)

s− ih→ g
R

(x)(s− ih)g†
L

(x). (2.35)

The effective chiral Lagrangian (2.27) can also be made invariant under the local chiral
transformations if one introduces covariant derivatives on the meson fields, including
the gauge fields rµ, lµ, and replace the quark mass insertions by χ = 2Bs (with h = 0)
as previously shown in (2.26). The covariant derivative on GBs, ∇µU , reads

∂µU → ∇µU = ∂µU − ilµU + iUrµ, (2.36)

which transform under chiral rotations as

∇µU → g
L

(x) (∇µU) g†
R

(x). (2.37)

The couplings to the electromagnetic field (photon) A µ are given by rµ = lµ = vµ =
−eQA µ, with Q = (τ3 + 1)/2 the electric charge operator in SU(2) and in units of e,
the electric charge of the electron.

Finally, the locally chiral invariant Lagrangian of lowest order describing the strong
and electromagnetic11 interactions of mesons is given by

L(2)
π =

F 2

4
Tr
[
∇µU (∇µU)† + χU † + Uχ†

]
. (2.38)

Furthermore, the vector and axial-vector fields vµ, aµ may enter the effective La-
grangian also through the non-Abelian field strength tensors, FRµν , FLµν ,

FRµν = ∂µrν − i[rµ, rν ],

FLµν = ∂µlν − i[lµ, lν ],
(2.39)

with the transformation properties

FRµν → g
R

(x)FRµνg
†
R

(x),

FLµν → g
L

(x)FLµνg
†
L

(x).
(2.40)

11The weak gauge fields can also be incorporated. See, e.g., [48].
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The couplings to the external strength tensor fields contain derivatives on the sources
and, in the low-energy limit, they behave as FLµν ∼ FRµν ∼ O(p2). Those operators
can be classified into a power counting and determine their contribution at low energies
as discussed in the following Section.

Higher orders, loops and renormalization

In the previous section, we have shown the lowest order chiral Lagrangian for pions
and photons. We have also shown that the construction blocks have a well defined
chiral order,

U ∼ O(p0), DµU, vµ, aµ ∼ O(p), s, p, FµνL,R ∼ O(p2). (2.41)

One of the most important aspects of ChPT, as an EFT, is the fact that it gives a
perfectly defined way of taking into account the next orders in the chiral expansion,
included the quantum corrections. In general, the Lagrangian can be written as a sum
of terms depending on the powers of mesons momenta and the quark masses,

LChPT =
∑
ij

Lij , Lij = L(pimj
q) (2.42)

As mentioned before, the quark masses count as mq ∼ O(p2), and by Lorentz invari-
ance the chiral order of momenta is always given in even numbers, O(p2),O(p4), . . . .
Then, the chiral power counting of the pion Lagrangian can be organized as the series

Leff
π =

∑
n

L(n)
π = L(2)

π + L(4)
π + L(6)

π + · · · , (2.43)

where the upper indices refer to the chiral order of each term. In this power expansion,
the lowest-order (LO) term L(2)

π , already given in Eq. (2.38), gives the dominant
behavior at low energies. The following terms in importance are collected in L(4)

π and
so on and so forth.

First, let me introduce the effective SU(2) Lagrangian at fourth chiral order, L(4)
π ,

which respects the relevant symmetries of QCD. It is taken from [59] and the relevant
terms for the present work are12,

L(4)
π =

l3 + l4
16

Tr
[
χU † + Uχ†

]2
+
l4
8
Tr
[
∇µU [∇µU ]†

]
Tr
[
χU † + Uχ†

]
+ i

l6
2
Tr
[
FRµν∇µU (∇νU)† + FLµν (∇µU)†∇νU

]
+ · · · , (2.44)

where the ellipsis indicates further terms that not contribute in the processes studied
here. It contains a total of 10 low-energy-constants li corresponding to the number
of independent terms. In the electromagnetic case when rµ = lµ = vµ = eQAµ, the
tensor field FRµν = FLµν = Fµν reads

Fµν = eQ(∂µAν − ∂νAµ). (2.45)

In Eq. (2.44), the LECs li parametrize the low energy corrections in the QCD dynamics
at fourth chiral order. They are not conditioned by chiral symmetry. They must be

12Actually, there are two commonly used Lagrangians that are fully equivalent. Here, we use the
version worked out by Gasser, Sainio, and Švarc [59]. The other version is given by Gasser and
Leutwyler [53]
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determined by comparison with experimental data or derived from phenomenological
models, other symmetries, lattice QCD,...13

In the evaluation of amplitudes, tree diagrams constructed from the lowest order
Lagrangian term L(2)

π give the leading order (LO) contribution. The inclusion of
vertices derived from L(4)

π in the tree diagrams calculation provide next-to-leading
order (NLO) contributions which give a more accurate calculation when added to the
LO ones. See, e.g., App. A. On the other hand, for consistency, loop diagrams with
vertices from L(2)

π also must be taken into account as they also contribute at the same,
NLO, chiral order14. Moreover, they provide the imaginary parts of the amplitudes,
needed by unitarity and related with the physical thresholds. However, the loop
diagrams contain UV divergences and a regularization scheme is necessary. This
scheme must maintain the symmetries of the theory, in particular chiral symmetry15.
In ChPT, a convenient scheme is dimensional regularization [62]. The basic idea is
to change the dimension of the integration loop to an arbitrary dimension D ∈ R by
making

∫
d4k → µ4−D ∫ dDk, with µ an auxiliary parameter to maintain the mass

dimensions. Afterwards, the analytic continuation back to D → 4 is performed. The
result is a function of D and after expanding in D − 4 the integral A decomposes as

A = f1R+ f2 +O(D − 4), (2.46)

with R the divergent piece

R = µ4−D
[

2

D − 4
−
(
ln 4π + 1 + Γ′(1)

)]
. (2.47)

The coefficient f1 is an analytical function and f2 corresponds to a finite piece that
includes non-analytical terms. We can neglect the remaining terms in O(D− 4) since
they vanish in the limit when D → 4.

Dimensional regularization provides a systematic and consistent method to sepa-
rate the finite terms from the UV divergent ones in the loop integrals. The piece R16,
has always the same structure and can be uniformly subtracted in a renormalization
procedure. This topic is further discussed in Sections 4.2.2-4.2.3.

Here, the renormalization of an amplitude consists in the redefinition of the LECs
in Leff

π (2.43), which appear as scale independent parameters in the tree-level ampli-
tudes, in order to cancel the piece f1R in (2.46). A complete one-loop calculation
with vertices from the lowest-order L(2)

π reveals that divergent parts proportional to
R are of chiral order O(p4) and analytic in the pion momenta and masses. Hence,
the divergent components, f1, only can be compensated by renormalizing the LECs

13 At next-to-next-to leading order (NNLO), 53 LECs enter in the SU(2) L(6)
π [61]. That shows

a proliferation of unknown couplings with additional order corrections and ChPT seems to lose its
predictive power. However, the situation is ameliorated since only a few LECs contribute to each
particular process. Furthermore, in practice, in many cases only the LECs from low orders are
required. Moreover, the contributions from higher chiral orders are suppressed as they appear with
higher powers of small momenta and pion masses.

14 Regardless of their power counting contribution, loop amplitudes are also required to restore
unitarity of the S-matrix, S = 1+iT [62]. The condition SS† = 1 is fulfilled as long as 2 ImT = TT †.
Obviously, tree diagrams cannot satisfy this relation because they do not have an imaginary piece.
Thus, unitarity is violated if only tree diagrams are taken into account. In fact, unitarity of the
S-matrix is restored by including loop diagrams which have imaginary parts.

15One must be careful when employing cutoff regularization schemes since these introduce an
additional massive cutoff scale which may spoil chiral symmetry [63].

16There are different conventions to define the UV divergent term R. Here, we use the modified
subtraction scheme M̃S. Other schemes differ on the finite terms in R Eq. (2.47) but all agree on the
divergent piece.
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at the same chiral order O(p4),

li = lri + λiR. (2.48)

Here, li are the LECs in L(4)
π (2.44), such that the sum of loops and tree amplitudes

proportional to the LECs remains finite for D → 4. The LEC renormalization in
(2.48) is independent of the process (λi are unique), then the renormalization method
may be generalized to the effective Lagrangian. The corresponding counterterms
δL(4)

π may be generated and incorporated in L(4)
π , Eq. (2.44). I further detail the UV

renormalization method within the M̃S scheme in Section 4.2.3.

Power counting rule for the amplitudes

Since the ChPT Lagrangian (2.43) contains an infinite numbers of terms there is the
need of a systematic way to organize and quantify the importance of the corresponding
amplitudes generated by it. This is achieved by using a power counting scheme.

For any amplitude, the power counting scheme analyses the behavior of a given
diagram under a linear rescaling of all the external momenta pi 7→ δpi, and a quadratic
rescaling of the light quark masses,mq 7→ δ2mq, which in terms of the Goldstone boson
masses, corresponds to M2 7→ δ2M2. Then, the importance of a given amplitude
A(pi,mq) is quantified by its chiral order, n, which defined by

A(δpi, δ
2mq) = δnA(pi,mq) (2.49)

The order n can be directly deduced from the corresponding amplitude, once its
explicit expression is obtained from the corresponding diagram following the Feynman
rules derived from the Lagrangian. After some work, it can be shown that the chiral
order n of a given Feynman diagram is

n = 4L+
∑
d

nd d− 2I, (2.50)

where L is the number of independent loops, nd is the number of vertices of order
d originating from L(d)

π , and I is the number of internal lines corresponding to the
mesons propagators 17.

2.2.2 Interaction Lagrangian with nucleons

In the previous section we have introduced the Lagrangian for the purely pionic sec-
tor, i.e., the interaction of the Goldstone bosons among themselves or with external
sources. As it was firstly suggested by S. Weinberg [52] similar methods to those used
in the derivation of a ChPT for Goldstone bosons can be extended to describe the
low-energy interaction with baryons or other higher mass states [55–57,59]. Following
the same chiral expansion for ChPT of Eq. (2.42), the corresponding nucleon chiral
Lagrangian can be organized order by order as

Leff
N = L(1)

N + L(2)
N + L(3)

N + · · · . (2.51)

The chiral invariant Lagrangian terms for SU(2) nucleons take the generic form
N̄Aµν...Θµν...N + h.c., with Aµν... a product of pion and/or external fields and their

17The power counting can be easily understood examining A, where there is a d4k for each loop
integral, each internal boson goes like ∼ 1/k2 and each vertex V (d) goes like pd.
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covariant derivatives. On the other hand, Θµν... is a product of the elements 1, γ5, γµ,
γµγ5, σµν built from the Dirac gamma matrices, and a properly symmetrized product
of covariant derivatives acting on nucleon fields. In the isospin basis, the nucleon field

N =

(
p
n

)
, (2.52)

denotes the two components for the proton and neutron as four-component Dirac
fields. The basic building blocks contained in the nucleon chiral Lagrangian are the
pseudoscalar pion field, now realized with u = U1/2, and the set of structures

uµ = iu†∇µUu†, (2.53)

χ± = u†χu† ± uχ†u, (2.54)

F±µν = u†FRµνu± uFLµνu†. (2.55)

They provide a convenient choice since they transform in the same way under chiral
local transformations, namely,18

N →KN (2.56)

u→g
L
uK† = Kug

R
(2.57)

X →KXK†, forX ∈
{
uµ, χ±, F

±
µν

}
, (2.58)

where K is a compensator field given by

K =

(√
Ug†

L

)−1(√
g
R
U

)
. (2.59)

On the other hand, the assigned chiral power counting to the Lagrangian operators
constructed thereof are

∂µN, N̄, N ∼ O(p0), uµ ∼ O(p), χ±, F
±
µν ∼ O(p2), (2.60)

whereas derivatives over uµ, χ± or F±µν increase by 1 the order in the counting. With
these ingredients, the first order chiral Lagrangian describing the dynamics with nu-
cleons and pions is given by [64]

L(1)
N = N̄

(
i /D −m+

g

2
/uγ5

)
N, (2.61)

where the covariant derivative DµN contains the external gauge fields {lµ, rµ} and it
is built in such a manner that transforms as N , (2.56), DµN → KDµN . In detail,

DµN = (∂µ + Γµ)N, Γµ =
1

2
[u†, ∂µu]− i

2
u†rµu−

i

2
ulµu

†. (2.62)

In (2.61), we have assumed that (i /D −m)N ∼ O(p), where m is the mass at leading
order for the nucleon doublet N with physical mass mN . The LEC g is the leading
contribution to the physical axial-vector coupling constant gA = g + O(p2), (see
App. C). There, the pion fields appear after expanding uµ.
Following the same naming conventions for the LECs as in Ref. [65], the only relevant

18We omit from now on the explicit dependence on x.
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terms in the second order Lagrangian are

L(2)
N = N̄

(
c1Tr [χ+] +

c6

8mN
F+
µνσ

µν +
c7

8mN
Tr
[
F+
µν

]
σµν
)
N + · · · , (2.63)

where σµν = i
2 [γµ, γν ]. For the processes considered here, χ+ = M2

(
U † ± U

)
and

FRµν = FLµν = Fµν , Eq. (2.45). The LEC c1 describes the nucleon self-interaction
at O(p2) whilst c6 and c7 are the nucleon-photon couplings at second chiral order.
This Lagrangian contains a total of seven independent LECs and the rest of them
correspond to vertices that do not appear in the processes considered in the present
work.

Finally, at third order, the relevant terms of the Lagrangian are [65]

L(3)
N = d6N̄

(
1

2mN
i[Dµ, F̃+

µν ]Dν + H.c.

)
N

+ d7N̄

(
1

2mN
i[Dµ,Tr

[
F+
µν

]
]Dν + H.c.

)
N

+ d8N̄

(
1

2mN
iεµναβTr

[
F̃+
µνuα

]
Dβ + H.c.

)
N

+ d9N̄

(
1

2mN
iεµναβTr

[
F+
µν

]
uαDβ + H.c.

)
N

+ d16N̄

(
1

2
γµγ5Tr [χ+]uµ

)
N + d18N̄

(
1

2
iγµγ5[Dµ, χ−]

)
N

+ d20N̄

(
− 1

8m2
N

iγµγ5[F̃+
µν , uλ]Dλν + H.c.

)
N

+ d21N̄

(
1

2
iγµγ5[F̃+

µν , u
ν ]

)
N + d22N̄

(
1

2
γµγ5[Dν , F−µν ]

)
N + · · · , (2.64)

where dj (j = 8, 9, 16, 18, 20, 21, 22) are new LECs appearing at O(p3). The derivative
operator Dµν = {Dµ, Dν} acts over the nucleon doublet and

F̃+
µν = F+

µν −
1

2
Tr
[
F+
µν

]
. (2.65)

The terms H.c. refer to the Hermitian conjugate field operator and the totally an-
tisymmetric Levi-Civita tensor can be written as εµναβ = − i

8

[
{[γµ, γν ], γα}γβ

]
γ5.

While the pions appear through uµ, the photon is contained in the tensors F±µν , F̃
+
± .

In the present work, the terms L(2)
N (2.63) and L(3)

N (2.64) will be used at tree level
only, as detailed in Section 4. Nevertheless, the lowest order Lagrangian term L(1)

N

(2.61) will enters in both, tree level and loop contributions.

Power Counting Breaking terms and the EOMS renormalization

At tree level, the lowest-order chiral Lagrangian for nucleons L(1)
N (2.61) assimilates

the successful calculations obtained at low-energy with the methods based on the
use of current algebra and PCAC. The Lagrangian formulation for nucleon and pion
interactions allows us now to improve those calculations by including higher orders
and loop corrections.

As in the case of the purely pseudoscalar meson framework, one should be able to
introduce a valid power counting scheme extended to the case with nucleons in order
to organize the infinite contributions to a particular amplitude in a series of decreasing



20 Chapter 2. Theoretical framework: Chiral Perturbation Theory

importance. However, in the loop diagrams with inner nucleon lines the naive power
counting is broken because of the nonzero nucleon mass, m, in the chiral limit [59].
This makes difficult the development of a scheme that allows for a systematic eval-
uation of higher orders in the chiral expansion. The reason is that m is of the same
order as the scale for the chiral symmetry breaking Λχ. Then, contrary to the loops
with pions where M/Λχ ∼ O(p), the power counting is spoiled. For processes with
baryon number B = 1, the naive chiral order n of a given Feynman diagram reads

n = 4L+
∑
d

ndd− 2Iπ − IN , (2.66)

for L loops, Iπ pion propagators, IN nucleon propagators and nd vertices from the d-th
order Lagrangian19. The formula (2.66) assigns a nominal chiral order for any specific
diagram, but n does not necessarily reflects the actual chiral order of the resulting
amplitude. Indeed, loop diagrams containing nucleon propagators yield contributions
of lower orders.

This problem was first solved in the heavy-baryon (HB)ChPT approach [66, 67],
at the expense of losing Lorentz covariance. This is a non-relativistic treatment where
baryons are only slighty off-shell, as compared with their masses, whilst it proposes
a two-fold expansion in powers of p/mN ∼ p/Λχ. Then, in the regime of validity
of ChPT, the nucleon field and its momentum and hence the nucleon propagator are
redefined such that the loop diagrams explicitly fulfill the power counting of Eq. (2.66).
As in ChPT for pions, the renormalization of LECs in HBChPT can be implemented
order by order.

On the other hand, a comprehensive and precise description of the SU(3) phe-
nomenology, where large relativistic corrections have to be considered because of the
K and η masses, has shown to be difficult in the HBChPT approach [68]. Similar
problems appear with Born terms [69] where the positions of the poles are moved due
to the expansion of the nucleon propagator. Besides that, at one-loop level the HB
formalism misses anomalous threshold contributions in triangular graphs what leads
to a poor convergence of form factors [2, 70]. Those facts suggested that relativistic
corrections may be large and questioned the applicability of the HB expansion in some
cases even at low energies.

The convergence problems and the lack of covariance of HBChPT reverted the
interest to the original relativistic ChPT approach [59,71] trying to develop a proper
power counting and at the same time obtain the proper analytic structures20. The first
attempt in that direction was due to Tang and Ellis [72,73]. The most important step
made by Ellis and Tang was to realize that the power counting violating terms were
just polynomials. This makes it possible to come back to the relativistic theory and
within this framework to get rid of these unwanted terms. Different novel methods
were formulated soon after to organize the perturbative series in order to satisfy the
formula, Eq. (2.66) [2–4]. See, e.g., Ref. [47] for a review of the various schemes and
the discussion in the introduction of Ref. [14]. Of these, we will focus our attention on
the Infrared (IR) [2] and the Extended-On-Mass-Shell (EOMS) [4, 74] schemes. We
will detail more on the latter, used in this work, in Sec. 4.2.4.

The infrared (IR)BChPT [2] scheme proposes to separate the loop amplitudes into
the so-called infrared (I) and regular (R) parts. Given a covariant loop integral which

19The nucleon propagator counts like ∼ O(p−1) since we assume that N̄( /D − m)N ∼ O(p),
Eq. (2.61).

20We refer to "proper analytic structures" by those derived from S-matrix theory and implemented
automatically in a (Lorentz covariant) quantum field theory of dynamical pions and nucleons.
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carries factors of the loop momentum in the numerator, it can be always be reduced
to combinations of scalar loop functions:

H =

∫
dDk

(2π)D
1

a1 · · · amb1 · · · bn
(2.67)

=

∫ 1

0
dz1 · · · =

∫ ∞
0

dz1 −
∫ ∞

1
dz1 · · · = I +R (2.68)

with m meson-propagator denominators, a, and n baryon propagators, b. The I and
R parts are obtained in terms of different integration limits of the Feynman param-
eters z1, ... [68]. It has been shown, that the I part contains all the non-analytical
pieces and satisfies the power-counting formula, (2.66). The regular R part violates
power counting, but it appears in the low energy region as a polynomial expansion
in momenta and meson masses. Hence, in the IR formalism one can renormalize the
baryon-ChPT by keeping only the I part of any loop amplitude and absorbing the R
part in the LECs of the most general chiral Lagrangian.

One should note that the chiral expansion of R, apart from the power counting vi-
olating pieces, there is an infinite number of terms that do not violate power counting.
In the IR scheme they are all subtracted by absorbing them in Lagrangian countert-
erms, but it is not necessary to do so. The basic idea behind the EOMS procedure
is to keep those terms. In the EOMS scheme, the integrand of the loop integrals is
expanded in the small parameters, pion masses and external momenta. Then, after
being integrated, the terms violating the power counting are subtracted. The detailed
procedure can be found in [30]. The EOMS scheme, in most cases, leads to a faster
chiral convergence than HBChPT or IrChPT [10, 12, 14]. Moreover, it has been suc-
cessfully applied to many processes, among them πN scattering [14,16,75,76] and the
pion electromagnetic production on the nucleons [20–22,77]. Both are directly related
to the processes investigated in this work.

2.2.3 Interaction Lagrangian for the spin-3/2 ∆(1232) resonance

When one considers also the spin-3/2 baryon multiplet, in the SU(2) isospin case the
∆(1232) resonance, as an explicit degree of freedom, it can appear as an intermediate
state in the processes of pion photo- and electroproduction on nucleons. The ∆
resonance can interact with the relevant matter fields including pions, nucleons and
the external photons. The relevant couplings are those for ∆πN and ∆γN which are
driven by the following Lagrangian terms [78],

L(1)
∆πN =

ihA
2Fm∆

N̄T aγµνλ(∂µ∆ν)∂λπ
a + H.c., (2.69)

L(2)
∆γN =

3iegM
2mN (mN +m∆)

N̄T 3(∂µ∆ν)f̃µν + H.c., (2.70)

with m∆ the mass of the ∆(1232) and

γµνλ =
1

2

{
γµν , γλ

}
, (2.71)

γµν = −iσµν =
1

2
[γµ, γν ] , (2.72)

f̃µν =
1

2
εµναβfαβ, (2.73)
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where the EM field fαβ = ∂αAβ − ∂βAα, similarly to Eq. (2.45). The operator
T a, with a = 1, 2, 3 corresponding with the Cartesian pion fields πa (2.19), is the
isospin-3/2 7→ 1/2 projector that couples consistently the isospin multiplet ∆ν =
(∆++

ν ,∆+
ν ,∆

0
ν ,∆

−
ν )T with the corresponding nucleon doublet N . The explicit repre-

sentations of T a follows the conventions in [31]. In detail,

T 1 =
1√
6

(
−
√

3 0 1 0

0 −1 0
√

3

)
, (2.74)

T 2 = − i√
6

(√
3 0 1 0

0 1 0
√

3

)
, (2.75)

T 3 =

√
2

3

(
0 1 0 0
0 0 1 0

)
. (2.76)

They satisfy the relation T aT †b = δab − τaτ b/3. The parameter hA in L(1)
∆πN (2.69) is

the coupling constant related to the ∆→ πN transition at LO. At O(p2) the coupling
constant gM in L(2)

∆γN (2.70) is related to the electromagnetic transition between the
spin-1/2 nucleons and the spin-3/2 ∆ resonance. As it will be discussed afterwards
in Sec. 4.4, the diagram contributions including the explicit ∆ vertices from L(1)

∆πN

and L(2)
∆γN , do not introduce unknown LECs to be fitted. That is, the parameters hA

and gM are directly related to the strong and electromagnetic decay of the ∆(1232)
resonance and thus fitted to experimental values (see Table 4.5). The numerical
value for hA is extracted directly from the strong decay width of the ∆(1232) [79].
Analogously, the parameter gM can be related directly to the ∆ EM decay width, ΓEM

∆ ,
given that it is experimentally known that ΓEM

∆ /(ΓEM
∆ + Γstrong

∆ ) = 0.55%, ..., 0.65%
[34,80]. Also the parameter gM has been fixed by other experimental sources related
to pion EM production around the resonance peak [81].

The propagator for the spin-3/2 ∆ state with momentum P corresponds to the
inverse operator of the Rarita-Schwinger Lagrangian form [82],

Sµν∆ (P ) =
/P +m∆

P 2 −m2
∆ + iε

[
−gµν +

1

3
γµγν +

(γµP ν − γνPµ)

3m∆
+

2

3m2
∆

PµP ν
]
. (2.77)

The power counting scheme with ∆s

The explicit inclusion of interactions with the ∆(1232) resonance leads us to an extra
power counting problem. In the computation of the diagram amplitudes with the
∆, a small parameter δ/Λχ surges in addition to the chiral parameters pext/Λχ and
Mπ/Λχ. The additional parameter appears as the mass splitting δ = m∆−mN ≈ 300
MeV, which is bigger than Mπ, but still much smaller than Λχ. In consequence, this
δ should be considered in a power counting rule that supersedes that of Eq. (2.50).

The dependence on δ of the ∆ propagator (2.77), plays a central role to determine
the chiral order of the corresponding amplitudes. Given that the ∆ resonance surges
in the γ(∗) + N −→ π + N ′ process, the momentum P can always be written as the
sum of a nucleon momentum pN and an external momentum pext. Then,

P 2 −m2
∆ =(pN + pext)

2 −m2
∆ = (mN +m∆)(mN −m∆) +O(pext)

=− (mN +m∆)δ +O(pext) (2.78)

There are several approaches to incorporate this dependence on the power counting
formula, for instance the small-scale expansion (SSE) [83] and the δ-counting scheme
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[84]. The δ scheme takes into account the fact that, at very low energies, {Mπ, pext} <
δ < Λχ. Then, the parameter δ is considered to count half the power contribution
of the pion mass Mπ, i.e. δ ∼ O(p1/2), since (δ/Λχ)2 ≈ (Mπ/Λχ). In other words,
the ∆-propagators, which count as 1/δ will receive a power counting of O(p−1/2).
Consequently, the power counting of Eq. (2.50) for any amplitude, but associated to
a Feynman diagram with the explicit contribution of the ∆(1232), is extended as

n = 4L+

∞∑
k=1

kV (k) − 2Nπ −NN −
1

2
N∆, (2.79)

where N∆ is the number of ∆-propagators. This rule is overall employed along the
work presented here, given that the ∆ contribution plays an important role in our low-
energy calculations. It is worth to insist on the fact that the δ-counting of Eq. (2.79)
is only well suited for energy regions well below the actual scale δ ≈ 300 MeV, as in
the present work. Otherwise, for higher energies such that pext of similar size to δ, it
could be necessary to consider the SSE counting. Both prescriptions have been shown
to establish an adequate power counting for the δ parameter depending on the process
and the energy range in question, see e.g. Refs. [14, 85].
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Chapter 3

Formalism for pion EM production
on nucleons

In order to detail the calculation of the relevant observables, in this chapter I review
some of the general formalism to compute differential cross sections in terms of the
scattering amplitude and kinematical functions. The scattering amplitude encodes all
the model dependent parts, so I will concentrate here exclusively on the kinematical
definitions and the model independent formalism to define the theoretical expressions
for the cross sections for single pion production with EM sources. Moreover, I will
show along the chapter some of the fundamental properties of the scattering amplitude
such as the gauge invariance, crossing symmetry and the isospin decomposition.

In the first section are presented the needed tools for the pion production by elec-
trons on nucleons e+N → e+π+N ′ within the one-photon exchange approximation.
This approximation is useful in decomposing into a lepton and a purely hadron current
where the low energy effective theory ChPT is particularly implemented.

In the second section I review the formalism for pion photoproduction on nucleons
γ +N → π +N ′ as a limiting case of the pion electroproduction for the kinematical
relations. The subsequent amplitude calculation is simply a reduced case of the elec-
troproduction amplitude. Even so, some particular observables in photoproduction
are revisited.

The last section addresses the isospin structure of the pion production amplitudes,
by introducing the isospin multiplets for pions and nucleons and the corresponding
amplitude decomposition for the different physical channels.

3.1 Pion electroproduction on nucleons

In this section I wish to detail the general structure of the pion electroproduction
amplitude and to illustrate briefly the specific requirements, such as invariance and
conservation laws. Furthermore, I shall develop the derivation of the kinematical
relations which are necessary for calculating pion production by electrons.

3.1.1 Matrix element and kinematics

The scattering amplitude for the pion electroproduction on nucleons can be decom-
posed into a lepton vertex, a virtual photon propagator and a hadron vertex [86],
as shown in Fig. 3.1. Then, the corresponding T -matrix element is given by the
one-photon exchange approximation as follows
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N N ′

πe−

e−

ki

kf

γ∗(k) q

p p′

Figure 3.1: Diagram for the pion electroproduction on nucleon. The
incoming nucleon and electron momenta are denoted by p and ki, the
outgoing nucleon, pion and electron momenta are given by p′, q and kf
respectively. The virtual photon γ∗ carries the corresponding trans-
ferred momentum k. The cross-dashed blob stands for the hadronic

vertex.

T = ieū(kf , sf )γνu(ki, si)︸ ︷︷ ︸
Lepton vertex

(
i
−gµν
k2 + iε

)
︸ ︷︷ ︸

Virtual photon propagator

(
−ie〈N ′π|Jµ(0)|N〉

)︸ ︷︷ ︸
Hµ

=εµHµ,

(3.1)

with Hµ = −ie〈N ′π|Jµ|N〉 the matrix element for the hadronic 4-current, Jµ, corre-
sponding to the initial nucleon N and final nucleon-pion N ′π states, e is the electric
charge, gµν is the Lorentz metric tensor with components diag(1,−1,−1,−1), γν the
Dirac matrix and u(ki(f), si(f)) is the Dirac spinor for the initial (final) electron with
4-momentum ki(f) and spin si(f). Here, the polarization vector is defined as

εµ =
eū(sf , kf )γµu(ki, si)

k2
, (3.2)

where the 4-momentum components for the virtual-photon, γ∗, are

kµ = kµi − k
µ
f . (3.3)

The kinematics of the process displayed in Fig. 3.1 follows the 4-momentum conser-
vation

kµi + pµ = kµf + p′µ + qµ or kµ + pµ = p′µ + qµ, (3.4)

in terms of the virtual photon transferred momentum, kµ as in Eq. (3.3). This is
analogue to the four-momenta conservation for the hadron vertex corresponding to
the process γ∗(k) +N(p)→ π(q) +N ′(p′).
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For the 4-momenta appearing in Fig. 3.1, the used notation is given by components
as follows

kµi =
(
Ei,~ki

)
kµf =

(
Ef ,~kf

)
pµ = (Ep, ~p)

p′µ =
(
Ep′ , ~p′

)
kµ =

(
Eγ ,~k

)
qµ = (Eπ, ~q)

(3.5)

Considering only the virtual-photon and the hadrons, since we only have three inde-
pendent impulses, we can use the so-called Mandelstam variables. These are defined
as the invariants

s =(p+ k)2 = (p′ + q)2,

u =(p− q)2 = (p′ − k)2,

t =(p− p′)2 = (q − k)2.

(3.6)

Energy-momentum conservation (3.4) and the on-mass-shell restrictions p2 = p′2 =
m2
N , q

2 = M2
π and k2 = −Q2 lead to the equation

s+ t+ u = 2m2
N +M2

π −Q2, (3.7)

being Q positively defined for the virtual photon. This leaves only two independent
Mandelstam invariants.
Specifically, the computation of the scattering amplitude will be expressed in the
π −N ′ final state frame (c.m.), or equivalently the c.m. γ∗ −N initial state, i.e.,

~p ∗ = −~k∗ ⇐⇒ ~p′
∗

= −~q ∗, (3.8)

where the asterisk, ∗, denotes the components as seen from the c.m. frame. On this
frame, the energies and momenta can be written in terms of invariant terms as

E∗γ =
1

2
√
s

(
s−m2

N −Q2
)
,

E∗π =
1

2
√
s

(
s+M2

π −m2
N

)
,

E∗p =
1

2
√
s

(
s+m2

N +Q2
)
,

E∗p′ =
1

2
√
s

(
s+m2

N −M2
π

)
,

|~k∗| =
√
E∗γ

2 +Q2,

|~q∗| =
√
E∗π

2 −M2
π ,

|~p∗| =
√
E∗p

2 −m2
N ,

|~p′∗| =
√
E∗p′

2 −m2
N .

(3.9)
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Accordingly to Eq. (3.8) only two of these equations can be independent. Those
are very useful given that the frame transformation is straightforward through the
Mandelstam invariant, s. In particular, they may be obtained from the Laboratory
frame energy as in some typical experimental data where the target nucleon is con-
sidered at rest.
In addition to the energy and momentum magnitudes, the process γ∗(k) + N(p) →
π(q) + N ′(p′) depends also on the π-γ∗ scattering angle (see Fig. 3.2). This angle in
the π-N ′ c.m. frame is given as cos θ∗π = k̂∗ · q̂∗ and enters, by the definition (3.6),
exclusively in the Mandelstam invariants u and t. Explicitly, we show one of them:

u =−Q2 +m2
N − 2

(
E∗γE

∗
p′ + |~k∗||~p′

∗| cos θ∗π

)
. (3.10)

Again, this equation can serve to transform the c.m. angle to any frame through the
invariant u (or t). For instance, in the photoproduction case this expression is useful
for transforming some experimental data where the angle θπ is given in the Lab. frame
as will be later discussed.
From here, I will write all the 4-vector components in the c.m. frame omitting the
*-symbol, except when mentioned explicitly.

Figure 3.2: Kinematics for a typical experiment (in the Lab. frame),
leading to out-of-plane pion production. The θπ angle indicates
the deviation of pion 3-momentum from the initial virtual-photon 3-
momentum, φπ corresponds to the relative angle between the electron-

scattering plane and the pion-nucleon final state plane.

Returning to the scattering amplitude from Eq. (3.1), the hadronic matrix element

Hµ = −ie
〈
N ′, π |Jµ(0)|N

〉
, (3.11)

as I will detail in the next part 3.1.2, can be represented in terms of Dirac matrices
and 4-momenta. Those, at the same time, are functions of only three independent
invariants, for example

Hµ(s, u,Q2). (3.12)

In the particular π-N ′ c.m. frame, the matrix Hµ can be set, alternatively, as a
function on the c.m. energy, W = (Eγ + Ep) =

√
s, and the c.m. angle cos θπ, see

Eq. (3.10), as given in the electroproduction experimental data used in this work.

3.1.2 Amplitude parametrization

There are several parametrizations concerning the hadron vertex, Hµ, according with
the possible independent combinations in the Dirac-matrix representation that can
occur for the analytical γ∗ + N → π + N ′ expression. As seen in Eq. (3.11), the 4-
current Jµ encoding transition among initial and final states, can be expressed in terms
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of the Dirac matrices representation and three independent 4-momenta. Additionally,
as the origin of the 4-current relies on the gauge invariance of the ChPT Lagrangian
terms, it is a conserved current by definition implying the gauge invariance for the
hadron vertex Hµ, as will be detailed below. From this point, operating the initial
and final hadronic states, |N〉 and |N ′π〉, with Jµ for the specific matrix element in
Eq. (3.11), the most general expression for Hµ can be written in terms of the Ball
amplitudes [87],

Hµ = ū(p′, s′)

(
8∑
i=1

biV
µ
i

)
u(p, s), (3.13)

where ū(p′, s′) = u†(p′, s′)γ0 is the reduced Dirac spinor for the final nucleon field with
momentum p′ and spin s′, u(p, s) the corresponding spinor for the initial nucleon field,
bi are i-th scalar complex functions of (s, u,Q) and the Ball 4-vector basis elements
are defined as

V µ
1 = γµγ5, V µ

2 = Pµγ5,

V µ
3 = qµγ5, V µ

4 = kµγ5,

V µ
5 = γµ/kγ5, V µ

6 = Pµ/kγ5,

V µ
7 = qµ/kγ5, V µ

8 = kµ/kγ5,

(3.14)

where Pµ = (pµ + p′µ)/2. Although the Ball amplitudes represent an irreducible
set of 4-vector combinations, they are not invariant under gauge transformations.
However, this amplitude can be further reduced when the gauge invariance condition is
introduced. As it was aforementioned, the conserved current, Jµ, obeys the continuity
equation, ∂µJµ(x) = 0. The conservation of the 4-current implies the gauge invariance
relation, 1

kµHµ = 0. (3.15)

Thus, applying the condition (3.15) to the matrix element in terms of the Ball ba-
sis Eq. (3.13), gives us a pair of constraints for the coefficients bi. Without losing
generality we can write in particular that

b1 =− b6(k · P )− b7(k · q) + b8Q
2,

b2 =
1

k · P
(
Q2(b4 + b5)− b3(k · q)

)
.

(3.16)

Satisfying these relations is enough to ensure the gauge invariance for the amplitude
Hµ, Eq. (3.13). Furthermore, by keeping these particular gauge invariance constraints,
we can reduce the dimension of the Ball vector basis (3.14) from 8 to 6 independent
vectors because of the linear dependence for a couple of coefficients, bi.

1Jµ can be boosted in the space-time as an usual operator like eiP ·xJµ(0)e−iP ·x = Jµ(x). Then,

0 =− e
〈
π(q), N ′(p′) |∂µJµ(x)|N(p)

〉
= −e∂µ

〈
π(q), N ′(p′)

∣∣∣eiP ·xJµ(0)e−iP ·x
∣∣∣N(p)

〉
=− e∂µ

〈
π(q), N ′(p′)

∣∣∣ei(q+p′)·xJµ(0)e−ip·x
∣∣∣N(p)

〉
= −e∂µei(q+p

′−p)·x 〈π(q), N ′(p′) |Jµ(0)|N(p)
〉

=− iekµeik·x
〈
π(q), N ′(p′) |Jµ(0)|N(p)

〉
= eik·xkµHµ.
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3.1.3 Gauge invariant amplitude

Another common and useful parametrization is implemented in terms of a covariant
and gauge invariant vector basis Mµ

i [88,89]. In this way, the matrix element Hµ can
be expressed as

Hµ = ū(p′, s′)

 6∑
j=1

AjM
µ
j

u(p, s) (3.17)

with the corresponding scalar complex functions Aj and where

Mµ
1 =− i

2
γ5 (γµ/k − /kγµ) ,

Mµ
2 =2iγ5

(
Pµk ·

(
q − 1

2
k

)
−
(
q − 1

2
k

)µ
k · P

)
,

Mµ
3 =− iγ5 (γµ(k · q)− qµ/k) ,

Mµ
4 =imNγ

5(γµ/k − /kγµ)− 2iγ5(γµk · P − Pµ/k),

Mµ
5 =iγ5

(
kµ(k · q) +Q2qµ

)
,

Mµ
6 =− iγ5

(
kµ/k +Q2γµ

)
.

(3.18)

The expansion on this basis automatically implements the gauge invariance condition
overHµ due to kµM

µ
j = 0 for each j-th basis element. The verification of this property

is straightforward using the on mass-shell relations, (3.6) and (3.7).
In principle, as mentioned above, one can discard two of the eight Ball amplitudes.
The transformation rules between the parametrizations in the gauge invariant basis
(3.17) and the Ball basis (3.13) are obtained by taking

8∑
i=3

biV
µ
i =

6∑
j=1

AjM
µ
j . (3.19)

Then, the corresponding relations among both vector basis are

A1 =i(b5 + b6mN ),

A2 =− i
(
−b3(k · q) + (b4 + b5)Q2

)
(k · P )(2k · q +Q2)

,

A3 =ib7,

A4 =
ib6
2
,

A5 =− i(b3 + 2(b4 + b5))

2k · q +Q2
,

A6 =− ib8 .

(3.20)

In this sense, we can rely on a systematic procedure for going from the most general
parametrization form of the hadron vertex Hµ (3.13) and translating it into a gauge
invariant amplitude using the Eqs. (3.20).

An additional parametrization for the scattering amplitude, T , in Eq. (3.1) was de-
rived by [88,90]. This parametrization allows for a more direct and easier translation
for the observable calculations in the c.m. frame. At difference with the previous
parametrizations in terms of Dirac matrices, the so-called Chew-Goldberger-Low-
Nambu (CGLN) amplitude, F acts over the Pauli nucleon spinor components, χs,
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with spin s = 1/2. Explicitly,

T = εµHµ = 4π
W

mN
χ†fFχi , (3.21)

where χi and χf denote the initial and final Pauli spinors, W =
√
s is the invariant

energy and the matrix F is written as

F =i ~τ · ~a⊥F1 + ~τ · q̂ ~τ · k̂ × ~a⊥F2 + i ~τ · k̂ q̂ · ~a⊥F3

+i ~τ · q̂ q̂ · ~a⊥F4 + i ~τ · k̂ k̂ · ~a‖F5 + i ~τ · q̂ k̂ · ~a‖F6.
(3.22)

Here, ~τ = (τ1, τ2, τ3) are the Pauli matrices. The particularity of this basis is that
the different components are split into transverse and parallel contributions relative
to the photon momentum ~k. This is organized with the auxiliary polarization vector
components ~a⊥ and ~a‖. The four-vector aµ is defined such that its time component
is zero [91],

aµ = εµ − kµ ε0
Eγ

= εµ − kµ
~k · ~ε
E2
γ

, (3.23)

where the Lorentz condition, kµεµ = 0, has been used and

~a =~a‖ + ~a⊥, (3.24)

~a‖ =~a · k̂k̂ =
k2

E2
γ

~ε · k̂k̂, (3.25)

~a⊥ =~a− ~a‖ = ~ε− ~ε · k̂k̂ = ~ε⊥. (3.26)

Again, to complete the last bridge among parametrizations we can go from the invari-
ant basis (3.18) to the CGLN basis (3.22) taking the Eqs. (3.17) and (3.21),

εµū(pf )

(
6∑
i=1

AiM
µ
i

)
u(pi) = 4π

W

mN
χ†fFχi . (3.27)

Then, we find, expressed in the c.m. frame, the relations between the coefficients of
both parametrizations as [92]

F1 =
W −mN

8πW

√
Ep +mN

√
Ep′ +mN

×
{
A1 + (W −mN )A4 −

2mNνB
W −mN

(A3 −A4) +
Q2

W −mN
A6

}
,

F2 =
W +mN

8πW
|~q|
√
Ep −mN

Ep′ +mN

{
−A1 + (W +mN )A4 −

2mNνB
W +mN

(A3 −A4) +
Q2

W +mN
A6

}
,

F3 =
W +mN

8πW
|~q|
√
Ep −mN

√
Ep′ +mN

{
2W 2 − 2m2

N +Q2

2(W +mN )
A2 +A3 −A4 −

Q2

W +mN
A5

}
,

F4 =
W −mN

8πW
|~q|2
√
Ep +mN

Ep′ +mN

{
−2W 2 − 2m2

N +Q2

2(W −mN )
A2 +A3 −A4 +

Q2

W −mN
A5

}
,

F5 =
Eγ

8πW

√
Ep′ +mN

Ep +mN

{
[Ep +mN ]A1
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+

[
4mNνB

(
W − 3

4
Eγ

)
− |~k|2W + Eπ

(
W 2 −m2

N +
1

2
Q2

)]
A2

+ [Eπ(W +mN ) + 2mNνB]A3

+ [(Ep +mN )(W −mN )− Eπ(W +mN )− 2mNνB]A4

+
[
2mNνBEγ − EπQ2

]
A5 − [(Ep +mN )(W −mN )]A6

}
,

F6 =
Eγ

8πW

|~q|√
(Ep′ +mN )(Ep −mN )

{
−[Ep−mN ]A1

+

[
|~k|2W − 4mNνB

(
W − 3

4
Eγ

)
− Eπ

(
W 2 −m2

N +
1

2
Q2

)]
A2

+ [Eπ(W −mN ) + 2mNνB]A3

+ [(Ep −mN )(W +mN )− Eπ(W −mN )− 2mNνB]A4

+
[
EπQ

2 − 2mNνBEγ
]
A5 − [(Ep −mN )(W +mN )]A6

}
, (3.28)

where νB = − k · q
2mN

= −s+ u− 2m2
N

4mN
.

Furthermore, it is common to expand the CGNL amplitudes, Fi, in multipole
functions (see App. D), when the contributions for different angular momenta are of
interest.

3.1.4 Observables

The cross section for the pion electroproduction process, e(ki) + N(p, s) → e(kf ) +
π(q) +N ′(p′, s′) of Fig. 3.1, in the Bjorken and Drell notation [93], is given by

dσ =
1∣∣∣~v1 − ~V1

∣∣∣me

Ei
mN

Ep
|T |2 d3kf

(2π)3

me

Ef
d3p′

(2π)3

mN

Ep′

d3q

(2π)3

1

2Eπ
(2π)4δ4

(
ki + p− kf − p′ − q

)
(3.29)

where
∣∣∣~v1 − ~V1

∣∣∣ is the flux factor, with ~v1and ~V1 the velocity of the initial electron and
nucleon respectively. For practical purposes, lets consider the angular distribution of
the pions in the hadronic πN c.m. frame and the energy distribution of the electron
at the laboratory frame, where the target nucleon is at rest. In fact |~v1 − ~V1|EiEp is
a frame invariant quantity. So, we have that

~V1 = 0 and ~v1 =
~ki
Ei
≈ k̂i, (3.30)

given that the electron mass, me << |~ki|. Then, the flux∣∣∣~v1 − ~V1

∣∣∣ ≈ 1, (3.31)

and we get, under the assumption that the nucleon is not detected in the final state,
the differential cross section

dσ

dEfdΩedΩ∗π
=

1

(2π)5
m2
e

Ef
Ei
mN |~q|
W

1

2
|T |2 (3.32)
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with

|T |2 = (εµHµ)∗ ενHν

=
e2

(k2)2 [ū(sf , kf )γµu(ki, si)]
∗ [ū(sf , kf )γνu(ki, si)]Hµ∗Hν︸ ︷︷ ︸

Wµν

=
e2

(k2)2 ηµνW
µν . (3.33)

Here, ηµν is the leptonic tensor defined by ε∗µεν = e2/(k2)2ηµν , and Wµν = Hµ∗Hν is
the corresponding hadronic tensor [see Eq. (3.11)] written as [89]

Wµν = (mN/4πW )2 〈χf |Jµ|χi〉∗ 〈χf |Jν |χi〉 , (3.34)

with |χi,f 〉 denoting the initial and final Pauli spinors for nucleons. The 4-current
operator is written in the πN c.m. through the CGLN parametrization (3.21) as

~J =
4πW

mN

[
i ~̃τ F1 + (~τ · q̂)

(
~τ × k̂

)
F2 + i~̃q

(
~τ · k̂

)
F3 + i~̃q (~τ · q̂) F4

+ik̂
(
~τ · k̂

)
F5 + ik̂ (~τ · q̂) F6

]
(3.35)

ρ =
4πW

mN

[
i (~τ · q̂) F7 + i(~τ · k̂)F8

]
=
~k · ~J
k0

(3.36)

with

~̃τ = ~τ − (~τ · k̂)k̂, ~̃q = ~q − (~q · k̂)k̂. (3.37)

The right side for ρ in (3.36) is written in terms of the space components ~J due to
kµJ

µ = 0.
Concerning the leptonic part in (3.33), for unpolarized electrons we average and

sum over their initial and final electronic spins respectively, obtaining

ηµν =
1

2

∑
si,sf

[ū(sf , kf )γµu(ki, si)]
∗ [ū(sf , kf )γνu(ki, si)]

=
1

2m2
e

[
kiµkfν + kiνkfµ + gµν

(
m2
e − ki · kf

)]
. (3.38)

Please note that for unpolarized electrons, this tensor is symmetric for Lorentz compo-
nents, ηµν = ηνµ. Now, when incoming electrons have a defined helicity polarization
the sum runs only over the final spins and results in

ηµν =
∑
sf

[ū(sf , kf )γµu(ki, si)]
∗ [ū(sf , kf )γνu(ki, si)]

=ηµν +
i

2me
h εµνσρk

σ
i k

ρ
f , (3.39)

with ε0123 = 1. The helicity for the incoming electron is given here through h =
~τ · k̂i = ±1. I recall again that for this more general tensor, the polarized electron
term corresponds to an anti-symmetric tensor part proportional to h.

In order to define the different contributions from the virtual photon polarization
components and helicity onto the differential cross section, I consider the following
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coordinate system defined by the incoming-outgoing electrons as

êz = k̂, êy =
k̂i × k̂f
sin θe

, êx = êy × êz, (3.40)

where θe = arccos k̂i · k̂k. The transversal polarization of virtual.photon is defined
by [91]

ε =
|Ax|2 − |Ay|2
|Ax|2 + |Ay|2

=
ηxx − ηyy
ηxx + ηyy

, (3.41)

and the longitudinal polarization

εL =
|Az|2

|Ax|2 + |Ay|2
=

(
k2

k2
0

)2
ηzz

ηxx + ηyy
, (3.42)

where Aµ are the components of the vector potential for the virtual-photon and ηµν
is the matrix element of the photon polarization density as in (3.39). The polariza-
tion density ηzz is defined through the lepton tensor components ε∗zεz and the factor
k2/k2

0 in (3.42) is a conventional current conserving term that includes the tempo-
ral component contributions depending on the coordinate system (3.40), as detailed
below.

