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Chapter 1

Introduction

1.1 Neutrino nucleon and neutrino-nucleus

interactions

In 1930, Wolfgang Pauli postulated a neutral and undetected particle
in order to explain how beta decay could conserve energy, momentum
and angular momentum (spin) [1]. In 1956, Clyde Cowan, Frederick
Reines, F.B. Harrison, H.W. Kruse and A.D. McGuire published the
confirmation that they had detected the neutrinos through the inverse
beta decay [2]. Since then, we have learned much about this elusive
particle, which only interacts weakly with matter. There are at least
three different flavor neutrinos, all of them chargeless and with spin
1/2.

Recently, it has been observed that neutrinos can change their flavor
and have non-zero masses, which is in contrast to the predictions of the
Standard Model of particle physics. To address these questions, there
have been, are currently running, and are planned for the short future,
several experiments disseminated around the world, aimed at obtaining
a precise determination of the mass-squared differences and the flavor-
mixing angles. Neutrino beams are not monochromatic, and the ability
to reconstruct the neutrino energy is crucial in all these studies. Taking
as an example the T2K experiment [3], the probability for electron
neutrino appearance, from a muon neutrino beam with energy Eν ∼ 1
GeV propagating over a baseline L ∼ 300 km, is dominated by the

1



2 CHAPTER 1. INTRODUCTION

term

Pνµ→νe ≈ sin2θ23sin
22θ13sin

2∆m
2
32L

4Eν

(1.1)

depending on the neutrino energy Eν , which is not known for broad
fluxes, and on the oscillation parameters θ23, θ13 and ∆m2

32. A reli-
able determination of the neutrino energies in nuclear targets requires
a good understanding of the reaction mechanisms and a precise sim-
ulation of final state interactions. There are also irreducible back-
grounds, for example from neutral current π0 or γ production when
these particles produce showers that are misidentified as electrons from
νen→ e−p.

Besides the neutrino oscillation, neutrino interactions also play an
important role in:

• Astrophysical phenomena In particular, the dynamics of core-
collapse supernovae is controlled by neutrino interactions. The
neutron rich environment of supernovae is a candidate site for
r-process nucleosynthesis [4] because radiated neutrinos convert
neutrons into protons. To address these questions a good knowl-
edge of low energy neutrino production and detection cross sec-
tions is also required.

• Physics beyond the Standard Model Non-standard neutrino in-
teractions leading, for example, to deviations from universality
in the weak couplings or flavor violation in neutral current pro-
cesses could affect neutrino production, propagation, and detec-
tion processes as sub-leading effects (see Ref. [5] for a recent re-
view). Long and short baseline experiments allow to set bounds
on these interactions.

• Hadronic physics Neutrino cross section measurements allow to
investigate the axial structure of the nucleon and baryon reso-
nances, enlarging our views of hadron structure beyond what
is presently known from experiments with hadronic and electro-
magnetic probes, not forgetting about lattice QCD. Another fun-
damental and open question is the strangeness content of the
nucleon spin which can be best unraveled in νp(n) → νp(n) stud-
ies.
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• Nuclear physics Modern neutrino experiments are performed with
nuclear targets. For nuclear physics this represents a challenge
and an opportunity. A challenge because the precise knowledge
of neutrino and baryon properties can only be achieved if nuclear
effects are under control. An opportunity because neutrino cross
sections incorporate richer information than electron-scattering
ones, providing an excellent testing ground for nuclear structure,
many-body mechanisms and reaction models.

As we know, neutrinos only interact with matter through weak in-
teractions, and the cross sections are tiny, so it is very challenging to
detect the neutrino. To increase the neutrino cross section, the tar-
gets often contain a large atomic mass number (A) nucleus. Neutrino-
nuclear interactions readily separate into three distinct topical areas
that can be classified as low, medium, and high energy. At low energy,
O (MeV), the wavelength scale of the interaction is greater than the
nuclear diameter so that the initial and final states are specific nuclear
levels. These are the interactions of greatest interest to solar and re-
actor neutrino oscillation experiments. In the medium-energy regime,
O (1 GeV), which will be studied in this thesis, the interaction length
is hadronic ∼ (1 fm), and the interactions are strongly modified by
nuclear effects. These are the interactions of greatest interest to at-
mospheric and accelerator-based neutrino oscillation experiments. At
high energies, O (100 GeV), the scale for deep-inelastic scattering (DIS)
becomes partonic (∼ 0.1 fm), and nuclear effects, although present, are
less significant.

In the medium-energy regime, particles produced in neutrino inter-
actions can re-interact before leaving the nucleus and can be absorbed,
change their kinematics or even change charge before being detected.
Nuclear re-interactions limit our ability to identify the reaction chan-
nel and they change the topology of the measured hadronic final state.
Consequently, the detected rates on nuclei are changed significantly
compared to the ones on free nucleons.

Our present knowledge of neutrino-nucleus interactions has been
significantly improved by a new generation of oscillation and cross
section experiments. Quasielastic (QE) scattering measurements have
been published by MiniBooNE [6–8] at neutrino energies Eν ∼ 1 GeV,
by MINERνA [9, 10] at Eν ∼ 3.5 GeV and by NOMAD at high (3-
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100 GeV) energies [11]. Detailed single pion production data have
become available from MiniBooNE [12–14] for different reaction chan-
nels including the coherent one, which has also been studied by Sci-
BooNE [15, 16] at Eν ∼ 1 GeV and NOMAD [17]. Finally, new
inclusive cross section results have been reported by T2K [18], Sci-
BooNE [19], MINOS [20] and NOMAD [21] Collaborations. These
results challenge our understanding of neutrino interactions with mat-
ter and have triggered a renewed theoretical interest [22]. Quasielas-
tic scattering has been investigated with a local Fermi gas [23–26],
realistic spectral functions [27, 28], different models to describe the
interaction of the knocked-out nucleon with the residual nucleus [29–
31] and using the information from electron scattering data encoded
in the scaling function [32]. The importance of two-nucleon contri-
butions for the proper understanding of QE-like and inclusive cross
sections has emerged in different studies [26, 33, 34], and their impact
in the kinematic neutrino-energy reconstruction has been stressed [35–
37]. Incoherent pion production has also been scrutinized using micro-
scopic models for the reaction mechanism on the nucleon [38–43], with
special attention paid to pion final state interactions in nuclei [43–47].
New microscopic models have been developed for coherent pion produc-
tion [48–52] while traditional ones, based on the partial conservation
of the axial current (PCAC), have been updated [53–56].

One of the possible reaction channels is photon emission induced by
neutral current (NC) interactions (NCγ), which can occur on single nu-
cleons and on nuclear targets. Weak photon emission has a small cross
section compared, for example, with pion production, the most impor-
tant inelastic mechanism. In spite of this, NC photon emission turns
out to be one of the largest backgrounds in νµ → νe (ν̄µ → ν̄e) oscilla-
tion experiments where electromagnetic showers instigated by electrons
(positrons) and photons are not distinguishable. Thus, NC events pro-
ducing single photons become an irreducible background to the charge-
current (CC) QE signatures of νe (ν̄e) appearance. This is precisely the
case of the MiniBooNE experiment that was designed to test an earlier
indication of a ν̄µ → ν̄e oscillation signal observed at LSND [57, 58].
The MiniBooNE experiment finds an excess of events with respect to
the predicted background in both ν and ν̄ modes. In the ν̄ mode, the
data are found to be consistent with ν̄µ → ν̄e oscillations and have



1.2. HADRON RESONANCES 5

some overlap with the LSND result [59]. MiniBooNE data for νe ap-
pearance in the νµ mode show a clear (3σ) excess of signal-like events
at low reconstructed neutrino energies (200 < EQE

ν < 475 MeV) [59–
61]. However, the EQE

ν distribution of the events is only marginally
compatible with a simple two-neutrino oscillation model [59]. While
several exotic explanations for this excess have been proposed, it could
be related to unknown systematics or poorly understood backgrounds
in the experimental analysis. In a similar way, NCγ is a source of
misidentified electron-like events in the νe appearance measurements at
T2K [62]. Even if the NCγ contribution to the background is relatively
small, it can be critical in measurements of the CP-violating phase. It
is therefore very important to have a robust theoretical understanding
of the NC photon emission reaction, which cannot be unambiguously
constrained by data. The study of the NCγ processes relevant for the
MiniBooNE and T2K experiments is the first objective of the present
thesis.

1.2 Hadron resonances

1.2.1 Meson resonances and SU(6) spin–flavor sym-
metry

Chiral symmetry and its pattern of spontaneous and explicit breaking
plays a major role when dealing with most hadron processes involv-
ing pions and kaons (Goldstone bosons). Chiral Perturbation Theory
(ChPT) [63], provides a model independent scheme where a multitude
of low-energy nonperturbative strong-interaction phenomena can be
understood. It has been successfully applied to study different pro-
cesses, both in the meson-meson and in the meson-baryon sectors, in-
volving light (u and d) or strange (s) quarks. However, by construc-
tion, ChPT is only valid at low energies, and it cannot describe the
nature of hadron resonances. In recent years, it has been shown that
by unitarizing the ChPT amplitudes, one can greatly extend the re-
gion of applicability of ChPT. This approach, is referred as unitary
chiral perturbation theory (UChPT) [64, 65], and it has received much
attention and provided many interesting results. In particular, many
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meson-meson and meson-baryon resonances and bound states appear
naturally within UChPT. These states are then interpreted as having
a “dynamical nature”. In other words, they are not genuine qq̄ or qqq
states, but are mainly built out of their meson-meson or meson-baryon
components.

Heavy Quark Spin Symmetry (HQSS) is a proper QCD spin-flavor
symmetry [66, 67] when the quark masses become much larger than
the typical confinement scale, ΛQCD. HQSS predicts that all types of
spin interactions vanish for infinitely massive quarks: the dynamics is
unchanged under arbitrary transformations of the heavy quark spin.
Consequently, the spin of the light degrees of freedom ~Sl = ~J − ~SQ

is conserved in that limit. Thus, heavy hadrons come in doublets
(unless sl = 0, with ~S2

l = sl(sl + 1)) containing states with total spin
j± = sl ± 1/2 obtained by combining the spin of the light degrees of
freedom with the spin of the heavy quark sQ = 1/2. These doublets
are degenerated in the mQ → ∞ limit. For finite charm quark mass,
there exist corrections, but the symmetry is still quite accurate.

In the Chapter 6, we will work within a model proposed in [68],
where SU(6) spin-flavor symmetry is invoked to extend the SU(3) fla-
vor UChPT framework of Refs. [64, 65] to include the dynamics of
the low lying vector mesons belonging to the ρ-nonet. The approxi-
mate spin-flavor symmetry scheme of Ref. [68] provides a unified frame-
work to deal with the lowest-lying mesons, implementing the required
symmetry-breaking patterns and, in particular, fulfilling low-energy
theorems derived from chiral symmetry. This scheme is of special rel-
evance, because if it is extended to include heavier quark flavors, the
approximate QCD HQSS will also be naturally accommodated in this
spin-flavor approach through a suitable flavor-breaking pattern.

We will derive an extension of the model of Ref. [68] aiming to bet-
ter accommodate the abundant existing phenomenology in the SU(3)
flavor sector, particularly in what concerns to the vector meson–vector
meson interaction. We will study the S-wave interaction of two mem-
bers of the 35 (π-octet + ρ-nonet) SU(6) multiplet by means of an
enlarged Weinberg-Tomozawa meson Lagrangian to accommodate vec-
tor mesons. We will firstly recover most of the results published in
Ref. [68], where most of the low-lying even-parity meson resonances,
especially in the spin-parity 0+ and 1+ sectors were dynamically gener-
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ated and classified according to multiplets of the spin-flavor symmetry
group SU(6). Next, we will re-examine the pattern of spin symme-
try breaking advocated in Ref. [68] and propose two new symmetry
breaking terms. Such terms neither affect the interaction of Nambu-
Goldstone bosons between themselves, nor the interaction with vector
mesons, but however they could improve the spin-parity 2+ sector of
the model of Ref. [68]. Indeed, the model used in Ref. [68] for the vector
meson–vector meson interaction does not provide a satisfactory descrip-
tion of the main features of the 2+ f2(1270), K2(1430) and a2(1320)
resonances, which existence is experimentally well established. With
the inclusion of these new terms, we find a much better description of
these unstable mesons, without disturbing the results obtained in the
spin-parity 0+ and 1+ sectors.

1.2.2 Baryon resonances: an effective Lagrangian
approach

The baryon spectrum and baryon couplings studied from experimental
data are two of the most important issues in hadronic physics and they
are attracting great attention (see Ref. [69] for a general review). Nu-
cleon excited states below 2.0 GeV have been extensively studied, from
both the experimental and the theoretical points of view [70]. Thus,
there exists abundant information on most of their parameters, such
as masses, total and partial decay widths, and decay modes. However,
the current knowledge on the properties of states around or above 2.0
GeV is still in its infancy [70]. On the other hand, in this region of
energies, many theoretical predicted missing N∗ states, within the con-
stituent quark [71] or chiral unitary [72–76] approaches, have so far not
been observed. Because a large number of effective degrees of freedom
will induce a great number of excited states, the missing N∗ states
problem seems to favor diquark configurations, which could lead to
reduced numbers of degrees of freedom. Such schemes would naturally
predict a smaller number of excited N∗ states [77]. Thus, the study of
the possible role played by the 2.0 GeV region nucleon resonances in
the available new accurate data from the LEPS [78, 79] and CLAS [80]
Collaborations is timely and could shed light on the complicated dy-
namics that governs the highly excited nucleon (or in general baryon)
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spectrum.

The associated strangeness production reaction γp → K+Λ(1520)
might be thus an adequate tool to study the N∗ resonances around 2.0
GeV, as long as they have significant couplings to the KΛ(1520) pair.
This is because the KΛ(1520) is a pure isospin 1/2 channel and the
threshold is about 2.0 GeV (mK +MΛ(1520) ' 2.0 GeV). Besides, this
reaction requires the creation of an s̄s quark pair. Thus, a thorough
and dedicated study of the strangeness production mechanism in this
reaction has the potential to achieve a deeper understanding of the in-
teraction among strange hadrons and, also, of the nature of the baryon
resonances.

The effective Lagrangian approach is a straightforward method for
systems where there is not enough information to provide a fundamen-
tal description of some of its properties. The idea is to parametrize
the corresponding effects by introducing new interactions with coeffi-
cients to be determined phenomenologically. Experimental limits or
the measurement of these parameters provide the information needed
to achieve an accurate description. A standard procedure consists in
first determining the relevant dynamical degrees of freedom involved
and the exact (or partially) symmetries obeyed, and then construct
the most general Lagrangian consistent with them.

In the Chapters 7 and 8, we will study the reaction γp→ K+Λ(1520)
within the effective Lagrangian approach, and will discuss some fea-
tures of the N∗(2120) resonance that can be inferred from recent data
taken in Spring8 [78, 79] and CLAS [80].

1.3 Outline

This thesis is organized as follows. In the Chapter 2, we introduce
some basic theoretical background on electroweak interactions, which
will be used in the rest of the work. In the Chapters 3-5, the study of
photon emission in NC reactions in nucleons and nuclei is presented.
The microscopic model derived in the first of these three chapters is
used to predict the number of NCγ events for the specific conditions
of the MiniBooNE and T2K experiments. Results are presented in
Chapters 4 and 5, respectively. The comparisons with the MiniBooNE
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in situ estimate and the results obtained with the NEUT Monte Carlo
generator, used by the T2K collaboration, are also discussed in these
two chapters.

The second part of this thesis comprises the Chapters 6-8. The
first chapter of this part is devoted to the study of meson resonances
with a generalized Weinberg-Tomozawa interaction extended to the
spin-flavor SU(6) symmetry group. As mentioned, we will present a
through analysis of the low-lying even parity meson resonances dy-
namically generated within this approach in the 0+ and 2+ sectors.
In the following two chapters, the Λ(1520) photo-production reaction
γp → K+Λ(1520) is analyzed in detail. In the Chapter 7, we inves-
tigate the Λ(1520) photo-production off the proton using an effective
Lagrangian approach and the isobar model, paying an special atten-
tion to the role played by the JP = 3/2− N∗(2120) resonance in this
process. In the next chapter, possible Regge signatures in the recent
CLAS data for this reaction are discussed and a hybrid approach is
presented.

Finally, the main conclusions of our work are collected in Chapter 9.
Besides, the are four appendices that include some technical details.
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Chapter 2

Electroweak interactions

According to the Standard Model of particle physics, there are three
mass-less neutrinos, νe, νµ and ντ . Neutrinos appear only left-handed,
i.e., have spin anti-parallel to their momentum, while anti-neutrinos
are right-handed. The electroweak interaction of leptons and nucleons
is the first step to derive a model to describe neutrino-nucleus inter-
actions. In this chapter, we will present a brief introduction to the
electroweak interactions [81].

2.1 Lagrangian of the electroweak inter-

action

The Standard Model of electromagnetic and weak interactions is based
on the local SU(2)×U(1) gauge symmetry [82–84]. After spontaneous
symmetry breaking via the Higgs mechanism we get for the interaction
part of the Lagrangian,

Lint = −eJ µ
EMAµ −

g

2
√
2

(
J µ

CCW
†
µ + h.c.

)
− g

2cosθW
J µ

NCZµ , (2.1)

with,

• J µ
EM, the electromagnetic current (EM) which couples to the pho-

ton field Aµ, as shown in Fig. 2.1(a).

• J µ
CC, the weak charged current (CC) which couples to the charged

W -boson field Wµ, as shown in Fig. 2.1(b).

11
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• J µ
NC, the weak neutral current (NC) which couples to the neutral

Z0-boson field Zµ, as shown in Fig. 2.1(c).

l−

N

l−

N

ν

N

νl

N

l−

N ′

ν

N

γ W+ Z0

(a) (b) (c)

Figure 2.1: The interactions of leptons and nucleons. (a) EM scatter-
ing, (b) CC scattering, (c) NC scattering.

For the electromagnetic and weak coupling, we have:

sinθW =
e

g
, cosθW =

MW

MZ

, (2.2)

G√
2
=

g2

8M2
W

, (2.3)

where θW is the Weinberg angle, G is the Fermi coupling constant,
MW and MZ are the masses of the W and Z bosons, respectively. At
present, the values of these parameters are [70],

G = 1.1663787± 0.0000006× 10−5 GeV−2 , (2.4)

sin2θW = 0.23116± 0.00012 , (2.5)

MW = 80.385± 0.015 GeV , (2.6)

MZ = 91.1876± 0.0021 GeV. (2.7)

The electroweak currents in Eq. (2.1) include sums over all quarks
and leptons, which will denote as jµ and Jµ, for the leptonic and quark
contributions, respectively. Next, we will give explicit expressions for
the leptonic and quark currents.
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2.2 Leptonic and quark currents

2.2.1 Leptonic currents

The leptonic electromagnetic current [Fig. 2.1(a)] couples to photons
and it reads,

jµEM = l̄γµl , (2.8)

where the Dirac matrices γµ and some of their properties are discussed
in Appendix A.1.

As shown in Fig. 2.1(b), the CC couples to a charged W± boson.
It does not change the lepton flavor but turns a charged lepton into
a neutrino or viceversa. The coupling involves only left-handed fields
leading to a vector–axial structure in the currents, which is given by

jµCC = ν̄lγ
µ(1− γ5)l . (2.9)

Finally, the NC couples to the neutral Z0 boson as depicted in
Fig. 2.1(c), does not change the flavor and even keeps the identity of
the lepton. In the case of the neutrinos, it is only possible the coupling
to the left handed fields, while for the case of charged leptons both left
and right handed fields are involved, but with different couplings,

jµNC =
1

2
ν̄lγ

µ(1− γ5)νl +
1

2
l̄γµ(gV − gAγ5)l , (2.10)

gV = −1

2
− 2sin2θW , gA = −1

2
. (2.11)

The interaction Lagrangian of course includes all lepton flavors, there-
fore a sum over all flavors is understood implicitly in these expressions.

2.2.2 Quark Currents

We now specify the quark currents Jµ
EM, J

µ
CC and Jµ

NC. We will restrict
the discussion only to three flavors. The u, d and s quarks are the
building blocks of a fundamental representation of the unitary flavor
group SU(3)f . Together they form a triplet field Ψ(x):

Ψ(x) =

ψu(x)
ψd(x)
ψs(x)

 , (2.12)
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where x ≡ xµ = (t, ~x) represents time and space coordinates. Each of
the spin 1/2 quark fields ψu(x), ψd(x) and ψs(x) is a four-component
Dirac field which annihilates a quark or creates a antiquark of a given
flavor. In this thesis, color plays no role and we shall drop explicitly
color labels. However, it is noted that all electroweak currents, being
color blind, involve a color trace.

Electromagnetic Quark Currents

The electromagnetic current reads,

Jµ
EM = Ψ̄QγµΨ (2.13)

=
2

3
ψ̄uγ

µψu −
1

3
(ψ̄dγ

µψd + ψ̄sγ
µψs). (2.14)

where the charge matrix for the u, d and s quarks is defined as,

Q =

 2/3 0 0
0 −1/3 0
0 0 −1/3

 , (2.15)

in electron charge e > 0 units. The u and d quarks alone form an
isospin I = 1/2 doublet. When the s quark is included, the charge
operator is,

Q =
Y

2
+ I3, (2.16)

where Y = B + S (with B and S, the baryon and the strangeness
quantum numbers) is the hypercharge and I3 is the third component
of quark isospin. We have,

Y =
λ8√
3
=

1/3 0 0
0 1/3 0
0 0 −2/3

 , (2.17)

I3 =
λ3
2

=

1/2 0 0
0 −1/2 0
0 0 0

 . (2.18)
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The matrices λi are the Gell-Mann matrices, given in Appendix A.1.
Thus, the electromagnetic current can be written,

Jµ
EM = Ψ̄(

Y

2
+ I3)γ

µΨ

= Ψ̄(
λ8

2
√
3
+
λ3
2
)γµΨ

=
1

2
V µ
Y + V µ

3 , (2.19)

where the isospin (isovector) V µ
3 and the hypercharge Y µ currents read,

V µ
3 =

1

2
(ψ̄uγ

µψu − ψ̄dγ
µψd) , (2.20)

Y µ =
1

3
(ψ̄uγ

µψu + ψ̄dγ
µψd)−

2

3
ψ̄sγ

µψs . (2.21)

Weak Quark Currents

In the case of the CC, we should consider that the mass eigenstates
with third component of weak isospin−1/2 (the d and s quarks) are not
the weak eigenstates. However, both sets of eigenstates are connected
through a unitary transformation determined by the Cabbibo mixing
angle, 1 (

ψ′
d

ψ′
s

)
=

(
cosθC sinθC
−sinθC cosθC

)(
ψd

ψs

)
, (2.22)

where cosθC = 0.9745 is the Cabbibo mixing angle. With the weak
eigenstates given in Eq. (2.22), the CC then reads,

Jµ
CC = Ψ̄γµ(1− γ5)Ψ′

= ψ̄uγ
µ(1− γ5)(cosθCψd + sinθCψs) . (2.23)

The term proportional to cosθC , responsible for the beta decay of the
neutron, is

Jµ
CC = cosθC(V

µ
CC − Aµ

CC) , (2.24)

1For the weak isospin −1/2 quarks (i.e d, s and b), the mass eigenstates are
obtained by a unitary transformation involving the CKM matrix. For practical
purposes, the mixing angles θ2 and θ3 are small, and we can ignore both of them
and thus we use only the Cabibbo angle θC = −θ1 through this thesis [81].
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V µ
CC = ψ̄uγ

µψd = Ψ̄γµ
λ1 + iλ2

2
Ψ

= Ψ̄γµ
λ+
2
Ψ = V µ

1 + iV µ
2 , (2.25)

Aµ
CC = ψ̄uγ

µγ5ψd = Ψ̄γµγ5
λ1 + iλ2

2
Ψ

= Ψ̄γµγ
5λ+
2
Ψ = Aµ

1 + iAµ
2 . (2.26)

The NC is diagonal in flavor and it can be written as,

Jµ
NC = Ψ̄γµ

[
(t3 −Q× sin2θW )(1− γ5)−Q× sin2θW (1 + γ5)

]
Ψ

= ψ̄uγ
µ

(
1

2
− 4

3
sin2θW − 1

2
γ5
)
ψu

+ψ̄dγ
µ

(
−1

2
− 2

3
sin2θW +

1

2
γ5
)
ψd

+ψ̄sγ
µ

(
−1

2
− 2

3
sin2θW +

1

2
γ5
)
ψs , (2.27)

where t3 is the third component of the weak isospin. For the up quark
t3 = 1/2, and for down and strange quarks t3 = −1/2. The NC can be
expressed in the (V − A) structure,

Jµ
NC = V µ

NC − Aµ
NC , (2.28)

V µ
NC = Ψ̄γµ

[
I3(1− 2sin2θW )

]
Ψ

−2sin2θW Ψ̄γµ
Y

2
Ψ + Ψ̄γµt3(s)Ψ

= (1− 2sin2θW )V µ
3 − sin2θWV

µ
Y − 1

2
V µ
s , (2.29)

Aµ
NC = Ψ̄γµt3γ

5Ψ

= Ψ̄γµ(I3 + t3(s))γ
5Ψ

= Ψ̄γµ
λ3
2
γ5Ψ+ Ψ̄γµt3(s)γ

5Ψ

= Aµ
3 +

1

2
Aµ

s . (2.30)

As shown in Eqs. (2.19), (2.25) and (2.29), V µ
1 , V

µ
2 and V µ

3 are compo-
nents of the same isospin vector current, V µ

Y and V µ
s are the isoscalar
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hypercharge and strange currents, respectively. In Eqs. (2.26) and
(2.30), Aµ

1 , A
µ
2 and Aµ

3 form a vector in the isospin space, and Aµ
s is the

isoscalar strange axial current. Therefore, we define the currents as,

V µ = (Vµ
1 , V

µ
2 , V

µ
3 ) = Vµ t

2
, (2.31)

Aµ = (Aµ
1 , A

µ
2 , A

µ
3 ) = Aµ t

2
, (2.32)

where t = τ (t = T †) is the transition operator for isospin 1/2 → 1/2
(1/2 → 3/2). The operator of the 1/2 → 1/2 transition is defined as,

τ = (τ1, τ2, τ3) , (2.33)

τ± =
τ1 ± iτ2

2
, τ0 = τ3 , (2.34)

τ−|p〉 = |n〉, τ+|n〉 = |p〉, (2.35)

τ+|p〉 = τ−|n〉 = 0 , (2.36)

where τi are the Pauli matrices given in Appendix A.1. And for tran-
sition of 1/2 → 3/2, the operator T † is defined by,

T † = (T †
1 , T

†
2 , T

†
3 ) , (2.37)

〈3
2
M |T †

λ|
1

2
m〉 =

(
1

2
m1λ|3

2
M

)
, (2.38)

T †
±1 = ∓T

†
1 ± iT †

2√
2

, T †
0 = T †

3 . (2.39)

2.2.3 1/2 → 1/2 isospin transitions

For the 1/2 → 1/2 isospin transition, the EM matrix element reads,

〈N∗+ | Jµ
EM | p〉 = 〈N∗+ | 1

2
V µ
Y + V µ

3 | p〉

= 〈N∗+ | Vµ
Y

I

2
+ Vµ τ3

2
| p〉

=
Vµ
Y + Vµ

2
≡ Vµ

p , (2.40)

and, analogously,

〈N∗0 | Jµ
EM | n〉 = Vµ

Y − Vµ

2
≡ Vµ

n . (2.41)
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For the vector part of the CC, the transition matrix element is,

〈N∗+ | V µ
CC | n〉 = 〈N∗+ | V µ

1 + iV µ
2 | n〉

= 〈N∗+ | Vµτ+ | n〉
≡ Vµ = Vµ

p − Vµ
n , (2.42)

and for the NC on protons, we find,

〈N∗+ | V µ
NC | p〉

= 〈N∗+ | (1− 2sin2θW )V µ
3 − sin2θWV

µ
Y − 1

2
V µ
s | p〉

= 〈N∗+ | (1− 2sin2θW )Vµ τ3
2
− sin2θWVµ

Y I − Vµ
s

I

2
| p〉

=

(
1

2
− sin2θW

)
Vµ − sin2θWVµ

Y − 1

2
Vµ
s

=

(
1

2
− 2sin2θW

)
Vµ
p − 1

2
Vµ
n − 1

2
Vµ
s , (2.43)

and for the NC transition on neutrons,

〈N∗0 | V µ
NC | n〉 = −

(
1

2
− sin2θW

)
Vµ − sin2θWVµ

Y − 1

2
Vµ
s

=

(
1

2
− 2sin2θW

)
Vµ
n − 1

2
Vµ
p − 1

2
Vµ
s . (2.44)

For the CC axial part, we have,

〈N∗+ | Aµ
CC | n〉 = 〈N∗+ | Aµ

1 + iAµ
2 | n〉

= 〈N∗+ | Aµτ+ | n〉 = Aµ , (2.45)
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and for the NC,

〈N∗+ | Aµ
NC | p〉 = 〈N∗+ | Aµ

3 +
1

2
Aµ

s | p〉

= 〈N∗+ | Aµ τ3
2
+Aµ

s

I

2
| p〉

=
Aµ +Aµ

s

2
, (2.46)

〈N∗0 | Aµ
NC | n〉 = 〈N∗0 | Aµ

3 +
1

2
Aµ

s | n〉

= 〈N∗0 | Aµ τ3
2
+Aµ

s

I

2
| n〉

=
−Aµ +Aµ

s

2
. (2.47)

2.2.4 1/2 → 3/2 isospin transitions

For the transition between isospin 1/2 to isospin 3/2 states, the cur-
rents should be purely isovector. First, the EM transition matrix ele-
ments read,

〈∆+ | Jµ
EM | p〉 = 〈∆+ | V µ

3 | p〉

= 〈∆+ | VµT
†
0

2
| p〉

= Vµ

(
1

2

1

2
1 0 | 3

2

1

2

)
=

√
2

3
Vµ , (2.48)

〈∆0 | Jµ
EM | n〉 = Vµ

(
1

2
− 1

2
1 0 | 3

2
− 1

2

)
=

√
2

3
Vµ . (2.49)

For the vector part of the CC, the transition matrix elements are
given by,

〈∆+ | V µ
CC | n〉 = 〈∆+ | V µ

1 + iV µ
2 | n〉

= −
√
2〈∆+ | VµT †

+1 | n〉

= −
√
2Vµ

(
1

2
− 1

2
1 1 | 3

2

1

2

)
= −

√
2

3
Vµ , (2.50)
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〈∆++ | V µ
CC | p〉 = 〈∆++ | V µ

1 + iV µ
2 | p〉

= −
√
2〈∆++ | VµT †

+1 | p〉

= −
√
2Vµ

(
1

2

1

2
1 1 | 3

2

3

2

)
= −

√
2Vµ . (2.51)

And for the axial part of the CC, we find

〈∆+ | Aµ
CC | n〉 = 〈∆+ | Aµ

1 + iAµ
2 | n〉

= −
√

2

3
Aµ , (2.52)

〈∆++ | Aµ
CC | p〉 = 〈∆++ | Aµ

1 + iAµ
2 | p〉

= −
√
2Vµ . (2.53)

For the NC, we have

〈∆+ | V µ
NC | p〉 = 〈∆+ |

(
1− 2sin2θW

)
Vµ
3 | p〉

= 〈∆+ |
(
1− 2sin2θW

)
VµT+

0 | p〉

=
(
1− 2sin2θW

)
Vµ

(
1

2

1

2
1 0 | 3

2

1

2

)
=

(
1− 2sin2θW

)√2

3
Vµ , (2.54)

〈∆0 | V µ
NC | n〉 = 〈∆0 |

(
1− 2sin2θW

)
Vµ
3 | n〉

= 〈∆0 |
(
1− 2sin2θW

)
VµT+

0 | n〉

=
(
1− 2sin2θW

)
Vµ

(
1

2
− 1

2
1 0 | 3

2
− 1

2

)
=

(
1− 2sin2θW

)√2

3
Vµ , (2.55)

and for the axial part of the NC,

〈∆+ | Aµ
NC | p〉 = 〈∆+ | Aµ

3 | p〉
= 〈∆+ | AµT+

0 | p〉

= Aµ

(
1

2

1

2
1 0 | 3

2

1

2

)
=

√
2

3
Aµ , (2.56)
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〈∆0 | Aµ
NC | n〉 =

√
2

3
Aµ . (2.57)
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Chapter 3

Photon emission in neutral
current (NCγ) interactions
at intermediate energies

3.1 Introduction

A good understanding of (anti)neutrino cross sections is crucial to re-
duce the systematic uncertainties in oscillation experiments aiming at
a precise determination of neutrino properties [85]. Our present knowl-
edge of neutrino-nucleus interactions has been significantly improved
by a new generation of oscillation and cross section experiments [6–21].
These results challenge our understanding of neutrino interactions with
matter and have triggered a renewed theoretical interest [22–56].

As mentioned in the general introduction of the thesis, one of the
possible reaction channels is photon emission induced by NC interac-
tions (NCγ), which can occur on single nucleons and on nuclear targets.
Weak photon emission has a small cross section compared, for exam-
ple, with pion production, the most important inelastic mechanism. In
spite of this, NC photon emission turns out to be one of the largest
backgrounds in νµ → νe (ν̄µ → ν̄e) oscillation experiments where elec-
tromagnetic showers instigated by electrons (positrons) and photons
are not distinguishable. Thus, NC events producing single photons
become an irreducible background to the CC QE signatures of νe (ν̄e)
appearance. This is precisely the case of the MiniBooNE experiment

23
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that was designed to test an earlier indication of a ν̄µ → ν̄e oscillation
signal observed at LSND [57, 58]. The MiniBooNE experiment finds
an excess of events with respect to the predicted background in both
ν and ν̄ modes. In the ν̄ mode, the data are found to be consistent
with ν̄µ → ν̄e oscillations and have some overlap with the LSND re-
sult [59]. MiniBooNE data for νe appearance in the νµ mode show
a clear (3σ) excess of signal-like events at low reconstructed neutrino
energies (200 < EQE

ν < 475 MeV) [59, 60]. However, the EQE
ν distri-

bution of the events is only marginally compatible with a simple two-
neutrino oscillation model [59]. While several exotic explanations for
this excess have been proposed, it could be related to unknown system-
atics or poorly understood backgrounds in the experimental analysis.
In a similar way, NCγ is a source of misidentified electron-like events
in the νe appearance measurements at T2K [62]. Even if the NCγ
contribution to the background is relatively small, it can be critical in
measurements of the CP-violating phase. It is therefore very important
to have a robust theoretical understanding of the NC photon emission
reaction, which cannot be unambiguously constrained by data. This is
the goal of the present work.

The first step torwards a realistic description of NC photon emission
on nuclear targets of neutrino detectors is the study of the correspond-
ing process on the nucleon. Theoretical models for the νN → νNγ
reaction have been presented in Refs. [42, 86]. They start from Lorentz-
covariant effective field theories with nucleon, pion, ∆(1232) but also
scalar (σ) and vector (ρ, ω) mesons as the relevant degrees of freedom,
and exhibit a nonlinear realization of (approximate) SU(2)L⊗SU(2)R
chiral symmetry. The single mechanism of ∆(1232) excitation followed
by its decay ∆ → Nγ was considered in Ref. [87], where a consistent
treatment of the ∆ vertices and propagator is adopted. Several features
of the previous studies, in particular the approximate chiral symmetry
and the dominance of the ∆(1232) mediated mechanism are common
to the model derived in our work. In Ref. [42], a special attention
is paid to the power counting, which is shown to be valid for neu-
trino energies below 550 MeV. However, the neutrino fluxes of most
neutrino experiments span to considerably higher energies. Thus, in
Ref. [88], the power counting scheme was abandoned, and the model
of [42] was phenomenologically extended to the intermediate energies



3.1. INTRODUCTION 25

(Eν ∼ 1 GeV) relevant for the MiniBooNE ν flux, by including phe-
nomenological form factors. Though the extension proposed for the ∆
and the nucleon Compton-like mechanisms seems reasonable, the one
for the contact terms notably increases the cross section above ∼ 1
GeV (they are more significant for neutrinos than for antineutrinos).
Since the contact terms and the associated form factors are not well
understood so far, the model predictions for Eν > 1 GeV should be
taken cautiously, as explicitly acknowledged in Ref. [88].

In nuclear targets, the reaction can be incoherent when the final
nucleus is excited (and fragmented) or coherent, when it remains in the
ground state. It is also possible that, after nucleon knockout, the resid-
ual excited nucleus decays emitting low-energy γ rays. This mechanism
has been recently investigated [89] and shall not be discussed here. The
model of Ref [86] has been applied to incoherent photon production in
an impulse approximation that ignores nuclear corrections [90]. These
are also neglected in the coherent case, which is calculated by treating
the nucleus as a scalar particle and introducing a form factor to en-
sure that the coherence is restricted to low-momentum transfers [86].
More robust is the approach of Refs. [52, 91] based on a chiral effective
field theory for nuclei, again extended phenomenologically to higher
energies [88]. In addition to Pauli blocking and Fermi motion, the ∆
resonance broadening in the nucleus, is also taken into account. The
latter correction causes a very strong reduction of the resonant con-
tribution to the cross section, in variance with our results, as will be
shown below. The ratio of the ∆ to photon and ∆ to π0 decay rates
is enhanced in the nuclear medium by an amount that depends on the
resonance invariant mass, momentum and also production position in-
side the nucleus, as estimated with a transport model [92, 93]. The
coherent channel has also been studied in Refs. [94, 95] at high ener-
gies. A discussion about these works can be found in Section V.E of
Ref. [86].

It is worth mentioning that both the models of Ref. [86] and Refs [42,
52, 88, 91] have been used to calculate the NCγ events at MiniBooNE
with contradicting conclusions [88, 90]. While in Ref. [90] the number
of these events were calculated to be twice as many as expected from
the MiniBooNE in situ estimate, much closer values were predicted in
Ref. [88]. The result that NCγ events give a significant contribution to
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the MiniBooNE low-energy excess [86] could have its origin in the lack
of nuclear effects and rather strong detection efficiency correction.

Here we present a realistic model for NC photon emission in the
Eν ∼ 1 GeV region that extends and improves certain relevant aspects
of the existing descriptions. The model is developed in the line of
previous work on weak pion production on nucleons [39] and nuclei
for both incoherent [43] and coherent [50, 96] processes. The model
for free nucleons satisfies the approximate chiral symmetry incorpo-
rated in the non-resonant terms and includes the dominant ∆(1232)
excitation mechanism, with couplings and form factors taken from the
available phenomenology. Moreover, we have extended the validity
of the approach to higher energies by including intermediate excited
states from the second resonance region [P11(1440), D13(1520) and
S11(1535)]. Among them, we have found a considerable contribution
of the D13(1520) for (anti)neutrino energies above 1.5 GeV. When the
reaction takes place inside the nucleus, we have applied a series of stan-
dard medium corrections that have been extensively confronted with
experiment in similar processes such as pion [97, 98], photon [99] and
electron [100, 101] scattering with nuclei, or coherent pion photo [102]
and electroproduction [103].

This chapter is based on Ref. [104] and it is organized as follows.
The model for NC production of photons off nucleons is described in
Sec. 3.2. After discussing the relevant kinematics, we evaluate the dif-
ferent amplitudes in Subsec. 3.2.2. In the first place, the dominant
∆(1232) and non-resonant contributions are studied (Subsec. 3.2.2).
Next, we examine the contributions driven by N∗ resonances from the
second resonance region (Subsec. 3.2.2). The relations between vec-
tor form factors and helicity amplitudes, and the off-diagonal N∗N
Goldberger-Treiman (GT) relations are discussed in Appendices B.1
and B.2, respectively. NCγ reactions in nuclei are studied in Sec. 3.3.
First, in Subsec. 3.3.1, we pay attention to the incoherent channel
driven by one particle–one hole (1p1h) nuclear excitations. Next, in
Subsec. 3.3.2, the coherent channel is studied. We present the results
of this chapter in Sec. 3.4, where we also compare some of our predic-
tions with the corresponding ones from Refs. [86, 88]. This section is
split in two subsections, where the results for NCγ on single nucleons
(Subsec. 3.4.1) and on nuclei (Subsec. 3.4.2) are discussed. Predictions
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for nuclear incoherent and coherent reactions are presented in Sub-
sec. 3.4.2. Finally the main conclusions of this work are summarized
in Sec. 3.5.

3.2 Neutral current photon emission off

nucleons

In this section, we describe the model for NC production of photons
off nucleons,

ν(k) + N(p) → ν(k′) + N(p′) + γ(kγ),

ν̄(k) + N(p) → ν̄(k′) + N(p′) + γ(kγ) . (3.1)

3.2.1 Kinematics and general definitions

���
���
���
���

Z

X

  Y

θγ

kγ

φγ

k

θ’

q

k’

Figure 3.1: Representation of the different LAB kinematical variables
used through this work.

The unpolarized differential cross section with respect to the photon
kinematical variables (kinematics is sketched in Fig. 3.1) is given in the
Laboratory (LAB) frame by

d 3σ(ν,ν̄)

dEγdΩ(k̂γ)
=
Eγ

|~k|
G2

16π2

∫
d3k′

|~k′ |
L(ν,ν̄)

µσ W µσ
NCγ . (3.2)

As we neglect the neutrino masses, Eν = |~k|, E ′ = |~k′ | and Eγ = |~kγ|,
where ~k, ~k′ and ~kγ are the incoming neutrino, outgoing neutrino and
outgoing photon momenta in LAB, in this order; G = 1.1664 × 10−11
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MeV−2 is the Fermi constant, while L(ν,ν̄) and WNCγ stand for the
leptonic and hadronic tensors, respectively. The leptonic tensor1

L(ν,ν̄)
µσ = (Ls)µσ + i(L(ν,ν̄)

a )µσ

= k′µkσ + k′σkµ + gµσ
q2

2
± iεµσαβk

′αkβ,

(+ → ν, − → ν̄) (3.3)

is orthogonal to the four momentum transfer qµ = kµ − k′µ, with q
2 =

−2k · k′ = −4EE ′ sin2 θ′/2. The hadronic tensor includes the non-
leptonic vertices and reads

W µσ
NCγ =

1

4M

∑
spins

∫
d3p′

(2π)3
1

2E ′
N

δ4(p′ + kγ − q − p)

×〈Nγ|jµncγ(0)|N〉〈Nγ|jσncγ(0)|N〉∗, (3.4)

with M the nucleon mass2 and E ′
N the energy of the outgoing nu-

cleon. The bar over the sum of initial and final spins denotes the
average over the initial ones. The one particle states are normalized as
〈~p |~p ′〉 = (2π)32p0δ

3(~p−~p ′). Then, the matrix element 〈Nγ|jµNCγ(0)|N〉
is dimensionless. For the sake of completeness, we notice that the NC,
jµnc and electromagnetic (EM), Jµ

EM currents at the quark level are given
by (note a change of normalization and here jµNC/2 = Jµ

NC, as defined
in Eq. (2.27))

jµNC = Ψ̄uγ
µ(1− 8

3
sin2 θW − γ5)Ψu − Ψ̄dγ

µ(1− 4

3
sin2 θW − γ5)Ψd

−Ψ̄sγ
µ(1− 4

3
sin2 θW − γ5)Ψs,

= Ψ̄qγ
µ(1− γ5)τ

1
0Ψq − 4 sin2 θWJ

µ
EM − Ψ̄sγ

µ(1− γ5)Ψs (3.5)

Jµ
EM =

2

3
Ψ̄uγ

µΨu −
1

3
Ψ̄dγ

µΨd −
1

3
Ψ̄sγ

µΨs, (3.6)

where Ψu, Ψd and Ψs are the quark fields and θW the weak angle
(sin2 θW ∼ 0.231). The zeroth spherical component of the isovector op-
erator τ (1) is equal to the third component of the isospin Pauli matrices
~τ .

1Our conventions are such that ε0123 = +1 and gµν = (+,−,−,−).
2We take the average of the neutron and proton masses.
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By construction, the hadronic tensor accomplishes

W µσ
NCγ =W

(s)µσ
NCγ + iW

(a)µσ
NCγ , (3.7)

in terms of its real symmetric,W
(s)
NCγ, and anti-symmetric,W

(a)
NCγ, parts.

Both lepton and hadron tensors are independent of the neutrino flavor
and, therefore, the cross section for the reaction of Eq. (3.1) is the
same for electron, muon or tau incident (anti)neutrinos.

Let us define the amputated amplitudes Γµρ, as

〈Nγ|jµNCγ(0)|N〉 = ū(p′)Γµρu(p)ε∗ρ(kγ) , (3.8)

where the spin dependence of the Dirac spinors (normalized such that
ūu = 2M) for the nucleons is understood, and ε(kγ) is the polarization
vector of the outgoing photon. To keep the notation simple we do not
specify the type of nucleon (N = n or p) in Γµρ. In terms of these
amputated amplitudes, and after performing the average (sum) over
the initial (final) spin states, we find

W µσ
NCγ = − 1

8M

∫
d3p′

(2π)3
1

2E ′
N

δ4(p′ + kγ − q − p)

×Tr
(
(/p′ +M)Γµρ(/p+M)γ0(Γσ

. ρ)
†γ0
)
. (3.9)

After performing the d3p′ integration, there is still a δ(p′ 0 + Eγ −
q0 − p0) left in the hadronic tensor, which can be used to perform the

integration over |~k′| in Eq. (3.2).

3.2.2 Evaluation of the Γµρ amputated amplitudes

The ∆(1232) contribution, chiral symmetry and non-resonant
terms

Just as in pion production [39], one expects the NCγ reaction to be
dominated by the excitation of the ∆(1232) supplemented with a non-
resonant background. In our case, the leading non-resonant contribu-
tions are nucleon-pole terms built out of Z0NN and γNN vertices
that respect chiral symmetry. The q2 dependence of the amplitudes is
introduced via phenomenological form factors. We also take into ac-
count the sub-leading mechanism originated from the anomalous Z0γπ
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vertex, that involves a pion exchange in the t−channel. Thus, in a first
stage we consider the five diagrams depicted in Fig. 3.2 (see the caption
of this figure to clarify the notation). The corresponding amputated
amplitudes are

Γµρ
N = Γµρ

NP + Γµρ
CNP

= ie Jρ
EM(−kγ)

/p+ q/+M

(p+ q)2 −M2 + iε
Jµ
NC(q)

+ie Jµ
NC(q)

(/p′ − q/+M)

(p′ − q)2 −M2 + iε
Jρ
EM(−kγ), (3.10)

Γµρ
πEx = eCN

MgA
4π2f 2

π

(1− 4 sin2 θW )
γ5ε

µρσαqσkγα
(q − kγ)2 −m2

π

,

(CN = +1 → p, CN = −1 → n) (3.11)

Γµρ
∆ = Γµρ

∆P + Γµρ
C∆P

= ie γ0 [Jαρ
EM(p′, kγ)]

†
γ0

Pαβ(p∆ = p+ q)

(p+ q)2 −M2
∆ + iM∆Γ∆(p2∆)

Jβµ
NC(p, q)

+ie γ0 [Jαµ
NC(p

′,−q)]† γ0 Pαβ(p∆ = p ′ − q)

(p ′ − q)2 −M2
∆ + iM∆Γ∆(p2∆)

×Jβρ
EM(p,−kγ), (3.12)

with e > 0 the electron charge, such that α = e2/4π ≈ 1/137, fπ = 92.4
MeV the pion decay constant and gA = 1.267 the axial nucleon charge;
mπ and M∆(∼ 1232MeV) are the pion and ∆ masses, respectively.
As it will be clear in the following, each of the building blocks of the
model is gauge invariant by construction ū(p′) Γµρ

N,∆,πEx u(p)(kγ)ρ =
0. The vector parts of these amplitudes are also conserved (CVC)
ū(p′)V µρ

N,∆,πEx u(p)qµ = 0.

• The nucleon NC and EM currents are given by

Jµ
NC(q) = γµF̃1(q

2) +
i

2M
σµβqβF̃2(q

2)− γµγ5F̃A(q
2), (3.13)

Jµ
EM(kγ) = γµF1(0) +

i

2M
σµν(kγ)νF2(0), (3.14)
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∆
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Figure 3.2: Model for photon emission off the nucleon; direct and
crossed nucleon-pole terms (a,b), direct and crossed ∆(1232)-pole
terms (c,d) and the anomalous t−channel pion exchange term (e).
Throughout this work, we denote these contributions as NP , CNP ,
∆P , C∆P and πEx, respectively.

where F̃1,2 and F̃A are the NC vector and axial form factors3

while F1,2 are the EM ones. These form factors take different
values for protons and neutrons. For F1,2, we have that

F
(N)
1 =

GN
E + τGN

M

1 + τ
, F

(N)
2 =

GN
M −GN

E

1 + τ
, N = p, n(3.15)

with

Gp
E =

Gp
M

µp

=
Gn

M

µn

= −(1 + bτ)
Gn

E

µnaτ
=

(
1

1− q2/M2
D

)2

, (3.16)

3Note that pseudoscalar (qµγ5) terms do not contribute because qµL
(νν̄)
µσ = 0

when neutrino masses are neglected.
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where τ = −q2/4M2, MD = 0.84 GeV, µp = 2.793, µn = −1.913,
b = 4.61 and a = 0.942 [105].

The NC vector form factors F̃1,2 can be referred to the EM ones
thanks to isospin symmetry relationships,

F̃
(p)
1,2 = (1− 4 sin2 θW )F

(p)
1,2 − F

(n)
1,2 − F

(s)
1,2 , (3.17)

F̃
(n)
1,2 = (1− 4 sin2 θW )F

(n)
1,2 − F

(p)
1,2 − F

(s)
1,2 , (3.18)

where F
(s)
1,2 are the strange EM form factors. Furthermore, in the

axial sector one has that

F̃
(p,n)
A = ±FA − F

(s)
A , (+ → p, − → n) , (3.19)

where FA is the axial form factor that appears in CCQE interac-
tions, for which we adopt a conventional dipole parametrization

FA(q
2) = gA

(
1− q2

M2
A

)−2

(3.20)

with an axial mass MA = 1 GeV [106]; F
(s)
A is the strange axial

form factor. At present, the best determinations of the strange
form factors are consistent with zero [107], thus they have been
neglected in the present study.

• The t−channel pion exchange contribution arises from the anoma-
lous (π0γZ0) Lagrangian [86]

Lπ0γZ0 =
eg

4 cos θW

NC

12π2fπ
(1− 4 sin2 θW )π0εµναβ∂µZν∂αAβ ,

(3.21)
together with the leading order π0NN interaction term

Lπ0NN =
gA
fπ

Ψ̄γµγ5
τ3
2
(∂µπ

0)Ψ , Ψ =

(
p
n

)
, (3.22)

where Ψ, π0, Aβ, Zν are the nucleon, neutral pion, photon and Z0

boson fields, respectively. Besides, g = e/ sin θW is related to the
Fermi constant G and the W -boson mass as G/

√
2 = g2/8M2

W ;
NC is the number of colors. The Lagrangian of Eq. (3.21) arises
from the Wess-Zumino-Witten term [108, 109], which accounts
for the axial anomaly of QCD.
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• Finally, in the ∆−driven amplitudes of Eq. (3.12), P µν is the
spin 3/2 projection operator, which reads

P µν(p∆) = −(/p∆ +M∆)

[
gµν − 1

3
γµγν

−2

3

pµ∆p
ν
∆

M2
∆

+
1

3

pµ∆γ
ν − pν∆γ

µ

M∆

]
; (3.23)

Γ∆ is the resonance width in its rest frame, given by

Γ∆(s) =
1

6π

(
f ∗

mπ

)2
M√
s

[
λ

1
2 (s,m2

π,M
2)

2
√
s

]3
×Θ(

√
s−M −mπ), s = p2∆, (3.24)

with f ∗ = 2.14, the πN∆ coupling obtained from the empirical
∆ → Nπ decay width (see Table 3.1); λ(x, y, z) = x2 + y2 + z2 −
2xy − 2xz − 2yz, and Θ is the step function.

The weak NC and EM currents for the nucleon to ∆ transition
are the same for protons or neutrons and are given by

1

2
Jβµ
NC(p, q)

=

[
C̃V

3 (q
2)

M
(gβµq/− qβγµ) +

C̃V
4 (q

2)

M2
(gβµq · p∆ − qβpµ∆)

+
C̃V

5 (q
2)

M2
(gβµq · p− qβpµ)

]
γ5 +

C̃A
3 (q

2)

M
(gβµq/− qβγµ)

+
C̃A

4 (q
2)

M2
(gβµq · p∆ − qβpµ∆) + C̃A

5 (q
2)gβµ , (3.25)

Jβρ
EM(p,−kγ) = −

[
CV

3 (0)

M
(gβρ/kγ − kβγγ

ρ)

+
CV

4 (0)

M2
(gβρkγ · p∆c − kβγp

ρ
∆c)

+
CV

5 (0)

M2
(gβρkγ · p− kβγp

ρ)

]
γ5 , (3.26)
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where p∆ = p+ q and p∆c = p− kγ; C̃
V
i , C̃

A
i and CV

i are the NC
vector, NC axial4 and EM transition form factors, respectively.
As in the nucleon case, the NC vector form factors are related to
the EM ones

C̃V
i (q

2) = (1− 2 sin2 θW )CV
i (q

2) (3.27)

according to the isovector character of the N − ∆ transition.
These EM form factors (and couplings) can be constrained using
experimental results on pion photo and electroproduction in the
∆ resonance region. In particular, they can be related to the helic-
ity amplitudes A1/2, A3/2 and S1/2 [41, 110] commonly extracted
in the analyses of meson electroproduction data. The explicit ex-
pressions are given in Appendix B.1. For the helicity amplitudes
and their q2 dependence we have taken the parametrizations of
the MAID analysis [111, 112]. 5 In the axial sector, we adopt the
Adler model [113, 114]

C̃A
3 (q

2) = 0, C̃A
4 (q

2) = −C̃
A
5 (q

2)

4
, (3.28)

for the sub-leading (in a q2 expansion) form factors and assume
a standard dipole for the dominant

C̃A
5 (q

2) = CA
5 (0)

(
1− q2

M2
A

)−2

, (3.29)

with CA
5 (0) = 1.00 ± 0.11 and MA = 0.93 GeV fixed in a fit to

νµd→ µ−∆++n BNL and ANL data [40].

The second resonance region

4There is another contribution to the axial current C̃A
6 (q2)qβqµ, which does not

contribute to the cross section because qµL
(νν̄)
µσ = 0 for massless neutrinos.

5The set of N−∆(1232) vector form factors used in [39], which were taken from
Ref. [110], lead to negligible changes in the results compared to those presented
below.

6In the case of the ∆, we use a CA
5 (0) value obtained in a reanalysis [40] of

the νµp → µ−pπ+ ANL and BNL bubble chamber data, which is smaller than the
corresponding GT relation by ∼ 20%.
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Table 3.1: Properties of the resonances included in our model [70].
For each state, we list the Breit-Wigner mass (MR MeV) , spin (J),
isospin (I), parity (P ), total decay width (Γ MeV), branching fraction
ΓR→Nπ/Γ (Br), axial coupling (denoted FA(0) for spin 1/2 states and
CA

5 (0) for spin 3/2 states).

MR J I P Γ Br FA(0)/C
A
5 (0)

∆(1232) 1232 3/2 3/2 + 117 100% 1.00± 0.11 6

N(1440) 1440 1/2 1/2 + 300 65% −0.47
N(1520) 1520 3/2 1/2 − 115 60% −2.14
N(1535) 1535 1/2 1/2 − 150 45% −0.21

Here, we extend the formalism to the second resonance region, which
includes three isospin 1/2 baryon resonances P11(1440), D13(1520) and
S11(1535) (see Table 3.1). In this way, we extend the validity of the
model to higher energies. A basic problem that has to be faced with
resonances is the determination of the transition form factors (coupling
constants and q2 dependence). As for the ∆(1232), we obtain vector
form factors from the helicity amplitudes parametrized in Ref. [111].
The equations relating helicity amplitudes and form factors are com-
piled in Appendix B.1. Our knowledge of the axial transition form fac-
tors is much poorer. Some constraints can be imposed from PCAC and
the pion-pole dominance of the pseudoscalar form factors. These allow
to derive off-diagonal Goldberger-Treiman (GT) relations between the
leading axial couplings and the N∗ → Nπ partial decay widths (see
Table 3.1 and Appendix B.2 for more details).

For each of the three P11(1440), D13(1520) and S11(1535) states,
we have considered the contribution of direct (RP ) and crossed (CRP )
resonance pole terms as depicted in Fig. 3.3.

N(1440) and N(1535): The structure of the contribution of these
two resonances to the amputated amplitudes is similar to the one of
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Z γ
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Figure 3.3: Direct (a) and crossed (b) N∗ pole contributions to the
NC photon emission process. We have considered the three resonances
[N(1440), N(1535), N(1520)] right above the ∆(1232).

the nucleon [Eq. (3.10)]. We have

Γµρ
R = Γµρ

RP + Γµρ
CRP

= ie Jρ
EM(R)(−kγ)

/p+ q/+MR

(p+ q)2 −M2
R + iMRΓR

Jµ
NC(R)(q)

+ie Jµ
NC(R)(q)

(/p′ − q/+MR)

(p′ − q)2 −M2
R + iε

Jρ
EM(R)(−kγ) ; (3.30)

the resonance masses MR are listed in Table 3.1 while the widths ΓR

are discussed in Appendix B.3. The EM and NC currents read

Jµ
NC(P11)

(q) =
F̃1(P11)(q

2)

(2M)2
(q/qµ − q2γµ) +

F̃2(P11)(q
2)

2M
iσµνqν

+F̃A(P11)(q
2)γµγ5 , (3.31)

Jµ
EM(P11)

(kγ) =
F1(P11)(0)

(2M)2
/kγk

µ
γ +

F2(P11)(0)

2M
iσµν(kγ)ν , (3.32)

for the N(1440) and

Jµ
NC(S11)

(q) =

[
F̃1(S11)(q

2)

(2M)2
(q/qµ − q2γµ) +

F̃2(S11)(q
2)

2M
iσµνqν

]
γ5

+F̃A(S11)(q
2)γµ , (3.33)

Jµ
EM(S11)

(kγ) =

[
F1(S11)(0)

(2M)2
/kγk

µ
γ +

F2(S11)(0)

2M
iσµν(kγ)ν

]
γ5 , (3.34)
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for the N(1535). 7 As in the nucleon case, isospin symmetry implies
that

F̃
(p)
1,2(R) =

(
1− 4 sin2 θW

)
F

(p)
1,2(R) − F

(n)
1,2(R) − F

(s)
1,2(R) ,

F̃
(n)
1,2(R) =

(
1− 4 sin2 θW

)
F

(n)
1,2(R) − F

(p)
1,2(R) − F

(s)
1,2(R) , (3.35)

with F
(N)
1,2(P11,S11)

expressed in terms of the corresponding helicity am-

plitudes (see Appendix B.1). The NC axial form factors are

F̃
(p,n)
A(R) = ±FA(R) + F s

A(R), (+ → p, − → n)

FA(R)(q
2) = FA(R)(0)

(
1− q2

M∗2
A

)−2

. (3.36)

The couplings FA(P11,S11)(0) are obtained from the GT corresponding
relations and have values given in Table 3.1. The q2 dependence of
these form factors is unknown so we have assumed a dipole ansatz with
a natural value of M∗

A = 1.0 GeV for the axial mass. No information

is available about the strange form factors F
(s)
1,2,A(P11,S11)

but they are
likely to be small and to have a negligible impact on the observables,
so we set them to zero.

N(1520): In this case, the structure of the contribution of this reso-
nance to the amputated amplitudes is similar to that of the ∆(1232),
differing just in the definition of the appropriate form factors and the
isospin dependence. Thus, we have

Γµρ
D13

= Γµρ
D13P

+ Γµρ
CD13P

= ieγ0
[
Jαρ
EM(D13)

(p′, kγ)
]†
γ0

PD13
αβ (p+ q)

(p+ q)2 −M2
D13

+ iMD13ΓD13

×Jβµ
NC(D13)

(p, q) + ie γ0
[
Jαµ
NC(D13)

(p ′,−q)
]†
γ0

×
PD13
αβ (p ′ − q)

(p ′ − q)2 −M2
D13

+ iε
Jβρ
EM(D13)

(p,−kγ),

(3.37)

7Note that by construction gauge invariance and CVC are satisfied. This is also
the case for the N(1520) amplitudes that will be discussed next.
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where the resonance mass MD13 is given in Table 3.1 and the width
ΓD13 is discussed in Appendix B.3; PD13

µν is the spin 3/2 projection
operator given also by Eq. (3.23), with the obvious replacement of M∆

by MD13 . Besides, the N − N(1520) EM and NC transition currents
are given by

Jβµ
NC(D13)

(p, q)

=
C̃V

3(D13)
(q2)

M
(gβµq/− qβγµ) +

C̃V
4(D13)

(q2)

M2
(gβµq · pD13 − qβpµD13

)

+
C̃V

5(D13)
(q2)

M2
(gβµq · p− qβpµ) +

[
C̃A

3(D13)
(q2)

M
(gβµq/− qβγµ)

+
C̃A

4(D13)
(q2)

M2
(gβµq · pD13 − qβpµD13

) + C̃A
5(D13)

(q2)gβµ

]
γ5 ,

(3.38)

Jβρ
EM(D13)

(p,−kγ)

= −

[
CV

3(D13)
(0)

M
(gβρ/kγ − kβγγ

ρ) +
CV

4(D13)
(0)

M2
(gβρkγ · pD13 c

−kβγp
ρ
D13 c

) +
CV

5(D13)
(0)

M2
(gβρkγ · p− kβγp

ρ)

]
, (3.39)

where pD13 = p+ q and pD13 c = p− kγ; C̃
V
i(D13)

, C̃A
i(D13)

and CV
i(D13)

are
the NC vector, NC axial and EM form factors, respectively. The NC
vector form factors are related to the EM ones in the same way as for
the other isospin 1/2 states considered above, namely

C̃
V (p)
i(D13)

=
(
1− 4 sin2 θW

)
C

(p)
i(D13)

− C
(n)
i(D13)

− C
(s)
i(D13)

,

C̃
V (n)
i(D13)

=
(
1− 4 sin2 θW

)
C

(n)
i(D13)

− C
(p)
i(D13)

− C
(s)
i(D13)

, (3.40)

where C
(p,n)
3−5(D13)

are obtained from the helicity amplitudes using Eqs.

(B.14-B.16). For the axial form factors, one again has that

C̃
A(p,n)
i(D13)

= ±CA
i(D13)

+ CsA
i(D13)

, (+ → p, − → n) . (3.41)
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We take a standard dipole form for the dominant axial NC form factor

CA
5(D13)

(q2) = CA
5(D13)

(0)

(
1− q2

M∗2
A

)−2

, (3.42)

with CA
5(D13)

(0) from the corresponding off diagonal GT relation (see

Appendix B.2 and Table 3.1), and set M∗
A = 1.0 GeV as for the other

N∗. The other axial form factors CA
3,4(D13)

are less important because

their contribution to the amplitude squared is proportional to q2. We
neglect them together with the unknown strange vector and axial form
factors.

3.3 Neutral current photon emission in

nuclei

In this section we outline the framework followed to describe NC pho-
ton emission off nuclei. Both incoherent and coherent reaction channels
are considered.

3.3.1 Incoherent photon emission

To study the incoherent reactions

νl(k) + AZ → νl(k
′) + γ(kγ) + X,

ν̄l(k) + AZ → ν̄l(k
′) + γ(kγ) + X, (3.43)

we pursue the many body scheme derived in Refs. [24, 34, 115] for the
neutrino propagation in nuclear matter and adapted to (semi)inclusive
reactions on finite nuclei by means of the local density approximation
(LDA). With this formalism, the photon emission cross section is

σ(ν,ν̄)
∣∣
incoh

=
1

|~k |
G2

16π2

∫
d3k′

|~k′|
L(ν,ν̄)

µσ W µσ
NCγ

∣∣
incoh

(3.44)

in terms of the leptonic tensor of Eq. (3.3) and the hadronic tensor

W µσ
NCγ|incoh = W

(s)µσ
NCγ |incoh + iW

(a)µσ
NCγ |incoh, which is determined by the

contributions to the Z0 self-energy with a photon in the intermediate
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state Πµσ
Zγ(q). Within the LDA, the computation of the hadronic tensor

for finite nuclei involves an integral over the whole nuclear volume,

W
(s)µσ
NCγ

∣∣∣
incoh

= −Θ(q0)

(
4 cos θW

g

)2 ∫
d3r

2π
Im
[
Πµσ

Zγ +Πσµ
Zγ

]
(q, r)

(3.45)

W
(a)µσ
NCγ

∣∣∣
incoh

= −Θ(q0)

(
4 cos θW

g

)2 ∫
d3r

2π
Re
[
Πµσ

Zγ − Πσµ
Zγ

]
(q, r).

(3.46)

In the density expansion proposed in Ref. [24], the lowest order
contribution to Πµσ

Zγ is depicted in Fig. 3.4. The black dots stand for any
of the eleven terms (NP , CNP , πEx, RP , CRP with R = ∆(1232),
N(1440), N(1520), N(1535)) of the elementary Z0N → γN amplitude
derived in Sec. 3.2. The solid upwards and downwards oriented lines
represent nucleon particle and hole states in the Fermi sea. This Z0

Z 0

Z 0

ν

µ

γ

NN

Figure 3.4: Diagrammatic representation of the one-particle-one-hole-
photon (1p1hγ) contributions to the Z0 self-energy in nuclear matter.
The black dots represent Z0N → γN amplitudes.
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self-energy diagram (actually 121 diagrams) is readily evaluated as 8

− iΠµν
Zγ;1p1hγ(q, r) = i

(
g

4 cos θW

)2 ∑
N=p,n

∫
d4kγ
(2π)4

∫
d4p

(2π)4
1

k2γ + iε

×Tr
[
S(p, ρN)γ

0 (Γµρ
N )† γ0S(p′, ρN)(ΓN)

ν
. ρ

]
,

(3.47)

where p′ = p + q − kγ and Γµρ
N is the amputated amplitude for the

Z0N → Nγ process

Γµρ
N =

∑
a

Γµρ
a;N , a = NP, CNP, πEx, RP, CRP

[R = ∆(1232), N(1440), N(1520), N(1535)] . (3.48)

The nucleon propagator in the medium reads

S(p, ρN) = (/p+M)G(p, ρN) , (3.49)

with

G(p ; ρN) =
1

p2 −M2 + iε
+ i

π

E(~p )
nN(~p )δ

[
p0 − E(~p )

]
=

1

p0 + E(~p ) + iε

[
nN(~p )

p0 − E(~p )− iε
+

1− nN(~p )

p0 − E(~p ) + iε

]
.

(3.50)

The occupation number in the local Fermi gas nN(~p ) = Θ(kNF − |~p |)
depends on the local density of nucleons (protons or neutrons) in the
nucleus via kNF (r) = (3π2ρN(r))

1/3. The nucleon energy E(~p) is ap-
proximated by the free one

√
~p 2 +M2. Substituting the explicit ex-

8In Eq. (3.47), it is necessary to subtract the free space contribution, i.e., the one
that survives for vanishing nuclear densities and renormalizes free space couplings
and masses. Actually, to obtain Eq. (3.51), we have neglected the contribution of
the antiparticle pole [p0 = −E(~p ) − iε] in the p0 integration. This automatically
removes the unwanted vacuum part.
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pressions of S(p, ρN) and S(p
′, ρN) in Eq. (3.47) one obtains

−iΠµν
Zγ;1p1hγ(q, r)

= −
(

g

4 cos θW

)2 ∑
N=p,n

∫
d4kγ
(2π)4

∫
d3p

(2π)3
1

2E(~p )

× 1

2E(~p+ ~q − ~kγ)

nN(~p )[1− nN(~p+ ~q − ~kγ)]

q0 − k0γ + E(~p )− E(~p ′) + iε

× 1

k2γ + iε
Tr
[
(/p+M)γ0 (Γµρ

N )† γ0(/p′ +M) (ΓN)
ν
. ρ

]
+ [(q − kγ) ↔ −(q − kγ)] . (3.51)

A convenient simplification can be made by evaluating the Γµρ
N am-

plitudes at an average nucleon hole four momentum 〈pµ〉. This allows
us to take the spin trace in Eq. (3.51) out of the d3p integration, which
gives, up to constants, the Lindhard function, UR(q − kγ, k

N
F , k

N
F ) (see

Appendix B of Ref. [24] or appendix C.3 of this thesis for definition
and explicit expressions). Therefore,

− iΠµν
Zγ;1p1hγ(q, r) = −

(
g

4 cos θW

)2
1

4M2

∑
N=p,n

∫
d4kγ
(2π)4

1

k2γ + iε

×UR(q − kγ, k
N
F , k

N
F )Aµν

N (〈p〉, q, kγ) , (3.52)

Aµν
N =

1

2
Tr
[
(〈/p〉+M) γ0 (〈ΓN〉µρ)† γ0

× (〈/p〉+ q/− /kγ +M) 〈ΓN〉ν. ρ
]
, (3.53)

where 〈ΓN〉νρ stands for Γνρ
N calculated at the average hole four mo-

mentum 〈pµ〉.
To derive the 1p1hγ contribution to the hadron tensor W µσ, we

remind that by construction

Aµν
N = A

(s)µν
N + iA

(a)µν
N , (3.54)

where A
(s)µσ
N (A

(a)µσ
N ) is a real symmetric (anti-symmetric) tensor. Fur-

thermore, it is easy to see that the combinations of the Z0 self-energy
present in Eqs. (3.45) and (3.46) fulfill

Im
[
Πµν

Zγ;1p1hγ +Πνµ
Zγ;1p1hγ

]
= 2ImΠ

(s)µν
Zγ;1p1hγ,

Re
[
Πµν

Zγ;1p1hγ − Πνµ
Zγ;1p1hγ

]
= −2ImΠ

(a)µν
Zγ;1p1hγ, (3.55)
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where Π
(s,a)µν
Zγ;1p1hγ are obtained by replacing Aµν

N in Eq. (3.52) by the

corresponding A
(s,a)µν
N parts.

The imaginary part of Πµν
ZW ;1p1hγ

∣∣∣
s(a)

can be obtained following the

Cutkosky rules. In this case we cut the self-energy diagram of Fig. 3.4
with a straight horizontal line. The states intercepted by the line are
placed on shell by taking the imaginary part of their propagators. Tech-
nically, the rules to obtain ImΠµν

Z;1p1hγ consist of the following substitu-
tions:

Πµν
Zγ(q) → 2iImΠµν

Zγ(q)Θ(q0), (3.56)

1

k2γ + iε
→ 2iIm

1

k2γ + iε
Θ(k0γ)

= −2πiδ(k2γ)Θ(k0γ), (3.57)

UR(q − kγ, k
N
F , k

N
F ) → 2iImUR(q − kγ, k

N
F , k

N
F )Θ(q0 − k0γ).

(3.58)

Thus, taking into account that A
(s,a)µν
N are real, we readily obtain

W µν
1p1hγ(q) = Θ(q0)

1

2M2

∫
d3r

2π

∑
N=p,n

d3kγ
(2π)3

Θ(q0 − Eγ)

2Eγ

×ImUR(q − kγ, k
N
F , k

N
F )Aνµ

N , (3.59)

with Eγ the photon on-shell energy.
The average nucleon hole momentum 〈pµ〉 is chosen as follows (see

the discussion after Eq. (9) of Ref. [43])

〈p0〉 = EN
F + Emin

2
, 〈|~p |〉 =

√
〈p0〉2 −M2 (3.60)

defined by the central value of the allowed energy region, with

Emin = max

(
M,EN

F − q′0,
−q′0 + |~q ′|

√
1− 4M2/q′2

2

)
, (3.61)

where q′ = q−kγ and EN
F =

√
M2 + (kNF )2. The corresponding nucleon

hole angle, in the LAB frame and with respect to ~q ′, is completely fixed
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by the kinematics to

cos θN =
q′2 + 2〈p0〉q′0

2〈|~p |〉|~q ′|
, (3.62)

while the azimuthal angle φN is fixed arbitrarily in the plane perpen-
dicular to ~q ′. Similar approximations were performed, and shown to
be sufficiently accurate, in studies of total inclusive and pion produc-
tion in photo and electro-nuclear reactions [99–101, 116]. They were
also used in Ref. [34] to compute the total inclusive neutrino induced
cross section. We have checked that the approximation of Eqs. (3.60)–
(3.62) induces uncertainties of at most 5%, independently of φN values.
Furthermore, different choices of φN produce small variations of the
order of 1-2% in the results. This approximation saves a considerable
amount of computational time because there are analytical expressions
for ImUR(q − kγ, k

N
F , k

N
F ) (see for instance Ref. [24]).

In the small density limit,

ImUR(q
′, kNF , k

N
F ) ' −πρNMδ

(
q ′ 0 +M−

√
M2 + ~q ′2

)
/
√
M2 + ~q ′2.

(3.63)
Substituting this expression in Eq. (3.59) one obtains

lim
ρ→0

W µν
1p1hγ ∼

∫
dΩ(k̂γ)dEγEγ

(
ZW µν

Z0p→pγ +NW µν
Z0n→nγ

)
, (3.64)

where Z and N are the number of protons and neutrons in the nucleus,
and W µν

Z0N→Nγ is the hadronic tensor for NC photon production on the
nucleon. In this way, the strict impulse approximation is recovered. By
performing the integral in Eq. (3.59), Pauli blocking and Fermi motion
are taken into account.

Further nuclear medium corrections

Given the dominant role played by the ∆P contribution and since ∆
properties are strongly modified in the nuclear medium [97, 117–122]
a proper treatment of the ∆ contribution is needed. Here, we follow
Ref. [49] and modify the ∆ propagator in the ∆P term as

1

p2∆ −M2
∆ + iM∆Γ∆

→ 1√
p2∆ +M∆

1√
p2∆ −M∆ + i(ΓPauli

∆ /2− ImΣ∆)
;

(3.65)
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ΓPauli
∆ , for which we take the expression in Eq. (15) of Ref. [98] (see

also appendix C.2), is the free ∆ width corrected by the Pauli blocking
of the final nucleon. The imaginary part of the ∆ self-energy in the
medium ImΣ∆, is parametrized as [119] (see appendix C.1)

− ImΣ∆(ρ) = CQ

(
ρ

ρ0

)α

+ CA2

(
ρ

ρ0

)β

+ CA3

(
ρ

ρ0

)γ

, (3.66)

where the term proportional to CQ accounts for the QE part while those
with coefficients CA2 and CA3 correspond to the two-body (∆N → NN)
and three-body (∆NN → NNN) absorption contributions, respec-
tively. The parameters in Eq. (3.66) can be found in Eq. (4.5) and
Table 2 of Ref. [119], given as functions of the kinetic energy in the
laboratory system of a pion that would excite a ∆ with the correspond-
ing invariant mass. These parametrizations are valid in the range 85
MeV < Tπ <315 MeV. Below 85 MeV, the contributions from CQ and
CA3 are rather small and are taken from Ref [98], where the model was
extended to low energies. The term with CA2 shows a very mild energy
dependence and we still use the parametrization from Ref. [119] even
at low energies. For Tπ above 315 MeV we have kept these self-energy
terms constant and equal to their values at the bound. The uncertain-
ties in these pieces are not very relevant there because the ∆ → Nπ
decay becomes very large and absolutely dominant.

For the ∆ mass we shall keep its free value. While there are some
corrections arising from both the real part of the self-energy and ran-
dom phase approximation (RPA) sums, the net effect is smaller than
the precision achievable in current neutrino experiments, and also
smaller than the uncertainties due to our limited knowledge of the
nucleon to ∆ transition form factor CA

5 (q
2) (see the related discussion

in Sec. II.E of Ref. [34]).

3.3.2 Coherent photon emission

The coherent reactions

νl(k) + AZ |gs(pA) → νl(k
′) + AZ |gs(p′A) + γ(kγ),

ν̄l(k) + AZ |gs(pA) → ν̄l(k
′) + AZ |gs(p′A) + γ(kγ) , (3.67)



46 CHAPTER 3. PHOTON EMISSION IN NC ...

consist of a weak photon production where the nucleus is left in its
ground state, in contrast with the incoherent production that we stud-
ied in the previous subsection, where the nucleus is either broken or left
in an excited state. Here, we adopt the framework derived in Ref. [50]
for neutrino-induced coherent CC and NC pion production reactions.9

This work is, in turn, based on previous studies of coherent pion pro-
duction in electromagnetic [(γ, π0) [102], (e, e′π0) [103]] and hadronic
reactions [(3He,3H π+) [124], p(4He,4 He)X [125]] in the ∆(1232) region.
More recently, the same scheme has been employed to study charged
kaon production by coherent scattering of neutrinos and antineutrinos
on nuclei [126]. The model for the coherent process is built up from the
coherent scattering with each of the nucleons of the nucleus, producing
an outgoing γ. The nucleon state (wave function) remains unchanged
so that after summing over all nucleons, one obtains the nuclear den-
sities. In the elementary Z0N → Nγ process, energy conservation
is accomplished by imposing q0 = Eγ, which is justified by the large

nucleus mass, while the transferred momentum ~q − ~kγ has to be ac-
commodated by the nucleon wave functions. Therefore, the coherent
production process is sensitive to the Fourier transform of the nuclear
density.

Following Ref. [50], it is straightforward to find that

d 3σ(ν,ν̄)

dEγdΩ(k̂γ)

∣∣∣∣∣
coh

=
Eγ

|~k |
G2

16π2

∫
d3k′

|~k′|
L(ν,ν̄)

µσ W µσ
NCγ

∣∣
coh

, (3.68)

W µσ
NCγ

∣∣
coh

= −δ(Eγ − q0)

64π3M2
Aµρ(q, kγ)

(
Aσ

. ρ

)∗
(q, kγ) , (3.69)

Aµρ(q, kγ) =

∫
d3r ei(~q−

~kγ)·~r
{
ρp(r )Γ̂

µρ
p (r; q, kγ) + ρn(r )Γ̂

µρ
n (r; q, kγ)

}
.