Some simplifying conventions are introduced here such that our description is
reduced to the terms involving only the transversal polarization ε. In detail, we follow
the next considerations:

• Applying the Lorentz condition kµεµ = 0 then kµηµν = 0 = ηµνk
ν = 0, jointly

with the current conserved hadron amplitude, kµHµ = 0, leads to the similar
relation kµWµν = 0 = Wµνkν . Consequently, these relations imply that it is suf-
ficient to consider only space components for εµ„ Hµ, ηµν and Wµν . Therefore,
we can write the temporal components in terms of the spatial ones

ε0 =~k · ~ε/k0, H0 =~k · ~H/k0,

η0ν =
ki
k0
ηiν , W 0ν =

ki
k0
W iν , (3.43)

for i = {x, y, z} as summation index. One gets analogous relations for the
exchanged index cases ην0 and W ν0.

• The second choice here relies on the convenient direction of the virtual-photon
along the z-axis, explicitly kµ = (k0, 0, 0, |~k|)>. This additional convention
further reduces the 3-momentum scalar products (3.43) to the z-components.
Specifically,

ε0 =|~k|εz/k0, H0 = |~k|Hz/k0 (3.44)

η0ν =
|~k|
k0
ηzν , W 0ν =

|~k|
k0
W zν . (3.45)
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As a consequence of the above considerations, the scattering amplitude T results
in only space dependent components,

εµHµ =ε0H0 − ~ε · ~H = −εxHx − εxHx −
(

1− |
~k|2
k2

0

)
εzHz

=− (εxHx + εyHy +
k2

k2
0

εzHz). (3.46)

These relations imply that it is sufficient to consider only the space components of
ηµν and Wµν . We can include the current conservation factor k2/k2

0 in the lepton
contribution to |T |2 (3.33) and ignore it in the hadronic part. The same factor appears
then in the longitudinal polarization definition as in (3.42).

In detail, the tensor product ηµνWµν in Eq. (3.33), for unpolarized electrons
contains just the relevant spatial components from (3.38). Explicitly,

ηxx = − k2

4me

1 + ε

1− ε, ηxy = 0, ηxz =
k0

√
−k2

4me

√
2ε(1 + ε)

1− ε ,

ηyx = 0, ηyy = − k2

4m2
e

, ηyz = 0, (3.47)

ηzx =
k0

√
−k2

4me

√
2ε(1 + ε)

1− ε , ηzy = 0, ηzz =
k2

0

4m2
e

2ε

1− ε,

where, according to (3.41) and for the coordinate system (3.40),

ε =

(
1 +

2|~k|2
Q2

tan2 θe
2

)−1

(3.48)

is the transverse polarization of the virtual photon [94] with θe the electron scattering
angle (see Fig. 3.2). As can be noted from the definitions (3.39), (3.41), the parameter
ε is an invariant under collinear transformations along k̂, i.e., in (3.48) ~k and θe may
be both expressed in the lab. or in the c.m. frame.
Accordingly, from the definition (3.41) and the components (3.47), the polarization
along the z direction is

εL = −k
2

k2
0

ε. (3.49)

Finally, and similarly to the time-component reduction in Eq. (3.46), we expand
the tensor product for the squared-amplitude |T |2 in (3.33) with unpolarized and
polarized electrons along êy and êz and get

ηµνW
µν =

−k2

2m2
e(1− ε)

[
W xx +W yy

2
+ ε

W xx −W yy

2
+ εLW

zz −
√

2εL(1 + ε)Re(W xz)

+h
√

2εL(1− ε)Im(W yz)
]
. (3.50)

Now, if we insert this expression (3.50) into the differential cross section of Eq. (3.32),
we obtain

dσ

dΩfdEfdΩ∗π
= Γ

W

mNklabγ
|~q|
[
W xx +W yy

2
+ ε

W xx −W yy

2
+ εLW

zz
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−
√

2εL(1 + ε)Re(W xz) + h
√

2εL(1− ε)Im(W yz)
]
,

(3.51)

where Γ stands for the flux of the virtual photon field,

Γ =
α

2π2

Ef
Ei
klabγ
Q2

1

1− ε, (3.52)

klabγ = (W 2 −m2
N )/2mN is the equivalent photon energy in the laboratory frame and

α = e2/4π ∼ 1/137. The form of equation (3.51) suggests to introduce the so-called
response functions. These are defined as follows:

RT =
1

2
(W xx +W yy), RL =W zz,

cosφπRTL =−Re(W xz), cos (2φπ)RTT =
1

2
(W xx −W yy), (3.53)

sinφπRLT ′ =Im(W yz),

with the angular dependence φπ given explicitly, indicating the angle between the
electrons plane and the πN reaction plane, as shown Fig. 3.2. The response functions
here depend on three independent variables, e.g. R(Q2,W, cos θπ). Then, taking
(3.51) and (3.54) for an unpolarized electroproduction process, the differential cross
section can be written in terms of these response functions [89],

dσ

dΩfdEfdΩ∗π
= Γ

W

mNklabγ
|~q|
[
RT + εLRL + εRTT cos (2φπ) +

√
2εL(1 + ε)RTL cosφπ

+ h
√

2εL(1− ε)RTL′ sinφπ
]
. (3.54)

We can write this in terms of the virtual photon cross section defined as [91]

dσ

dΩfdEfdΩ∗π
≡ Γ

dσv
dΩ∗π

. (3.55)

The virtual photon differential cross section, dσv/dΩ∗π, for an unpolarized target
and without recoil polarization is usually split in the form [77,89]2

dσv
dΩ∗π

=
dσT
dΩ∗π

+ ε
dσL
dΩ∗π

+
√

2ε(1 + ε)
dσLT
dΩ∗π

cosφπ + ε
dσTT
dΩ∗π

cos 2φπ

+ h
√

2ε(1− ε)dσLT ′
dΩ∗π

sinφπ ,

(3.56)

where the subscripts refer to the transverse, T , and longitudinal, L, components.
The two first terms are independent of the azimuthal angle φπ. The φπ dependence
is explicit and is decomposed in the LT and LT ′ pieces, related to the transverse-
longitudinal interference, and the transverse-transverse term, TT , which is propor-
tional to sin 2φπ. The different components of Eq. (3.56), can be directly given in

2A slightly different notation in terms of the longitudinal polarization, εL = (Q2/E2
γ)ε, is used in

Ref. [89].
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terms of the diverse longitudinal and transverse response functions [77],

dσT
dΩ∗π

=ρ0RT ,

dσL
dΩ∗π

=ρ0
Q2

E2
γ

RL,

dσLT
dΩ∗π

=ρ0
Q

|Eγ |
RLT ,

dσTT
dΩ∗π

=ρ0RTT ,

dσLT ′

dΩ∗π
=ρ0

Q

|Eγ |
RLT ′ .

(3.57)

Here, the phase space factor ρ0 = |~q|/kcmγ with kcmγ = klabγ mN/W . Note here that for
the longitudinal components, the current conserving term Q/Eγ is introduced com-
pensating the time-component contribution in (3.50). Finally, the response functions,
in terms of the CGLN basis, are given by [94]

RT =|F1|2 + |F2|2 +
sin2 θπ

2

(
|F3|2 + |F4|2

)
+ Re

{
sin2 θπ (F∗2F3 + F∗1F4 + cos θπF∗3F4)

−2 cos θπF∗1F2} ,
RL =Re

{
|F5|5 + |F6|2 + 2 cos θπF∗5F6

}
,

RLT = sin θπRe {−F∗2F5 −F∗3F5 −F∗1F6 −F∗4F6

− cos θπ (F∗4F5 + F∗3F6)} ,

RTT =
1

2
sin2 θπ

{
|F3|2 + |F4|2

}
+ sin2 θπRe {F∗2F3 + F∗1F4 + cos θπF∗3F4} ,

RLT ′ =− sin θπIm {F∗2F5 + F∗3F5 + F∗1F6 + F∗4F6

+ cos θπ (F∗4F5 + F∗3F6)} .

(3.58)

Most of the experimental data correspond to some of the terms appearing in Eq. (3.56).
Additionally, an observable proportional to dσLT ′/dΩ∗π has been measured [95],

ALT ′ =
σ+ − σ−
σ+ + σ−

=

√
2ε(1− ε)dσLT ′

dσT + εdσL − εdσTT
, (3.59)

where σ+ and σ− are the differential cross sections for φπ = 90◦ with beam polarization
parallel and antiparallel to the beam direction, respectively.

3.2 Pion photoproduction on nucleons

In this subsection I review the particular formal aspects for the γ + N → π + N ′

reaction involving the kinematics and the invariant amplitude parametrizations. Since
the hadron vertex in photoproduction is a particular case of the electroproduction
vertex Hµ, Eq. (3.11), the photoproduction scattering amplitude becomes a simplified
reduced case, where the reaction is induced by real photons. Following the line of
the previous subsection, I present below the definitions for the relevant observables in
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pion photoproduction at low energies from threshold. The observables correspond to
those where experimental cross-sections data are available.

3.2.1 Matrix element and kinematics

N N ′

γ π

p p′

k q

Figure 3.3: General diagram for pion photoproduction on nucleons.
The corresponding 4-momenta are similar to Fig. 3.1 excluding the

lepton vertex and being here γ the incoming real-photon.

As can be seen in Fig. 3.3, in the case of pion photoproduction we will not find
the lepton vertex nor the virtual photon propagator in the scattering amplitude but
we have, similarly to Eq. (3.1), that the T -matrix will be proportional to the product

T = εµ(λ)Hµ (3.60)

with Hµ the hadron matrix element defined as the electromagnetic current of the
nucleon Eq. (3.11), and where εµ(λ) is the photon polarization vector with zero time
component and polarization λ = ±1. Specifically,

εµ(λ) =

√
4π

3
Y λ

1 (θ, φ)n̂± (3.61)

where Y λ
1 (θ, φ) are the spherical harmonics for the azimuthal and polar angles of ~ε(λ),

n̂± = (0,±1,−1, 0) is a vector perpendicular to the 3-momentum of the real photon,
in particular the 4-momentum is pointed to the z direction, kµ = (k, 0, 0, k), and such
that the Lorentz condition is still satisfied kµεµ = 0. Furthermore, please note that
for real photons it is fulfilled

~ε · ~k = 0. (3.62)

which is not the case for virtual-photons as in electroproduction (see Eq. (3.25) and
Ref. [91]). As seen in Fig. (3.3), the only relevant momenta for the photoproduction
process are those in the set {p, p′, k, q}. We have the same 4-momenta conservation
rule in the hadron vertex as in Eq. (3.4). Also, we use the same notation for the
components for the 4-vector momenta as in (3.5) for the electroproduction case.

The other particularity here is that the real photon 4-momentum, kµ, is charac-
terized by the invariant identity

k2 = −Q2 = 0. (3.63)

The on-mass shell conditions are still equal for the nucleon and pion momenta, p2 =
p′2 = m2

N , q
2 = M2

π . In consequence the s, t, u invariant representation defined in
(3.6) results again in only two independent Mandelstam variables

s+ t+ u = 2m2
N +M2

π . (3.64)
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In addition, the particular components for the 4-momenta pµ, p′µ, kµ and qµ in the
π −N ′ c.m. frame are given previously by Eqs. (3.9) but with Q2 = 0.
On the other hand, the angle θπ among the outgoing pion and the incoming photon
direction enters in the angular dependence of the cross sections. As before, this is
given by

cos θπ = k̂ · q̂, (3.65)

and is included in the invariant Mandelstam representation as in Eq. (3.10) in the
c.m. frame

u =m2
N − 2

(
EγEp′ +

∣∣∣~k∣∣∣ ∣∣∣~p′∣∣∣ cos θπ

)
(3.66)

or

t =M2
π − 2Eγ (Eπ − |~q| cos θπ) , (3.67)

with Eγ , Ep′ , Eπ, |~k|, ~p′, ~q the corresponding energies and momenta as in Eqs. (3.9)
for Q2 = 0.
Some of the experimental data in pion photoproduction are given in the Laboratory
frame, where the initial target nucleon is at rest. The measured observables are
usually functions of the laboratory photon energy, Elabγ , and the pion scattering angle,
cos θlab = k̂ · q̂ lab. Here, the 4-momenta components are boosted with respect to the
photon 3-momentum such that

pµlab =
(
mN ,~0

)
,

p′µlab =
(
Elabp′ ,

~p′
lab
)
,

kµlab =
(
Elabγ , 0, 0, E lab

γ

)
,

qµlab =
(
Elabπ , ~q lab

)
.

(3.68)

The transformation from the c.m. frame to the Lab. frame is straightforward by
using the invariants from Eqs. (3.6) and the expressions for two kinematical degrees
of freedom, for example s and t,

s =2Elabγ mN +m2
N , (3.69)

t =M2
π − 2Elabγ

(
Elabπ − |~q lab| cos θlabπ

)
, (3.70)

where

Elabπ =
m2
N +M2

π − u
2mN

, (3.71)∣∣∣~q lab∣∣∣ =

√
Elabπ

2 −M2
π . (3.72)

To summarize, once we get the corresponding amplitude as a function of the
invariant kinematical variables, Hµ(s, u), we can express them in the c.m. frame
{s, u} → {W,u(W, cos θ)} through Eq. (3.66), or depending on what we shall compare,
we can calculate the amplitude in terms of the Lab. frame photon energy and the
pion angle production by {s, u} →

{
s(Elabγ ), u(Elabγ , cos θlabπ )

}
with Eqs. (3.69), (3.70)
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and (3.64). Besides this, when experimental data are provided in terms of the Lab.
frame kinematics Elabγ , cos θlabπ but we want to compare the angular dependence with
other sample of data given in the c.m. frame we can always get the transformations
to express cos θπ(cos θlabπ ) by combining the equations (3.70) and (3.67).

3.2.2 Amplitude parametrization and gauge invariant amplitude

The matrix amplitude (3.11) for the pion photoproduction process γ(k, λ)+N(p, s)→
π(q) +N ′(p′, s′) can be parametrized as

T = εµHµ =ū(p′) [aNq · εVN + aEVE + aKq · εVK + aEKVEK ]u(p), (3.73)

with
VN = γ5, VE = /εγ5, VK = /kγ5, VEK = /ε/kγ5 (3.74)

the corresponding basis elements. The coefficients aN , aE , aK and aEK are complex
scalar functions that can be written in terms of Lorentz invariants s and u. The
dependence on the photon polarization, λ, the initial and final nucleon spins, s and
s′, is understood in the photon polarization vector εµ, the initial and final nucleon
spinors u, ū = u†γ0, respectively.
This parametrization must satify invariance under gauge transformations considering
the full expression, i.e., kµHµ = 0, and any prior calculation of the scalar set of
functions {aN , aE , aK , aEK} might be tested afterwards in order to verify the gauge
invariance fulfillment. However, following the same line as in the previous subsection
for electroproduction and advantageously seeing photoproduction as a particular case
(Q2 = 0), a convenient parametrization is the covariant and current conserving one
presented in Eqs.(3.17) and (3.18). Here, the scattering amplitude reads

T = εµHµ =εµū(p′)

(
4∑
i=1

AiM
µ
i

)
u(p), (3.75)

where the vector basis elements Mµ
5 and Mµ

6 are canceled by the real-photon kine-
matical condition, k2 = −Q2 = 0 (3.63), and the Lorentz convention εµkµ = 0. Then,
the remaining vectors of the basis are simply written as

ε ·M1 =i/k/εγ5,

ε ·M2 =i(p′ · εk · q − q · εk · (p+ p′))γ5,

ε ·M3 =i(/εk · q − /kq · ε)γ5, (3.76)
ε ·M4 =i(/εk · (p+ p′)− /kp′ · ε− 2mN/k/ε)γ5.

Note that in the c.m. system p · ε = 0. One can easily find the conversion between
the two different representations in (3.73) and (3.75) obtaining that

A1 =i

(
aEK −

mN

k · p (aE + k · q aK)

)
, (3.77)

A2 =i
aN

2k · p, (3.78)

A3 =i

(
aK

(
1− k · q

2k · p

)
− aE

2k · p

)
, (3.79)

A4 =− i

2k · p (aE + k · q aK) . (3.80)
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As our last goal here is to calculate observables, we take advantage of the CGLN
parametrization for the amplitude that makes the calculation more straightforward.
As in Eq. (3.21),

T = εµHµ = 4π

√
s

mN
χ†fFχi,

where the amplitude F in photoproduction is reduced only to the perpendicular con-
tributions to the photon momentum, i.e. the terms F5 and F6 vanish given that
the real-photon polarization vector is such that ~k · ~ε = 0 and the parallel component
~a‖ = 0 [Eq. (3.25)]. Particularly, as aµ = εµ in Eq. (3.23) the CGLN amplitude takes
the form [90]

F = i ~τ · ~εF1 + ~τ · q̂ ~τ · k̂ × ~εF2 + i ~τ · k̂ q̂ · ~εF3 + i ~τ · q̂ q̂ · ~εF4, (3.81)

being F1, · · · ,F4 the scalar complex functions as in Eqs. (3.28) with Q2 = 0.

3.2.3 Observables

The experimental data compared with the theoretical calculations in ChPT is re-
stricted to the near threshold region, in our case around Elabγ ≈70 MeV above the
π production threshold. For this energy region the available data correspond to the
unpolarized angular and integrated cross section, dσ/dΩπ and σ, as well as the po-
larized beam and target cross sections, Σ and T , to be detailed subsequently in this
subsection. The pion photoproduction off the nucleon, depicted in Fig. (3.3) occurs
in four possible physical channels: γ + p → π0p, γ + p → π+n, γ + n → π−p and
γ + n→ π0n.
The differential cross section for the process γ(k, λ) + N(p, s) → π(q) + N ′(p′, s′) is
written as

dσ =
1∣∣∣~vγ − ~V1

∣∣∣ 1

2Eγ

mN

Ep
|T |2 d

3p′

(2π)3

mN

Ep′

d3q

(2π)3

1

2Eπ
(2π)4δ4(k + p− p′ − q), (3.82)

with ~vγ , ~V1 the photon and incoming nucleon velocities. The frame invariant flux
term is |~vγ − ~V1|EγEp =

√
s|~k| in the c.m. frame. The photoproduction amplitude T

is function of the photon polarization, λ, the nucleon spins s, s′ and two independent
momenta. It can be depicted as

T = εµ(λ)Hµ(k; p, s; p′, s′; q). (3.83)

Then, integrating (3.82) over the final momenta, p′ and q, the unpolarized angular
cross section in the c.m. frame is

dσ

dΩ∗π
=

(2mN )2

64π2s

|~q|
|~k|

1

4

∑
λ,mi,mf

|T |2

=

(
1

8πW

)2 |~q|
|~k|

Tr
[
M∗ · (/p′ +mN ) · M · (/p+mN )

]
2

, (3.84)
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where it has been averaged over the polarization λ and the initial nucleon spinmi, and
summed over the final nucleon spin mf . dΩπ = sin θπdθπdφπ is the pion differential
solid angle. Here,

M =aNq · εVN + aEVE + aKq · εVK + aEKVEK (3.85)

=

4∑
i=1

Aiε ·Mi, (3.86)

as detailed in Eqs. (3.73)-(3.76). In contrast, using the CGLN basis (3.81), the c.m.
expression (3.84) takes the simpler form

dσ

dΩ∗π
=
|~q|
|~k|

1

4

∑
mi,mf ,λ

∣∣∣χ(mf )†Fχ(mi)
∣∣∣2 , (3.87)

with

χ(1/2) =

(
1
0

)
, χ(−1/2) =

(
0
1

)
, (3.88)

the spinors for the initial and final nucleons for the spin projections, m = {1/2,−1/2}.
Again, when implementing the sum over the unpolarized beam and target spins, the
angular cross section is expressed in a compact way as follows [96]

dσ

dΩ∗π
= ρ0Re

{
F∗1F1 + F∗2F2 + sin2 θπ (F∗3F3 + F∗4F4) /2

+ sin2 θπ(F∗2F3 + F∗1F4 + cos θπF∗3F4)− 2 cos θπF∗1F2

}
, (3.89)

where the phase space factor evaluated in the c.m. frame is

ρ0 =
|~q|
|~k|
. (3.90)

Once the angular cross section, as function of the c.m. energy
√
s and the pion

angle θπ, is obtained, the integrated total and the polarized beam cross sections can
be computed immediately,

σ(s) =

∫
dσ

dΩ∗π
(s, cos θπ)dΩ∗π = 2π

∫
dσ

dΩ∗π
(s, cos θπ)d cos θπ, (3.91)

Σ ≡
dσ⊥ − dσ‖
dσ⊥ + dσ‖

(3.92)

where dσ⊥ corresponds to the angular cross section for beam photon with polarization
vector perpendicular to the reaction plane defined by k̂× q̂, while dσ‖ is the respective
angular cross section for polarization vector with only parallel components. In the
CGLN representation we can simply write [96]

Σ̂ = −ρ0 sin2 θπRe {(F∗3F3 + F∗4F4) /2 + F∗2F3 + F∗1F4 + cos θπF∗3F4} , (3.93)
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using the profile function, Σ̂ = Σ dσ/dΩ∗π.
Similarly, an important amount of data belong to the target asymmetry defined by

T ≡ dσ+ − dσ−
dσ+ + dσ−

(3.94)

with dσ+ and dσ− the angular cross sections for target nucleons polarized up and
down respectively in the direction of the reaction plane given by k̂ × q̂. Analogously,
we can write in the CGLN framework [96]

T̂ = + sin θ Im
{
F∗1F3 −F∗2F4 + cos θπ (F∗1F4 −F∗2F3)− sin2 θF∗3F4

}
ρ0. (3.95)

In this case, T̂ = T dσ/dΩ∗π corresponds directly to the observable that is currently
reported in data at energies close to threshold.

3.3 Isospin amplitudes for pion electromagnetic produc-
tion

This section is intended to show some properties of the pion production on nucleons
with real or virtual-photons when we consider the isospin degrees of freedom to indi-
cate the different physical channels in which can occur the processes. Also here are
shown some of the symmetry relations for the amplitude considering the kinematical
degrees of freedom.

Since the reaction for photo- (electro-) production γ(∗) +Ni → π +Nf can occur
in four different physical channels

γ(∗) + p→π0 + p

γ(∗) + p→π+ + n

γ(∗) + n→π− + p

γ(∗) + n→π0 + n

(3.96)

we can decompose in the isospin space the invariant amplitude coefficient, Ai, treated
in subsections 3.1.3 and 3.2.2.
In a γ(∗) +N → π+N ′ reaction the initial state is characterized by a nucleon (isospin
I = 1/2), which couples to the electromagnetic current Jµ [see Eq. (3.1)]. The isospin
structure of the current operator can be described at the quark level by

Jµ =
1

6
q̄γµq + q̄γµ

τ3

2
q

=Jµ(s) + Jµ(v), (3.97)

that contains an isoscalar, Jµs (I = 0), and an isovectorial part, Jµv (I = 1). The
final state is characterized by the isovectorial pion (I = 1) and the outgoing nucleon
(I = 1/2). The quark fields are q = (u, d)ᵀ and τ3 is the third Pauli matrix. Therefore,
by using the Wigner-Eckart theorem, it can be shown that the four physical reactions
from Eqs. (3.96) are described by only three independent physical amplitudes, as
detailed in Table 3.1.
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〈πN ′| Tensor operator |N〉 number of amplitudes
1⊗ 1

2 = 3
2 ⊕ 1

2 0 ⊗ 1
2 = 1

2 1
1⊗ 1

2 = 3
2 ⊕ 1

2 1 ⊗ 1
2 = 3

2 ⊕ 1
2 2

Table 3.1: Source of the isospin amplitudes for pion production in
the isospin symmetric limit case. The tensor current operator consists
of a isoscalar (I = 0) and a isovector (I = 1) component as Eq. (3.97).

Assuming the isospin symmetry of the strong interaction, the pion-nucleon inter-
action in the isospin space must be proportional to ~τ · ~π. Thus, the Pauli matrices,
which appear in the interaction with the photon and the pion, can be arranged to
describe the matrix element in isospin space through

Ai(γ
∗Ni → πaNf ) = χ†f

(
1

2

[
τ (−a), τ (0)

]
A

(−)
i + τ (a)A

(0)
i +

1

2

{
τ (−a), τ (0)

}
A

(+)
i

)
χi,

(3.98)

where χi,f refers to the nucleon isospinors (χ = (1, 0)> for proton and χ = (0, 1)>

for neutron), a indicates the charge of the generated pion, a = {+,−, 0} and i =
{1, · · · , 6} the different components of the amplitudes as in (3.18). The three isospin
amplitudes are denoted by A(0,±). The two terms associated with the commutator and
the anti-commutator correspond to the isovectorial component of the electromagnetic
4-current, whereas the third term is related to the isoscalar component.

The Pauli matrices τ (0,±) used in (3.98) are in the isospin (or physical) represen-
tation and are related to the Cartesian Pauli matrices as follows

τ (±) =
1√
2

(
τ1 ± iτ2

)
, τ (0) = τ3, (3.99)

The respective amplitudes in Cartesian coordinates are

Ai(γ
∗Ni → πkNf ) = χ†f

(
iεk3nτ

nA
(−)
i + τkA

(0)
i + δk3A

(+)
i

)
χi, (3.100)

where k = {1, 2, 3} indicates the cartesian components instead. The relationship
between the physical (3.98) and the latter Cartesian amplitudes is given through

Ai(π
+) =

1√
2

(
Ai(π

1)− iAi(π2)
)
, (3.101)

Ai(π
−) =

1√
2

(
Ai(π

1) + iAi(π
2)
)
, (3.102)

Ai(π
0) = Ai(π

3). (3.103)

On the other hand, when the physical charges are specified the relationship between
the isospin amplitudes, A(0,±), and the physical amplitudes (3.98) is

Ai(γ
(∗)p→ π0p) = A

(+)
i +A

(0)
i , (3.104)

Ai(γ
(∗)p→ π+n) =

√
2
(
A

(−)
i +A

(0)
i

)
, (3.105)

Ai(γ
(∗)n→ π−p) = −

√
2
(
A

(−)
i −A(0)

i

)
, (3.106)

Ai(γ
(∗)n→ π0n) = A

(+)
i −A(0)

i . (3.107)
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Therefore, the physical amplitudes may be tested through these relations, for example
expressing one of them in terms of the other three independent physical channels.

Finally, the isospin amplitudes A(0,±) should have crossing-symmetry, referring to
the interchange of the Mandelstam variables s ↔ u. Under this permutation, the
amplitudes follow the relations

A
(0,+)
i

−−−→s↔ u ξA
(0,+)
i ,

A
(−)
i

−−−→s↔ u − ξA(−)
i , (3.108)

where the ξ coefficient takes the values

ξ =

{
1, i = 1, 2, 4
−1, i = 3, 5, 6.
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Chapter 4

Amplitudes for pion EM
production

In the previous chapter we have presented the formalism for the calculation of physical
observables in terms of the scattering amplitude given in any model, while a brief
introduction of ChPT was given in Chapter 2. Throughout this chapter I shall develop
the systematical procedure for the calculation of the γ(∗) + Ni −→ π + Nf reaction
amplitudes within a fully relativistic ChPT approach.

We are looking to calculate the amplitude contributions up to order O(p3) in the
chiral expansion using nucleons, pions and the inclusion of explicit ∆’s as the degrees
of freedom in the process. The several amplitude contributions at O(pn) are included
following the δ power-counting scheme, Eq. (2.79).
Considering the ChPT Lagrangian terms in Section 2.2, we have generated the explicit
Feynman rules from O(p1) to O(p4) for the building of the different amplitudes asso-
ciated to the pion photo- and electroproduction off nucleons. The explicit expressions
can be found in Appendix A.
Along this chapter, I will show the Feynman diagrams and their corresponding am-
plitude expressions for the pion photo- and electroproduction reactions at tree and
one-loop level, for the 4 possible physical channels, (3.96). Furthermore, the loop
amplitudes are renormalized in detail using the M̃S and EOMS schemes.
The full amplitude with all the contributions pieces from the tree and loop level is
presented within this renormalization scheme. In order to simplify the evaluation
of the amplitude in terms of physical parameters, some approximations valid for an
O(p3) treatment will be elaborated.

Finally in this chapter, the relevant LECs acting as parameters in the amplitudes
for each physical channel are discussed, including the LECs fixed by other processes
and physical quantities and the ones that are investigated in this work.

4.1 Generation of Feynman graphs

Considering only the nucleon and pion degrees of freedom, a total of 20 tree Feynman
diagrams contribute up to O(p3). They are depicted in Fig. 4.1. Also, at this order,
there are many diagrams containing loops. We can distinguish two kinds, those that
contain loops in the external legs and the rest. The first ones will be accounted for
by the Wave Function Renormalization (WFR) of the external legs. The latter ones
can be generated from the topologies shown in Fig. 4.2.
Additionally, considering the ∆ resonance degree of freedom there are only 2 relevant
diagrams at tree level starting from O(p5/2) in the δ-counting, (2.79). Their specific
Feynman diagrams are displayed in Fig. 4.3.
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Figure 4.1: Tree Feynman diagrams contributing up to O(p3) con-
sidering only pion and nucleon degrees of freedom. The numbers inside
the circles denote the chiral order of the respective vertex. Diagrams
from (a) to (d) correspond to the O(p1) amplitudes, (e)-(h) are of

O(p2) order, and (i)-(t) are of O(p3) order respectively.

The Feynman diagrams depicted in Figs. 4.1, 4.2 and 4.3 are built systematically
following the standard procedure. This procedure relies on the expansion of the S-
matrix in the scattering amplitudes, 〈π,Nf |S|γ,Ni〉. For the transition |i〉 → |f〉 the
scattering amplitude is given by

〈f |S|i〉 = δfi+

[
(2π)4δ4(Pf − Pi)

(mN

E

) 1
2

(
1

2Eγ

) 1
2 (mN

E′

) 1
2

(
1

2Eπ

) 1
2

]
T . (4.1)
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Figure 4.2: One-loop Feynman diagram-generating topologies up to
the nominal order O(p3). Crossed-circles indicate the vertex where one
incoming real- or virtual-photon may be placed to generate the cor-
responding Feynman diagram. Numbers provide the label to identify

each diagram generated.

2 1
(a)

1 2

(b)

Figure 4.3: Tree Feynman diagrams for the γ(∗) + N −→ π + N ′

reaction through the explicit ∆(1232) inclusion. The labels in the
circles specify the chiral order of each vertex.

Here, |i〉 = |γ(k), Ni(p)〉, |f〉 = |π(q), Nf (p′)〉, the initial and final external 4-momenta
are Pi = p+k, Pf = p′+q. T indicates the total amplitude and is given by the sum of
the amplitudes corresponding to the Feynman diagrams. Up to and including O(p3)
the amplitude, T , is given by

T =
∞∑
m=1

3∑
n=1

T (n)
m , (4.2)

where the m-th contribution T (n)
m is obtained by drawing all topologically different,

connected Feynman graphs at chiral order O(pn) which contain m vertices and the
correct external lines.
In the context of ChPT, the contributions to the γ(∗) + Ni −→ π + Nf amplitude
are re-ordered in the power counting scheme, here from O(p1) up to O(p3). The
chiral order O(pn) for any given amplitude T (n)

m is driven by the different vertices
and propagators following the δ-counting scheme (2.79). The vertices come from the
interaction terms contained in the nucleon, pion and ∆-nucleon Lagrangian terms.
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The relevant pieces to take into account are

LChPT =

3∑
i=1

L(i)
N +

2∑
j=1

L(2j)
ππ +

2∑
k=1

L(k)
∆N (4.3)

as in Eqs. (2.61), (2.63) and (2.64) for the nucleon sector Lagrangian terms L(i)
N ,

Eqs. (2.38) and (2.44) for the purely pion sector L(2j)
ππ , and as the Lagrangians terms

(2.69) and (2.70) for the L(k)
∆N in the nucleon-∆ sector. The needed Feynman rules

for all the vertices appearing in the graphs can be derived from the above Lagrangian
terms.
In the App. A, I state these Feynman rules for the specific propagators and the needed
vertices. Also, throughout this appendix some details in the derivation of the vertex
Feynman rules are illustrated.

4.2 Amplitudes

In the following, I shall develop the standard procedure to obtain the specific ampli-
tudes order by order for all the physical channels in the γ(∗) +Ni −→ π+Nf process,
corresponding to the tree and loop Feynman diagrams in Figs. 4.1-4.3. The amplitude
contributions are given in the next form, as in (3.1) and (3.60),

T = εµuN ′(p
′)MµuN (p), (4.4)

where, up to order O(p3) in the chiral expansion, there are contributions at tree and
one-loop level. According to the δ-counting (2.79) the tree-level amplitudes contribute
from O(p1) up to O(p3), whilst the one-loop level amplitudes start from order O(p3).
Specifically, as shown in Eq. (4.2) the amplitudeMµ is the sum of the different orders

Mµ =Mµ (1)
tree +Mµ (2)

tree +Mµ (5/2)
tree +Mµ (3)

tree +Mµ (3)
loop (4.5)

where,Mµ (n)
tree is the O(pn) amplitude contribution from the tree level diagrams and

Mµ (3)
loop is the one-loop amplitude contribution at the nominal O(p3). Below, I detail

the tree level pieces of the amplitude, following with the one-loop level contributions
in the next section.

4.2.1 Tree level amplitudes

O(p1) amplitude

Given the identity (4.4), we have that the O(p1) amplitude at tree level is T (1)
tree =

εµuN ′(p
′)Mµ (1)

tree uN (p). This amplitude is obtained from the sum of the amplitudes
corresponding to the diagrams (a)-(d) in Fig. 4.1, as justified by the Eq. (4.2). Then,
the O(p1) contribution to γ(∗) +N −→ π +N ′, is given by

Mµ (1)
tree =Mµ (1)

(a) +Mµ (1)
(b) +Mµ (1)

(c) +Mµ (1)
(d) , (4.6)
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where the subscripts (a)-(d) indicate the correspondence with the diagrams in the fig-
ure 4.1. The amplitude contributionsMµ (1)

(a),··· ,(d) are obtained by using the Feynman
rules for the vertices of Eqs. (A.14)-(A.16), (A.20), and the nucleon and pion propa-
gators, (A.22) and (A.21). In detail, the O(p1) contributions in (4.6) are calculated
as

Mµ (1)
(a) =Vµ (1)

γN ;πN ′ , (4.7)

Mµ (1)
(b) =

∑
NI

V(1)
NI ;N ′πiSNI (p+ k)Vµ (1)

γN ;NI
(4.8)

Mµ (1)
(c) =

∑
NI

Vµ (1)
γNI ;N ′iSNI (p− q)V

(1)
N ;NIπ

(4.9)

Mµ (1)
(d) =

∑
πI

Vµ (1)
γπI ;πiSπI (q − k)V(1)

N ;N ′πI
(4.10)

where V(1)
in;out are the vertex expressions atO(p1) with incoming (in) and outgoing (out)

particles such as given by the Feynman rules in App. A.1. For the internal lines in the
Feynman diagrams, SNI and SπI express the nucleon and pion propagators, as shown
in App. A. The inner four-momenta conservation is applied to each vertex as well as
p+k = p′+ q globally in the hadron part,Mµ. The summation in Eqs. (4.7)-(4.10) is
made over the isospin multiplets for the internal lines, such as the nucleon NI = {p, n}
and pion πI = {π+, π−, π0} propagators connected with the vertices. Let’s notice here
that the isospin specification for nucleons NI and pions πI only affects the explicit
expressions for the vertices, due to the isoscalar nature of the propagators.

The above amplitude contributions, Mµ (1)
(a),··· ,(d) (4.7)-(4.10), are constrained by

specifying the isospin/charge of the external fields for N, N ′, π. In consequence, most
of the internal lines in the summation are reduced to only one term for each physical
channel. Finally, we get

M(µ)
(a) =C

(1)
I

eg

F
γµγ5, (4.11)

Mµ (1)
(b) =C

(1)
II

eg/qγ5i
(
/p+ /k +m

)
iγµ

F ((p+ k)2 −m2)
, (4.12)

Mµ (1)
(c) =C

(1)
III

egiγµi
(
/p′ − /k +m

)
/qγ5

F ((p′ − k)2 −m2)
, (4.13)

Mµ (1)
(d) =C

(1)
IV

eg(2q − k)µ(/q − /k)γ5

√
2F ((q − k)2 −M2)

, (4.14)

where the constants C(1)
I , . . . , C

(1)
IV are given in Table 4.1 for each channel.
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Channel C
(1)
I C

(1)
II C

(1)
III C

(1)
IV

γ(∗) + p→ p+ π0 0 1
2

1
2 0

γ(∗) + p→ n+ π+ 1√
2

1√
2

0 −1

γ(∗) + n→ p+ π− − 1√
2

0 1√
2

1

γ(∗) + n→ n+ π0 0 0 0 0

Table 4.1: Tree level amplitude constants for each channel at O(p1).

The above amplitudes can be simplified by using the Dirac-matrix algebra, the
on-shell conditions for the external legs momenta (throught the physical masses p2 =
p′2 = m2

N , q
2 = M2

π) and applying the Dirac equation for the external spinors
/puN (p) = mNuN (p), [uN (pf )/pf = mNuN (pf )] given the hadron amplitude Hµ =

uN ′(p
′)Mµ (1)uN (p) as in Eqs. (3.13) and (3.73). After the algebra simplifications,

the amplitude is written in terms of the kinematical variables {s, u,Q2} and the Ball
basis as detailed in appendix A.2.

O(p2) amplitude

The O(p2) contribution to the hadron amplitude Mµ in (4.5) includes only the tree
level amplitudes

Mµ (2)
tree =Mµ (2)

(e) +Mµ (2)
(f) +Mµ (2)

(g) +Mµ (2)
(h) , (4.15)

with the subscripts (e)-(h) referring to the Feynman topologies in Fig. 4.1. These
contributions are calculated as follows,

Mµ (2)
(e) =

∑
NI

V(1)
NI ;N ′πiSNI (p+ k)Vµ (2)

γN ;NI
, (4.16)

Mµ (2)
(f) =

∑
NI

Vµ (2)
γNI ;N ′iSNI (p− q)V

(1)
N ;NIπ

, (4.17)

Mµ (2)
(g) =

∑
NI

V(1)
NI ;N ′πiSNI (p+ k)V(2)

NI ;NI
iSNI (p+ k)Vµ (1)

γN ;NI
, (4.18)

Mµ (2)
(h) =

∑
NI

Vµ (1)
γNI ;N ′iSNI (p− q)V

(2)
NI ;NI

iSNI (p− q)V
(1)
N ;NIπ

, (4.19)

where the Feynman rules for the order O(p2) vertices, V(2)
vertex, were derived from L(2)

N

(2.63) and can be seen in Appendix A.1. As before with the O(p1) amplitude case,
the Feynman rules for the vertices can be specified according to the external isospin
channel. The hadron amplitudes are then written for each physical channel as

Mµ (2)
(e) =C

(2)
II

e g kν/qγ
5(/k + /p+m) (γµγν − γνγµ)

4FmN ((p+ k)2 −m2)
, (4.20)

Mµ (2)
(f) =C

(2)
III

e g kν (γµγν − γνγµ)
(
/p′ − /k +m

)
/qγ5

4FmN

(
(p′ − k)2 −m2

) , (4.21)

Mµ (2)
(g) =C

(1)
II

e g /qγ5i
(
/p+ /k +m

)
[i4c1M

2
π ]i
(
/p+ /k +m

)
iγµ

F ((p+ k)2 −m2)2 , (4.22)
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Mµ (2)
(h) =C

(1)
III

e g iγµi
(
/p′ − /k +m

)
[i4c1M

2
π ]i
(
/p′ − /k +m

)
/qγ5

F ((p′ − k)2 −m2)2 . (4.23)

The coefficients C(2)
II and C(2)

III are found in the Table 4.2. The constants C(1)
II , C

(1)
III

coincide with those appearing in Table 4.1, given the similarity between diagrams (b)
and (g), and the crossed ones (c) and (h) in Fig. 4.1.

Channel C
(2)
II C

(2)
III

γ + p→ p+ π0 1
2(c6 + c7) 1

2(c6 + c7)
γ + p→ n+ π+ 1√

2
(c6 + c7) 1√

2
c7

γ + n→ p+ π− 1√
2
c7

1√
2
(c6 + c7)

γ + n→ n+ π0 −1
2c7 −1

2c7

Table 4.2: Tree level amplitude constants for each channel at O(p2).

O(p3) amplitude, tree diagrams

The tree level contribution at O(p3) in the γ(∗) +N −→ π+N ′ amplitude of Eq. (4.5)
is obtained as the sum of the following pieces

Mµ (3)
tree =Mµ (3)

(i) +Mµ (3)
(j) +Mµ (3)

(k) +Mµ (3)
(l) +Mµ (3)

(m) +Mµ (3)
(n) +Mµ (3)

(o)

+Mµ (3)
(p) +Mµ (3)

(q) +Mµ (3)
(r) +Mµ (3)

(s) +Mµ (3)
(t) , (4.24)

corresponding to the diagrams (i)-(t) in Fig. 4.1. These diagrams contain vertices
derived from the Lagrangian terms L(3)

N (2.64), LGSS(4)
ππ (2.44), and other vertices from

the lower order Lagrangian pieces. According to the δ power counting rule (2.79), all
possible O(p3) tree level contributions include only the pion and nucleon sectors. The
calculation of the amplitudes inMµ (3)

tree (4.24) is performed as follows

Mµ (3)
(i) =Vµ (3)

γN ;πN ′ , (4.25)

Mµ (3)
(j) =

∑
NI

V(3)
NI ;N ′πiSN (p+ k)Vµ (1)

γN ;NI
(4.26)

Mµ (3)
(k) =

∑
NI

Vµ (1)
γNI ;N ′iSN (p− q)V(3)

N ;NIπ
(4.27)

Mµ (3)
(l) =

∑
πI

Vµ (4)
γπI ;πiSπ(q − k)V(1)

N ;N ′πI
(4.28)

Mµ (3)
(m) =

∑
NI

V(1)
NI ;N ′πiSN (p+ k)Vµ (3)

γN ;NI
(4.29)

Mµ (3)
(n) =

∑
NI

Vµ (3)
γNI ;N ′iSN (p− q)V(1)

N ;NIπ
(4.30)

Mµ (3)
(o) =

∑
πI

Vµ (2)
γπI ;πiSπ(q − k)V(3)

N ;N ′πI
(4.31)

Mµ (3)
(p) =

∑
πI

Vµ (2)
γπI ;πiSπ(q − k)V(4)

πI ;πI
iSπ(q − k)V(1)

N ;N ′πI
(4.32)
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Mµ (3)
(q) =

∑
NI

V(1)
NI ;N ′πiSNI (p+ k)V(2)

NI ;NI
iSNI (p+ k)V(2)

NI ;NI
iSNI (p+ k)Vµ (1)

γN ;NI
(4.33)

Mµ (3)
(r) =

∑
NI

Vµ (1)
γNI ;N ′iSNI (p− q)V

(2)
NI ;NI

iSNI (p− q)V
(2)
NI ;NI

iSNI (p− q)V
(1)
N ;NIπ

(4.34)

Mµ (3)
(s) =

∑
NI

V(1)
NI ;N ′πiSNI (p+ k)V(2)

NI ;NI
iSNI (p+ k)Vµ (2)

γN ;NI
(4.35)

Mµ (3)
(t) =

∑
NI

Vµ (2)
γNI ;N ′iSNI (p− q)V

(2)
NI ;NI

iSNI (p− q)V
(1)
N ;NIπ

(4.36)

where the Feynman rules for the propagators SN , Sπ and vertices V(1)
vertex, . . . ,V

(4)
vertex

are given in the appendix A. For all the four physical channels, the above expressions
are summarized and written in terms of Dirac matrices, momenta, and LECs as

Mµ (3)
(i) = C

(3)
Ia

ie

mNF
2εµναβ kν(pβ + p′β)qα

+C
(3)
Ib

[√
2 (d18 − 2d16) eM2γµγ5

F

− d20e√
2Fm2

N

kν

[
γµγ5

(
p′νq · p′ + pνp · q

)
− γνγ5

(
p′µq · p′ + pµp · q

) ]
−
√

2d21e

F
kν
(
qνγµγ5 − qµγνγ5

)
+
d22e√

2F
kν
(
γµγ5 (qν − kν)− γνγ5 (qµ − kµ)

) ]
,

(4.37)

Mµ (3)
(j) =C

(3)
IIa

eM2

F
/qγ

5 (/p+ /k +m)

(p+ k)2 −m2
γµ(d18 − 2d16), (4.38)

Mµ (3)
(k) =C

(3)
IIIa

eM2

F
γµ

(/p′ − /k +m)

(p′ − k)2 −m2 /qγ
5(d18 − 2d16), (4.39)

Mµ (3)
(l) =C

(3)
IV

2ie g (/q − /k)γ5

√
2F ((q − k)2 −M2)(

il4M
2(2q − k)µ

F 2
+
il6k

ν (qµ(q − k)ν − qν(q − k)µ)

F 2

)
, (4.40)

Mµ (3)
(m) =C

(3)
IIb

e g kν

[
kν ((k + p)µ + pµ)− kµ ((k + p)ν + pν)

]
/qγ5(/p+ /k +m)

4FmN ((p+ k)2 −m2)
, (4.41)

Mµ (3)
(n) =C

(3)
IIIb

e g kν

[
kν ((p′ − k)µ + p′µ)− kµ ((p′ − k)ν + p′ν)

] (
/p′ − /k +m

)
/qγ5

4FmN

(
(p′ − k)2 −m2

) ,

(4.42)

Mµ (3)
(o) =C

(3)
IV

√
2eM2

F

(/q − /k)

(q − k)2 −M2
(2q − k)µ γ5(d18 − 2d16), (4.43)

Mµ (3)
(p) =C

(1)
IV

e g (2q − k)µ(/q − /k)γ5

√
2F ((q − k)2 −M2)

ξ, (4.44)

Mµ (3)
(q) =C

(1)
II

e g /qγ5i
(
/p+ /k +m

)
[i4c1M

2
π ]i
(
/p+ /k +m

)
[i4c1M

2
π ]i
(
/p+ /k +m

)
iγµ

F ((p+ k)2 −m2)3 ,

(4.45)
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Mµ (3)
(r) =C

(1)
III

e g iγµi
(
/p′ − /k +m

)
[i4c1M

2
π ]i
(
/p′ − /k +m

)
[i4c1M

2
π ]i
(
/p′ − /k +m

)
/qγ5

F ((p′ − k)2 −m2)3 ,

(4.46)

Mµ (3)
(s) =C

(2)
II

e g kν/qγ
5(/k + /p+m)[i4c1M

2
π ]i
(
/p+ /k +m

)
(γµγν − γνγµ)

4FmN ((p+ k)2 −m2)2 , (4.47)

Mµ (3)
(t) =C

(2)
III

e g kν (γµγν − γνγµ)
(
/p′ − /k +m

)
[i4c1M

2
π ]i
(
/p′ − /k +m

)
/qγ5

4FmN

(
(p′ − k)2 −m2

)2 . (4.48)

The corresponding constants, C(3)
Ia , . . . , C

(3)
IV , are given in Table 4.3 for each channel.

In the particular amplitudeMµ (3)
(p) , the coefficient ξ is an O(p2) function given by

ξ =
2M2

F 2

(
M2

(q − k)2 −M2
l3 − l4

)
=

2M2

F 2

(
M2

2m2
N −Q2 − s− ul3 − l4

) (4.49)

and the constant C(1)
IV is that given in Table. 4.1. In fact,

Mµ (3)
(p) =Mµ (1)

(d) ξ. (4.50)

The other coefficients C(1)
II , C

(1)
III ,C

(2)
II and C(2)

III for the amplitude contributionsMµ (3)
(q) ,

. . . ,Mµ (3)
(t) appeared already in Tables 4.1 and 4.2. These amplitudes are proportional

to the same coefficients because they include only extra momenta-independent ver-
tices, V(2)

NI ,NI
= 4ic1M

2, inserted in the nucleon propagator for the diagrams (b), (c)
and (e), (f) [see Fig. 4.1].