(3.70)

To evaluate the hadronic tensor, we use the model for the NC photon

9The predictions of Ref. [50] were updated in [123] after the reanalysis of the
νµp → µ−pπ+ old bubble chamber data carried out in Ref. [40].
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production off the nucleon derived in Sec. 3.2 and thus we have

Γ̂µρ
N (r; q, kγ) =

∑
i

Γ̂µρ
i;N(r; q, kγ), i = NP, CNP, πEx, RP, CRP

[R = ∆, N(1440), N(1535), N(1520)] (3.71)

Γ̂µρ
i;N(r; q, kγ) =

1

2
Tr
[
(/p+M)γ0 Γµρ

i;N

]M
p0

∣∣∣∣
pµ=

(√
M2+

(~kγ−~q )2

4
, 1
2
(~kγ−~q )

)
(3.72)

where the four-vector matrices Γµρ
i;Nγ stand for the amputated photon

production amplitudes off nucleons derived in Subsec. 3.2.2. We have
also taken into account the modification of the ∆(1232) in the medium
for the ∆P mechanism, as explained in Subsec. 3.3.1.

Now we pay attention to the approximated treatment of nucleon
momentum distributions that has been adopted to obtain Eqs. (3.69)–
(3.72). The initial (~p) and final (~p ′) nucleon three momenta are not
well defined. We take

pµ =

(√
M2 +

1

4

(
~kγ − ~q

)2
,
~kγ − ~q

2

)
,

p′µ = q − kγ + p =

(√
M2 +

1

4

(
~kγ − ~q

)2
,−
~kγ − ~q

2

)
, (3.73)

with both nucleons being on-shell. In this way, the momentum transfer
is equally shared between the initial and final nucleons. This prescrip-
tion, employed in Refs. [49, 50, 52, 96], for (anti)neutrino induced co-
herent pion production, was earlier applied to 16O(γ, π+)16Nbound [127]
and to coherent π0 photo- and electroproduction [102, 103, 128]. The
approximation is based on the fact that, for Gaussian nuclear wave
functions, it leads to an exact treatment of the terms in the elemen-
tary amplitude that are linear in momentum. In Ref. [102] it was
shown that in the case of π0 photo-production, this prescription pro-
vided similar results as the explicit sum over the nucleon momenta
performed in Ref. [129]. Thanks to the choice of Eq. (3.73), the sum
over all nucleons is greatly simplified and cast in terms of the neutron
and proton densities [see Eq. (3.70)]. Furthermore, the sum over nu-
cleon helicities gives rise to the trace in Eq. (3.72); more details can be
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found in the discussion after Eq. (6) of Ref. [50]. On the other hand,
this approximation eliminates some non-local contributions to the am-
plitudes. In particular, the ∆ momentum turns out to be well defined
once the the nucleon momenta are fixed. In Ref. [130] this constraint
was relaxed for weak coherent pion production via ∆(1232) excitation,
while neglecting the modification of the ∆ properties in the nucleus
and pion distortion. It was found that non-localities in the ∆ propa-
gation cause a large reduction of the cross section at low energies. In
the more realistic description of Nakamura et al. [51], the non-locality
is preserved for the ∆ kinetic term in a linearized version of the ∆
propagator but, at the same time, a prescription similar to Eq. (3.73)
for the WN∆ and ∆Nπ vertices, and a local ansatz for the in-medium
∆ selfenergy have been taken. Nevertheless, the mismatch between the
non-local recoil effects and the local approximations for vertices and
selfenergy are likely to be minimized by the fact that the parameters
in the ∆ selfenergy are adjusted to describe pion-nucleus scattering
data with the same model. Our point of view is that the local ap-
proach adopted here and in Refs. [49, 50, 52, 96], together with the
choice of the effective nucleon-nucleon interaction in the medium [119],
is internally consistent. The good agreement obtained for pion-nucleus
scattering [98, 131] and coherent pion photo-production [52, 132] for
medium and heavy nuclei seems to support this conjecture, although
more detailed investigations are necessary. In any case, for the present
study, where the coherent contribution is a small and not disentangled
part of the total NCγ cross section, and in view of the uncertainty
in the determination of the N∆ axial coupling CA

5 (0), it is safe to
disregard possible non-local corrections.

3.4 Results

Before discussing our results an important remark is due. The in-
termediate nucleon propagators in both the NP and CNP terms of
Eq. (3.10) can be put on the mass shell for Eγ → 0 photons, lead-
ing to an infrared divergence. This divergence should be cancelled by
others present in the electromagnetic radiative corrections to the elas-
tic process νN → νN (without photon emission). However, when the
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emitted photon is too soft, its energy becomes smaller than the photon
energy resolution of the detector. Such an event would be recorded as
an elastic one if at all. For this reason, we have implemented a cut in
the available photon phase space, demanding Eγ ≥ 140 MeV, which
corresponds to the MiniBooNE detection threshold [60]. This value is
also approximately valid for T2K, since a visible energy (∼ Eγ) cut
of 100 MeV at Super-K is employed (see for example Table XIV of
Ref. [62]).

3.4.1 Neutral current photon emission off nucle-
ons

In Fig. 3.5, we show our results for the total NC photon emission
(anti)neutrino cross sections as a function of the (anti)neutrino energy.
As in other weak interaction processes, the different helicities of ν and
ν̄ are responsible for different interference patterns, resulting in smaller
ν̄ cross sections with a more linear energy dependence. The error bands
on the full model results are determined by the uncertainty in the ax-
ial N∆ coupling CA

5 (0) = 1.00 ± 0.11 [40]. This is the predominant
source of uncertainty in the (anti)neutrino energy range under consid-
eration (see also the discussion of Fig. 3.8 below). We also display the
contributions from the different mechanisms considered in our model
(Figs. 3.2 and 3.3). The ∆ mechanism is dominant and gives the same
contribution for protons and neutrons, as expected from the isovector
nature of the electroweak N −∆ transition. At Eν(ν̄) ∼ 1.5 GeV, the
cross section from nucleon-pole terms is only about 2.5 smaller than
the ∆ one. Above ∼ 1.5 GeV, the N(1520) contribution is sizable
and comparable to that of the sum of the NP and CNP mechanisms,
specially for ν̄p. However, the rest of N∗ contributions considered in
the model (with N(1440) and N(1535) intermediate states), together
with the πEx contribution of Fig. 3.2(e) can be safely neglected in the
whole range of (anti)neutrino energies considered in this work. The
fact that the N(1520) resonance is the only one, besides the ∆(1232),
playing a significant role for Eν < 2 GeV has also been observed in
pion production [43] and for the inclusive cross section [41].

Photon angular and energy distributions on single nucleons, for
incoming (anti)neutrino energies of 1 and 2 GeV are shown in Figs. 3.6
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Figure 3.5: νN → νNγ (left) and ν̄N → ν̄Nγ (right) cross sections on
protons and neutrons as a function of the (anti)neutrino energy. A cut
of Eγ ≥ 140 MeV in the phase space integrals has been applied. Solid
curves correspond to the results from the full model, with error bands
determined by the uncertainty in the axial N∆ coupling CA

5 (0) =
1.00 ± 0.11 according to the determination of Ref. [40]. The curves
labeled as ∆, N and π stand for the partial contributions of the (∆P +
C∆P ), (NP + CNP ) and πEx mechanisms, respectively. The D13,
P11 and S11 curves show the contribution of the different (RP +CRP )
terms driven by the N∗ resonances. Finally, the lines labeled as “no
N∗” display the predicted cross section without the N∗ contributions.

and 3.7. Solid curves stand for the results from the full model. We
also display the largest contributions among the different mechanisms
considered in our model. As expected, the ∆ mechanisms are also
dominant in the differential cross sections, specially for reactions on
neutrons and even more so for the ν̄n → ν̄nγ process. Nucleon and
D13 direct and crossed pole-term contributions, though small, are not
negligible, particularly for protons. The N(1520) terms become more
important for the largest (anti)neutrino energy. At the lower energy the
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Figure 3.6: νN → νNγ (left) and ν̄N → ν̄Nγ (right) photon energy
(top) and photon angular (bottom) differential cross sections at Eν,ν̄ =
1 GeV on both protons and neutrons. The angle θγ is referred to the
direction of the incoming (anti)neutrino beam. A cut of Eγ ≥ 140 MeV
has been applied. Solid curves are for the full model. The curves
labeled as ∆, N and D13 stand for the partial contributions of the
(∆P +C∆P ), (NP +CNP ) and the (N(1520)P +CN(1520)P ) terms,
respectively. The lines labeled as “no N∗” display the predictions
neglecting the N∗ contributions.

reaction is more forward-peaked for neutrinos than for antineutrinos.
In the later case, the maximum of the distribution moves forward as the
energy increases. The photon energy differential cross sections always
exhibit a peak slightly above Eγ = 0.2 GeV, mainly produced by the
interplay between the ∆−pole and the three-body phase space photon
energy distribution. The ∆ propagator suppresses not only the low
photon energy contributions, but also the high photon energy tail that
would appear because of the boost to the LAB frame.

Next, we compare our predictions for the nucleon cross sections
with those obtained in Refs. [86, 88]. These two models include the
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Figure 3.7: Same as Fig. 3.6, but for an (anti)neutrino energy of 2
GeV.

NP +CNP and ∆P +C∆P mechanisms, with dominance of ∆P like
in our case. The Compton-like contributions (NP + CNP ) are deter-
mined by the electromagnetic and axial nucleon form factors, which
are reasonably well constrained. The predictions of Ref. [88] for these
mechanisms are similar to ours. Instead, those in Ref. [86] exhibit a
steeper energy dependence, because of the higher nucleon axial mass,
MA = 1.2 GeV in FA [Eq. (3.20)], used there. This choice was moti-
vated by the first phenomenological analysis of the MiniBooNE CCQE
scattering data on carbon using the relativistic Fermi gas model [133]10.
Later theoretical studies [26, 34, 134, 135] have shown that such high
values of MA encoded multi-nucleon contributions that were not taken
into account in the experimental analyses. We use a lower value for
MA = 1 GeV, which is consistent with two independent experimental
sources: bubble chamber neutrino/antineutrino induced QE reactions
on hydrogen and deuterium and pion electroproduction [106]. In ad-

10In the final MiniBooNE analysis [6], an even larger value of MA ∼ 1.35 GeV
was obtained.
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dition to the NP + CNP and ∆P + C∆P mechanisms, R. Hill [86]
also considers t−channel π, ρ and ω exchanges. Only the latter one
provides a non-negligible cross section that, for antineutrinos, could
become comparable to the nucleon Compton-like contribution for inci-
dent energies above 1.5 GeV. However, the size of the ω contribution
strongly depends on the mostly undetermined off-shell form factor and
is then affected by large uncertainties.

In the model of X. Zhang and B. Serot [88], additional contact
terms allowed by symmetry were considered. As pointed out in the
Introduction, they notably increase the cross section above ∼ 1 GeV
(see Fig. 3 of that reference). In Ref. [42], it is argued that these
contact terms are the low-energy manifestation of anomalous ρ and
ω interactions; their contributions below 550 MeV are very small, as
expected on the basis of the power counting established there. To
extend these findings to higher energies, phenomenological form factors
are employed [88], which are, however, not well understood. Therefore,
their cross section above Eν ∼ 1 GeV should be taken cautiously since
contact terms are a source of uncontrolled systematics.

We now focus on the comparison for the dominant ∆ contribution,
which is presented in Fig. 3.8. Different values of the axialN∆ coupling
CA

5 (0) and photon energy cuts have been implemented in Refs. [86, 88],
as specified in the caption of Fig. 3.8. We have used these inputs
and compared our predictions with those found in these references,
finding a good agreement particularly with Ref. [88]. In the case of
Ref. [86] the agreement is better for antineutrinos than for neutrinos.
However, in the actual calculations, a major difference arises from the
fact that we are using a substantially lower value of CA

5 (0) = 1.00.
Thus, our final predictions for the dominant ∆ contribution are about
30% or 45% smaller than those of Refs. [88] and Ref. [86], respectively.
The error bands in our results of Fig. 3.5, which are determined by
the uncertainty in CA

5 (0), partially englobe these discrepancies. In
this context, it is worth reminding that the value of CA

5 (0) = 1.00 ±
0.11 used here was determined in a combined analysis of the neutrino
induced pion production ANL [136, 137] and BNL [138, 139] bubble
chamber data. This was done with a model closely resembling the
present one i.e. including nonresonant mechanisms, with the correct
threshold behavior dictated by chiral symmetry, the dominant ∆(1232)
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excitation and also deuteron effects [40]. Such a consistency with pion
production data on the nucleon was not attempted in Refs. [86, 88].
Actually, the ANL νµp → µ−pπ+ data are notably overestimated in
Ref. [88] as can be seen in Fig. 2 of that article.
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Figure 3.8: Top panel: ∆P +C∆P cross sections obtained by us (solid
lines) and from Ref. [86] (dashed lines), for νN → νNγ (red upper
curves) and for ν̄N → ν̄Nγ (blue lower curves). For this comparison
we have taken CA

5 (0) = 1.2 and no cut in Eγ as in Ref. [86] (note the
∆P + C∆P are finite in the Eγ → 0 limit). Bottom panel: ∆P cross
section obtained by us (solid lines) and from Ref. [88] (dashed lines),
for νN → νNγ (red upper curves) and for ν̄N → ν̄Nγ (blue lower
curves). For this comparison we have adopted CA

5 (0) = 1.14 and an
Eγ ≥ 0.2 GeV cut, as in Ref. [88].

3.4.2 Neutral current photon emission in nuclei

For the present computations we take nuclear charge density distribu-
tions, normalized to the number of protons in the nucleus, extracted
from electron scattering data [140]. The neutron matter density profiles
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are parametrized in the same way as the charge densities (but normal-
ized to the number of neutrons) with small changes from Hartree-Fock
calculations [141] and supported by pionic atom data [142]. The corre-
sponding parameters are compiled in Table I of Ref. [120]. Furthermore,
these density distributions have been deconvoluted to get center-point
densities following the procedure described in Ref. [143].

Incoherent reaction: 1p1hγ contribution

In the left panels of Fig. 3.9, we show our predictions for the (anti)neutrino
incoherent photon emission cross sections on 12C as a function of the
(anti)neutrino energy up to 2 GeV. We observe that the neglect of nu-
clear medium corrections, as it was done in the study of the NCγ excess
of events at MiniBooNE of Ref. [90], is a quite poor approximation. By
taking into account Fermi motion and Pauli blocking, the cross section
already goes down by more than 10%. With the full model that also
includes the ∆ resonance in-medium modification, the reduction is of
the order of 30%. Furthermore, we corroborate the findings on nucleon
targets (Fig. 3.5) about the N∗ contributions [mostly the N(1520)] be-
ing sizable above ∼ 1.5 GeV, specially for antineutrino cross sections.

In the right-hand plots of Fig. 3.9, we compare our results with the
predictions of Ref. [88]. As in the nucleon case (Fig. 3.8), we focus on
the dominant ∆P contribution and use the same CA

5 (0) = 1.14 value
and photon energy cut (200 MeV) as in Ref. [88]. When all the nu-
clear corrections are neglected, we certainly obtain the same curves as
in Fig. 3.8, but multiplied by the number of nucleons (12). As can be
observed in the figure, we find an excellent agreement both for neutrino
and antineutrino cross sections. However, nuclear medium effects turn
out to be much more important, leading to a much larger suppression
(∼ 50%), in the calculation of Ref. [88] for neutrinos. This seems sur-
prising, first, because at this moderately high neutrino energies, similar
nuclear corrections should be obtained with both models. In particu-
lar, one would not expect significant differences in the ∆ resonance
broadening in the medium when calculated with Eq. (3.66) or with
the spreading potential of Ref. [52]. 11 Because of the larger nuclear

11We should mention that we agree better with the ∆P cross section of Ref. [88]
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Figure 3.9: Left panel: Neutrino (top) and antineutrino (bottom) inco-
herent photon emission cross sections on 12C. All curves in this panel
have been obtained with an Eγ ≥ 140 MeV cut in the phase space.
Solid lines stand for results from the complete model at the nucleon
level, while the dotted lines display the predicted cross sections without
the N∗ contributions. Curves denoted as “Free” (upper blue curves)
do not include any nuclear correction: the nuclear target is treated as a
mere ensemble of nucleons (σA = Zσp+Nσn). Curves labeled as “Full”
(lower red curves) take into account Pauli blocking, Fermi motion and
the in medium ∆ resonance broadening. The error bands show the
uncertainty on the full model that arises from the determination of
the axial N∆ coupling from data (CA

5 (0) = 1.00 ± 0.11) [40]. Right
panel: ∆P contribution to the neutrino (top) and antineutrino (bot-
tom) photon emission cross sections on 12C from Ref. [88] compared to
our predictions for the same mechanism, adopting the same infrared
photon energy cut Eγ ≥ 0.2 GeV and CA

5 (0) = 1.14. The meaning of
“Free” and “Full” labels is the same as in the left plots.

for neutrinos if we take an imaginary part of the ∆ selfenergy twice bigger than
the one in Eq. (3.66).
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suppression, the ∆P cross section found in Ref. [88] is smaller than the
one obtained here in spite of the 14% larger CA

5 (0). In the antineutrino
cross sections, the difference is not so large, and the medium effects
shown in Ref. [88] are only slightly greater than those found in the
present work. As a consequence of the large reduction of the ∆P con-
tribution on 12C, the contact terms become relatively important from
Eν = 1 GeV on, rapidly increasing and turning dominant above 1.5
GeV (see Fig. 3 of Ref. [88]). Indeed, contact terms compensate the
suppression of the ∆P mechanism, so that the incoherent cross sections
predicted in Ref. [88] are comparable to ours in the 1 GeV region, but
become about 40% (70%) larger than our results for 2 GeV neutrinos
(antineutrinos) even though the contributions from resonances heavier
that the ∆ were not taken into account.
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Figure 3.10: Neutrino (top) and antineutrino (bottom) incoherent NCγ
total cross sections as a function of the (anti)neutrino energy (left pan-
els), photon angular (middle panels) and photon energy (right panels)
differential distributions at Eν,ν̄ =1 GeV. The angle θγ is referred to
the direction of the incoming (anti)neutrino beam. Results for differ-
ent nuclei (12C,16O,40Ar, 40Ca,56Fe and 208Pb) divided by the number
of nucleons are shown. All results are obtained with the full model,
including nuclear effects and implementing an Eγ ≥ 140 MeV cut.

In Fig. 3.10, we show total NCγ incoherent cross sections for differ-
ent nuclei (carbon, oxygen, argon, calcium, iron and lead) as a function
of the (anti)neutrino energy. We also display photon angular and en-
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ergy distributions for an incoming (anti)neutrino energy of 1 GeV. We
notice the approximated A−scaling present in the results, which im-
plies a mild A dependence of nuclear effects. Nevertheless, the cross
section is smaller for heavier nuclei, particularly 208Pb. We should
stress that the observed deviation from scaling cannot be explained
only by neutron cross sections being smaller than proton ones (around
15-20% at Eν ∼ 1.5 GeV)12.

Concerning the kinematics of the emitted photons, the main fea-
tures are similar to those in Figs. 3.6 and 3.7 for scattering on single
nucleons. As in that case, the reaction is more forward for neutrinos
than for antineutrinos at Eν = 1 GeV. In the outgoing photon energy
distributions (right panels), the peak just above Eγ = 0.2 GeV ob-
served for nucleons is reproduced here without any shift in the peak
position but with slightly larger width as the target mass increases.

Coherent reaction

Total NCγ coherent cross sections on carbon as a function of the
(anti)neutrino energy are presented in Fig. 3.11. We display our re-
sults from the full calculation, from (∆P + C∆P ) alone, and without
the mechanisms from second N∗ resonance region. The N∗ contribu-
tions are quite small in the coherent channel, while the ∆ is absolutely
dominant in both the neutrino and the antineutrino modes. Nucleon-
pole contributions are negligible because the coherent kinematics fa-
vors a strong cancellation between the direct and crossed terms of the
amplitude. A similar effect has been observed in weak coherent pion
production [96].

For comparison, the predictions from the (∆P+C∆P+NP+CNP )
part of the model of Ref. [88] are also plotted. They are slightly above
our corresponding results (without N∗), and within the uncertainty
band of our full-model curve, up to (anti)neutrino energies of 1.4–1.5
GeV. Above these energies, there is a change of slope and a pronounced
enhancement [88]. Moreover, in the model of this reference, the cross
section above Eν,ν̄ = 0.65 GeV is not dominated by the (N +∆) mech-
anism, but by contact terms from higher order effective Lagrangians

12Note that the ∆P contribution is the same on protons and neutrons. Thus,
this dominant mechanism does not contribute to such differences.
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Figure 3.11: Neutrino (top) and antineutrino (bottom) total NCγ co-
herent cross sections on 12C, as a function of the (anti)neutrino energy.
A photon energy cut of Eγ ≥ 140 MeV has been implemented. Red
solid lines stand for results from the complete model derived in this
work, including ∆ resonance broadening, with error bands determined
by the uncertainty of ±0.11 in CA

5 (0) [40]. The solid blue lines below,
labeled as “no N∗”, display the predicted cross sections without the
N∗ amplitudes, while the magenta dotted ones are the contributions
from the (∆P + C∆P ) mechanisms. We also show the predictions of
Ref. [88] for nucleon and ∆ mechanisms (red solid lines in Fig.4 of this
reference).

whose extrapolation to higher energies is uncertain. Indeed, for some
choices of parameters, coherent cross sections as large as 25 × 10−42

cm2 were obtained for Eν,ν̄ = 1.5 GeV [88]. This amounts to a factor
3-4 larger than our predictions. We should remind here that below 500
MeV, the contact terms in the nucleon amplitudes are very small as
expected based on the power counting established in Ref. [42]. Because
of the substantial reduction of the ∆ mechanisms, the contact terms
in Ref. [88] acquire further relevance when the processes take place in
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nuclei, specially for the coherent reaction.
Our results for coherent NCγ total and differential cross sections on

different nuclei are shown in Fig. 3.12. Neutrino (antineutrino) coher-
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Figure 3.12: Neutrino (top) and antineutrino (bottom) total cross sec-
tions (left panels) photon angular (middle panels) and photon energy
(right panels) differential distributions for the coherent NCγ reaction,
obtained with our full model. The angle θγ is referred to the di-
rection of the incoming (anti)neutrino beam. The kinematic region
of Eγ < 140 MeV has been cut out. Results for different nuclei
(12C,16O,40Ar, 40Ca,56Fe and 208Pb) divided by the number of nucle-
ons are shown.

ent cross sections are about a factor 15 (10) smaller than the incoherent
ones given in Fig. 3.10. Thus, the relative relevance of the coherent
channel with respect to the incoherent channel is comparable, if not
greater than in the pion production reactions induced by neutrinos and
antineutrinos, where it is of the order of few per cent [43, 123]. No-
tice that in these latter reactions the coherent cross section is further
reduced (by around a factor of two) because of the strong distortion
of the outgoing pion, which is not present in photon production. It is
also true that the incoherent cross section is reduced (∼ 20− 30%) by
final state interactions, again absent for photons.

The coherent cross sections neither scale with A, like the incoherent
one approximately does, nor with A2 as one would expect from the
coherence of the dominant isoscalar ∆P mechanism (sum of neutron
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and proton amplitudes). This is due to the presence of the nuclear
form factor (Fourier transform of the nuclear density for momentum

~q−~kγ), see the first paragraph of Sec. 3.3.2 and Eq. (3.70). The nuclear

form factor gets its maximum values when ~q = ~kγ, which corresponds

to q2 = 0. In this forward kinematics, the lepton tensor L
(ν,ν̄)
µσ ∼ qµqσ,

and the vector part of the amplitude squared is zero due to CVC.
Furthermore, the axial contribution, which is purely transverse ∼ (~kγ×
~q) also vanishes. Therefore, the largest differential cross sections arise
in kinematics that optimize the product of the amplitude squared of
the elementary process times the nuclear form factor. Such a balance
also appears in the (3He,3 Hπ+) reaction on nuclear targets [124] or
in electron and photon induced reactions, making the electromagnetic
coherent pion production cross section a rather small fraction of the
total inclusive nuclear absorption one [102, 103].

The described pattern strongly influences the photon angular de-
pendence of this reaction shown in the middle panels of Fig. 3.12 al-
though in a non-trivial way because the θγ angle is given with respect
to the direction of the incoming (anti)neutrino beam; it is not the angle

formed by ~q and ~kγ, which is not observable. Actually, for each value
of θγ, and integration over all possible ~q is carried out. The details of
the angular distributions are determined by interferences between the
dominant ∆P mechanism and the C∆P and N(1520) ones, enhanced
by the kinematic constraints imposed by the nuclear form factor. The
impact of the latter is apparent in the width of the angular distribu-
tions which are narrower for heavier nuclei.

Finally, in Fig. 3.12 we display the outgoing photon energy dis-
tributions (right panels). In the coherent NCγ reaction, there are two
massless particles in the final state, and a third one (the nucleus) which
is very massive and has a small (negligible) kinetic energy but can carry
large momenta. The prominent peak observed for all nuclei is due to
the dominant ∆ resonance 13 shifted to slightly lower invariant masses
mostly by the energy dependence of the ∆ width and the interference

13The energy of the resonant photons in LAB can be estimated from M2
R ≈

(kγ + p′)2. Taking p′ from Eq. (3.73) and for the situation ~kγ ≈ ~q favored by the
nuclear form factor, one finds that k0γ(R) ≈ (M2

R−M2)/(2M). This gives 340 MeV

for the ∆(1232) and 760 MeV for the N(1520).
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with the C∆P mechanism. The peak position does not change appre-
ciably from nucleus to nucleus, but it gets broader as A increases. The
second, smaller and broader peak that can be discerned for neutrinos
but not for antineutrinos corresponds to the excitation of theD13(1520)
resonance.

3.5 Conclusions

Neutral current photon emission on nucleons and nuclei at intermedi-
ate energies has been theoretically investigated. We have developed a
microscopic model for these reactions, in line with previous work on
weak pion production [39, 43, 50, 96]. We have critically reviewed pre-
vious models for the NCγ reaction on single nucleons [42, 86, 88] and
nuclei [52, 88, 91] and compared our results with those found in these
references. From such a comparison, we have identified some aspects
of the above studies that either needed to be improved or that were
sources of uncontrolled systematic corrections.

NCγ processes are important backgrounds for νµ → νe and ν̄µ →
ν̄e appearance oscillation experiments when photons are misidentified
as e± from CCQE scattering of νe(ν̄e). At the relevant energies for
MiniBooNE and T2K experiments, the reaction is dominated by the
weak excitation of the ∆(1232) resonance and its subsequent decay
into Nγ. Besides, we have also considered non-resonant amplitudes
that, close to threshold, are fully determined by chiral symmetry, and
those driven by nucleon excited states from the second resonance region.
Among the latter ones, we have found a sizable contribution of the
D13(1520) state for (anti)neutrino energies above 1.5 GeV.

The model on the nucleon is extended to nuclear targets taking
into account Fermi motion, Pauli blocking and the in-medium modifi-
cations of the ∆ properties in a local Fermi gas, with Fermi momenta
determined from proton and neutron density distributions. We have
predicted different observables for several nuclei, including some of the
common ones in current and future neutrino detectors (carbon, oxygen,
argon, iron). The importance of nuclear corrections in both the coher-
ent and incoherent channels has been stressed. The A dependence of
the cross section, which is different for the coherent and incoherent
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reactions, has also been discussed.
In the light of our results, a new analysis of the NC induced pho-

ton production at MiniBooNE with the present model, aiming at the
clarification of the role played by NCγ events in the low-energy excess
observed in this experiment, looks timely and important. It will be
presented in the next chapter.



64 CHAPTER 3. PHOTON EMISSION IN NC ...



Chapter 4

Single photon events from
neutral current interactions
at MiniBooNE

4.1 Introduction

The paradigm of three mixing flavors of neutrinos emerges from os-
cillation experiments with solar, atmospheric, reactor and accelerator
neutrinos in which the square-mass differences and mixing angles have
been determined with ever growing precision (see Ref. [144] for a recent
global analysis). Nevertheless, a number of anomalies that challenge
this picture has been observed. One of them has been reported by
MiniBooNE [145]. The MiniBooNE experiment was designed to ex-
plore the short-baseline ν̄µ → ν̄e oscillations observed at the Liquid
Scintillator Neutrino Detector (LSND) [146]. It has found an excess
of electron-like events over the predicted background in both ν and ν̄
modes [59, 61]. The excess is concentrated at 200 < EQE

ν < 475 MeV,
where EQE

ν is the neutrino energy reconstructed assuming a charged-
current quasielastic (CCQE) nature of the events (see Fig. 4.1). Recent
analyses have shown that this anomaly cannot be explained by the ex-
istence of one, two [147, 148] or event three [147] families of sterile
neutrinos, pointing at an explanation that does not invoke oscillations.
Although there are exotic explanations based on Lorentz violation [149]
or radiative decay of heavy neutrinos [150], it could have its origin in
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poorly understood backgrounds or unknown systematics. Therefore, it
is important to scrutinize the background prediction using our present
knowledge of electroweak interactions on nucleons and nuclei.
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Figure 4.1: Electron-like event distributions observed at MiniBooNE
in both neutrino and antineutrino modes, as a function of EQE

ν . The
different components of the background estimate are also shown [59].

Al low EQE
ν the background is dominated by photon emission be-

cause Cherenkov detectors like MiniBooNE cannot distinguish elec-
trons from single photons. The largest source of single photons is
neutral current (NC) π0 production where one of the photons from the
π0 → γγ decay is not identified. This background has been constrained
by the MiniBooNE’s NCπ0 measurement [12]. The second most impor-
tant process is single photon emission in NC interactions (NCγ). The
MiniBooNE analysis estimated this background using the NCπ0 mea-
surement, assuming that NCγ events come from the radiative decay of
weakly produced resonances, mainly ∆ → Nγ [59, 61]. This procedure
neither takes into account the existence of non-resonant terms in the
NCγ amplitude, nor the coherent part of the NCγ cross section in nu-
clei. If the NCγ emission estimate were not sufficiently accurate, this
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would be relevant to track the origin of the observed excess.

The first effort to put the description of NC photon emission on
solid theoretical grounds was reported in Ref. [86]. The reaction on
nucleons was studied with a microscopic model developed in terms of
hadronic degrees of freedom: nucleon, ∆(1232) resonance and mesons.
Coherent photon emission off nuclear targets was also evaluated. With
this model, the NCγ event rate at the MiniBooNE detector was cal-
culated to be twice larger than expected from the MiniBooNE in situ
estimate. The conclusion was that NCγ events give a significant con-
tribution to the low-energy excess [90]. However, in Ref. [90], the
detector material CH2 was treated as an ensemble of nucleons, neglect-
ing nuclear-medium effects. In addition, a rather high and constant
efficiency of e-like event reconstruction (30.6 ± 1.4%) was assumed.
A contrasting result, much closer to the MiniBooNE estimate, was
obtained in Ref. [88], based on the chiral effective field theory of nu-
clei [42, 52, 91], phenomenologically extended to the intermediate en-
ergies (Eν ∼ 1 GeV) of the ν/ν̄ beams at MiniBooNE. In this model,
a rather strong in-medium suppression of the ∆(1232) excitation is
compensated by rapidly growing contact terms which are not well un-
derstood at Eν & 1 GeV, being a source of uncontrolled systematics.

In the Chapter 3 (based on Ref. [104]), we have studied the NCγ
reaction on nucleons and nuclei at intermediate energies with a realistic
model that extends and improves relevant aspects of the previous work.
For free nucleons, the model respects chiral symmetry at low momenta
and accounts for the dominant ∆(1232) excitation using N −∆(1232)
transition form factors extracted from phenomenology. Mechanisms
involving the excitation of baryon states from the second resonance
region [N∗(1440), N∗(1520) andN∗(1535)] have also been incorporated
in order to extend the validity of the approach towards higher energies.
Both incoherent and coherent reaction channels on nuclear targets have
been calculated applying standard nuclear corrections, in particular,
the broadening of the ∆(1232) resonance in nuclear matter.

With this model, using the available information about the Mini-
BooNE (anti)neutrino flux [59, 151], detector mass and composition [59],
and detection efficiency [152], we now predict the NCγ events at Mini-
BooNE. We investigate the photon energy and angle, as well as the
reconstructed (anti)neutrino energy distributions, estimating the un-
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certainty in the theoretical model. We pay attention to the contribu-
tion of antineutrinos in neutrino mode (and vice-versa), and discuss
the impact of N∗ excitation mechanisms. Our predictions are com-
pared to the the MiniBooNE in situ estimate [59, 152] and the results
of Ref. [88].

The chapter is based on Ref. [153]. In Sec. 4.2 the theoretical model
of the NCγ reaction on nucleons and nuclei is briefly described. We
refer the reader to Chapter 3 for more details. The expressions for the
single photon electron-like events in the conditions of the MiniBooNE
experiment are given in Sec. 4.3. We show our results and the com-
parisons to former estimates in Sec. 4.4, followed by the conclusions in
Sec. 4.5.

4.2 Theoretical description of NC photon

emission on nucleons and nuclei

The model of Ref. [104] (Chapter 3) for NC photon emission off nucle-
ons,

ν(ν̄) +N → ν(ν̄) +N + γ , (4.1)

is defined by the set of Feynman diagrams for the hadronic current
shown in Fig. 4.2.

NN

Z

∆

γ

N*N, , ∆ NN

Z γ

N N*, ,
N N

Z

π

γ

Figure 4.2: Feynman diagrams for the hadronic current for NC photon
emission considered in Ref. [104] (Chapter 3). The first two diagrams
stand for direct and crossed baryon pole terms with nucleons and reso-
nances in the intermediate state: BP and CBP with B = N , ∆(1232),
N∗(1440), N∗(1520), N∗(1535). The third diagram represents the t-
channel pion exchange: πEx.
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As discussed in the previous chapter, the structure of nucleon pole
terms, NP and CNP , at threshold is fully constrained by gauge and
chiral symmetries, and the PCAC. They are infrared divergent when
the photon energy Eγ → 0 but this becomes irrelevant when the ex-
perimental detection threshold (Eγ > 140 MeV in the case of Mini-
BooNE [60]) is taken into account. The extension towards higher en-
ergy transfers required to make predictions at Eν ∼ 1 GeV is performed
using phenomenological parametrizations of the weak and electromag-
netic form factors. Strange form factors, whose present values are
consistent with zero [154] have been neglected.

The most prominent contribution to the cross section arises from
the weak excitation of the ∆(1232) resonance followed by its radiative
decay. The ∆P and C∆P terms can be written in terms of vector and
axial N−∆ transition form factors. The vector form factors are related
to the helicity amplitudes extracted in the analysis of pion photo- and
electro-production data. We have adopted the parametrizations of the
helicity amplitudes obtained with the unitary isobar model MAID [111].
After adopting the Adler model [113, 114], the axial transition is ex-
pressed in terms of a single form factor, CA

5 in the notation of Ref. [155],
for which we assume a standard dipole dependence on the square of
the four-momentum transferred to the nucleon by the neutrino (q2)

CA
5 (q

2) = CA
5 (0)

(
1− q2

M2
A

)−2

, (4.2)

with CA
5 (0) = 1.00 ± 0.11 and MA = 0.93 GeV determined in a fit to

νµd→ µ−∆++n BNL and ANL data [40].

A similar strategy has been followed for the N∗P and CN∗P am-
plitudes: the electroweak N − N∗ transition currents, whose general
structure depends on the spin and parity of the excited resonance, are
parametrized in terms of vector and axial transition form factors. The
vector form factors are expressed in terms of the empirical helicity
amplitudes extracted in the MAID analysis. There is no experimental
information that could be used to constrain the axial form factors. Fol-
lowing Ref. [41], we have kept only the leading axial terms and used
PCAC to derive off-diagonal Goldberger-Treiman relations between the
corresponding axial couplings and the N∗ → Nπ partial decay widths.
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For the q2 dependence we have assumed a dipole ansatz like in Eq. (4.2)
with a natural value of M∗

A = 1.0 GeV.
Finally, the πEx mechanism originates from the Zγπ0 vertex fixed

by the axial anomaly of QCD. It is nominally of higher order [42]
and gives a negligible contribution to the NCγ cross section. We have
assumed that other higher order terms can be also neglected.

The integrated NCγ cross sections and other observables have been
computed with this model in Sec. IV A of Ref. [104] (Chapter 3.4.1).
Although the ∆(1232) is dominant, the nucleon-pole terms and the
contribution of the N∗(1520) become important at Eν > 1 GeV.

The model has been then extended to nuclear targets for both the
incoherent

ν(ν̄) + AZ |gs → ν(ν̄) + X + γ (4.3)

and coherent
ν(ν̄) + AZ |gs → ν(ν̄) + AZ |gs + γ (4.4)

reactions. For the incoherent process we have taken into account Fermi
motion and Pauli blocking in a local Fermi gas, with Fermi momenta
determined from proton and neutron density distributions. For the co-
herent one we have followed the framework derived in Ref. [50] for weak
coherent pion production reactions. The nuclear current is obtained
by summing the contributions of all nucleons. In this sum, the nucleon
wave functions remain unchanged and one obtains nuclear density dis-
tributions. In both types of reactions, the broadening of the ∆(1232)
in the nuclear medium is considered. The resonance decay width is re-
duced because the final nucleon in ∆ → πN can be Pauli blocked but,
on the other hand, it increases because of the presence of many body
processes such as ∆N → NN , ∆N → NNπ and ∆NN → NNN (colli-
sional broadening). These new decay channels have been parametrized
as a function of the local density in Ref. [119]. The resulting cross sec-
tions and photon distributions for different target nuclei can be found
in Sec. IV B of Ref. [104] (Chapter 3.4.2).

4.3 Single photon events at MiniBooNE

The number of NCγ events at the MiniBooNE detector with a given
photon energy (Eγ) in the Laboratory frame and polar angle with
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respect to the incoming neutrino beam direction (θγ) can be cast as

dN

dEγd cos θγ
= ε(Eγ)

∑
l=νµ,ν̄µ

N
(l)
POT

∑
t=p, 12C

Nt

∫
dEνφl(Eν)

dσl t(Eν)

dEγd cos θγ
.

(4.5)
Here ε(Eγ) stands for the energy dependent detection efficiency for
e-like events provided by the MiniBooNE Collaboration [152] and dis-
played in the left panel of Fig. 4.3. The integral over the Laboratory
neutrino energy covers most of the neutrino fluxes φl. We take into
account intrinsic (before oscillations) νµ and ν̄µ components in both
neutrino and antineutrino modes (right panel of Fig. 4.3)1 but not
the intrinsic νe and ν̄e ones, as we have checked that their contribu-
tion to the number of events is negligible. Fluxes with Eν > 3 GeV
are also neglected. The total number of protons on target (POT)

N
(ν)
POT = 6.46 × 1020 in ν mode [61] and N

(ν̄)
POT = 11.27 × 1020 in ν̄

mode [59]. The sum over t takes into account that, according to the
target composition (mineral oil, CH2), the interactions can take place
on single protons or on 12C nuclei,

Np =
2

14
MNA =

1

7
MNA , N12C =

12

14
M
NA

12
=

1

14
MNA , (4.6)

where M = 806 tons is the detector mass [59] and NA, the Avogadro
number.

Using Eq. (4.5) and the cross section model of Chapter 3 (Ref. [104])
outlined in the previous section, it is straightforward to obtain event
distributions for the observable photon energy and angle. These will
be presented and discussed in the next section. On the other hand,
as a source of irreducible background to the electron CCQE events
from νµ → νe (ν̄µ → ν̄e) oscillations, it is important to predict the
event distribution as a function of EQE

ν . In the MiniBooNE study, the
latter is determined from the energy and angle of the outgoing electron,
assuming that it originated in a ν n → e− p (ν̄ p → e+ n) interaction

1The flux predictions at MiniBooNE have been refined in Ref. [156] with two
different methods. The analysis shows that while the spectral shape is well modeled,
the ν flux component in ν̄ mode has been overestimated. Therefore this component
should be rescaled by 0.76±0.11 or 0.65±0.23 depending on the method. We adopt
the more precise and less model dependent [156] value of 0.76.
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Figure 4.3: Left panel: Detection efficiency of electron-like events at
the MiniBooNE detector as a function of the energy deposit [152] (Eγ

in our case). Right panel: The predicted flux at MiniBooNE in ν and
ν̄ modes [151].

on a bound neutron (proton) at rest

EQE
ν =

2(mN − EB)E
′ − E2

B + 2mNEB

2 [(mN − EB)− E ′(1− cosθ′)]
, (4.7)

withmN the nucleon mass. The difference between the proton and neu-
tron masses, and the electron mass have been neglected for simplicity;
EB = 34 MeV is the constant binding energy assumed by MiniBooNE
for Carbon nuclei [7]. When photons from NCγ events are misidentified
as electrons, EQE

ν is misreconstructed according to the above equation,
with Eγ and θγ replacing the energy and angle of the outgoing electron
E ′ and θ′. Then, one has that

dN

dEQE
ν

=

∫
dEγd cos θγ

dN

dEγd cos θγ

×δ
(
EQE

ν − 2(mN − EB)Eγ − E2
B + 2mNEB

2 [(mN − EB)− Eγ(1− cosθγ)]

)
. (4.8)
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4.4 Results

In this section, we present our predictions for NCγ e-like events as
functions of EQE

ν , Eγ and cosθγ. We compare to the MiniBooNE in
situ estimate [152] and the results of Ref. [88].

4.4.1 EQE
ν distribution of the NC photon events

Our results for the EQE
ν distributions are shown in Fig. 4.4 using the

same bin sizes as MiniBooNE [152]. The partial contributions from the
reaction on protons and on 12C targets (both incoherent and coherent)
are displayed. The yields from the incoherent channel are the largest
ones. Those from the coherent channel and the reaction on protons,
which are comparable, are smaller but not negligible. In ν mode (left
panel of Fig. 4.4) the contributions of the ν̄µ flux are small and could be
safely neglected. However, in ν̄ mode (right panel of Fig. 4.4), there is
a considerable amount of events from νµ interactions. This is because
the cross section for neutrinos is about 2.5 times larger than that for
antineutrinos [104] and, in addition, the νµ flux component in the ν̄
mode is considerable, much more than the ν̄µ one in the ν mode (see
the right panel of Fig. 4.3).

Next, we display the EQE
ν distributions for the total number of

events in Fig. 4.6. The error bands correspond to the uncertainty in
the axial N∆ coupling CA

5 (0) = 1.00± 0.11 [40]. The comparison with
the MiniBooNE in situ estimate [59, 152] shows a good agreement; the
shapes are similar and the peak positions coincide. The largest dis-
crepancy is observed in the lowest energy bin. In the two bins with the
largest number of events, the two calculations are consistent within our
errorbars. For higher EQE

ν values, our results are systematically above
the MiniBooNE estimate although the differences are small. The error
in the detection efficiency (∼ 15%) [152], not considered in this compar-
ison, will partially account for the discrepancies. The fair agreement
between our predictions and the MiniBooNE estimates can be also ap-
preciated by comparing Figs. 4.1 and 4.5. Both figures differ only in
the NCγ component of the background that in the latter one has been
calculated with our full model.

We have also plotted our results without the contributions from
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Figure 4.4: Distribution of NCγ e-like events at MiniBooNE as a func-
tion of the reconstructed (anti)neutrino energy (EQE

ν ) for the νµ (top)
and ν̄µ (bottom) MiniBooNE fluxes in the ν (left) and ν̄ (right) modes.
The curves labeled as “p”, “inc” and “coh” stand for the contributions
of the ν(ν̄) − p, ν(ν̄) −12 C incoherent and coherent reactions, respec-
tively. The model parameters are given in Ref. [104]. ∆QE denotes the
size of the EQE

ν bin in the experimental set up.

the N∗ states populating the second resonance peak. The differences
with the full calculation are small and only sizable at higher EQE

ν (com-
pared with the number of events in these bins). The small impact of
these heavier resonances is expected in view of the rather low energies
present in the MiniBooNE flux. It is interesting that the inclusion of
the N∗ increases the differences with the MiniBooNE estimate above
the maximum (EQE

ν > 0.475 GeV). This might reflect the fact that
resonance excitation at MiniBooNE is calculated with the phenomeno-
logically outdated model of Rein and Sehgal [157] (see for instance the
discussion in Ref. [158]).

Before finishing this subsection, in Tables 4.1 and 4.2, we compile
the NCγ events in three bins of EQE

ν in order to compare to Ref. [88].
Our results without N∗ can be confronted with the lower bound in
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Figure 4.5: Same as Fig. 4.1, but replacing the MiniBooNE ∆ → Nγ
background estimate by our prediction for the NCγ event distribution.

Ref. [88] obtained with ∆ and nucleon-pole terms alone. Except for
the first bin, Ref. [88] predicts less events than we do. This difference,
which is considerable in the third bin, could be partially attributed to
the much stronger reduction of the incoherent cross section found in
Ref. [88] (see Fig. 9 and the related discussion in Ref. [104]). Instead,
the upper bound in the prediction of Ref. [88], calculated including
contact terms, is larger than our results and than the MiniBooNE
estimate, particularly in the third bin. As mentioned in Ref. [88],
this large difference should be taken with caution. Indeed, the higher
order contact terms extrapolated away from threshold are a source of
systematic errors.

4.4.2 Eγ distribution of the NC photon events

The partial contributions of the different reaction channels to the Eγ

distributions are shown in Fig. 4.7. The same features discussed above
are present. All distributions have a maximum at Eγ = 0.2− 0.3 GeV
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Figure 4.6: EQE
ν distributions of total NCγ events for the ν (left)

and ν̄ (right) modes. The error bands correspond to the uncertainty
in CA
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5 (0). The curves la-
beled as “no N∗” show results from our model without the N∗(1440),
N∗(1520) and N∗(1535) contributions. The “MB” histograms display
the MiniBooNE estimates [152].

except for the coherent reaction induced by antineutrinos, which shows
a broader peak. The agreement of the full model with the MiniBooNE
estimate is very good for this observable, even at the lowest photon-
energy bin, as can be seen in Fig. 4.8. Our results overlap with the
range estimated in Ref. [88] except at the lowest energies, where both
our predictions and MiniBooNE’s are smaller. Nevertheless, it should
be recalled that considering the lowest limit of the range estimated
in Ref. [88], where the model content of the two approaches is very
similar, we predict more NCγ events than Zhang and Serot [88] for
Eγ > 0.2 GeV.

4.4.3 cosθγ distribution of the NC photon events

The partial contributions to the cosθγ distributions of NCγ events,
presented in Fig. 4.9, show some interesting features. The distribu-
tions from incoherent scattering on 12C are more forward peaked for
neutrinos than for antineutrinos; the latter have a maximum around
cosθγ ∼ 0.7. As expected, the coherent events are the most forward
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Table 4.1: EQE
ν distributions of the NCγ events at MiniBooNE (ν

mode). Our predictions for the different partial contributions, their
sum with the error band from the uncertainty in the determination
of the N∆ axial coupling, CA

5 (0), and the results without N∗ are dis-
played. In addition, the lower (∆ +N) and upper (Full) limits in the
calculation of Ref. [88] and the MiniBooNE estimate are shown. The
asterisk (∗) stands for figures obtained with EQE

ν < 1.25 GeV rather
than 1.3 GeV.

ν mode
EQE

ν (GeV) [0.2,0.3] [0.3,0.475] [0.475,1.3]
p(νµ) 2.94 9.11 4.69
inc(νµ) 11.01 32.70 22.47
coh(νµ) 1.38 5.83 1.52
p(ν̄µ) 0.03 0.11 0.06
inc(ν̄µ) 0.14 0.38 0.23
coh(ν̄µ) 0.03 0.10 0.02
Total 15.54 48.23 29.98

Band [from CA
5 (0)] [13.79,17.11] [41.83,53.91] [25.92,31.87]

no N∗ 15.27 47.31 26.60
Zhang(∆ +N) 17.6 43.1 19.3∗

Zhang (Full) 21.4 51.9 37.5∗

MiniBooNE 19.5 47.4 19.9

peaked. For antineutrinos, and in the forward direction, we predict
larger yields from coherent photon emission than from the proton chan-
nels. The comparison with the MiniBooNE in situ estimate, displayed
in Fig. 4.10, reveals that we predict more forward peaked distributions
than MiniBooNE does. This is not surprising as we have sizable coher-
ent contributions, not considered in the MiniBooNE estimate.
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Table 4.2: Same as Table 4.2, but for the ν̄ mode case.

ν̄ mode
EQE

ν (GeV) [0.2,0.3] [0.3,0.475] [0.475,1.3]
p(νµ) 0.31 0.95 0.58
inc(νµ) 1.16 3.38 2.67
coh(νµ) 0.15 0.59 0.16
p(ν̄µ) 0.85 2.76 1.23
inc(ν̄µ) 3.26 9.35 5.09
coh(ν̄µ) 0.85 2.53 0.47
Total 6.58 19.55 10.16

Band [from CA
5 (0)] [5.53,7.74] [16.01,23.63] [8.76,11.86]

no N∗ 6.36 19.09 9.03
Zhang(∆ +N) 6.8 16.7 6.0∗

Zhang (Full) 9.1 22.0 18.0∗

MiniBooNE 8.8 16.9 6.9

4.5 Conclusions

With our microscopic model of Chapter 3 (Ref. [104]) for (anti)neutrino-
induced NC photon emission on nucleons and nuclei, we have calculated
the contribution from these processes to the electron-like irreducible
background at the MiniBooNE experiment. To this aim we have taken
into account the detector mass and composition, detection efficiency
and the relevant components of the (anti)neutrino flux. Event distri-
butions for photon energy and polar angle, relative to the direction of
the incoming neutrino, have been obtained. We have also considered
the distributions in the neutrino energy, misreconstructed assuming a
CCQE nature for the events; this variable is used in the oscillation anal-
ysis as an estimator for the true neutrino energy. The largest contribu-
tion to the NCγ events in the mineral oil (CH2) target of MiniBooNE
arises from the incoherent reaction on 12C although the interactions on
the two protons and coherent scattering on 12C produce sizable, and
similar in magnitude, yields. The contribution from muon neutrinos
in antineutrino mode is found to be important, unlike the insignificant
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Figure 4.7: Distribution of NCγ e-like events at MiniBooNE as a func-
tion of the photon energy for the νµ (top) and ν̄µ (bottom) MiniBooNE
fluxes in the ν (left) and ν̄ (right) modes. The curves have the same
meanings as in Fig. 4.4.

 0

 10

 20

 30

 40

 50

 0.2  0.4  0.6  0.8  1  1.2  1.4

E
ve

nt
s/

(0
.1

 G
eV

)

Eγ (GeV)

ν-mode

0.89-1.11
1.0
no N*
MB
Zhang

 0

 4

 8

 12

 16

 20

 0.2  0.4  0.6  0.8  1  1.2  1.4

E
ve

nt
s/

(0
.1

 G
eV

)

Eγ (GeV)

–ν-mode

0.89-1.11
1.0
no N*
MB
Zhang

Figure 4.8: Photon energy distributions of total NCγ events for the ν
(left) and ν̄ (right) modes. The segments, labeled as “Zhang”, go from
the lower to the upper estimates in Tables IV and V of Ref. [88]. All
the other curves and bands denote the same as in Fig. 4.6.



80 CHAPTER 4. SINGLE γ EVENTS ... AT MINIBOONE

 0

 4

 8

 12

 16

 20

E
ve

nt
s/

(0
.2

)

cosθγ

νµ-flux in –ν-mode

p(ν)
inc(ν)
coh(ν)

 0

 0.04

 0.08

 0.12

 0.16

 0.2

-1.0 -0.5 0.0 0.5 1.0

–νµ-flux in –ν-mode

p(ν)
inc(ν)
coh(ν)

 0

 0.4

 0.8

 1.2

 1.6

 2

E
ve

nt
s/

(0
.2

)

cosθγ

νµ-flux in –ν-mode

p(ν)
inc(ν)
coh(ν)

 0

 1

 2

 3

 4

-1.0 -0.5 0.0 0.5 1.0

–νµ-flux in –ν-mode

p(ν)
inc(ν)
coh(ν)

Figure 4.9: Photon angular distribution of NCγ e-like events at Mini-
BooNE for νµ (top) and ν̄µ (bottom) MiniBooNE fluxes in the ν (left)
and ν̄ (right) modes. The description of the curves is the same as in
Fig. 4.4.

 0

 6

 12

 18

 24

 30

-1 -0.5  0  0.5  1

E
ve

nt
s/

(0
.2

)

cosθγ

ν-mode

0.89-1.11
1.0
no N*
MB

 0

 2

 4

 6

 8

 10

 12

-1 -0.5  0  0.5  1

E
ve

nt
s/

(0
.2

)

cosθγ

–ν-mode

0.89-1.11
1.0
no N*
MB

Figure 4.10: Photon angular distributions of total NCγ events for the
ν (left) and ν̄ (right) modes. Curves and bands denote the same as in
Fig. 4.6.

one of muon antineutrinos in neutrino mode.
These results have been confronted with the MiniBooNE in situ esti-
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mate, obtained by tuning the resonance production model to the NCπ0

measurement without taking into account non-resonant mechanisms or
the coherent part of the cross section. They have also been compared
to the estimates of the model of Zhang and Serot [88] based on an effec-
tive theory extended to higher energies using phenomenological form
factors. The overall agreement is good in spite of the differences in
the approaches, in contrast to the findings of Hill [90], obtained with a
rather high and energy independent detection efficiency and neglecting
nuclear effects. Therefore, we conclude that photon emission processes
from single-nucleon currents cannot explain the excess of the signal-
like events observed at MiniBooNE. Multinucleon mechanisms, which
provide a significant amount of the CCQE-like cross section [26, 34],
await to be investigated for this channel. Although these processes are
bound to have some repercussion, they are unlikely to alter the picture
dramatically. The forthcoming MicroBooNE experiment [159], capable
of distinguishing photons from electrons, should be able to shed light
on this puzzle.
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Chapter 5

Photon emission of neutrino
neutral current interactions
in T2K

5.1 Introduction

More than 15 years of dedicated experimental studies have established
the oscillations of three flavors of massive neutrinos. Recently, the
circle has been rounded by the determination of the so called reactor
neutrino mixing angle θ13. The first indication at a 2.5σ significance of
a nonzero value of θ13 was provided by the T2K experiment in a study
of νe appearance in a νµ beam [160]. Afterwards it has been precisely
measured from ν̄e disappearance in nuclear reactor neutrino experi-
ments [161–163]. The significance of the T2K νe appearance result has
now reached 7.3σ [164]. The increasing precision in these experiments
opens the door to a determination of the CP violating phase in the lep-
ton sector. Indeed, the tension between reactor data and T2K favors
a δCP = −π/2 [164] although the picture is still far from clear because
the MINOS combined νµ disappearance and νe appearance prefers a
δCP = π/2 [165].

Further progress in this direction requires a better control over sys-
tematic errors and, in particular, of irreducible backgrounds. For this
purpose, a better understanding of neutrino interactions with matter is
mandatory. The ongoing effort in this direction englobes more precise
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measurements of different (anti)neutrino cross sections on nuclear tar-
gets, theoretical work aimed at a better description of weak reactions
on both nucleons and nuclei, and improvement of the Monte Carlo sim-
ulation codes; see the reviews of Refs. [22, 85, 158] for different aspects
of these problems.

Super-Kamiokande (SK), the far detector of the T2K experiment, is
a water Cherenkov detector (see Fig 5.1 for an illustration). As such,
it is incapable of discriminating the diffuse rings of e± originated in
charged current interactions by electron neutrinos from those created
by photons. The largest part of such a background originates in π0

production in neutral current (NC) interactions (NCπ0) when the two
photons from π0 → γγ produce overlapping rings or when one of them
is not detected. Another relevant source is the NC single photon emis-
sion (NCγ) reaction. Although NCπ0 has a larger cross section than
NCγ, the π0 background can be reduced with dedicated reconstruction
algorithms, while the NCγ one remains irreducible. Indeed, in the lat-
est T2K analysis [164], the NCπ0 background was reduced by 69 %
with respect to the previous appearance selection [62]. In this context,
the relative relevance of the NCγ channel is significantly enhanced.

x

y
z

Inner 

Outer Detector

   1,000m 

Control room

Access Tunnel

Photo multipliers

41m

    Detector hall

Beam Direction

39m

Detector

Figure 5.1: A schematic view of the SK detector [62]

The interest in a detailed theoretical study of the NCγ reaction [42,
52, 86, 91, 104] followed the observation of an excess of electron-like
events at low reconstructed energies in the MiniBooNE detector, in
both neutrino and antineutrino modes [59, 61]. It was suggested that
an anomalous contribution to NC photon emission could be responsible
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for this [166]. However, in spite of the fact that first studies indicated
that NCγ indeed accounted for the excess [90], more recent analyses
considering nuclear effects and realistic acceptance corrections [88, 153]
obtain a number of photon-induced electron-like events which is con-
sistent with the estimate made by MiniBooNE using a poor resonance
production model tuned to the experiment’s own NCπ0 measurement.
It has also been proposed that additional photons from electromag-
netic heavy neutrino decays could be at the heart of the MiniBooNE
anomaly [150, 167], which would have implications for other experi-
ments such as T2K and MicroBooNE.

Here, we apply our microscopic model for the NCγ reaction [104]
to predict the number of NCγ events at the SK detector, as well as
their energy and angular distributions, for the flux and beam expo-
sure of the latest T2K νe appearance study [164]. The event number
and distributions are compared to the T2K estimates (before efficiency
corrections) [168] obtained with the NEUT event generator [169]. A
detailed account of the theoretical model with comparisons to previous
results is given in Chapter 3 while a brief description can be found in
Sec. 4.2 of Chapter 4.

5.2 Photon events at SK

Once the differential cross sections for the components of the detector
(H2O) are established, it is straightforward to obtain the number of
NCγ events for a given photon energy and direction with respect to
the neutrino beam,

dN

dEγd cos θγ
= NPOT

∑
l=ν,ν̄

∑
t=p, 16O

Nt

∫
dEνφl(Eν)

dσl t(Eν)

dEγd cos θγ
. (5.1)

Here, the total number of protons and 16O nuclei in the SK inner
detector is

Np =
2

18
MNA =

1

9
MNA , N180 =

16

18
M
NA

16
=

1

18
MNA , (5.2)

where M = 2.25 × 1010 grams is the fiducial mass, and NA, the Avo-
gadro number. Our estimate is for the recent T2K νe appearance
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analysis, corresponding to a total number of protons on target (POT)
NPOT = 6.57 × 1020 in ν mode [164]. The flux of the off-axis neu-
trino beam from Tokai has a narrow peak with median energy 630
MeV at SK [170] (see Fig. 5.2). We neglect its contribution above
Eν = 3 GeV. In spite of the rather long tail, a sizable contribution
of the Eν > 3 GeV region would require a considerably large cross
section at high energies, which we do not expect (see the discussion in
Ref. [158]). The negative result in the single photon search performed
by the NOMAD experiment [171], with an average energy of the neu-
trino flux of Eν ∼ 25 GeV, is in line with our assumption. As the NC
interaction is flavor independent, the composition of the beam after
oscillations can be ignored.

The SK energy dependent detection efficiencies for e-like events are
not publically available, and hence they could not be considered in
Eq. (5.1), in contrast to the case of the MiniBooNE experiment (see
Eq. (4.5)). Thus, in what follows, any comparison with real NCγ events
at SK will be only indicative due to the lack of efficiency correction
in our estimate. On the other hand, we have implemented a cut in
the available photon phase space, demanding Eγ ≥ 100 MeV, which
corresponds to the visible energy (∼ Eγ) cut employed at SK [62].
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Figure 5.2: The T2K flux prediction at the SK detector [170] (without
oscillations). Shown only below 5 GeV although it is simulated up to
30 GeV.

It will be instructive to show also the (non observable) neutrino-
energy event distribution, which can be easily related to the integrated
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cross section

dN

dEν

= NPOT

∑
l=ν,ν̄

∑
t=p, 16O

Ntφl(Eν)σl t(Eν) . (5.3)

5.3 Results

The photon energy and angular distributions of the NCγ events at SK
are shown in Fig. 5.3 for the different channels, i.e. NCγ on protons
and on 16O (coherent and incoherent). The contributions of the νµ and
ν̄µ components of the flux are displayed. The incoherent reaction is the
largest and peaks at Eγ ∼ 200−300 MeV, reflecting the importance of
the ∆(1232). The yield of nucleons and the coherent channel, both sim-
ilar in size, is smaller but still important. The ν̄µ contribution is quite
small, representing around 2-3% of the total. Other flux components
are totally negligible. The angular distributions are forward peaked,
particularly for the coherent reaction. The latter has larger incidence
than the nucleon channel in the forward direction. On the other hand,
the angular dependence for the incoherent reaction induced by antineu-
trinos is softer than the neutrino one and peaks around cos θγ = 0.7.
Similar features in the energy and angular distributions were obtained
in the case of MiniBooNE [153].

Summing over all bins in the histograms above, one finds that the
total number of NCγ events is

N = 0.421± 0.051 . (5.4)

The error corresponds to the uncertainty in the determination of the
axial N∆ coupling from data (CA

5 (0) = 1.00 ± 0.11). This is a small
quantity compared to the 28 e-like events detected at SK [164] . Nev-
ertheless, it shall be relevant in future attempts to measure δCP . This
result becomes even more significant when compared to the NEUT
equivalent figure of

NNEUT = 0.165± 0.019 . (5.5)

Indeed, using the NCγ cross section model of Ref. [104] we predict 2-3
times more events than the T2K estimate does.
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are for the νµ (ν̄µ) components of the flux.

In view of this discrepancy, we have performed more detailed com-
parisons with the NEUT NCγ prediction and confronted the photon
energy and angular distributions. Figure 5.4 does not reveal any sig-
nificant shape difference between the two models although one can
notice that the Eγ distribution is somewhat broader in NEUT. The
neutrino energy dependence of the events, displayed in Fig. 5.5 also
shows a good agreement in the shape even if the distribution predicted
by NEUT is slightly broader than the one obtaned with the model of
Ref. [104].

The comparisons in Figs. 5.4 and 5.5 indicate that the disagreement
is due to a discrepancy in the size (normalization) of the integrated
cross sections in the two models. This is consistent with the comparison
of the NCγ integrated cross sections on 12C from different models, as a
function of Eν displayed in Fig. 9 of Ref. [145], where the NEUT result
is clearly below the rest.
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5.4 Conclusions

The microscopic model of Ref. [104] for single photon emission in
(anti)neutrino NC interactions has been applied to predict the number
of such events at the inner SK water Cherenkov detector, as well as
their energy and angular distributions. With this model one can take
into account not only the radiative decay of weakly excited ∆(1232)
resonance on both nucleons and nuclei, but also smaller, although rele-
vant, contributions from nucleon pole terms and the coherent channel
(details can be found in Ref. [104]). For a NPOT = 6.57 × 1020 we
predict 0.421± 0.051 events without efficiency corrections. Only 2-3%
of it arises from the ν̄µ contamination of the νµ beam. This small
but irreducible background has to be realistically estimated in order
to increase the precision in the determination of oscillation parameters,
particularly in δCP measurements.

Remarkably, our prediction is 2.6 times larger than the one obtained
from the main T2K Monte Carlo generator NEUT [169]. In a detailed
inspection, we have found no significant differences in the shapes of
the photon energy, photon angular and neutrino energy distributions
in the two models. The large difference in normalization cannot be
solely attributed to the lack of non-∆ production amplitudes or coher-
ent photon emission in NEUT. It points at a mismodeling of the NCγ
production by ∆(1232) excitation. It is also important to recall that,
as shown in Ref. [104], the number of NCγ events at the MiniBooNE
detector predicted by the same microscopic model used here is consis-
tent with the MiniBooNE in situ estimate obtained with the NUANCE
generator [172] tuned to the NCπ0 measurement [12].

The T2K near detector ND280 may be able to constrain the NEUT
prediction in the future by selecting γ candidate events, as done for
example in Refs. [173, 174].



Chapter 6

Low-lying even parity meson
resonances and spin-flavor
symmetry revisited

6.1 Introduction

The study of the lowest–lying hadron resonances dynamics has received
a lot of attention in the last decades, in particular since it was real-
ized that some of them cannot be easily accommodated as radial or
angular excitations of the Constituent Quark Model (CQM) ground
states. Some examples are the low-lying scalar f0(500), f0(980), a0(980)
and K∗

0(800), or axial vector a1(1260), b1(1235), h1(1170), f1(1285),
K1(1270) mesons. The field has experimented a considerable boost
in the last decade, because several clear candidates for exotic states
can be found among the recently discovered hidden bottom and charm
XY Z resonances reported by the Belle, BABAR, D0 and CDF collab-
orations1. There has been a steady activity in the context of CQM’s
aiming to supplement these models with exotic components due to ex-
istence of tetraquark degrees of freedom inside of the hadrons (see for
instance the discussion in Ref. [177]). Such components might lead to

1For instance, the isovector JPC = 1+− Zb(10610) and Zb(10650) resonances
(which are located just a few MeV above the BB̄∗ and B∗B̄∗ thresholds, respec-
tively [175]) or the 1++ isoscalar hidden charm state X(3872) placed close to the

D0D̄
0∗ threshold [176].
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extended CQM schemes where the known exotic resonances could be
generated and their main features be described. Here, however, we will
pay attention to a different approach, in which the hadron resonances
appear as bound or resonant states of an interacting pair of ground
state hadrons (mesons of the π octet and the ρ nonet and baryons
of the N octet and ∆(1232) decuplet, when the study is limited to
the three lightest quark flavors). In this molecular picture, hadron
resonances show up as poles in the First or Second Riemann Sheets
(FRS/SRS) of certain hadron–hadron amplitudes. The positions of the
poles determine masses and widths of the resonances, while the residues
for the different channels define the corresponding coupling or branch-
ing fractions2. The interaction among the ground state hadrons is thus
the first ingredient to build this molecular scheme. These are usually
obtained from Effective Field Theories (EFT’s) that incorporate con-
strains deduced from some relevant exact or approximate symmetries
of Quantum Chromodynamics (QCD). In this context, it is clear that
Chiral Perturbation Theory (ChPT) [63, 179, 180] and Heavy Quark
Spin Symmetry (HQSS) [66, 67, 181] should play relevant roles, when
designing interactions involving Goldstone bosons or charm/bottom
hadrons, respectively. In this work, we will focus in the light SU(3)
flavor sector and we will leave the extension of this discussion to heavy
molecules for future research.

ChPT is a systematic implementation of chiral symmetry and of
its pattern of spontaneous and explicit breaking, and it provides a
model independent scheme where a large number of low-energy non-
perturbative strong-interaction phenomena can be understood. It has
been successfully applied to study different processes involving light (u
and d) or strange (s) quarks. Because ChPT provides the scattering
amplitudes as a perturbative series, it cannot describe non-analytical
features as poles. Thus, ChPT cannot directly describe the nature of
hadron resonances. In recent years, it has been shown that by unita-
rizing the ChPT amplitudes in coupled channels, the region of appli-
cation of ChPT can be greatly extended. This approach, commonly
referred as Unitary Chiral Perturbation Theory (UChPT), has received

2Some studies have also adopted an hybrid approach performing coupled chan-
nels calculations including quark model and molecular configurations (see for in-
stance the discussion in Ref. [178]).
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much attention and provided many interesting results, in particular in
the meson-meson sector where we will concentrate our attention in
this work, [64, 65, 68, 182–200]. It turns out that many meson-meson
resonances and bound states appear naturally within UChPT. These
states are then interpreted as having “dynamical nature.” In other
words, they are not genuine qq̄ states, but are mainly built out of
their meson-meson components3. To distinguish among these two pic-
tures, it has been suggested to follow the dependence on a variable
number of colors NC(> 3) of the resonance properties by assuming
that hadronic properties scale similarly as if NC was large. Some inter-
esting results are being obtained from this perspective [202–208], and
at present there exists some controversy on the nature of the f0(500)
resonance [203, 207, 208] for which accurate models are available.

The present work is an update of Ref. [68], where was derived a spin-
flavor extension of chiral symmetry to study the S-wave meson-meson
interaction involving members not only of the π-octet, but also of the ρ-
nonet. The similar approach for baryon-meson dynamics was initiated
in [209, 210]. Elastic unitarity in coupled channels is restored in [68]
by solving a renormalized coupled-channel Bethe–Salpeter Equation
(BSE) with an interaction kernel deduced from spin-flavor extensions
of the ChPT amplitudes. In the scheme of Ref. [68], the spin-flavor
symmetry was explicitly broken to account for physical masses and
decay constants of the involved mesons, and also when the amplitudes
were renormalized. Nevertheless, the underlying SU(6) symmetry was
still present and served to organize the set of even parity meson res-
onances found in that work. Indeed, it was shown that most of the
low-lying even parity PDG (Particle Data Group Collaboration [70])
meson resonances, specially in the JP = 0+ and 1+ sectors, could
be classified according to multiplets of the SU(6) spin-flavor symme-
try group. However, some resonances, like the isoscalar f0(1500) or
f1(1420) states, could not be accommodated within this scheme and it
was claimed that these states could be clear candidates to be glueballs
or hybrids [68].

Chiral symmetry (CS), and its breaking pattern, is encoded in the
approach of Ref. [68] at leading order (LO) by means of the Weinberg-

3The situation is similar in the meson-baryon sector, for recent works there see
Refs. [74, 201].
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Tomozawa (WT) soft pion theorem [211, 212]. This CS input strongly
constraints the pseudoscalar–pseudoscalar (PP ) and pseudoscalar–vec-
tor (PV ) channels, since the mesons of the pion octet were identified
with the set of Nambu-Goldstone bosons that appear for three fla-
vors (due to the spontaneous breaking of CS). Thus, the main features
(masses, widths, branching fractions and couplings) of the lowest nonet
of S-wave scalar resonances [f0(500), f0(980), a0(980) and K∗

0(800)]
found in Ref. [68] do not significantly differ from those obtained in pre-
vious SU(3) UChPT approaches [187, 189, 193]. This is because these
resonances are generated from the interaction of Nambu-Goldstone
bosons, and the influence of the vector–vector (V V ) components in
these states is small.

The PV and V V sectors have been also systematically studied in
Refs. [195, 198, 199], respectively. These works adopt the formalism
of the hidden gauge interaction for vector mesons [213, 214].4 In the
PV → PV sector, as mentioned above, CS constrains the interactions,
and the interactions derived in Ref. [68] and those used in Ref. [195]
totally agree at LO in the chiral expansion, despite their different ap-
parent structure and origin. As a consequence, the results of Ref. [68]
are in general in good agreement with those previously obtained in
Ref. [195], which among others include the prediction of a two pole
structure for the K1(1270) resonance [196]. However, the simultaneous
consideration of PV and V V channels made the approach of Ref. [68]
different from that followed in Ref. [195] in few cases. One of the most
remarkable cases was that of the h1(1595) resonance, which was dy-
namically generated for the first time in the work of Ref. [68]. The
interference PV → V V amplitudes turned out to play a crucial role
in producing this state in [68], and that is presumably the reason why
the h1(1595) resonance was generated neither in the PV → PV study
of [195], nor in the V V → V V scheme of Ref. [199]. Possibly, the situ-
ation is similar for the K1(1650) state. These two resonances helped to

4Strictly speaking, the study of axial-vector resonances carried out in Ref. [195]
does not use the hidden gauge formalism. There, a contact WT type Lagrangian
is employed. However, the tree level amplitudes so obtained coincide with those
deduced within the hidden gauge formalism, neglecting q2/m2

V in the t-exchange
contributions [215] and considering only the propagation of the time component of
the virtual vector mesons.
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envisage a clearer SU(6) pattern in [68], which is also followed to some
extent in nature, and that is missed in the separate works of Refs. [195]
and [199].

In general terms, the model of Ref. [68] provides a fairly good de-
scription of the JP = 0+ and JP = 1+ sectors. However, from a
phenomenological point of view, the model of Ref. [68] led to a much
poorer description of the JP = 2+ sector, which for S-wave is con-
structed out of V V interactions. Indeed, the well established f2(1270)
and K∗

2(1430) resonances are difficult to accommodate in the scheme,
which needs to be somehow pushed to its limits of validity. The hid-
den gauge interaction for vector mesons model used in [199] seems to
be more successful in describing the properties of the f2(1270) and
K∗

2(1430) resonances. This latter model and that of Ref. [68] are re-
lated for PV → PV scattering, thanks to CS, but they are completely
unrelated in the V V sector.

The SU(6) spin-flavor symmetry is severely broken in nature. Cer-
tainly it is mandatory to take into account mass breaking effects by
using different pseudoscalar and vector mesons masses. However, this
cannot be done by just using these masses in the kinematics of the am-
plitudes derived in a straight SU(6) extension of the WT Lagrangian,
since this would lead to flagrant violations of the soft pion theorems in
the PV → PV sector due to the large vector meson masses. Instead in
[68], a proper mass term was added to the extended WT Lagrangian
that produced different pseudoscalar and vector meson masses, while
preserving, or softly breaking, chiral symmetry. Such term, besides
providing masses to the vector mesons, gives rise to further contact
interaction terms (local). However, some other local interaction SU(6)
symmetry breaking terms respecting (softly breaking) CS can be de-
signed, as we show in this work. The nature of the contact terms can
only be fully unraveled by requiring consistency with the QCD asymp-
totic behaviour at high energies [216], which is far from being trivial.
As an alternative, we will present here a phenomenological analysis of
the effects on the resonance spectrum due to the inclusion of new VV
interactions consistent with CS. Thus, in first place, we will find in
this work the most general four meson-field local (involving no deriva-
tives) terms consistent with the chiral symmetry breaking pattern of
QCD, and constructed by using a single trace, in the spirit of the large
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NC expansion. Next, we will show that the inclusion of these pieces
leads to a considerable improvement of the description of JP = 2+ sec-
tor, without spoiling the main features of the predictions obtained in
Ref. [68] for the JP = 0+ and JP = 1+ sectors.

The chapter is based on Ref. [217] and it is organized as follows.
First, we briefly review in Sec. 6.2 the model derived in Ref. [68], in-
cluding a brief discussion (Subsec. 6.2.2) on the BSE in coupled chan-
nels, and the renormalization scheme used to obtain finite amplitudes.
Next in Sec. 6.3, we study the interplay between the SU(6) symmetry
breaking local terms and CS, and design two new interaction terms.
Their phenomenological implications are studied in Sec. 6.4. There,
we present results in terms of the unitarized amplitudes and search for
poles on the complex plane. We discuss the results sector by sector
trying to identify the obtained resonances or bound states with their
experimental counterparts [70], and compare our results with earlier
studies, in particular that of Ref. [68]. A brief summary and some
conclusions follow in Sec. 6.5. In Appendix D.1, we show that there
are just three chiral invariant four meson contact interactions, if only a
single trace is allowed to construct them. In Appendix D.2 the various
potential matrices derived in this work are compiled for the different
hypercharge, isospin and spin sectors.

6.2 SU(6) extension of the SU(3)-flavor

Weinberg-Tomozawa Lagrangian

In this section, we briefly review the model derived in Ref. [68] to
describe the S-wave interaction of four mesons of the π-octet and/or
ρ-nonet.

6.2.1 The interaction

In Ref. [68], the BSE was solved by using as a kernel the amplitude H
given by Eq. (40) of Ref. [68] (Eq. (6.20) in this chapter). This ampli-
tude consists of three different contributions. Two of them (Dkin and
Da) come from the straight extension to SU(6) of the kinetic part of
the LO WT SU(3)–flavor interaction, while the third one, Dm, is orig-
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inated by the mechanism implemented in [68] to give different masses
to pseudoscalar and vector mesons. To give mass to the vector mesons
certainly requires breaking SU(6) in the Lagrangian, not only through
mass terms but also by interaction terms, due to chiral symmetry.

The lowest-order chiral Lagrangian describing the interaction of
pseudoscalar Nambu-Goldstone bosons is [180]

L =
f 2

4
Tr
(
∂µU

†∂µU +M(U + U † − 2)
)
, (6.1)

where f ∼ 90MeV is the chiral-limit pion decay constant, U = ei
√
2Φ/f

is a unitary 3 × 3 matrix that transforms under the linear realization
of SU(3)L⊗SU(3)R, with

Φ =


1√
6
η + 1√

2
π0 π+ K+

π− 1√
6
η − 1√

2
π0 K0

K− K̄0 −
√

2
3
η

 , (6.2)

and the mass matrix M = diag(m2
π,m

2
π, 2m

2
K −m2

π) is determined by
the pion and kaon meson masses.

The straight SU(6) extension of Eq. (6.1) from SU(3) to SU(6)
is [68]

LSU(6) =
f 2
6

4
Tr
(
∂µU

†
6∂

µU6 +M6(U6 + U †
6 − 2)

)
,

U6 = ei
√
2Φ6/f6 (6.3)

where U6 is now a unitary 6×6 matrix that transforms under the linear
realization of SU(6)L⊗SU(6)R. The Hermitian matrix Φ6 is the meson
field in the 35 irreducible representation of SU(6), and f6 = f/

√
2 [210].

SU(6) spin-flavor symmetry allows to assign the vector mesons of the
ρ nonet and the pseudoscalar mesons of the π octet in the same (35)
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SU(6) multiplet. A suitable choice for the Φ6 field is5

Φ6 = Pa
λa√
2
⊗ I2×2√

2︸ ︷︷ ︸
ΦP

+Rak
λa√
2
⊗ σk√

2
+Wk

λ0√
2
⊗ σk√

2︸ ︷︷ ︸
ΦV

,

a = 1, . . . , 8, k = 1, 2, 3 (6.4)

with λa the Gell-Mann and σ the Pauli spin matrices, respectively,
and λ0 =

√
2/3 I3×3 (In×n denotes the identity matrix in the n dimen-

sional space). Pa are the π,K, η fields, while Rak and Wk stand for the
ρ-vector nonet fields, considering explicitly the spin degrees of freedom.