Channel C
(3)
Ia C

(3)
Ib C

(3)
IIa C

(3)
IIb C

(3)
IIIa C

(3)
IIIb C

(3)
IV

γ∗p→ pπ0 d8 + d9 0 1 2d7 + d6 1 2d7 + d6 0

γ∗p→ nπ+
√

2d9 −1
√

2
√

2(2d7 + d6) 0
√

2(2d7 − d6) 1

γ∗n→ pπ−
√

2d9 1 0
√

2(2d7 − d6)
√

2
√

2(2d7 + d6) −1
γ∗n→ nπ0 d8 − d9 0 0 −(2d7 − d6) 0 −(2d7 − d6) 0

Table 4.3: Tree level amplitude constants for each channel at O(p3).

O(p5/2) amplitude from the ∆ mechanisms

In the δ-power counting scheme, (2.79), the ∆(1232) contribution for the EM pion
production amplitude starts from O(p5/2) at tree level. The diagrams are depicted
in Fig. 4.3. Further contributions with the ∆ resonance include tree and loop-level
amplitudes at O(p7/2) which are above our considerations up to O(p3)1.
The different couplings needed to build the corresponding diagrams are driven by the
interaction vertices ∆Nπ and ∆Nγ. They are encoded in the vertex Feynman rules

1The effect of the O(p5/2) ∆ contributions at tree and loop level has been studied in detail for the
γ + p −→ π0 + p channel at low energies in the same model considered here in Ref. [22]. They have
shown that the O(p7/2) contributions produce quite small changes in comparison with the O(p3)
calculation.
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derived from L(1)
∆πN (2.69) and L(2)

∆γN (2.70). In this way, the amplitude contribution
from the ∆ mechanisms inMµ (4.5) is given by

Mµ (5/2)
tree∆ =Mµ (5/2)

(a) +Mµ (5/2)
(b) (4.51)

whereMµ (5/2)
(a) andMµ (5/2)

(b) indicate the amplitudes of the corresponding diagrams of
Fig. 4.3. The above amplitudes are calculated with the Feynman rules for the Rarita-
Schwinger ∆-propagator, (A.23), and the vertices, Vνµ (2)

γN ;∆ and Vµ (1)
∆;Nπ given explicitly

in App. A, as follows

Mµ (5/2)
(a) =

∑
∆I

Vη (1)
∆I ;N ′πiS

∆
ην(p+ k)Vνµ (2)

γN ;∆I
, (4.52)

Mµ (5/2)
(b) =

∑
∆I

Vηµ (2)
γ∆I ;N ′iS

∆
ην(p− q)Vν (1)

N ;∆Iπ
. (4.53)

The summation for the different isospin states of the ∆, ∆I = {∆++,∆+,∆0,∆−},
is reduced to only one term for each physical channel due to the charge conservation
in the vertices depending of the external fields γ,N, π,N ′. Indicating the external
particles for the four channels, the amplitudes can be written as

Mµ (5/2)
(a) =DII

ehAgM
2FπmNm∆(mN +m∆)

Pρqλγ
ρµλiS∆

µν(P )εσναβkαεβPσ , (4.54)

Mµ (5/2)
(b) =DIII

ehAgM
2FπmNm∆(mN +m∆)

ερµαβkαεβP
′
ρiS

∆
µν(P ′ )γσνλP ′σqλ , (4.55)

where the coefficients DII and DIII are displayed in Table 4.4, P = p + k and P ′ =

p′ − k are the 4-momenta of the ∆ resonance for the respective amplitudes,Mµ (5/2)
(a)

andMµ (5/2)
(b) .

Channel DII DIII

γ(∗) + p→ p+ π0 1 −1

γ(∗) + p→ n+ π+ − 1√
2
− 1√

2

γ(∗) + n→ p+ π− 1√
2

1√
2

γ(∗) + n→ n+ π0 1 −1

Table 4.4: Tree level amplitude constants for each channel at
O(p5/2).

Additionally, in the above ∆-exchange amplitudes, the ∆-width effect can be in-
cluded through the modification of the ∆ propagator (A.23) by making the following
substitution within iSµν∆ (p∆),

1

m2
∆ − p2

∆ − iε
→ 1

m2
∆ − im∆Γ∆(p2

∆)− p2
∆

, (4.56)

where Γ∆(p2
∆) is the energy-dependent width given by [97]
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Γ∆(p2
∆) =

[hA/2]2Λ3/2(p2
∆,M

2
π ,m

2
N )

192πFπ[p2
∆]3

[
(p2

∆ −M2
π +m2

N )m∆ + 2p2
∆mN

]
θ
(
p2

∆ − (mN +Mπ)2
)
,

(4.57)

with Λ(x, y, z) = (x − y − z)2 − 4yz the Källén function and θ(x) the unit step
function. Since the step function θ(x) in (4.57) filters the ∆ width effect only above
the physical threshold, the function Γ∆ is only relevant to theMµ (5/2)

(a) piece.

In fact, the ∆ width will only affect the s-channel process, given byMµ (5/2)
(a) , where

it always occurs that the ∆ four-momentum, p2
∆ = (p + k)2 > (mN + Mπ)2. On

the other hand, for the u-channel amplitude,Mµ (5/2)
(b) , corresponding to the crossed-

diagram 4.3 (b), we have that the ∆ momentum is always below the physical threshold,
p2

∆ = (p− q)2 6 (mN +Mπ)2.

4.2.2 One-loop level diagrams at O(p3)

As it was indicated in Eq. (4.5), the amplitudeMµ up to O(p3) contains contributions
from the loop amplitudes, there denoted as Mµ (3)

loop . The loop contribution can be
separated into two kinds:

• The loops appearing in external legs through the WFR. In this case, for the
hadronic current, they are the initial and final nucleons and the outgoing pion2.
Their contribution can be factorized from the hadron current amplitude, Mµ,
as a multiplicative function for each external hadron leg via the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula3

M̂µ = ZN
√
ZπMµ (4.58)

The functions ZN and Zπ are well known up to and including O(p2) in the
same covariant ChPT approach used here. The explicit expressions are given in
Eqs. (4.102) and (4.104).

• Apart from the loops in the external legs, there are 47 O(p3) loop diagrams for
the γ(∗) +N −→ π+N ′ process that can be generated from the LO Lagrangians
L(1)
N and LGSS (2)

ππ . First of all, I will treat them in more detail in the following.

The 47 loop diagrams can be built from the topologies of Fig. 4.2. They generate the
Feynman diagrams by inserting in each specific crossed-dot vertex an incoming real
or virtual photon, e.g. the topology 4.2-(c) can generate three diagrams for each of
the three crossed-dot vertex as shown in Fig. 4.4.4

2The QED loop corrections for the external electrons or the real photon are negligible in the
energy region treated here.

3This point will be discussed in detail in 4.2.5.
4 In this way, all the diagrams generated are tagged with the label set

{
a1–3, b1–5, c1–3, d1–5,

e1–7, f1–9, g1–7, h1–5, i1–3
}
. For instance, in Fig. 4.4, the diagrams (c1), (c2) and (c3) are displayed.
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1 2

3

=
1 1 1

+
1 1

+

1 1

2

(c) (c1) (c2) (c3)

Figure 4.4: Example of Feynman diagrams generated by the topol-
ogy in Fig. 4.2 -(c).

As before, the loop contribution to the pion EM production amplitudeMµ (4.5)
is the sum of the amplitudes associated with the Feynman diagrams from Fig. 4.2
such as,

Mµ (3)
loop =

i3∑
topo=a1

Mµ (3)
(topo). (4.59)

Using the Feynman rules shown in appendix A, the amplitude pieces Mµ (3)
(topo) are

written in detail in A.3 for the four physical channels. There are different types of
loop amplitudes depending on the number of vertices the loop is connected to. In
this work, the loops connect from 1 vertex (tadpoles) up to 4 vertices. For instance,
the loop in the diagram from Fig. 4.2-(a1) is connected to a single vertex point while
diagram (f3) is connected to 4 vertices. Another classification of the loop diagrams is
related to the kind of propagators involved in the loop. In our case, we have purely
meson loops for the topologies (a), (b), (c) and (i) in Fig. 4.2 and combined ones
including meson-baryon loops for the rest of topologies in the same Figure. We will
use this classification later to discuss some of the power counting issues.

Obviously, the calculation of loops involves an integral over the loop internal mo-
menta. Moreover, some of these integrals are divergent and, since the propagators
involved in those loop integrals are for massive particles, we only have ultraviolet
(UV) divergences. In this work, we implement the method of dimensional regulariza-
tion to remove them5. This method is characterized by the generalization of the loop
integral from four to D = 4− 2εUV continuum dimensions and the introduction of a
multiplicative parameter µ2εUV , (µ the renormalization scale). Then, in the limit of
εUV → 0, the integral is separated into a series of O( 1

εUV
) and a finite part depending

on µ. The UV renormalization of the theory consists on the absorption of the diver-
gent terms of O( 1

εUV
) by the redefinition of LECs in the Lagrangian. There is still

some freedom in the method used to accomplish that. As customary in ChPT, we use
here the modified minimal subtraction M̃S scheme that will be described later. For
full details of the scheme see Ref. [30].

Some self-energy types of diagrams are relatively easy to calculate. For instance,
see a few examples in appendix C. Normally, the integral has a simple form or can be
reduced into simple forms. After some algebra, these forms lead to simple expressions
in terms of O( 1

εUV
), logarithms and some analytic terms.6

5There are many other methods used to regularize the UV divergences. Among them we could
mention the radial cutoff approach [30, 98], which introduces suitable cutoffs Λi in the momentum
integrations.

6 For instance, the Feynman parametrization of the integrals may lead to some well known ex-
pressions. See, e. g., the appendix in [62]).
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In general, any of the loop amplitudes can be written as a combination of n-
points integral functions T µ1···µp

n . Then, they are further simplified through Feynman
parametrization to combinations of known integrals Iµ1···µp

n as

T µ1···µp
n =

∫
dDz

(2π)D
zµ1 · · · zµp

D0D1D2 . . . Dn−1
−→ I

µ1···µp
n =

∫
dDl

(2π)D
lµ1 · · · lµp
(l2− M2)n

(4.60)

where Di = (z + ri)
2 −mi + iε is the denominator propagator in the loop with mass

mi and momenta (z+ ri), ri is related to the external momenta and r0 = 0. lµ and M
are functions of the external momenta. Then, the integrals can be solved by known
UV dimensional regularization expressions, which can be found, e. g., in Ref. [62]. To
do this extensive work, it is possible to combine calculations by hand with the help of
specialized software. An example of this can be found in the previous work on pion
photoproduction off protons [99].

Despite of the usefulness of the above approach, the task becomes quite compli-
cated if one wants to calculate each of the 47 UV dimensional regularized integrals,
Mµ (3)

(topo), for the 4 physical channels (3.96) and for 2 reactions. That means for pion
photo- and electroproduction a total of 47 × 4 × 2 = 376 different loop integrals. To
overcome this problem, I have implemented an automatized code based on a fully
equivalent approach first proposed by Passarino and Veltman [100]. In detail, simi-
larly to the tree-level amplitudes, we can simplify all the integrals for Mµ (3)

(topo) after
some Dirac matrix algebra into one-loop tensor integrals of the form

T µ1···µp
n =

(2πµ)4−D

iπ2

∫
dDz

zµ1 · · · zµp
D0D1D2 . . . Dn−1

. (4.61)

Then, the integral (4.61) can be reduced to combinations of four independent scalar
Passarino-Veltman integrals

A0[m2
0] =

(2πµ)4−D

iπ2

∫
dDz

1

z2 −m2
0

(4.62)

B0[r2
10,m

2
0,m

2
1] =

(2πµ)4−D

iπ2

∫
dDz

1∏
i=0

1

[(z + ri)2 −m2
i ]

(4.63)

C0[r2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2] =

(2πµ)4−D

iπ2

∫
dDz

2∏
i=0

1

[(z + ri)2 −m2
i ]

(4.64)

D0[r2
10, r

2
12, r

2
23, r

2
30, r

2
20, r

2
13,m

2
0,m

2
1,m

2
2,m

2
3] =

(2πµ)4−D

iπ2

∫
dDz

3∏
i=0

1

[(z + ri)2 −m2
i ]

(4.65)

where r2
ij = (ri − rj)

2 with the convention r0 = 0.7 I take advantage of this
method where the above Passarino-Veltman functions have been implemented in the

7 In all these expressions the iε part of the denominators is omitted.
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Mathematica package FeynCalc [101, 102]. Subsequently, I can express the full loop
amplitude (4.59) as follows,

Mµ(3)
loop =µ4−D

i3∑
topo=a1

Mµ
(topo) (4.66)

=f
(
A0

[
M2
]
, B0

[
s,M2,m2

]
, . . . , C0[...], D0[...]

)
, (4.67)

where µ4−D is the scaling parameter in the dimensional regularization. Although there
are known expressions for the Passarino-Veltman functions in dimensional regulariza-
tion8, we can evaluate numerically the finite part of these functions directly with the
help of the LoopTools package [103,104]. The calculation of all the loop amplitudes is
still delicate and quite lengthy. For this reason, they need to be tested algebraically,
e.g., checking the fulfillment of the isospin symmetry, (3.104)-(3.107) and the crossing
symmetry relations, (3.108). Further numerical probes have been made for the par-
ticular π0 photoproduction channel comparing with previous results [99], obtained by
solving the integrals with the Feynman parametrization method.

I will illustrate with further detail the steps for the complete procedure in the next
section with a representative 3-point loop integral example. In addition, I will explain
the breaking of the power counting for some of the integrals and its restoration.

Example: detailed calculation for the (g7) diagram

N(p)

γ(k)

1 1 N ′(p′)

2

πa(q)

p− z

p,n

z

π0,±

z + k

π0,±

Figure 4.5: Feynman diagram for the one-loop diagram topology (g7)
of Fig. 4.2 corresponding to the O(p3) amplitude for the γ(∗) +N −→
πa + N ′ reaction. The numbers inside the circles indicate the chiral
order of the vertices. The labels π0,± and p,n denote the possible
charges of the loop lines, and z is the inner momentum in the loop

integral.

As an example, I will show the detailed calculation for one of the loop diagrams.
Using the Feynman rules for vertices and propagators given in appendix A, the cor-
responding momentum space amplitude, Mµ (3)

(topo), can be written for the channel
γ(∗) +N −→ πa +N ′ as

Mµ (3)
(g7) =

∫
dzD

(2π)D

∑
NI

∑
πI

V(1)
NIπI ;N ′πaiSπ(z + k)iSN (p− z)Vµ (2)

γπI ;πI
iSπ(z)V(1)

N ;NIπI
,

(4.68)

8Some of these analytical expressions are very complicated and/or have strong numerical insta-
bilities due to large cancellations.
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where the sums and integral are made over the degrees of freedom of the internal loop
lines. The sums are made over the isospin states NI ∈ {p,n} and πI ∈ {π+, π−, π0},
while the integral is made over the inner loop momentum z. Specifying the charge of
the external legs, I write down the amplitude for each physical channel.

• For the γ(∗) + p −→ π0 + p channel:

Mµ (3)
(g7) =

∫
dzD

(2π)D
i e g (k + 2z)µ

(
(/k + /z) + /q

) (
mn + (/p− /z)

)
/zγ5

4F 3
(
z2 −M2

π+

) (
(k + z)2 −M2

π+

)
((p− z)2 −m2

n)
(4.69)

• For the γ(∗) + p −→ π+ + n channel:

Mµ (3)
(g7) =

∫
dzD

(2π)D
i e g (k + 2z)µ

(
(/k + /z) + /q

) (
mn + (/p− /z)

)
/zγ5

4
√

2F 3
(
z2 −M2

π+

) (
(k + z)2 −M2

π+

)
((p− z)2 −m2

n)
(4.70)

• For the γ(∗) + n −→ π− + p channel:

Mµ (3)
(g7) =

∫
dzD

(2π)D
−i e g (−k − 2z)µ

(
(−/k − /z)− /q

) (
mp + (/p− /z)

)
/zγ5

4
√

2F 3
(
z2 −M2

π−

) (
(k + z)2 −M2

π−

) (
(p− z)2 −m2

p

) (4.71)

• For the γ(∗) + n −→ π0 + n channel:

Mµ (3)
(g7) =

∫
dzD

(2π)D
i e g (−k − 2z)µ

(
(−/k − /z)− /q

) (
mp + (/p− /z)

)
/zγ5

4F 3
(
z2 −M2

π−

) (
(k + z)2 −M2

π−

) (
(p− z)2 −m2

p

) (4.72)

where I have distinguished in the propagators the corresponding physical masses for
the neutral and charged pions, Mπ0 and Mπ± respectively. Analogously, the corre-
sponding neutron and proton propagators are differentiated with masses mn and mp.
This distinction was made to account for the isospin breaking effects, relevant close to
the threshold, which come from the different mass gaps between the physical threshold
of the reaction, Wth = (mN + Mπa), and the thresholds for the opening of the loop
channels: Wth−loop = (mNI + MπI ), where mNI and MπI are taken as the physical
masses9.

These effects can be better appreciated when the physical threshold of the reaction,
Wth, is lower than the total mass of the loop masses, i.e., (mN + Mπa) < (mNI +
MπI ). This is the case for loops involved in the neutral pion production channels:
γ(∗) + p −→ π0 + p and γ(∗) + n −→ π0 + n. For example, in the photoproduction
channel γ + p −→ π0 + p, the above loop amplitude Mµ (3)

(g7) will account differently
for the near threshold energies, W , such that (mp +Mπ0) < W < (mn +Mπ+) than
for the higher energy region W > (mn +Mπ+).

9Formally, given that the propagators are derived from the LO ChPT Lagrangian in an SU(2)
isospin symmetric ChPT, we should include the masses in the chiral limit and the isospin limit.
However, the inclusion of the physical masses instead of the chiral masses introduces differences of
order O(p4) or higher and do not alter the power counting at O(p3); see section 4.3.3. Hence, I have
considered in the loop lines the physical masses for the different charges of pions and nucleons in a
more phenomenological approach to better describe isospin effects.
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In detail, when the above contribution with a positive pion in the loop is evaluated
near the threshold region, 1073.25 MeV < W < 1078.49 MeV, it returns a purely real
result, while for higher energies, W > 1078.49, the loop results in a combination of
real and imaginary components. In other words, it occurs a loop opening-channel
from 1078.49 MeV. Thus, an abrupt behavior change at W = 1078.49 MeV, known as
a cusp effect, can be appreciated in some observables10. At much higher energies, the
numerical differences are marginal between the isosymmetric loop amplitudes and the
loops with isospin breaking. However, the isospin symmetric calculations badly fail
to reproduce the very precise data near threshold.

At tree level, there are no such strong isospin breaking effects for the neutral pion
channels π0N . On the other hand, for the charged pion channels, γ(∗)+N −→ π±+N ′,
this effect is marginal given that it is related to only the smaller mass difference be-
tween the neutron and proton. Moreover, this difference is negligible and the phase
space widely dominates the behaviour of the cross sections close to the threshold for
these cases.
I shall highlight now the computing procedure I follow in general for the loop am-
plitudes. I take the channel γ∗ + p −→ π0 + p. Both, Dirac matrices and momenta
are set in an analytically extended D-dimensional Minkowski space. The calculation
steps proceed as follows:

• As the D-dimensional algebra for the Dirac matrices and scalar products [62]
has been implemented in the FeynCalc package, I define in a Mathematica
notebook the D dimensional on-shell scalar products for the external momenta,
the Feynman rules, and the external momenta conservation (3.4).

• I type the integrand of the amplitude (4.69), expand the numerator part and
reduce all possible terms into scalar products of type p·k, q·p′, k·q, p·p′, p′·k, p·q
including the on-shell conditions p2 = p′2 = m2

N , q
2 = M2

π , k
2 = −Q2.

• I apply the Dirac equation to the integrand part in ūN ′(p′)Mν (3)
(g7) uN (p) for the

external initial and final nucleon D-momenta /puN = mNuN , with uN the D-
dimensional nucleon Dirac-spinor. This considerably simplifies the expressions.

• To implement the integration over the loop momentum, z, with dimensional
regularization, the TID command in FeynCalc has been recently developed.
This command does a one-loop tensor integral decomposition, transforming
the Lorentz indices away from the integration momentum, z, and identifies the
split terms with the scalar and tensorial Passarino-Veltman functions A0[m2

p],
B0[s,M2

π+ ,m
2
n],..., etc. The introduction of the t’Hooft parameter µ4−D for

dimension D = 4− 2εUV has been encoded within FeynCalc.

• Finally, the scalar products among momenta are written in terms of the Man-
delstam representation, s and u, using Eqs. (3.6) and (3.7).

After the above steps, the amplitude contribution (4.69) is written in the form

µ4−DMµ (3)
(g7) =

e g (mn +mp)

16π2F 3

[
− A0

[
m2
n

]
γ5 (kµ + pµ)

2s

+

(
γµγ5Q2 − (D − 2)kµ/kγ5

4(D − 1)Q2 (mn +mp)
+

(kµ + pµ) γ5

2s

)
A0

[
M2
π+

]
10This isospin breaking effect has been studied earlier for some electroproduction observables. See,

e.g., Ref. [105].
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+
γ5
(
kµ
(
m2
n −M2

π+

)
− pµ

(
M2
π+ −m2

n + s
))

2s
B0

[
s,M2

π+ ,m
2
n

]
+

(
4M2

π+ +Q2
) (
γµγ5Q2 + kµ/kγ5

)
8(D − 1)Q2 (mn +mp)

B0

[
−Q2,M2

π+ ,M
2
π+

]
+

1

4
kµ
(

2/kγ5 (mn −mp) + γ5
(

(mp −mn)2 − 2M2
π+

))
× C0

[
m2
p,−Q2, s,m2

n,M
2
π+ ,M

2
π+

]
+

1

4
kµ
(

5/kγ5 (mn −mp) + 2γ5
(
Q2 + (mp −mn)2 − 2M2

π+

))
× C1

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

]
−
((

pµ/kγ5 − mp

4
kµγ5

)
(mn −mp) +

mp

2
kµ/kγ5 + pµγ5 (mn −mp)

2 − 2M2
π+

2

)
× C2

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

]
+

1

2
pµmp

(
2/kγ5 + γ5 (mp −mn)

)
C22

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

]
− 1

2

(
2/kγµγ5 + γµγ5 (mp −mn)

)
C00

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

]
− 1

2
kµ
(
/kγ5 (mp −mn)− 2Q2γ5

)
C11

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

]
−
((
Q2pµγ5 +mpk

µ/kγ5
)

+
(
pµ/kγ5 −mpk

µ/kγ5
) (mn −mp)

2

)
× C12

[
−Q2, s,m2

p,M
2
π+ ,M

2
π+ ,m

2
n

] ]
(4.73)

where A0, B0, and C0 are the 1-point, 2-points and 3-points scalar Passarino-Veltman
integral functions defined in (4.62)-(4.64), respectively. The 3-point functions C1,
C2,C22, C11, C00, C12 are defined through the 3-point tensorial Passarino-Veltman
integrals Cµ and Cµν

Cµ =rµ1C1 + rµ2C2 , (4.74)

Cµν =gµνC00 +

2∑
i,j=1

rµi r
ν
jCij , (4.75)

with

Cµ =
(2πµ)4−D

iπ2

∫
dDzzµ

2∏
i=0

1

[(z + ri)2 −mi]
, (4.76)

Cµν =
(2πµ)4−D

iπ2

∫
dDzzµzν

2∏
i=0

1

[(z + ri)2 −mi]
. (4.77)

where ri is related to the external momenta [see argument dependence as given in
(4.64)]. For this example, it is deduced that r0 = 0, r1 = −k and r2 = p. Once
we have our amplitude integrated and given in terms of the Passarino-Veltman func-
tions, we are able to evaluate numerically all these functions using the LoopTools
package for any c.m. energy W =

√
s and pion angle. In the LoopTools package, it
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is possible to evaluate Passarino-Veltman functions in UV dimensional regularization,
implement any of the renormalization conventions to subtract the term containing
1/εUV and define the scale parameter at will. We choose µ = mN as customary in
BChPT calculations.

The tensorial Passarino-Veltman functions Cij , Ci that appear in the amplitude
(4.73) can be further decomposed into only scalar functions A0, B0, C0

11 and, as it
was pointed out in (4.67), all the loop amplitudes can be written in terms of only
scalar Passarino-Veltman functions12. Alternatively, we can evaluate directly the ten-
sorial functions Cij and Ci with LoopTools. Despite the equivalence among both
approaches, at very low energies we reach a higher numerical precision in LoopTools
with the tensorial Passarino-Veltman version and we obtain a very smooth behavior.
On the other hand, with the scalar functions sometimes there are numerical issues
due to cancellations among very large numerical quantities and the evaluated energy
dependence becomes quite unstable close to the threshold.

Finally, as can be noticed in (4.73), there is still some remaining dependence on the
dimension D for some terms multiplying the Passarino-Veltman functions13. These
D’s should not be naively substituted by four. In order to remove the UV term
1/εUV and hold the adequate finite part, we need to take special care with terms
that contain UV divergences. Here, this only applies to the terms with A0, B0 and
C00. The correct way to tackle this problem is to expand the expression obtained
after making the substitution, D = 4 − 2εUV , as a power series in εUV . Then, the
resulting linear part in εUV will be multiplied by the divergent part of the respective
Passarino-Veltman functions. This gives in return finite terms which need to be taken
into account. For instance, in this example, it can occur that

D Div[A0[M2
π ]] =DM2

π

1

εUV
(4.78)

=(4− 2εUV )M2
π

1

εUV
(4.79)

=4M2
π

1

εUV
− 2M2

π , (4.80)

where Div[A0[M2
π ]] refers to the UV divergent part for A0[M2

π ] in dimensional regu-
larization14. The term proportional to 1

εUV
is systematically taken out in the regular-

ization procedure while we hold the resulting finite term, −2M2
π .

The procedure here presented has been applied for each loop amplitude given
in appendix A.3 in a systematical automatized code in Mathematica. The algebraic
manipulations with Dirac matrices and Passarino-Veltman functions were delegated to
FeynCalc and the numerical evaluations to LoopTools in FORTRAN for faster numerical
calculations. I have taken care of the conventions, comparing loop by loop with
previous works [107] and in parallel with loop amplitudes for other similar reactions
[25]. The algebraical testing has been ran in Mathematica for the isospin symmetry
relations (3.104)-(3.107) and the crossing symmetry relations (3.108).

11We can do this with FeynCalc using the command PaVeReduce in Mathematica. This reduction
is not unique but all the options give the same numerical results.

12D0 only appears when we consider a 4-point one-loop integral
13The D dependence comes from the Dirac matrices manipulation in D dimensions, for instance

when we use some identities like gµνγµγν = D.
14The extraction of the divergent part for all the Passarino-Veltman functions has been imple-

mented in PackageX [106], an auxiliary package for FeynCalc.
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4.2.3 Renormalization

Once the one-loop integrals are dimensionally regularized, the UV divergences of the
integrals are canceled by the counter-terms obtained by adjusting the bare LECs of
the ChPT Lagrangian so that the resulting amplitude is expressed in terms of the
renormalized LECs. The absorption of the UV divergences into the LECs is namely
the renormalization procedure.

There are several conventions to cancel the divergences for a dimensional regular-
ized loop amplitude. Some of the most popular are the minimal subtraction scheme,
MS, commonly used in Standard Model calculations, and the modified minimal sub-
traction scheme, MS − 1 (or M̃S), widely used in ChPT.
In this work, we follow the M̃S scheme for the renormalization of the ChPT La-
grangian. In this scheme, one is looking to re-absorb in the LECs multiples of

R = γE −
1

εUV
− log(4π)− 1, (4.81)

where γE = −Γ′(1) = 0.5772 . . . is the Euler constant and εUV = (4 − D)/2, see
Eq. (2.47) 15. To illustrate this procedure and without losing generality, if one writes
the regularized loop amplitude, Mµ (3)

loop , in terms of only scalar Passarino-Veltman
functions, (4.67), the divergent part, R, appears in the one-point and two-point one-
loop functions, (4.62) and (4.63) respectively. The R dependence can be seen through
their expanded expressions around εUV → 0:

A0[m2
0] =−m2

0

(
R+ ln

m2
a

µ2

)
, (4.82)

B0[r2
10,m

2
0,m

2
1] =−R+ 1− ln

m2
1

µ2
+
m2

0 −m2
1 − r2

10

2r2
10

ln
m2

1

m2
0

+
r2

10 − (m0 −m1)2

p2
ρab(r

2
10) ln

ρab(r
2
10)− 1

ρab(r
2
10) + 1

, (4.83)

with

ρab(r
2
10) ≡

√
r2

10 − (m0 +m1)2

r2
10 − (m0 −m1)2

. (4.84)

In practice, we just drop all the terms proportional to R to regularize the loop
amplitudes and, hence, treat the LECs appearing at the tree level amplitude as renor-
malized in the M̃S scheme.16 Nonetheless, formally, we can always find the specific
UV shift, β, for the LECs:

X = Xr +
βX

16π2
R, X ∈ {m, g, ci, dj , lk} (4.85)

such that for the complete amplitude, as in (4.5), including tree and loop contributions
becomes

15 Instead, in MS one subtracts multiples of γE − 1
εUV
− log(4π).

16Taking R = 0 can be readily implemented in the LoopTools package [103] when we numerically
evaluate the amplitudes.
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Mµ
tree[m, g, ci, dj , lk] +Mµ (3)

loops

(
A0

[
M2
]
, B0

[
s,M2,m2

]
, . . . , C0[...], D0[...]

)
=Mµ

tree[m
r, gr, cri , d

r
j , l

r
k] +Mµ (3)

loops

(
A0

[
M2
]
, B0

[
s,M2,m2

]
, . . . , C0[...], D0[...]

)︸ ︷︷ ︸
M̃S−regularized amplitude without UV divergences

(4.86)

where X are the non-renormalized LECs, m, g and the values for the indices i, j, k
refers to those LECs involved in the Lagrangian terms (2.61), (2.63), (2.64) and (2.44).
Xr stand for the M̃S renormalized LECs. Mµ

tree indicates the amplitude at tree level,
Eq. (4.5), and Mµ (3)

loops is the loop amplitude, Eq. (4.67), that also includes the loops
for the external legs, (see sect. 4.2.5). The functions A0 and B0 in Eq. (4.86) are the
M̃S renormalized functions as in Eqs. (4.82) and (4.83) with R = 0.
The UV β functions of Eq. (4.85) should be the adequate ones to cancel terms propor-
tional to R involved in Mµ (3)

loops. In principle, those β functions are unique and most
of them were derived from other processes and are well known. See, e.g., Ref. [25].

In a more general case, when the tensorial Passarino-Veltman functions are used
in the evaluation ofMµ (3)

loops, the procedure is equivalent given that the divergent part
is always proportional to 1/εUV : First, we extract the terms proportional to R from
the tensorial Passarino-Veltman functions inMµ (3)

loops
17; Second, we subtract the terms

going as 1/εUV by doing R→ 0 (or 1/εUV → γE − log(4π)− 1).

4.2.4 EOMS PCBT restoration scheme

According to the power-counting rule of Eq. (2.66), the M̃S-renormalized loop ampli-
tude,Mµ (3)

loop (4.86), is supposed to be of order O(p3). However, as it was pointed out
in section 2.2.2, when one considers baryons in the loops, such as those derived from
the baryonic L(1)

N (2.61) [64], there may appear terms which are inconsistent with the
power-counting [59]. These power-counting breaking terms (PCBT) are finite and of
lower orders than the nominal one given by Eq. (2.66). In this sense, loops with nu-
cleons in a baryon ChPT calculation lead us to a power-counting problem. As always,
tree-level diagrams and those diagrams that exclusively contain mesons in the loops
are still consistent with the power-counting defined in Eq. (2.66).
The main idea of the EOMS scheme is to absorb only the PCBT by performing finite
subtractions, in addition to those of the M̃S renormalization procedure, such that
the resulting expressions for the amplitudes of the corresponding diagrams satisfy the
power-counting rule. Specifically, the EOMS renormalization consists of the cancella-
tion of the PCBT appearing in the loop amplitudes obtained by performing a suitable
finite shift of the LECs in the ChPT Lagrangian. These shifted constants alter the
tree amplitudes in such a manner that the PCBT are exactly removed.

In particular, the power-counting violating loop amplitudes for γ(∗)+N −→ π+N ′

are those involving nucleon propagators in the loops. They correspond to the topolo-
gies (d), (e), (f), (g) and (h) in Fig. 4.2. These loop amplitudes are not purely of
order O(p3), but contain PCBTs of lower orders: O(p1) and O(p2). These terms spoil
the power-counting of Eqs. (2.66) and (2.79) for the given amplitudesMµ (3)

topo .

17This is readily performed in FeynCalc jointly with the auxiliary software PackageX.
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The commonly used procedure to implement the EOMS scheme in order to restore
the power-counting in the aforementioned loop amplitudes goes as follows. The first
step is to find the PCBTs by expanding the amplitudes in a series of the appropriate
chiral parameters. For example, in [22] and [14], the parametersMπ, of orderO(p), the
Mandelstam variable t and ν = (s−u)/4mN , both of O(p2), with s and uMandelstam
variables, were chosen for the expansion. As the PCBTs correspond to lower orders
than the nominal O(p3), all the PCBT of order O(p2) or lower are identified and
summed18. Please notice that to accomplish this, to have the analytical expressions
of the integrated amplitudes is, normally, necessary19.
The second step to regularize the loops in the EOMS scheme is to subtract the PCBT
fromMµ(3)

loop , (4.86). Explicitly, we have that

Mµ(3)
loop =

∑
n

PCBT(n) + M̃µ(3)
loop (4.87)

where Mµ(3)
loop is the M̃S-regularized loop amplitude, PCBT(n) is the PCBT of order

O(pn) with n < 3, and M̃µ(3)
loop is the M̃S and EOMS-regularized loop amplitude.

Please notice that the new amplitude M̃µ(3)
loop starts now at O(p3) and therefore sat-

isfies the power-counting rule. From here, we can simply remove each PCBT(n) and
only keep the fully regularized O(p3) amplitude, M̃µ(3)

loop . Finally, the LECs supposed
to re-absorb the PCBT are already found renormalized in the EOMS scheme.

This method was performed in Ref. [22] in a study the neutral pion photoproduc-
tion on protons. They used the same theoretical model as here. Thus, they had
similar loop amplitudes. Although their results were satisfactory with this method,
the calculation for the four physical channels and the generalization to virtual photons
for the electro-production process would be far more delicate and lead to a substan-
tially larger task.

For that reason, and given that PCBT can be absorbed by shifts in the LECs, I
have implemented, instead, an equivalent method by using the EOMS-renormalized
LECs and their corresponding finite shifts. The corresponding shifts have been ob-
tained first by T. Fuchs et al. in Ref. [6].
These EOMS shifts in the LECs allow us to generate the adequate counter-terms
that cancel the PCBTs in the loops from the tree-level amplitudes. This straight-
forward method is based on the preliminary method working exclusively with loops
as described above (4.60), but here we are only required to work with the tree-level
amplitudes while the loop terms can be directly evaluated without modifications or
further subtractions. This approach is much simpler and we are able to automatize
efficiently the task for all the four physical channels and the pion electro- and photo-
production amplitudes.

In detail, the approach I follow introduces the EOMS-renormalized LECs, X̃,
18Although there may be some PCBT cancellations among different loop diagrams, we still have

some persistent PCBT for the total sum of topologies.
19It is possible to subtract the PCBTs without calculating explicitly the full integrals. The detailed

procedure is explained in Ref. [30]. Basically, the integrands are modified with the subtraction of the
suitable counter terms. To find them, the integrands are expanded in a series, and the problematic
terms must be identified. The method is laborious but is well defined and systematic.
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Xr = X̃ +
m β̃X

16π2F 2
(4.88)

withXr the M̃S-renormalized LECs of Eq. (4.85). The functions β̃X suitably shift the
Xr LECs, such that, with the M̃S-regularized tree amplitude we can systematically
generate the PCBTs to be canceled up to O(p2). That is, when we apply Eq. (4.88)
to the tree level amplitude from Eq. (4.86) we get for the complete M̃S-regularized
amplitude that

Mµ =Mµ
tree[m

r, gr, cri , d
r
j , l

r
k] +Mµ (3)

loop

=

[
Mµ

tree(m̃, g̃, c̃i, d
r
j , l

r
k)−

2∑
n=1

PCBT(n)

]
+Mµ (3)

loop . (4.89)

In our case, the EOMS-renormalization shifts apply only to Xr ∈ {mr, gr, cr1, c
r
6, c

r
7}.

Their β̃-functions are given in Eqs. (4.91)-(4.93). Those few LECs are sufficient to
generate the PCBT up to O(p2). The EOMS-renormalization for the dj , lk LECs
would produce contributions of O(p3) or higher, which would not correspond to the
PCBT treated here.
Additionally, we can notice from (4.87) and the loop contribution Mµ (3)

loop in (4.89),
the cancellation of PCBT up to O(p2) and the EOMS regularization becomes evident.
Thus

Mµ =Mµ
tree[m

r, gr, cri , d
r
j , l

r
k] +Mµ (3)

loop

=Mµ
tree[m̃, g̃, c̃i, d

r
j , l

r
k] + M̃µ (3)

loop . (4.90)

The EOMS β̃-functions required in this work are readily available. They had already
been obtained in the analysis of electromagnetic form factors of the nucleon [6], pion
nucleon scattering [14], weak pion electroproduction [25] and others.
For the LO parameters m and g, from L(1)

πN , we have

β̃m = −3

2
g2A0

[
m2
]
, β̃g = g3m+

(
2− g2

)
g

m
A0

[
m2
]
, (4.91)

where

A0[m2] = −m2 log
m2

µ2
, (4.92)

is the M̃S-renormalized scalar 1-point Passarino-Veltman function, (4.82), with µ the
renormalization scale introduced in dimensional regularization20.

20 To be rigorous, we have included the A0

[
m2
]
terms that are sometimes omitted in the literature.

The reason is that in those cases, like in this work, the renormalization scale is set to be the nucleon
mass, µ = m. Thus, A0

[
m2
]
→ 0.
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For the second order LECs appearing in L(2)
N we get21

β̃c1 =
3

8
g2 +

3g2

8m2
A0[m2], β̃c6 = −5g2m, β̃c7 = 4g2m. (4.93)

In the following, I will show briefly how the PCBT have been generated order by
order from the tree-level amplitudes of O(p) and O(p2). For each channel, I perform
the calculations in the way of Eq. (4.89) to restore in the EOMS scheme the power-
counting of the loop amplitudes.

First, we take the amplitudeMµ(1)
tree of O(p), after the M̃S-renormalization of the

relevant LECs (gr,mr). As the renormalization scheme preserves the structure of
the Lagrangian, the amplitude still has the same form. Thus, we can simply rename
the LECs X as Xr. In the EOMS approach, we need to further modify the LECs
{mr, gr}. To do that, we shift them in the amplitudeMµ(1)

tree (4.6) using the equations
(4.88) and (4.91). Then, expanding at first order in β̃X , we get22

Mµ (1)
tree [gr, F,M,mr] =Mµ(1)

tree [g̃, F,M, m̃] + PCBT1

=M̃µ(1)
tree + PCBT1, (4.94)

where M̃µ(1)
tree = Mµ(1)

tree [g̃, F r,M r, m̃] is the EOMS O(p1) tree amplitude23 The term
PCBT1 is a combination ofO(p) andO(p2) terms corresponding to some PCBT pieces,
with a minus sign as compared to corresponding terms of the loop amplitude, (4.87).
The explicit expressions of PCBT1 for all physical channels and studied reactions are
given in the appendix B.
Secondly, the additional LECs {cr1, cr6, cr7} appearing in the amplitudeMµ (2)

tree , (4.15),
are redefined in EOMS by using the equations (4.88), (4.91) and (4.93). Then, as
before for the O(p1) case

Mµ(2)
tree [cr1, c

r
6, c

r
7,m

r, gr, F ] =Mµ(2)
tree [c̃1, c̃6, c̃7, m̃, g̃, F ] + PCBT2

=M̃µ(2)
tree + PCBT2 (4.95)

with M̃µ(2)
tree =Mµ(2)

tree [c̃1, c̃6, c̃7, m̃, g̃, F ] the O(p2) tree amplitude in the EOMS scheme
and of the same form as in Eq. (4.15). The generated PCBT2 are shown explicitly in
App. B.

Therefore, as it was mentioned above, the EOMS β̃-functions are built to cancel,
up to O(p2), the PCBT that spoil the power-counting in the loop amplitudes. The
complete set of PCBT, fully generated from only the amplitudes Mµ(1)

tree and Mµ(2)
tree ,

corresponds to the sum of PCBT2 and PCBT2, i.e.,
21Note that the EOMS shifts applied to the c6 and c7 parameters in Ref. [6] are different, since

their Lagrangian has an alternative arrangement so that: c6 = 4mcF6 , c7 = m
(
cF7 − 2cF6

)
, where the

superscript F is just to identify the LECs of Ref. [6].
22Otherwise, given that mr appears in the propagator denominator, without implementing any

further expansion we could neither isolate the corresponding Mµ (1)
tree (g̃, F r,Mr, m̃) nor identify the

extracted PCBT1. Both approaches do not produce any important numerical difference and, analyt-
ically, the discrepancies are of a higher chiral order than the present work.

23 I recall here that in these O(p) amplitudes, the nucleon and pion masses, {m̃,M}, which appear
for instance in the propagators take their LO values.



70 Chapter 4. Amplitudes for pion EM production

PCBT1 + PCBT2 = −
2∑

n=1

PCBT(n). (4.96)

In order to test the correct calculation of the PCBT, the above terms PCBT1 and
PCBT2 were checked to respect the symmetry relations for the isospin amplitudes
(3.104)-(3.107) and the crossing symmetry relations (3.108) as well as the gauge in-
variance condition. Additionally, the PCBT derived with the β̃-functions approach
have been compared with those derived from the explicit calculation of the loops,
given in Ref. [22] for the photoproduction channel γ + p −→ π0 + p. We found that
they coincide up to and including O(p2)24.

In summary, once the PCBT were generated from the respective tree-level ampli-
tudes, we can write the total regularized amplitude with all the contributions from
the tree and loop diagrams of Figs. 4.1 and 4.2. Using the EOMS renormalization of
the tree amplitudes of O(p) and O(p2), the total amplitude reads

Mµ =Mµ(1)
tree +Mµ(2)

tree +Mµ(3)
tree +Mµ(5/2)

tree∆ +Mµ(3)
loop (4.97)

=M̃µ(1)
tree + M̃µ(2)

tree +Mµ(3)
tree +Mµ(5/2)

tree∆ +
(

PCBT1 + PCBT2 +Mµ(3)
loop

)
, (4.98)

withMµ(3)
loop the UV M̃S-regularized loop amplitude that breaks the power-counting.

Then, using Eqs. (4.87) and (4.96), we have that

Mµ =M̃µ(1)
tree + M̃µ(2)

tree +Mµ(3)
tree +Mµ(5/2)

tree∆ + M̃µ(3)
loop , (4.99)

is the EOMS regularized amplitude, where M̃µ(3)
loop = PCBT1 +PCBT2 +Mµ(3)

loop follows

the nominal power-counting. The tree amplitudes in the EOMS scheme, M̃µ(1)
tree and

M̃µ(2)
tree , are defined in Eqs. (4.94) and (4.95) respectively. All the individual pieces for

PCBT1, PCBT2 andMµ(3)
loop are provided in the appendices A.3 and B.

The above expression (4.99) is written in such a manner that is consistent with
the power-counting rule given in Eq. (2.79), specially the loop amplitude, M̃µ(3)

loop . We
should remark that also the EOMS and the non-EOMS regularized tree amplitudes
obey the power-counting rule and start contributing at the order given by the super-
script.

4.2.5 WFR for the external legs

To fully consider the loop contributions for the γ(∗) + N −→ π + N ′ amplitude
we should introduce the diagrams obtained from the previous ones when the exter-
nal hadronic legs are modified including self-energy loops or insertions, as shown in
Fig. 4.6. These diagrams need to be taken into account in this work given that they
can contribute to O(p3). As it was mentioned at the beginning of the section 4.2.2,
the effects of this kind of loops can be included as a correction called wave function
renormalization (WFR), because it can be absorbed into a rescaling of the fields. As

24The difference in the treatment of higher orders leads to some really small numerical differences
between the corrected amplitudes in the full set of the kinematical regions given in data between
both approaches. All this indicates that both versions are sufficient, and they remove the same O(p2)
power-counting violating pieces from the loops.
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N 1 1 Np p

(a)

π 4 π
q q

(b)

π 2 π
q q

(c)

Figure 4.6: Self energy diagrams contributing to the wave function
renormalization of the external nucleon with momentum p, (a), and

the external pion with momentum q, (b), (c).

they are presented in the ChPT Lagrangian (4.3), the rescaling of the external nucleon
and pion fields are N → √ZNN and φ→ √Zπφ. The correction functions are given
by [62]

ZN =
1

1− d

d/p
ΣN (/p)

∣∣∣∣
/p=mN

, Zπ =
1

1− d

dq2
Σπ(q2)

∣∣∣∣
q2=M2

π

, (4.100)

with ΣB the self-energy for the corresponding hadron field, B ∈ {N, π}. ΣB is a
function of the pion or nucleon momentum, q or p respectively. The derivative implies
that only the momentum dependent terms in the self-energy amplitude contribute to
the WFR. In fact, the only contributing diagrams to the rescaling functions, ZB, at
the order required for our calculation are those displayed in Fig. 4.6.

The renormalization of external fields follows the LSZ formula [62]. In our case,
the total amplitude from the γ(∗) + N −→ π + N ′ process (4.99) is completed with
the loop corrections in the external legs by rescaling the initial and final nucleons and
pion fields, as in (4.58)

M̂µ =
√
ZπZNMµ (4.101)

with M̂µ the full definitive amplitude at O(p3) to be worked out for the calculation
of physical observables.
In the framework of ChPT, the self-energies ΣB and the rescaling constants ZB are
straightforwardly obtained from the chiral Lagrangian terms. the nucleon rescaling
constant ZN has been obtained in Ref. [14] in a calculation with the same M̃S renor-
malization and in the EOMS scheme. The wave function renormalization for the
external nucleon legs can be written as

ZN =1 + δ̃
(2)
ZN +O(p3), (4.102)

where, according to Eq. (4.100), δ̃(2)
ZN =

d

d/p
ΣN (/p)

∣∣
/p=mN

is the O(p2) loop contri-

bution25 regularized in the EOMS scheme. From the evaluation of the diagram in
25Please, notice that the self energy contribution to ΣN (/p) from the diagram in Fig. 4.6-(a) is of
O(p3).
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Fig. 4.6-(a) one obtains

δ̃
(2)
ZN = − 3g2

A

64π2F 2
π

(
M2
π − 4m2

N

){4M2
π

(
A0

[
m2
N

]
+
(
M2
π − 3m2

N

)
B0

[
m2
N ,M

2
π ,m

2
N

]
−m2

N

)

+
(
12m2

N − 5M2
π

)
A0

[
M2
π

]}
, (4.103)

where A0 and B0 are the M̃S renormalized Passarino-Veltman functions given in
Eqs. (4.82) and (4.83) with R→ 0.

In the same way, the rescaling constant for the final pion field, Zπ, has been
obtained by Gasser et al. in Ref. [53]. The only diagrams that can contribute to the
wave function renormalization up to O(p2) are those in Fig. 4.6-(b),(c) through the
self-energy Σπ(q2) and using Eq. (4.100).
The pion scaling function can be expanded as

Z(2)
π = 1 + δ̃

(2)
Zπ +O(p3), (4.104)

where δ(2)
Zπ =

d

dq2
Σπ(q2)

∣∣
q2=M2

π
is the O(p2) contribution given explicitly as

δ
(2)
Zπ = − 2

3F 2
π

{
3lr4M

2
π+

A0

[
M2
π

]
16π2

}
, (4.105)

with lr4 the corresponding M̃S renormalized LEC from the Lagrangian term LGSS(4)
ππ

of Eq. (2.44).
Although the loop contributions to the WFR actually depend on the chiral limit

masses and constants, m, M , g and F , all these parameters are replaced by the
physical quantities mN ,Mπ, gA and Fπ. By doing this, the change produced in the
WFR is at least of O(p3)26 for the scaling factors, ZB, of Eqs. (4.102) and (4.104).
Thus, this modification of O(p3) multiplied by the amputated amplitude, Mµ, as
in Eq. (4.101), will produce terms from O(p4), which are beyond the order of our
calculations, O(p3). I will review in more detail this kind of approximations in the
next section.