The first term6 in LSU(6) preserves both chiral and spin-flavor sym-
metries. The second term breaks explicitly chiral symmetry, and tak-
ing for instance M6 = m6I6×6, provides a common mass, m6, for all
mesons belonging to the SU(6) 35 irreducible representation. However,
the SU(6) spin-flavor symmetry is severely broken in nature and it is
indeed necessary to take into account mass breaking effects by using
different pseudoscalar and vector mesons masses.

To this end in Ref. [68], the following mass term, which replaces
that in Eq. (6.3), was considered

L(m)
SU(6) =

f 2
6

4
Tr
(
M(U6 + U †

6 − 2)
)

+
f 2
6

32
Tr
(
M′(σ U6 σ U

†
6 + σ U †

6 σ U6 − 6)
)
. (6.5)

Here the matrix M acts only in flavor space and it is to be under-
stood as M⊗ I2×2, and similarly for M′, so that SU(2)spin invariance
is preserved by these mass matrices. Besides, these matrices should be
diagonal in the isospin basis of Eq. (6.2) so that charge is conserved.
Also, σ stands for I3×3 ⊗ σ.

The first term in L(m)
SU(6) is fairly standard. It preserves spin-flavor

symmetry when M is proportional to the identity matrix and intro-
duces a soft breaking of chiral symmetry when M is small. This term

5Matrices, Ai
j , in the dimension 6 space are constructed as a direct product

of flavor and spin matrices. Thus, an SU(6) index i, should be understood as
i ≡ (α, σ), with α = 1, 2, 3 and σ = 1, 2 running over the (fundamental) flavor and
spin quark degrees of freedom, respectively.

6In what follows, we will refer to it as the kinetic term.
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gives the same mass to pseudoscalar and vector mesons multiplets.
Note that terms of this type are sufficient to give different mass to
pseudoscalars (e.g. π and K) when SU(NF ) is embedded into SU(N ′

F )
(a larger number of flavors). They are not sufficient however to pro-
vide different P and V masses when SU(NF ) is embedded into SU(2NF )
(spin-flavor).

The second term in L(m)
SU(6) only gives mass to the vector mesons:

indeed, if one would retain in U6 only the pseudoscalar mesons, U6

would cancel with U †
6 (since these matrices would commute with σ)

resulting in a cancellation of the whole term. This implies that this
term does not contain contributions of the form PP (pseudoscalar mass
terms) nor PPPP (purely pseudoscalar interaction). In addition, when
M′ is proportional to the identity matrix (i.e., exact flavor symmetry)
chiral symmetry is also exactly maintained, because the chiral rotations
of U6 commute with σ. This guarantees that this term will produce
the correct PV → PV contributions to ensure the fulfillment of soft
pion WT theorem [211, 212] even when the vector mesons masses are
not themselves small.

At order Φ2
6, the Lagrangian of Eq. (6.5) provides proper mass

terms for P and V mesons, while at order Φ4
6 it gives rise to four

meson interaction terms. In the exploratory study of Ref. [68], the
chiral breaking mass term (M) was neglected, and a common mass,
mV , for all vector mesons (M′ = m2

V I3×3 I2×2) was used.
7 With these

simplifications, the interaction piece deduced from L(m)
SU(6) reads [68]

L(m; int)
SU(6) =

m2
V

8f 2
Tr

(
Φ4

6 + σΦ2
6 σΦ

2
6 −

4

3
σΦ6 σΦ3

6

)
. (6.6)

This term gives rise to the local Dm contribution to the four meson
amplitude H in Eq. (40) of Ref. [68]. The other two contributions,
Dkin and Da, to H come from the first term (kinetic) of LSU(6) in
Eq. (6.3). In addition, in Ref. [68] were also considered spin-flavor

7A vector meson nonet averaged mass value mV = 856MeV was employed in
[68]. Note, however, that the simplifying choice M = 0, M′ = m2

V , refers only to

the interaction terms derived from the Lagrangian L(m)
SU(6). For the evaluation of

the kinematical thresholds of different channels, real physical meson masses were
used in [68].
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symmetry-breaking effects due to the difference between pseudoscalar-
and vector-meson decay constants, and an ideal mixing between the ω
and φ mesons (see Subsec. IID of Ref. [68] for some more details, and
Table II for the values of the meson and decay constants used in the
numerical calculations).

6.2.2 Scattering Matrix and coupled-channel uni-
tarity

The four meson amplitude H of Eq. (40) of Ref. [68] is used as kernel of
the BSE, which is solved and renormalized for each Y IJ (hypercharge,
isospin and spin) sector8 in the so called on-shell scheme [191], T Y IJ

is given by

T Y IJ(s) =
1

1− V Y IJ(s)GY IJ(s)
V Y IJ(s). (6.7)

where V Y IJ(s) (a matrix in the coupled-channel space) stands for the
projection of the scattering amplitude, H, in the Y IJ sector. The cor-
responding quantity in the present work is defined below by Eqs. (6.19),
(6.20) and (6.21).

√
s is the center or mass energy of the initial or fi-

nal meson pair. GY IJ(s) is the loop function and it is diagonal in the
coupled-channel space. Suppressing the indices, it is written for each
channel as

G(s) = Ḡ(s) +G((m1 +m2)
2). (6.8)

The finite function Ḡ(s) can be found in Eq. (A9) of Ref. [218], and it
displays the unitarity right-hand cut of the amplitude. On the other
hand, the constant G((m1+m2)

2) contains the logarithmic divergence.
After renormalizing using the dimensional regularization scheme, one
finds

G(s = (m1 +m2)
2)

=
1

16π2

[
a(µ) +

2

m1 +m2

(
m1 ln

m1

µ
+m2 ln

m2

µ

)]
, (6.9)

8Note that for the Y = 0 channels, G-parity is conserved. Thus in the Y = 0 sec-
tors, the kernel amplitude becomes block-diagonal, with each block corresponding
to odd and even G-parities.
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where µ is the scale of the dimensional regularization. Changes in
the scale are reabsorbed in the subtraction constant a(µ), so that the
results remain scale independent. Any reasonable value for µ can be
used. In Ref. [68] µ = 1GeV was adopted and we take the same choice
in the present work.

Poles, sR, in the SRS of the corresponding BSE scattering ampli-
tudes (T Y IJ(s)) determine the masses and widths of the dynamically
generated resonances in each Y IJ sector (namely sR =M2

R− iMRΓR).
In some cases, there appear real poles in the FRS of the amplitudes
which correspond to bound states. Finally, the coupling constants of
each resonance to the various meson-meson states (i, j indices) are ob-
tained from the residues at the pole, by matching the BSE amplitudes
to the expression

T Y IJ
ij (s) =

gigj
s− sR

, (6.10)

for energy values
√
s close to the pole. The couplings, gi, are complex

in general.

6.3 SU(6) symmetry breaking terms and

chiral invariance

Regarding the spin symmetry breaking term of L(m)
SU(6) (the term with

M′ in Eq. (6.5)), it should be noted that there is a large ambiguity
in choosing it. Being a contact term, it cannot contain PPPP contri-
butions, due to chiral symmetry, and for the same reason the terms
PPV V are also fixed, as already noted. However, V V V V terms are
not so constrained. One can easily propose alternative forms for L(m)

SU(6)

which would still be acceptable from general requirements but would
yield different V V V V interactions. The choice in Eq. (6.5) is just the
simplest or minimal one.

Let us consider the contact or ultra-local terms, i.e., involving no
derivatives, that can be written down with the desired properties.
These properties include hermiticity, C, P and T , invariance under
rotations and chiral symmetry. Of course, spin-flavor cannot be main-
tained, as we want to give different masses to pseudoscalar and vector
mesons.
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In the absence of derivatives, the parity transformation is equivalent
to U6 → U †

6 , likewise, C implies U6 → UT
6 (transposed), and time-

reversal is U6 → U6 but acting antilinearly. As it turns out, C and T
invariances are automatically implied by the other symmetries if the
coupling constants are real (o purely imaginary if εijk is involved).9

Rotational invariance is ensured if the only tensors involved are
Pauli matrices, as well as δij and εijk.

Under chiral transformations U6 → Ω†
LU6ΩR, where ΩL,R are ma-

trices of SU(NF ), (so actually, they denote 2NF × 2NF matrices of the
form ΩL,R × I2×2). Vector invariance (ΩL = ΩR), the diagonal part
of the chiral group, is automatic if the operators are constructed as
traced products of U6, U

†
6 and σ that commutes with the flavor matri-

ces ΩL,R. Note that the matrix M′ in Eq. (6.5) must be a multiple of
the identity if vector invariance is exactly enforced, as we do in this dis-
cussion. Finally, full chiral invariance requires that U6 and U †

6 blocks
should occupy alternate positions in the trace (cyclically), with Pauli
matrices inserted in between.

A closer look shows that there should be at least one σ between
consecutive U6 and U †

6 (cyclically), and also no more than one σ is
required due to the relation σiσj = δij + iεijkσk. Therefore the to-
tal number of σ operators is even and so the number of εijk is also
even. This implies that no Levi-Civita tensor εijk is needed, due to the
identity

εijkεabc = δiaδjbδkc + δibδjcδka + δicδjaδkb

−δiaδjcδkb − δicδjbδka − δibδjaδkc. (6.11)

This leads us to the conclusion that the most general contact interac-
tion with the required symmetries are traced products of blocks

Uij = σiU6σjU
†
6 , (6.12)

that is, products of blocks Tr(UijUkl · · · ), with the indices contracted
in any order.

9Strictly speaking, we cannot invoke the CPT theorem, since our interaction
is unitary and local but does not have full Lorentz invariance. Nevertheless, T
turns out to be an automatic consequence of C and P , and the other assumptions
(locality, unitarity and rotational invariance).
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In principle, there is an infinite number of such interactions (al-
though relations among them do appear if a concrete number of flavors,
say NF = 3, is assumed). Nevertheless, the interaction is not needed
to all orders in the meson field Φ6, rather only quadratic and quartic
terms need to be retained.10 Clearly, there is just a finite number of
such O(Φ2

6) +O(Φ4
6) chiral invariant terms, for the simple reason that

only a finite number of quadratic plus quartic structures can be written
down. Without assuming chiral symmetry there are 21 such generic
structures (and only 18 if NF = 3 is specifically assumed). Chiral
symmetry imposes relations and reduces the number from 21 to 10 (9
if NF = 3 is assumed). This is a rather large number of parameters.
In order to reduce the problem to a more manageable size, we will
consider here only terms with just a single trace (rather than products
of them). We only mention that such restriction can be justified from
large NC arguments [219, 220]. The restriction to a single trace puts
conditions on the possible mass terms for the vector mesons, specifi-
cally Tr(Φ2

6) and Tr((σiΦ6)
2) are allowed but (Tr(σiΦ6))

2 is discarded.
This implies that the ρ and ω mesons cannot be given different masses.
Such degeneracy is very well satisfied experimentally and this gives
some basis to our simplifying assumption.

If only terms with a single trace are retained, the number of possible
quadratic plus quartic operators is 8, and just 3 combinations of them
are chirally invariant. We show this in detail in Appendix D.1.

The three chiral invariant combinations can be obtained by expand-
ing three independent operators of the type Tr(UijUkl · · · ) to order Φ4

4.
Up to two Uij blocks and a single trace, only three different operators
can be written down, and they are sufficient for our purposes:

O1 = Tr(Uii − 3) ,

O2 = Tr(UiiUjj − 9) + h.c., (6.13)

O3 = Tr(UijUij + 3) .

10Parity invariance, Φ6 → −Φ6 implies that the interaction contains only terms
with an even number of meson fields. Of course, this is would no longer be true if
derivatives were allowed, since this would allow anomalous terms involving εµναβ
[108, 109].
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Expanding in the fields, we find

O1 =
3

f2
Tr

(
−4Φ2

6 +
4

3
σiΦ6σiΦ6

)
+

4

f 4
Tr

(
Φ4

6 + σi Φ
2
6 σiΦ

2
6 −

4

3
σiΦ6 σi Φ

3
6

)
+O(Φ6

6) , (6.14)

O2 − 20O1

12
=

16

f4
Tr

(
Φ4

6 +
5

6
σi Φ

2
6 σiΦ

2
6 −

4

3
σiΦ6 σi Φ

3
6

+
1

6
Φ6 σiΦ6 σiΦ6 σjΦ6 σj

+
1

6
iεijkΦ

2
6 σi Φ6 σj Φ6 σk

)
+O(Φ6

6), (6.15)

O3

3
=

16

f4
Tr

(
Φ4

6 −
4

3
σiΦ6 σi Φ

3
6 +

1

3
Φ6 σiΦ6 σj Φ6 σiΦ6 σj

− 2

3
iεijkΦ

2
6 σiΦ6 σj Φ6 σk

)
+O(Φ6

6). (6.16)

These three operators are linearly independent. Moreover, we show
in the Appendix D.1 that, up to order O(Φ4

6), any other operator
arising from the set of chiral invariant Lagrangians Tr(UijUkl · · · ) can
be expressed as a linear combination of O1,2,3. This is one of the most
important results of this work.

The coupling of the operator O1 has to be f 2m2
V /32, to generate a

proper mass term for the vector mesons. This implies

L1 =
f2m2

V

32
O1 = −1

2
m2

VTr
(
Φ2

V

)
+ L(m; int)

SU(6) +O(Φ6
6) , (6.17)

with L(m; int)
SU(6) given in Eq. (6.6). However, a priori we cannot fix the cou-

plings g2 and g3 of the operators O2 and O3, which were set arbitrarily
to zero in Ref. [68]. Here, we aim to explore the physical consequences
of keeping these two interaction terms finite. Thus, we will consider
here an additional contact four meson interaction Lagrangian

δL(m; int)
SU(6) =

f 2m2
V

64

(
g2
4π

O2 − 20O1

12
+
g3
4π

O3

3

)
. (6.18)



6.4. RESULTS AND DISCUSSION 105

When the terms above are taken into account, the final S-wave four
meson amplitude, H reads

H = H0 + δH , (6.19)

H0 =
1

6f 2

(
3s−

4∑
i=1

q2i

)
Dkin +

m2
V

8f2
Dm +

1

2f2

m4
V

s
Da , (6.20)

δH =
m2

V

16πf 2
(g2D2 + g3D3) , (6.21)

where s = (q1 + q2)
2 is the usual Mandesltam variable, with q1 and q2

(q3 and q4) the four-momenta of the initial (final) mesons. The first
term, H0, coincides with the four meson amplitude used in Ref. [68]
(see Eq. (40) of this reference) as kernel of the BSE.11 The second
term, δH, is the new dynamical input. The physical consequences of
this term will be studied in this work. The coupled-channel matrices
D2,3 are obtained from the Lagrangian δL(m; int)

SU(6) in Eq. (6.18), with

the convention −i δH = iδL(m; int)
SU(6) . These matrices are compiled in

Appendix D.2. We have verified that the sets of matrices Dm, D2

and D3 (computed for NF = 3) are globally linearly independent. By
inspection of these matrices, it can be checked that in the J = 1 sector,
the new contribution δH vanishes provided 7g2 + 12g3 = 0.

6.4 Results and Discussion

In this section, we will address the consequences of adding the ampli-
tude δH to the kernel of the BSE, from a phenomenological point of
view. To that end in each Y IGJ sector, we will compare the spectrum
of resonances obtained from the pole structure of the renormalized BSE
T -matrix in the FRS and SRS with the main properties of the meson
states listed in the PDG [70]. To better isolate the effects of δH, we
will frequently refer also to the previous results obtained in Ref. [68].

The main obstacle to carry out the above program is the enormous
freedom that a priori exists for fixing the subtraction constants. This

11The matrices Dkin, Da and Dm are compiled in the Appendix A of [68].



106 CHAPTER 6. LOW-LYING EVEN PARITY MESON ...

is not only true for the present model, all schemes that restore unitar-
ity suffer from the same problem [64, 65, 68, 182–200]. The origin of
this freedom should be traced back to the renormalization procedure
needed to render finite the unitarized amplitudes, that always involve
a non-perturbative re-summation. Since all meson-meson theories are
effective, their renormalization inescapably requires the introduction
of new and undetermined low energy constants (rLECs). For the in-
teraction of Goldstone bosons, these rLECs can be related to the low
energy constants that appear in the higher order Lagrangian terms of
the systematic chiral expansion [64, 65, 182–186, 189, 191–194], and
in some cases, they might be constrained with other physical observ-
ables. However, no such systematic expansion exists when the involved
bosons are vectors, and consequently, their related rLECs remain to a
large extent unconstrained. Often, the unknown rLECs are tuned to
best reproduce the physical properties of the resonances generated by
the non-perturbative unitary re-summation.

In the renormalization scheme followed in [68], the rLECs are en-
coded by the subtraction constants a(µ) that appear in the expression
of the renormalized loop function in Eq. (6.9). There is one such con-
stant for each Y IGJ sector and for each channel of the associated
coupled channels space. The a(µ) are free parameters prior to supple-
menting more detailed information from QCD. As said, the situation
is similar in the rest of the approaches applied to the study of vector
mesons. A practical solution to the impasse is found in the litera-
ture [68, 195–199], namely, for µ = 1GeV, the various a(µ) are fixed
to values around −2. The a(µ)’s are let to vary around the value −2
to best describe the known phenomenology in each Y IGJ sector. This
default value of −2 is suggested from analysis where an ultraviolet
(UV) hard cutoff Λ is used to renormalize the loop function, instead
of dimensional regularization. The relation between the subtraction
constant a(µ) at the scale µ and Λ is

a(µ) = − 2

m1 +m2

{
m1 ln

[
Λ +

√
Λ2 +m2

1

µ

]

+m2 ln

[
Λ +

√
Λ2 +m2

2

µ

]}
. (6.22)
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For µ ∼ 1GeV, and assuming a cutoff of the same order of magnitude,
−2 turns out to be a natural choice for the subtraction constant a(µ).

The idea behind the above choice for the range of variation of the
rLECs is to focus on the resonances whose dynamics is mostly deter-
mined by the unitarity loops. A clear example of one such resonance
is the f0(500), that is dynamically generated from ππ re-scattering
with a cutoff value of the order of 700MeV [187]. This translates to
a(µ = 1GeV) ∼ −0.7. However, to similarly describe the ρ-meson,
purely from ππ re-scattering, requires a(µ = 1GeV) ∼ −12 [65, 191].
This would lead to unnatural values for the UV cutoff, of the order
of 200GeV (note the logarithmic dependence). Actually, the ρ-meson
is rather insensitive to the chiral loops and its dynamics is mostly de-
termined by the low energy constants that appear in the O(p4) chiral
Lagrangian [205].

In our scheme, the mesons of the ρ-nonet, used to build the cou-
pled channels space, are preexisting states (to adopt the terminology
of [190]), rather than dynamically generated from the re-scattering of
Goldstone bosons. In this view, it looks appropriated to restrict the
rLECs to values that could be related to reasonable values of the UV
cutoff. Specifically, Λ will be allowed to lie in the interval [0.5, 5]GeV.
Even after this constraint, there is still a large freedom in varying all
different rLECs.

Another ambiguity in the model needs to be fixed, namely, the
values of the two new couplings g2 and g3 in Eq. (6.21), which are
totally undetermined yet. To be practical, we introduce here a further
simplification by imposing the relation

g2 = −12

7
g3. (6.23)

This relation between g2 and g3 guarantees the J = 1 sectors are not
affected by the new amplitude δH. Note that in the J = 1 sector,
the PV → PV terms are constrained by chiral symmetry and that in
the previous analysis of Ref. [68], where δH was neglected, this sector
was quite successfully described. Among other, the

[
IG(JPC)

]
0−(1+−)

h1(1170), h1(1380) and h1(1595), the 1+(1+−) b1(1235), the 1−(1+−)
a1(1260) and a1(1640) resonances were dynamically generated. Fur-
thermore, the double pole structure of the I(JP ) = 1

2
(1+) K1(1270)
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resonance, firstly uncovered in [195, 196], was strongly confirmed in
Ref. [68], as well.

Assuming natural values for g3, we have let this coupling vary in the
interval [−25, 25]. For each value of g3, we have looked at the different
Y IG sectors for J = 0 and J = 2, and have examined the pattern
of generated resonances, when the rLECs a(µ)’s are left to vary in
each particle–channel in the numerical range associated to UV cutoffs
comprised in the interval [0.5, 5]GeV. We find that, in general, the J =
0 sectors are not much affected by the new couplings. Simultaneously,
values of |g3| ≤ 0.25 yield a definitely better description of the main
features of the PDG JP = 2+ low-lying resonances than that achieved
in Ref. [68]. Specifically, in the results to be presented below we have
taken

g3m
2
V

16πf 2
= 0.1 . (6.24)

For this value of g3, a quite good overall description of the different
J = 0, 2 sectors is obtained. Small variations around this value, keeping
|g3| ≤ 0.25, can be compensated by the rLECs leading to descriptions
of similar quality.

The value of the new coupling is relatively small. A tentative
argument can be advanced to explain why such small value was to
be expected. In the heavy quark limit, QCD shows an approximate
spin-symmetry [66, 67, 181] that requires the spin symmetry breaking
terms to be suppressed by at least one power of the heavy quark mass.
Since the operators to which g3 couples ought to be suppressed in a
hypothetical large mV limit, the natural combination g3m

2
V /(16πf

2)
that appears in the Lagrangian should be of order ΛQCD/mV , or g3 ∼
O((ΛQCD/mV )

3), with ΛQCD ∼ 250MeV standing for some energy
scale relevant in the problem, in addition to the averaged vector mass.

In what follows, we will present and discuss the results that we have
found in the various Y IGJ sectors.

6.4.1 Hypercharge 0, isospin 0 and spin 0

In this sector we find four poles. Their positions and couplings are
compiled in Table 6.1, where we have also collected the pole positions
found in our previous work of Ref. [68]. Masses and widths listed in
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Table 6.1: Pole positions (in MeV) and moduli of the couplings |g|
(in GeV) in the (Y, I, J) = (0, 0, 0) sector that corresponds to the
IG(JPC) = 0+(0++) quantum numbers. The subtraction constant has
been set to the default values a = −2.0 in all channels. We also
compile the results obtained in Ref. [68], where δH was set to zero,
and the available information in the PDG on masses and widths (in
MeV) of the possible counterparts. The channels open for decay have
been highlighted in boldface.

(MR,ΓR) (631, 406) (969, 0) (1365, 124) (1729, 104)
ππ 3.54 0.03 0.53 0.04
K̄K 0.38 2.49 3.26 0.83
ηη 0.38 2.06 0.82 3.16
ρρ 8.17 2.96 1.27 0.32
ωω 8.29 2.12 2.74 0.39
ωφ 0.11 1.42 7.12 3.27

K̄∗K∗ 7.72 3.34 10.54 2.38
φφ 1.94 3.01 10.33 13.66

(MR,ΓR) [68] (602, 426) (969, 0) (1349, 124) (1722, 104)

PDG
(MR,ΓR) [70]

f0(500) f0(980) f0(1370) f0(1710)
(400 ∼ 550, (990± 20, (1200 ∼ 1500, (1720± 6,
400 ∼ 700) 40 ∼ 100) 200 ∼ 500) 135± 8)

the PDG [70] of the possible resonances that could be identified with
these states are also given in the table. As anticipated, the inclusion
of δH in the present work has very little effect and the present re-
sults are qualitatively similar to those already obtained in [68]. We
refer to that work for further details and grounds on the identification
proposed in Table 6.1. Very briefly, the lowest two poles can be easily
identified with the f0(600) and f0(980) resonances. There are some dif-
ferences with other works [189, 193] mainly because we have neglected
the pseudoscalar meson mass terms and have included vector meson-
vector meson channels. The identification of the other two poles is less
direct, though it is quite reasonable to associate them to the f0(1370),
and f0(1710) resonances, as it is argumented in [68]. On the other
hand, the IG = 0+(JPC = 0++) f0(1500) resonance cannot be accom-
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modated within this scheme and thus it would be a clear candidate to
be a glueball or a hybrid.

A final remark concerns the f0(500), in the most recent update of
the PDG [70], the traditionally large range of values for the f0(500)
mass (previously called f0(600) or σ) has been considerably shrunk,
thanks to the consideration of recent determinations of the position of
this pole obtained in dispersive approaches [221, 222]. As can be seen
in Table 6.1, now the mass of the σ lies in the interval 400− 550MeV.
The scheme presented here easily accommodates masses for the σ of the
order of 500MeV, just by slightly modifying the subtraction constants
(rLECs). Note that for a better comparison with our previous work of
Ref. [68], in Table 6.1, all subtraction constants have been set to the
default values a = −2.0, as in this latter reference. However, using
instead −2.3 for the PP channels and −1.1 for the V V ones, we find
that MR is about 500MeV and 992MeV for the f0(500) and f0(980)
poles, respectively, in much better agreement with the masses listed for
these resonances in the last edition of the PDG. The positions of the
other two poles placed at higher energies are not significantly changed,
thus our qualitative discussion of this sector remains unchanged.

6.4.2 Hypercharge 0, isospin 0 and spin 2

In this sector, we find two poles in the SRS/FRS of our amplitudes
(see Table 6.2). We fine-tune a common value of the rLECs to obtain
a mass for the first state (bound) in the vicinity of that quoted in the
PDG for the f2(1270). Having fixed the rLECs, we find a second pole
located at (1658, 74)MeV, with mass and width close to those of the
f2(1640) resonance. Moreover, this second pole has large couplings to
the ρρ, K̄∗K∗ and ωω channels, which will naturally account for the
seen decay modes of the f2(1640) resonance into ωω and also into K̄K
and ππππ through loop mechanisms, like those depicted in Fig. 6.1.

These loops mechanisms might also provide a sizable width to the
first pole that we have identified with the f2(1270) resonance. Indeed,
this resonance is quite broad (Γ ∼ 185MeV) while in our case, it
appears as a bound state (pole in the FRS) of zero width. Besides,
there exist other mechanisms like d-wave ππ decays, which could also
be important in this case because the large available phase space. Note
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Table 6.2: Same as in Table 6.1, but for the (Y, I, J) = (0, 0, 2) sector
that corresponds to the IG(JPC) = 0+(2++) quantum numbers. The
subtraction constant has been set to a = −3.88 in all channels.

(MR,ΓR) (1279, 0) (1658, 74)
ρρ 4.40 3.56
ωω 4.08 1.74
ωφ 1.74 2.24

K̄∗K∗ 4.08 5.58
φφ 10.20 4.21

(MR,ΓR) [68] (1289, 0) (1783, 38)
PDG

(MR,ΓR) [70]
f2(1270)

(1275.1± 1.2, 185.1+2.9
−2.4)

f2(1640)
(1639± 6, 99+60

−40)

that the K̄K decay mode (∼4.5%) quoted in the PDG for the f2(1270)
resonance can be easily accommodated in our scheme thanks to the
large couplings of our state to the K̄∗K∗ and φφ channels.

In the hidden gauge model of Ref. [199] two states were also gener-
ated in this sector, whose masses agree remarkably well with those of
the f2(1270) and f ′

2(1525) resonances.12 There, these two resonances
appear mostly as ρρ and K̄∗K∗ bound states, respectively. In our case
these channels are still dominant but with a substantial contribution
from the sub-dominant channels. (An exception comes from φφ, with
a sizable coupling but a relatively high threshold.) The presence of rel-
atively important subdominant channels prevents us from identifying
the second pole obtained in our approach with the f ′

2(1525) resonance.
This is because this resonance has the distinctive feature of having
a very small branching fraction into the ππ channel (∼ 0.8%) what
seems hard to accommodate with the sizable ρρ coupling of our state.
On the other hand, the K̄K mode, that we expect to be dominant
for our second state, has not been seen in the decays of f2(1565) and
f2(1810) resonances. This finally brings us to identify our second pole
in Table 6.2 with the f2(1640) resonance.

12Thanks to a suitable fine-tuning of the subtraction constants.
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Figure 6.1: Resonance (R) decay to two (left) or four (right) pseu-
doscalar mesons (P , P ′, P ′′, P ′′′) through its s-wave (filled pattern
hexagon) coupling to two vector mesons (V ,V ′) and the p-wave cou-
pling (black ovals) of these latter mesons to two pseudoscalar mesons.

A final remark is in order here. In our previous analysis carried out
in Ref. [68], we also found two poles and made the same identifications
as here. However in that work, we could not fine tune the subtrac-
tion constants to obtain masses for the second state below 1.75GeV.
Thanks to the consideration of δH in the present analysis we have
been able to predict two resonances with the appropriate masses to
be identified with the f2(1270) and f2(1640) states. Nevertheless to
achieve this, we have needed to use values of the subtraction constant
of around −3.9. This in turn implies large UV cutoff values of around
3.5GeV, somehow in the limit of what one would expect for resonances
dynamically generated by the unitarity loops driven by the LO poten-
tial. These large UV cutoffs might signal some resemblance between
the nature of these states and that of the so called preexisting states,
like the ρ meson, for which higher order corrections (not driven by uni-
tarity) in the potential play an important role in their dynamics [205].

6.4.3 Hypercharge 0, isospin 1 and spin 0

There are five coupled channels in this sector: πη, K̄K, ρω, ρφ and
K̄∗K∗ and we now find two poles in the SRS of the amplitudes. Our
results are compiled in Table 6.3. The lowest pole should be identi-
fied with the a0(980), which has been obtained in all previous studies
considering only pseudoscalar-pseudoscalar coupled channels. In our
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Table 6.3: Same as in Table 6.1, but for the (Y, I, J) = (0, 1, 0) sector
that corresponds to the IG(JPC) = 1−(0++) quantum numbers. The
subtraction constants have been fixed to a = −3.5 in the PP channels
and to a = −2.16 in the V V channels.

(MR,ΓR) (970, 90) (1493, 86)
ηπ 2.67 1.68
K̄K 2.82 2.26
ωρ 7.33 2.04
φρ 2.62 8.24

K̄∗K∗ 0.09 8.08
(MR,ΓR) [68] (990, 92) (1442, 10) (1760, 24)

PDG
(MR,ΓR) [70]

a0(980)
(980± 20,
50 ∼ 100)

a0(1450)
(1474± 19,
265± 13)

scheme, its couplings to the πη and KK̄ are large, in agreement with
the results of earlier studies and with the data, but it also presents large
couplings to the heaviest vector channels, ωρ and φρ. When comparing
to the results of Ref. [68], we see that the couplings of this resonance to
vector channels have drastically changed, though these heavier chan-
nels have little influence on the position of this lowest pole and on its
allowed decay modes.

The pole at (MR,ΓR) = (1493, 86)MeV can be naturally associated
to the a0(1450) and its main features are similar to those found in [68].
It decays to πη and KK̄, which is in agreement with the data. Its
large couplings to the vector channels, whose thresholds are now closer,
will give rise to new significant ωππ and K̄Kππ decay modes, and to
an important enhancement of its width thanks to the broad spectral
functions of the ρ and K∗ resonances.

Finally, as can be seen in the table, in our previous analysis of
Ref. [68], we found a third pole, located at (MR,ΓR) = (1760, 24)MeV,
and whose dynamics was mostly dominated by the vector channels.
This further state could not be associated to any known state, since
the PDG only reports two a0 resonances below 2GeV. Nevertheless, in
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Ref. [68] we suggested with some cautions that this third pole, though
placed quite below, might be identified with the very broad a0(2020)
resonance (Γ = 330 ± 75MeV). This latter resonance is not firmly
established at all, and needs further confirmation. (Indeed, it appears
in the section of Further states of the PDG.) In the present re-analysis,
where the new spin symmetry breaking terms contained in δH have
been included, this state is no longer dynamically generated.

6.4.4 Hypercharge 0, isospin 1 and spin 2

Table 6.4: Same as in Table 6.1, but for the (Y, I, J) = (0, 1, 2) sector
that corresponds to the IG(JPC) = 1−(2++) quantum numbers. The
subtraction constant has been set to a = −3.88 in all channels.

(MR,ΓR) (1319, 0) (1747, 12)
ωρ 8.41 1.55
φρ 1.92 3.48

K̄∗K∗ 5.32 4.82
(MR,ΓR) [68] (1228, 0) (1775, 12)

PDG a2(1320) a2(1700)
(MR,ΓR) [70] (1318.3+0.5

−0.6, 107± 5) (1732± 16, 194± 40)

There are three coupled channels in this sector: K̄∗K∗, ωρ, and φρ,
and we find two poles, one in the FRS and the other one in the SRS
of the amplitudes (see Table 6.4), which might be associated to the
a2(1320) and a2(1700) resonances. The first state, bound in our model,
couples strongly to the ωρ channel, and its couplings would give rise to
the observed πππ and ωππ decay modes of the a2(1320) thanks to the
width of the virtual ρ meson. In our previous analysis [68], we could
not place the mass of this state above 1230MeV, despite we tried
some fine-tuning of the subtraction constants. Thus here, as it was
also the case in the (Y, I, J) = (0, 0, 2) sector, we find a better overall
description of the sector thanks to the inclusion of the δH terms.

The a2(1320) resonance is not dynamically generated in the hidden
gauge model of Ref. [199], though there it is reported one state whose



6.4. RESULTS AND DISCUSSION 115

features are similar to those of the second (heaviest) pole found here.
This second pole might be associated to the a2(1700), since its mass and
expected decays into ωρ, ωπ−π0 and KK̄ (from the decays into virtual
φρ orK∗K̄∗ pairs) are in good agreement with the information listed in
the PDG for the a2(1700) resonance. However, the state predicted here,
as it was the case in Refs. [68, 199] turns out to be much narrower than
this resonance. This is probably an indication that other mechanisms,
such as coupled-channel d-wave dynamics, might play an important
role in this case. Nevertheless, there exists a large uncertainty in the
experimental status of the a2(1700).

Finally, we should point out here that in this sector, we have also
needed to make use of large UV cutoffs (∼ 3.5GeV), somehow in the
limit of what one would expect for resonances dynamically generated
by the unitarity loops driven by the LO potential.

6.4.5 Hypercharge 1, isospin 1/2 and spin 0

In this sector we find three poles, with positions and couplings compiled
in Table 6.5. There we have also collected the pole positions found in
our previous work of Ref. [68]. Masses and widths listed in the PDG
[70] of the possible resonances that could be identified with these states
are also given in the table. As in the (Y, I, J) = (0, 0, 0) sector, the
inclusion of δH in the present work has very little effect, and the present
results are quite similar to those already obtained in [68]. Again, we
refer to that work for further details and grounds on the identification
proposed in Table 6.5. Very briefly, it looks quite natural to identify the
first two poles with the PDG K∗

0(800) and K
∗
0(1430) states, in spite of

being the latter one much wider than the pole found in our scheme. The
Kπ branching fraction for this resonance is 93%±10%. For our pole at
1425MeV, the direct coupling to Kπ is not so dominant over the other
open channel, ηK. However, the couplings to the closed channels K∗ρ,
K∗ω, K∗φ channels are much larger. As a consequence, the resonance
can decay into a virtual K∗ρ pair and significantly enhance the Kπ
decay probability, through the loop mechanism depicted in the left
panel of Fig. 6.1, thanks to the broad ρ and K∗ spectral functions.

The identification of the third pole with the broad K∗
0(1950) reso-

nance is less straightforward. Nevertheless, it should be pointed out
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that the K∗
0(1950) resonance is not firmly established yet and needs

further confirmation [70].
A final comment is related with the employed UV cutoffs in this

sector. Those turn out to be of the order of 1GeV in this case, as
it was also the case in the (Y, I, J) = (0, 0, 0) sector, indicating that
the dynamics of the resonances in both sectors are mostly governed
by the logs that appear in the unitarity loops. This naturally explains
why, for instance, the K∗

0(800) is so wide, since it is placed well above
the relevant threshold Kπ. Indeed, this resonance is very similar to
the f0(500), and it cannot be interpreted as a Breit-Wigner narrow
resonance.

Table 6.5: Same as in Table 6.1, but for the (Y, I, J) = (1, 1/2, 0)
sector that corresponds to the I(JP ) = 1

2
(0+) quantum numbers. The

subtraction constant has been set to a = −1.52 in all channels. The
assignment of the third pole to the K∗

0(1950) resonance is uncertain.

(MR,ΓR) (816, 434) (1425, 54) (1782, 90)
Kπ 4.83 1.91 0.06
ηK 2.20 1.02 2.92
K∗ρ 6.29 8.11 0.68
K∗ω 2.29 10.69 1.07
K∗φ 2.15 5.70 12.21

(MR,ΓR) [68] (812, 347) (1428, 48) (1787, 74)

PDG
(MR,ΓR) [70]

K∗
0(800)

(682± 29,
547± 24)

K∗
0(1430)

(1425± 50,
270± 80)

K∗
0(1950)

(1945± 22,
201± 90)

6.4.6 Hypercharge 1, isospin 1/2 and spin 2

In this sector (Table 6.6), we find two poles in the FRS/SRS of the
amplitudes. In the PDG, two K∗

2 resonances [K∗
2(1430) and K

∗
2(1980)]

are reported below 2GeV [70], though only the lightest one is firmly
established. In the analysis of Ref. [68] just one state was found, and
moreover, the subtraction constants could not be fine-tuned to bring its
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Table 6.6: Same as in Table 6.1, but for the (Y, I, J) = (1, 1/2, 2)
sector that corresponds to the I(JP ) = 1

2
(2+) quantum numbers. The

subtraction constant has been set to a = −4.32 in all channels. The
assignment of the second pole to the K∗

2(1980) resonance is uncertain.

(MR,ΓR) (1430, 0) (1624, 0)
K∗ρ 6.30 6.21
K∗ω 4.23 0.39
K∗φ 6.81 2.88

(MR,ΓR) [68] (1701, 313)
PDG K∗

2(1430) K∗
2(1980)

(MR,ΓR) [70] (1429± 4, 104± 6) (1973± 26, 373± 70)

mass below 1.7GeV. The consideration of δH in the current approach
overcomes this problem, and it allows to generate a pole in the region
of 1430MeV. According to the PDG, the K∗

2(1430) has a width of
104± 6MeV, in our approach we find a bound state, located below all
the thresholds. The PDG branching fractions are around 50%, 25%,
9% and 3% for the D-wave modes Kπ, K∗π, Kρ and Kω, respectively.
In addition, the branching fraction of the K∗ππ channel is only about
13%. Certainly, these modes can be also originated from the decay of
the resonance to K∗ρ, K∗ω and K∗φ virtual pairs. In particular, we
expect theK∗ρ channel to play an important role, because of the broad
spectral functions of both the K∗ and ρ mesons and its proximity to
the mass of the resonance, since it can trigger a significant part of the
observed K∗

2(1430) decays into Kπ and K∗ππ (see Fig. 6.1). Note that
the large K∗φ coupling also provides a contribution to the dominant
Kπ mode.

We should note, however, that we need to use values of the sub-
traction constants that amount to UV cutoffs above 4GeV, which
put some doubts on the real nature of this state, as we discussed in
(Y, I, J) =(0,0,2) and (0,1,2) sectors. It might be the case that large
UV cutoffs are needed to compensate the genuine (non resonant driven)
D-wave channels ignored in the present coupled channels approach. In
particular, in Ref. [68] it was already pointed out the possible influ-
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ence of the D-wave pseudoscalar-vector meson K∗π channel, which
lies closer to the resonance mass than the pseudoscalar-pseudoscalar
channels.

The hidden gauge approach of Ref. [199] for V V → V V scattering
produces a resonance in this sector, with mass fine-tuned to 1430MeV,
and properties quite similar to those found here. There, all D-wave
type interactions were also ignored.

On the other hand, little is known about the K∗
2(1980), and the

assignment of our second pole to this resonance is clearly uncertain.
(Note that in Ref. [68], a second pole was not generated in this sec-
tor.) The large width of this state (Γ ∼ 400) makes less meaningful
the difference between its mass and that of our pole, which might be
then associated to this resonance. Still, it should be noted again that
the K∗

2(1980) resonance is not yet firmly established and needs fur-
ther confirmation. It might well happen that the pole obtained here
corresponds to a different state not yet detected.

6.4.7 Exotics

Table 6.7: Same as in Table 6.1, but for the (Y, I, J) = (0, 2, 0) sector
that corresponds to the exotic IG(JPC) = 2+(0++) quantum numbers.
The subtraction constant has been set to a = −1.51 in all channels.

(MR,ΓR) (1420, 110)
ππ 2.74
ρρ 9.99

(MR,ΓR) [68] (1418, 108)
PDG X(1420)

(MR,ΓR) [70] (1420± 20, 160± 10)

Exotics refers here to meson states with quantum numbers that
cannot be formed by a qq̄ pair. Quantum numbers with I > 1 or
|Y | > 1 are exotic.

Besides the exotic poles with J = 1 in the sectors (Y = 1, I = 3/2)
and (Y = 2, I = 0) already reported in Ref. [68], we find another
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three exotic states with J = 0 in region 1.4− 1.6GeV. Their positions
and couplings are compiled in Tables 6.7, 6.8 and 6.9. In these tables,
we have also collected the pole positions found in Ref. [68]. These
scalar exotic states appear in the sectors (Y = 0, I = 2), (Y = 1, I =
3/2) and (Y = 2, I = 1). As already pointed out in Ref. [68], the
matrices Dkin and Dm in Eq. (6.20) are identical in the three sectors.
The analogous statement holds for the new interactions D2 and D3

(Eq. (6.21)). Thus, clearly the three spin zero exotic states are just
related by flavor rotations.

Table 6.8: Same as in Table 6.1, but for the (Y, I, J) = (1, 3/2, 0) sector
that corresponds to the exotic I(JP ) = 3

2
(0+) quantum numbers. The

subtraction constant has been set to a = −2.0 in all channels.

(MR,ΓR) (1438, 140)
Kπ 3.26
K∗ρ 10.86

(MR,ΓR) [68] (1431, 140)

As in the (Y, I, J) = (0, 0, 0) and (Y, I, J) = (1, 1/2, 0) sectors,
the inclusion of δH in the present work has very little effect and the
present results are quite similar (practically identical) to those already
obtained in [68]. We refer to that work for further details as well as for
an overall picture of the poles with exotic quantum numbers predicted
for this SU(6) extension of the WT Lagrangian. In short, there is only
state listed in the PDG that can be associated with the exotic reso-
nances predicted by our model. This is the X(1420) resonance, but it
needs further confirmation and its current evidence comes from a sta-
tistical indication [223] for a π+π+ resonant state in the n̄p→ π+π+π−

annihilation reaction with data collected by the OBELIX experiment.
In our model, the pole is mainly a ρρ bound state with a small coupling
to the ππ channel that moves the pole to the SRS. Within our scheme,
the ρρ → ρρ amplitude is totally symmetric under I ↔ J exchange.
As a consequence our ρρ potential in this sector (I = 2, J = 0) is the
same as that in the I = 0, J = 2 one. BSE amplitudes in both sectors
will become different because of coupled-channel and renormalization
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effects. Nevertheless, we expect the X(1420) to be the counterpart
of the f2(1270), which appeared with a large ρρ spin two isoscalar
component. As mentioned, the other two spin zero exotic states in
the (Y = 1, I = 3/2) and (Y = 2, I = 1) sectors should be related
to X(1420) by a flavor rotation. However, there is no experimental
evidence of their existence yet.

Table 6.9: Same as in Table 6.1, but for the (Y, I, J) = (2, 1, 0) sector
that corresponds to the exotic I(JP ) = 1(0+) quantum numbers. The
subtraction constant has been set to a = −2.0 in all channels.

(MR,ΓR) (1568, 132)
K̄K 3.50
K̄∗K∗ 11.49

(MR,ΓR) [68] (1563, 132)

Finally, we just mention that the Dkin, Dm, D2 and D3 matrices
are identical in the three sectors (Y, I, J) = (0, 2, 2), (1, 3/2, 2) and
(2, 1, 2). They provide a repulsive interaction and hence no resonance
is predicted in those exotic sectors by our model.

6.5 Summary

We have reviewed the model presented in Ref. [68] to address the dy-
namics of the low-lying even parity meson resonances. It is based on a
spin-flavor extension of the chiral WT Lagrangian, which is then used
to study the S-wave meson-meson interaction involving members not
only of the π-octet, but also of the ρ-nonet. Elastic unitarity in cou-
pled channels is restored by solving a renormalized coupled channels
BSE, and a certain pattern of SU(6) spin–flavor symmetry breaking is
implemented. The model probed to be phenomenologically successful
in the JP = 0+ and 1+ sectors. Actually in [68], it was shown that
most of the low-lying even parity PDG meson resonances in these two
spin sectors could be classified according to multiplets of SU(6). How-
ever the scheme of Ref. [68] is not so successful for the sectors with
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spin 2. It fails to appropriately describe some well established JP = 2+

resonances, like the K∗
2(1430), that in the hidden gauge formalism for

vector mesons used in Ref. [199] are dynamically generated in a natural
manner. In this work, we have improved on that by supplementing the
model of Ref. [68] with new local V V interactions consistent with CS.

To provide different pseudoscalar and vector mesons masses, a sim-
ple spin-symmetry breaking local term that preserved CS was designed
in [68]. Here, we have studied in detail the structure of the SU(6) sym-
metry breaking local terms that respect (or softly break) CS. Thus, in
this work, we have derived the most general contact terms consistent
with the chiral symmetry breaking pattern of QCD as expressed in
terms of the field U . We have also shown that there is a finite number
of chirally invariant contact four meson-field interactions, restricted
also by the other symmetries of the problem. To reduce the number
of parameters to a manageable size, and in the spirit of large NC , we
have restricted our analysis to interactions involving just one trace.

Further, we have carried out a phenomenological discussion of the
effects of these new terms. We find that their inclusion leads to a consid-
erable improvement of the description of the JP = 2+ sector, without
spoiling the main features of the predictions obtained in Ref. [68] for
the JP = 0+ and JP = 1+ sectors. In particular, we have found a sig-
nificantly better description of the IG(JPC) = 0+(2++), 1−(2++) and
the I(JP ) = 1

2
(2+) sectors, that correspond to the f2(1270), a2(1320)

and K∗
2(1430) quantum numbers, respectively. Besides the position of

the resonances, we also estimate the couplings of those resonances to
the different channels, which is relevant to describe the state structure
and its favored decay modes. Our analysis shows that 2+ states system-
atically require cutoff values which lie in the boundary of their natural
hadronic domain. This could be an indication that D-wave mecha-
nisms play some role in the formation of such states. The fact that, in
many cases, the thresholds of the main channels are not too close to the
resonance position, also suggests that pure S-wave interactions would
not necessarily saturate the formation mechanisms of those resonances.
Of course, for some particular mesonic resonances, it could also be the
case that they are mostly genuine rather than dynamically generated.
With this possible caveat in mind, we can say that the model produces
a rather robust and successful scheme to study the low-lying even par-
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ity resonances that are dynamically generated by the logs that appear
in the unitarity loops.



Chapter 7

Theoretical study of the
γN → KΛ(1520) reaction

7.1 Introduction

Nucleon excited states below 2.0 GeV have been extensively studied,
from both the experimental and the theoretical points of view [70].
However, the current knowledge on the properties of states around
or above 2.0 GeV is still in its infancy [70]. On the other hand, in
this region of energies, many theoretical predicted missing N∗ states,
within the constituent quark [71] or chiral unitary [72–76] approaches,
have so far not been observed. The associated strangeness production
reaction γp → K+Λ(1520) might be adequate to study the N∗ reso-
nances around 2.0 GeV, as long as they have significant couplings to
the KΛ(1520) pair, and could shed light on the complicated dynamics
that governs the highly excited nucleon (or in general baryon) spec-
trum. In addition, a thorough and dedicated study of the strangeness
production mechanism in this reaction has the potential to achieve a
deeper understanding of the interaction among strange hadrons and,
also, of the nature of the baryon resonances.

There were pioneering measurements at Cornell [224] and CEA [225],
and in the 1970s, the first γp→ K+Λ(1520) cross sections in the high-
energy region Eγ = 11 GeV (SLAC [226]), and in the range 2.8-4.8
GeV (LAMP2 Collaboration [227]) were reported. In 2001, the CLAS
Collaboration investigated this process in electroproduction [228], at

123
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electron beam energies of 4.05, 4.25, and 4.46 GeV, in the kinematic
region spanning the squared momentum transfer Q2 from 0.9 to 2.4
GeV2, and for invariant masses from 1.95 to 2.65 GeV. Later, in 2010,
this reaction was examined at photon energies below 2.4 GeV in the
SPring-8 LEPS experiment using a forward-angle spectrometer and
polarized photons [78, 79], and from threshold to 2.65 GeV with the
SAPHIR detector at the electron stretcher facility ELSA in Bonn [229].
Very recently, the exclusive Λ(1520) (≡ Λ∗) photoproduction cross sec-
tion has been measured by using the CLAS detector for energies from
threshold up to an invariant γp mass W = 2.85 GeV [80].

The theoretical activity has run in parallel. There exist several
effective hadron Lagrangian studies [230–238] for laboratory photon
energies ranging from threshold up to about 5 GeV. These theoretical
studies have traditionally been limited by the lack of knowledge on the
K̄∗NΛ∗ coupling strength. This fact, in conjunction with the use of
largely different form factors to account for the compositeness of the
hadrons, has led to contradicting predictions of the dominant reaction
mechanism in the process. Some light was shed on this issue in [236].
There, the SU(6) Weinberg-Tomozawa chiral unitary model proposed
in [209] was used to predict a relatively small K̄∗NΛ∗ coupling and,
hence, to conclude that the K̄ exchange and contact mechanisms dom-
inated the γp → K+Λ(1520) reaction. Besides, in the higher energy
region, the quark-gluon string mechanism with the K̄ Regge trajectory
was shown [236] to reproduce both the LAMP2 energy and the angular
distribution data [227].

The theory groups have also paid attention to another distinctive
feature of the data. The LEPS energy dependence of the forward-angle
cross section rises from threshold to a maximum near W = 2.15 GeV,
followed by a decline [79]. It was suggested that this could be an effect
of the odd parity D13 (L2T2J) N

∗ intermediate resonance at around 2.1
GeV [234, 237–239]. In the scheme of Refs. [234] and [239], the con-
tribution of the spin-parity JP = 3/2− N∗(2080) (≡ N∗) resonance1

1Before the 2012 Particle Date Group (PDG) review, all the evidence for a
JP = 3/2− state with a mass above 1.8 GeV was filed under a two-star N∗(2080).
There is now evidence [240] of two states in this region, and the PDG has split
the older data (according to mass) between a three-star N∗(1875) and a two-star
N(2120) [70].
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turned out to be very small. Hence in these works, such a contri-
bution was not expected to explain the bump structure at forward
angles reported by LEPS. This was primarily owing to the unnecessar-
ily small N∗Λ∗K coupling and probably the excessively large width of
the resonance used in these references. However in Ref. [237], within
the effective Lagrangian approach of Ref. [236], the role played by the
N(2120) resonance in the γp → K+Λ(1520) reaction was revisited,
and found that the experimental LEPS Collaboration data could be
fairly well described assuming a large N∗Λ∗K coupling, which would
be supported by some constituent quark models [241]. Yet, the re-
cent analysis carried out in [242] taking the hadron resonance cou-
plings from [241], shows that the D13 N(2120) resonance also plays
an important role in reproducing the Λ(1520) electroproduction CLAS
data [228] properly. A large N∗Λ∗K coupling scenario has also been
investigated in the pp → pK+Λ∗ and π−p → K0Λ∗ hadronic Λ(1520)
production reactions [243]. Note that a resonance with these quantum
numbers in the 2.1 GeV energy region, albeit with some uncertainty
in the precise position, is unavoidable owing to the attractive charac-
ter and strength of the vector-baryon interaction within the schemes
of Refs. [73] and [74]. Furthermore, a recent analysis [244] of the
γp → K0Σ+ CBELSA/TAPS data [245], which exhibits a peak in
the cross section around

√
s = 1.9 GeV followed by a fast downfall

around
√
s = 2.0 GeV, also provides support for the existence of a

JP = 3/2− nucleon excited state around 2 GeV.

On the other hand, the comparison of the recent CLAS measure-
ments [80] with different effective Lagrangian model predictions [231,
238], obtained by using the parameters fitted to the LEPS [78, 79] and
LAMP2 [227] data, indicates that the current model calculations can
not describe the CLAS differential cross sections well over the entire
energy and angular ranges available in the experiment.

In the present work, we aim to achieve an improved description of
the recent CLAS data, which would provide further support for the
existence of the N(2120) resonance, and additional constraints on its
properties. Within the scheme of Ref. [237], and in addition to the
contact, t-channel K̄ exchange, and s-channel nucleon and N(2120)
resonance pole contributions, we also study the u-channel Λ(1115)
(≡ Λ) hyperon pole term. The latter mechanism has been ignored
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in all previous calculations [231, 236–238] because information on the
Λ∗Λγ coupling is scarce [235], and because it is expected to provide
small contributions for forward K+ angles, where the LEPS data lie.
However, u-channel mechanisms might make important contributions
at the backward K+ angles that have become accessible in the recent
CLAS experiment. As a consequence, it is not surprising, that previ-
ous theoretical calculations that reasonably described the LEPS data,
were not as successful in describing the recent CLAS differential cross
sections, which span a much wider range of K+ angles.

Taking these considerations into account, and using the combina-
tion of the effective Lagrangian approach and the isobar model, we
present in this chapter a combined theoretical analysis of the recent
γp → K+Λ(1520) CLAS [80] and LEPS [79] data that includes the
contribution from the u-channel Λ hyperon pole term.

The chapter is based on Ref. [246] and it is organized as follows.
In Sec. 7.2, we discuss the formalism and the main ingredients of the
model, while our numerical results and discussion are presented in
Sec. 7.3. Finally, a short summary and conclusions are given in Sec. 7.4.

7.2 Formalism and ingredients

7.2.1 Feynman Amplitudes
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��
��
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Z

Xφ

  Y

k1

p1

α

γ,

εγ

Figure 7.1: Definition of the different angles used in this work.

The invariant scattering amplitudes that enter our model for calcu-
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lation of the total and differential cross sections for the reaction,

γ(k1, λ)p(k2, sp) → K+(p1)Λ
∗(p2, sΛ∗) (7.1)

are defined as

− iTi = ūµ(p2, sΛ∗)Aµν
i u(k2, sp)εν(k1, λ) (7.2)

where uµ and u are dimensionless Rarita-Schwinger and Dirac spinors,
respectively, while εν(k1, λ) is the photon polarization vector. In addi-
tion, sp and sΛ∗ are the baryon polarization variables. The sub-index i
stands for the contact, t-channel antikaon exchange, s-channel nucleon
and N∗ pole terms and novel u-channel Λ pole mechanism, which are
depicted in Fig. 7.2. In our final results, and for simplicity, we do not
consider the u-channel Σ0(1193) pole term, as we expect its contribu-
tion to be much smaller than that from the Λ(1115) hyperon. We come
back to this point below. Moreover, higher-excited hyperons would be
farther off-shell in the u-channel, and have not been taken into account
either.

To compute the contributions of these terms, we use the interaction
Lagrangian densities of Refs. [234, 236, 237, 246],

LγKK = −ie(K−∂µK+ −K+∂µK−)Aµ, (7.3)

LKpΛ∗ =
gKNΛ∗

mK

Λ̄∗µ(∂µK
−)γ5p + h.c., (7.4)

Lγpp = −ep̄
(
/A− κp

2MN

σµν(∂
νAµ)

)
p+ h.c., (7.5)

LγKpΛ∗ = −iegKNΛ∗

mK

Λ̄∗µAµK
−γ5p + h.c., (7.6)

LγNN∗ =
ief1
2mN

N̄∗
µγνF

µνN − ef2
(2mN)2

N̄∗
µF

µν∂νN + h.c., (7.7)

LKΛ∗N∗ =
g1
mK

Λ̄∗
µγ5γα(∂

αK)N∗µ +
ig2
m2

K

Λ̄∗
µγ5 (∂

µ∂νK)N∗ν + h.c.,

(7.8)

LγΛΛ∗ = − ih1
2mΛ

Λ̄∗
µγνF

µνΛ +
h2

(2mΛ)2
Λ̄∗

µF
µν∂νΛ + h.c. (7.9)

LKNΛ = −igKNΛΛ̄γ5K
−p + h.c., (7.10)
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γ

k1, λ

K+

p1

k2, sp

p

K−

Λ(1520)

p2, sΛ∗

γ

k1, λ

K+

p1

k2, sp

p N Λ(1520)

p2, sΛ∗

γ

k1, λ

K+

p1

k2, sp

p N(2120) Λ(1520)

p2, sΛ∗

γ

k1, λ

K+
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Figure 7.2: The model for γp → KΛ(1520). It consists of the contact
(a), t-channel antikaon exchange (b), s-channel nucleon (c) andN∗ pole
terms (d) and novel u-channel Λ (Σ0) pole mechanism (e). In the dia-
gram, we also show the definition of the kinematical (k1, k2, p1, p2) and
polarization (λ, sp, sΛ∗) variables that we use in the present calculation.
In addition, we use qu = k2 − p1 = p2 − k1, with u = q2u.

where e =
√
4πα > 0 (α = 1/137.036 is the fine-structure constant),

κp = 1.79, Aµ and Fµν = ∂µAν − ∂νAµ are the proton charge and mag-
netic moment, and the photon field and electromagnetic field tensor,
respectively. We use the Rarita-Schwinger formalism (Appendix A.2)
to describe the spin J = 3/2 Λ∗ and N∗ resonances, while the N(2120)
electromagnetic f1,2 and hadronic g1,2 couplings will be fitted to the
experimental data. Note that the γΛΛ∗ vertex is gauge invariant by
itself. h1 and h2 are magnetic coupling constants, while gKNΛ is a
strong one.

With the above Lagrangians, one readily finds

Aµν
t = −egKNΛ∗

mK

1

t−m2
K

qµt (q
ν
t − pν1)γ5 fc, (7.11)
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Aµν
s = −egKNΛ∗

mK

1

s−m2
N

pµ1γ5 [/k1γ
ν fs + (/k2 +mN)γ

ν fc

+(/k1 + /k2 +mN)i
κp

2mN

σνρk
ρ
1 fs

]
, (7.12)

Aµν
c = e

gKNΛ∗

mK

gµνγ5 fc, (7.13)

Aµν
R = γ5(

g1
mK

/p1g
µρ − g2

m2
K

pµ1p
ρ
1)

/k1 + /k2 +MN∗

s−M2
N∗ + iMN∗ΓN∗

×Pρσ

[
ef1
2mN

(kσ1γ
ν − gσν/k1)

+
ef2

(2mN)2
(kσ1k

ν
2 − gσνk1 · k2)

]
fR, (7.14)

Aµν
u =

[
h1
2mΛ

(kµ1γ
ν −gµν/k1) +

h2
(2mΛ)2

(kµ1 q
ν
u −gµνk1 · qu)

]
×/qu +mΛ

u−m2
Λ

gKNΛγ5fu . (7.15)

The sub-indices c, t, s, R and u stand for the contact term, t-channel
kaon exchange, s-channel nucleon and N∗ pole terms, u-channel Λ
pole mechanism. In the above equations, mΛ and qu are the mass and
the four-momentum of the Λ(1115), respectively, while MN∗ and ΓN∗

are the mass and the total decay width of the N∗ resonance, which
will be fitted to the experimental data. Besides, t, s and u are the
Mandelstam variables which are: t = q2t = (k1 − p1)

2, s = (k1 + k2)
2

and u = q2u = (p2 − k1)
2. The projector of spin 3/2 is

Pρσ = −gρσ +
1

3
γργσ +

2

3M2
N∗

(k1 + k2)ρ(k1 + k2)σ

+
1

3MN∗
(γρ(k1 + k2)σ − γσ(k1 + k2)ρ). (7.16)

In addition, in the above expressions of the different contributions,
we have already included the form factors which are necessary to be
introduced since the hadrons are not pointlike particles. We take the
following parameterization for those form factors:

fi =
Λ4

i

Λ4
i + (q2i −M2

i )
2
, i = s, t, R, u (7.17)
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fc = fs + ft − fsft, and


q2s = q2R = s,
Ms = mN ,
Mt = mK ,
MR =MN∗ ,
Mu = mΛ,

(7.18)

where the form factor of fc is chosen such that the on-shell of the
coupling constants are reproduced and the gauge invariance is kept. We
will consider different cut-off values for the background and resonant
terms, i.e. Λs = Λt = Λu = ΛB 6= ΛR, which will be fitted to the
experimental data of γp→ K+Λ(1520) differential cross section.

7.2.2 Coupling constants

We use gKNΛ∗ = 10.5, as determined from the Λ∗ → pK− decay width
(we use for the full decay width ΓΛ∗ = 15.6 MeV and a value of 0.45
for the Λ∗ → K̄N branching ratio [70]), while the N∗Nγ coupling
constants f1 and f2 could be fixed, in principle, from the N∗ helicity
amplitudes A1/2 and A3/2 [247],

Ap∗

1/2 =
e
√
6

12

√
kγ

mNMN∗

[
f1 +

f2
4m2

N

MN∗(MN∗ +mN)

]
, (7.19)

Ap∗

3/2 =
e
√
2

4mN

√
kγMN∗

mN

[
f1 +

f2
4mN

(MN∗ +mN)

]
, (7.20)

where kγ = (M2
N∗ −m2

N)/(2MN∗), and the the superscript p∗ indicates
the positive-charge D13 resonance.

On the other hand, we take gKNΛ ∼ −14 as estimated from the
SU(3) flavor symmetry [248] Bonn-Jülich model for the meson-exchange
hyperon-nucleon interactions in free scattering [249]. Note that at low-
est order in the chiral expansion [250, 251],

gπ0pp

gK+pΛ

∼ −D + F
D+3F√

3

,
gK+pΣ0

gK+pΛ

∼ −D − F
D+3F√

3

, (7.21)

with D ∼ 0.8 and F ∼ 0.5, which justifies |gKNΛ/gπNN | ∼ 1. Besides,
we see that the gK+pΣ0 is about four or five times smaller than gK+pΛ,
and this is also compatible with the findings in [249]. The latter rela-
tionship between couplings gives support for neglecting the u-channel
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Table 7.1: Theoretical predictions (in keV) for the radiative width
Γ(Λ(1520) → Σ0γ).

Approach Γ [keV]
NRQM [253, 254] 55–75
MIT Bag [254] 17
RCQM [255] 293

Chiral Bag [256] 49
Algebraic [257] 180

BonnBSCQM [258] 157
χQM [259] 92

UChPT [260] 71

Σ0 pole contribution, despite that the strength of the electromagnetic
γΣ0Λ∗ coupling could be similar to, or even larger than, that involving
the Λ(1115) hyperon [252].

The Σ0 radiative decay of the Λ(1520) has not been observed yet,
while Γ(Λ(1520) → Λγ) has been measured to be of the order of 130
keV [70]. There exist various (Table 7.1) theoretical estimates [253–
260] for the width of Γ(Λ(1520) → Σ0γ), ranging from the 17 keV
predicted within the MIT bag model [254] up to the 293 keV ob-
tained in the RCQM (relativistic constituent quark model) approach
followed in [255]. If the Λ(1520) were a SU(3) singlet and assuming
that the photon is a U -spin singlet, U -spin invariance guarantees that
decay into the U -spin triplet linear combination (Σ0 + 3Λ) would be
0 [252]. Thus one would predict2 Γ(Λ(1520) → Σ0γ) ∼ 3×(phase
space)×Γ(Λ(1520) → Λγ) ∼ 230 keV, in the upper-band of the vari-
ous predictions listed in Table 7.1.

Despite this large ambiguity, one can safely conclude that even
though the electromagnetic γΣ0Λ∗ coupling was bigger than the γΛΛ∗

2In the original work in Ref. [252], it was assumed that the phase space scaled
as the decaying photon momentum from what follows Γ(Λ(1520) → Σ0γ) ∼ 2.5×
Γ(Λ(1520) → Λγ) [252]. However, as we see below (Eqs. (7.22)–(7.24)), the decay
width rather scales down as the cube of the photon momentum, which leads to the
lower value, about 230 keV.
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one, it would not be large enough to compensate for the big reduction
induced by the ratio of hadronic couplings (gK+pΣ0/gK+pΛ)

2 ∼ 1/20.
Hence, it seems reasonable to assume that the Σ0(1193) contribution to
the γp→ K+Λ(1520) reaction would be much smaller than that of the
Λ(1115) hyperon. On the other hand, taking into account the u-channel
Σ0(1193) term would require adopting some theoretical model for the
electromagnetic Λ∗Σ0γ amplitude. However, we see that important
discrepancies among the various approaches, even in predicting the
radiative decay width Γ(Λ(1520) → Σ0γ). Fitting this amplitude to
data is not a realistic option either, because both the Λ and the Σ0 u-
channel poles are quite close, and the available data cannot effectively
discriminate between their contributions. Thus, in the final results,
and for the sake of simplicity, we do not include the u-channel Σ0(1193)
mechanism. Nevertheless, we estimate the possible impact of this term
assuming U -spin SU(3) symmetry.

The γΛΛ∗ coupling constants h1 and h2 could be fixed from the
Λ∗ → Λγ partial decay width [70],

Γγ =
mΛk

2
γ

2πMΛ∗

(
|A1/2|2 + |A3/2|2

)
, (7.22)

with,

A1/2 =

√
6

12

√
kγ

mΛMΛ∗

[
h1 +

MΛ∗h2
4m2

Λ

(MΛ∗ +mΛ)

]
, (7.23)

A3/2 =

√
2

4mΛ

√
kγMΛ∗

mΛ

[
h1 +

h2
4mΛ

(MΛ∗ +mΛ)

]
, (7.24)

where kγ = (M2
Λ∗ − m2

Λ)/(2MΛ∗) is the photon center of mass (c.m.)
frame decay momentum. With the value of Γγ = 0.133 MeV, as quoted
in the PDG [70], we could get a constraint on the values of h1 and h2,

ah21 + bh22 + ch1h2 = d, (7.25)

with

a =
m2

Λ + 3M2
Λ∗

24m3
ΛMΛ∗

k3γ, b =
MΛ∗(mΛ +MΛ∗)2

96m5
Λ

k3γ, (7.26)

c =
(mΛ +MΛ∗)(mΛ + 3MΛ∗)

48m4
Λ

k3γ, d=
2πMΛ∗Γγ

mΛ

. (7.27)
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7.2.3 Differential cross section

With the ingredients given above, the unpolarized c.m. differential
cross section can be easily obtained as,

dσ

d cos θc.m.

=
|~k c.m.

1 ||~p c.m.
1 |

8π

mNMΛ∗

(W 2 −m2
N)

2

∑
sp,sΛ∗ ,λ

|T |2 , (7.28)

with W the invariant mass of the γp pair. Further, ~k c.m.
1 and ~p c.m.

1

are the photon and K+ meson c.m. three-momenta, and θc.m. is the
K+ polar scattering angle (Fig. 7.1). The differential cross section
dσ/d(cos θc.m.) depends on W and also on cos θc.m.. As mentioned
above, the model accounts for a total of five mechanisms: contact,
t-channel antikaon exchange, s-channel nucleon and N∗ pole terms,
evaluated in [237], and the u-channel Λ pole contribution discussed
here. In principle, the free parameters of the model are: (i) the mass
and width (MN∗ and ΓN∗) of the N(2120) resonance, (ii) the cut off pa-
rameters Λs = Λt = Λu ≡ ΛB and ΛR, and (iii) the N(2120) resonance
electromagnetic γNN∗ (ef1, ef2) and strong N∗Λ∗K (g1, g2) couplings
and the Λ(1520) magnetic γΛΛ∗ (h1) one. Note that the second cou-
pling h2 in Eq. (7.7) is given in terms of h1 and the Λ∗ radiative decay
width (see Eq. (7.25)).

In the next section, we fit the parameters of the model to the dif-
ferential cross-section data from the CLAS and LEPS Collaborations.

7.3 Numerical results and discussion

First, we have performed3 a nine-parameter (ef1, ef2, g1, g2, Λs =
Λt = Λu ≡ ΛB, ΛR, MN∗ , ΓN∗ and h1) χ

2−fit to the dσ/d(cos θc.m.)
data from the CLAS Collaboration [80] (fit I). There is a total of 157
available data points displayed in Fig. 7.3. The dσ/d(cos θc.m.) data,
as a function of cos θc.m., are given for nine intervals of the invariant γp
massW from the reaction threshold 2.02 GeV up to 2.85 GeV. To com-
pute the cross sections in each interval we always use the corresponding
mean value of W . (We have checked that variations with respect to

3We take MΛ∗ = 1.5195 GeV, mK= 0.4937 GeV and mΛ = 1.1157 GeV.
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calculation of the average value of the differential cross sections for
each W range turn out to be very small.) We have also carried out a
combined fit to the CLAS [80] and LEPS [79], dσ/d(cos θc.m.) data (fit
II). In this second fit, we have a total of 216 data points (in addition
to the former CLAS differential cross sections, we have also fitted to
the LEPS data depicted in Fig. 7.4).

Table 7.2: Values of some parameters determined in this work and
in Ref. [237]. Fit I (II) parameters have been adjusted to the CLAS
(combined CLAS [80] and LEPS [79]) γp→ K+Λ(1520) dσ/d(cos θc.m.)
data, while fit C in Ref. [237] was obtained by considering only the
LEPS differential cross sections.

Fitted Parameters
This work Ref. [237]

Fit I Fit II Fit C
g1 1.7± 0.4 1.6± 0.2 1.4± 0.3
g2 4.6± 1.2 2.2± 0.5 5.5± 1.8

ΛB [MeV] 630± 2 620± 2 604± 2
ΛR [MeV] 933± 52 1154± 47 909± 55

ef1 0.123± 0.015 0.126± 0.012 0.177± 0.023
ef2 −0.094± 0.014 −0.097± 0.010 −0.082± 0.023

MN∗ [MeV] 2172± 10 2135± 4 2115± 8
ΓN∗ [MeV] 287± 54 184± 11 254± 24

h1 0.68± 0.05 0.64± 0.05 −
χ2/dof 2.5 2.5 1.2

χ2/dof (No N∗) 5.6 9.9 24
χ2/dof (No Λ) 3.0 3.0 −

χ2/dof (No N∗,Λ) 6.3 9.9 −
Derived Observables

Ap∗

1/2[10
−3GeV−1/2] −7.6± 3.9 −7.3± 3.0 3.6± 8.6

Ap∗

3/2[10
−2GeV−1/2] 2.5± 1.0 2.5± 0.8 5.8± 2.1

ΓN∗→Λ∗K [MeV] 56± 27 30± 8 19± 7
ΓN∗→Λ∗K

ΓN∗ [%] 19.0± 10.3 16.2± 4.2 7.5± 2.8

h2 −0.43± 0.08 −0.38± 0.07 −

The fitted parameters from the above two fits are listed in Table 7.2,
where we also report our previous results from a best fit (fit C of
Ref. [237]) only to the LEPS data of Ref. [79]. We also give for each
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fit, the predicted nucleon D13 resonance width ΓN∗→Λ∗K (Eq. (18) in
Ref. [237]), helicity amplitudes (Eqs. (15) and (16) in Ref. [237]) for the
positive-charge state and the h2 magnetic γΛΛ∗ coupling [Eq. (7.25)].4

As commented before, LEPS data lie in the K+ forward angle re-
gion and were taken below Eγ = 2.4 GeV, while the recent CLAS mea-
surements span a much larger K+ angular and photon energy regions.
The χ2/dof for both fit I and fit II are acceptable, of the order of 2.5.
The new CLAS measurements are quite accurate (excluding some data
close to threshold) with statistical errors ranging from about 10%, at
high scattering angles, down to 5% or less for forward angles. The sys-
tematical errors of the experimental data (11.6% [80] and 5.92% [79],
for CLAS and LEPS, respectively) have been added in quadratures to
the statistical ones and taken into account in the present new fits. We
see that the N∗ resonance parameters from the new fits I and II turn
out to be in reasonable agreement with those obtained in Ref. [237].
Thus, the first conclusion is that the CLAS data provide further sup-
port for the existence of an odd parity 3/2 wide nucleon resonance with
a mass in the region of 2.1 GeV and a width of around 200 MeV. This
is compatible with the Breit-Wigner parameters, MBW = 2.15 ± 0.06
GeV and ΓBW = 330±45 MeV, reported in [240]. The latter reference
also provides experimental values for its helicity amplitudes

Ap∗

1/2[10
−3GeV−1/2] = 125± 45 , (7.29)

Ap∗

3/2[10
−2GeV−1/2] = 15± 6 , (7.30)

which however do not seem entirely consistent with previous measure-
ments [261],

Ap∗

1/2[10
−3GeV−1/2] = −20± 8 , (7.31)

Ap∗

3/2[10
−2GeV−1/2] = 1.7± 1.1 , (7.32)

quoted in the 2008 PDG edition [262], which in turn are in better
agreement with our predictions in Table 7.2. Note that the latter

4This is a second rank equation and it has two possible solutions. One of them
turns out to be strongly disfavored by the χ2−fit. To be more quantitative, in our
final results (fit II), χ2/dof would pass from 2.5 to 3.1 if the other solution were
considered.
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helicity amplitudes are used in [242], where the ep → eK+Λ(1520)
CLAS data in Ref. [228] were successfully described. Nevertheless,
given the two-star status (evidence of existence is only fair) granted
to the N(2120) resonance in the multichannel partial wave analysis of
pion and photo-induced reactions off protons carried out in [240], the
discrepancy with our predicted helicity amplitudes should not be used
to rule out our fits, but rather one could use them to further constrain
these elusive observables. On the other hand, within this scheme, the
N(2120) resonance would have a large partial decay width into Λ∗K,
which is compatible with the findings of the constituent quark model
approach in Ref. [241]. Indeed, in that reference, ΓN∗→Λ∗K is predicted
to be 7+24

−6 MeV for a resonance mass of 2080 MeV. This value for the
width is compatible within errors with the value of 30± 8 MeV found
in this work. Moreover, because the Λ(1520)K+ threshold is located
so close to MN∗ = 2080 MeV, the width would increase by at least a
factor of two if the resonance mass was instead taken as 2120 MeV.
Hence, the constituent quark model of Ref. [241] would predict central
values for ΓN∗→Λ∗K in the vicinity of 15 MeV for the current PDG
value of MN∗ . On the other hand, the width quoted in [241] leads to5

|g1| = 1.25, in good agreement with our fitted value. The analysis
carried out in [242] for the Λ(1520) electroproduction reaction off the
proton uses this value for g1, fixes g2 to 0 and, as mentioned above,
uses the helicity amplitudes given in Ref. [261]. Thus, the set of N∗

couplings used in Ref. [242], where the important role played by the
D13 N(2120) resonance is also highlighted, turns out to be similar to
that found in this work.

The differential dσ/d(cos θc.m.) distributions from the combined fit
(fit II) to the CLAS [80] and LEPS [79] data are shown in Figs. 7.3 and
7.4, and compared with the experimental data. Only statistical errors
are displayed in these two figures. The contributions from different
mechanisms of the model are shown separately.

In the first of these two figures, the differential cross sections as a
function of cos θc.m., for different γp invariant mass intervals, are dis-
played and contrasted with the recent CLAS measurements. Dashed
(blue) and dotted (green) lines show the contributions from background

5The width is rather insensitive to g2 because its contribution is suppressed by
the K+ meson c.m. three-momentum.
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Figure 7.3: Fit II γp → K+Λ(1520) differential cross sections as a
function of cos θc.m. compared with the CLAS data [80] for different γp-
invariant mass intervals (in GeV). Only statistical errors are displayed.

(contact, t-channel K̄ exchange and s-channel nucleon and u-channel
Λ pole mechanisms) and N(2120) resonance terms, respectively. Dash-
dotted (black) curves represent for the u-channel Λ(1115) contribution
separately, while the solid (red) lines display the results obtained from
the full model (background+N∗). Finally, the dash-dotted (magenta)
curves represent the u-channel Σ0(1193) contribution, not included in
the final results [solid (red) lines], as determined from electromagnetic
U -spin (hΣ1,2 = −

√
3h1,2) and leading order chiral [Eq. (7.21)] symme-

tries. Near threshold the CLAS cross section is fairly flat. In the
highest energy bin the cross section is quite forward peaked, with a
hint of plateauing toward the most forward angles. Also evident is
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Figure 7.4: Fit II γp → K+Λ(1520) differential cross section as a
function of the LAB frame photon energy for different c.m. K+ po-
lar angles. We also show the experimental LEPS [79] (crosses) and
CLAS [80] (filled circles) data. Only statistical errors are displayed.

that the cross section flattens or even rises slightly toward large angles.
We find an overall good description of the data, both at forward and
at backward K+ angles and for the whole range of measured γp invari-
ant masses, W . We see that as W increases, the contribution of the
u-channel Λ(1115) pole term produces an enhancement at backward
angles, and it becomes more and more relevant. Indeed, it turns out
to be essential above W ≥ 2.35 GeV and cos θc.m. ≤ −0.5. The present
model provides a better description of the recent CLAS data than that
obtained within the schemes of Refs. [239] and [238], whose predictions
are reported in [80]. The major improvement can be appreciated at
backward angles, as it is mostly attributable to the u-channel Λ(1115)
pole mechanism.

For comparison, we also display in Fig. 7.3 the contribution from
the u-channel Σ0(1193) term, which is not included in fit II. The
Σ0(1193) amplitude takes the same form as that of the Λ(1115) mecha-
nism (Eq. (7.15)), with the obvious replacements of coupling constants
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and hyperon masses. For the electromagnetic ones, we have assumed
U -spin invariance (hΣ1,2 = −

√
3h1,2), while we have taken gK+pΣ0 = 3.2,

as deduced from leading order vector chiral symmetry (Eq. (7.21)).
As anticipated, the u-channel Σ0 contribution turns out to be a small
fraction of the Λ one, and can be safely neglected.