4.3 Further considerations for the O(p3) amplitude

In the present subsection, I would like to describe briefly some algebraical tools used
here to simplify and implement the calculations of the amputated total amplitudeMµ

at O(p3) [Eq. (4.99)]. First, I will discuss the behavior of the tree level amplitudes
involving nucleon and pion propagators when the chiral expansions of the masses
are taken into account. Secondly, I will follow with a discussion on the contributing
LECs in the full amplitude up to an O(p3) approximation. Lastly, I will review the
evaluation of the chiral parameters in terms of physical quantities, order by order in
the amplitude terms.

26See, e.g., appendix C.
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4.3.1 Diagrams with mass insertions in the propagators

One of the simplifications that can be made is related to the diagrams with mass in-
sertions in the nucleon propagators, such as the diagrams depicted in Fig. 4.1 (g), (h),
(q), (r), (s) and (t). All the amplitudes related to these diagrams can be generated
from the corresponding diagrams without propagator insertions, namely the diagrams
4.1 (b), (c), (e) and (f). In fact, with only the four latter diagrams we can calculate all
the ten diagram amplitudes mentioned before by simply replacing the chiral nucleon
mass, m, in the propagator denominator by m − 4c1M

2
π , which includes the second

chiral order correction. This shortcut will automatically reproduce all the original
amplitudes (b), (c), (e), (f), (g), (h), (q), (r), (s) and (t) at the expense of getting an
extra O(p4) contribution.

This approach is based on the chiral expansion of the nucleon mass, mN , up to
O(p2) in terms of the LO parameters. As it is shown in App. C, the nucleon mass
corrections in the M̃S and EOMS scheme are given by

mN = m̃− 4c̃1M
2
π︸ ︷︷ ︸

m̃2

+δ̃(3)
mN

+O(p4) (4.106)

with m̃2 the nucleon mass up to O(p2) and δ̃(3)
mN is the corresponding O(p3) contribu-

tion given in Eq. (C.3). Then, when we make the substitution

m̃→ m̃2 =m̃− 4c̃1M
2
π (4.107)

in the nucleon propagator, (A.22), and we expand it over the pion mass Mπ, it results
in27

iSN (p){m→ m2} = i
/p+m2

p2 −m2
2

=i
/p+m

p2 −m2

+i
/p+m

p2 −m2

(
i4c1M

2
π

)
i
/p+m

p2 −m2

+i
/p+m

p2 −m2

(
i4c1M

2
π

)
i
/p+m

p2 −m2

(
i4c1M

2
π

)
i
/p+m

p2 −m2
+O(p2)

= iSN (p)

+ iSN (p)
(
V(2)
N ;N

)
iSN (p)

+ iSN (p)
(
V(2)
N ;N

)
iSN (p)

(
V(2)
N ;N

)
iSN (p) +O(p2). (4.108)

27Tildes are omitted for simplicity in the next equations. This will be discussed below.
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O(p1) O(p2) O(p3)

1 1m2

=
1 1m

+
1 12m m

+
1 2 2 1m m m

+O(p4)

(b) (g) (q)

1 1m2

=
1 1m

+
1 12m m

+
1 2 2 1m m m

+O(p4)

(c) (h) (r)

Figure 4.7: Feynman diagrams showing the generation of amplitudes
of higher orders in the chiral expansion when we substitute the nucleon
mass m by m2, Eq. (4.107), in the nucleon propagator of two O(p1)

amplitudes,Mµ (1)
(b) , (4.12), andMµ (1)

(c) , (4.13).

As we can see in the expressions for Mµ (1)
(b) (4.12), Mµ (2)

(g) (4.18) and Mµ (3)
(q)

(4.33), the above expansion terms precisely appear in the intermediate blocks of their
respective amplitudes. The same occurs for the crossed diagram amplitudes (4.13),
(4.19) and (4.34). Therefore, applying the substitution (4.107) in the LO amplitudes
Mµ (1)

(b) (4.12),Mµ (1)
(c) (4.13), we have following relations:

Mµ (1)
(b) [m→ m2] =Mµ (1)

(b) [m] +Mµ (2)
(g) [m] +Mµ (3)

(q) [m] +O(p4), (4.109)

Mµ (1)
(c) [m→ m2] =Mµ (1)

(c) [m] +Mµ (2)
(h) [m] +Mµ (3)

(r) [m] +O(p4), (4.110)

which introduces a negligible difference of higher order, O(p4), in the amplitude, as
it was previously mentioned. This shortcut is illustrated in Fig. 4.7. In other words,
when we use m2 instead of m in the LO amplitudes we are considering all28 the
required diagrams with mass insertions. In the discussions, for simplicity, I have
omitted the tilde for the masses. The result and its derivation are quite general.
Actually, all the expressions remain the same in the EOMS framework. From the
definition of the O(p2) nucleon mass m̃2 in Eq. (4.107), we can alternatively derive
from Mµ (1)

(b),(c)[m2] (4.109),(4.110), the respective PCBT to be subtracted with the
EOMS beta functions for m and c1, Eqs. (4.91)-(4.93). The corresponding EOMS
shift for m2 is

m2 = m̃2 +
m
(
β̃m − 4M2

π β̃c1

)
16π2F 2

. (4.111)

28Up to O(p3).
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O(p2) O(p3)

2 1m2

=
2 1m

+
2 12m m

+O(p4)

(e) (s)

1 2m2

=
1 2m

+
1 22m m

+O(p4)

(f) (t)

Figure 4.8: Feynman diagrams indicating the generation of ampli-
tudes the by chiral expansion when we substitute the nucleon mass m
bym2, Eq. (4.107), in the nucleon propagator of the O(p2) amplitudes,

Mµ (2)
(e) , Eq. (4.20) andMµ (2)

(f) , Eq. (4.21).

Likewise, the same approach was used for theO(p2) amplitudesMµ (2)
(e) andMµ (2)

(f) .
In this case, applying the substitution m→ m2 (4.107) we can find that

Mµ (2)
(e) [m→ m2] =Mµ (2)

(e) [m] +Mµ (3)
(s) [m] +O(p4), (4.112)

Mµ (2)
(f) [m→ m2] =Mµ (2)

(f) [m] +Mµ (3)
(t) [m] +O(p4), (4.113)

where the amplitudes Mµ (2)
(e) , Mµ (2)

(f) , Mµ (3)
(s) and Mµ (3)

(t) are given in Eqs. (4.16),
(4.17), (4.35) and (4.35) respectively. The EOMS version is still the same by replacing
directly m̃ by m̃2 in the propagator if one has already generated the PCBT. The
Feynman diagrams for the amplitude expansions of the Eqs. (4.112) and (4.113) are
depicted in Fig. 4.8.

To conclude, the approach presented here allows us to evaluate some contributions
to the amplitude in a more straightforward way. In this sense, we do not need to
calculate the diagrams with vertex insertions in their nucleon propagators.

Furthermore, this procedure is particularly convenient in evaluating the LECs
m̃ and c̃1 up to O(p3) through the parameter m̃2 in terms of well known physical
quantities like mN , Mπ and Fπ, see Eq. (C.2). In the next sections, I will treat
more deeply this and further simplifications that result in the evaluation of the chiral
parameters in the amplitude.

4.3.2 Evaluation of the amplitude and the relevant LECs at O(p3)

In this subsection, I review some of the basic ingredients of this work related to the
evaluation of the amplitude M̂µ, (4.101), as a function of the chiral parameters and
LECs. First, I detail the evaluation of the lowest-order parameters g, m, M and F ,
order by order, to express them in terms of physical quantities. Second, I explain
briefly which are the relevant LECs that will contribute to the amplitude M̂µ for an
O(p3) calculation.
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At this point, I would like to recall the full amplitude for γ(∗) + N −→ π +
N ′ split order by order as in the previous sections. According to Eq. (4.99) and
to the simplifications of Eqs. (4.109)-(4.113), the M̃S-EOMS regularized amputated
amplitude can be written as

Mµ =Mµ (1)
tree [s, u,Q2, g̃, F,M, m̃2]

+Mµ (2)
tree [s, u,Q2, g̃, F, m̃2, c̃6, c̃7]

+Mµ (3)
tree [s, u,Q2, gr, F,M,mr, dr6, d

r
7, d

r
8, d

r
9, d

r
16, d

r
18, d

r
20, d

r
21, d

r
22, l

r
3, l

r
4, l

r
6]

+Mµ(5/2)
tree∆ [s, u,Q2, gM , hA)

+ M̃µ(3)
loop [s, u,Q2, gr, F,M,mr] +O(p4), (4.114)

where is given explicitly the dependence on the kinematical variables {s, u,Q2} and the
relevant LECs, {g̃, gr, F,M, m̃2,m

r, c̃6, c̃7, d
r
8, d

r
9, , d

r
16, d

r
18, d

r
20, d

r
21, d

r
22, l

r
3, l

r
4, l

r
6, gM , hA}.

The amplitude for the ∆ mechanisms,Mµ(5/2)
tree∆ , is given as in Eq. (4.51) and the con-

tribution of the loop diagrams, M̃µ(3)
loop , as in Eq. (4.87). As always, the amplitude

dependence on the masses {m̃2,m
r,M} refers to how they appear in their corre-

sponding propagators. As it was treated in Sec. 4.3.1, the amplitudes with nucleon
vertex insertions were absorbed into other amplitudes [see Eqs. (4.109)-(4.113)]. Then,
the tree level amplitude contributions are re-organized order by order as

Mµ (1)
tree [g̃, F,M, m̃2] =Mµ (1)

(a) [g̃, F ] +Mµ (1)
(b) [g̃, F, m̃2]

+Mµ (1)
(c) [g̃, F, m̃2] +Mµ (1)

(d) [g̃, F,M ], (4.115)

Mµ (2)
tree [g̃, F, m̃2, c̃6, c̃7] =Mµ (2)

(e) [g̃, F, m̃2, c̃6, c̃7] +Mµ (2)
(f) [g̃, F, m̃2, c̃6, c̃7], (4.116)

Mµ (3)
tree [gr, F,M,mr, drj , l

r
k] =Mµ (3)

(i) [F,M, dr8, d
r
9, d

r
16, d

r
18, d

r
20, d

r
21, d

r
22]

+Mµ (3)
(j) [F,M,mr, dr16, d

r
18]

+Mµ (3)
(k) [F,M,mr, dr16, d

r
18]

+Mµ (3)
(l) [gr, F,M, lr4, l

r
6]

+Mµ (3)
(m) [gr,mr, dr6, d

r
7]

+Mµ (3)
(n) [gr,mr, dr6, d

r
7]

+Mµ (3)
(o) [M,F, dr16, d

r
18]

+Mµ (3)
(p) [gr,M, F, lr3, l

r
4], (4.117)

where I have omitted the kinematical variables {s, u,Q2}. Each individual amplitude
piece corresponds to the labeled Feynman diagrams of Figure 4.1. The O(p1) ampli-
tudesMµ (1)

(a) andMµ (1)
(d) are given in Eqs. (4.11) and (4.14), whileMµ (1)

(b) andMµ (1)
(c)

are given in Eqs. (4.12) and (4.13), but with the replacement m → m2. Now, the
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O(p2) contribution has only two terms, at difference with Eq. (4.15)29. These ampli-
tudes,Mµ (2)

(e) andMµ (2)
(f) , are obtained from Eqs. (4.20) and (4.21) with the m→ m2

change.
For the O(p3) tree contributions, the rest of the terms,Mµ (3)

(i) , . . . ,Mµ (3)
(p) are given

in Eqs. (4.37)-(4.44). The O(p3) amplitudes Mµ (3)
(q) . . .Mµ (3)

(t) with insertions in the
nucleon propagators have been reabsorbed into the LO amplitudes as it was explained
in the previous section.

As we can see in Eqs. (4.115)-(4.117), each one of the tree-level pieces depends on
a few specific LECs. Some of them, defined in the chiral limit, can be directly related
to physical quantities. They are the axial coupling, g̃, the nucleon and pion masses,
mr and M respectively, and the pion decay constant F ; see appendix C. In the next
part, I detail the evaluation of these LO parameters in terms of physical measurable
quantities, following with a discussion of the rest of the relevant LECs, {ci, dj , lk}.

4.3.3 Evaluation of the lowest order parameters

As is shown in appendix C, the LECs involved in the O(p1) amplitude, Eq. (4.115),
are {g̃, F,M, m̃2} and all of them can be expanded in terms of physical quantities and
some other LECs. In particular, the EOMS O(p2) nucleon mass, m̃2, can be evaluated
easily from Eq. (4.106),

m̃2 =mN − δ̃(3)
mN

+O(p4). (4.118)

Similarly, the chiral parameters g̃, F and M can be written in an expansion with only
physical quantities using Eqs. (C.6), (C.8) and (C.4) respectively. Then,

g̃ =gA − 4dr16M
2
π − gAδ̃(2)

gA
+O(p4), (4.119)

F =Fπ(1− δ(2)
Fπ

[lr4]) +O(p4), (4.120)

M2 =M2
π

(
1− δ(2)

Mπ
[lr3]
)

+O(p6), (4.121)

with δ̃(2)
gA a function of mN , Mπ, gA and Fπ given in Eq. (C.7) and

δ
(2)
Fπ

[lr4] =
lr4M

2
π

F 2
π

+
A0

[
M2
π

]
16π2F 2

π

, (4.122)

δ
(2)
Mπ

[lr3] =
2lr3M

2
π

F 2
π

− A0[M2
π ]

32π2F 2
π

. (4.123)

These expansions can be directly substituted in the amplitude if one knows the
values for the physical gA, Fπ Mπ,mN and the extra LECs dr16, lr3 and lr4. Nevertheless,
if we further substitute the above expressions for g̃, F and M in the amplitudeMµ,
Eq. (4.114), and simplify up to an accuracy of O(p3), then the pieces with these
LECs, (dr16, lr3 and lr4) are actually canceled at that order with other pieces in the full
amplitude, M̂µ, Eq. (4.101).

29The other two amplitudes, Mµ (2)

(g) and Mµ (2)

(h) , were absorbed in Mµ (1)

(b) , Mµ (1)

(c) , as shown in
Eqs. (4.109) and (4.110).
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Furthermore, since in the O(p1) amplitude, M̃µ (1)
tree , (4.115), the LECs g̃ and F

always appear in the combination g̃/F , then, using the Eqs. (4.118), (4.119) and
(4.120), we can recast the expressions as

Mµ (1)
tree [g̃, F,M, m̃2] =Mµ (1)

tree [gA, Fπ,M,mN − δ̃(3)
mN

]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
+O(p4)

=Mµ (1)
(a) [gA, Fπ]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
+Mµ (1)

(b) [gA, Fπ,mN − δ̃(3)
mN

]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
+Mµ (1)

(c) [gA, Fπ,mN − δ̃(3)
mN

]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
+Mµ (1)

(d) [gA, Fπ,M ]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
+O(p4).

(4.124)

As we can see above, the piecesMµ (1)
(a) ,Mµ (1)

(b) andMµ (1)
(c) are fully expressed in terms

of physical magnitudes and the LECs dr16 and lr4. Also, it is necessary to expand the
dependence on the chiral pion mass, M , which is only relevant in the term Mµ (1)

(d) .
This expansion up to O(p3) will make explicit the dependence in lr4. Taking the
amplitude expression for Mµ (1)

(d) as it is given in Eq. (4.124) and substituting the
expansion for M , Eq. (4.121), we have that

Mµ (1)
(d) [gA, Fπ,M ] = C

(1)
IV

egA(2q − k)µ(/q − /k)γ5

√
2Fπ ((q − k)2 −M2)

=C
(1)
IV

egA(2q − k)µ(/q − /k)γ5

√
2Fπ

(
(q − k)2 −M2

π

)
︸ ︷︷ ︸

Mµ (1)
(d)

[gA,Fπ ,Mπ ]

−C(1)
IV

2egAM
4
π(2q − k)µ(/q − /k)γ5

√
2F 3

π ((q − k)2 −M2
π)2 lr3︸ ︷︷ ︸

Mµ (3)
(d)R

[Mπ ,lr3]

+O(p5) (4.125)

whereMµ (3)
(d)R is the correction term atO(p3). The massMπ is defined from Eq. (4.123)

in terms of the physical pion mass30

M
2
π = M2

π +M2
π

A0[M2
π ]

32π2F 2
π

. (4.126)

In summary, the evaluation of the O(p1) amplitudeMµ (1)
(d) [g̃, F,M ], (4.115), in terms

of physical quantities and LECs can be expressed as an expansion up to O(p3) as

Mµ (1)
(d) [g̃, F,M ] =Mµ (1)

(d) [gA, Fπ,Mπ]

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
−Mµ (3)

(d)R [Mπ, l
r
3] +O(p4) (4.127)

30For the pion mass expansion included in the propagator I have used the expression
1

z2−M2 = 1
z2−M2

π
− 1

z2−M2
π

(
M2
πδ

(2)
Mπ

)
1

z2−M2
π

+O(p2)
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withMµ (1)
(d) [gA, Fπ,Mπ] andMµ (3)

(d)R [Mπ, l
r
3] indicated in Eq. (4.125).

LECs in the O(p2) tree amplitude

For the O(p2) amplitude terms of Eq. (4.116), the handling of the chiral parameters
is more straightforward than for the O(p1) one. In this case, when we expand there
the involved parameters, g̃, F and m̃2, using the Eqs. (4.118)-(4.120), we get

Mµ (2)
tree [g̃, F, m̃2, c̃6, c̃7] =Mµ (2)

tree [gA, Fπ,mN , c̃6, c̃7] +O(p4) (4.128)

where only remain the LECs c̃6 and c̃7 from the chiral Lagrangian. I will treat their
evaluation below. For the above amplitude the expansion of the chiral parameters
return the same amplitude evaluated directly with the physical parameters except for
higher order terms of O(p4) that we can neglect.

Parameters in the O(p3) tree and loop amplitude

As we can see in Eq. (4.117), the tree amplitude atO(p3) depends on {gr, F,M,mr, drj , l
r
k}

for j ∈ {6, 7, 8, 9, 16, 18, 20, 21, 22} and k ∈ {4, 6}. Here, the LECs are only given in
the M̃S scheme but not in EOMS, since at O(p3) we do not need to renormalize them
to generate PCBT. Furthermore, as we use the scale parameter µ = mN for the loop
functions, then A0[mN ] = 0 and the LO parameters mr and gr are related to their
analogous ones in EOMS as [see Eqs. (4.88), (4.91)]

mr =m̃, (4.129)

gr =g̃ +
mN

2g3
A

16π2F 2
π

. (4.130)

Substituting (4.129) and (4.130) in the corresponding expansions, (4.106) and (4.119),
we have that

mr =mN +O(p2), (4.131)

gr =gA +O(p2). (4.132)

This, together with the chiral expansions for F (4.120) and M (4.121), implies that
the O(p3) tree amplitude of Eq. (4.117) can be expressed as

Mµ (3)
tree [gr, F,M,mr, drj , l

r
k] =Mµ (3)

tree [gA, Fπ,Mπ,mN , d
r
j , l

r
k] +O(p4). (4.133)

Similarly for the loop amplitude we have

M̃µ(3)
loop [gr, F,M,mr] = M̃µ(3)

loop [gA, Fπ,Mπ,mN ] +O(p4). (4.134)

By consistency, this identity also affects the corresponding PCBT that should be
removed from the amplitudes Mµ(3)

loop of Eq. (4.67)31. That is because M̃µ(3)
loop =

31I refer to the loop amplitude which is already UV regularized in the M̃S scheme as in Eq. (4.86).
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PCBT1 + PCBT2 +Mµ(3)
loop [see Eq. (4.98)]. For this reason, the PCBT are given

too in terms of the physical parameters gA,Fπ,Mπ and mN in appendix B.

Finally, all the pieces involved in the total amputated amplitudeMµ, (4.114), can
be evaluated in terms of the known physical masses for the nucleon, mN , the pion,
Mπ, the axial coupling, gA, and the pion decay constant, Fπ. Although the set of
the other required LECs {c̃6, c̃7, d

r
6, d

r
7, d

r
8, d

r
9, d

r
16, d

r
18, d

r
20, d

r
21, d

r
22, l

r
3, l

r
4, l

r
6, hA, gM} is

quite large, as it was aforementioned, some of these LECs become irrelevant in an
O(p3) calculation. Explicitly, when we sum all the pieces together inMµ (4.114) and
multiply the result by the WFR factor

√ZπZN , the LECs dr16, lr3 and lr4, which appear
in different pieces of the amplitude, either cancel or can be reabsorbed by other LECS.

4.3.4 Relevant LECs at O(p3)

Here, I detail which are the relevant LECs at O(p3) for the γ(∗) + N −→ π + N ′

reaction. Cancellations between different terms and a proper analysis of the chiral
order of each contribution are taken into account. Namely,

• there is a direct cancellation of terms proportional to lr4 when the individual
tree amplitudes at O(p3), Eq. (4.117), are added up. Also, among the same
diagrams, the LEC lr3 involved in the pion exchange amplitudes in Mµ (3)

tree is
canceled by the chiral limit mass M inMµ (1)

tree , which is expressed in terms of lr3
and other physical quantities.

• The second point is related to the re-absorption of the LEC dr16 inMµ (3)
tree by the

expansion at O(p3) of the LEC g̃ inMµ (1)
tree in the amputated amplitude (4.114).

• The last step is related to the inclusion of the WFR correction
√Zπ and its

further expansion up to O(p3) that results in the re-absorbtion of lr4 by the
chiral limit parameter F inMµ (1)

tree .

Recollecting the previous results, once the amputated amplitudeMµ, (4.114), has
been evaluated in terms of the physical parameters and the related LECs, the full
amplitude including WFR can be computed as

M̂µ =
√
ZπZNMµ

=
√
ZπZN

{
Mµ (1)

tree [s, u,Q2, g̃, F,M, m̃2]

+Mµ (2)
tree [s, u,Q2, gA, Fπ,mN , c̃6, c̃7]

+Mµ (3)
tree [s, u,Q2, gA, Fπ,Mπ,mN , d

r
6, d

r
7, d

r
8, d

r
9, d

r
16, d

r
18, d

r
20, d

r
21, d

r
22, l

r
3, l

r
4, l

r
6]

+Mµ(5/2)
tree∆ [s, u,Q2, gM , hA)

+ M̃µ(3)
loop [s, u,Q2,mN ,Mπ, gA, Fπ] +O(p4)

}
, (4.135)

where the O(p1) amplitude, taking Eqs. (4.124) and (4.127), is written as

Mµ (1)
tree [g̃, F,M, m̃2] =

(
1− 4dr16M

2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
×
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(
Mµ (1)

(a) [gA, Fπ] +Mµ (1)
(b) [gA, Fπ,mN − δ̃(3)

mN
]

+Mµ (1)
(c) [gA, Fπ,mN − δ̃(3)

mN
] +Mµ (1)

(d) [gA, Fπ,Mπ]

)
−Mµ (3)

(d)R [Mπ, l
r
3], (4.136)

where the amplitude piecesMµ (1)
(a) [gA, Fπ],Mµ (1)

(b) [gA, Fπ,mN−δ̃(3)
mN ],Mµ (1)

(c) [gA, Fπ,mN−
δ̃

(3)
mN ] and Mµ (1)

(d) [gA, Fπ,M ] are taken from Eqs. (4.11), (4.12), (4.13) and (4.14) re-

spectively 32. The functions δ̃(2)
gA and δ(2)

Fπ
[lr4] are correspondingly given in (C.7) and

(C.9).

The O(p2) amplitude term of Eq. (4.135) is given by Eq. (4.116) and evaluated as
shown in Eq. (4.128),

Mµ (2)
tree [gA, Fπ,mN , c̃6, c̃7] =Mµ (2)

(e) [gA, Fπ,mN , c̃6, c̃7] +Mµ (2)
(f) [gA, Fπ,mN , c̃6, c̃7],

(4.137)

where the explicit expressions can be found in Eqs. (4.20) and (4.21), with the respec-
tive parameter dependence as displayed here.

Finally, the O(p3) amplitude piece of Eq. (4.135) is split as shown in Eq. (4.117)
and reshaped as in Eq. (4.133)

Mµ (3)
tree [gA, Fπ,Mπ,mN , d

r
j , l

r
k] =Mµ (3)

(i) [Fπ,Mπ, d
r
8, d

r
9, d

r
16, d

r
18, d

r
20, d

r
21, d

r
22]

+Mµ (3)
(j) [Fπ,Mπ,mN , d

r
16, d

r
18]

+Mµ (3)
(k) [Fπ,Mπ,mN , d

r
16, d

r
18]

+Mµ (3)
(l) [gA, Fπ,Mπ, l

r
4, l

r
6]

+Mµ (3)
(m) [gA,mN , d

r
6, d

r
7]

+Mµ (3)
(n) [gA,mN , d

r
6, d

r
7]

+Mµ (3)
(o) [Mπ, Fπ, d

r
16, d

r
18]

+Mµ (3)
(p) [gA,Mπ, Fπ, l

r
3, l

r
4]. (4.138)

We start discussing some simplifications related to the LECs {lr3, lr4}. The summed
amplitudes involved here, at tree level and involving pion propagators, areMµ (1)

(d) [gA, Fπ,M ],

Mµ (3)
(p) [gA,Mπ, Fπ, l

r
3, l

r
4] andMµ (3)

(l) [gA, Fπ,Mπ, l
r
4, l

r
6]. Using the expansion of Eq. (4.125)

for M in the O(p1) amplitude and after some algebra, the cancellation for lr3, lr4 looks
like

Mµ (1)
(d) [gA, Fπ,M ] +Mµ (3)

(p) [gA,Mπ, Fπ, l
r
3, l

r
4] +Mµ (3)

(l) [gA, Fπ,Mπ, l
r
4, l

r
6]

=Mµ (1)
(d) [gA, Fπ,M ] +Mµ (3)

(p) [gA,Mπ, Fπ, l
r
3,��l

r
4] +Mµ (3)

(l) [gA, Fπ,Mπ,��l
r
4, l

r
6]

32The referred amplitudes from section 4.2.1 are taken by replacing there the parameters g → gA,
m→ mN − δ̃(3)

mN , F → Fπ, M →Mπ.
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=
(
Mµ (1)

(d) [gA, Fπ,Mπ]−Mµ (3)
(d)R [Mπ, l

r
3] +O(p5)

)
+Mµ (3)

(p) [gA,Mπ, Fπ, l
r
3, l

r
4 = 0]

+Mµ (3)
(l) [gA, Fπ,Mπ, l

r
4 = 0, lr6]

=Mµ (1)
(d) [gA, Fπ,Mπ]−

���
���

�
Mµ (3)

(d)R [Mπ, l
r
3] +

(((
((((

(((
((((Mµ (3)

(p) [gA,Mπ, Fπ, l
r
3, l

r
4 = 0]

+Mµ (3)
(l) [gA, Fπ,Mπ, l

r
4 = 0, lr6] +O(p5)

=Mµ (1)
(d) [g̃, F,Mπ] +Mµ (3)

(l) [gA, Fπ,Mπ, l
r
4 = 0, lr6] +O(p5), (4.139)

with Mπ defined in Eq. (4.126). In this way, the above amplitudes corresponding
to the tree Feynman diagrams (d), (p) and (l) of Fig. 4.1 are reduced to just the
amplitude of diagrams (d) and (l), without any dependence on {lr3, lr4}. This is also
illustrated in Fig. 4.9.

O(p1) O(p3) O(p3)

1

2
M

+

1

2

4Mπ

Mπ +

1

4 ∼ lr4, l
r
6Mπ

(d) (p) (l)

=

1

2Mπ
+

1

4 ∼ lr6Mπ
+ O(p5)

Figure 4.9: Feynman diagrams indicating the reduction to the rele-
vant amplitudes and LECs shown in Eq. (4.139).

An additional simplification is related to the LEC dr16 for the amputated amplitude
Mµ, Eq. (4.135). Similarly to the previous example for lr3 and lr4, the summation of all
the pieces containing terms proportional to dr16 are re-absorbed when g̃ is expanded
up to O(p3) as a function of gA. In detail, using the amplitudes which depend on dr16,
(4.136), (4.138) together with (4.139) we have that

Mµ (1)
tree [g̃, F,M, m̃2] +Mµ (3)

tree [gA, Fπ,Mπ,mN , d
r
j , l

r
k]

=

(
1−
�
�
�
��4dr16M
2
π

gA
− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
×(

Mµ (1)
(a) [gA, Fπ] +Mµ (1)

(b) [gA, Fπ,mN − δ̃(3)
mN

]

+Mµ (1)
(c) [gA, Fπ,mN − δ̃(3)

mN
] +Mµ (1)

(d) [gA, Fπ,Mπ]

)
+Mµ (3)

(i) [Fπ,Mπ, d
r
8, d

r
9,��d

r
16, d

r
18, d

r
20, d

r
21, d

r
22]
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+Mµ (3)
(j) [Fπ,Mπ,mN ,��d

r
16, d

r
18] +Mµ (3)

(k) [Fπ,Mπ,mN ,��d
r
16, d

r
18]

+Mµ (3)
(l) [gA, Fπ,Mπ, l

r
4 = 0, lr6] +Mµ (3)

(m) [gA,mN , d
r
6, d

r
7]

+Mµ (3)
(n) [gA,mN , d

r
6, d

r
7] +Mµ (3)

(o) [Mπ, Fπ,��d
r
16, d

r
18] (4.140)

In summary, once the amputated amplitude has been summed, in particular the terms
Mµ (1)

tree [g̃, F,M, m̃2] +Mµ (3)
tree [gA, Fπ,mN , d

r
j , l

r
k], as shown in Eq. (4.140), we find that

we can discard completely the LECs dr16 and lr3 and the amplitudeMµ (3)
(p) in an O(p3)

calculation. On the other hand, the LEC lr4 does not appear any longer in the O(p3)
tree amplitudes, as shown in Eq. (4.139). Still, at first sight, there is a residual lr4
dependence which appears in the chiral expansion for F , as a function of Fπ, from the
O(p1) amplitude. This will be discussed below.
Thus, the evaluated amputated-amplitude Mµ (4.135) in terms of physical quanti-
ties and LECs33 has a simpler form. Namely, the following particular pieces can be
replaced by

Mµ (1)
tree [g̃, F,M, m̃2] −→

(
1− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
Mµ (1)

tree [gA, Fπ,Mπ,mN − δ̃(3)
mN

],

(4.141)

Mµ (3)
tree [gA, Fπ,mN , d

r
j , l

r
k] −→M

µ (3)
(i) [Fπ,Mπ, d

r
8, d

r
9, d

r
16 = 0, dr18, d

r
20, d

r
21, d

r
22]

+Mµ (3)
(j) [Fπ,Mπ,mN , d

r
16 = 0, dr18]

+Mµ (3)
(k) [Fπ,Mπ,mN , d

r
16 = 0, dr18]

+Mµ (3)
(l) [gA, Fπ,Mπ, l

r
4 = 0, lr6] +Mµ (3)

(m) [gA,mN , d
r
6, d

r
7]

+Mµ (3)
(n) [gA,mN , d

r
6, d

r
7] +Mµ (3)

(o) [Mπ, Fπ, d
r
16 = 0, dr18],

(4.142)

with

Mµ (1)
tree [gA, Fπ,Mπ,mN − δ̃(3)

mN
] =Mµ (1)

(a) [gA, Fπ] +Mµ (1)
(b) [gA, Fπ,mN − δ̃(3)

mN
]

+Mµ (1)
(c) [gA, Fπ,mN − δ̃(3)

mN
] +Mµ (1)

(d) [gA, Fπ,Mπ].

(4.143)

A final simplification of the amplitude is related to the dependence on the param-
eter lr4 when we consider the full amplitude with the WFR of the external fields. The
LEC lr4 appears both in the LO amplitude through δ(2)

Fπ
[lr4] in the expansion for F and

in the scaling constant
√Zπ [see. Eq. (4.104)]. In detail, the full amplitude as shown

in Eq. (4.135) contains the scaling factor
√ZπZN for each order in the amputated

contribution. Subsequently, these WFR scaling factors multiply all the amputated
amplitudes from O(p1) to O(p3) and introduces higher order corrections.
The most interesting case is for the O(p1) term

√ZπZNMµ (1) from Eq. (4.135). Using
the simplification of Eq. (4.141), this term is

33Assuming that all the amplitude pieces also depend on the kinematical variables {s, u,Q2}.
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√
ZπZNMµ (1)

tree [g̃, F,M, m̃2] =
√
ZπZN

(
1− δ̃(2)

gA
+ δ

(2)
Fπ

[lr4]

)
Mµ (1)

tree [gA, Fπ,Mπ,mN − δ̃(3)
mN

],

(4.144)

where the series (1 + δ
(2)
Fπ

[lr4] + . . . ) comes from the chiral expansion of the LO pa-
rameters F and g̃ within the amplitude Mµ (1)

tree [g̃, F,M, m̃2] [see Eq. (4.3.3)]. In a
O(p3) expansion, F contains explicitly a linear dependence on lr4, as well as it does
the expansion for

√Zπ. Using the equations for δ(2)
Zπ [lr4], (4.105), and δ(2)

Fπ
[lr4], (4.123),

we get

√
Zπ
(

1 + δ
(2)
Fπ

[lr4]− δ̃(2)
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)
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)(
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+O(p3)
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A0[M2
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16π2F 2
π

− δ̃(2)
gA

+O(p3) (4.145)

where in 1
2δ

(2)
Zπ [lr4] + δ

(2)
Fπ

[lr4] the terms with lr4 have canceled. Thus, expanding also ZN
as in (4.102), the equation (4.144) is written as

√
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+O(p4) (4.146)

where it is clear that there is not further dependence on lr4 up to the O(p3) considered.

For the following higher order terms the situation is simpler because the lr4 depen-
dence coming from the WFR factor can be neglected because is of order higher than
three. Indeed, using Eqs. (4.102) and (4.104) we have

√
ZπZN =

(
1 + δ

(2)
Zπ [lr4] +O(p3)

)1/2 (
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(2)
ZN +O(p3)

)
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(2)
ZN +O(p3). (4.147)

Taking the rest of the amplitude terms: M̃µ (2)
tree ,M

µ (3)
tree ,M

µ (5/2)
tree∆ and M̃µ (3)

loop such
as they appear in Eq. (4.135), we multiply them by the WFR factor and we obtain

√
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)
Mµ(3)

tree
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tree +O(p5) (4.149)
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√
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=M̃µ(3)
loop +O(p5) (4.151)

These relations show that the WFR corrections start to contribute at two orders
higher than the corresponding amputated amplitudes. That means that the loop
corrections in the external legs are ofO(p4) or higher and can be neglected. We observe
here that one can opt to include or not the WFR for the amputated amplitude from
O(p2) and higher. However, these choices have been tested to produce inappreciable
differences. In contrast, the effect of WFR inMµ (1)

tree is sizable and becomes relevant
to reproduce the data.

To summarize the treatment of the full amplitude and to show the final form that
it takes, I write it down such as I use it for the calculation of physical observables
for the γ(∗) + N −→ π + N ′ reaction. That is, the full M̃S and EOMS regularized
amplitude, Eq. (4.135), results in

M̂µ =
√
ZπZNMµ

=
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A0[M2
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24π2F 2
π
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)
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tree [s, u,Q2, gA, Fπ,Mπ,mN − δ̃(2)
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]

+Mµ (2)
tree [s, u,Q2, gA, Fπ,mN , c̃6, c̃7]

+Mµ (3)
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9, d

r
18, d

r
20, d

r
21, d

r
22, l

r
6]

+Mµ(5/2)
tree∆ [s, u,Q2, gM , hA]

+ M̃µ(3)
loop [s, u,Q2,mN ,Mπ, gA, Fπ] +O(p4), (4.152)

where δ̃(2)
ZN is given by Eq. (4.103) and δ̃(2)

gA is shown in (C.7). The amplitudes, where
the kinematical dependence {s, u,Q2} is understood, are evaluated after the LEC
simplification for Mµ (1)

tree [gA, Fπ,Mπ,mN − δ̃
(2)
mN ] as in (4.143); the amplitude term

Mµ (2)
tree [gA, Fπ,mN , c̃6, c̃7] is simply evaluated as in Eq. (4.143); the amplitude for

Mµ (3)
tree [gA, Fπ,mN , d

r
j ] is evaluated as in (4.142) where the LECs dr16, l

r
3, l

r
4 contribution

are neglected; as always, the ∆ contribution amplitude is evaluated as in (4.51).
Finally the amputated loop contribution is evaluated as

M̃µ(3)
loop [mN ,Mπ, gA, Fπ] =PCBT1 + PCBT2 +

i3∑
topo=a1

Mµ (3)
(topo)[mN ,Mπ, gA, Fπ].

(4.153)

The tree level amplitude pieces given here, although they are given in this chapter,
also can be found along the app. A.2 in terms of the kinematical variables {s, u,Q2}
and written in the Ball basis for photoproduction (3.74) and electroproducion (3.14).
Similarly, the PCBT are provided explicitly in App. B for each physical channel and
both reactions. This is especially useful in the calculation of the physical observables
studied in Ch. 3 and as I will discuss in the next chapter.
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The loop amplitudes Mµ (3)
(topo) when are integrated and written in terms of the Ball

basis and Passarino-Veltman functions, they result in very large expressions. Never-
theless, these loop amplitudes are given explicitly in A.3 in the integral form for the
four physical channels of pion production.

4.4 Input parameters: LECs from other processes and
physical quantities

Apart from the well known physical parameters {gA, Fπ,Mπ,mN} [34], the LECs
dependence of the full O(p3) amplitude (4.152) is displayed in

M̂µ = M̂µ[c̃6, c̃7, d
r
6, d

r
7, d

r
8, d

r
9, d

r
18, d

r
20, d

r
21, d

r
22, l

r
6, hA, gM ]. (4.154)

On the other hand, within the EOMS framework and at O(p3) 34, many of the LECs
involved in the amplitude for the pion photo- and electroproduction on nucleons have
been investigated through the analysis of several other processes. They are the set
of LECs {c̃6, c̃7, d

r
6, d

r
7, d

r
18, l

r
6}. Their specific values and references are shown in Ta-

ble 4.5.

Table 4.5: Values of the O(p3) EOMS LECs determined from other
processes.

LEC Value Source
L(2)
N c̃6 5.07± 0.15 µp and µn [25, 34,108]

c̃7 −2.68± 0.08 µp and µn [26, 34,108]
L(3)
N dr6 −0.70 GeV−2 N EM Form factor [6]

dr7 −0.49 GeV−2 N EM Form factor [6]
dr18 −0.20± 0.80 GeV−2 πN scattering [14]

L(4)
ππ lr6 (−1.34± 0.12)× 10−2 〈r2〉π [25]
L(1)

∆Nπ hA 2.87± 0.03 Γstrong
∆ [79]

L(2)
∆Nγ gM 3.16± 0.16 ΓEM

∆ [80]

For the leading order Lagrangian and the rest of physical quantities we take gA =
1.27, Fπ = 92.42 MeV,Mπ0 = 134.9767 MeV,Mπ± = 139.5702 MeV,mp = 938.272081
MeV, mn = 939.565413 MeV, m∆ = 1232 MeV and e2 = 4π/137.

Finally, we only keep five undetermined parameters {dr8, dr9, dr20, d
r
21, d

r
22} that are

involved in our amplitudes and need to be determined from the available data [see.
Sec. 5.1]. Specifically, they appear only at the tree O(p3) amplitudes. In particu-
lar, the combination {dr8 + dr9} appears exclusively in the π0p channel, whilst the set
{dr9, dr20, d

r
21, d

r
22} contributes only to the charged pion channels, as shown in Sec. 4.2.1.

In Ref. [109], dr22, related to the nucleon axial radius, was fixed from a fit to lattice data
at unphysical pion masses [110]. However, the quoted error bars might be underesti-
mated 35 and we prefer to fix it independently. Furthermore, in the previous studies

34 Furthermore, the quoted studies have also used M̃S regularization and explicit ∆’s when rele-
vant.

35See Fig. 4 of Ref. [110], to fully appreciate the uncertainties of that fit.
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of pion photoproduction, its value could not be well assessed because, at Q2 = 0,
its contribution is fully correlated to that of dr21. Thus, for Q2 6= 0, the inclusion of
electroproduction in the current analysis could lead to a more reliable determination
of this parameter.
Additionally to the value for gM as given in Tab. 4.5, the values reported in the lit-
erature, using the same Lagrangian as in the present work, vary from 2.6 ± 0.2 [84]
in a heavy-baryon calculation of Compton scattering to gM = 2.8± 0.2 [111] (in pion
photoproduction) and gM = 2.9 [81, 112] (in pion electroproduction). For this reason
and the importance of the ∆ mechanism in the agreement with photo- and electropro-
duction data, we opt to leave the parameter gM fluctuate within the quoted ranges
and take it as a constrained fitting parameter.
Considering the loop contribution in an EOMS renormalization scheme, we inves-
tigate these free parameters in the next chapter through the comparison with the
experimental data for the γ(∗) +N −→ π +N ′ observables.
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Chapter 5

Determination of the
low-energy-constants and results

This chapter is aimed to describe the procedure to determine the values for the rel-
evant LECs in pion photo- and electroproduction on nucleons, and to present the
theoretical results for the physical observables compared with their corresponding ex-
perimental measurements.
First, we specify the used experimental database for the electroproduction and the
photoproduction processes within an adequate kinematical region given our ChPT
model. We include data in the invariant energy range from threshold up to the first
60 MeV (W =1133 MeV). For the electroproduction case, the collected experimen-
tal data also include angular cross sections at different transfer momenta, Q2, up to
0.15 GeV2.
Next, we detail the LEC fitting procedure where the theoretical model is compared
with the experimental database and the minimization of the χ2 function is performed.
The fitting parameters considered here are the free LECs, {dr8, dr9, dr20, d

r
21, d

r
22} and gM ,

whose numerical values are reported here as result of the corresponding χ2 minimiza-
tion procedure. Additionally, an estimate of the errors for the LECs and calculations
of observables is detailed, taking into account the systematical and statistical errors
from different sources.
In the last section, the theoretical calculations for the γ(∗) + N −→ π + N ′ observ-
ables are compared with data for different kinematical regions, and the results are
discussed. The electroproduction observables are presented as a function of the c.m.
energy (W ), the transfer momenta (Q2), and the pion angle production (θπ). For
the photoproduction reaction, the kinematical results are shown as a function of the
photon energy in the lab. frame (Elabγ ) and the c.m. angle (θπ). The propagation of
the systematical and statistical uncertainties are also plotted.

5.1 Experimental database for γ(∗) +N −→ π +N ′ observ-
ables

In ChPT we assume that the expansion parameters, the external momenta and pion
mass, are small enough compared with the Λ ∼ mN scale. As the momenta depend
on the energy, these parameters are kept small when the energy is close enough to the
threshold. Because of this, we compare our model to the available experimental data
with some kinematical limits to ensure small external momenta. Thus, we have taken
the invariant energy of the πN system, W , ranging from threshold up to 1133 MeV.
Furthermore, from the study of the nucleon electromagnetic form factors [108, 113]
it is known that a good description beyond Q2 ∼ 0.2 GeV2 requires the inclusion of
vector mesons in the model. Therefore, we have selected data with transfer momentum
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within the interval 0 ≤ Q2 ≤ 0.15 GeV2. This choice guarantees that the external
pion momentum is small enough to stay well below the ∆(1232) resonance peak of the
cross sections. In particular, the case for Q2 = 0 corresponds to pion photoproduction
data. We expect the O(p3) ChPT calculation with explicit ∆’s to be well suited for
the description of the phenomenology in this kinematical region.
In the following, the experimental data used in the fitting procedure will be described.

Electroproduction data

In the single pion electroproduction case, γ∗N −→ πN ′, the available experimen-
tal data at low energies are related to the target- and recoil unpolarized virtual cross
section dσv/dΩπ and its transverse-longitudinal decomposition as shown in Eq. (3.56).

The largest amount of data corresponds to the γ∗p → π0p channel. Specifically,
from the late nineties, we include data for the virtual angular cross section dσv/dΩ∗π
at Q2 = 0.1 GeV2, obtained by the Amsterdam Pulse Stretcher facility [114], and
data from MAMI [115] for the observables dσTT /dΩ∗π, dσTL/dΩ∗π and the combina-
tion (dσT /dΩ∗π + εdσL/dΩ∗π). Later, very precise energy dependence data have been
obtained at Q2 = 0.05 GeV2 in Mainz [95] for the observables dσTT /dΩ∗π, dσTL/dΩ∗π,
(dσT /dΩ∗π + εdσL/dΩ∗π) and the asymmetry ALT ′ [see Eq. (3.59)]. More recently,
data for dσTL/dΩ∗π and (dσT /dΩ∗π + εdσL/dΩ∗π) were published for additional Q2 val-
ues [116].

There are far less data for the pion charged channel γ∗p→ π+n. Nonetheless, they
are crucial to determine LECs like dr20, dr21 and dr22. We consider data on dσT /dΩ∗π,
dσL/dΩ∗π, dσTL/dΩ∗π and the total dσv/dΩ∗π at a fixed Q2 = 0.117 GeV2 measured
at Mainz [117]. Later, the experiment was extended to other Q2 values for dσT /dΩ∗π,
dσL/dΩ∗π and dσv/dΩ∗π [118,119], and more recently to lower energies [120].

The total amount of used data in the electroproduction case contains 769 points.
Specifically, 751 of them correspond to the γ∗p → π0p channel whilst only 18 points
correspond to the γ∗p→ π+n channel.

Photoproduction data

In the study of the photoproduction reaction, γN −→ πN ′, we constrain the data
collection to the same energy region as in the electroproduction case, W =

√
s ∈

[1073, 1133] MeV. Usually, the photoproduction data are reported in terms of the lab.
frame photon energy (3.69), i.e., Elabγ ∈ [145, 215] MeV.

Also here, the larger part of the database corresponds to the γp → π0p process.
Furthermore, the experimental errors are relatively smaller when compared to the
other channels. As a consequence, the neutral pion production has a preeminent
weight in the fits. There have been extensive measurements in the near threshold
region [121–124], although the largest contribution comes from the comprehensive set
of data on angular cross sections, dσ/dΩ∗π (3.84), and photon asymmetries, Σ (3.92),
obtained at MAMI [125]. 1

At the higher end of our energy range there are a few data points measured by the
LEGS facility at the Brookhaven National Laboratory [126].
In addition, we have considered more recent measurements on transverse protons from
Ref. [23]. They correspond to the physical observable T dσ/dΩ∗π, defined in Eq. (3.95),
with T the target asymmetry and dσ/dΩ∗π the angular cross section.

1The data from Refs. [122, 123] are not unfolded from the angular spectrometer distortion and
have not been included in the fit.
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In contrast, the experimental data are scarce at low energies for the charged pions
channels and there are only a few recent experiments on them.
For the channel γn → π−p, we use the angular distributions and total cross sections
from Refs. [127–130]. There are no low energy data on polarization observables yet.
The early experiments at Frascati [127] and DESY [128] actually measured the reac-
tion on deuterium and then, the cross sections on the neutron were obtained using
the spectator model. On the other hand, the experiments at TRIUMF [129,130] cor-
respond to the inverse reaction: radiative pion capture on the proton. There are some
later measurements from the early 1990s, also at TRIUMF, quoted by SAID [131], but
they are unfortunately unpublished. Only recently, the near threshold π− photopro-
duction on the deuteron has been measured again at the MAX IV Laboratory [132],
and the derivation of the total cross section for the γn −→ π−p elementary reaction
has been published in [24]. We have included these latter data in our fit since they
are crucial for a better determination of the LECs.

There are some more data for the γp → π+n channel, which can be measured
more directly. They are mostly angular and total cross sections but they also include
some photon asymmetries. We take the data from Refs. [126,133–135].
In total, the photoproduction database contains 1917 points. Specifically, 1716 cor-
respond to the γp → π0p channel, 126 data for the γp → π+n and 75 data for
the γn → π−p reaction. For most of them the total error estimation (statistic plus
systematic) was given in the original references. A typical 5% systematic error has
been added in quadrature for the few points where only the statistical error was pro-
vided [127–129].

5.2 Fitting procedure and error estimation

In the ChPT calculation for a process at a given chiral order, besides the theoretical
uncertainty introduced by the finite number of terms considered in the expansion, the
predictive power of this effective theory is quantified with the low-energy constants.
The numerical values of the LECs are determined with the aforementioned experi-
mental data. Here we show the procedure in fitting the undetermined LECs that are
relevant in the processes studied in this work.

5.2.1 Minimization of the χ2 function

In order to find the values for the parameters, {dr8, dr9, dr20, d
r
21, d

r
22, gM} that best re-

produce the data, the theoretical model has been compared with the full photoproduc-
tion and electroproduction database previously introduced, minimizing the χ-squared
function by varying the values of the free LECs and leaving fixed the rest of parame-
ters. The fixed LECs are those already determined by other processes and quantities
to the values given in Tab. 4.5.
Explicitly, the fitting LECs have real values such that the χ2 function, given by

χ2(x) =
∑
i

(
yi −Oth(ai,x)

δyi

)2

, (5.1)

has a global minimum in a particular x, with x = (dr8, d
r
9, d

r
20, d

r
21, d

r
22, gM ) the fitting

parameters vector. The values δyi are the uncertainties in the i-th experimental
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measurements yi for a given observable2. The valuesOth(ai,x) indicate the theoretical
calculation of the observable evaluated in the particular kinematic variable set ai =
{Q2

i , si, ui}, where the experimental data measurements yi ± δyi are defined.
For convenience, we omit the dependence on the fixed LECs into the theoretical

calculation of the observable Oth. Only the free LEC dependence on x is displayed
explicitly into the ChPT model to be fitted, Oth(a,x).

The minimization procedure of the χ2 function has been implemented numerically
with the help of the MINUIT package provided by the CERN software library.
As we consider the data sets for the two reactions, photo- and electroproduction, the
above function, Eq. (5.1), can be split as

χ2 = χ2
γ + χ2

e, (5.2)

with χ2
γ and χ2

e the chi-square functions for the photoproduction and electroproduction
data respectively. This distinction allows us to quantify the accordance between theory
and experiment for each separated reaction in the global fit. As it was mentioned
before, most of the LO parameters are known or determined by the analysis of other
processes studied in the same approach, M̃S and EOMS-regularized ChPT. Within
this approach, the novel contribution in our model stresses the explicit inclusion of
the ∆-resonance. To study the effect of this ∆ inclusion, we compare the quality
and the chiral convergence as a function of energy of the theoretical model through
two different approaches, one with only the nucleon and pion contributions and other
with the explicit inclusion of the ∆ mechanisms. In detail, we have proceeded to fit
the free LECs including ∆ in the γ(∗)N −→ πN ′ amplitude (4.154) and compared to
the corresponding fit when using the ∆-less amplitude3. The results will be shown in
Table. 5.1 and discussed afterwards in Section 5.3.

5.2.2 Error estimation for the fitted LECs and the observables

After the minimization procedure of the χ2 function, we can find the optimal values for
the fitted LECs that best reproduce the data. However, these low-energy parameters
have an associated uncertainty due to many different error sources. Moreover, the
subsequent calculation of the observables in our ChPT model inherits such uncertainty.

In the computation of the fitting LECs and the observables, we can calculate an
estimate of the corresponding uncertainties to explore the confidence limits in our
theoretical results. The uncertainties for both the observables and fitting LECs come
from the propagation of systematical and statistical sources of error. Among them,
we distinguish in our calculations three different types:

• Error bars in the experimental data.

• Systematical uncertainties in our theoretical calculation of observables truncated
at O(p3) in the chiral power counting, since we consider only a finite number of
terms in the chiral expansion.

• Errors in the fixed LECs given by the study of other processes and quantities,
see Table 4.5.

2The observables to be compared are those of the indicated database de-
scribed in Section 5.1, namely, {dσ/dΩ∗π, σ,Σ, T̂} for photoproduction and
{dσv/dΩ∗π, dσT /dΩ∗π, dσL/dΩ∗π, dσTT /dΩ∗π, dσTL/dΩ∗π, (dσT + εdσL)/dΩ∗π, ALT ′} for electro-
production of pions on nucleons respectively. See Sections 3.1.4 and 3.2.3 for the explicit definitions.

3In practice, this is equivalent to set the value gM = 0
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Once the fit of the undetermined LECs is made, we estimate the propagated uncer-
tainties to our results from these sources. To do that, we follow a systematic procedure
depending on the error source. Hence, the obtained results for the fitting LECs, x,
and the corresponding observables, Oth(x), will be given with their mean values and
error deviations, respectively. The propagation of the uncertainties in these results is
detailed below for each case.

Statistical error from the experimental data points

In the fitting procedure, the error bars δyi in the experimental data lead to an sta-
tistical error for the fitting LECs. In detail, the fit result for a LEC vector is given
by

xj = xj ± δxj , for xj ∈ {dr8, dr9, dr20, d
r
21, d

r
22, gM} , (5.3)

where the global minimum of the χ2 function is obtained at the best fit values xj . The
δxj is the statistical error for the LECs in 1-σ, and can be obtained systematically
in MINUIT assuming that the behavior of the χ2 function is nearly quadratic around
each individual x̄j . In detail, δxj for the LEC xj is obtained as a parabolic error such
that for each minimum

∣∣χ2(x̄j)− χ2(x̄j ± δxj)
∣∣ = 1.

On the other hand, we propagate the statistical error from the fitting LECs, δxj ,
to any observable Oth such that its associated error, δOthStat, is derived through the
relation

δOthStat(x) =

∑
j,k

[Corr(xj , xk)]
∂Oth(x)

∂xj
δxj

∂Oth(x)

∂xk
δxk

1/2

, (5.4)

where Corr(xk, xj) indicates the (k, j)-th element of the correlation matrix, giving
the estimated correlation among the xk and xj LECs. This correlation function is
directly provided after the minimization process by the MINUIT program. The partial
derivatives respect to an individual LEC dependence are evaluated over the fitted
LECs, ∂

∂xj
Oth(x). It is worthy to mention here that, after the fitting procedure, the

best estimation for the observables including only the statistical error is then given
by

Oth (ai,x)± δOthStat(ai,x) (5.5)

for any i-th kinematical configuration ai = {Q2
i , si, ui} of the data of pion electromag-

netic production on nucleons.

Systematical error from chiral truncation at O(p3)

Another source of uncertainty is the systematical error of the theory due to the trun-
cation of the chiral series expansion at a given order. The calculation of the physical
observables is based in the amplitude, M̂µ (4.152), that contains a systematic error
of chiral order O(p4). To estimate it, we use the method of Refs. [76, 136]. Namely,
for an order n observable calculation, Oth, this systematical error is given by
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δO(n)
Syst =max

(∣∣∣O(nLO)
∣∣∣Bn−nLO+1,

{∣∣∣O(k) −O(l)
∣∣∣Bn−l

})
, nLO ≤ l ≤ k ≤ n.

(5.6)

We take B = Mπ/Λχ as in Ref. [110] with Λχ the breakdown scale of the chiral
expansion, Λχ = 4πFπ ∼ 1 GeV. In the present work we have nLO = 1 as the lowest
order and the upper order is n = 3.
To take into account this piece in the final results, we add it in quadrature to the
statistical error. Thus, the fitted results for the observables are

Oth (ai,x)±
√
δOthStat(ai,x)

2
+ δO(3)

Syst(ai,x)
2

(5.7)

Error from uncertainties in fixed LECs

In addition, we can explore the extent and limits of our estimations by considering
the uncertainties of the fixed LECs previously determined by other studies, as shown
in Table 4.5. The already determined LECs have an associated error that comes from
their respective fits to other data. Those errors may be originated by any statistical
or systematical source. Nonetheless, we can include them in our fitting procedure
without knowing a priori the details of their analyses.

On the other hand, the minimization routines in MINUIT are of limited use for the
inclusion of errors in non-fitting parameters and a more adequate treatment of them
is not direct. In consequence we must implement a more exhaustive fitting procedure
to the routine based on the minimization of χ2 (5.1).

To take into account the uncertainties of the fixed parameters, we follow an usual
Bootstrap method [137]. To do that, we simulate a random sample of N = 1000
values for each known LEC, Tab. 4.5, with a proper probabilistic Gaussian distri-
bution. There, we assume a simple scenario where the fixed LECs are uncorrelated
and independent of each other. Thus, these non-fitting LECs are simulated such that
their central and error values correspond to the mean and standard deviation of their
respective Gaussian distributed samples.
Then, we proceed with the fitting procedure for the free LECs with data by minimiz-
ing the χ-squared, but repeating the process for each of the N = 1000 simulated sets
of fixed LECs.4

The obtained results for the central values of both the fitted LECs and the ob-
servables remained the same as if no error in the fixed LECs were considered. We
have taken this bootstrap procedure as an extension of the fitting procedure where
the known LECs are fixed to their central values. For convenience, the inclusion and
propagation of the error associated with the known LECs will be detailed below in
section 5.4.

4It is worth mentioning that this method based on Monte Carlo techniques, where the non-fitting
parameters are simulated to be normally distributed, has also been applied in other similar ChPT
calculations [138] for the propagation of errors from experimental data and fixed LECs to the relevant
LECs to be fitted.
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5.3 Fit with and without ∆ contribution

5.3.1 Low-Energy-Constants

In a first step, we minimize the χ2 function of Eqs. (5.1), (5.2). The results are
obtained for two different models, with and without the inclusion of the ∆, as they
appear in Tab. 5.1. The Full model fit corresponds to the O(p3) calculation when
the ∆-resonance is included explicitly in the amplitude (4.152), as described in the
previous chapter.

In this calculation, we have fixed the LECs from Table 4.5 to their central values,
except for gM . We have let the γ∆N coupling, gM , which proved of paramount
significance in the description of π0 photoproduction [21], to fluctuate around the
central value according to the electromagnetic ∆ width.

The LECs values obtained by the fits are presented together with the full χ2 per
degree of freedom 5, and the partial contributions of photo-(χ2

γ) and electroproduction
(χ2
e). Here, the shown LECs errors are purely statistical and propagated from data

error bars. The effects of the uncertainties of the fixed LECs are treated later.

Table 5.1: Fit results for the LECs. The coupling gM is dimensionless
and di in units of GeV−2.

LECs Full model ∆-less
dr8 + dr9 1.12± 0.01 3.44± 0.01
dr8 − dr9 0.63± 0.15 4.75± 0.18
dr20 −0.29± 0.09 −3.01± 0.09
dr21 1.64± 0.06 4.50± 0.06
dr22 0.95± 0.13 0.45± 0.12
gM 2.90± 0.01 —

χ2/dof 2.7 13.2
χ2
γ/dof 1.7 16.8
χ2
e/dof 5.1 4.4

In this minimization procedure, we have chosen to fit the combinations (dr8 + dr9)
and (dr8 − dr9), instead of the individual constants, because of the strong correlation
among dr8 and dr9. Actually, they appear in the amplitudes for π0 production just in the
combination (dr8 + dr9), while the charged π± channels depend only on d9. Given that
the γ(∗) +p −→ π0 +p processes represent, so far, the most precise and largest amount
of data, its particular dependence on the (dr8 + dr9) combination can be determined
with a high accuracy. Evidently, better data for the π± channels, would be essential
to obtain more precise results for dr9 or, similarly, for (dr8 − dr9). Given that the χ2

value is not affected by the combination choice for dr8 and dr9, the choice mentioned
above is only important for the precise evaluation of the observables for π0 or π±

channels when the correlation matrix from the fits is not provided.
Alternatively, we could have fitted (dr8 + dr9) and dr9, such as they appear directly

in the amplitudes. For the full model, the resulting fit leads to the same value for
(dr8+dr9) and dr9 = 0.25±0.08. For the ∆-less model, again (dr8+dr9) is not affected and
dr9 = −0.66±0.09. In both cases the results are fully consistent with those of Table 5.1
and can also be obtained from them using the correlation matrix and Eq. (5.5).

5The degrees of freedom corresponds to dof = ndata − npar, where ndata in the number of data
points used in the corresponding χ2-function and npar is the number of parameters to be fitted (See
Section 5.1). Here, npar = 6 for the Full model and npar = 5 for the ∆-less case.
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The parameters {dr20, d
r
21, d

r
22} are only relevant for the charged channels γ(∗)p −→

π+n and γ(∗)n −→ π−p. The relatively low precision of the data and their scarcity
limits the precision of their determination. Furthermore, these channels are already
rather well described by the lower order predictions and in consequence the O(p3)
LECs play a small role. It is worth mentioning that in photoproduction, dr21 and dr22

appear only in the combination (2dr21 − dr22) while for electroproduction that is not
anymore the case (see App. Sec. A.2). Therefore, the full correlation between dr21 and
dr22 is broken once electroproduction is considered in the fit.

Clearly, pion electroproduction reactions probe the Q2 dependence of the scatter-
ing amplitude. Thus, it would allow for the exploration of already known LECs like
{dr6, dr7, lr6}, which are relevant for the description of the nucleon EM form factors and
the pion charge radius and which appear in the electroproduction case.

The parameter gM takes a value consistent with that obtained from the electro-
magnetic ∆ decay width. The results for gM and (dr8 + dr9) agree well with those
obtained in the analysis of Ref. [109], which studied photoproduction within the same
framework but imposed full isospin symmetry on the loop calculation. Our change
with respect to that previous work, using physical masses in the loops, has led to a sub-
stantial improvement by lowering the χ2

γ value and to some small changes in (dr8−dr9)
and dr20. A larger variation can be observed in dr21 and dr22 but this could be deceptive.
The photoproduction amplitude only depends on the combination (2dr21−dr22), which
it has changed little. The separation of the two constants made in Ref. [109] was
based on the use of d22 = 5.20 GeV−2, taken from Ref. [110]. This value, obtained
from the lattice and already discussed, is clearly disfavoured by the electroproduction
data. However, our result is close to an alternative fit of Ref. [110] that restricted
lattice data to low Q2 values.

All the fitted di’s are of natural size and, thus, the contribution of the associ-
ated O(p3) mechanisms is relatively small at low energies. While the global result
is acceptable, as it will be better shown in the detailed comparison with various ob-
servables (Section 5.5), we can see that the model reproduces to a greater degree the
photoproduction data.

5.3.2 Contribution of the ∆-resonance

To explore the importance of the explicit inclusion of the ∆(1232) in the model, we
repeated the fit without the corresponding mechanisms. The results for the LECs and
χ2 are shown in the second column of Table 5.1.

Comparing the absolute values of χ2/dof , we see that the O(p3) calculation with-
out ∆ gives χ2/dof = 13.2. This number is mostly driven by the contributions of
the γ(∗)p → π0p channel, whereas the contribution of the channels with charged pi-
ons to χ-squared is barely modified. The total χ2 value is substantially reduced to
χ2/dof = 2.7 with the explicit inclusion of the ∆ (Full model fit), still at O(p3) and
even when the ∆ coupling constants are previously fixed. A reduction can also be
obtained at a more limited energy range without the ∆ by doing an O(p4) calcula-
tion [20, 139]. However, apart from requiring a number of extra parameters, in the
∆-less calculations the fit quality diminishes rapidly as a function of the energy.

Removing the ∆ mechanisms, we see that, with the current data set, the χ2
γ for

photoproduction is considerably worsened, whereas for electroproduction χ2
e is little

modified, even showing a little improvement. In particular, we have found that ∆
inclusion worsens the overestimation for (dσT /dΩ∗π+εdσL/dΩ∗π) in Fig. 5.7. However,
it improves the agreement with the other observables of the same figure. This point
is relevant, because that observable has the largest, may be excessive, weight in the
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χ2 calculation among the full electroproduction data set, followed by dσTT /dΩ∗π from
the same experiment [95]. This is due to the large number of points and their quoted
precision.

Within our model is not possible to reproduce well the full set of data from
Ref. [95], neither with nor without ∆. We should remark that similar discrepan-
cies have been found in other ∆-less chiral calculations, both covariant and HBChPT
as shown in Refs. [77, 95], even at O(p4). Barring experimental problems or some
underestimation of the uncertainties, these difficulties may point out to the need of
a higher order calculation. In fact, this set of data is well reproduced by the phe-
nomenological DMT model [140, 141] which includes explicitly vector mesons, the ∆
and several heavier resonances.

In contrast, the ∆ contribution, which depends only on well constrained parame-
ters, (hA and gM ), improves substantially the global agreement with data. It is also
noteworthy that most of the fitted di LECs have much larger values in the ∆-less fit.
This clearly shows the sensitivity of the pion photo- and electroproduction to the ∆
resonance even at the low energies investigated. In fact, removing the ∆ mechanisms
we get a much worse agreement with data. The reshuffling of the free parameters is
ineffective in describing the rapid growth of the cross section of the π0 channel, indi-
cating the need of a more important third order and a slower chiral convergence. The
importance of the resonant mechanisms can be also appreciated in Fig. 5.1, where I
compare the χ2 per degree of freedom as a function of the invariant maximum energy,
W , of the data included in the fitting procedure.
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0
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10
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/d
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χ2/dof ∆-less

χ2/dof with ∆

Figure 5.1: χ2/dof as function of the maximum W considered in the
fitting procedure. Full model at O(p3) with ∆ (green diamonds) and

without ∆ (red circles).

The quality of the agreement decreases rapidly as a function of the maximum W ,
in the ∆-less case, whereas it is practically stable for the full model. This behavior
(rapid growth of χ2 as a function of energy) can also be seen even for the O(p4) co-
variant and HB calculations that do not include the ∆ resonance explicitly. See, e.g.,
Figs. 2 of Refs. [20,77] and Fig. 1 of Ref. [139] 6.

6The two figures from Refs. [20, 139] only consider the π0 photoproduction channel, whereas
Fig. 5.1 includes all the channels and both photo-and electroproduction reactions. Still, the compar-
ison is fair as the χ2 is basically driven by the π0 channel and we obtain a similar figure for that
restricted case.
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It is remarkable that the ∆ role in photoproduction is of the utmost importance to
reproduce the energy dependence of data. The ∆-less model is unable to describe the
energy evolution of the cross sections, mostly in the π0 channel, even with the inclusion
of the O(p3) one-loop amplitudes. This failure can be appreciated in Fig. 5.1. The
quality of the agreement remains stable for the full model whereas without explicit ∆
the χ2 function grows fast as a function of the energy and it is impossible to describe
data at this chiral order.

5.4 Fit analysis with error propagation from the known
LECs

This section is meant to analyze the propagation of the errors present in the known
LECs of Table 4.5 to the results for the fitted LECs, {dr8,dr9,dr20,dr21,dr22}, and the sub-
sequent observable calculations.
Here, we extend the fit of the previous Section 5.3, where the previously known LECs
have been fixed to their central values shown in Tab. 4.5, by including their corre-
sponding uncertainties in the fitting procedure and further calculations. As mentioned
above in Sec. 5.2.2, we can consider the uncertainties and mean values of the fixed
LECs with a Monte Carlo simulation of normally distributed samples. In the follow-
ing, we briefly detail the fitting procedure within a usual Bootstrap method [137].

(1) In a first step, for each fixed LEC we simulate a sample of N = 1000 random
values obeying normal distributions such that their mean and 1-σ width correspond
to the central and error values. For each n ∈ [1, 1000] we define the LEC vector

c[n] = (c̃6[n], c̃7[n], d
r
6[n], d

r
7[n], d

r
18[n], l

r
6[n]). (5.8)

We assume that they are uncorrelated from each other as an approximate scenario7.
The rest of the physical parameters determined with higher accuracy: e, gA, Fπ, Mπ,
mN , m∆ and hA, were just fixed to their central values [34]. To compare more directly
our results with the previous fit, we have also preferred to leave gM fixed to their best
value, given in Tab. 5.1.

(2) Then, we minimize the respective χ-squared function for each n-th LECs vector
by taking

χ2
(
x[n]

)
=
∑
i

(
yi −Oth

(
ai, c[n], x[n]

)
δyi

)2

, (5.9)

where the χ-squared function and the fitting LECs, x[n], are given similarly to Eq. (5.1)
and lead to a n-th fitted array

x[n] = (dr8[n], d
r
9[n], d

r
20[n], d

r
21[n], d

r
22[n]). (5.10)

7Since the underlying processes and the nature of the data constraining the LECs in Tab. 4.5 are
not considered, we only take as relevant information the central and error values for the fixed LECs
without any correlation. Otherwise, in a more detailed study, we should include their correlations
numerically, see Ref. [138].
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(3) Finally, after the minimization procedure for each χ2(x[n]) minimum, one ob-
tains a collection of N = 1000 sets of fitted LECs, x[n]. As before, we can choose the
combination x[n] = (d8

r
[n] + d9

r
[n], d8

r
[n] − dr9[n], d

r
20[n], d

r
21[n], d

r
22[n])

8. Thus, the central
and 1-σ error values can be calculated as the mean and normal standard deviation
respectively,

x̄j =
1000∑
n=1

xj[n]

n
, δxj =

(
1000∑
n=1

(
xj[n] − x̄j

)2
n

)1/2

, (5.11)

for xj ∈ {dr8 + dr9, d
r
8 − dr9, dr20, d

r
21, d

r
22} the fitted LECs9. This procedure also gener-

ates the correlations between the known LECs, c[n] (5.8), and the fitting parameters,
x[n], (5.10). To illustrate this, we show in Figure 5.2 the results for the LEC distribu-
tions obtained in this approach.

Figure 5.2: Two dimensional distributions of the fixed low-energy
constants {c̃6, c̃7, dr6, dr7, dr18, lr6} generated via Monte Carlo simulation
versus the resulting fitted LECs {dr8 + dr9, dr8 − dr9, dr20, dr21, dr22} for
N = 1000 samples. Each point corresponds to a particular fit where

the χ2 function is minimized.

From the resulting LEC samples x[n] and using Eq. (5.11), we get the values for
the fitted LECs corresponding to their means and 1-σ deviations. In Table 5.2, we
compare these results to the previous full model fit given in Table 5.1.

8They are also Gaussian distributed around the global minimum. This has been confirmed by the
corresponding frequency histograms

9 Even though this procedure generates correlations between the fitted LECs, we do not need to
compute their explicit values to estimate the LECs uncertainties, as was the case in Eq. (5.4).
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Table 5.2: Values of the fitted LECs in the full model. LECs are
dimensionless for gM and in units of GeV−2 for d’s. Fit I refers to
the previous fit from Tab. 5.1. Fit II refers to a new fit taking into
account the uncertainties of the previously known LECs, Tab. 4.5.
Both of them correspond to the full model including ∆ mechanisms.

LECs Fit-I Fit-II
dr8 + dr9 1.12± 0.01 1.12± 0.02
dr8 − dr9 0.63± 0.15 0.64± 0.10
dr20 −0.29± 0.09 −0.29± 0.31
dr21 1.64± 0.06 1.64± 0.27
dr22 0.95± 0.13 0.95± 0.23
gM 2.90± 0.01 2.90± 0.01

χ2/dof 2.7 2.7± 1.1

As expected, the mean values of the fitting LECs with the bootstrap method (Fit-
II) are in total agreement with those obtained by fixing the non-fitting parameters
to their central values (Fit-I). On the other hand, the estimated uncertainties for all
cases are somewhat larger than in the basic Fit-I, except for the combination dr8 − dr9
which has a smaller uncertainty. 10

Lastly, the calculation of the physical observables is obtained in a straightforward
manner. As before, Eq. (5.9), the evaluation of the LECs in the ChPT amplitudes gives
us a corresponding array of n-th values for each physical observable, Oth(a, c[n], x[n])
for any kinematical region a = {s, u,Q2}. As they obey similar normal distributions
as the input LECs, we can apply the same procedure as before in Eq. (5.11) to estimate
the corresponding central and error values within the 1-σ confidence. In fact,

Oth =

1000∑
n=1

Oth(c[n], x[n])

n
, δOth =

1000∑
n=1

(
Oth(c[n], x[n])−O

th
)2

n


1/2

(5.12)

The correlations between the LECs, which have to be taken into account when
calculating errors in quantities, are already implicit in the low-energy constants arrays
c[n] and x[n]. Again, in the current scenario, we do not need to calculate neither the
correlation matrix nor the variation of the observables over the LECs.

The results for the central values of the physical observables have been compared
for the two fitting methods of Tab. 5.2. As we expected from the identical fitted
LEC values obtained in both procedures, the central values for all the observables
also coincide, showing the consistency between both approaches, with and without
bootstrap, and testing the stability of the previous fit without bootstrap presented in
Sec. 5.3.

Due to the larger errors of the fitted LECs in the bootstrap fit (Fit-II) as compared
to Fit-I, we could expect that the corresponding errors for the observables follow the

10The parameter gM was restricted within the range of the Fit-I due to an strong correlation with
dr8 + dr9. Otherwise, leaving gM to move within the range 2.8 - 3.3, another local minimum was
found for dr8 + dr9 = 0.76 ± 0.02GeV−2 and gM = 3.3 ± 0.01 which corresponds to similar normal
distributions, but appears less frequently in the random bins.
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same proportion. Surprisingly, the error calculations for the pion photo- and electro-
production observables resulted quite similar for both fitting approaches.

In summary, the only differences among the theoretical calculations of observables
with Fit-I and Fit-II are those regarding the barely noticeable changes in their corre-
sponding uncertainties. Thus, we can use any of the two fitting approaches to show
the observable results when they are compared to data. In the following Section, we
show the results obtained directly from the Fit-I, (Full model fit in Tab. 5.1). Ex-
cepting only some particular cases for the charged channels where the error bars are
larger with the inclusion of the uncertainties from fixed LECs, we will indicate them
for each specific case.

It is worth mentioning that all the fitted di’s from Tabs. 5.1 and 5.2 appear in
the calculations of many other processes of interest like in the evaluation of neutrino
induced pion production off nucleons. There, our results could be used to improve
the corresponding predictions. This is specially important in the current precision era
of neutrino physics, where an adequate modeling of cross sections and backgrounds
is necessary for the investigation of neutrino masses, mixing angles and other proper-
ties [142]. For example, our results give support to the first ChPT calculations of these
weak production processes [25,26], which assumed a natural size for these parameters
to estimate the uncertainties of the theoretical predictions.

5.5 Results for the physical observables

In this section, I shall present the theoretical results for the γ(∗) + N −→ π + N ′

observables obtained with the full theoretical model at O(p3) and with ∆ mecha-
nisms. The fitted parameters correspond to the "Full model" column of Tab. 5.1.
The results are displayed with the respective experimental data. First, I will show the
electroproduction results for different invariant c.m. energies, W , c.m. pion angles, θπ
and momentum transfer Q2, as well as for the virtual-photon polarization, ε, and the
reaction plane azimuthal angle, φπ. Finally, the photoproduction results are shown
for several laboratory photon energies, Elabγ , and c.m. pion angles, θπ.

5.5.1 Electroproduction observables

γ∗ + p −→ π0 + p channel

Here, I show our results for the π electroproduction process compared to the experi-
mental data. We start with the γ∗p→ π0p channel, that represents the largest amount
of data, in Figs. 5.3−5.7. As it was aforementioned, we have that, among the third
order fitted LECs, this channel’s amplitude depends only on the (dr8 +dr9) combination
that is much constrained by neutral pion photoproduction. Actually, the current fit
results for that LEC are fully consistent with a previous determination based just on
the analysis of photoproduction [109]. Overall, the agreement with data is good for
all the observables considered here.

In Fig. 5.3, we show the virtual photon cross section, dσv/dΩ∗π, at several energy
bins close to threshold, Q2 = 0.10 GeV2 and for ε = 0.67, compared to the NIKHEF
data from Ref. [114]. The angular dependence, on both θπ and φπ, and the energy
dependence are well reproduced.
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Figure 5.3: Angular distribution of the virtual cross section dσv/dΩ∗π
at different pion angles and for several photon energies. The transfer
momentum is Q2 = 0.10 GeV2, and the virtual-photon polarization
ε = 0.670. The solid line shows the theoretical results. The inner
band depicts the statistical error, Eqs. (5.4) and (5.5), from the LECs
variation within 1-σ given in Table 5.1. The outer band represents the
total error including also the systematical error from the chiral trun-
cation, Eq. (5.6), added to the statistical one in quadrature, Eq. (5.7).

Data from Ref. [114].
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ε = 0.713. Data from Ref. [115]. Description of curves and bands as

in Fig. 5.3.
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The various pieces, related to the longitudinal and transverse responses and their
interference, which contribute to the total cross section of Eq. (3.56), are explored
next. In Fig. 5.4, we compare the model with the angular dependence of σTT and σTL
measured by MAMI [115] at several energies very close to threshold. The two observ-
ables are very small. Both the size and the energy dependence are well accounted for
by our calculation.

Much larger is the observable dσT /dΩ∗π + εdσL/dΩ∗π measured in a more recent
MAMI experiment [116]. It is depicted in Fig. 5.5. These latter results show the Q2

dependence, that at the low energies involved and for the relatively small examined
Q2 values is well described by the model.
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Figure 5.5: Angular distribution for (dσT /dΩ∗π + ε dσL/dΩ∗π) at
different c.m. energy values, W . The transfer momenta at Q2 =
0.05 GeV2 corresponds to polarization values of ε = 0.932, at Q2 =
0.10 GeV2 to ε = 0.882 and at Q2 = 0.15 GeV2 to ε = 0.829. Data

from Ref. [116] and description as in Fig. 5.3.

The Q2 dependence is further explored in the dσTL/dΩ∗π cross section. The results,
laid out in Fig. 5.6, also show a good agreement for the angular distribution at several
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Q2 values. We should remark that for neutral pions, apart from the well known
fixed LECs, this dependence is only sensitive to (dr8 + dr9) and gM , which are strongly
constrained by the photoproduction (Q2 = 0) data.

0

−0.01

−0.02
W =1073.75 MeV, Q2 = 0.05GeV2 W =1073.75 MeV, Q2 = 0.10GeV2 W =1073.75 MeV, Q2 = 0.15GeV2

0

−0.02

−0.04

−0.06
W =1074.75 MeV, Q2 = 0.05GeV2 W =1074.75 MeV, Q2 = 0.10GeV2 W =1074.75 MeV, Q2 = 0.15GeV2

−0.1
−0.08
−0.06
−0.04
−0.02

0

d
σ
T
L
/d

Ω
∗ π

(µ
b/
sr

)

W =1075.75 MeV, Q2 = 0.05GeV2 W =1075.75 MeV, Q2 = 0.10GeV2 W =1075.75 MeV, Q2 = 0.15GeV2

0 45 90 135

−0.12
−0.1
−0.08
−0.06
−0.04
−0.02

0

W =1076.75 MeV, Q2 = 0.05GeV2

0 45 90 135

W =1076.75 MeV, Q2 = 0.10GeV2

0 45 90 135

W =1076.75 MeV, Q2 = 0.15GeV2

θπ(◦)

γ∗p → π0p

Figure 5.6: Angular distribution for dσTL/dΩ∗π for different c.m. en-
ergy values, W. The transfer momenta at Q2 = 0.05 GeV2 corresponds
to polarization values of ε = 0.932, Q2 = 0.10 GeV2 to ε = 0.882 and
Q2 = 0.15 GeV2 to ε = 0.829. Data from [116] and description of

curves and bands as in Fig. 5.3.

Finally, in Fig. 5.7, we compare our calculation with the very copious and pre-
cise data the A1 collaboration at MAMI, Ref. [95], where the energy dependence
of dσT /dΩ∗π, dσTT /dΩ∗π, dσTL/dΩ∗π and ALT ′ has been investigated at a transfer
momentum Q2 = 0.05 GeV2 and a photon transverse polarization ε = 0.933. For
(dσT + εdσL)/dΩ∗π and dσTL/dΩ∗π, the calculation agrees well up to a few MeV above
threshold, what is consistent with the results shown in Figs. 5.5 and 5.6. However, we
overestimate the absolute value of the observables (dσT + ε dσL)/dΩ∗π and dσTT /dΩ∗π
at higher energies. In fact, our fit curve behaves as the HBChPT result of Ref. [143]
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discussed in [95]. The agreement with dσTT /dΩ∗π is good and with dσTL/dΩ∗π ex-
cellent, in both cases improving the HBChPT prediction. In these three cases, the
quality of the agreement of our O(p3) model is very similar to that of the O(p4) ∆-less
covariant ChPT calculation of Ref. [77].
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Figure 5.7: Energy dependence for (dσT + εdσL)/dΩ∗π, dσTT /dΩ∗π,
dσTL/dΩ∗π and ALT ′ at Q2 = 0.05 GeV2, ε = 0.933, θπ = 90◦. Data

from [95].

Also well reproduced is the beam helicity asymmetry, ALT ′ , a quite small effect,
which shows the cusp related to the nπ+ threshold. The use of the physical masses in
the loops, and the corresponding isospin symmetry breaking is essential for a proper
reproduction of this shape.

Summarizing, the theoretical results for the π0 channel are in accordance with
data, describing properly the angular dependence and the Q2 evolution. In regard to
the energy, we obtain the best results very close to threshold. Nonetheless, the model
starts to overestimate data for the observable (dσT + εdσL)/dΩ∗π at higher energies,
see Fig. 5.7. Actually, this observable contributes strongly to the total χ2. On the
other hand, it is very sensitive to (c6 + c7), (2dr7 + dr6) and gM , which were restricted
to the values allowed by the study of other processes. In our calculation, the only
totally free parameter relevant for this channel has been the combination (dr8 + dr9),
strongly constrained by the abundant photoproduction data.

γ∗ + p→ π+ + n channel

For the channel γ∗p→ π+n, we present in Fig. 5.8 the results for dσT /dΩ∗π, dσL/dΩ∗π
and dσTL/dΩ∗π as functions of Q2 at various pion angles and from several experiments
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[117–120] that are also well reproduced.
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This channel depends on the O(p3) LECs dr9, dr20, dr21 and dr22, as well as the
O(p4) one lr6.11 Thus, there are more fitting LECs than for the neutral pion channel.
Furthermore, the data are scarce. For these reasons, there are less constrains on the
relevant LECs and the statistical error is considerably wider.
Furthermore, for this electroproduction channel the Q2 evolution of the cross sec-
tions is mostly driven by the LEC lr6. For this reason, the statistical errors are
the mostly affected by the inclusion of the uncertainty from the fixed LEC lr6 =
(−1.34 ± 0.12) × 10−2, see Tab. 4.5. The largest increment in the statistical error
is around a factor of 3.9, in absolute values, for dσTL/dΩ∗π at W = 1125 MeV and
Q2 = 0.117 GeV2 as seen in Fig. 5.8. Besides, this error estimate for that cross sec-
tion represents, in this case, a relative error change from 7.5 % to 28.6 %. Hence,
the corresponding increased error is still smaller than the systematic error, such as is
given by Eq. (5.6).

In summary, it was found that the few and scattered virtual photon cross section
data [117, 118] agree well, within errors, with the theoretical model, and that the π+

channel is more sensitive to the lower orders than to the O(p3) contributions.

5.5.2 Photoproduction observables

γ + p −→ π0 + p channel

In Figs. 5.9, 5.10, 5.11 and 5.12, we compare the photoproduction results from the full
model fit in Tab. 5.1 with data from the π0 channel. Analogously to electroproduction,
the only free third order LEC is the (dr8 + dr9) combination.
The γp → π0p channel is the most richly represented in the database, both in the
amount and the precision of data. Thus, the relevant LECs combination dr8 + dr9 is
strongly constrained and get a relatively small uncertainty in the fit.

11Other O(p4) LECs appearing in the tree-level amplitudes for the γ∗p→ π+n channel are lr3 and
lr4. However, they are canceled in the amplitude expansion up to O(p3) when, at the same time, we
introduce the pion wave function renormalization, Zπ, and the pion chiral mass, M , as a function of
the pion physical mass, Mπ. See App. Sec. 4.2.5 and Sec. 4.3.2.
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In Fig. 5.9, we show the results for the angular distribution of the cross section,
dσ/dΩ∗π, from the threshold region and in Fig. 5.10 the integrated total cross section
σ as function of the photon lab. energy.
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Figure 5.10: Cross section as a function of the lab. photon energy
Elabγ for the γp → π0p channel. Solid line: theoretical model, red
circles: data from Ref. [124], blue triangles: data from Ref. [144], not

included in the fit. Description same as Fig. 5.9.

The agreement is overall good for all cross sections in the full range of energies
considered. Only the total cross sections from Ref. [144] are systematically below the
calculation from 165 to 205 MeV, see Fig. 5.10. However, these data are incompatible
with the differential cross sections measured at the same energies in Ref. [125]. Also,
there is a slightly overestimation, within the error bands but systematic, of the angular
distributions at backward angles. The uncertainties due to the truncation of the chiral
expansion are considerable. This fact reflects the large size of the ∆ contribution and
the O(p3) mechanisms to this observable.

The use of physical masses in the loop propagators and, therefore, the breaking
of the isospin symmetry is the main difference of this calculation with Refs. [22, 109]
where only the photoproduction channels have been studied. It leads to a better
description of the low energy region, where the effects of the different masses and
thresholds are more relevant. Furthermore, in Refs. [22, 109], there was a systematic
overestimation of the cross section at backward angles for the π0p channel at all ener-
gies. The breaking of the isospin symmetry in the loops has now much improved the
agreement with that cross section. As a consequence, the partial χ2

γ , considering only
photoproduction, has been reduced from 3.2 to 1.7. Also, without isospin breaking,
the fit prefers values of d18 large and positive, which are inconsistent with πN scat-
tering [14]. Now, the tension is much reduced and the χ2 depends less strongly on
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that parameter.
To compare the differences between the previous studies for the isospin symmetric

amplitudes [109] and this latter work, I present both results in Figs. 5.9-5.12. I would
like to emphasize that in the previous work from Ref. [109], additionally to the isospin
symmetry imposed in the full amplitudes, the results corresponds to a fit with less
photoproduction data than in present work. Here, it has been already included in
the fit the target asymmetries dataset from [23] and the very close to threshold data
below 150 MeV.

Our calculation still preserves the excellent energy dependence results for the beam
asymmetry as previously obtained in [109]. We compare the results for this observable
in Figure 5.11, where we can see the agreement with data by comparing the central
value and the statistical error bands. On the other hand, the systematical errors are
overestimated given the larger differences between the O(p2) and the next O(p5/2)
beam asymmetry calculations, see Eq. (5.6). In other words, the large systematical
error is due to the significant contribution of the ∆ mechanism in this observable.
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Figure 5.11: Beam asymmetry, Σ, for the γp → π0p channel at
various energies. Data from Ref. [125] marked as red points and from

[126] as a violet square. Description same as in Fig. 5.9.

As mentioned before, we have analyzed the data from Ref. [23] studying the pro-
cess occurring for transversely polarized protons. The observable Tdσ/dΩ∗π, as in
Eq. (3.95), is sensitive to the cusp effects due to the nπ+ threshold in loops. The
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results are shown in Fig. 5.12 for the full range of energies. There is good agreement
between T and the present results.
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Figure 5.12: Angular distribution for the target asymmetry T , re-
ported as the product Tdσ/dΩ∗π, for the γp → π0p channel. Data

from [23]. Description same as Fig. 5.9.
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γ + p −→ π+ + n channel

The channel γp→ π+n is sensitive to the LECs dr9, dr20, and the combination (2dr21−
dr22). As shown in Figs. 5.13, 5.14 and 5.15, the agreement is good for the cross
sections, dσ/dΩ∗π and σ, and for the few data available on the beam asymmetry, Σ.
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Figure 5.13: Angular cross section for the γp→ π+n channel at var-
ious energies. Going from low to high energy, the data from Ref. [145]
are marked as red diamonds, [135] as black squares, [134] as blue tri-
angles, [126] as violet squares. Finally, in the lowest right panel, data
for different energies from Ref. [133] are marked as magenta circles and
from [122] as dark-green squares. In this latter panel the theory has
been calculated at precisely the energies and angles of the data points,
and the lines and bands have been interpolated. Description same as

Fig. 5.9.
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Figure 5.14: Cross section for the γp → π+n channel at various
energies. Data from Ref. [146] presented as red circles. In the same
way as in Fig. 5.13, data from [134] as blue triangles and [135] as black

squares. Description same as Fig. 5.10.
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Figure 5.15: Beam asymmetry for the γp→ π+n channel at Elabγ =
212.9 MeV. Data from Ref. [126]. Description same as Fig. 5.9.

As discussed before in Sec. 5.3.1, the combination (dr8 + dr9) is very precisely de-
termined in our fits as compared to the other third order LECs and, in particular, to
(dr8− dr9). Using the correlation matrix and Eq. (5.4) or doing the fit with dr9 instead,
we estimate its individual values and uncertainty as dr9 = 0.25 ± 0.08 GeV−2 for the
full model. The separate uncertainty is one order of magnitude larger than for the
combination (dr8 + dr9) for the π0 channel. Similarly to the electroproduction reac-
tion, the propagated error in the observables, together with the errors from dr20 and
(2dr21 − dr22) produce larger statistical errors for all the cross sections. On the other
hand, the systematical errors due to the chiral truncation are far smaller than the π0

channel results which indicate the low dependence from the higher chiral orders.
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γ + n −→ π− + p channel

The model also agrees well with the γn → π−p data as shown in Figs. 5.16 for
dσ/dΩ∗π and 5.17 for σ. This channel depends on the same third order LECs as the
previous one. The measurements in this channel are scarce and the uncertainties are
relatively large. However, it gets a larger contribution to χ2 than the π+ channel. This
may come from some underestimation of the published experimental uncertainties.
Actually, most of the contribution of this channel to the χ2 function comes from regions
with conflicting and incompatible measurements, such as the angular distribution at
forward angles at Elabγ = 211 MeV (see Fig. 5.16). The accordance for the integrated
cross section σ is still good for all the data up to Elabγ = 215 MeV, particularly from the
most recent data results very close to threshold from Ref. [24], displayed in Fig. 5.17.
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Figure 5.16: Angular cross section for the γn → π−p channel at
various energies. Data from Ref. [147] are presented as red filled
squares, [129] marked as black triangles, [127] as blue squares (corre-
sponding to lab. frame energy of Elabγ =211.4 MeV in the lower-right
plot), [128] as violet filled triangles and data from [130] as magenta

filled diamonds. Description same as Fig. 5.10.

The quality of the agreement with the channels with charged pions has also im-
proved upon the past photoproduction studies of Ref. [109], as can be seen comparing
the partial χ2

γ ’s. We would like to emphasize that the recent data for the γn → π−p
process [24] have considerably enriched the database for this channel and therefore
lead to a better determination of the LECs relevant for it, dr9, dr20 and the combination
(2dr21 − dr22).
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Figure 5.17: Cross section for the γn→ π−p process. Data from [24]
in magenta circles; red square, data from [148] and green dots, data
from [149] (not included in the fit). Description same as Fig. 5.9.

Finally, the effect of the fixed LECs deviation from Tab. 4.5 has only increased
a little the statistical uncertainties for the channel, γn −→ π−p. The maximum
statistical error increment has been produced for the highest photon energy studied
at Elabγ = 211.4 MeV for the differential cross section dσ/dΩ∗π. In particular, the
inclusion of deviations from the LECs in Tab. 4.5 increase the statistical error by a
factor 2.8 respect to the one obtained from Eq. 5.4. Although this change may be
apparently big, the relative error respect to the mean value is only around 14%.
The results for the mean values of the observables were in all cases coincident to those
obtained with central values of the LECs.
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Chapter 6

Near threshold neutral pion
photoproduction off the 12C
nucleus

6.1 Introduction

In the previous Chapter we presented the results for the study on the pion EM pro-
duction on nucleons, where the numerical results for the relevant O(p3) LECs in the
ChPT Lagrangian have been shown. We have also established the relevance of the
explicit inclusion of the ∆ resonance. In this Chapter, we treat a complementary
study on the near threshold π0 photoproduction off the 12C nucleus whose quite pre-
cise experimental data are of interest to further test the results obtained within the
ChPT framework.

While there are only scarce data on the nuclear photoproduction of charged pions
at low energies, see Refs. [134,150,151], the situation is different for the neutral pions.
In this case, there has been a considerable experimental effort leading to very precise
data [152–160], and also some theoretical studies [161–165]. There are several reasons
for this situation, starting from the relatively high detection thresholds for charged
pions. In the following, we will discuss mostly the theoretical considerations that
make the neutral channel specially interesting.

From the elementary point of view, it was known that the threshold neutral pion
photoproduction off the nucleon is one of the finest reactions to test the chiral QCD
dynamics. In fact, one of the early achievements of BChPT was the discovery of the
importance of the loop contributions for the π0 channels [21, 64, 166]. On the other
hand, for the theoretical study of pion photoproduction on complex nuclei, one must
consider some issues related to the nuclear medium dynamics like pion distortion due
to final state interactions, and nuclear structure. A full fledged investigation of the
nuclear effects in the process is out of the scope of this work. Nonetheless, our study
incorporates those medium effects with a similar level of sophistication to the available
literature while improving the theoretical description of the elementary amplitude.

In particular, the pion photoproduction off 12C reaction has been often studied
using the ∆-hole model [167–169], which describes both the photoproduction process
and the pion distortion assuming full ∆ dominance. However, this model has limited
success near threshold, so one often relies on the conventional plane wave impulse ap-
proximation (PWIA) or the distorted wave impulse approximation (DWIA) instead.
See, e.g., Refs. [155, 161, 170]. In both of them, one expresses the amplitude for the
nuclear process in terms of the elementary one (on nucleons), but we must still account
for the same subjects including Fermi motion, the nuclear structure and, in the case of
DWIA, also pion distortion. However, in nuclei like 12C, some of these difficulties can
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be resolved by using information from other experimental studies. For example, pion
distortion can be described in the DWIA by an optical potential deduced from pion
nucleus scattering experiments, while the necessary nuclear structure information can
be adopted directly from electron scattering form factors. Also, in a spin zero target
nucleus such as 12C, the elementary π photoproduction operator assumes a partic-
ularly simple form at low energy, which somehow eliminates the problem of Fermi
motion. By taking these factors into account, we can straightforwardly deduce the
nuclear photoproduction amplitudes from the corresponding free nucleon amplitudes
and compare the results with the 12C(γ, π0) cross section data.

In the context of ChPT, early results obtained for the π0 photoproduction on the
proton in HBChPT [171] have been later contrasted in the experimental analysis of
pion photoproduction off 12C in Ref. [157]. The theoretical calculations obtained a
reasonable description of the experimental data but predicted a substantially slower
rate of increase above threshold than observed.

Here, we will present a calculation for the nuclear reaction where we apply our re-
sults from the pion EM production on nucleons in our fully covariant ChPT approach.
Then, we compare the predictions from the studied models with and without explicit
∆ resonance with the 12C(γ, π0) cross section data. Moreover, the high quality of the
existing nuclear data could provide a stringent test for the theoretical model developed
for the elementary process in ChPT and their parameters.

As studied previously, close to threshold the neutral pion photoproduction on
nucleons (γ+N → π0+N) is highly dominated by the resonant ∆(1232), in contrast to
the photoproduction of charged pions which are mainly governed by purely nucleonic
Born terms, see diagrams of Fig. 4.1. Additionally, the near threshold survival of
low energy pions is expected to be larger than in the ∆ resonance region, due to
the larger mean free path through the nucleus and thereby reducing the influence of
final state interactions. Hence, the meson production near threshold could provide an
interesting field to investigate in medium production, decay and propagation of the
∆(1232) resonance at its low energy tail.

An additional issue concerns to the fact that the 12C(γ, π0) reaction can occur
through coherent and incoherent (inelastic) transitions. The resonant production
amplitude is of special importance for the coherent pion production from even-even
nuclei, where the nucleus is left in its ground state such that the initial and final states
of the nucleus are the same. In detail, the spin independent part of the amplitude for
the elementary process of all nucleons adds up coherently, leading to an A2 scaling of
the cross section.

Besides the coherent process, π0 photoproduction can also occur through an in-
coherent transition leaving the final nucleus in an excited state. These incoherent π
production processes contribute to a vast part of the total cross section, especially
in the resonance region. However, their inclusion for photon energies below 200 MeV
has been studied in detail and could be relatively small. Experimentally, the inco-
herent part has been discriminated though quite crudely from the elastic coherent
part by [152]1. This stimulated theoretical studies to determine the strength of the
incoherent production, see Ref. [168].