In Fig. 7.4, the differential cross section deduced from the results
of the nine-parameter fit II, as a function of the LAB frame photon
energy and for different forward c.m. K+ angles, is shown and com-
pared both to CLAS [80] and to LEPS [79] data. In this figure, dashed
(blue) and dotted (green) lines show the contributions from the back-
ground6 and N∗ resonance terms, respectively, while the solid (red)
lines display the full result. We see that the bump structure in the
differential cross section at forward K+ angles is fairly well described
thanks to the significant contribution from the N∗ resonance in the
s-channel. Indeed, these results are similar to those already reported
and discussed in Ref. [237], and the description of these forward LEPS
data achieved here is also comparable to that exhibited in Ref. [237].
The CLAS data points shown in Fig. 7.4 were obtained from the ap-
propriate CLAS cross sections displayed in Fig. 7.3, relating W to the
LAB photon energy. Returning to the latter figure, we see that our
model underestimates the CLAS data for values of cos θc.m. in the 0.5-
0.75 interval, and in particular at high energies, W ≥ 2.3 GeV. We
will study this region in the next section by taking into account Regge
effects.

We have also performed several best fits, where either one or both of
the s-channelN(2120) resonance and the u-channel Λ(1115) pole terms
have been switched off. The corresponding χ2/dof are also compiled in
Table 7.2, which turn out to be larger, and in most cases, unacceptable
on statistical grounds.7

6The contribution of the u-channel Λ(1115) pole mechanism for these forward
angles is negligible.

7Note that the quantitative effect on χ2/dof of disconnecting the u-channel
Λ(1115) contribution is not big. This is because the forward angle LEPS data are
rather insensitive to this mechanism, as well as the low energy CLAS cross section.
As commented in the discussion of Fig. 7.3, only the backward high energy CLAS
cross sections are being effected by this term, but there the qualitative effect is
important. Despite the limited number of data points, which in addition suffer
from large statistical fluctuations, the improvement on the total χ2/dof is still
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Figure 7.5: Fit II γp → K+Λ(1520) differential cross section as a
function of the LAB frame photon energy for backward K+ angles
[solid (red) lines].

In Fig. 7.5, we display the average 〈dσ/d(cos θc.m.)〉 distribution
(Eq. (7.33)) from the full model and compare it with LEPS data from
Ref. [78]. The 68% CL bands inherited from the Gaussian correlated
statistical errors of the fit II parameters. Finally, the dash-dotted
(black) curves show the u-channel Λ(1115) contribution. There, events
were accumulated for two angular intervals θc.m. =(120−150)0 and θc.m.

=(150−180)0, with the photon energy varying in the region 1.9 ≤ Eγ ≤
2.4 GeV. Since the angular intervals are quite wide, we have partially
integrated the differential cross section, and evaluated〈

dσ

d(cos θc.m.)

〉
=

∫ cos θdwc.m.

cos θupc.m.

dσ
d(cos θc.m.)

d(cos θc.m.)∫ cos θdwc.m.

cos θupc.m.
d(cos θc.m.)

, (7.33)

taking (θdwc.m., θ
up
c.m.) to be (1200, 1500) or (1500, 1800), respectively. In

Fig. 7.5, the shaded regions account for the uncertainties inherited from
those affecting the parameters compiled in Table 7.2. They represent
68% confidence-level (CL) bands and were obtained using a Monte
Carlo simulation. As shown in Figs. 7.5(a) and 7.5(b), the present
model provides a fair description of these backward K+ angular data.

significant (3.0 vs 2.5).
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Figure 7.6: Total γp → K+Λ∗ cross section deduced from the results
of fit II. We display it as a function of the LAB photon energy and
compare with the CLAS data from Ref. [80].

This is in sharp contrast to the results of our previous work [237] (see
Fig. 4 in Ref. [237]), where the u-channel Λ(1115) mechanism was not
considered. Indeed, the latter contribution is also depicted in Fig. 7.5.
We see that it increases with the photon energy and that becomes quite
relevant for the most backward angles [Fig. 7.5(b)].

Finally, we have also calculated the total cross section of the γp→
K+Λ(1520) reaction as a function of the photon energy. The results
are shown in Fig. 7.6 and compared to the experimental data from
CLAS. Dashed (blue) and dotted (green) lines show the contributions
from the background and N∗ resonance terms, respectively, while the
solid (red) line displays the results from the full model. The shaded
region accounts for the 68% CL band inherited from the Gaussian cor-
related statistical errors of the fit II parameters. We see that the model
provides an excellent description of the integrated CLAS cross sections
thanks to an important contribution from the photo-excitation of the
N(2120) resonance and its subsequent decay into a Λ(1520)K+ pair.
This mechanism seemed also to be responsible for the bump structure
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in the LEPS differential cross section at forward K+ angles discussed
in Fig. 7.4. Thus, one can definitely take advantage of the apparently
important role played by this resonant mechanism in the LEPS and
CLAS data to better constrain some of the N(2120) properties (Ta-
ble 7.2), starting from its mere existence.

It is noteworthy that the contribution from the u-channel Λ(1115)
mechanism is very small in the integrated cross section, as it is only
significant for backward K+ angles.

7.4 Summary and Conclusions

We have carried out a new analysis of the γp → Λ(1520)K+ reaction
at low energies within an effective Lagrangian approach and the isobar
model. We have presented results from a combined fit to the recent
CLAS [80] and LEPS [79], dσ/d(cos θc.m.) data. Within the scheme
of Ref. [237], and in addition to the contact, t-channel K̄ exchange,
and s-channel nucleon and N(2120) resonance pole contributions, we
have also studied the u-channel Λ(1115) hyperon pole term. The latter
mechanism has been ignored in all previous calculations [231, 236–238]
that relied on the very forward K+ angular LEPS data [78, 79], where
its contribution was expected to be small.

We have shown that when the contributions from the N(2120) reso-
nance and the Λ(1115) are taken into account, both the new CLAS and
the previous LEPS data can be simultaneously described. Actually, we
find an overall good description of the data, both at forward and at
backward K+ angles, and for the whole range of measured γp invari-
ant masses. The contribution of the u-channel Λ(1115) pole term pro-
duces an enhancement at backward angles, and it becomes more and
more relevant as the photon energy increases, becoming essential above
W ≥ 2.35 GeV and cos θc.m. ≤ −0.5. On the other hand, the CLAS
data (see for instance Fig. 7.6), clearly support the existence of an odd
parity 3/2 wide nucleon resonance with a mass in the region of 2.1 GeV,
a width of around 200 MeV and a large partial decay width into Λ∗K.
The recent analysis carried out in [242] of Λ(1520) electroproduction
off the proton also concludes that the D13 N(2120) resonance plays an
important role. It is re-assuring that the N∗ couplings used in [242]
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turn out to be quite similar to those determined in this work. These
characteristics could be easily accommodated within the constituent
quark model results of Capstick and Roberts in Ref. [241]. Such reso-
nance might be identified with the two stars PDG N(2120) state. This
would confirm previous claims [237, 238] from the analysis of the bump
structure in the LEPS differential cross section at forward K+ angles
discussed in Fig. 7.4, and contradict previous negative claims made in
[234] and [239] regarding this point.

Following [241], besides the N(2120) D13 resonance, both of the
weakly established states N(2090) S11 and N(2200) D15 [in the 2012
PDG review [70], these excited nucleons appear in the listings as
the two-star N(1895) and N(2060), respectively], were also visible in
Λ(1520)K production reactions [see Fig. 6 of Ref. [241]]. If these
resonances were take into account, one might wonder whether their
contributions could affect the N(2120) parameters in a significant way.
Fortunately, the work of S. Nam on electroproduction of Λ(1520) off
the nucleon [242] sheds some light into this issue. There, theD13(2120),
S11(2090) and D15(2200) resonances were considered, and it was found
that the contributions of the two latter ones are negligible and much
smaller than that of the D13(2120) state [see Figs. 6(a) and 11(a) in
Ref. [242]].

On the other hand, the N∗ resonance parameters from the new
fits carried out in this work turn out to be in reasonable agreement
with those obtained in Ref. [237], and the bulk of the conclusions of
that reference still hold. In particular, the sign discrepancy (see Fig. 6
in [237]) of the predictions of the model for the polar-angle average
photon-beam asymmetry, as a function of Eγ, with the SPring-8 LEPS
data of Ref. [79] still persists.

In addition, our model underestimates the CLAS data for values
of cos θc.m. in the 0.5-0.75 interval, and in particular at high energies,
W ≥ 2.3 GeV, where the Reggeon mechanism plays an important role.
We will study this reaction within a Regge-plus-resonance model in the
next chapter.

In summary, we conclude that the associated strangeness produc-
tion reaction γp → K+Λ(1520) is an adequate tool to study the prop-
erties of the N(2120) resonance, and provides strong hints of its exis-
tence. This would corroborate the theoretical expectations of the chiral
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inspired unitary [73, 74] and constituent quark [241] models, and would
make more plausible the analysis of the γp → K0Σ+ CBELSA/TAPS
data carried out in [244], where the existence of a JP = 3/2− nucleon
excited state around 2 GeV has also been claimed. In addition, the
study of the γp→ K+Λ(1520) reaction also sheds light on the structure
of Λ(1520) [74, 263], and its properties such as the K̄∗NΛ∗ [236] and
KΛ∗N∗ vertices (this work and Ref. [237]) and its radiative Λ∗ → Λγ
decay [h1 and h2 magnetic couplings, Eq. (7.7), determined in this
work].



Chapter 8

Regge signatures from
forward CLAS Λ(1520)
photoproduction data

8.1 Introduction

In Chapter 7, we have carried out a combined analysis of CLAS and
LEPS data for γp → K+Λ(1520) reaction within an effective La-
grangian approach and the isobar model. Indeed, the model leads to
an overall good description of both sets of data, both at forward and
backward K+ angles, and for the whole range of measured γp invariant
masses in the CLAS and LEPS experiments. However, for invariant
masses W > 2.35 GeV and forward angles, some small discrepancies
(though systematic) between the CLAS data and the theoretical pre-
dictions appear (see lower panels of Fig. 7.3 of Chapter 7, collected
here in the Fig. 8.2), which led to a moderate value of the best-fit
χ2/dof ∼ 2.5.

This should not be entirely surprising, since the model of Chapter 7
is not suited at high energies and forward angles, where quark-gluon
string mechanisms could become important [235, 236, 264]. Actually,
it is obvious from the analysis of the experimental hadron cross section
data that the Reggeon and the Pomeron exchange mechanisms play a
crucial role at high energies and small transferred momenta [265, 266].
The underlying philosophy of the Regge formalism is as follows. In

145
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modelling the reaction amplitude for the γp → KY process at high
energies and small |t| or |u|, instead of considering the exchange of a
finite selection of individual particles, the exchange of entire Regge tra-
jectories is taken into account. This exchange can take place in the t
channel (kaonic trajectories) or u channel (hyperonic trajectories). As
such, Regge theory offers an elegant way to circumvent the controver-
sial issue of modelling high-spin, high-mass particle exchange.

Different dominant mechanisms have been proposed to describe the
LAMP2 (Daresbury laboratory [227]) high energy differential cross sec-
tions. Thus, in Refs. [235, 264] it was claimed a large contribution from
a t-channel K̄∗ Regge exchange. However, in Ref. [236], it was argued
that the K̄∗ contribution should be quite small, almost negligible, since
the K∗NΛ∗ coupling is expected to be much smaller than the value
implicitly assumed in the previous works1. Nevertheless, a Reggeon
exchange model, but with a K̄- (instead of a K̄∗) trajectory was also
used in Ref. [236]. It was also discussed there that the K̄ Reggeon
mechanism is more favored by the LAMP2 data than the K̄∗ Reggeon
one, and that it is able to reproduce the available experimental data
in the region from ELAB

γ ∼ 2.8 GeV up to 5 GeV. Reggeized propa-
gators for the K̄ and K̄∗ exchanges in the t-channel implemented in
a gauge-invariant manner were employed in Ref. [239] and compared
to Daresbury data. Note, however, that the K̄∗ exchange contribution
was also neglected in Ref. [239].

In this chapter, we aim to correlate the systematic (small) visible
discrepancies, at high γp invariant masses and small angles, among the
theoretical predictions of last chapter and the CLAS data with Regge
effects. To this end, we improve on the model of last chapter by in-
cluding the contribution of a K̄−Regge trajectory exchange at high
energies and low momentum transfers. We use a hybrid model which
interpolates from the hadron effective Lagrangian approach, for ener-
gies close to threshold, to the quark-gluon string reaction mechanism

1This is because the Λ(1520) resonance is located very close to the threshold
energy of the πΣ∗ channel, which dominates the Λ(1520) dynamics. Indeed, it
could be considered as bound state of these two hadrons, with some corrections
from coupled channel dynamics. For very small binding energies, all the couplings
of the resonance tend to zero as the mass of the bound state approaches the πΣ∗

threshold [267].
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approach, respecting gauge invariance.

Recently, it has appeared a work [268] with similar objectives and
ideas. There, the crucial role played by the u-channel Λ(1115) hyperon
pole term at backward angles is confirmed, as well as the importance of
the N∗(2120) resonance to describe the LEPS data. Moreover, Regge
effects are also discussed and taken into account, within a hybrid model
that has indeed many formal resemblances2 with the one that will be
presented in this work. However, in sharp contrast with the model
derived here, K̄∗ Regge trajectory effects are considered in Ref. [268]
and claimed to provide a considerable contribution at high energies.
It is also claimed in this reference that the contribution from K̄ and
K̄∗ exchange play a similar role in the reproduction of the CLAS data.
Furthermore, the couplings of the N∗(2120) state are fixed to those
deduced in the constituent quark model of Refs. [241, 269], and a large
width of 330 MeV is also set for this resonance. In this way, a great
opportunity to take advantage of the accurate LEPS and CLAS data,
not only for claiming the existence of the two-star N∗(2120) state, but
also for constraining/determining some of its poorly known properties
is somehow missed in the analysis carried out in Ref. [268].

The present chapter is based on Ref. [270] and it is organized as
follows. In Sec. 8.2, we shall discuss the formalism and the main ingre-
dients of the model. In Sec. 8.3, we will present our main results and
finally, a short summary and conclusions will be given in Sec. 8.4.

8.2 Formalism and ingredients

8.2.1 Feynman amplitudes

Within the effective Lagrangian approach for the Λ(1520) photopro-
duction reaction,

γ(k1, λ)p(k2, sp) → K+(p1)Λ
∗(p2, sΛ∗), (8.1)

2Nevertheless, as we will explain below, some of the parameters found in
Ref. [268] make difficult/doubtful the theoretical interpretation of the scheme of
this reference, since t-channel Regge effects would have also been considered for
large scattering angles.
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the invariant scattering amplitudes are defined as

− iTi = ūµ(p2, sΛ∗)Aµν
i u(k2, sp)εν(k1, λ), (8.2)

where the kinematical variables (k1, k2, p1, p2) are defined as in Chap-
ter 7, with t, s and u, the Mandelstam variables: t = q2t = (k1 − p1)

2,
s = (k1 + k2)

2 and u = q2u = (p2 − k1)
2. On the other hand, uµ

and u are dimensionless Rarita-Schwinger and Dirac spinors, respec-
tively, while εν(k1, λ) is the photon polarization vector. In addition, sp
and sΛ∗ are the proton and Λ(1520) polarization variables, respectively.
The sub-index i stands for the contact, t-channel antikaon exchange,
s-channel nucleon and N∗(2120) (≡ N∗) resonance pole terms and the
u-channel Λ pole mechanism (depicted in Fig. 7.2 of Chapter 7). In
Eq. (8.2), Aµν

i are the reduced tree level amplitudes which can be ob-
tained from the effective Lagrangian densities given in last chapter.
For the sake of completeness, we also present here these amplitudes
(see Refs. [237, 246] or the previous chapter for some more details):

Aµν
t = −egKNΛ∗

mK

1

t−m2
K

qµt (q
ν
t − pν1)γ5 fc, (8.3)

Aµν
s = −egKNΛ∗

mK

1

s−m2
N

pµ1γ5 [/k1γ
ν fs + (/k2 +mN)γ

ν fc

+(/k1 + /k2 +mN)i
κp

2mN

σνρk
ρ
1 fs

]
, (8.4)

Aµν
c = e

gKNΛ∗

mK

gµνγ5 fc, (8.5)

Aµν
R = γ5

(
g1
mK

/p1g
µρ − g2

m2
K

pµ1p
ρ
1

)
/k1 + /k2 +MN∗

s−M2
N∗ + iMN∗ΓN∗

×Pρσ

[
ef1
2mN

(kσ1γ
ν − gσν/k1)

+
ef2

(2mN)2
(kσ1k

ν
2 − gσνk1 · k2)

]
fR, (8.6)

Aµν
u =

[
h1
2mΛ

(kµ1γ
ν −gµν/k1) +

h2
(2mΛ)2

(kµ1 q
ν
u −gµνk1 · qu)

]
×/qu +mΛ

u−m2
Λ

gKNΛγ5fu. (8.7)
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Form factors, needed because the hadrons are not point-like par-
ticles, have been also included in the above expressions. We use the
following parametrization [271, 272]:

fi =
Λ4

i

Λ4
i + (q2i −M2

i )
2
, i = s, t, R, u (8.8)

fc = fs + ft − fsft, and


q2s = q2R = s,
Ms = mN ,
Mt = mK ,
MR =MN∗ ,
Mu = mΛ,

(8.9)

where the form of fc is chosen such that the on-shell values of the
coupling constants are reproduced and gauge invariance is preserved.

8.2.2 Regge contributions

We base our model on the exchange of a dominant K̄ Regge trajectory
in the t-channel, as suggested in Ref. [236]. The kaon trajectory rep-
resents the exchange of a family of particles with kaon-type internal
quantum numbers. We will discuss two different models to include the
Regge contribution in the present calculation 3:

• model A: In this case, the kaon Regge trajectory contribution
is obtained from the Feynman amplitude Aµν

t of Eq. (8.3) by
replacing the usual kaon pole-like Feynman propagator by a so-
called Regge propagator, while keeping the rest of the vertex
structure, i.e.,

1

t−m2
K

→
(
s

s0

)αK πα′
K

Γ(1 + αK)sin(παK)
, (8.10)

with αK(t) = α′
K(t − m2

K) = 0.8 GeV−2 × (t − m2
K), the lin-

ear Reggeon trajectory associated to the kaon quantum numbers.
The constant s0 is taken as the Mandelstam variable s at thresh-
old [s0 = (mK+MΛ∗)2], and it is introduced to fix the dimensions

3We remind that when Reggeized propagators are employed the gauge invariance
is broken, and that t-channel Regge effects should only be relevant for forward
angles and high energies. These two points will be addressed below.
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and to normalize the coupling constants. This approach is sim-
ilar to that followed in Ref. [239], which was also adopted in
Ref. [268]. The scattering amplitude for the Reggeon exchange
will finally read

(Aµν
t )Regg = −eḡKNΛ∗

mK

1

t−m2
K

qµt (q
ν
t − pν1)γ5F

Regg
A , (8.11)

FRegg
A (t) =

(
s

s0

)αK πα′
K(t−m2

K)

Γ(1 + αK)sin(παK)
, (8.12)

where ḡKNΛ∗ = gKNΛ∗×f̂ , with f̂ a overall normalization factor of
the Reggeon exchange contribution. Actually, Reggeon couplings
to mesons and baryons might be, in general, different by up to
a factor of 2 [266]. This undetermined scale will be fitted to the
available data.

Note that the Regge propagator of Eq. (8.10) has the property
that it reduces to the Feynman propagator 1/(t − m2

K) if one
approaches the first pole on the trajectory (i.e. t → m2

K , and
thus FRegg

A → 1). This means that the farther we go from the
pole, the more the result of the Regge model will differ from
conventional Feynman diagram based models.

• model B: In the region of negative t, the Reggeized propagator
in Eq. (8.12) exhibits a factorial growth4, which is in principle
not acceptable [273]. Accordingly, the authors of Refs. [236, 266]
proposed the use of a form factor that decreased with t and a
simplified expression for the Regge contribution5

TRegg ∼
eḡKNΛ∗

mK

(
s

s0

)αK(t)

F (t), (8.13)

4Note, [Γ(1 + αK)sin(παK)]
−1

= Γ(1− αK)/παK .
5In Refs. [236, 266], trajectories with a rotating (e−iπαK(t)) phase, instead of a

constant phase (see for instance the discussion in Ref. [274]) were assumed. The
difference is an additional factor (−1)αK(t) in Eq. (8.13), which only affects to
the interference between the Regge and hadronic contributions. Such interference
occurs only in a limited window of γp invariant masses and t values, that is not
well theoretically defined. Nevertheless, the CLAS data favor a constant phase as
used in Eq. (8.13).
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with F (t) a Gaussian form factor that accounts for the compos-
iteness of the external (incoming and outgoing) hadrons,

F (t) = et/a
2

, (8.14)

with a typical value of the cutoff parameter a ∼ 2 GeV. By anal-
ogy with model A, we include in this context the Regge effects
by replacing the form factor fc in Eq. (8.3) by,

fc → f̂ ×FRegg
B = f̂ ×

(
s

s0

)αK(t)

et/a
2

. (8.15)

Considerations on gauge invariance

The inclusion of Regge effects, in either of the two models , breaks
gauge invariance. The amplitudes of the s-channel N∗(2120) and
the u-channel Λ(1115) pole mechanisms are gauge invariant by them-
selves, while some cancellations among the t-channel K̄ exchange, the
s-channel nucleon pole and contact-term contributions are needed to
fulfill gauge invariance. In the s-channel nucleon pole amplitude, the
terms modulated by the form factor fs are already gauge invariant.
Thus, the cancellations mentioned refer only to the part of the Ts am-
plitude affected by the form factor fc. We will denote this partial
amplitude as T ∗

s . Thus, any modification of the t-channel K̄ exchange
mechanism should have an appropriate counterpart in the nucleon pole
and contact term contributions. To restore gauge invariance we follow
the procedure discussed in Refs. [275, 276] and also adopted in [239],
and replace (TRegg

t + T ∗
s + Tc) by

TRegg
t + (T ∗

s + Tc)× f̂ ×FRegg
A,B . (8.16)

Hybrid hadron and Reggeon exchange model

We propose a hybrid mechanism to study the γp → K+Λ(1520) reac-
tion in the range of laboratory photon energies explored by the CLAS
Collaboration data. At the lowest invariant masses, near threshold,
we consider the effective Lagrangian model of last chapter, which am-
plitudes were collected in Subsec. 8.2.1. However, for the higher pho-
ton energies (W > W0) and at low momentum transfers (|t| < t0), or



152 CHAPTER 8. REGGE SIGNATURES FROM ...

equivalently very forward K+ angles, we assume that the string quark–
gluon mechanism, discussed in Subsec. 8.2.2, is dominant. Here, W0 is
a certain value of the γp invariant mass above which the Regge contri-
bution starts becoming relevant. Similar considerations apply to the
Mandelstam variable t, and its distinctive value t0, which limits the
kaon scattering angles where the Regge behaviour is visible. We will
implement a smooth transition/interpolation between both reaction
mechanisms [236], following the procedure adopted in Ref. [239]. Ac-
tually, we define/parametrize this hybrid model by using the invariant
amplitudes of Eqs. (8.3)–(8.7), but replacing the form factor fc by f̄c

fc → f̄c ≡ F Regg
A,B × f̂ ×R+ fc(1−R) (8.17)

with

R = RW ×Rt, (8.18)

RW =
1

1 + e−(W−W0)/∆W
, (8.19)

Rt =
1

1 + e(|t|−t0)/∆t
, (8.20)

where we fixW0 = 2.35 GeV and ∆W = 0.08 GeV from the qualitative
comparison of the predictions of last chapter with the CLAS data and
from the findings of Ref. [239]. In addition, we consider t0 and ∆t as
free parameters that will be fitted to data.

It is easy to understand that RW goes to one or to zero when
W � W0 or W � W0, respectively, while Rt will tend to zero if
|t| � t0 and to one when |t| � t0, as long as t0 is sufficiently bigger
than ∆t. In this way, the amplitude of the reaction smoothly shifts
from that determined from Eqs. (8.3)–(8.7) for W � W0 to another
one for W � W0 that it is calculated using TRegg

t , instead of Tt, with
the replacement of Eq. (8.16) implemented to preserve gauge invari-
ance. Thus, Regge effects are incorporated with the variation of RW

from zero to one. Similar considerations apply to the variation of the
Mandelstam variable t. The transition from the Regge model to the
the effective Lagrangian one is controlled by the skin parameters ∆W
and ∆t.

Finally, we note that gauge invariance is accomplished at any value
of R.
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8.2.3 Differential cross section

The unpolarized differential cross section in the center of mass (c.m.)
frame for the γp→ K+Λ(1520) reaction reads

dσ

d cos θc.m.

=
mNMΛ∗ |~k c.m.

1 ||~p c.m.
1 |

8π (W 2 −m2
N)

2

∑
λ,sp,sΛ∗

|T |2, (8.21)

where ~k c.m.
1 and ~p c.m.

1 are the photon and K+ meson c.m. three-
momenta, and θc.m. is the K

+ polar scattering angle. The differential
cross section dσ/d(cos θc.m.) depends on W and also on cos θc.m..

In addition to the three new free parameters (t0, ∆t and f̂) intro-
duced to account for Regge effects, the model of last chapter already
had nine free parameters: i) the mass and width (MN∗ and ΓN∗) of the
N∗(2120) resonance, ii) the cut off parameters Λs = Λt = Λu ≡ ΛB

and ΛR, and iii) the N∗(2120) resonance electromagnetic γNN∗ (ef1,
ef2) and strong N∗Λ∗K (g1, g2) couplings and the Λ(1520) magnetic
γΛΛ∗ (h1) one. To reduce the number of best-fit parameters, we have
kept unchanged the contribution of the u-channel Λ pole contribution,
and thus we have set the γΛΛ∗ coupling to the value obtained in the
Fit II of last chapter (h1 = 0.64). This is justified since the contri-
bution of the u-channel Λ pole term is only important for backward
K+ angles, and the Regge mechanism should only play certain role at
forward angles, In addition, we have also fixed ΛB to the value of 620
MeV quoted in last chapter. This cutoff parameter also appears in Tu,
and in the definition of the form-factor fc, which following Eq. (8.17)
is replaced by f̄c to account for Regge effects at high energies and low
momentum transfers 6.

Thus, finally, we have ten free parameters which will be fitted to
the recent differential cross section data from the CLAS [80] and LEPS
[79] experiments.

6ΛB also appears in the definition of the fs form-factor that affects to some
pieces of the s-channel nucleon pole term. These contributions are however quite
small since they are greatly suppressed by fs, and do affect very little the best fit.
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8.3 Numerical results and discussion

We have performed a ten-parameter (g1, g2, ΛR, ef1, ef2, MN∗ , ΓN∗ ,
t0, ∆t and f̂) χ

2−fit to the LEPS [79] and CLAS [80] measurements
of dσ/d(cos θc.m.). There is a total of 216 available data (157 points
from CLAS and another 59 ones from LEPS, depicted in Figs. 8.1
and 8.3, respectively). The systematical errors of the experimental
data (11.6% [80] and 5.92% [79], for CLAS and LEPS, respectively)
have been added in quadratures to the statistical ones and taken into
account in the fits, as it was done in last chapter. LEPS data lie in the
K+ forward angle region and were taken below Eγ = 2.4 GeV, while
the recent CLAS measurements span a much larger K+ angular and
photon energy regions (nine intervals of the γp invariant mass from the
reaction threshold, 2.02 GeV, up to 2.85 GeV) 7.

We have considered two different schemes to include Regge effects
(models A and B), as discussed in Subsec. 8.2.2. Best fit results are
listed in Table 8.1, where we also compile the obtained parameters
in our previous work (Fit II of last chapter). For each fit, we also
give the predicted N∗(2120) partial decay width ΓN∗→Λ∗K (Eq. (18) of
Ref. [237]) and the resonance helicity amplitudes (Eqs. (15) and (16)
of Ref. [237]) for the positive-charge state.

A χ2/dof around 1.3 is obtained for both model A and B fits. This
is significantly better than the best fit value obtained (2.5) in our
previous work of last chapter, where Regge effects were not considered.
We also see that the effective Lagrangian approach parameters (g1,
g2, ΛR, ef1, ef2, MN∗ , ΓN∗), determined in the new fits carried out
in this work, turn out to be in good agreement with those obtained
in last chapter. Thus, the conclusions of last chapter still hold, in
particular this new study gives further support to the existence of
the two-star N∗(2120) resonance, and its relevance in the CLAS &
LEPS γp → K+Λ(1520) data. On the other hand, the hybrid model
parameters (t0, ∆t and f̂) turn out to be reasonable from what one
would expect by a direct inspection of the CLAS data (t0, ∆t) and
previous estimates [236, 266].

The fits obtained here are of similar quality to the best ones re-

7To compute the cross sections in each interval, we always use the corresponding
mean value of W , as in last chapter.
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Table 8.1: Values of some parameters determined in this work and
in last chapter. Model A(B) parameters have been adjusted to the
combined LEPS [79] and CLAS [80] γp → K+Λ(1520) dσ/d(cos θc.m.)
data including Regge effects as discussed in Eq. (8.12) (Eq. (8.15)). In
the last column, we compile some results from Fit II of last chapter,
where the mechanism of Reggeon exchange was not considered. Finally,
we also give for each fit, the predicted N∗(2120) partial decay width
ΓN∗→Λ∗K , and the helicity amplitudes for the positive-charge N∗ state.

This work Chapter 7
model A model B Fit II

g1 1.3± 0.2 1.4± 0.2 1.6± 0.2
g2 0.9± 0.5 1.1± 0.5 2.2± 0.5

ΛR [MeV] 1252± 78 1259± 76 1154± 47
ef1 0.134± 0.016 0.123± 0.015 0.126± 0.012
ef2 −0.110± 0.014 −0.100± 0.013 −0.097± 0.010

MN∗ [MeV] 2146± 5 2145± 5 2135± 4
ΓN∗ [MeV] 174± 14 171± 13 184± 11
t0[GeV2] 0.73± 0.04 0.94± 0.05 −
∆t[GeV2] 0.28± 0.02 0.30± 0.04 −

f̂ 0.38± 0.01 0.37± 0.01 −
χ2/dof 1.3 1.3 2.5

Derived Observables

Ap∗

1/2[10
−3GeV−1/2] −9.7± 4.1 −8.8± 3.8 −7.3± 3.0

Ap∗

3/2[10
−2GeV−1/2] 2.3± 1.1 2.1± 1.0 2.5± 0.8

ΓN∗→Λ∗K [MeV] 22± 7 25± 7 30± 8
ΓN∗→Λ∗K

ΓN∗ [%] 12.9± 3.9 14.8± 4.5 16.2± 4.2

ported in Ref. [268], where in addition to the Regge effects driven by
kaon exchange in the t−channel, some sizable Regge contributions in-
duced by K̄∗ exchanges are included as well. However, as mentioned
in the introduction, theoretically it is difficult to accommodate a K̄∗

mechanism contribution as large as that claimed in Ref. [268] (see Secs.
3.1 and 3.2 of this latter reference). On the other hand, a bunch of N∗

resonances are included in the approach followed in Ref. [268]. Their
couplings and masses are in most cases fixed to the constituent quark
model predictions of Refs. [241, 269] and a common width of 330 MeV
is assumed for all of them. Among all of them, it turns out to be
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the N∗(2120), the state that provides the most important contribu-
tion, which confirms previous claims [237, 238] . We have adopted
a different point of view and have used the accurate CLAS & LEPS
γp→ K+Λ(1520) data not only to claim the existence of the N∗(2120)
resonance, but also to establish some of its properties. Thus, we find
a much narrower state (ΓN∗ ∼ 170− 175 MeV) and complete different
helicity amplitudes. Moreover, the values used in Ref. [268] (Ap∗

1/2 = 36

and Ap∗

3/2 = −43 in [10−3GeV−1/2] units) are incompatible both with

Ap∗

1/2[10
−3GeV−1/2] = 125± 45 (8.22)

Ap∗

3/2[10
−2GeV−1/2] = 15± 6 , (8.23)

given in Ref. [240] and with previous measurements [261]

Ap∗

1/2[10
−3GeV−1/2] = −20± 8 (8.24)

Ap∗

3/2[10
−2GeV−1/2] = 1.7± 1.1 (8.25)

quoted in the 2008 PDG edition [262], that in turn are in quite good
agreement with our predictions in Table 8.1. Having improved the
quality of our fit, achieving now an accurate description of the CLAS
data for all angles and invariant mass windows (see below), our results
give an important support to the measurements of Ref. [261], which do
not seem entirely consistent with those reported in Ref. [240]. Given
the two stars status (evidence of existence is only fair) granted to the
N∗(2120) resonance in the multichannel partial wave analysis of pion
and photo-induced reactions off protons carried out in Ref. [240], the
discrepancy with our predicted helicity amplitudes should not be used
to rule out our fits, but rather one should interpret our results as
further constrains on these elusive observables. Note that the helicity
amplitudes given in Eqs. (8.24) and (8.25) were also used in Ref. [242],
where the ep→ eK+Λ(1520) CLAS data of Ref. [228] was successfully
described.

In addition, there is a disturbing feature in the fits presented in
[268]. There, it is found t0 ∼ 3 GeV2, though with a large error, while
we obtain values in the range 0.7–0.9 GeV2. A value of t0 as high as 3
GeV2 necessarily changes the meaning of the interpolating function Rt

in Eq. (8.20), since it will not effectively filter now forward angles. This
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is easily understood if one realizes that for W = 2.4 GeV, |t| remains
below 2.5 GeV2 for all possible K+ c.m. angles, and for the highest
invariant mass W = 2.8 GeV, the bound t = −3 GeV2 is reached for
cos θc.m. = −0.3. Thus in the scheme employed in [268], the transi-
tion function Rt effectively modifies the predictions of the effective La-
grangian approach allowing for some Regge effects for large scattering
angles, which seems quite doubtful. Probably, this dis-function of the
physical meaning of Rt could be a consequence of the unnecessary com-
plexity of the scheme used in Ref. [268] with various N∗ contributions
and the inclusion of K̄∗ driven effects, with parameters in some cases
fixed to values with little theoretical/experimental support. Neverthe-
less, it should be acknowledged that the work of Ref. [268] is pioneer
in exploring the possible existence of Regge effects in the CLAS data.

The differential dσ/d(cos θc.m.) distributions calculated with the
model B best-fit parameters are shown in Figs. 8.1 and 8.3 as a func-
tion of cos θc.m. and for various γp invariant mass intervals. Model A
results are totally similar and for brevity, they will not be discussed
any further. Only statistical errors are displayed in these two figures
and the contributions from different mechanisms are shown separately.
Thus, we split the full result into three main contributions: effective
Lagrangian approach background, Reggeon exchange and resonance
N∗(2120). The first one corresponds to the t-channel K̄ exchange,
nucleon pole, contact and u-channel Λ(1115) hyperon pole terms of
Eqs. (8.3)–(8.5) and (8.7), but evaluated with the modified form-factor
fc(1−R) instead of fc, as discussed in Eq. (8.17). (Note that fc appears
neither in the Λ(1115) nor in the resonance N∗(2120) mechanisms be-
cause both of them are gauge invariant by themselves). The Reggeon
contribution is calculated from the fc terms of the K̄ exchange, nu-
cleon pole and contact terms of Eqs. (8.3)–(8.5) and (8.7), but now
evaluated with the generalized Regge form-factor F Regg

B f̂R.

In Fig. 8.1, we show our predictions and the data of the CLAS col-
laboration [80]. The blue-dashed and black-dash-dotted curves stand
for the contributions from the effective Lagrangian approach back-
ground and Reggeon exchange mechanism, respectively. The green-
dotted lines show the contribution of the N∗(2120) resonance term,
while the red-solid lines display the results obtained from the full model.
In Fig. 8.2 and for comparison purposes, we display the final results
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from our previous Fit II carried out in last chapter, where Regge ef-
fects were not considered. We find an overall good description of the
data for the whole range of measured γp invariant masses and it is sig-
nificantly better than that exhibited in the right panels. We see that
the Regge improved model provides now an excellent description of the
CLAS data for values of cos θc.m. above 0.5, and high energies,W ≥ 2.3
GeV, as expected. On the other hand, by construction Regge contri-
butions effectively disappear at low invariant masses W < 2.3 GeV
and backward K+ angles. Thus, we recover for this latter kinematics
the effective Lagrangian approach, including resonance N∗(2120) and
hyperon Λ(1115) contributions, which successfully described the data
in this region [246].

In the left panels of Fig. 8.3, the differential cross section deduced
from the results of the model B fit, as a function of the LAB frame
photon energy and for different forward c.m. K+ angles, is shown
and compared both to LEPS [79] and CLAS [80] datasets. The blue-
dashed and black-dash-dotted curves stand for the contributions from
the effective Lagrangian approach background and Reggeon exchange
mechanism, respectively. The green-dotted lines show the contribution
of the N∗(2120) resonance term, while the red-solid lines display the
results obtained from the full model. In the right panels and for the
sake of clarity, we display the final results from our previous Fit II
carried out in last chapter, where Regge effects were not considered.
We see the description of LEPS data is almost not affected by the Regge
contributions, and the bump structure in the differential cross section
at forward K+ angles is fairly well described thanks to the significant
contribution from the N∗ resonance in the s−channel, as pointed out
in last chapter. However, the inclusion of Regge effects significantly
improves the description of the CLAS data 8, as one would expect
from the discussion of the results of Fig. 8.1. Moreover, the hybrid
model presented in this work provides a better energy behavior for the
forward cross section at energies higher than those explored by the
CLAS data (see the two (d) panels in Fig. 8.3).

Fig. 8.4 shows the Λ(1520) total photoproduction cross section as

8The CLAS cross sections shown in the figure were obtained from the appro-
priate CLAS measurements displayed in Fig. 8.1, relating W to the LAB photon
energy.
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Figure 8.1: Model B γp → K+Λ(1520) differential cross sections as
a function of cos θc.m. compared with the CLAS data [80] for different
γp invariant mass intervals (indicated in the different panels in GeV
units). Only statistical errors are displayed.

a function of the photon energy. The blue-dashed and black-dash-
dotted curves stand for the contributions from the effective Lagrangian
approach background and Reggeon exchange mechanism, respectively.
The green-dotted lines show the contribution of the N∗(2120) reso-
nance term, while the red-solid lines display the results obtained from
the full model. The shaded region accounts for the 68% CL band inher-
ited from the Gaussian correlated statistical errors of the parameters.
Despite the overall normalization of the CLAS 9 measurements [80] is
in rather strong disagreement with the data from LAMP2 [227], the

9We display extrapolated total cross sections, from data summed over the useful
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Figure 8.2: Total results from our previous Fit II carried out in Chap-
ter 7, where Regge effects were not considered.

photon energy dependence of both data sets seems compatible above
2.3 or 2.4 GeV. This can be appreciated in Fig. 8.4, where the LAMP2
cross sections have been scaled down by a factor 0.6. This agreement
might give some support to the idea of finding Regge signatures in the
CLAS data. Results from model B are also shown, which turn out to
provide a good description of both sets of data. We should, however,
prevent the reader about the ad hoc modification of the normalization
of the old LAMP2 cross sections 10. Nevertheless, it is reassuring that

acceptance of the detector, to 4π (red points in Fig. 11 of Ref. [80]).
10The low energy SAPHIR data [229] is in even in a stronger disagreement with

the data from LAMP2, with the CLAS results lying almost exactly between these
two measurements [80].
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Figure 8.3: Left: Model B γp → K+Λ(1520) differential cross section
as a function of the LAB frame photon energy for different c.m. K+

polar angles. We also show the experimental LEPS [79] (crosses) and
CLAS [80] (black dots) data. Only statistical errors are displayed.
Right: Total results from our previous Fit II carried out in Chapter 7),
where Regge effects were not considered.

the hybrid model presented in this work, including Regge effects, is
able to predict the photon energy dependence of the LAMP2 data at
energies well above than those explored by the CLAS data.