In the following, we detail briefly the theoretical formalism for the pion photo-
production off nuclei cross section within the DWIA approach. Then, we treat the
calculation of elementary amplitudes in the context of the PWIA for both the coherent
and the incoherent contributions. The extension of the nuclear cross section model to

1They used an active 12C target where some energetic final particles can be detected, but could
not separate from the coherent production the cases where the nuclear excitation energy was small.
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the DWIA is considered by the inclusion of the final state interaction of the pion with
the nuclear medium.

To obtain an estimate of the measured 12C(γ, π0) cross section from the ChPT
amplitudes, we adopt the DWIA method while considering the coherent part and the
incoherent contribution where the final nucleus is in the first excited state, JP = 2+

(4.43 MeV). Finally we compare our theoretical predictions to the nuclear experimental
data in [157] up to photon energies ∼ 40 MeV above the threshold.

6.2 Formalism for pion photoproduction off nuclei

We closely follow the arguments presented in Refs. [155, 157, 161]. We detail here
the construction of the model to describe the cross section for γ + 12C → π0 +
12C at low energies. The model is founded on the usual impulse approximation in
which free nucleon amplitudes describe the photoproduction from each bound nucleon.
The model then evolves to incorporate the 12C nucleus structure in a simple PWIA,
assuming that photons and pions propagate in plane waves through a transparent
nuclear medium, takes care of the transformation from the πN to the πA frame, and
of the Fermi motion of the nucleons, all in various degrees of approximation. This
approach is further extended with the DWIA by the consideration of the interaction
of the outgoing pion particle through the nuclear medium.

Here we consider the pion photoproduction process on a nucleus A given by

γ(k) +A(PA) −→ π0(q) +A(P ′A). (6.1)

12C 12C

γ π0

PA P ′A

k q

Figure 6.1: Diagram representation of the 12C(γ, π0) process with
k, q, PA and P ′A the corresponding 4-momenta in the c.m. frame.

We use here the c.m. mass frame of the π-A system for the external 4-momenta,
as depicted in Fig. 6.1. With the invariant energy of the πA system, WA, defined by
the Mandelstam variable s = W 2

A = (PA + k)2 = (P ′A + q)2, the 4-momenta in the
π-A c.m. defined by ~PA

′ = −~q are written as

|~k| =Eγ =
1

2WA

(
W 2
A −m2

A

)
, (6.2)

|~q | =
√
E2
π −M2

π , Eπ =
1

2WA

(
W 2
A +M2

π −m2
A

)
, (6.3)

|~PA| =
√
E2
A −m2

A, EA =
1

2WA

(
W 2
A +m2

A

)
, (6.4)

|~PA′| =
√
E2
A′ −m2

A, EA′ =
1

2WA

(
W 2
A +m2

A −M2
π

)
, (6.5)

with the conservation of four momenta PA + k = PA
′ + q and the on-shell conditions

P 2
A = PA

′2 = m2
A, q

2 = M2
π and k2 = 0.
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Similarly to the single pion photoproduction on nucleons2, the differential cross
section for the nuclear process (6.1) in the π-A c.m. frame is given by

dσ

dΩπ
=
|~q|
|~k|

1

2(2Ji + 1)

∑
λMiMf

∣∣∣〈f ∣∣∣F (λ)
πγ

∣∣∣ i〉∣∣∣2 . (6.6)

Nuclear transition amplitudes F (λ)
πγ describe the transitions from the initial |i〉 =

|JiMi〉 to the final |f〉 = |JfMf 〉 nucleus states with total angular momenta Ji(f) and
projection Mi(f), λ = ±1 is the photon polarization.

To approach the nuclear amplitude we follow the PWIA that relies on the impulse
approximation and on the assumption that incident (photon) and outgoing (pion)
particles do not interact with the nuclear medium and thus they propagate as free
plane waves. In the impulse approximation one assumes that the interaction with
the bound nucleons has the same form as with free ones, and that the amplitude for
the nuclear process can be reduced to A independent elementary amplitudes (being
A the number of bound nucleons). Further approximations on the Fermi motion are
included for the amplitude transformation from the π-nucleus to the π-nucleon frames.
A detailed treatment of those issues can be found in [161] and references therein.

This approach is further extended with the incorporation of the pion interac-
tion with the nuclear medium in the DWIA. For our energy range, we consider the
conventional DWIA treatment [155, 161] by including in the amplitude the pion dis-
tortion or final state interaction (FSI) effects as outlined below. In the momentum
space coordinates the transition operator is given by the standard Lippman-Schwinger
equation [155,172],

F (λ)
πγ (q, k) = Vπγ(q, k;λ) +Dπγ(q, k;λ), (6.7)

where the first term Vπγ(q, k;λ) corresponds to the plane wave part of the amplitude
(PWIA). The second term, Dπγ(q, k;λ), considers the interaction of the pion with the
nucleus in the final state through the pion nucleus elastic scattering amplitude Fππ,

Dπγ(~q,~k;λ) = − a

(2π)2

∫
d3q′

m(q)

Fππ(~q ′, ~q )Vπγ(~q ′,~k;λ)

WA(~q )−WA(~q ′) + iε
, (6.8)

where m(q) = Eπ(q)EA(q)/WA(q) is the relativistic reduced mass of the pion-nucleus
system, WA(q) = Eπ(q) + E′A(q) is the π-nucleus invariant energy as in Eqs. (6.2)-
(6.5). The factor a = (A − 1)/A eliminates the double counting in the re-scattering
of pion on the nucleon and replaces A by A − 1. The function Fππ is constructed in
the same fashion, as a solution of the Lippmann-Schwinger integral equation with an
optical potential, [163,173,174]. Eq. (6.8) represents the expression in DWIA dealing
with the pion wave distortion through its re-scattering with the nuclear medium.

6.2.1 Matrix elements and elementary amplitudes

First, we introduce the plane wave part V (λ)
πγ of the nuclear amplitude in (6.7), which

also serves in the distorted wave calculation (6.8). Within the PWIA, it can be
expressed in terms of the T -matrix for pion photoproduction from nucleons as

2The cross section is given in the same form and conventions as the elementary cross section with
nucleons in Eq. (3.87).
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Vπγ =
A∑
j=1

mN

4πWN

〈
p′j ; q |Tj | pj ; k

〉
, (6.9)

being Tj the amplitude of the elementary reaction γ(k) +N(pj)→ π0(q) +N(p′j) as
evaluated in Eq. (3.60). WN is the πN invariant energy. The index j runs over the
number of the A bound nucleons, N , with initial(final) momentum pj(p′j) and mass
mN , k and q are the photon and pion momenta 3. In terms of the CGLN amplitude
F (3.21), the matrix element (6.9) is reduced as

mN

4πWN

〈
p′j ; q |Tj | pj ; k

〉
= ei

~Q·~rjF(~k, ~q, ~pj
′;λ), (6.10)

where ~Q = ~k− ~q is the plane-wave momentum transfer to the nucleus 4. As indicated
before in Eq. (3.81), F corresponds to the elementary amplitude process (on the
nucleon) written as

F = i ~σ · ~ελF1 + ~σ · q̂ ~σ · k̂ × ~ελF2 + i ~σ · k̂ q̂ · ~ελF3 + i ~σ · q̂ q̂ · ~ελF4, (6.11)

with ~σ = (σ1, σ2, σ3) the spin-1/2 Pauli matrices, k̂, q̂ the unitary 3-momentum for the
initial photon and final pion respectively, and ~ελ the photon polarization vector. In the
analysis of the nuclear amplitude is convenient to rearrange the different contributions
as5

F = i~σ · ~K + L , with L = q̂ × k̂ · ~ελF2. (6.12)

~σ · ~K is the spin-flip (SF) part and the non-spin-flip (NSF) term is L.

In a spin saturated nucleus such as 12C with equal proton and neutron numbers,
only the spin independent term L can contribute in the sum over all the j-th elemen-
tary amplitude pieces of Eq. (6.9). Thus, the nuclear matrix element in (6.6) for the
12C(γ, π0) reduces to

〈f |Vπγ | i〉 = A
〈
JfMf

∣∣∣ei ~Q·~rL(+)
∣∣∣ JiMi

〉
, (6.13)

being ~r = {~r1, ~r2, . . . , ~rA} the coordinates for each of the A=12 nucleons6. Given the
isoscalar nature of the nucleus, the process is only sensitive to the isovector even part
of L, L(+), given by

L(+) =
1

2

(
L(p) + L(n)

)
(6.14)

where L(p) and L(n) are the amplitudes for the π0 photoproduction on the proton and
3Note that all the nucleon, pion and photon momenta {pj , p′j , q, k} are now defined in the πA

frame. The boost transformation to the π-N c.m. frame is explained later.
4The complicated momentum dependence of the elementary amplitude in the nuclear frame is

avoided by assuming several impulse approximations [161]. Among them, p0
j = p′

0
j ≈ mN .

5By using the identity ~σ · q̂ ~σ · k̂ × ~ε = q̂ × k̂ · ~ε+ i~σ ·
(
k̂ ~ε · k̂ − ~ε k̂ · q̂

)
.

6Notice that in this approximation the position of the created pion is the same as that of the
corresponding nucleon.
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neutron respectively.
At this stage, from Eq. (6.10) all quantities appearing here are defined in the πA
frame. As indicated in Chapter 4, the elementary photoproduction amplitude F is well
known in ChPT at O(p3) (see App. A) and can be easily evaluated in the πN frame,
Eq. (3.28). However, we are now interested in the calculation of the corresponding
amplitude in the πA frame. The relevant amplitude piece can be expressed in terms
of the πN frame variables as

L(~k, ~q) = F2(~k, ~q)q̂ × k̂ · ~ελ =WAF2(~k∗, ~q∗)q̂∗ × k̂∗ · ~ελ. (6.15)

The photon and pion momenta in the πN c.m. frame are denoted by k∗ and q∗

respectively. At low energies [155],

WA =
WN

mN

mA

WA
≈ mN + Eγ
mN + Eγ/A

(6.16)

corresponds to the transformation factor which is necessary due to the convention of
absorbing the phase space factor mN/4πWN in the definition of the amplitude F .

When passing the elementary amplitudes and momenta from the πN frame to the
πA frame, the transformation for nucleon momenta cannot be decoupled from the
consideration of the Fermi motion, i.e., the dependence of the amplitudes on the
bound nucleon’s momentum in the nucleus frame. A good approximation to a proper
averaging of the Fermi motion is the factorization approximation which assumes that
~pi = −~pf for the initial and final nucleon momenta in the nucleus rest frame. Then,
together with the impulse approximation (spectator nucleons) ~p ′ = ~p + ~Q in the πA
c.m. frame, the "effective" initial and final nucleon momenta are [175–178]

~pj = −
~k

A
− A− 1

2A
~Q, ~p′j = −

~k

A
+
A− 1

2A
~Q. (6.17)

For further details see Ref. [155]. From there, the momenta transformation from πA
to the πN frame in (6.15) is decoupled from Fermi motion and simplified as7

~k∗ × ~q∗ ≈ 1

WA
~q × ~k. (6.18)

On the other hand, a very convenient simplification in the study of nuclear systems at
low energies is the analysis in multipoles. There, the complex momenta dependence
of the F2 amplitude can be linearized in a low energy approximation. Multipolar
expansions of F in terms of pion angular momentum, l, are made by including only the
first terms, namely the s- and p-waves contributions. In detail, using the Eqs. (D.1),
the multipolar expansion up to l = 1 in the angular momenta for the relevant F2

reads

F2 ≈ (2M1+ +M1−) ≡ P3, (6.19)

being M1± the multipole functions as defined in Eqs. (D.8). The multipole contribu-
tion to F2 starts at l = 1. Here, P3 encodes the p-wave amplitude contribution for the
NSF piece L. The term P3 depends only on the invariant energy of the system, since

7Eq. (6.18) is a valid approximation to better than 1% for Elabγ < 200 MeV and A = 12.
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the dependence on the pion angle θπ has been integrated up to l = 1 8. The explicit
angular dependence of F2 starts to appear with the d-wave contributions.
Finally, the transformation for the amplitude (6.15) to the πA frame is particularly
straightforward if one adopts also the “Amaldi conjecture” for the πN amplitude [91],
namely

P3(k∗, q∗) = p3

∣∣ ~k∗∣∣∣∣~q∗∣∣ (6.20)

where p3 is assumed to be a constant close to threshold. In this prescription, we have
that the elementary NSF amplitude L in the π-A c.m. frame (6.15) is

L(~k, ~q) =WA p3
~k∗ × ~q∗ · ~ελ = p3

~k × ~q · ~ελ (6.21)

in a very good approximation, where Fermi motion is not a relevant factor. See also
Ref. [179]. The so called reduced amplitude p3 is directly related to the free nucleon
amplitude in the πN c.m. frame from Eq. (6.20).

6.2.2 Calculation of the PWIA cross sections

In the calculation of the cross section we adopt the conventions of Refs. [155, 157].
Assuming the coordinate system fixed by the photon momenta ẑ = k̂ = ε̂0, then the
photon polarization vector ~ελ is given by (3.61) and the isovector even amplitude L(+)

given by (6.14) and (6.21) takes the more convenient form

L(+) =
1√
2
p

(+)
3 |~k||~q |eiλφπ sin θπ, (6.22)

where θπ and φπ are the spherical angles describing the outgoing pion direction in the
π-A c.m. frame. We introduce the isovector even combination p(+)

3 for the reduced
amplitudes in (6.20) as

p
(+)
3 =

1

2

(
p

(p)
3 + p

(n)
3

)
, (6.23)

with the superindices (p) and (n) denoted as in Eq. (6.14). The particular form of L(+)

allows it to be removed from the integrand in the transition nuclear matrix element
in (6.13), i.e.,

〈f |Vπγ | i〉 = AL(+)
〈
JfMf

∣∣∣ei ~Q·~r∣∣∣ JiMi

〉
= AL(+)FJ(Q), (6.24)

which greatly simplifies the PWIA amplitude expression. FJ(Q) is the matter distri-
bution form factor and it is shown explicitly in Ref. [155]. All the necessary structural
information resides in the matrix element of ei ~Q·~r. In the present work, we use the
expressions for FJ(Q) from Ref. [161] and they are given in Appendix E.

In the case of coherent transitions (J = Ji = Jf = 0), and performing the sum over
M, M ′, λ in Eq. (6.6), the πA c.m. angular cross section for the 12C(γ, π0) reaction

8According to the P3 definition in Eq. (6.19), since the multipoles M1± for l = 1 are
written in terms of the CGLN basis Fi (D.8), the p-wave term P3 reduces to (6.11) P3 =∫ 1

1

dx

2
[P0(x)−P2(x)]F2(x), with x = cos θπ and Pl the Legendre polynomials.
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is thus described in PWIA as

dσ0+

dΩπ
=
A2

2

∣∣~q∣∣∣∣~k∣∣
[
p

(+)
3

∣∣~k∣∣∣∣~q∣∣]2
F 2

0 (Q) sin2 θπ, (6.25)

The momenta k, q and the pion-photon angle θπ are given in the πA c.m. frame.
Eq. (6.25) represents the coherent neutral pion photoproduction cross section on the
nuclear ground state, JP = 0+, of a scalar and isoscalar nucleus, in a simple ap-
proximation in terms of the πN elementary amplitude through the p(+)

3 parameter,
(6.20) 9.

Incoherent photoproduction: JP = 2+(4.4 MeV) final state

In principle, when comparing with experimental data for the 12C(γ, π0) reaction where
the final nucleus is not observed, the analysis of the cross section should include both
coherent, with the final nucleus in the ground state, and incoherent contributions from
all the possible final excited states of the nucleus. The coherent part in Eq. (6.25) is
the most important contribution close to threshold, however as the energy increases
the incoherent transitions become more sizable.
In the energy regime up to 40 MeV above threshold, it is known from electron [180]
and pion inelastic scattering [181] that several excited states could have a sizable con-
tribution, namely JP I = 2+0 (4.4 MeV), 0+0 (7.65 MeV), 3−0 (9.64 MeV), 1+0 (12.7
MeV), etc. [168]. As a first correction to the coherent process, we restrict ourselves
to the calculation of the reaction leading to the first excited state, 2+ (4.4 MeV), and
neglect the rest.

In contrast to the coherent process, the incoherent process may proceed through
the spin dependent pieces of the amplitude, ~σ · ~K in Eq. (6.12). Nevertheless, electron
scattering studies leading to the 2+ (4.43 MeV) final state indicated that the spin
dependent part of the (e, e′) transition amplitude is very small. We expect, a similar
behaviour for the pion photoproduction process and therefore, the spin dependent
contributions are ignored. Hence, much of the formalism for the elastic reaction
presented above may be adopted here, with the appropriate modifications for the
final state. Also, the relative π-nucleus angular momenta are confined to s and p
waves as before. The transition amplitude is again given by Eqs. (6.22) and (6.24).

In fact, the cross section from the 2+ (4.43 MeV) contribution takes a very similar
form to Eq. (6.25). In our calculation, we use the following expression for the PWIA
angular cross section [157]

dσ2+

dΩπ
= η

A2

2

|~q|
|~k|

[
p

(+)
3 |~k||~q|

]2
F 2

2 (Q) sin2 θπ, (6.26)

where F2(Q) is the corresponding transition form factor as can be found in Ap-
pendix E. The pion momentum |~q| is adjusted to the energy shift of 4.43 MeV above
threshold, and η represents a further normalization factor. The factor η governs the
strength contribution of the 2+ state to the 12C(γ, π0) cross section, since the 4.43 MeV
state is unresolved in photoproduction studies. This η is fixed indirectly by analysis of
the experimental data. The first estimate was provided by Koch et al. [154] from the
angular dependence of the pion energies. They conclude that σ2+/σ0+ ∼ 0.06 − 0.1,
also confirmed by a separate experiment [182]. Then, it is inferred from the total cross

9 Only s- and p-waves are included, but this is a very good approximation at the energies considered
here [22].
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section that η ≈ 1.5−2, as reviewed in [155]. In the present work, we adopt the value

η = 1.77± 0.20, (6.27)

fixed with the later experimental data of Ref. [157] and analyzed with the same theo-
retical model used here. Finally, it is worth mentioning that the F2(Q) form factor is
fully determined from electron scattering and no further ingredients should be neces-
sary if the 2+ transition is assumed to be driven by the NSF amplitude L.

6.2.3 DWIA cross section

In the PWIA approach, we have considered that the incoming photon and outgoing
pion are propagated as plane waves by neglecting their interaction with the nuclear
medium. In that picture, it is clear how nuclear targets can increase the size of the
cross sections (scale as A2). However, the nuclear medium introduces also considerable
effects. They condition the magnitude of the cross sections and the angle and energy
distributions of the observed final particles.

As introduced above in Eq. (6.7), in the DWIA approach one also considers the
interaction of the produced pion with the nuclear medium. The distorted pion final
state is taken into account with a quite standard procedure as shown in Eq. (6.8) . We
consider an optical potential deduced from pion nucleus scattering, which modifies the
pion wave function and the corresponding transition operator. In this way, the factor
Fππ(q, q′) (6.8), accounting for the pion wave distortion from rescattering, modifies the
total PWIA cross section in an energy dependent manner. To introduce those effects
we rely on the method pioneered by Chumbalov et. al. in Ref. [161] and further
implemented independently by J. C. Bergstrom [155]. There, a convenient measure
of the pion wave distortion is given by the ratio

R =
σD
σP

(6.28)

where σD corresponds to the angular integrated DWIA cross section given by the
general Eq. (6.6) and the amplitude with distorted wave term Eq. (6.8), while σP
is the PWIA cross section with only the plane wave amplitude term Vπγ given in
the previous subsections. This method simplifies the calculation of the DWIA cross
sections by simply obtaining the energy dependence for the ratio R. Hence, in our
particular case where the PWIA cross sections are driven by the coherent part and
the incoherent contribution from the 2+ (4.4 MeV) state, the DWIA cross section will
be expressed as

σD = R (σ0+ + σ2+) , (6.29)

with σ0+ and σ2+ the PWIA total cross section from Eqs. (6.25) and (6.26) respec-
tively. In the DWIA treatment, one makes the tacit assumption that the distortion
factor R is the same for the elastic and inelastic reactions, with due consideration for
the different threshold energies. Any actual difference in distortion may be absorbed
by the η normalization factor. The first estimations for R can be found in Figure 2
from Ref. [161] showing estimates of R ≈ 1.2− 1.3 for energies below the Elabγ = 180
MeV. Very similar results suggested the same estimates by independent calculations
in Ref. [155]. In the present work we summarize the distortion ratio from these results
using the value R = 1.3, for a maximum energy of Elabγ = 180 MeV.
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6.3 Numerical results and comments

We use the model for the elementary process, γ+N → π0 +N , derived in the previous
Chap. 4. We remind here that the amplitude is based on a calculation at chiral O(p3)
within the δ power counting and using the EOMS approach for baryon ChPT. The
LECs associated with the contact interactions are provided by the fit to charged and
neutral pion EM production analysis of Chapter. 5. See Tabs. 4.5, 5.1 and 5.2. In
particular, we need only the LECs relevant for the (γ+p→ π0+p) and (γ+n→ π0+n)
channels. Namely, the required LECs are c6, c7 d8, d9, d18, hA and gM . We stress
that, since all of them have been determined from the nucleon data in the present
study, there is not free parameter for the calculation of the amplitudes for the nuclear
case.

As said above, we only need the spin independent part of the amplitude for the
study of the γ + 12C→ π0 + 12C reaction. Furthermore, we only need the P3 partial
wave amplitude, Eq. (6.19), and uniquely the terms contributing to it will be evaluated
here. Finally, dividing P3 by

∣∣ ~k∗∣∣∣∣~q∗∣∣ we obtain the p3 defined in Eq. (6.20). Indeed,
we find that at low energies p3 can be well approximated by a constant, giving support
to the "Amaldi ansatz". In the present study, the values for the full model at chiral
O(p3) with explicit ∆ contribution and in the ∆-less case approach lead to

p
(+)
3 =(11.20± 0.14)× 10−3/M3

π+ (ChPT Full model),

p
(+)
3 =(12.92± 0.22)× 10−3/M3

π+ (ChPT ∆-less model),
(6.30)

where the assigned uncertainties are estimated from the statistical errors of the fitted
LECs. See Tabs. 4.5 and 5.2.

The value for the model with ∆ contributions agrees well with the experimental
results for the 12C(γ, π0) reaction reported by [157]. They found that p(+)

3 = (11.24±
0.15)× 10−3/M3

π+ in a fit to their data up to laboratory energies of 180 MeV within
the DWIA approach for cross sections. Moreover, our result in EOMS ChPT with
∆ is very similar to the value derived by Bernard et al. in a HBChPT calculation,
p

(+)
3 = 11.4 [171].

In Fig. 6.2, we show the ratio σ2+/σ0+ of the incoherent and the coherent cross
sections as a function of the photon energy10 and without the η normalization factor.
Our results agree well with the findings of [155].

For the calculation of the cross section, we use the ChPT predicted values for
p

(+)
3 , (6.30), and the cross section model as given in Eq. (6.29). Results for the
γ + 12C → π0 + 12C reaction cross section are displayed in Figure 6.3 as a function
of the photon energy in the lab. frame, Elab

γ , and compared with the experiments
of Refs. [157, 183]11. As we expected from the p(+)

3 values in both the experimental
and the ChPT analysis, the energy dependence of the 12C(γ, π0) cross section is very
well reproduced over the whole energy range up to 175 MeV. The differences between
the full model and the ∆-less case are very clear and they reflect an overall scale
factor of 1.33. We should remark here that the two models correspond to two totally
independent global fits to electromagnetic pion production on nucleons. They are
both of the same chiral order, O(p3), and use the same renormalization approach.
Their only difference is the inclusion or not of the ∆ as an explicit degree of freedom.

10Note that in the present PWIA the σ2+/σ0+ ratio is independent of the elementary amplitude
since it is common in both cross section expressions.

11 We want to stress here that in the DWIA approach adopted here, the energy dependence for
cross sections is influenced only by p(+)

3 as a scaling parameter.
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Figure 6.2: Ratio of the coherent and incoherent total cross sections
as a function of Eγ , the lab photon energy. The normalization factor

η in Eq. (6.26) is set to 1 as in Fig. 12 of Ref. [155].

The results here support, once more, the faster chiral convergence of the baryon ChPT
models that include explicitly the ∆ resonance.

The effects due to the incoherent transition to the JP = 2+ (4.4 MeV) excited
state are exhibited in Fig. 6.3 by suppressing its contribution, as shown in the dashed
curves. These curves reflect the rising importance of the nucleus excitation at higher
energies, being this correction crucial to reproduce the experimental data. The low
energy region close to threshold is more or less completely dominated by the coherent
transitions and, of course, by an accurate inclusion of final state interactions (DWIA).

There are also data for differential cross sections as function of the π-nucleus c.m.
angle and at photon energies from 137.4 MeV to 160.5 MeV in Ref. [157]. In Fig. 6.4, we
display our results obtained from the full model ChPT amplitude with data. There,
the agreement can be appreciated more closely for all the energies. On the other
hand, we can observe the good accordance for the angular distribution with data.
The dependence of the angular distributions is not carried by our ChPT prediction,
but driven completely by the PWIA expressions for the differential cross sections,
Eqs. (6.25) and (6.26). In particular, at these energies the coherent contributions
dσ0+/dΩπ amounts to almost the total contribution, hence it leads mainly the angular
distribution as F 2

0 (Q) sin2 θπ. We want to emphasize that the angular distributions
are genuine predictions since the ground state form factor F0(Q) is completely fixed by
the properties of the final pion state interactions (FSI) and the 12C(e, e′) data [161].
The explicit sin θπ dependence is derived by considering only the p-wave contribution
in the NSF elementary amplitude (6.12) and the impulse approximation.

Finally, at high enough energies, the intrinsic momentum dependence of the ele-
mentary mechanism can make that p(+)

3 , in cross sections (6.25) and (6.26), carries
itself a significant energy dependence and the assumption that p(+)

3 is a constant may
no longer be valid. Then, it would be necessary to include further energy and angular
dependence by going beyond the p-wave multipole approximation.

On the other hand, the strong effect of the ∆(1232) in the π0 photoproduction



128 Chapter 6. Near threshold neutral pion photoproduction off the 12C nucleus

140 150 160 170 180
0

50

100

150

200

250

Elab
γ (MeV)

σ
(µ
b)

γA → π0A

ChPT ∆-less

ChPT with ∆

Figure 6.3: Cross section of the 12C(γ, π0) reaction as a function
of the photon energy in the lab. frame. The blue/gray bands show
the results of the full model, Eq. (6.29), with contribution of both
coherent and the incoherent transition to the 2+(4.4 MeV) state. Band
widths correspond to the statistical error propagated from the LEC
uncertainties, Tab. 4.5 and 5.2. The respective dashed curves show
the effect of removing the incoherent contribution from the central
values. Data below 161 MeV from [157] and the tree points at the

higher energies from [183].

amplitudes introduces an important energy dependence, see Fig. 6.5. Given its im-
portance, to accurately estimate the role of the ∆-resonance in π0 production from
complex nuclei, more detailed and appropriate treatments of the ∆ degree of freedom
in nuclear media are needed.

6.4 Summary and Outlook

We have analyzed the nuclear reaction γ+ 12C −→ π0 + 12C in the near threshold re-
gion. The impulse approximation provides us a simple approach for a straightforward
calculation of the nuclear process in terms of the elementary amplitudes on nucleons.

The study of the elementary reaction mechanism for free nucleons is based on
the covariant ChPT from Chapter 2. Therefore, we were able to apply the previous
results in pion production on nucleons for determining the relevant LECs utilized in
the evaluation of the elementary amplitudes.
It is worth to mention that the lack of experimental data for the γ+n→ π0+n process
had hindered the determination of some relevant LECS. Some of those LECs that
remained undetermined, namely, d8 and d9, have been fixed in the present work with
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our global analysis including other photo- and electroproduction channels: γ(∗) +p→
π0 + p, γ(∗) + p→ π+ + n and γ(∗) + n→ π− + p, see Chapter. 5.

We have obtained the corresponding 12C(γ, π0) cross sections in a PWIA calcula-
tion where we have considered the contributions from elastic coherent and incoherent
transitions. Moreover, we have taken into account the effects of the pion-nucleus in-
teraction or FSI. For the latter, we introduced the distorted wave correction obtained
in previous DWIA studies [155,161] which model the rescattering of the outgoing pion
in the nuclear medium by a phenomenological optical potential.

Our results reproduce satisfactorily the total and angular cross section data from
[157, 183] up to 40 MeV above threshold. The model for cross section calculations
relies only on the spin independent part in elementary amplitude (6.12) and the low
energy conjecture for p-wave amplitudes being proportional to a constant p(+)

3 as
in Eq. (6.20). The predictions for the total cross sections have been derived from an
estimate of that reduced p-wave term, p(+)

3 , based on our ChPT calculations at O(p3).
The ChPT models with and without ∆(1232) contributions show different tendencies
as energy increases. Only those results including the ∆ effects are observed to agree
well with data and other studies [155,161,171].

Although cross sections data are not separated for elastic and inelastic processes,
the quality of experimental data allow us to distinguish the theoretical estimations
between the different ground and excited contribution. The process is completely
coherent within the first 4.43 MeV above threshold. Above this energy, the reported
experimental cross sections are interpreted as the sum of coherent and incoherent
contributions.

Our elementary ChPT amplitudes are well applicable to an energy range of almost
70 MeV above threshold, however the extended dynamics due to excited nucleus tran-
sitions introduce additional contributions for increasing energies. The contribution of
the 2+ (4.4 MeV) final state is of nearly an additional 10% in the cross section with re-
spect to the coherent nuclear transitions at around 40 MeV above the threshold. This
is shown to improve the agreement with data. Furthermore, the underlying ∆(1232)
mechanism is in fact crucial for the accordance with data in the overall energy range.
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Figure 6.5: Dependence of the function p(+)
3 on the laboratory pho-

ton energy, comparing the full and the ∆-less model.

Otherwise, none of the different contributions would reproduce the evolution of cross
sections. Thus, we confirm the importance of ∆ mechanism for π0 photoproduction
on 12C. Notwithstanding the limitations imposed by the simple approach used to deal
with the complex dynamics of the process in a nucleus, the high quality of the experi-
mental data may suffice to further constrain the theoretical models for the elementary
process.
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Chapter 7

Conclusions

In this thesis, we have studied the pion production with electromagnetic probes on
nucleons and nuclei. For each of the studies made here, our approach was Chiral Per-
turbation Theory for light hadrons: nucleons, pions, and ∆s as degrees of freedom. To
preserve the covariance of the theory, the renormalization method was implemented in
the Extended On Mass Shell scheme. There, divergences and power-counting breaking
terms are absorbed into the low-energy constants in the effective Lagrangian.

The present work is developed within three main studies related to the single pion
production through different processes. In detail, we investigate the pion photoproduc-
tion on nucleons, where the four physical channels and their observables are treated.
Analogously, the charged and neutral pion electroproduction on nucleons was investi-
gated and approached as an extension to the photoproduction with virtual photons.
Lastly, the pion photoproduction on the 12C nucleus was studied as an application of
our results from the elementary processes (on nucleons). These studies are distributed
through the chapters 4, 5, and 6. We aimed to make a global analysis of the elementary
processes and constrain the relevant LECs in the ChPT Lagrangian with current data.

Chapter 4 was dedicated to the amplitude calculation for the pion electromagnetic
production on nucleons. The photoproduction process was presented as a particular
case of the electroproduction reaction by considering the real photon as a particular
case of the virtual one. Then, the corresponding observables were computed sepa-
rately for each reaction and channel.
In Chapter 5 we have presented the corresponding results for the LECs and the vari-
ous observables for both the pion electro- and photoproduction on nucleons. We have
fitted the relevant LECs that remained unknown by comparing our theoretical calcu-
lations with data corresponding to the measured observables up to a πN c.m. energy
W = 60 MeV above the threshold. The fitting procedure to determine the best LEC
values has been implemented numerically for two different models: One model with
the explicit contribution of the ∆(1232) degree of freedom and the other one for the
∆-less case. In this context, this study has represented a comprehensive exploration
of the relevant degrees of freedom in the single pion EM production on the nucleon in
a fully covariant ChPT.
Finally in Chapter 6, as an application of the obtained results, we computed the ef-
fects of the ∆(1232) in a simple model at low energies for π0 photoproduction off the
12C nucleus. We gave here an estimate for the corresponding coherent and incoherent
cross sections at various laboratory photon energies up to ∼ 175 MeV. In this study,
we incorporated the elementary processes based on the calculations within the ChPT
approach, namely the π0 photoproduction on the proton and the neutron. There we
have evaluated the elementary amplitudes with the relevant LECs previously fitted
in this work. In consequence, the resulting cross sections are completely predictive,
although dependent on the nuclear model.
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Throughout the Chapters 4 and 5 the investigation of the charged pion photo-
production on nucleon targets was studied as a natural extension of previous works
on neutral pion photoproduction off the proton within the same ChPT approach at
O(p3) in the chiral expansion. The results from this production channel have shown
that the ∆(1232) plays a particularly important role in improving the agreement with
data up to 60 MeV above the threshold. Other past studies within the same covariant
ChPT approach but at a higher O(p4) and without the ∆ degree of freedom have
shown good accordance with data but at only near 20 MeV from the threshold. The
situation turned out that the inclusion of ∆(1232) as an additional degree of freedom
at low energies is more relevant than higher chiral order contributions in approaches
without explicit ∆’s. Even more, this ChPT model up to only O(p3) preserves the
predictive power that otherwise would be hindered with the inclusion of too many
LECs involved in an O(p4) calculation.

In addition to the study on neutral pion photoproduction off the proton including
the ∆ mechanism within the relativistic ChPT, we have extended the previous work
by considering the four possible channels of charged and neutral pion production.
Several unexplored aspects of this reaction motivated the extension of the previous
study through further physical mechanisms. This extension made the analysis sensi-
tive to additional processes in which charged pions are also produced. We begin with
the investigation of the near-threshold pion photoproduction on nucleons, including
all the physical channels with the SU(2) covariant ChPT framework. We emphasize
the importance of the explicit ∆(1232) degree of freedom for these processes. We
have performed a full O(p3) calculation within the aforementioned approach with the
EOMS renormalization scheme.
In the amplitude calculation, the inclusion of the charged channels requires the addi-
tion of a more extensive set of Feynman diagram topologies and therefore some extra
pieces of the chiral Lagrangian with the corresponding LECs.
We proceeded by first calculating the tree-level and one-loop amplitudes for all the
charge channels from the lowest-order up to O(p3), including pions, nucleons and the
resonance ∆ by means of the Feynman rules derived from the chiral Lagrangian.

We included the explicit contribution of the ∆(1232) resonance through its cou-
plings to nucleons, pions and the photon. Since we followed the δ-power counting
scheme, the resonant diagrams contributed only at tree-level and the corresponding
amplitudes were counted as of 3/2-order. The next orders in the resonant amplitudes
include trees and loops with ∆ but they were discarded because they start contribut-
ing at higher-order than the O(p3), namely at O(p7/2).

Besides the global analysis for the single pion electromagnetic production off nu-
cleons, an interesting aspect is related to the isospin-breaking effects due to the mass
gaps between the charged and neutral pions, and between protons and neutrons. This
mechanism is particularly relevant in the π0 + p production channel where the obser-
vation of the cusp effect close to the threshold is reproduced only if the mass splittings
are introduced in the amplitude calculations. In the context of the ChPT, the cusps
effect is a consequence of different opening channels for charged and neutral pion
loops. This effect is exclusively produced by loop amplitudes given the different imag-
inary contribution for different energies near the threshold region. Otherwise, in the
isospin symmetric case, the loops contribution is uniform in the full energy domain.
As expected from this mechanism in ChPT, cusp effects do not appear in charged
pion production channels, since the physical threshold for these channels occurs at
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higher energies than the loop opening-channel mechanism and hence it is suppressed
by phase space. Even so, the isospin-breaking effects are shown to have non-negligible
contributions above the threshold which remain important for reproducing much of
the low energy data.

Finally, we perform a global study of all the data currently available in the low
energy region. This amounts to measurements of angular and total cross sections, as
well as beam and target asymmetries that measure spin observables. We have com-
pared our theoretical results with data and determined as a first step the numerical
values for the relevant LECs.

Parallel to the studies on pion photoproduction, single pion electroproduction on
nucleons e+N → e+ π +N ′ is presented in Chapter 4 as a more general treatment
of pion photoproduction by considering the virtuality of the photon.

Since the electron-photon coupling is considerably weaker than hadron couplings
in the low energy regime of QCD, the one-photon exchange approximation allows us
to compute the electroproduction amplitude in terms of an photoproduction process
but with virtual photons. This approximation provides a direct calculation of the
electroproduction amplitudes in a simple task.

In this sense, this study represents a kinematical extension of the processes consid-
ered in photoproduction. We approached this reaction in the same covariant ChPT at
O(p3) in EOMS and with explicit ∆ resonances, for neutral and charged pion channels
and with isospin-breaking effects.

The inclusion of electroproduction in a broader analysis allows for the exploration
of the interaction of nucleons with virtual photons, and thus to investigate some
additional pieces of the chiral Lagrangian.

Specifically, this study was first motivated by finding more constraints for the
LECs, given that the single pion electroproduction process provides access to a wide
range of data for various observables including scattering angles, energies, polariza-
tions and transfer momenta from a virtual photon.

We have compared our model to the available experimental data for photo- and
electroproduction observables, this time with kinematical limits for virtual photons
to ensure the small external momenta condition. We have considered a constrained
kinematical region with

√
s < 1.13 GeV and Q2 < 0.15 GeV2, where we expected our

model to be reliable and still well below the ∆(1232) peak.

The values obtained for the fitted LECs resulted in all of them being of natural
size, which is satisfactory from the point of view of chiral convergence. This gives
support to the uncertainty estimates of recent chiral calculations of neutrino-induced
pion production. The comprehensive investigation of all single pion electromagnetic
production channels, including all the available observables, has allowed us disentan-
gling all the relevant third-order LECs involved, which appeared correlated in the
photoproduction case.

We have confirmed the importance of the loop terms. The imaginary parts of the
scattering amplitude and the cusp effects, coming from the opening of the various
charge channels, are crucial in the description of some low-energy electroproduction
observables. Also, the inclusion of the isospin-breaking mechanism in loops is shown
to solve the inconsistency with the parameter related to πN scattering through the
Goldberger–Treiman relation.
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With the model approached in this work, only 5 fitting parameters were sufficient
to describe well all the experimental data used, consisting of near 2700 data points,
for angular and energy dependence in cross sections and numerous polarization ob-
servables.
In summary, the inclusion of the ∆ mechanism in ChPT calculations at O(p3) is bet-
ter than the extension to higher orders that do not include the ∆ resonance. Without
∆, our model is only able to reproduce data a few MeV above the threshold. In par-
ticular, neutral pion photoproduction is the most sensitive channel to this resonance
due to the smaller size of its lowest order contributions.

The results from the covariant ChPT at third order calculation and with explicit
∆ are found to reproduce the high-precision data of cross sections and polarization
asymmetries remarkably well up to 70 MeV above threshold. On the other hand, the
∆-less calculation performed within the same approach demonstrates a much worse
description of the data.

The final study within the present thesis is described in Chapter 6, where we treat
the near threshold single pion photoproduction off 12C nucleus. Our purpose here was
twofold: to apply and test the fitted LECs resulting from the analysis on pion elec-
tromagnetic production in the nucleon within the ChPT framework, and to estimate
the contribution of the ∆-mechanism in the 12C(γ, π0) nuclear cross section.

The model to study the 12C(γ, π0) reaction relied on the usual impulse approx-
imation in which the free-nucleon amplitudes describe the pion photoproduction on
the nucleus at low energies from each bound nucleon. In this approximation is, there-
fore, possible to express the nuclear reaction amplitude in terms of the elementary
amplitudes with nucleons. In our case, this approach allowed us to calculate the
nuclear cross section in terms of the π0 photoproduction on the proton and the neu-
tron amplitudes with the covariant ChPT framework as before. In particular, only
the spin-independent part in the amplitude was relevant for the process on the 12C
nucleus. Further nuclear medium effects were introduced systematically. First, the
nuclear structure of the 12C nucleus was taken into account in the usual plane-wave
impulse-approximation (PWIA) by assuming that incoming and outgoing particles,
here the photon and the observed pion, were propagated as plane waves through an
approximately transparent nuclear medium. In addition, the pion photoproduction
process may include the contribution of inelastic transitions due to the excited final
nucleus states. This kind of mechanism is typically considered when the final nucleus
is not observed, as in the data we compare our model with. Then, within PWIA we
obtain the corresponding nuclear cross section contributions from the coherent and
incoherent transitions from the first excited state 2+ (4.43 MeV) as a good approx-
imation. In particular, the coherent and incoherent are mainly driven by the same
spin-independent amplitude.

Moreover, an important correction to the 12C(γ, π0) cross section calculation was
included by means of the the pion-nucleus interaction in the distorted-wave impulse-
approximation (DWIA). This effect produces a distortion for the outgoing pions off
the nucleus by the re-scattering with nuclear medium and their inclusion is standard
at energies close to the threshold where it reduces to an approximate scale factor. We
assumed that coherent and incoherent contributions were equally corrected by pion
distortion effects.

Our calculations, based on the amplitudes obtained in the framework of ChPT
and applied to a simple nuclear model at low energies, successfully reproduced the
energy dependence of the cross section for the 12C(γ, π0) reaction. We have compared
the predicted results for energies up to 40 MeV above the threshold. The contribution
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from the elementary process was evaluated by taking the numerical values of the
relevant LECs fitted in this work with data from the pion electromagnetic production
on nucleons.

We have observed that the ChPT calculations at O(p3) with and without ∆(1232)
contributions reproduce a different energy dependence. Only the cross section es-
timations including the ∆ resonance together with the coherent, incoherent, and an
adequate inclusion of FSI for distorted pions, were in agreement with the experimental
measurements.

As a final remark, we can say that some of the most successful approaches have
been the ChPT calculations within the fully covariant formalism. There, the expan-
sion of the chiral series is under control at the lower energies, and then higher-order
contributions usually help to reproduce the precise data measurements. However, the
extension to higher orders is limited given the arising number of unknown parameters
(LECs). The consideration of suitable degrees of freedom, in pion photoproduction, as
the spin-3/2 ∆ resonance, results in more convenient than a higher order calculation
without their explicit inclusion. Apart from the added technical complications, the
model would lose its predictive power because of the new set of undetermined LECs
appearing in the Lagrangian. Moreover, ∆ resonance contributions help to reproduce
the data in a wider range of energies in pion electromagnetic production processes.

Finally, we discuss some questions that may be treated in follow-up studies to this
thesis.

Our results consisted of the determination of some relevant LECs in the processes
studied here. As it was shown in the study of the 12C(γ, π0) reaction, the numerical
values of the LECs can be further applied to other low energy processes approached
within the same framework.

Specifically, all the fitted LECs in this work appear also in the evaluation of
neutrino-induced pion production off nucleons. These LEC values could be used
to improve the corresponding predictions of the low energy neutrino nucleon cross
sections of relevance to achieve the precision goals of modern neutrino experiments.

In addition, our results give support to the first ChPT calculations of these weak
production processes, which assumed a natural size for these parameters to estimate
the uncertainties of the theoretical predictions. The examination of the vector cou-
plings of the nucleons might reduce the large uncertainties that currently hinder our
efforts to provide a theoretically well-founded prediction of the neutrino-induced pion
production.

This is especially important in the current precision era of neutrino physics, where
adequate modeling of cross sections and backgrounds is necessary for the investigation
of neutrino masses, mixing angles, and other properties. Finally, the extension to
the description of electro- and weak production data will advance these studies even
further, while offering the possibility of making reliable and accurate predictions for
weak processes where data are more scarce.

On the other hand, the framework used to extract the results in pion electromag-
netic production on nucleons can be extended from the SU(2) to the SU(3) flavour
symmetry and therefore be applied to the extraction of other light baryon properties
related to other low energy processes including strangeness.

Finally, the theoretical framework used to obtain the cross section results for
the 12C(γ, π0) reaction can be applied to other similar low energy nuclear processes
in which the elementary amplitudes take place in the calculations. For instance,
the same procedure presented here is also applicable for predictive results of pion
photoproduction off 2H or 6Li nuclei.
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Chapter 8

Resumen en español

8.1 Motivación

Desde que se descubrió a principios de los 1950 que los piones podían ser producidos
mediante haces de fotones [1], las pruebas electromagnéticas sobre hadrones se han
convertido en una muy importante fuente de información en el estudio de las inter-
acciones hadrónicas, siendo además cruciales en la investigación de los bariones y sus
resonancias. Más aún, las interacciones entre hadrones son de un gran interés para la
comprensión de la interacción nuclear fuerte a bajas energías. Estas interacciones son
descritas por la cromodinámica cuántica (QCD), una teoría no abeliana de campos
gauge desarrollada en los 1970 en términos de quarks y gluones, los constituyentes
básicos de la materia hadrónica.

Han sido varios los esfuerzos llevados a cabo, tanto teóricos como experimentales,
para el estudio de la fotoproducción de piones a energías intermedias, desde el umbral
hasta regiones donde las resonancias juegan un papel importante. En este trabajo,
me enfoco en el estudio de la producción electromagnética de piones sobre nucle-
ones. En detalle, en el efecto que puede tener la resonancia ∆(1232) en los diferentes
canales de carga para los procesos de foto- y electroproducción de piones en nucleones,
calculando para ellos las secciones eficaces, sus distribuciones angulares y la depen-
dencia en energía con el objetivo de comparar los resultados teóricos con los datos
experimentales actuales. Subsecuentemente, los resultados obtenidos a partir de esos
estudios son aplicados como ejemplo al estudio de una reacción nuclear, en particu-
lar a la fotoproducción de piones sobre núcleos de 12C, en donde los efectos de la ∆
pueden ser tratados en términos de la amplitud elemental (fotoproducción de piones
en nucleones).

Aunque la teoría de QCD describe con éxito los procesos de la interacción fuerte
a altas energías, esta no puede aplicarse de forma directa en la región de bajas en-
ergías para procesos hadrónicos. Esto es debido a la dependencia en energía de la
constante de acoplamiento fuerte, αS , cuya magnitud es pequeña para energías altas.
Este fenómeno es lo que conocemos como libertad asintótica de los quarks. En con-
secuencia QCD puede ser tratada como una teoría perturbativa cuántica de campos
(QFT perturbativa) en el régimen de altas energías. Por el otro lado, el acoplamiento
αS es considerablemente grande para energías bajas y por lo tanto QCD es una teoría
no-perturbativa. Esto hace que las técnicas típicas de perturbaciones en QFT sean
prácticamente inútiles. Por lo tanto, la aplicabilidad de la QCD se divide en difer-
entes partes dependiendo de las región de energía, típicamente separadas por la escala
energética Λ = 1 GeV. Esta escala determina el límite inferior en el cual las series
perturbativas de QCD dejan de ser válidas.

En efecto, las energías de los procesos investigados aquí pertenecen a la región no
perturbativa de QCD, puesto que estas se encuentran muy por debajo de las escala Λ.
Es bueno notar aquí que esta escala puede además entenderse como el límite superior
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en donde los quarks interactúan lo suficientemente fuerte como para configurarse en
estados confinados, es decir, para formar los llamados hadrones y que son los grados
de libertad efectivos a bajas energías. En consecuencia, consideramos aquí una teoría
efectiva de campos (EFT) como enfoque para describir la dinámica a bajas energías
de la interacción fuerte de QCD pero en términos de hadrones.

Los primeras formulaciones teóricas dirigidas al estudio de los procesos electromag-
néticos en hadrones fueron construidas a partir de modelos puramente fenomenológi-
cos que en ocasiones sólo requerían invariancia bajo transformaciones de Lorentz y
en campos de gauge. Algunos otros modelos requerían también la conservación de
corrientes (en álgebra de corrientes) y la conservación parcial de la corriente axial
(PCAC). No obstante, estos modelos carecían de un procedimiento sistemático para
describir los diferentes procesos y fallaban al reproducir resultados en algunos casos
como la fotoproducción de piones neutros a baja energía.

8.2 Metodología

En este trabajo hacemos uso de la Teoría Quiral de Perturbaciones (ChPT), una EFT
desarrollada durante los últimos 40 años. Esta representa una potente herramienta
teórica para describir la dinámica a bajas energías de procesos ocurridos mediante la
interacción fuerte y en términos de estados efectivos de hadrones. ChPT fue formu-
lada como una EFT sistemática tal que satisface la simetría quiral, su rompimiento
y todas las demás propiedades fundamentales de QCD. Esta EFT está construida
para ser aplicada en la región energética no perturbativa de QCD, es decir, para en-
ergías suficientemente menores que 1 GeV. Más aún, ChPT ha demostrado ser una
teoría muy útil al reproducir satisfactoriamente los resultados experimentales para la
fotoproducción de piones cargados y neutros en nucleones muy cerca del umbral.

El Lagrangiano en ChPT está escrito en términos de campos de bariones y mesones
como los grados de libertad relevantes, en vez de los quarks y gluones. Aquí nos en-
focaremos en el espectro de bariones más ligeros y en los mesones pseudoescalares en
el límite de isoespín: piones, nucleones y las resonancias ∆, que siguen la simetría
aproximada de isoespín SU(2). Adicionalmente, desde el punto de vista de la QCD,
estos bariones y mesones son estados compuestos de quarks de sabores u y d organi-
zados en un grupo de simetría de sabor, SU(2). Los campos de quarks pueden ser
descompuestos en componentes quirales, izquierdos qL y derechos qR que en el límite
relativista donde las masas de los quarks se desvanecen, las componentes quirales es-
tán desacopladas en el Lagrangiano de QCD, produciendo globalmente una simetría
quiral.

Sin embargo, la observación fenomenológica indica que los mesones ligeros poseen
masa lo que sugiere que la simetría quiral está rota. Las masas del espectro de
bariones y mesones son interpretadas como una consecuencia de las masas de los
quarks produciendo un rompimiento explícito de la simetría quiral. En adición, dado
que las masas de los mesones ligeros son pequeñas en comparación con la escala Λ,
los mesones pseudoescalares son asociados a bosones de Goldstone correspondientes
al rompimiento espontáneo de simetría (SSB). Además, dentro del espectro bariónico
el rompimiento espontáneo de la simetría puede confirmarse por la inexistencia de
bariones asociados de la misma masa pero con paridad negativa.

El rompimiento de la simetría, tanto espontáneo como explícito, es una de las
propiedades básicas en la construcción del Lagrangiano efectivo de la ChPT. Al igual
que en cualquier teoría de campos efectiva adecuada, el Lagrangiano de la ChPT está
ordenado según una expansión en términos de potencias de pequeños parámetros. Los
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parámetros de expansión en este caso, comparados con la escala Λχ ≈ 1 GeV, tienen
que ver con los momentos p/Λχ y las pequeñas masas de los bosones de Goldstone
Mπ/Λχ. Este es un método de aproximación adecuado para energías muy por debajo
de la Λχ, en lugar de la constante de acoplamiento fuerte αS . Además, los grados
de libertad relevantes en la expansión de pequeños momentos (a distancias largas)
son los de los hadrones observados asintóticamente, ya que son los estados confinados
producidos por la interacción fuerte.

Aunque la idea de una aproximación en una serie de parámetros de expansión
parece inexacta, ya que no podemos calcular infinitos términos, la convergencia de la
serie está bajo control y no necesariamente significa una falta de precisión. La calidad
de la convergencia depende del pequeño tamaño de las masas de los bosones de Gold-
stone, que en el caso de la simetría de sabor SU(2) se considera una buena suposición
ya que Mπ << 1 GeV. Por lo tanto, el enfoque de la ChPT es suficientemente preciso
para el multiplete en SU(2) de piones pseudoescalares a baja energía. La inclusión de
campos de nucleón en la ChPT como grados de libertad también es posible en el límite
de pequeños momentos, pero esto introduce una nueva escala, la masa del nucleón,
que es de tamaño similar a la escala donde la expansión quiral es inválida, m ≈ Λχ.

Dentro del marco de ChPT, las amplitudes de un loop también pueden contribuir
en los cálculos de amplitud a un orden quiral dado. Las amplitudes de loops pueden
contener divergencias ultravioletas (UV) que se pueden renormalizar con la inclusión
de contra-términos en el Lagrangiano de ChPT. Por lo tanto, ChPT se puede renor-
malizar sistemáticamente orden por orden en la expansión quiral. Además, cada uno
de los términos de la serie infinita del Lagrangiano de ChPT es proporcional a una
constante de baja energía (LEC). Estas LEC, careciendo de una extracción directa
desde la dinámica de QCD a bajas energías, se pueden fijar mediante un ajuste a
datos experimentales. Luego, el Lagrangiano resultante se puede usar directamente
para hacer más predicciones.

Es sabido que la inclusión de amplitudes que contienen loops con bariones pueden
estropear la regla del conteo de potencias en la expansión quiral en términos de p y
Mπ. En particular, los loops de nucleones pueden dar contribuciones de gran tamaño
del tipo mN/Λχ dadas por el tamaño parecido de la masa del nucleón a la escala Λχ.

Este conflicto se resolvió primero en la aproximación para bariones pesados en
ChPT (HBChPT por sus siglas en inglés) a expensas de perder la invariancia en
Lorentz, mientras que la formulación covariante ChPT original se dejó de lado. Así
entonces, HBChPT se convirtió en un enfoque estándar para el análisis de procesos
de hadrones como la electroproducción y fotoproducción de piones.

Mientras que en el enfoque no-relativista de HB se restauraba el conteo de poten-
cias en los loops de nucleones, el hecho de que las correcciones relativistas pueden ser
grandes en algunos procesos cuestionó la aplicabilidad de este marco. El interés en
los métodos relativistas se renovó y, eventualmente, la conciliación de un conteo de
potencias consistente con los loops bariónicos fue posible en la formulación relativista
original de ChPT mediante nuevos esquemas de regularización, a saber, el esquema
de infrarrojo (IR) [2] y extendido en la capa de masa (EOMS) [3,4].

Los dos métodos, IR y EOMS, extraen los términos que rompen el conteo de po-
tencias (PCBT) conflictivos de las contribuciones del loop-nucleónico y los reabsorben
en las LECs, además de los términos de renormalización UV. La principal diferen-
cia del esquema EOMS con el esquema IR es que en el EOMS se restan únicamente
los términos conflictivos en órdenes inferiores, mientras que en la renormalización IR
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también se incluyen en la resta términos de órdenes superiores.

En esta tesis, implementamos la renormalización con el esquema EOMS en nuestros
cálculos. Son dos las razones principales. En primer lugar, EOMS suele converger más
rápido que HB y (IR) ChPT. Como consecuencia, este marco se ha vuelto popular
y ha sido utilizado con éxito para describir muchos observables que involucran a los
bariones [5–22]. Por otro lado, tanto HBChPT como IRChPT mostraron una buena
concordancia con la producción de piones EM en los núcleos pero únicamente a muy
bajas energías.

Las extensiones a los órdenes quiral más altos en IRChPT mostraron una mejor
concordancia para estos procesos. Sin embargo, como en el caso de HBChPT, el
acuerdo fue aceptable solo para un rango de energías aún limitado [20]. Además, la
situación era técnicamente más complicada debido al gran número de LECs todavía
desconocidas involucradas en esos órdenes más altos.

Recientes estudios han demostrado que, en algunos casos, una forma sencilla de
mejorar la convergencia de las series en cálculos de amplitudes en ChPT relativista
es incluir a la resonancia de espín 3/2 ∆ como un grado de libertad adicional. De
hecho, la calidad y convergencia de un cálculo de amplitud dado a energías más altas
depende también de los grados de libertad tomados en cuenta. Más aún, es bien
sabido que, además de los piones y nucleones, la contribución de la ∆(1232) juega un
papel importante en el proceso de producción de piones neutros en nucleones debido
a su proximidad con el umbral de producción πN.

Dentro de la simetría de isospín de SU(2), los campos ∆ forman un cuadruplete
con valores propios de isospín I = 3/2. Estas resonancias ∆(1232), que se acoplan
fuertemente a nucleones y piones, se incorporan fácilmente en nuestro marco teórico.
Esto significa que la ∆ se propaga explícitamente como un estado intermedio en los
procesos estudiados aquí. Este grado de libertad en particular implica un parámetro
adicional en la serie quiral dado por la diferencia entre las masas del nucleón y la ∆,
δ = m∆−mN ≈ 300 MeV. Este parámetro induce una extensión a las reglas de conteo
de potencias de la serie quiral con sólo nucleones y piones como grados de libertad.

Nuestro propósito aquí es hacer un análisis más completo y exhaustivo dentro del
marco antes mencionado de la fotoproducción y la electroproducción de piones en
nucleones y estudiar los efectos de la resonancia ∆(1232) en ellos. El canal de foto-
producción de piones neutros ya se ha investigado en la ChPT covariante en EOMS
y con contribuciones de ∆ [21, 22].
Aquí, extendemos el estudio anterior agregando la fotoproducción de piones cargados
e incluyendo el proceso de electroproducción de piones para todos los canales de pio-
nes neutros y cargados. Esto permite explorar más vértices de interacción con fotones
reales y virtuales y, por lo tanto, examinar algunas otras piezas del Lagrangiano quiral.
De esta manera, se puede hacer una determinación más completa y mejor de las LEC
relevantes comparando nuestros resultados teóricos con un conjunto más completo de
datos experimentales.
Además, incorporamos algunos datos recientes para la fotoproducción de piones neu-
tros [23] y cargados [24], y consideramos el cálculo de los loops con rompimiento
explícito del isospín. Este último punto mejora considerablemente el acuerdo con los
datos a bajas energías.
Finalmente, una mejor determinación de un conjunto más completo de LECs podría
usarse para hacer predicciones como en la producción débil de piones y muchos otros
procesos. En particular, el examen de los acoplamientos vectoriales de los nucleones
con fotones tanto reales como virtuales podría reducir las grandes incertidumbres que
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actualmente dificultan los esfuerzos para proporcionar una predicción teóricamente
bien fundamentada de la producción de piones inducida por neutrinos [25, 26], un
proceso muy importante en muchos de los experimentos de neutrinos.

La presente tesis incluye tres estudios principales: la fotoproducción y electropro-
ducción de piones en nucleones, así como la fotoproducción de piones en el núcleo 12C.
Se desarrollan a través de los siguientes capítulos:
En el capítulo 2, se introducen los fundamentos de las interacciones de hadrones en
el marco de la ChPT relativista para su uso en los cálculos de amplitudes. En el
capítulo 3, se presenta el formalismo general para la producción electromagnética de
piones en nucleones, que incluye las parametrizaciones de los elementos de matriz y
sus propiedades generales. También se muestran las expresiones teóricas para cal-
cular las observables relevantes que deben compararse con los datos experimentales.
El capítulo 4 está dedicado a los cálculos de amplitudes de tipo árbol y loop dentro
del enfoque ChPT y el procedimiento seguido en el límite de la simetría de sabor
SU(2). A continuación, se muestran los resultados obtenidos del ajuste de las LEC
relevantes con los datos experimentales en el capítulo 5. También se presenta aquí
la comparación de los observables teóricos en ChPT con los datos. En este trabajo,
comparamos dos modelos: uno con la inclusión de la resonancia ∆(1232) y el otro en
el caso sin ∆. Muestro los resultados obtenidos para los canales cargados y neutros de
fotoproducción y electroproducción de piones en nucleones. Luego, en el capítulo 6 se
presenta un estudio para la fotoproducción de piones neutros en núcleos de 12C como
una aplicación ejemplificada de los estudios de los capítulos anteriores. Finalmente,
discuto los resultados finales y conclusiones en el Capítulo 7.

8.3 Resultados

En esta tesis, hemos estudiado la producción de piones mediante pruebas electromag-
néticas en nucleones. Para cada uno de los estudios realizados aquí, nos enfocamos
en la Teoría Quiral de Perturbaciones relativista para hadrones ligeros: nucleones, pi-
ones y los grados de libertad explícitos ∆. Para preservar la covariancia de la teoría,
se implementó el método de renormalización en el esquema Extended On Mass Shell
(EOMS). En este caso, las divergencias y los términos que violan el conteo de potencias
se absorben en las constantes de baja energía (LECs) del Lagrangiano efectivo.

El presente trabajo se desarrolló dentro de tres estudios principales relacionados
con la producción de piones a través de diferentes procesos. En detalle, se estudió la
fotoproducción de piones en nucleones, donde se trataron los cuatro canales de carga
físicos y sus observables. De manera análoga, se investigó una extensión a fotones
virtuales con la electroproducción de piones en nucleones. Por último, se estudió la
fotoproducción de piones en el núcleo 12C como una aplicación de nuestros resultados
de los procesos elementales (en nucleones). Estos estudios se distribuyen a través de
los capítulos 4, 5, y 6. Nuestro objetivo era hacer un análisis global de los proce-
sos elementales y determinar los valores de las LECs relevantes en el Lagrangiano de
ChPT. El capítulo 4 estuvo dedicado al cálculo de la amplitud para la fotoproduc-
ción y electroproducción de piones en nucleones. El estudio de la fotoproducción se
presenta como un caso particular de la electroproducción al considerar simplemente
en el proceso el fotón real como un caso particular del virtual. A continuación, se
calcularon los observables correspondientes por separado para cada reaccion.

En el capítulo 5 se presentan los resultados correspondientes para las LECs y los
diversos observables en la producción electromagnética de piones cargados y neutros
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sobre nucleones. Hemos comparado nuestras estimaciones teóricas con los observ-
ables correspondientes medidos para energías del centro de masa de hasta 60 MeV por
encima del umbral. En este contexto, se ha implementado el procedimiento de ajuste
de las LECs y se presenta el mejor ajuste numérico para dos modelos diferentes: uno
con la contribución del grado de libertad ∆(1232) y el segundo para el caso sin ∆.
Esto representa una exploración exhaustiva de los parámetros relevantes.

Por último, en el capítulo 6 como un ejemplo de aplicación de los resultados
obtenidos, calculamos los efectos de la ∆(1232) en un modelo simple a bajas energías
para la fotoproducción de π0 en el núcleo 12C. Aquí damos una estimación de las
secciones eficaces coherentes e incoherentes en diversas energías del fotón en labora-
torio hasta un máximo de ∼ 175 MeV. En este cálculo, se incorporaron los procesos
elementales basados en los estudios con ChPT, es decir, la fotoproducción de π0 en el
protón y el neutrón con la inclusión de las LECs relevantes y previamente ajustadas.
Por lo tanto, los resultados en este trabajo son predictivos, aunque dependientes del
modelo nuclear usado y de sus propias renormalizaciones.

A lo largo de los capítulos 4 y 5 el estudio de la fotoproducción de piones cargados
en blancos de nucleones se motivó como una extensión natural de los trabajos anteri-
ores sobre la fotoproducción de piones neutrales en el protón dentro del mismo enfoque
de ChPT a O(p3). Los resultados recientes de este canal en particular han demostrado
que la ∆(1232) juega un papel particularmente importante en mejorar el acuerdo con
los datos en al menos 55 MeV por encima del umbral. Otros estudios anteriores dentro
del mismo enfoque de ChPT covariante pero a O(p4) y sin la presencia de la ∆ como
grado de libertad han mostrado un buen acuerdo con los datos solo a unos 20 MeV
del umbral. La situación resultó ser que la inclusión de la ∆(1232) como un grado de
libertad adicional a bajas energías es más relevante que las contribuciones de orden
más alto. Más aún, el modelo en ChPT hasta O(p3) mantiene el poder predictivo que
de lo contrario se vería afectado con la inclusión de demasiadas LEC involucradas en
un cálculo a O(p4).

Además del estudio anterior sobre la fotoproducción de piones neutrales en el pro-
tón que incluye el mecanismo ∆ en la ChPT relativista, varios aspectos inexplorados
de esta reacción motivaron la extensión de ese estudio a través de otros mecanismos
físicos. Entre ellos, hemos extendido el trabajo anterior al incluir los diversos canales
de producción de piones. Esto se motivó por la sensibilidad del análisis a otros pro-
cesos en los que también se producen piones cargados.

Comenzamos con la investigación de la fotoproducción de piones cerca del um-
bral en nucleones, incluyendo los cuatro canales físicos para los piones cargados y
neutros producidos. Hacemos hincapié en la importancia de la inclusión explícita de
la ∆(1232) en estos procesos. Hemos realizado un cálculo completo a O(p3) dentro
del enfoque antes mencionado, ChPT covariante en el esquema de renormalización
EOMS.
La inclusión de los canales cargados requiere la adición de un conjunto más amplio
de topologías de diagramas de Feynman y por lo tanto algunas piezas adicionales del
Lagrangiano quiral con las constantes de baja energía correspondientes, LECs.
Procedimos derivando primero las amplitudes a nivel de árbol y de un loop para todos
los canales de carga de orden por orden hasta O(p3). Además, incluimos la contribu-
ción explícita de la resonancia ∆(1232) a través del acoplamiento a los nucleones y
piones (o fotones). Estos últimos diagramas sólo contribuyen al nivel de árbol, ya que
las amplitudes correspondientes se cuentan como de orden 3/2 en nuestro conteo de
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potencias con ∆. Los siguientes ordenes incluyen términos de árbol de loop con ∆
pero se han descartado porque introducen contribuciones de orden superior a O(p3),
a saber a orden O(p7/2).

Además de la extensión a un análisis global para la fotoproducción de piones, un
aspecto interesante está relacionado con los efectos del rompimiento de isospín debido
a las diferencias de masa entre los piones cargados y neutros, y entre protones y neu-
trones. Este mecanismo es particularmente relevante para el canal γ + p → π0 + p,
donde la observación del efecto de cúspide cerca del umbral se reproduce solo si se
introducen las diferencias de masa en los cálculos de amplitud. En particular, en-
contramos que dentro del marco de la ChPT, los efectos de cúspide son consecuencia
de diferentes canales de apertura para los loops de piones cargados y neutros. Este
efecto es producido exclusivamente por amplitudes de loop dadas las diferentes con-
tribuciones reales e imaginarias en la amplitud de algunos diagramas de loop. Como se
esperaba de este mecanismo en ChPT, los efectos de cúspide no aparecen en los canales
de fotoproducción de piones cargados, ya que el umbral físico del pion cargado ocurre
a energías más altas que los loops con piones neutros y estos se encuentran suprimido
por el espacio fase. Sin embargo, los efectos de rompimiento de isospín muestran tener
contribuciones no nulas por encima del umbral y que son importantes para reproducir
muchos de los datos a baja energía.

Finalmente, realizamos un estudio global de todos los datos disponibles actual-
mente en la región de baja energía. Esto equivale a medidas de secciones eficaces
diferenciales y totales, así como asimetrías de haz y del blanco que miden observables
de espín. Hemos comparado nuestros resultados teóricos con los datos y determinado
como un primer paso los valores numéricos de las LECs relevantes.

Paralelamente a los estudios de fotoproducción de piones, la producción de piones
por electrones e+N → e+ π +N ′ se presenta en el capítulo 4 como un tratamiento
más general de la fotoproducción de piones al considerar la virtualidad del fotón.

Dado que la interacción electrón-fotón es considerablemente más débil en com-
paración con las interacciones hadrónicas en el régimen de baja energía de QCD, la
aproximación de un solo intercambio de fotón nos permite reducir fácilmente la ampli-
tud del proceso de electroproducción a la fotoproducción pero con fotones virtuales.
Este método permite calcular las amplitudes de electroproducción de una manera sen-
cilla.

En este sentido, este estudio representa una extensión en la cinemática de los
procesos considerados en la fotoproducción. Abordamos esta reacción de la misma
forma en ChPT covariante aO(p3) en EOMS y con la inclusión explícita de resonancias
∆, para los canales de piones neutros y cargados y con efectos de rompimiento de
isospín.

La inclusión de la electroproducción en un análisis más amplio permite explorar
la interacción de los nucleones con fotones virtuales, y por lo tanto investigar algunas
piezas adicionales del Lagrangiano quiral.

Este estudio se motivó principalmente por encontrar más restricciones para las
LECs. El proceso de electroproducción de piones permite el acceso a una amplia
gama de datos para diversos observables, incluyendo ángulos de dispersión, energías,
polarizaciones y momentos transferidos de un fotón virtual.

Hemos comparado nuestro modelo con los datos experimentales disponibles, esta
vez para observables de fotoproducción y electroproducción juntos, con algunos límites
cinemáticos para garantizar que los momentos externos fueran lo suficientemente pe-
queños. Hemos considerado una región cinemática restringida con

√
s < 1.13 GeV y
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Q2 < 0.15 GeV2, donde esperábamos que nuestro modelo fuera confiable y aún estu-
viera por debajo del pico ∆(1232).

Los valores obtenidos para los LEC ajustados resultaron todos ser de tamaño
natural, lo cual es satisfactorio desde el punto de vista de la convergencia quiral. Esto
da respaldo a las estimaciones de incertidumbre de los cálculos recientes de producción
de piones inducidos por neutrinos. La investigación exhaustiva de todos los canales de
producción electromagnética de piones, incluyendo todos los observables disponibles,
ha permitido desacoplar todas las LEC relevantes de tercer orden involucradas, y que
aparecieron correlacionados en el caso de la fotoproducción.

Hemos confirmado la importancia de los términos de loops. Las partes imaginarias
de la amplitud de dispersión y los efectos de cúspide, que provienen de la apertura de
los diferentes canales de carga, son cruciales en la descripción de algunos observables de
electroproducción a baja energía. También se muestra que la inclusión del mecanismo
de rompimiento de isospín en los loops resuelve la inconsistencia con el parámetro
relacionado con la dispersión πN a través de la relación de Goldberger–Treiman.

Con el modelo abordado en este trabajo, sólo 5 parámetros de ajuste fueron su-
ficientes para describir bien todos los datos experimentales, consistiendo de aproxi-
madamente 2700 puntos, para la dependencia angular y energética en las secciones
eficaces y numerosos observables de polarización.

En resumen, la inclusión del mecanismo ∆ en cálculos dentro de ChPT a O(p3) es
mejor que la extensión a cálculos de orden más altos que no incluyen la resonancia ∆.
Sin ∆, nuestro modelo solo puede reproducir datos unos pocos MeV por encima del
umbral. En particular, la fotoproducción de piones neutros es el canal más sensible a
esta resonancia debido a la pequeñez de las contribuciones de orden inferior.

Los resultados del cálculo en la ChPT covariante a tercer orden y con la inclusión
explícita de la ∆ reproducen los datos de las secciones eficaces y las asimetrías de
polarización de alta precisión de manera sorprendente. Por otro lado, el cálculo sin
∆ realizado dentro del mismo enfoque demuestra una descripción mucho peor de los
datos.

El estudio final dentro de la presente tesis se describe en el capítulo 6, en donde
tratamos la fotoproducción del pion cercana al umbral en el núcleo 12C. Nuestro
propósito aquí se dividió en dos vías, a saber, aplicar y probar las LEC ajustadas que
resultan del análisis en la producción electromagnética de piones en el marco de la
ChPT, y estimar la contribución del mecanismo ∆ en la sección eficaz nuclear.

El modelo para estudiar la reacción 12C(γ, π0) se basó en la aproximación de im-
pulso habitual en la que las amplitudes de nucleón libre describen la fotoproducción de
piones en el núcleo a bajas energías desde cada nucleón ligado. En esta aproximación,
es, por lo tanto, posible expresar la amplitud de la reacción nuclear en términos de las
amplitudes elementales con nucleones. En nuestro caso, esta aproximación nos per-
mitió calcular las secciones eficaces correspondientes en términos de las amplitudes de
fotoproducción de π0 en el protón y el neutrón dentro del enfoque de ChPT covari-
ante, como antes. En particular, solo la parte de isovector independiente de espín fue
relevante para el proceso en el núcleo de 12C.

Efectos nucleares adicionales se introdujeron sistemáticamente. En primer lugar,
la estructura nuclear para el núcleo 12C se tomó en cuenta en la aproximación de
impulso de onda plana (PWIA), suponiendo que las partículas entrantes y salientes,
aquí el fotón y el pion observado, se propagaban como ondas planas a través de un
medio nuclear.
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El proceso de fotoproducción de piones puede incluir la contribución de transiciones
inelásticas debido a los estados finales del núcleo excitado. Este tipo de mecanismo
se considera típicamente cuando el núcleo final no se observa, como en los datos con
los que comparamos nuestro modelo.

A continuación, dentro de la PWIA, obtenemos las contribuciones de sección eficaz
nuclear de las transiciones coherentes e incoherentes al primer estado excitado 2+ (4.43
MeV) como una buena aproximación. Esas transiciones coherentes e incoherentes
particulares están principalmente descritas por la misma amplitud elemental.

Además, se ha incluido una contribución importante a la sección eficaz 12C(γ, π0)
mediante la interacción pion-núcleo en la aproximación de onda distorsionada por
el impulso (DWIA, por sus siglas en inglés). Este efecto produce una distorsión de
los piones que salen del núcleo debido a la re-dispersión con la materia nuclear, y
su inclusión es estándar a energías cercanas al umbral, donde se reduce a un factor
de escala aproximado. Se asumió que las contribuciones coherentes e incoherentes se
corrigieron por igual mediante los efectos de distorsión del pion.

Nuestros cálculos, basados en las amplitudes obtenidas en el marco de ChPT apli-
cada a un modelo nuclear simple a bajas energías, reprodujeron satisfactoriamente
la dependencia energética de la sección eficaz de la reacción 12C(γ, π0). Hemos com-
parado los resultados predichos para energías hasta 40 MeV por encima del umbral.
La contribución del proceso elemental se derivó tomando los valores numéricos de las
LEC relevantes ya ajustados en este trabajo por datos de la producción electromag-
nética de piones en núcleos. La contribución de la re-dispersión de los piones en la
materia nuclear se incluyó mediante el DWIA.

Hemos observado que los cálculos de ChPT a O(p3) con y sin contribuciones de
∆(1232) reproducen una diferente dependencia en la energía. Sólo las estimaciones de
la sección eficaz que incluyen la resonancia ∆ junto con la consideración del scattering
coherente e incoherente, y una adecuada inclusión de las interacciones del estado final
(FSI) para piones distorsionados, estuvieron de acuerdo con las medidas experimen-
tales.

A modo de conclusión, podemos decir que algunos de los enfoques más exitosos
han sido los cálculos de ChPT dentro de la formalidad covariante completa. Allí, la ex-
pansión de la serie quiral está bajo control a bajas energías, y luego las contribuciones
de mayor orden suelen ayudar a reproducir los datos medidos experimentalmente de
mayor precisión. Sin embargo, la extensión hacia los órdenes superiores está limitada
dada la cantidad de parámetros desconocidos (constantes de baja energía o LECs)
que surgen. La consideración de grados de libertad adecuados, en la fotoproducción
de piones como la resonancia de espín-3/2 ∆, resulta más conveniente que un cál-
culo de mayor orden sin su inclusión explícita. Aparte de las complicaciones técnicas
añadidas, el modelo perdería su poder predictivo debido a la nueva serie de LECs
indeterminadas que aparecen en el Lagrangiano. Además, las contribuciones de la
resonancia ∆ pueden reproducir datos en un rango más amplio de energías en los
procesos de producción electromagnética de piones.

Finalmente, discutimos algunas cuestiones que pueden ser tratadas en estudios
posteriores a esta tesis.

Nuestros resultados consistieron en la determinación de algunos parámetros rele-
vantes en los procesos estudiados aquí. Como se muestra en el estudio de 12C(γ, π0),
los valores numéricos de las LECs pueden aplicarse a otros procesos de baja energía
abordados dentro del mismo marco.

En concreto, todos los parámetros ajustados en este trabajo también aparecen en
la evaluación de la producción de piones inducida por neutrinos en núcleos. Estos
valores de parámetros podrían usarse para mejorar las predicciones correspondientes
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de las secciones eficaces de neutrinos de baja energía en el núcleo, que son relevantes
para lograr los objetivos de precisión de los experimentos de neutrinos modernos.

Además, nuestros resultados respaldan los primeros cálculos en ChPT de estos
procesos de producción débil, que asumieron un tamaño natural para estos parámet-
ros para estimar las incertidumbres de las predicciones teóricas. El examen de los
acoplamientos vectoriales de los nucleones podría reducir las grandes incertidumbres
que actualmente dificultan nuestros esfuerzos por proporcionar una predicción teóri-
camente bien fundamentada de la producción de piones inducida por neutrinos.

Esto es especialmente importante en la era de precisión actual de la física de
neutrinos, donde un adecuado modelado de las secciones eficaces y de los fondos es
necesario para la investigación de las masas de neutrinos, los ángulos de mezcla y
otras propiedades. Finalmente, la extensión a la descripción de los datos de pro-
ducción electrodébil avanzará aún más estos estudios, ofreciendo la posibilidad de
hacer predicciones fiables y precisas para los procesos débiles donde los datos son más
escasos.

Por otro lado, el marco utilizado para extraer los resultados en la producción
electromagnética de piones en nucleones se puede extender de la simetría de sabor
SU(2) a la simetría de sabor SU(3) y, por lo tanto, se puede aplicar a la extracción
de otras propiedades de los bariones ligeros relacionadas con otros procesos de baja
energía, incluida la extrañeza.

Finalmente, el marco teórico utilizado para obtener los resultados de la sección
eficaz para la reacción 12C(γ, π0) puede aplicarse a otros procesos nucleares similares
de baja energía en los cuales las amplitudes elementales tienen lugar en los cálcu-
los. Por ejemplo, el mismo procedimiento presentado aquí también es aplicable para
resultados predictivos de la fotoproducción de piones en núcleos de 2H o 6Li.
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Appendix A

Feynman diagram amplitudes

Here, I detail the basic elements in building the amplitudes for the pion electromag-
netic production on nucleons. A brief derivation of the relevant Feynman rules from
the ChPT Lagrangian is illustrated below. Subsequently, the corresponding Feynman
rules expressions for the vertices are given order by order.
Last, I present the explicit expressions for the tree and one-loop amplitudes for the
four π-nucleon channels and for the two reactions, electro- and photoproduction re-
spectively.

Feynman rules for vertices at LO

First, I will detail some representative examples in the derivation of the Feynman
rules for vertices involved in the O(p1) tree diagrams shown in Fig. 4.1 (a)-(d). For all
the higher order O(pn>1) diagrams, the Feynman rules and amplitudes are obtained
in the same way. The respective vertices for each order are pointed out in Fig.4.1
derived from the corresponding higher order Lagrangian pieces in Eq. (4.3).
As we see in the O(p1) diagrams in Figures 4.1 (a)-(c), they only involve vertices at
O(p1) from the interacting terms in the nucleon Lagrangian L(1)

N (2.61). The O(p1)
pion-exchange diagram in Figure 4.1 (d) involves a second-order O(p2) vertex coming
from the lowest-order pion Lagrangian L(2)

ππ (2.38). To begin, one derives the Feynman
rules vertices at O(p1) from the LO Lagrangian (2.61),

L(1)
N = N

(
iγµ∂µ −m︸ ︷︷ ︸
L(1) free
N

+ iγµΓµ︸ ︷︷ ︸
L(1) S
N

+
g

2
γµγ5uµ︸ ︷︷ ︸
L(1) PS
N

)
N , (A.1)

the nucleon isospin doublet is N = (p, n)T , the different terms are signaled for the free
nucleon interaction term L(1) free

N , a scalar, L(1) S
N , and pseudoscalar-vector couplings,

L(1) PS
N . As pointed in Eqs. (2.53) and (2.62) the tensors uµ and Γµ with external

electromagnetic field sources Aµ are

Γµ =
1

2

{
u† (∂µ − ieAµQ)u+ u (∂µ − ieAµQ)u†

}
, (A.2)

uµ =iu†
(
∂µ − ieAµ[Q, u2]

)
u†, (A.3)

with the isospin charge matrix Q = 1
2(1 + τ3). In the above expressions, the pion

coset u expands as
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u = U1/2 = exp iΦ/2F = 1 + i
Φ

2F
− Φ2

8F 2
+ · · · , (A.4)

with

Φ = ~τ · ~π =

(
π3 π1 − iπ2

π1 + iπ2 −π3

)
=

(
π0

√
2π+

√
2π− −π0

)
. (A.5)

where the pion fields, πa, entering in Φ are represented in the cartesian and isospin
basis through the Pauli matrices Eq. (3.99). Then, the scalar L(1) S

N and pseudoscalar
L(1) PS
N Lagrangian terms in (A.1) expands in the isospin basis as

L(1)S
N =e pγµAµp+

i

4F 2

(
nπ−∂µπ

+γµn− nπ+∂µπ
−γµn+ · · · (A.6)

L(1)PS
N =i

e g√
2F

(
pπ+γµAµγ

5n− nπ−γµAµγ
5p
)

− g

2F

(
p/∂π0γ5p+

√
2 p/∂π+γ5n+

√
2n/∂π−γ5p− n/∂π0γ5n

)
+ · · · , (A.7)

The first term in L(1)S
N from (A.6) corresponds to the LO interaction vertex γpp,

and the following terms proportional to 1/F 2 lead the ππNN interaction vertices
used afterwards for the pion-loop diagrams. The expansion of the pseudoscalar term
L(1)PS
N (A.7) includes e.g. the interaction terms for the γπNN and πNN coupling

vertices. Thus, the different interaction terms appearing in the previous expressions
can be grouped as follows

L(1)
γNN =e pγµAµp, (A.8)

L(1)
γπNN =i

e g√
2F

(
pπ+γµAµγ

5n− nπ−γµAµγ
5p
)
, (A.9)

L(1)
πNN =

g

2F

(
n/∂π0γ5n−

√
2 p/∂π+γ5n−

√
2n/∂π−γ5p− p/∂π0γ5p

)
. (A.10)

where the subscripts in the Lagrangian terms indicates the associated interacting
vertices. From the above terms, we get the corresponding amplitudes for the vertices
depicted in Fig. A.1 with diagrams.

p 1 p

γ

k

N 1 N ′

γ πa

N 1 N ′

πa

q

Figure A.1: Feynman diagrams for the γNN ′, γNπN ′ and NN ′π
vertices and corresponding to the amplitudes in Eqs. (A.11), (A.12)

and (A.13) respectively.

In detail, the O(pn) vertex Feynman rules, here denoted by V(n)
vertex, can be obtained

for each vertex through the following amplitudes
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〈
N ′(p′)

∣∣∣iL(1)
γNN

∣∣∣ γ(k), N(p)
〉

=εµuN ′(p
′)Vµ (1)

γN ;N ′uN (p), (A.11)〈
πa(q), N ′(p′)

∣∣∣iL(1)
γπNN

∣∣∣ γ(k), N(p)
〉

=εµuN ′(p
′)Vµ (1)

γN ;πN ′uN (p), (A.12)〈
πa(q), N ′(p′)

∣∣∣iL(1)
πNN

∣∣∣N(p)
〉

=uN ′(p
′)V(1)

N ;πN ′uN (p), (A.13)

where Vµ (1)
γN ;N ′ , V

µ (1)
γN ;πN ′ , V

(1)
N ;πN ′ indicates the Feynman rules expressions for the γNN ′,

γNπN ′ and NN ′π vertices respectively. The 4-momenta conservation is included by
taking the photon and the initial nucleon with incoming momenta, and the pion and
final nucleon with outgoing momenta 1. Explicitly, the Feynman rules for the vertices
in Fig. A.1 are extracted from (A.11)-(A.13) in the physical basis by just specifying
the isospin of nucleons and pions πa = {π+, π−, π0}:

Vµ (1)
γN ;N ′ =

{
ieγµ, for γp→ p,

0, otherwise (A.14)

Vµ (1)
γN ;πN ′ =


e g√
2F

γµγ5, for γp→ π+n,

− e g√
2F

γµγ5, for γn→ π−p,

0, otherwise

(A.15)

V(1)
N ;πN ′ =



g

2F
/qγ5, for p→ π0p,

− g

2F
/qγ5, for n→ π0n,

g√
2F

/qγ5, for p→ π+n, n→ π−p.

(A.16)

Anagously, for the LO pion Lagrangian at O(p2) (2.38) with external EM sources

L(2)
ππ =

F 2

4
Tr
{(
∂µU − ieA µ[Q,U ]

)
(∂µU − ieAµ[Q,U ])† + χU † + Uχ†

}
(A.17)

the Feynman rules can be derived by expanding U = u2 as in Eq. (A.4). The Feynman
rule for the ππγ vertex involved in the diagram amplitude 4.1-(d) and depicted in
Fig. A.2, corresponds to the term in the expansion

L(2)
ππ = ieA µ

(
π+∂µπ

− − π−∂µπ+
)

+ · · · , (A.18)

which results in the amplitude for the γππ vertex

〈
πb(qb)

∣∣∣iL(2)
ππ

∣∣∣ γ(k), πa(qa)
〉

=εµVµ (2)
γπ;π . (A.19)

Vµ (2)
γπ;π stands for the interacting vertex γππ Feynman rule, for incoming pion and

photon fields and an outgoing pion. Due to the charge and 4-momenta conservation,
the incoming and outgoing pion are of the same charge, or with opposite charge when
both pions are incoming.

1In the momentum space amplitudes the space integral
∫
d4x〈f(p′+q)|iL|i(p+k)〉 = (2π)4δ4(p′+

q − p− k)〈f(p′ + q)|iL|i(p+ k)〉 understood when applying momenta conservation.
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πa 2 πa

γ

qin qout

k

Figure A.2: Feynman diagram for the γππ vertex corresponding to
the amplitude in (A.19).

The resulting Feynman vertex rule is written as

Vµ (2)
γπ;π =


ie (qµin + qµout) , for γπ+ → π+,

−ie (qµin + qµout) , for γπ− → π−,

0, otherwise
(A.20)

with the 4-momenta conservation qµin = qµout − kµ. The rest of Feynman rules for
the other vertices at O(p2), O(p3) and O(p4) are obtained in the same way and are
displayed explicitly in App. A.1.

Feynman rules for propagators

The corresponding rules for the internal lines in the diagrams 4.1 are given by the
on-mass-shell propagators. For the pseudoscalar pion multiplet with 4-momentum q
and invariant mass M , the corresponding propagator in the momentum space reads

iSπ(q) =
i

q2 −M2 + iε q
(A.21)

For the fermionic nucleon multiplet with 4-momentum p and mass m, the propa-
gator is

iSN (p) = i
/p+m

p2 −m2 + iε p
(A.22)

The diagrams with the explicit contribution of the ∆-resonance, Fig. 4.3, are
calculated with the corresponding Rarita-Schwinger propagator

iSµν∆ (P )
P

ν µ
(A.23)

where

Sµν∆ (P ) =
/P +m∆

P 2 −m2
∆ + iε

[
−gµν +

1

D − 1
γµγν +

(γµP ν − γνPµ)

(D − 1)m∆
+

(D − 2)

(D − 1)m2
∆

PµP ν
]

(A.24)

which is a 2nd-rank tensor. The number D indicates the space-time dimension, in



A.1. Vertex Feynman-rules 151

this case D = 4 is enough for the tree level Feynman amplitudes. From the ∆ ChPT
Lagrangian this propagator couples to the vertices N∆γ and N∆π, given in App. A.1.

A.1 Vertex Feynman-rules

A.1.1 O(p1) vertices

p 1 p

γ

k Vµ (1)
γp;p = ieγµ (A.25)

p 1 p

π0

q V(1)
p;pπ0 =

g

2F
/qγ

5 (A.26)

n 1 n

π0

q V(1)
n;nπ0 = − g

2F
/qγ

5 (A.27)

p 1 n

π+

q V(1)
p;nπ+ =

g√
2F

/qγ
5 (A.28)

n 1 p

π−

q V(1)
n;pπ− =

g√
2F

/qγ
5 (A.29)

p 1 n

γ π+

Vµ (1)
γp;nπ+ =

e g√
2F

γµγ5 (A.30)

n 1 p

γ π−

Vµ (1)
γn;pπ− = − e g√

2F
γµγ5 (A.31)

p 1 p

π+ π+

q1 q2 V (1)
pπ+;pπ+ = − i

4F 2

(
/q1

+ /q2

)
(A.32)
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n 1 n

π+ π+

q1 q2 V (1)
nπ+;nπ+ =

i

4F 2

(
/q1

+ /q2

)
(A.33)

p 1 n

π0 π+

q1 q2 V (1)
pπ0;nπ+ =

i

2
√

2F 2

(
/q1

+ /q2

)
(A.34)

n 1 p

π+ π0

q1 q2 V (1)
nπ+;pπ0 =

i

2
√

2F 2

(
/q1

+ /q2

)
(A.35)

p 1 p

π+ π+

γ

Vµ (1)
γpπ+;pπ+ = − ie

2F 2
γµ (A.36)

n 1 n

π+ π+

γ

Vµ (1)
γnπ+;nπ+ =

ie

2F 2
γµ (A.37)

p 1 n

π0 π+

γ

Vµ (1)
γpπ0;nπ+ =

ie

2
√

2F 2
γµ (A.38)

n 1 p

π0 π−

γ

Vµ (1)
γnπ0;pπ−

=
ie

2
√

2F 2
γµ (A.39)
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p 1 p

π0 π+π−

V (1)
pπ+π−π0;p

=
g

12F 3

(
2/q

0 − /q− − /q+
)
γ5 (A.40)

n 1 n

π0 π+π−

V (1)
nπ+π−π0;n

= − g

12F 3

(
2/q

0 − /q− − /q+
)
γ5 (A.41)

p 1 n

π+ π−π−

V (1)
pπ−π−π+;n

=
g

F 3

(
−
√

2

6
/q

+ +
1

6
√

2

[
/q
−
1

+ /q
−
2

])
γ5

(A.42)

p 1 n

π− π0π0

V (1)
pπ0π0π−;n

=
g

F 3

(√
2

6
/q
− − 1

6
√

2

[
/q

0
1

+ /q
0
2

])
γ5 (A.43)

n 1 p

π− π+π+

V (1)
nπ+π+π−;p

=
g

F 3

(
−
√

2

6
/q
− +

1

6
√

2

[
/q

+
1

+ /q
+
2

])
γ5

(A.44)

n 1 p

π+ π0π0

V (1)
nπ0π0π+;p

=
g

F 3

(
−
√

2

6
/q

+ − 1

6
√

2

[
/q

0
1

+ /q
0
2

])
γ5 (A.45)

p 1 n

π+ π−π−

γ

Vµ (1)
γpπ−π−π+;n

= −
√

2e g

3F 3
γµγ5 (A.46)
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p 1 n

π− π0π0

γ

Vµ (1)
γpπ0π0π−;n

= −
√

2e g

6F 3
γµγ5 (A.47)

n 1 p

π− π+π+

γ

Vµ (1)
γnπ+π+π−;p

=

√
2e g

3F 3
γµγ5 (A.48)

n 1 p

π+ π0π0

γ

Vµ (1)
γnπ0π0π+;p

=

√
2e g

6F 3
γµγ5 (A.49)

∆− 1
ν

n

π−

P

q Vν (1)
∆−;nπ− = − hA

2Fm∆
γµνλPµqλ = −H.c. (A.50)

∆+ 1
ν

n

π+

P

q Vν (1)
∆+;nπ+ =

hA

2
√

3Fm∆

γµνλPµqλ = −H.c. (A.51)

∆0 1
ν

n

π0

P

q Vν (1)
∆0;nπ0 = − hA√

6Fm∆

γµνλPµqλ = −H.c. (A.52)
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∆++ 1
ν

p

π+

P

q Vν (1)
∆++;pπ+ =

hA
2Fm∆

γµνλPµqλ = −H.c. (A.53)

∆0 1
ν

p

π−

P

q Vν (1)
∆0;pπ−

= − hA

2
√

3Fm∆

γµνλPµqλ = −H.c. (A.54)

∆+ 1
ν

p

π0

P

q Vν (1)
∆+;pπ0 = − hA√

6Fm∆

γµνλPµqλ = −H.c. (A.55)

A.1.2 O(p2) vertices

π+ 2 π−

γ

Vµ (2)
γπ+π−;

= ie(q+ − q−)µ (A.56)

N 2 N V (2)
N ;N = i 4M2c1 (A.57)

p 2 p

γ

k Vµ (2)
γp;p =

e

2m
kνσ

νµ(c6 + c7) (A.58)

n 2 n

γ

k
Vµ (2)
γn;n =

e

2m
kνσ

νµc7 (A.59)

2

π− π+

π0 π0

V (2)
π+π−π0π0;

=
i

3F 2

(
M2 + 2q0

1 · q0
2 + 2q+ · q−

− (q+ + q−) · (q0
1 + q0

2)
) (A.60)
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2

π+ π+

π− π−

V (2)
π+π+π−π−;

=
i

3F 2

(
2M2 − 2q−1 · q−2 − 2q+

1 · q+
2

+ (q−1 + q−2 ) · (q+
1 + q+

2 )
) (A.61)

2

π0 π0

π0 π0

V (2)
π0π0π0π0;

= i
M2

F 2
(A.62)

2

π+ π+

π− π−
γ

Vµ (2)
γπ+π+π−π−;

= i
4e

3F 2

[
(q−1 + q−2 )− (q+

1 + q+
2 )
]µ (A.63)

2

π− π+

π0 π0

γ

Vµ (2)
γπ+π−π0π0;

= i
2e

3F 2
(q− − q+)µ (A.64)

n 2
νµ

∆0

γ

P

k Vνµ (2)
γn;∆0 =

√
3

2

e gM
2m(m+m∆)

2εανβµPαkβ = H.c. (A.65)

p 2
νµ

∆+

γ

P

k Vνµ (2)
γp;∆+ =

√
3

2

egM
2m(m+m∆)

2εανβµPαkβ = H.c. (A.66)
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A.1.3 O(p3) vertices

p 3 p

γ

p p′

k Vµ (3)
γp;p = i

e

2m
kν
[
kµ
(
p+ p′

)ν − kν (p+ p′
)µ]

(2d7 + d6)

(A.67)

n 3 n

γ

p p′

k Vµ (3)
γn;n = i

e

2m
kν
[
kµ
(
p+ p′

)ν − kν (p+ p′
)µ]

(2d7 − d6)

(A.68)

p 3 p

γ π0

p p′

k q Vµ (3)
γp;pπ0 = i

e

mF
2εµναβkν(pβ + p′β)qα(d8 + d9) (A.69)

n 3 n

γ π0

p p′

k q Vµ (3)
γn;nπ0 = i

e

mF
2εµναβkν(pβ + p′β)qα(d8 − d9) (A.70)

n 3 p

γ π−

p p′

k q Vµ (3)
γn;pπ− = i

√
2e

mF
2εµναβkν(pβ + p′β)qαd9 (A.71)

p 3 n

γ π+

p p′

k q Vµ (3)
γp;nπ+ = i

√
2e

mF
2εµναβkν(pβ + p′β)qαd9 (A.72)

n 3 p

γ π−

k Vµ (3)
γn;pπ− =

√
2eM2

F
γµγ5(d18 − 2d16) (A.73)
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p 3 n

γ π+

k Vµ (3)
γp;nπ+ = −

√
2eM2

F
γµγ5(d18 − 2d16) (A.74)

n 3 n

π0

q V (3)
n;nπ0 =

M2

F
/qγ

5(d18 − 2d16) (A.75)

p 3 p

π0

q V (3)
p;pπ0 = −M

2

F
/qγ

5(d18 − 2d16) (A.76)

n 3 p

π−

q V (3)
n;pπ− = −

√
2M2

F
/qγ

5(d18 − 2d16) (A.77)

p 3 n

π+

q V (3)
p;nπ+ = −

√
2M2

F
/qγ

5(d18 − 2d16) (A.78)

p 3 n

γ π+

p p′

k q
Vµ (3)
γp;nπ+ =

e√
2m2F

kν

[
γµγ5(p · qpν + p′ · qp′ν)

− γνγ5(p · qpµ + p′ · qp′µ)
]
d20

(A.79)

n 3 p

γ π−

p p′

k q
Vµ (3)
γn;pπ− =− e√

2m2F
kν

[
γµγ5(p · qpν + p′ · qp′ν)

− γνγ5(p · qpµ + p′ · qp′µ)
]
d20

(A.80)

p 3 n

γ π+

k q Vµ (3)
γp;nπ+ =

2e√
2F

kν
(
γµγ5qν − γνγ5qµ

)
d21 (A.81)
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n 3 p

γ π−

k q Vµ (3)
γn;pπ− = − 2e√

2F
kν
(
γµγ5qν − γνγ5qµ

)
d21 (A.82)

p 3 n

γ π+

k q Vµ (3)
γp;nπ+ = − e√

2F
kν
(
γµγ5(q − k)ν − γνγ5(q − k)µ

)
d22

(A.83)

n 3 p

γ π−

k q Vµ (3)
γn;pπ− =

e√
2F

kν
(
γµγ5(q − k)ν − γνγ5(q − k)µ

)
d22

(A.84)

A.1.4 O(p4) vertices

Using pion Lagrangian at O(q4) of Gasser, Sainio and Svarc, Eq. (2.44), we have the
following Feynman rules

π 4 π
q q V (4)

π;π = −i2M
2

F 2

(
M2l3 +

[
M2 − q2

]
l4
)

(A.85)

π+ 4 π−

γ

k Vµ (4)
γπ+π−;

= i
2e

F 2
M2(q+ − q−)µl4 (A.86)

π+ 4 π−

γ

q q′

k Vµ (4)
γπ+π−;

= i
2e

F 2
kν
(
qµq′ν − qνq′µ

)
l6 (A.87)

π0 4 π0

γ

q q′

k Vµ (4)
γπ0π0;

= i
e

F 2

(
qµq′ν + q′µqν

)
(εµkν − ενkµ)l6 = 0 (A.88)
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A.2 Tree level amplitudes

A.2.1 Electroproduction

O(p1) amplitudes

The O(p1) Feynman amplitudes, after operating with the external nucleon spinors
ūN ′(p

′)Mµ (1)
tree uN (p) and simplifying, one can express them in the Ball parametriza-

tion, Eq. (3.13), and in terms of the Mandelstam representation Eq. (3.6). We have
for the pion electroproduction case the following expressions

Mµ (1)
(a) = C

(1)
I

eg

F
V µ

1 , (A.89)

Mµ (1)
(b) = C

(1)
II

eg

F

((
m2
N − s

)
V µ

1

s−m2
− (mN +m) (2V µ

2 + V µ
3 + V µ

4 − V µ
5 )

m2 − s

)
, (A.90)

Mµ (1)
(c) = C

(1)
III

eg

F

((
u−m2

N

)
V µ

1

u−m2
− (mN +m) (2V µ

2 − V µ
3 + V µ

4 − V µ
5 )

m2 − u

)
, (A.91)

Mµ (1)
(d) = C

(1)
IV

√
2emNg (2V µ

3 − V µ
4 )

F
(
−2m2

N +Q2 + s+ u
) . (A.92)

Here, m is the nucleon mass in the chiral limit which appear in the corresponding
propagator, while mN is the physical nucleon mass from the external nucleon mo-
menta. The coefficients C(1)

I , C
(1)
II , C

(1)
III , C

(1)
IV are those given in Table 4.1 for each

production channel.

O(p2) amplitudes

As before, we operate the corresponding O(p2) amplitudes with the external nucleon
spinors, i.e. ūN ′(p′)Mµ (2)

tree uN (p) and apply the Dirac equation.

Mµ (2)
(e) = C

(2)
II

egA
Fπ

(
−2V µ

6 + V µ
7

m2
N − s

−
(
3m2

N + s
)

(V µ
4 − V µ

5 )

2mN (m2
N − s)

− V µ
1

)
, (A.93)

Mµ (2)
(f) = C

(2)
III

egA
Fπ

(
V µ

7 − 2V µ
6

m2
N − u

−
(
3m2

N + u
)

(V µ
4 − V µ

5 )

2mN (m2
N − u)

+ V µ
1

)
. (A.94)

The constants C(2)
II and C(2)

III are given in Table 4.2 for each channel. As explained in
the Sec. 4.3.1, the other amplitudesMµ (2)

(g) andMµ (2)
(f) corresponding to the Feynman

diagrams (g) and (h) in Fig. 4.1 are already included in the above O(p) amplitudes
by making the substitution

m→ m2 = m− 4c1M
2
π (A.95)

In fact, the O(p2) and also other relevant higher order amplitudes can be generated
2. Expanding in series of the pion mass, we have that

2As we can see in Eq. (4.107), this technique is independent of the renormalization scheme.
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Mµ (1)
(b) {m→ m2} =Mµ (1)

(b) +Mµ (2)
(g) +Mµ (3)

(q) +O(p4) (A.96)

Mµ (1)
(c) {m→ m2} =Mµ (1)

(c) +Mµ (2)
(h) +Mµ (3)

(r) +O(p4) (A.97)

whereMµ (3)
(q) andMµ (3)

(r) are the O(p3) amplitudes corresponding to the diagrams (q)
and (r) in Fig. 4.1.

O(p3) amplitudes

The rest of the tree level O(p3) amplitudes, as depicted in Fig. 4.1, are given as follows,

Mµ (3)
(i) =C

(3)
Ia

e

FπmN

[
V µ

4

(
2M2

π − 4m2
N − 2Q2 − 3s− u

)
+ 2V µ

5

(
2m2

N −M2
π +Q2 + s+ u

)
+ V µ

2

(
4m2

N − 2
(
2Q2 + s+ u

))
+ 2mN (s− u)V µ

1 − 8mNV
µ

6 + (s− u)V µ
3

]

+C
(3)
Ib

e

Fπ

[
√

2 (d18 − 2d16)M2
πV

µ
1

+
d20√
2m2

N

(
1

4
(V µ

7 − V µ
8 )
(
2m2

N + 2M2
π − s− u

)
+

1

2
(s− u)V µ

6

+
1

4
V µ

1

(
2m4

N +Q2
(
s+ u− 2m2

N − 2M2
π

)
+ 2m2

N

(
M2
π − s− u

)
−M2

π(s+ u) + 2su
))

+ d21

((
2m2

N − s− u
)

√
2

V µ
1 +
√

2V µ
7

)

+ d22

(
V µ

1

(
−2m2

N + 2Q2 + s+ u
)

2
√

2
+
V µ

8 − V µ
7√

2

)]
, (A.98)

Mµ (3)
(j) =C

(3)
IIa

(d18 − 2d16) eM2
π

Fπ

[
V µ

1 +
2mN (2V µ

2 + V µ
3 + V µ

4 − V µ
5 )

m2
N − s

]
, (A.99)

Mµ (3)
(m) =C

(3)
IIb

egA
4Fπ

[
Q2

(
2 (2V µ

6 + V µ
7 )

m2
N − s

−
(
3m2

N + s
)

(2V µ
2 + V µ

3 )

mN (m2
N − s)

)

+

(
s

mN
+ 3mN

)
V µ

4 − 2V µ
8

]
, (A.100)

Mµ (3)
(k) =C

(3)
IIIa

(d18 − 2d16) eM2
π

Fπ

[
−V µ

1 +
2mN (2V µ

2 − V µ
3 + V µ

4 − V µ
5 )

m2
N − u

]
, (A.101)

Mµ (3)
(n) =C

(3)
IIIb

egA
4Fπ

[
Q2

(
2(2V µ

6 − V µ
7 )

m2
N − u

−
(
3m2

N + u
)

(2V µ
2 − V µ

3 )

mN (m2
N − u)

)

−
(

u

mN
+ 3mN

)
V µ

4 + 2V µ
8

]
, (A.102)

Mµ (3)
(o) =C

(3)
IV

2
√

2 (d18 − 2d16) emNM
2
π (2V µ

3 − V µ
4 )

Fπ
(
−2m2

N +Q2 + s+ u
) , (A.103)
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Mµ (3)
(l) =C

(3)
IV

egA
F 3
π

[
− 2
√

2l4mNM
2
π (2V µ

3 − V µ
4 )

−2m2
N +Q2 + s+ u

−
√

2l6mN

(
V µ

4

(
−2m2

N + s+ u
)

+ 2Q2V µ
3

)
−2m2

N +Q2 + s+ u

]
, (A.104)

Mµ (3)
(p) =C

(1)
IV

√
2emNgA (2V µ

3 − V µ
4 )

Fπ
(
−2m2

N +Q2 + s+ u
)ξ. (A.105)

The coefficcients C(3)
Ia , · · · , C

(3)
IV are given in Tab. 4.3 and C

(1)
IV in Tab. 4.1 for all

production channels.

O(p5/2) amplitudes

Mµ (5/2)
(a) =DII

ehAgM

24FπmNm∆ (m∆ +mN )
(
m2

∆ − s− iΓ∆m∆

)[{
mN

(
m4
N +m2

N

(
−M2

π +Q2 + 2s
)

+M2
π

(
s−Q2

)
+ s

(
−Q2 + 3s− 6u

))
−m∆

(
3m4

N +m2
N

(
M2
π −Q2 − 10s

)
+M2

π

(
5Q2 − s

)
+ s

(
Q2 + s+ 6u

))}
V µ

1

+
{

2Q2
(
m2
N − 4mNm∆ −M2

π − 5s
)

+ 6 (mNm∆ + s)
(
2m2

N − s− u
)}
V µ

2

+
{
Q2
(
m2
N − 10mNm∆ −M2

π + s
)

+ 3(s− u) (mNm∆ + s)
}
V µ

3

+
{
Q2
(
m2
N − 4mNm∆ −M2

π − 5s
)

+mNm∆

(
2m2

N + 4M2
π − 3(5s+ u)

)
−s
(
6m2

N − 4M2
π + 7s+ 3u

)}
V µ

4

+
{
−m4

N +m∆

(
8m3

N − 4mNM
2
π + 8mNs

)
+Q2

(
−m2

N + 4mNm∆ +M2
π + 5s

)
+m2

N

(
M2
π + 6s

)
+ s

(
−5M2

π + 5s+ 6u
)}
V µ

5

+
{

2mN

(
m2
N −M2

π − 9s
)
− 2m∆

(
9m2

N +M2
π + 2s− 3u

)}
V µ

6

+
{
−m∆

(
3m2

N +M2
π − 4s− 3u

)
+mN

(
m2
N −M2

π + 3s
)

+ 6Q2m∆

}
V µ

7

+
{
m∆

(
−5m2

N − 5M2
π + 2s+ 3u

)
+mN

(
m2
N −M2

π − s
)}
V µ

8

]
, (A.106)
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Mµ (5/2)
(b) =DIII

ehAgM

24FπmNm∆ (m∆ +mN )
(
m2

∆ − u
)[{

mN

(
u
(
2m2

N +M2
π −Q2 − 6s

)
+ (mN −Mπ)(mN +Mπ)

(
m2
N +Q2

)
+ 3u2

)
−m∆

(
3m4

N +m2
N

(
M2
π −Q2 − 10u

)
+M2

π

(
5Q2 − u

)
+ u

(
Q2 + 6s+ u

))}
V µ

1

+
{

2Q2
(
−m2

N + 4mNm∆ +M2
π + 5u

)
− 6

(
2m2

N − s− u
)

(mNm∆ + u)
}
V µ

2

+
{
Q2
(
m2
N − 10mNm∆ −M2

π + u
)
− 3(s− u) (mNm∆ + u)

}
V µ

3

+
{
−2m4

N +Q2
(
−m2

N + 4mNm∆ +M2
π + 5u

)
+ 2m2

N

(
M2
π + 3u

)
+mNm∆

(
18m2

N − 4M2
π − 3s+ u

)
+ 3u

(
−2M2

π + 3s+ u
)}
V µ

4

+
{
m4
N +Q2

(
m2
N − 4mNm∆ −M2

π − 5u
)

+ 4mNm∆

(
−2m2

N +M2
π − 2u

)
−m2

N

(
M2
π + 6u

)
+ u

(
5M2

π − 6s− 5u
)}
V µ

5

+
{

2m∆

(
9m2

N +M2
π − 3s+ 2u

)
+ 2mN

(
−m2

N +M2
π + 9u

)}
V µ

6

+
{
−m∆

(
3m2

N +M2
π − 3s− 4u

)
+mN

(
m2
N −M2

π + 3u
)

+ 6Q2m∆

}
V µ

7

+
{
m∆

(
−5m2

N − 5M2
π + 3s+ 2u

)
+mN

(
m2
N −M2

π − u
)}
V µ

8

]
,
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with Γ∆(s) is the energy-dependent width, Eq. (4.57). The constants DII and DIII

are presented in Table 4.4.

A.2.2 Photoproduction

O(p1) amplitudes

Similarly to the electroproduction amplitudes, pion photoproduction amplitudes are
obtained in the same way but for Q = 0. Therefore, they are written in the basis of
Eq. (3.73) by including the photon polarization vector εµ. We have that the O(p) tree
amplitudes terms are

εµMµ (1)
(a) =C

(1)
I

eg

F
VE (A.108)

εµMµ (1)
(b) =C

(1)
II

eg

F

[(
s−m2

)(
m2

2 − s
)VE +

(mN +m2)(
m2

2 − s
) VEK

]
(A.109)

εµMµ (1)
(c) =C

(1)
III

eg

F

[(
m2
N − u

)(
m2

2 − u
) VE +

2(mN +m2)(
m2

2 − u
) q · εVN +

(mN +m2)(
m2

2 − u
) VEK

]
(A.110)

εµMµ (1)
(d) =C

(1)
IV

eg

F

2
√

2mN

(−2m2 + s+ u)
q · εVN (A.111)

O(p2) amplitudes

Analogously to the electroproduction amplitudes presented above, the relevant am-
plitudes are
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εµMµ (2)
(e) =C

(2)
II

egA
Fπ

[ (
3m2 + s

)
2m (m2 − s)VEK −VE

]
(A.112)

εµMµ (2)
(f) =C

(2)
III

egA
Fπ

[
2

(m2 − u)
q · εVK +

(
3m2 + u

)
2m (m2 − u)

VEK + VE

]
(A.113)

O(p3) amplitudes

The relevant O(p3) tree-level amplitudes in photoproduction are

εµMµ (3)
(i) =C

(3)
Ia

e

Fπ

[
2
(
s−m2

N

)
mN

q · εVN + 4q · εVK + 2(s− u)VE

+
2
(
2m2

N −M2
π + s+ u

)
mN

VEK

]

+C
(3)
Ib

e

4
√

2Fπm2
N

[
2
(
2d212m

2
N − d20

(
m2
N +M2

π − s
))
q · εVK

+
(
M2
π

(
d20(u− s)− 8d168m

2
N

)
+ 2d212m

2
N

(
2m2

N − s− u
))

VE

]
(A.114)

εµMµ (3)
(j) =C

(3)
II

e

Fπ
d168

[
2mNM

2
π

m2
N − s

VEK −M2
πVE

]
(A.115)

εµMµ (3)
(k) =C

(3)
III

e

Fπ
d168

[
4mNM

2
π

m2
N − u

q · εVN +
2mNM

2
π

m2
N − u

VEK +M2
πVE

]
(A.116)

εµMµ (3)
(l) =C

(3)
IV

e

Fπ
d168

4
√

2mNM
2
π(

2m2
N − s− u

)q · εVN (A.117)

where d168 = 2d16 − d18 and d212 = 2d21 − d22.

O(p5/2) amplitudes

The following amplitudes correspond to the ∆ contribution in the photoproduction
process γN −→ πN ′

εµMµ (5/2)
(a) = DII

egMhA
4Fmm∆(m+m∆)

[ (
m2 − s

)
(mm∆ + s)(

−iΓ∆(s)m∆ +m2
∆ − s

)q · εVN

−
(
m2m∆ + 2ms+m∆s

)(
−iΓ∆(s)m∆ +m2

∆ − s
)q · εVK

+

(
m4 − 8m3m∆ −m2

(
M2
π + 6s

)
+ 4mm∆

(
M2
π − 2s

)
+ s

(
5M2

π − 5s− 6u
))

6
(
−iΓ∆(s)m∆ +m2

∆ − s
) VEK

+
1

6
(
−iΓ∆(s)m∆ +m2

∆ − s
){−m5 + 3m4m∆ +m3

(
M2
π − 2s

)
+m2m∆

(
M2
π − 10s

)
−ms

(
M2
π + 3s− 6u

)
+m∆s

(
s+ 6u−M2

π

)}
VE

]
, (A.118)
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εµMµ (5/2)
(b) = DIII

egMhA
4Fmm∆(m+m∆)

[
−
(
m2 − s

)
(mm∆ + u)(

m2
∆ − u

) q · εVN

+

(
−m3 + 6m2m∆ +m

(
M2
π + 3u

)
+m∆

(
M2
π − 3s− u

))
3
(
m2

∆ − u
) q · εVK

+

(
−m4 + 8m3m∆ +m2

(
M2
π + 6u

)
− 4mm∆

(
M2
π − 2u

)
+ u

(
−5M2

π + 6s+ 5u
))

6
(
m2

∆ − u
) VEK

+
1

6
(
m2

∆ − u
){−m5 + 3m4m∆ +m3

(
M2
π − 2u

)
+m2m∆

(
M2
π − 10u

)
−mu

(
M2
π − 6s+ 3u

)
+m∆u

(
6s+ u−M2

π

)}
VE

]
, (A.119)

A.3 One-loop level O(p3) amplitudes

Here, I detail the amplitudes explicitly obtained from the corresponding Feynman
diagrams generated for each topology in Fig. 4.2 and for the four physical channels
γ(∗)p −→ π0p, γ(∗)p −→ π+n, γ(∗)n −→ π−p, γ(∗)n −→ π0n. The expressions
depicted below correspond to the integrand part fµtopo(p, p′, k, q, z) for the particular
amplitude

Mµ (3)
(topo) =

∫
d4z

(2π)4
fµtopo(p, p

′, k, q, z) (A.120)

where topo = {a1, a2, . . . , i3} indicates the specific one-loop Feynman diagram from
Fig. 4.2. z denotes the inner loop momentum [see example from Fig. 4.5 for the
diagram (g7)]. The following integrand expressions are written with the propagators
with the explicit nucleon and pion mass depending on their charge. That is, we
specify the mass for the proton mp, neutron mn, neutral pion M = Mπ0 and the
charged pions Mc = Mπ± as they appear in the loops. This distinction provides us
the isospin breaking effects. As always, in the isospin limit the amplitudes are reduced
by doing mp = mn = m and Mc = M .
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Channel γ(∗)p −→ π0p

Topology Integrand fµtopo(p, p′, k, q, z)

a1 iegAγ
µ.(mp+γ·(p−q)).(γ·q).γ5

4F 3(z2−Mc2)((p−q)2−m2
p)

a2 0

a3 1
2

[
− iegA(−k−2z)µ(γ·(−k−z)−γ·z).(mp+γ·(p−q)).(γ·q).γ5

8F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)

− iegA(k+2z)µ(γ·(k+z)+γ·z).(mp+γ·(p−q)).(γ·q).γ5

8F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)

]
b1 iegA(γ·q).γ5.(γ·(k+p)+mp).γµ

6F 3(z2−Mc2)((k+p)2−m2
p)

b2 0
b3 iegAγ

µ.(mp+γ·(p−q)).(γ·q).γ5

6F 3(z2−Mc2)((p−q)2−m2
p)

b4 0

b5 1
2

[
− iegA(−k−2z)µ(−γ·(−k−z)−2γ·q−γ·z).γ5

12F 3(z2−Mc2)((k+z)2−Mc2)

− iegA(k+2z)µ(−γ·(k+z)−2γ·q+γ·z).γ5

12F 3(z2−Mc2)((k+z)2−Mc2)

]
c1 0
c2 iegA(γ·q).γ5.(γ·(k+p)+mp).γµ

4F 3(z2−Mc2)((k+p)2−m2
p)

c3 1
2

[
− iegA(−k−2z)µ(γ·q).γ5.(γ·(k+p)+mp).(γ·(−k−z)−γ·z)

8F 3(z2−Mc2)((k+p)2−m2
p)((k+z)2−Mc2)

− iegA(k+2z)µ(γ·q).γ5.(γ·(k+p)+mp).(γ·(k+z)+γ·z)
8F 3(z2−Mc2)((k+p)2−m2

p)((k+z)2−Mc2)

]
d1 ieg3

A(γ·z).γ5.(mn+γ·(p′−z)).γµ.γ5.(mp+γ·(p−q)).(γ·q).γ5

4F 3(z2−Mc2)((p−q)2−m2
p)((p′−z)2−m2

n)

d2 − ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

8F 3(z2−M2)((p−q)2−m2
p)((p′−z)2−m2

p)((−k+p′−z)2−m2
p)

d3 ieg3
Aγ

µ.γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

4F 3(z2−Mc2)((p−q)2−m2
p)((p−q−z)2−m2

n)

d4 − ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mp+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

8F 3(z2−M2)((p−q)2−m2
p)((p′−k)2−m2

p)((p−q−z)2−m2
p)

− ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

4F 3(z2−Mc2)((p−q)2−m2
p)((p′−k)2−m2

p)((p−q−z)2−m2
n)

d5 ieg3
A(k+2z)µ(γ·(−k−z)).γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

4F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)((p−q−z)2−m2

n)

e1 − iegA(γ·z).γ5.(mn+γ·(p′−z)).(γ·z−γ·q).(γ·(k+p)+mp).γµ

4F 3(z2−Mc2)((k+p)2−m2
p)((p′−z)2−m2

n)

e2 iegA(γ·z).γ5.(mn+γ·(p′−z)).γµ
4F 3(z2−Mc2)((p′−z)2−m2

n)
e3 0
e4 iegAγ

µ.γ5.(γ·(−k+p′−z)+mn).(γ·z−γ·q)
4F 3(z2−Mc2)((−k+p′−z)2−m2

n)

e5 − iegAγ
µ.(γ·(p′−k)+mp).(γ·z).γ5.(mn+γ·(p−q−z)).(γ·z−γ·q)
4F 3(z2−Mc2)((p′−k)2−m2

p)((p−q−z)2−m2
n)

e6 0
e7 iegA(k+2z)µ(γ·(−k−z)).γ5.(mn+γ·(p−q−z)).(γ·z−γ·q)

4F 3(z2−Mc2)((k+z)2−Mc2)((p−q−z)2−m2
n)

f1 ieg3
A(γ·z).γ5.(mn+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mn).(γ·z).γ5.(γ·(k+p)+mp).γµ

4F 3(z2−Mc2)((k+p)2−m2
p)((k+p−z)2−m2

n)((p′−z)2−m2
n)

− ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mp).(γ·z).γ5.(γ·(k+p)+mp).γµ

8F 3(z2−M2)((k+p)2−m2
p)((k+p−z)2−m2

p)((p′−z)2−m2
p)
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f2 − ieg3
A(γ·z).γ5.(mn+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mn).γµ.γ5

4F 3(z2−Mc2)((k+p−z)2−m2
n)((p′−z)2−m2

n)

f3 − ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mp).γµ.(mp+γ·(p−z)).(γ·z).γ5

8F 3(z2−M2)((p−z)2−m2
p)((k+p−z)2−m2

p)((p′−z)2−m2
p)

f4 0
f5 − ieg3

A(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·q).γ5.(mp+γ·(p−z)).(γ·z).γ5

8F 3(z2−M2)((p−z)2−m2
p)((p′−z)2−m2

p)((−k+p′−z)2−m2
p)

f6 − ieg3
Aγ

µ.γ5.(mn+γ·(p−q−z)).(γ·q).γ5.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((p−z)2−m2
n)((p−q−z)2−m2

n)

f7 ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mn+γ·(p−q−z)).(γ·q).γ5.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((p′−k)2−m2
p)((p−z)2−m2

n)((p−q−z)2−m2
n)

− ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mp+γ·(p−q−z)).(γ·q).γ5.(mp+γ·(p−z)).(γ·z).γ5

8F 3(z2−M2)((p−z)2−m2
p)((p′−k)2−m2

p)((p−q−z)2−m2
p)

f8 0
f9 − ieg3

A(k+2z)µ(γ·(−k−z)).γ5.(mn+γ·(p−q−z)).(γ·q).γ5.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((k+z)2−Mc2)((p−z)2−m2
n)((p−q−z)2−m2

n)

g1 iegA(γ·q+γ·z).(γ·(k+p−z)+mn).(γ·z).γ5.(γ·(k+p)+mp).γµ

4F 3(z2−Mc2)((k+p)2−m2
p)((k+p−z)2−m2

n)

g2 − iegA(γ·q+γ·z).(γ·(k+p−z)+mn).γµ.γ5

4F 3(z2−Mc2)((k+p−z)2−m2
n)

g3 0
g4 − iegAγ

µ.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((p−z)2−m2
n)

g5 iegAγ
µ.(γ·(p′−k)+mp).(γ·q+γ·z).(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((p′−k)2−m2
p)((p−z)2−m2

n)

g6 0
g7 iegA(k+2z)µ(γ·(k+z)+γ·q).(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((−k−z)2−Mc2)((p−z)2−m2
n)

h1 − ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mp).(γ·z).γ5.(γ·(k+p)+mp).γµ

8F 3(z2−M2)((k+p)2−m2
p)((k+p−z)2−m2

p)((p′+q)2−m2
p)

− ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mn).(γ·z).γ5.(γ·(k+p)+mp).γµ

4F 3(z2−Mc2)((k+p)2−m2
p)((p′+q)2−m2

p)((k+p−z)2−m2
n)

h2 ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mn).γµ.γ5

4F 3(z2−Mc2)((p′+q)2−m2
p)((k+p−z)2−m2

n)

h3 − ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mp).γµ.(mp+γ·(p−z)).(γ·z).γ5

8F 3(z2−M2)((p−z)2−m2
p)((k+p−z)2−m2

p)((p′+q)2−m2
p)

h4 ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).γµ.γ5.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((p−z)2−m2
n)((p′+q)2−m2

p)

h5 ieg3
A(k+2z)µ(γ·q).γ5.(mp+γ·(p′+q)).(γ·(−k−z)).γ5.(mn+γ·(p−z)).(γ·z).γ5

4F 3(z2−Mc2)((k+z)2−Mc2)((p−z)2−m2
n)((p′+q)2−m2

p)
i1 0

i2 iegA
2

[
(−k−2z)µ(γ·(q−k)).γ5(2((k−q)·q)+2((−k−z)·z)+M2−Q2)

6F 3(z2−Mc2)((k−q)2−M2)((k+z)2−Mc2)

+
(k+2z)µ(γ·(q−k)).γ5(2((k−q)·q)−2(z·(k+z))+M2+Q2)

6F 3(z2−Mc2)((k−q)2−M2)((k+z)2−Mc2)

]
i3 0
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Channel γ(∗)p −→ π+n

Topology Integrand fµtopo(p, p′, k, q, z)

a1 − iegAγ
µ.(mn+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
n)

a2 0

a3 1
2

[
iegA(−k−2z)µ(γ·(−k−z)−γ·z).(mn+γ·(p−q)).(γ·q).γ5

4
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
n)

+ iegA(k+2z)µ(γ·(k+z)+γ·z).(mn+γ·(p−q)).(γ·q).γ5

4
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
n)

]
b1 iegA(γ·q).γ5.(γ·(k+p)+mp).γµ

6
√

2F 3(z2−M2)((k+p)2−m2
p)

−
iegA

(
−(γ·q)−γ·z

6
√

2
− γ·z

3
√

2

)
.γ5.(γ·(k+p)+mp).γµ

2F 3(z2−Mc2)((k+p)2−m2
p)

−
iegA

(
γ·z−γ·q

6
√

2
+ γ·z

3
√

2

)
.γ5.(γ·(k+p)+mp).γµ

2F 3(z2−Mc2)((k+p)2−m2
p)

b2 − iegAγ
µ.γ5

6
√

2F 3(z2−M2)
− i

√
2egAγ

µ.γ5

3F 3(z2−Mc2)

b3 0

b4 − iegA(2q−k)µ(γ·(k−q)).γ5

6
√

2F 3(z2−M2)((k−q)2−Mc2)
−

iegA(2q−k)µ
(
γ·(k−q)−γ·z

6
√

2
− γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k−q)2−Mc2)

−
iegA(2q−k)µ

(
γ·(k−q)+γ·z

6
√

2
+ γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k−q)2−Mc2)

b5 −
iegA(−k−2z)µ

(
γ·(k+z)−γ·q

6
√

2
+ γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k+z)2−Mc2)
−

iegA(k+2z)µ
(
γ·(−k−z)−γ·q

6
√

2
− γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k+z)2−Mc2)

c1 0
c2 iegA(γ·q).γ5.(γ·(k+p)+mp).γµ

2
√

2F 3(z2−Mc2)((k+p)2−m2
p)

c3 − iegA(−k−2z)µ(γ·q).γ5.(γ·(k+p)+mp).(γ·(−k−z)−γ·z)
8
√

2F 3(z2−Mc2)((k+p)2−m2
p)((k+z)2−Mc2)

− iegA(k+2z)µ(γ·q).γ5.(γ·(k+p)+mp).(γ·(k+z)+γ·z)
8
√

2F 3(z2−Mc2)((k+p)2−m2
p)((k+z)2−Mc2)

d1 − ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).γµ.γ5.(mn+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
n)((p′−z)2−m2

p)

d2 − ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·z).γ5.(mn+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
n)((p′−z)2−m2

p)((−k+p′−z)2−m2
p)

d3 − ieg3
Aγ

µ.γ5.(mp+γ·(p−q−z)).(γ·z).γ5.(mn+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
n)((p−q−z)2−m2

p)
d4 0
d5 ieg3

A(−k−2z)µ(γ·(−k−z)).γ5.(mp+γ·(p−q−z)).(γ·z).γ5.(mn+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
n)((p−q−z)2−m2

p)

e1 iegA(γ·z).γ5.(mn+γ·(p′−z)).(γ·q−γ·z).(γ·(k+p)+mp).γµ

4
√

2F 3(z2−M2)((k+p)2−m2
p)((p′−z)2−m2

n)

+
iegA(γ·z).γ5.(mp+γ·(p′−z)).(γ·q−γ·z).(γ·(k+p)+mp).γµ

4
√

2F 3(z2−Mc2)((k+p)2−m2
p)((p′−z)2−m2

p)

e2 − iegA(γ·z).γ5.(mn+γ·(p′−z)).γµ
4
√

2F 3(z2−M2)((p′−z)2−m2
n)
− iegA(γ·z).γ5.(mp+γ·(p′−z)).γµ

2
√

2F 3(z2−Mc2)((p′−z)2−m2
p)

e3 iegA(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·q−γ·z)
4
√

2F 3(z2−Mc2)((p′−z)2−m2
p)((−k+p′−z)2−m2

p)

e4 iegAγ
µ.γ5.(γ·(−k+p′−z)+mp).(γ·q−γ·z)

4
√

2F 3(z2−Mc2)((−k+p′−z)2−m2
p)

e5 0
e6 iegA(2q−k)µ(γ·z).γ5.(mn+γ·(p′−z)).(γ·(q−k)−γ·z)

4
√

2F 3(z2−M2)((k−q)2−Mc2)((p′−z)2−m2
n)

+
iegA(2q−k)µ(γ·z).γ5.(mp+γ·(p′−z)).(γ·(q−k)−γ·z)

4
√

2F 3(z2−Mc2)((k−q)2−Mc2)((p′−z)2−m2
p)

e7 − iegA(−k−2z)µ(γ·(−k−z)).γ5.(mp+γ·(p−q−z)).(γ·q−γ·z)
4
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q−z)2−m2
p)
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f1 ieg3
A(γ·z).γ5.(mn+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mp).(γ·z).γ5.(γ·(k+p)+mp).γµ

4
√

2F 3(z2−M2)((k+p)2−m2
p)((k+p−z)2−m2

p)((p′−z)2−m2
n)

f2 0
f3 ieg3

A(γ·z).γ5.(mn+γ·(p′−z)).(γ·q).γ5.(γ·(k+p−z)+mp).γµ.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
p)((k+p−z)2−m2

p)((p′−z)2−m2
n)

f4 − ieg3
A(γ·z).γ5.(mn+γ·(p′−z)).γµ.γ5.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
p)((p′−z)2−m2

n)
f5 0
f6 0
f7 0
f8 ieg3

A(2q−k)µ(γ·z).γ5.(mn+γ·(p′−z)).(γ·(q−k)).γ5.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((k−q)2−Mc2)((p−z)2−m2
p)((p′−z)2−m2

n)
f9 0
g1 iegA(γ·q+γ·z).(γ·(k+p−z)+mp).(γ·z).γ5.(γ·(k+p)+mp).γµ

4
√

2F 3(z2−M2)((k+p)2−m2
p)((k+p−z)2−m2

p)

+
iegA(γ·q+γ·z).(γ·(k+p−z)+mn).(γ·z).γ5.(γ·(k+p)+mp).γµ

4
√

2F 3(z2−Mc2)((k+p)2−m2
p)((k+p−z)2−m2

n)

g2 − iegA(γ·q+γ·z).(γ·(k+p−z)+mn).γµ.γ5

4
√

2F 3(z2−Mc2)((k+p−z)2−m2
n)

g3 iegA(γ·q+γ·z).(γ·(k+p−z)+mp).γµ.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
p)((k+p−z)2−m2

p)

g4 − iegAγ
µ.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
p)
− iegAγ

µ.(mn+γ·(p−z)).(γ·z).γ5

2
√

2F 3(z2−Mc2)((p−z)2−m2
n)

g5 0
g6 iegA(2q−k)µ(γ·(q−k)+γ·z).(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((k−q)2−Mc2)((p−z)2−m2
p)

+ iegA(2q−k)µ(γ·(q−k)+γ·z).(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−Mc2)((k−q)2−Mc2)((p−z)2−m2
n)

g7 iegA(k+2z)µ(γ·(k+z)+γ·q).(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−Mc2)((−k−z)2−Mc2)((p−z)2−m2
n)

h1 − ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mp).(γ·z).γ5.(γ·(k+p)+mp).γµ

4
√

2F 3(z2−M2)((k+p)2−m2
p)((k+p−z)2−m2

p)((p′+q)2−m2
p)

− ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mn).(γ·z).γ5.(γ·(k+p)+mp).γµ

2
√

2F 3(z2−Mc2)((k+p)2−m2
p)((p′+q)2−m2

p)((k+p−z)2−m2
n)

h2 ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mn).γµ.γ5

2
√

2F 3(z2−Mc2)((p′+q)2−m2
p)((k+p−z)2−m2

n)

h3 − ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).(γ·z).γ5.(γ·(k+p−z)+mp).γµ.(mp+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
p)((k+p−z)2−m2

p)((p′+q)2−m2
p)

h4 ieg3
A(γ·q).γ5.(mp+γ·(p′+q)).γµ.γ5.(mn+γ·(p−z)).(γ·z).γ5

2
√

2F 3(z2−Mc2)((p−z)2−m2
n)((p′+q)2−m2

p)

h5 ieg3
A(k+2z)µ(γ·q).γ5.(mp+γ·(p′+q)).(γ·(−k−z)).γ5.(mn+γ·(p−z)).(γ·z).γ5

2
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−z)2−m2
n)((p′+q)2−m2

p)

i1 − i
√

2egA(k−2q)µ(γ·(q−k)).γ5

6F 3(z2−M2)((k−q)2−Mc2)
− i
√

2egA(k−2q−2z)µ(γ·(q−k)).γ5

3F 3(z2−Mc2)((k−q)2−Mc2)

− i
√

2egA(k−2q+2z)µ(γ·(q−k)).γ5

3F 3(z2−Mc2)((k−q)2−Mc2)

i2 iegA(k+2z)µ(γ·(q−k)).γ5(−2((k−q)·(−k−z))+(−q−z)·(q+z)+2M2−2(q·z))
6
√

2F 3(z2−Mc2)((k−q)2−Mc2)((k+z)2−Mc2)

+
iegA(−k−2z)µ(γ·(q−k)).γ5(−2((k−q)·(k+z))+(q−z)·(2k−q+z)+2M2+2(q·z))

6
√

2F 3(z2−Mc2)((k−q)2−Mc2)((k+z)2−Mc2)

i3 iegA(2q−k)µ(γ·(q−k)).γ5(2((k−q)·z)−2((q−k)·z)+(k−q−z)·(−k+q+z)+2M2)
6
√

2F 3(z2−Mc2)((k−q)2−Mc2)2

+
iegA(2q−k)µ(γ·(q−k)).γ5(−2((k−q)·z)+2((q−k)·z)+(−k+q−z)·(k−q+z)+2M2)

6
√

2F 3(z2−Mc2)((k−q)2−Mc2)2

+
iegA(2q−k)µ(γ·(q−k)).γ5(2((k−q)·(q−k))+M2−2z)

6
√

2F 3(z2−M2)((k−q)2−Mc2)2
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Channel γ(∗)n −→ π−p

Topology Integrand fµtopo(p, p′, k, q, z)

a1 iegAγ
µ.(mp+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
p)

a2 0
a3 − iegA(−k−2z)µ(γ·(−k−z)−γ·z).(mp+γ·(p−q)).(γ·q).γ5

8
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)

− iegA(k+2z)µ(γ·(k+z)+γ·z).(mp+γ·(p−q)).(γ·q).γ5

8
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)

b1 0
b2 iegAγ

µ.γ5

6
√

2F 3(z2−M2)
+ i

√
2egAγ

µ.γ5

3F 3(z2−Mc2)

b3 iegAγ
µ.(mp+γ·(p−q)).(γ·q).γ5

6
√

2F 3(z2−M2)((p−q)2−m2
p)

−
iegAγ

µ.(mp+γ·(p−q)).
(
−(γ·q)−γ·z

6
√

2
− γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((p−q)2−m2
p)

−
iegAγ

µ.(mp+γ·(p−q)).
(
γ·z−γ·q

6
√

2
+ γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((p−q)2−m2
p)

b4 − iegA(k−2q)µ(γ·(k−q)).γ5

6
√

2F 3(z2−M2)((k−q)2−Mc2)

−
iegA(k−2q)µ

(
γ·(k−q)−γ·z

6
√

2
− γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k−q)2−Mc2)

−
iegA(k−2q)µ

(
γ·(k−q)+γ·z

6
√

2
+ γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k−q)2−Mc2)

b5 −
iegA(−k−2z)µ

(
γ·(−k−z)−γ·q

6
√

2
− γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k+z)2−Mc2)
−

iegA(k+2z)µ
(
γ·(k+z)−γ·q

6
√

2
+ γ·z

3
√

2

)
.γ5

2F 3(z2−Mc2)((k+z)2−Mc2)

c1 0
c2 − iegA(γ·q).γ5.(γ·(k+p)+mn).γµ

2
√

2F 3(z2−Mc2)((k+p)2−m2
n)

c3 iegA(−k−2z)µ(γ·q).γ5.(γ·(k+p)+mn).(γ·(−k−z)−γ·z)
8
√

2F 3(z2−Mc2)((k+z)2−Mc2)((k+p)2−m2
n)

+ iegA(k+2z)µ(γ·q).γ5.(γ·(k+p)+mn).(γ·(k+z)+γ·z)
8
√

2F 3(z2−Mc2)((k+z)2−Mc2)((k+p)2−m2
n)

d1 ieg3
A(γ·z).γ5.(mn+γ·(p′−z)).γµ.γ5.(mp+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
p)((p′−z)2−m2

n)

d2 − ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

4
√

2F 3(z2−M2)((p−q)2−m2
p)((p′−z)2−m2

p)((−k+p′−z)2−m2
p)

d3 ieg3
Aγ

µ.γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
p)((p−q−z)2−m2

n)

d4 − ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mp+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

4
√

2F 3(z2−M2)((p−q)2−m2
p)((p′−k)2−m2

p)((p−q−z)2−m2
p)

− ieg3
Aγ

µ.(γ·(p′−k)+mp).(γ·z).γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((p−q)2−m2
p)((p′−k)2−m2

p)((p−q−z)2−m2
n)

d5 ieg3
A(k+2z)µ(γ·(−k−z)).γ5.(mn+γ·(p−q−z)).(γ·z).γ5.(mp+γ·(p−q)).(γ·q).γ5

2
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q)2−m2
p)((p−q−z)2−m2

n)

e1 0
e2 iegA(γ·z).γ5.(mp+γ·(p′−z)).γµ

4
√

2F 3(z2−M2)((p′−z)2−m2
p)

+ iegA(γ·z).γ5.(mn+γ·(p′−z)).γµ
2
√

2F 3(z2−Mc2)((p′−z)2−m2
n)

e3 − iegA(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·z−γ·q)
4
√

2F 3(z2−M2)((p′−z)2−m2
p)((−k+p′−z)2−m2

p)

e4 iegAγ
µ.γ5.(γ·(−k+p′−z)+mn).(γ·z−γ·q)

4
√

2F 3(z2−Mc2)((−k+p′−z)2−m2
n)

e5 − iegAγ
µ.(γ·(p′−k)+mp).(γ·z).γ5.(mp+γ·(p−q−z)).(γ·z−γ·q)
4
√

2F 3(z2−M2)((p′−k)2−m2
p)((p−q−z)2−m2

p)

− iegAγ
µ.(γ·(p′−k)+mp).(γ·z).γ5.(mn+γ·(p−q−z)).(γ·z−γ·q)
4
√

2F 3(z2−Mc2)((p′−k)2−m2
p)((p−q−z)2−m2

n)

e6 − iegA(k−2q)µ(γ·z).γ5.(mp+γ·(p′−z)).(γ·(k−q)+γ·z)
4
√

2F 3(z2−M2)((k−q)2−Mc2)((p′−z)2−m2
p)

− iegA(k−2q)µ(γ·z).γ5.(mn+γ·(p′−z)).(γ·(k−q)+γ·z)
4
√

2F 3(z2−Mc2)((k−q)2−Mc2)((p′−z)2−m2
n)



A.3. One-loop level O(p3) amplitudes 171

e7 iegA(k+2z)µ(γ·(−k−z)).γ5.(mn+γ·(p−q−z)).(γ·z−γ·q)
4
√

2F 3(z2−Mc2)((k+z)2−Mc2)((p−q−z)2−m2
n)

f1 0
f2 0
f3 0
f4 ieg3

A(γ·z).γ5.(mp+γ·(p′−z)).γµ.γ5.(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
n)((p′−z)2−m2

p)

f5 ieg3
A(γ·z).γ5.(mp+γ·(p′−z)).γµ.(γ·(−k+p′−z)+mp).(γ·q).γ5.(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p−z)2−m2
n)((p′−z)2−m2

p)((−k+p′−z)2−m2
p)

f6 0
f7 ieg3

Aγ
µ.(γ·(p′−k)+mp).(γ·z).γ5.(mp+γ·(p−q−z)).(γ·q).γ5.(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((p′−k)2−m2
p)((p−z)2−m2

n)((p−q−z)2−m2
p)

f8 ieg3
A(k−2q)µ(γ·z).γ5.(mp+γ·(p′−z)).(γ·(q−k)).γ5.(mn+γ·(p−z)).(γ·z).γ5

4
√

2F 3(z2−M2)((k−q)2−Mc2)((p−z)2−m2
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Channel γ(∗)n −→ π0n

Topology Integrand fµtopo(p, p′, k, q, z)
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Appendix B

Power counting breaking terms for
loop amplitudes

In the EOMS regularization scheme, the power counting breaking terms extracted in
the O(p3) one-loop amplitudes are given explicitly below for each reaction channel.
As shown in Eq. (4.96), the PCBT derived from the O(p) and O(p2) tree amplitudes
are denoted by PCBT1 and PCBT2 respectively. The expressions are expanded in
the Ball parametrization for electro- and photoproduction amplitudes of Eqs. (3.14),
(3.74).

B.1 PCBT for pion electroproduction on nucleons

γ∗ + p −→ π0 + p channel
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γ∗ + p −→ π+ + n channel
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γ∗ + n −→ π− + p channel
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γ + n −→ π− + p channel
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Appendix C

Chiral expansions for physical
quantities

In the evaluation of the third order amplitudes in the chiral expansion as detailed
in Secs. 4.3, 4.3.2, we have used the following relevant expansions of the physical
parameters within the M̃S-EOMS renormalized ChPT.

C.1 Nucleon mass mN

For the nucleon mass, mN , we have in the EOMS scheme that [14,25]

mN =m̃− 4c̃1M
2
π + δ̃(3)

m +O
(
p4
)
, (C.1)

m̃2 =m̃− 4c̃1M
2
π = mN − δ̃(3)

m +O
(
p4
)
, (C.2)

with
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. (C.3)

C.2 Pion mass Mπ

The pion the physical mass is expanded in terms of the chiral limit pion mass M and
the O(p4) low-energy constant lr3. In the M̃S renomalization scheme, [25,53]

M2
π =M2

(
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(C.4)
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32π2F 2
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(C.5)

C.3 Axial coupling constant gA

For the axial coupling constant, we have in the EOMS regularized scheme [14,25]

gA =g̃

(
1 +

4dr16M
2
π

g̃
+ δ̃(2)

gA

)
+O(p4) (C.6)



182 Appendix C. Chiral expansions for physical quantities
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(C.7)

C.4 Pion decay constant Fπ

For the physical pion decay constant, the contributing terms in the chiral expansion
up to O(p4) and with one-loop contributions are written as follows [25,53]

Fπ =F
(

1 + δ
(2)
Fπ

+O(p4)
)
, (C.8)
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16π2F 2
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. (C.9)

Here the lr4 and dr16 are the corresponding M̃S-renormalized LECs at O(p4).
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Appendix D

Multipole decomposition

The pion photoproduction amplitude in terms of the CGLN basis, Fi, (3.28) can be
expanded in terms of multipoles as

F1 =
∞∑
l=0

[
lM+

l + E+
l

]
P ′l+1(x) +
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l=2

[
(l + 1)M−l + E−l

]
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l + lM l
l

]
P ′
l(x),
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P ′′
l+1(x) +

∞∑
l=3
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[
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l −M−l − E−l
]
P ′′
l (x),

(D.1)

where x = cos θπ indicates the pion production angle in center of mass frame, the
functions Pn(x) are the Lengendre polynomials for angular momentum n, whilstM±n
and E±n are the corresponding multipole functions.

For angular momenta values up to l = 1 in the expansion, the elementary photo-
production amplitude in Eq. (6.11) is reduced to

F = i~σ · ~ελ
(
E0+ + k̂ · q̂P1

)
+ i
(
~σ · k̂ ~ελ · q̂

)
P2 +

(
q̂ × k̂ · ~ελ

)
P3, (D.2)

where the multipole E0+ correspond to the s-wave amplitude (l = 0) and the terms
P1, P2 and P3 are the p-wave contributions (l = 1) defined as

P1 =3E1+ +M1+ −M1−, (D.3)
P2 =3E1+ −M1+ +M1−, (D.4)
P3 =2M1+ +M1−. (D.5)

As discussed in Chapter. 6, the photoproduction amplitude can be generally sepa-
rated into spin-dependent and independent terms F = i~σ· ~K+L, as given in Eq. (6.12).
Particularly, in the above multipolar expansion up to l = 1, we have that

~K = ~ελ

(
E0+ + k̂ · q̂P1

)
+ k̂ (~ελ · q̂) P2 , (D.6)

L = q̂ × k̂ · ~ελ P3 . (D.7)
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Also, the expressions for the multipole functions Ml± and El± in terms of the
amplitudes Fi are useful. These are extracted from (D.1) having
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(D.8)
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Appendix E

Nuclear form factors

Here are shown the expressions of the relevant form factors in the 12C(γ, π0) reaction
studied in Chapter 6. The matter form factor used in the coherent transitions is given
in the momentum space by the Fourier transform

F (Q) = 〈Ψf | ei ~Q·~r |Ψi〉 =

∫
d3rρ(~r)ei

~Q·~r (E.1)

where considering Ψ = Ψi(f) the ground state function of the 12C nucleus, ρ(~r) =
Ψ∗(~r)Ψ(~r) is the nuclear density normalized to 1 (F (0) = 1). The vector ~r is the
nucleon coordinate in the nuclear c.m. frame. In this work we adopt the closed-form
expression for F (Q) [161]

F (Q) = FPh(Q)Fc.m.(Q) (E.2)

where

Fc.m.(Q
2) = exp

[
R2Q

2

6A

]
(E.3)

is a transform function to the c.m. nuclear frame, since the nuclear density is calcu-
lated as a function of different coordinates. Assuming a symmetrized Fermi density,
FPh(Q) is a phenomenological function given by

FPh(Q) =− 3πb (cos[Qc]− πb sin[Qc] coth[πbQ]/c)

Qc2 sinh[πbQ] (1 + π2b2/c2)
(E.4)

with the parameters b and c fitted to the 12C(e, e′) data [184]. The values of these
parameters are shown in Tab. E.1

Table E.1: Symmetrized Fermi-density parameters for the 12C nuclei

b c R
0.478 2.220 2.462

In the incoherent 12C(γ, π0) cross section of Eq. (6.26), the transition form factor
for the 2+ (4.4 MeV) final state is given by the model in Ref. [155] as follows

F2(Q) = Nye−yey/A, (E.5)
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where y = (Qbx/2)2, bx = 1.76 fm is the oscillator parameter [185], ey/A is the c.m.
correction factor, and N = 0.345 is a renormalization constant fitted to the electron-
scattering data [155].
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