8.4 Conclusions

We have presented some evidences of Regge signatures in the CLAS
data at forward angles, despite the energies involved in that experi-
ment are only moderately high. This is not entirely surprising, be-
cause above Eγ > 2.3 − 2.4 GeV, and up to an overall normalization,
the CLAS Λ(1520) total cross section dependence on the photon energy
matches that inferred from the LAMP2 data, which extends up to 5
GeV, in a region where the Regge behavior is expected to be visible
(see Fig. 8.4). Indeed, we find a significant improvement on the descrip-
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Figure 8.4: Total γp→ K+Λ∗ cross section as a function of the photon
energy. Black filled circles and blue open circles stand for CLAS [80]
and LAMP2 [227] data, respectively. LAMP2 cross sections have been
scaled down by a factor 0.6. Results from model B are also shown.

tion of the CLAS high energy forward cross sections, when the effective
Lagrangian approach of last chapter is supplemented with some string
quark–gluon mechanism contributions determined by a kaon trajectory.
Now, there are no visible systematic discrepancies between the hybrid
approach predictions and the data. Thus, we confirm the findings of
the recent work of Ref. [268] on the importance of the Regge effects in
achieving an accurate description of the CLAS forward angular distri-
butions.

We do not need to include any contribution from a K̄∗ trajec-
tory, in accordance to the analysis of the LAMP2 data carried out
in Refs. [236, 239]. This is re-assuring since the t−channel K̄∗ contri-
bution should be quite small, almost negligible, in sharp contrast with
previous works [231, 235, 264, 268], where a large gK∗NΛ∗ coupling was
assumed. Such big values for this coupling are ruled out by unitarized
chiral models [74, 236, 277], that predict values for gK∗NΛ∗ around a fac-
tor 10 (20) smaller than for instance those used in Refs. [231, 235, 268],
and by measurements of the photon-beam asymmetry, as discussed in
Ref. [239].

We have designed a gauge invariant hybrid model which smoothly
interpolates from the hadron effective Lagrangian approach [246], at
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energies close to threshold, to a model that incorporates quark-gluon
string reaction mechanism contributions at high energies and forward
K+ scattering angles. We find an accurate description of both CLAS
and LEPS data. The latter set of low energy cross sections is not af-
fected by the inclusion of Regge effects. The bump structure observed
at forward K+ angles in these data is well described thanks to the
significant contribution from the two-star JP = 3/2− N∗(2120) reso-
nance in the s-channel, which existence gets a strong support from this
improved analysis that is now fully consistent with the accurate CLAS
data. Thus, this associated strangeness production reaction becomes
an excellent tool to determine the properties of this resonance (helicity
amplitudes determined by the couplings ef1 and ef2 or the strength of
the KΛ∗N∗ vertex). In what respects to the CLAS data, Regge effects
play a crucial role at forward angles for energies above 2.35 GeV, as
commented before, while the backward angle data highlight the impor-
tance of the u-channel Λ(1115) hyperon pole term. This latter fact
can be used to constrain the radiative Λ∗ → Λγ decay, as it was firstly
emphasized in last chapter.

The t-range explored by the CLAS data is not large enough to fully
restrict the Regge form-factor, which is the major difference among
the two models (A and B) introduced in this work. Though, in the
region of negative t, the Reggeized propagator in Eq. (8.12) exhibits
a factorial growth, which is in principle not acceptable, the limited
range of momentum transfers accessible in the data does not see this
unwanted behaviour. This is the same reason why the Gaussian cutoff
parameter a in Eq. (8.14) is not further constrained. Unfortunately,
the existing large discrepancies among CLAS and LAMP2 data sets
prevents the inclusion of this latter experiment in the analysis carried
out in this work. This constitutes an open problem, that might require
new dedicated experiments.



164 CHAPTER 8. REGGE SIGNATURES FROM ...



Chapter 9

Conclusions

In this thesis we have discussed the following topics: NC photon emis-
sion reactions on nucleons and nuclei at intermediate energies, even
parity meson resonance properties within an SU(6) spin-flavor symme-
try scheme, Λ(1520) photo-production reaction on protons.

In the first part (Chapters 3 - 5), we have investigated the NCγ emis-
sion reactions on nucleons and nuclei at intermediate energies. These
processes are an important background for νµ → νe and ν̄µ → ν̄e oscil-
lation experiments when photons are misidentified as e± from CCQE
scattering of νe(ν̄e).

In Chapter 3, we have developed a microscopic model for NC pho-
ton emission, based on previous work on weak pion production [39, 43,
50, 96]. At intermediate energies, the reaction on nucleons is dominated
by the weak excitation of the ∆(1232) resonance and its subsequent de-
cay into Nγ. We have also calculated contributions from non-resonant
mechanisms that, close to threshold, are fully determined by chiral
symmetry. To extend the validity of the model to higher energies,
contributions from the nucleon excited states [N(1440), N(1520) and
N(1535)] of the second resonance region have been considered as well.
Among them, we have found that the D13 N(1520) resonance terms
give a sizable contribution for (anti)neutrino energies above 1.5 GeV.
The nucleon pole contributions are also relatively important, while the
rest of N∗ contributions, together with that of the πEx mechanism,
can be safely neglected in the whole energy region studied in this work.
The major source of uncertainties in the model comes from the lack
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of a precise knowledge of the axial N∆ coupling CA
5 (0), for which we

have used a value of 1.00 ± 0.11, obtained in a reanalysis [40] of the
νp→ µ−pπ+ ANL and BNL old bubble chamber data.

Next, we have extended the model to study the reaction on nu-
clear targets, taking into account Fermi motion, Pauli Blocking and
the in-medium modifications of the ∆ properties. We have predicted
differential and total cross sections for several nuclei, including some
of the common ones in current and future neutrino detectors (carbon,
oxygen, argon, iron). The importance of nuclear corrections, in both
the coherent and incoherent channels, has been stressed. The cross
section dependence on the mass number and on the neutrino energy,
different for the coherent and incoherent reactions, has been also dis-
cussed. Nuclear effects produce reductions of the order of 30% on the
magnitude of the distributions of events and drastic changes in the
shapes, becoming thus essential to achieve an accurate understanding
of the response of the detectors in oscillation experiments.

In light of these results, a new analysis of the NC-induced pho-
ton production at MiniBooNE and T2K experiments with the present
model, aiming at the clarification of the role played by NCγ events in
these experiments, looked timely and important. This has been the
goal of the next two chapters.

First, in Chapter 4, we have used our microscopic model to study
the contribution from the NC photon emission processes to the electron-
like irreducible background of the MiniBooNE experiment. Taking into
account the detector mass, composition and efficiency, and the relevant
components of the (anti)neutrino flux, we have calculated photon en-
ergy and polar angle (relative to the direction of the incoming neutrino)
and reconstructed neutrino energy event distributions. This latter vari-
able is relevant in the oscillation analysis, since it is used as the true
neutrino energy. The largest contribution to the NCγ events in the
mineral oil (CH2) target of MiniBooNE arises from the incoherent re-
action on 12C, although the interactions on the two protons and coher-
ent scattering on 12C produce sizable, and similar in magnitude, yields.
The contribution from muon neutrinos in antineutrino mode is found
to be important, unlike the insignificant one of muon antineutrinos in
neutrino mode.

We have compared our predictions with the results of Zhang and
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Serot [88], based on an effective theory extended to higher energies
using phenomenological form factors. The overall agreement is good
in spite of the differences in the approaches. Moreover, the predic-
tions of our model are in good agreement with the MiniBooNE in
situ estimate, though there are some minor deviations, which could be
partially accounted by the error on the detection efficiency (∼ 15%).
The conclusion of our work is that the NCγ processes cannot explain
the excess of the signal-like events observed at MiniBooNE. This is
in sharp contrast to the findings of Hill [90], obtained with a rather
high and energy independent detection efficiency and neglecting nu-
clear effects. The forthcoming MicroBooNE experiment [159], capable
of distinguishing photons from electrons, should be able to shed light
on this puzzle.

In Chapter 5, we have applied our NCγ model to predict the single
photon event rate at the SK water detector for the flux of the T2K ex-
periment in neutrino mode. For a beam exposure ofNPOT = 6.57×1020,
we obtain 0.421 ± 0.051 events without efficiency corrections. This
prediction is 2.6 times larger than the one obtained from the NEUT
Monte Carlo generator. The discrepancy is mostly in normalization,
as we find similar shapes in photon energy, photon angular and neu-
trino energy distributions with both models. It can be only partially
attributed to the lack of non-∆ production amplitudes or coherent pho-
ton emission in NEUT. The largest differences are likely to be related
to the fact that NEUT, as many other neutrino event generators, use
the outdated resonance model of Rein and Sehgal [157], which fails to
reproduce electroproduction data. We conclude that further effort is
needed to realistically estimate this small but irreducible background
and increase the precision in the determination of oscillation parame-
ters, particularly in δCP measurements.

Finally, it should be stressed that multinucleon mechanisms, which
provide a significant amount of the CCQE-like cross section [26, 34],
await to be investigated for the NCγ channel. Although these processes
are bound to have some repercussion, they are unlikely to alter the
picture dramatically.

In the second part of the thesis (Chapters 6 to 8), we have stud-
ied the lowest lying even parity meson resonances within a model
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that starts from SU(6) flavor-spin symmetry, and the Λ(1520) photo-
production reaction γp→ KΛ(1520).

Chapter 6 is devoted to the study of the low-lying even parity meson
resonances dynamics. First, we have reviewed the model of Ref. [68],
which provides a spin–flavor extension of the chiral SU(3) WT La-
grangian. The model predicts S-wave four meson interactions involv-
ing members not only of the π-octet, but also of the ρ-nonet. When
Goldstone bosons are involved, the model is consistent with chiral sym-
metry and its breaking pattern as inferred from QCD. In addition, its
extension to heavy flavors would be in principle also consistent with
heavy quark spin symmetry, which is a proper QCD symmetry in the
mQ → ∞ limit. Such a model leads to a fairly good description of
the JP = 0+ and JP = 1+ sectors1. However, it is not so successful
in the JP = 2+ sector, where it fails to appropriately describe some
well established resonances, like the f2(1270) and K

∗
2(1430) states. We

have improved on that by supplementing the model of Ref. [68] with
new local V V interactions consistent with chiral symmetry.

To provide different pseudoscalar and vector mesons masses, a sim-
ple spin-symmetry breaking local term that preserved chiral symmetry
was designed in [68]. In Chapter 6, we have studied in detail the
structure of the SU(6) symmetry breaking local terms that respect
(or softly break) chiral symmetry. We have derived the most general
contact terms consistent with the chiral symmetry breaking pattern
of QCD as expressed in terms of the auxiliary field U = exp i

√
2φ/f .

We have also shown that there is a finite number of chirally invari-
ant contact four meson-field interactions, restricted also by the other
symmetries of the problem. To reduce the number of parameters to a
manageable size, and in the spirit of large NC , we have restricted our
analysis to interactions involving just one trace.

Furthermore, we have carried out a phenomenological discussion
of the effects of these new terms, and have found that their inclusion
leads to a considerable improvement of the description of the JP = 2+

1Elastic unitarity in coupled channels is restored by solving an ultraviolet renor-
malized BSE. Resonances show up as poles in the first or second Riemann sheets
of the unitarized meson–meson amplitudes. The positions of the poles determine
masses and widths of the resonances, while the residues for the different channels
define the corresponding coupling or branching fractions.
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resonances, without spoiling the main features of the predictions ob-
tained in Ref. [68] for the JP = 0+ and JP = 1+ spin–parity channels.
In particular, we have found a significantly better description of the
IG(JPC) = 0+(2++), 1−(2++) and the I(JP ) = 1

2
(2+) sectors, that

correspond to the f2(1270), a2(1320) and K
∗
2(1430) quantum numbers,

respectively. Besides the position of the resonances, we also estimated
the couplings of these states to the different particle channels, This
information is relevant to describe the structure of the resonance and
its favored decay modes. Our analysis shows that 2+ states systemat-
ically require cutoff values which lie in the boundary of their natural
hadronic domain. This could be an indication that D-wave mecha-
nisms play some role in the formation of such states, or that some of
these resonances are mostly genuine states. With this possible caveat
in mind, we can say that the model provides a rather robust and suc-
cessful scheme to study the low-lying even parity meson resonances
that are dynamically generated by the logs that appear in the unitar-
ity loops.

In Chapters 7 and 8, we have carried out a new analysis of the γp→
Λ(1520)K+ reaction at low energies within an effective Lagrangian
approach and the isobar model. Possible Regge effects have been also
investigated. We have presented results from combined fits to the
recent CLAS [80] and LEPS [79], dσ/d(cos θc.m.) data.

In the first of the these two chapters, we adopted the scheme of
Ref. [237], and in addition to the contact, t-channel K̄ exchange, and
s-channel nucleon and N(2120) resonance pole contributions, we have
also studied the u-channel Λ(1115) hyperon pole term. The latter
mechanism had been ignored in all previous calculations [231, 236–
238] that relied on the very forward K+ angular LEPS data [78, 79],
where its contribution was expected to be small.

Our model can simultaneously describe the new CLAS and the pre-
vious LEPS data. The contribution of the u-channel Λ(1115) pole term
plays an important role at backward angles, and it becomes more and
more relevant as the photon energy increases, becoming essential above
W ≥ 2.35 GeV and cos θc.m. ≤ −0.5. The CLAS data also clearly sup-
port the existence of an odd parity J = 3/2 wide nucleon resonance
with a mass in the region of 2.1 GeV, a width of around 200 MeV and
a large partial decay width into Λ∗K. These features could be easily
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accommodated within the constituent quark model results of Capstick
and Roberts in Ref. [241] for the two stars PDG N(2120) state. This
would confirm previous claims [237, 238] from the analysis of the bump
structure in the LEPS differential cross section at forward K+ angles
discussed in Fig. 7.4, and contradict previous negative claims made in
[234] and [239] regarding this point. The recent analysis carried out
in [242] of Λ(1520) electroproduction off the proton also supports the
existence of D13 N(2120) resonance and its important role in these
processes. All these findings would corroborate the theoretical expec-
tations on the N(2120) obtained in the chiral inspired unitary [73, 74]
and constituent quark [241] models, and would make more plausible
the analysis of the γp → K0Σ+ CBELSA/TAPS data carried out in
[244], where the existence of a JP = 3/2− nucleon excited state around
2 GeV was also claimed.

In Chapter 8, we have presented some evidences of Regge signatures
in the CLAS data at forward angles, despite the energies involved
in that experiment are only moderately high. This is not entirely
surprising, because above Eγ > 2.3 − 2.4 GeV, and up to an overall
normalization, the CLAS Λ(1520) total cross section dependence on
the photon energy matches that inferred from the LAMP2 data, which
extends up to 5 GeV, in a region where the Regge behavior is expected
to be visible (see Fig. 7.6). Indeed, we find a significant improvement
on the description of the CLAS high energy forward cross sections,
when the effective Lagrangian approach of Chapter 7 is supplemented
with some string quark–gluon mechanism contributions determined by
a kaon trajectory. Now, there are no visible systematic discrepancies
between the hybrid approach predictions and the data.

We designed a gauge invariant hybrid model which smoothly in-
terpolates from the hadron effective Lagrangian approach [246], at en-
ergies close to threshold, to a model that incorporates quark-gluon
string reaction mechanism contributions at high energies and forward
K+ scattering angles. We have found an accurate description of both
CLAS and LEPS data. The latter set of low energy cross sections is
not affected by the inclusion of Regge effects. The bump structure ob-
served at forward K+ angles in these data is well described thanks to
the significant contribution from the two-star JP = 3/2− N∗(2120) res-
onance in the s-channel, which existence gets a stronger support from
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this improved analysis that is now fully consistent with the accurate
CLAS data.

In summary, we have shown that the associated strangeness pro-
duction reaction γp → K+Λ(1520) reaction is an excellent tool to
determine the existence and properties of the N(2120) resonance (he-
licity amplitudes or the strength of the KΛ∗N∗ vertex). We have seen
that this reaction also sheds light on the structure of the Λ(1520) res-
onance [74, 263], and its properties such as the K̄∗NΛ∗ and KΛ∗N∗

vertices (this work and Ref. [237]) and its radiative Λ∗ → Λγ decay
[h1 and h2 magnetic couplings, Eq. (7.7), determined in this work]. Fi-
nally, we have also presented some evidences of Regge signatures in
the recent CLAS data at forward angles for this reaction.
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Chapter 10

Resumen de la tesis

Las oscilaciones de neutrinos atmosféricos se observaron por vez primera
en Super-Kamiokande (SK) [278] y K2K [279], detectando en SK los
neutrinos producidos en el acelerador de protones KEK, situado a 250
Km. A partir de entonces y gracias a la intensa actividad experimental
y teórica en el campo en los últimos años, se ha conseguido delimitar
con más o menos precisión los parámetros de oscilación [70]. Tanto
los experimentos futuros, como los que se están realizando en la ac-
tualidad, aspiran a una más precisa determinación de las masas, los
ángulos de mezcla de las diferentes especies de neutrinos y la posible
fase de violación de simetŕıa CP. Para ello es crucial el conocimiento
exacto de la sección eficaz neutrino-núcleo con un error inferior al 10%
en núcleos como 12C ó 16O.

Para las enerǵıas de los neutrinos atmosféricos o de los experimen-
tos de MiniBooNE y T2K, los tratamientos en núcleos finitos suelen
ser insuficientes puesto que no contienen ingredientes dinámicos fun-
damentales: excitaciones tipo ∆-hueco, contribuciones de dos cuerpos,
producción de piones etc. En la región de la resonancia ∆(1232) exis-
ten en la literatura modelos fiables para la descripción de reacciones
nucleares inclusivas, y de producción coherente e incoherente de pio-
nes, mediados tanto por CC como por NC, a partir de modelos mi-
croscópicos en nucleones. En concreto, resulta de especial interés para
este trabajo el modelo desarrollado en las Refs. [34, 39, 43, 50], donde
además de la excitación de la resonancia ∆(1232), se incluyen mecanis-
mos no resonantes que se deducen del patrón de rotura espontánea de
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simetŕıa quiral de QCD. En esta memoria, en primer lugar, se ha ex-
tendido el modelo de las Refs. [34, 39, 43, 50] al estudio de procesos de
emisión de fotones en reacciones de neutrinos con núcleos y nucleones
mediadas por corrientes neutras (NCγ) a enerǵıas intermedias. Estos
procesos son un fondo importante en los experimentos de oscilaciones
de neutrinos y se requiere de un conocimiento preciso de los mismos,
incluyendo sus importantes correcciones nucleares, para poder deter-
minar, y estimar/controlar los errores sistemáticos, de los parámetros
que gobiernan el fenómeno de las oscilaciones de neutrinos.

Por otra parte, hemos también prestado atención en esta memo-
ria a la naturaleza y a algunas propiedades de ciertas resonancias
hadrónicas. La comprensión de determinados aspectos de la inter-
acción entre hadrones a enerǵıas bajas e intermedias ha experimen-
tado un gran avance en los últimos años gracias al concepto y uso de
teoŕıas efectivas. El planteamiento general consiste en estudiar proce-
sos de QCD a bajas enerǵıas, en lugar de en términos de grados de
libertad de quarks y gluones, en términos de mesones y bariones direc-
tamente. Al mismo tiempo, se imponen en la teoŕıa resultante tantas
propiedades satisfechas por QCD como sea posible. De esta forma se
consigue una importante reducción de parámetros libres y por tanto un
mayor poder predictivo de la teoŕıa efectiva. De especial relevancia a
bajas enerǵıas, son las EFT’s Teoŕıa Quiral de Perturbaciones (TQP) y
la Teoŕıa Efectiva de Quarks Pesados (HQET). TQP (HQET) explota
la simetŕıa bajo rotaciones quirales (de esṕın-sabor) que QCD presenta
en el ĺımite de masa nula (infinita) de los quarks.

Es comúnmente aceptado que los estados fundamentales de mesones
y bariones están compuestos por parejas qq̄ o por tres quarks respecti-
vamente. Sin embargo el espectro de estados excitados hadrónicos es,
en principio, mucho más rico. Aśı, la simple hipótesis de que las re-
sonancias hadrónicas corresponden a excitaciones de los quarks, como
se supone en los modelos de quarks constituyentes, es incapaz de des-
cribir la estructura y propiedades de multitud de estados tanto en el
sector mesónico como en el bariónico. Por ejemplo, los primeros es-
tados excitados con números cuánticos de nucleón son las resonancias
N∗(1440) (1/2+) y N∗(1535) (1/2−). En modelos de quarks, para es-
tudiar estos estados se requiere enerǵıas de excitación de alrededor de
500 ó 600 MeV. Desde el punto de vista energético es más favorable
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la excitación de un pión, y por tanto es plausible que estos estados
puedan contener una importante componente resonante pión-nucleón.
Esta es básicamente la idea subyacente en la llamada Teoŕıa Unitaria
Quiral (TUQ) [64, 65], que utiliza en primer lugar TQP para describir
las interacciones entre los mesones y bariones fundamentales (octetes
del pión y del nucleón) en el régimen de bajas enerǵıas, por debajo de
la aparición de las primeras resonancias. La dinámica de resonancias
no puede ser descrita utilizando una expansión perturbativa, ya que
estos estados están asociados a polos en el plano complejo de las ampli-
tudes y por tanto su dinámica es genuinamente no perturbativa. Aśı,
el otro ingrediente fundamental de la TUQ consiste en unitarizar las
amplitudes resultantes, con objeto de describir resonancias y estados
ligados (polos en diferentes hojas de Riemann de las amplitudes).

Las interacciones de bosones de Goldstone (piones, kaones, etc..)
entre śı o con otros hadrones queda determinada por la simetŕıa quiral.
No es este el caso de los mesones vectoriales, como el ρ o el mesón
extraño K∗. Es importante extender el formalismo de la TUQ para
incluir estos mesones, puesto que parecen ser también estados genuinos
qq̄, como se desprende de diversos resultados en limite Nc grande [202,
207]. Con objeto de tener en cuenta los grados de libertad asociados a
los vectores, diversos modelos han sido utilizados en la literatura, como
por ejemplo el formalismo del hidden gauge empleado en la Ref. [199].
En la tesis, utilizaremos la propuesta de la Ref. [68], donde se parte del
Lagrangiano quiral de Weinberg-Tomozawa y se extiende a un grupo de
simetŕıa SU(6) de esṕın–sabor, que posteriormente es expĺıcitamente
rota. Este modelo es sugerente, porque satisface simetŕıa quiral, y si
eventualmente es extendido a sabores pesados (c, b,..), acomodaŕıa la
simetŕıa aproximada de esṕın (HQSS) que se deduce de QCD en ese
sector. Utilizando este modelo de simetŕıa SU(6), hemos estudiado
en la segunda parte de la tesis, las propiedades de las resonancias
mesónicas de paridad positiva y más baja enerǵıa.

Por último también hemos estudiado, utilizando Lagrangianos efec-
tivos, la reacción de foto-producción de la resonancia bariónica Λ(1520)
con blancos de protones. Las predicciones que se han obtenido para
la reacción γp → KΛ(1520) han sido comparadas con las recientes
medidas de los experimentos LEPS [79] y CLAS [80]. Esta resonan-
cia bariónica está bien establecida, su señal es clara desde el punto de
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vista experimental y se acomoda de forma natural en un modelo SU(6)
para el sector bariónico [74], análogo al descrito anteriormente para
mesones. Además, la reacción anterior filtra de forma natural estados
intermedios con isosṕın 1/2, muchos de ellos estudiados en [74], y cuyas
propiedades pueden ser determinadas/estudiadas gracias a las precisas
medidas de LEPS y CLAS. El análisis realizado en esta tesis confirma
la relación directa existente entre el máximo local que aparece cerca
del umbral para ángulos pequeños en los datos de LEPS y CLAS y
la resonancia JP = 3/2− N∗(2120). Además se discute como estas
medidas se pueden utilizar para determinar propiedades tanto de esta
resonancia, como de la Λ(1520).

• Estudio de procesos NCγ

La primera parte de la tesis (Caṕıtulos 2–5) está dedicada a las
reacciones de emisión NCγ en nucleones y núcleos para enerǵıas
intermedias del neutrino incidente. Estos procesos son un fondo
importante en los experimentos de oscilaciones de neutrinos del
tipo νµ → νe y ν̄µ → ν̄e, cuando los fotones son identificados
de forma errónea con e± originados en la difusión CCQE de un
νe(ν̄e).

En primer lugar en el Caṕıtulo 2, se repasan de forma breve
algunos conceptos básicos relacionados con las corrientes electro-
débiles de leptones y quarks. A partir del Lagrangiano de la inter-
acción electro-débil, basado en la simetŕıa gauge local SU(2) ×
U(1) y su rotura espontánea a través del mecanismo de Higgs,
se introducen las corrientes electromagnética y neutra que se
utilizan en el caṕıtulo siguiente. En el Caṕıtulo 3, se deriva
un modelo microscópico para describir la emisión de fotones en
reacciones de (anti)neutrinos con núcleos y nucleones mediadas
por NC. Como se mencionó, este modelo está basado en traba-
jos anteriores similares desarrollados para estudiar la producción
débil de piones [39, 43, 50, 96]. En la reacción sobre nucleones,
además de términos no resonantes que, en la región de bajas
enerǵıas, quedan completamente determinados por la simetŕıa
quiral, hemos también considerado la excitación de la resonan-
cia ∆(1232) y su posterior desintegración en el canal Nγ. Este
mecanismo es dominante en el régimen de enerǵıas intermedias
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consideradas en esta memoria. Además, también se han tenido
en cuenta contribuciones de excitaciones nucleónicas (N(1440),
N(1520) y N(1535)) de la segunda región de resonancias. De
entre estas últimas, hemos encontrado que el término de la re-
sonancia D13 N(1520) da lugar a las contribuciones mayores y
que resultan ser relevantes para enerǵıas del (anti)neutrino de
alrededor de 1.5 GeV o superiores.

A continuación se ha extendido el modelo para estudiar procesos
en núcleos, teniendo en cuenta efectos debidos al movimiento de
Fermi, al bloqueo de Pauli y a la modificación de las propiedades
de la resonancia ∆ en el seno de un medio nuclear. Se han rea-
lizado predicciones de diversas secciones eficaces diferenciales y
totales para varios núcleos, incluyendo los más comunes que se
usan en los detectores de neutrinos actuales o que se utilizarán en
futuros experimentos (carbono, ox́ıgeno, argón, hierro). Se han
estudiado procesos incoherentes y coherentes, donde el núcleo
blanco queda en su estado inicial, de emisión de fotones. En
ambos tipos de reacciones, los importantes efectos nucleares han
sido puestos de manifiesto, y se ha discutido con detalle la depen-
dencia de las secciones eficaces encontradas del número másico
A y de la enerǵıa del neutrino incidente.

Los resultados obtenidos apuntan la conveniencia de un nuevo
análisis, utilizando nuestro modelo microscópico, de la producción
de fotones en procesos mediados por corrientes neutras para las
condiciones espećıficas del experimento de MiniBooNE. Este ex-
perimento encuentra un exceso a bajas enerǵıas de sucesos NCγ
respecto a las predicciones del Monte Carlo utilizado por la co-
laboración. Este estudio es abordado en el caṕıtulo siguiente.

Utilizando el modelo desarrollado en el Caṕıtulo 3 para estu-
diar las reacciones NCγ, hemos calculado en el Caṕıtulo 4 la
contribución de estos procesos al fondo irreducible para las me-
didas (aparición) νµ → νe y ν̄µ → ν̄e del experimento Mini-
BooNE [59, 61]. Estos procesos son origen de un fondo no de-
seado porque en el gran tanque Cherenkov utilizado como detec-
tor lejano en este experimento, los fotones son frecuentemente
identificados de forma errónea con e± que provendŕıan eventual-



178 CHAPTER 10. RESUMEN DE LA TESIS

mente de la difusión CCQE de un νe(ν̄e). Se han considerado
los detalles del detector (masa, composición y eficiencia) y las
diversas componentes de los flujos de neutrinos y antineutrinos
utilizados en el experimento MiniBooNE, y se han obtenido dis-
tribuciones de sucesos en función de la enerǵıa y el ángulo polar
del fotón, relativo a la dirección del neutrino incidente. También
se han calculado las distribuciones de sucesos en términos de la
enerǵıa del neutrino, reconstruida incorrectamente suponiendo
que los sucesos se originan tras procesos de difusión CCQE. Esta
última variable es importante, pues en los experimentos de oscila-
ciones de neutrinos es utilizada como si fuera la enerǵıa real del
neutrino que ha inducido el suceso. La contribución de sucesos
NCγ más importante en el aceite mineral (CH2), que se utiliza
como blanco en el experimento de MiniBooNE, se debe al canal
de colisión incoherente con el núcleo de 12C. Las interacciones
con los dos protones de la molécula CH2 y el proceso coheren-
te con 12C dan lugar también a un número de sucesos similar
en magnitud y que resulta necesario tener en cuenta. La con-
tribución originada por la contaminación de neutrinos muónicos
en el modo antineutrino es también importante. Sin embargo, la
contribución análoga debida a los antineutrinos presentes en el
flujo de neutrinos resulta ser mucho más pequeña, y despreciable
en muy buena aproximación.

Hemos comparado nuestros resultados con las estimaciones uti-
lizadas por la colaboración MiniBooNE en su análisis. El Monte
Carlo (NUANCE [172]) utilizado por MiniBooNE en la obtención
de estos resultados incluye únicamente la contribución de reso-
nancias. Aśı mecanismos no resonantes, o el canal coherente no
son conside-rados. Sin embargo y para mejorar las predicciones,
el Monte Carlo se compara con las medidas experimentales de pro-
ducción de π0 en procesos mediados por corrientes neutras, y las
diferencias observadas son utilizadas para reajustar el modelo de
producción resonante, que posteriormente se utiliza para prede-
cir las distribuciones NCγ. También hemos comparado nuestras
predicciones con las estimaciones del modelo desarrollado por los
Drs. Zhang y Serot [88]. En este modelo se parte de una teoŕıa
efectiva a bajas enerǵıas, que incorpora simetŕıa quiral, y que en
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principio cuenta con un contaje bien determinado. El modelo
se extiende a enerǵıas más altas, para poder comparar con Mini-
BooNE, utilizando factores de forma fenomenológicos. En ĺıneas
generales encontramos, a pesar de las importantes diferencias de
los modelos, un buen acuerdo con ambas predicciones. Sin em-
bargo, nuestros resultados discrepan de forma significativa con
los obtenidos por el Dr. Hill en la referencia [90], donde se uti-
liza una eficiencia independiente de la enerǵıa y muy alta, además
de no considerar efectos nucleares. Por tanto concluimos que pro-
cesos de emisión de fotones inducidos por corriente nucleares de
un cuerpo no pueden explicar el exceso de sucesos observados por
MiniBooNE.

En estudios teóricos recientes de la sección eficaz CCQE, también
medida por MiniBooNE, mecanismos que involucran dos o más
nucleones han resultado jugar un papel bastante importante [26,
34]. En principio, se podŕıa pensar en contribuciones análogas
(2p2hγ) en este canal, y que planteamos estudiar en el futuro
inmediato. Sin embargo aunque la detección de estos nuevos
modos de interacción será relevante, no esperamos que cambien
la situación de forma dramática. A este respecto, el futuro ex-
perimento MicroBooNE [159] si que será mucho mas importante,
y previsiblemente arrojará luz a este puzle, puesto que Micro-
BooNE utilizará un detector de argón ĺıquido donde śı que será
posible distinguir electrones de fotones.

En la siguiente sección de la memoria, Caṕıtulo 5, se ha utilizado
el modelo microscópico del Caṕıtulo 3 para predecir el número
de sucesos NCγ en el interior del gran tanque Cherenkov SK, uti-
lizado en el experimento T2K como detector lejano. También se
han calculado distribuciones angulares y energéticas, tal y como
se hizo en el caṕıtulo anterior para el caso de MiniBooNE.

Utilizando NPOT = 6.57× 1020, encontramos 0.421± 0.051 suce-
sos sin incluir correcciones de eficiencia del detector. En esta
ocasión, la contribución originada por la contaminación de neu-
trinos muónicos en el modo antineutrino no es significativa, y
solo es del orden del 2-3%.

Este fondo irreducible, aunque pequeño, afecta a la determi-
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nación de los parámetros de oscilaciones, en particular a la me-
dida de la fase de violación de CP δCP , y por tanto debe de ser es-
timado de forma precisa/realista. Aśı los resultados obtenidos en
este caṕıtulo son relevantes, ya que nuestra predicción es alrede-
dor de 2.6 veces mayor que la que se obtiene utilizando el Monte
Carlo NEUT [169], que es principal generador de sucesos em-
pleado en el análisis de datos dentro del experimento T2K. Es una
discrepancia en la normalización global, puesto que la forma de
las distribuciones energéticas de fotones y neutrinos, y angulares
de los fotones predichas por ambos modelos son muy parecidas, y
no se aprecian entre ellas diferencias significativas. En principio,
se podŕıa atribuir la diferencia de normalización a que NEUT
no incorpora el canal de emisión coherente de fotones o que en
este Monte Carlo, mecanismos no resonantes de producción de fo-
tones no están tampoco incluidos. Sin embargo, hemos discutido
que parte de esta diferencia se origina también en la propia con-
tribución (dominante) de la resonancia ∆(1232) a procesos NCγ,
como también se infiere de comparaciones entre las predicciones
de NEUT para el canal NCγ y las obtenidas con otros modelos
similares, en el contexto del experimento MiniBooNE [145].

Aśı, la situación en T2K es a priori diferente que en MiniBooNE,
donde vimos en el Capitulo 3, que nuestras predicciones si que
eran consistentes con las estimaciones elaboradas por la colabo-
ración experimental.

• Resonancias hadrónicas

En la segunda parte de la tesis hemos estudiado el espectro
mesónico de resonancias de baja enerǵıa y paridad positiva, uti-
lizando un modelo que parte de simetŕıa SU(6) de esṕın–sabor, y
la reacción de foto-producción γp → KΛ(1520) de la resonancia
bariónica Λ(1520).

– Espectro de resonancias mesónicas de paridad posi-
tiva

En el Caṕıtulo 6, en primer lugar hemos revisado el modelo
desarrollado en la Ref. [68] para generar dinámicamente las



181

excitaciones mesónicas de paridad positiva de más baja ener-
ǵıa. Este modelo parte del Lagrangiano quiral de Weinberg-
Tomozawa que es extendido a un grupo de simetŕıa SU(6) de
esṕın–sabor. De esta forma se obtiene la interacción en onda
S entre mesones, no solo del octete del pión, sino también
del octete de mesones vectoriales que incluye el ρ(770). La
simetŕıa SU(6) presenta sustanciales correcciones en la na-
turaleza, aśı que el modelo incorpora un cierto patrón de su
rotura. Con esta interacción se soluciona la BSE en canales
acoplados, estudiando con detalle su renormalización, que
permite restaurar unitariedad elástica. Para los distintos
sectores de esṕın, isosṕın y extrañeza se buscan polos en
la primera y segunda hoja de Riemann de las amplitudes.
La posición de las singularidades en el plano complejo de-
terminan masas, y en su caso anchuras de desintegración,
de las resonancias mesónicas asociadas a las mismas, gra-
cias al principio de máxima analiticidad de Mandelstam.
Las predicciones del modelo son, desde el punto de vista
fenomenológico, muy buenas para los sectores 0+ y 1+. De
hecho, como se comprueba en [68], la mayor parte del es-
pectro mesónico de paridad positiva de más baja enerǵıa en
estos sectores se puede clasificar de acuerdo con multipletes
del grupo de simetŕıa SU(6). Sin embargo, este esquema
no es tan exitoso en el sector de esṕın 2, y no es capaz de
describir apropiadamente algunas resonancias con JP = 2+,
como el estado K∗

2(1430), que están bien establecidas desde
el punto de vista experimental. Este sector por su parte
parece estar bien descrito y de forma natural por el modelo
de la Ref. [199], que está basado el formalismo del hidden
gauge.

En este contexto, en el Caṕıtulo 6 se ha mejorado el mode-
lo de la Ref. [68], considerando nuevas interacciones entre
mesones vectoriales consistentes con simetŕıa quiral. En el
modelo original se generan masas diferentes para los mesones
pseudo-escalares y vectoriales utilizando un único término
local que rompe la simetŕıa de esṕın-sabor, de forma con-
sistente con simetŕıa quiral. En este caṕıtulo, hemos estu-
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diado con detalle la estructura de los términos locales que
rompen la simetŕıa SU(6), y que respetan (o que rompen
suavemente) simetŕıa quiral. Se ha encontrado la forma
general de todas las interacciones locales, expresadas en
términos del campo U = exp i

√
2φ/f , que son consistentes

con el patrón de rotura espontánea de la simetŕıa quiral
que se infiere de QCD. Hemos también comprobado que in-
volucrando solo cuatro campos de mesones, solo existe un
número finito de interacciones locales invariantes quirales, e
invariantes bajo transformaciones discretas de paridad, in-
versión temporal y conjugación de carga. En ĺınea con el
contaje para gran número de colores, Nc, hemos restringido
el análisis solo para operadores que involucren una sola
traza. De esta forma, hemos reducido el número de nuevas
interacciones, al orden más bajo en el número de campos
de mesones, a solo tres. A continuación, se ha realizado
una discusión fenomenológica detallada del efecto de estos
nuevos términos. Hemos encontrado que la inclusión de
los mismos posibilita una descripción más satisfactoria del
sector JP = 2+, sin modificar de forma sustancial la pre-
dicciones del modelo de la Ref. [68] en los sectores JP = 0+

y JP = 1+. En particular, la mejora es notoria en los
canales IG(JPC) = 0+(2++), 1−(2++) y I(JP ) = 1

2
(2+), que

se corresponden con los números cuánticos de las resonan-
cias f2(1270), a2(1320) y K

∗
2(1430). Además de la posición

de estos estados, también hemos calculado los acoplamien-
tos de estas resonancias a los diversos pares de mesones que
se incorporan en la resolución de la BSE en el espacio de
canales acoplados. Estos acoplamientos son relevantes a la
hora de describir los diferentes modos de desintegración y
la estructura de las resonancias que han sido generadas. El
análisis que hemos realizado, sin embargo, sistemáticamente
necesita de valores muy altos de la masa de corte, utilizada
para la renormalizar la BSE, en el ĺımite aceptable de lo que
uno esperaŕıa para estados dinámicamente generados (esta-
dos para los cuales los logaritmos de unitariedad juegan un
papel importante/esencial). Esta circunstancia podŕıa in-
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dicar que interacciones de onda D, no consideradas, seŕıan
importantes en la formación de estas resonancias. De he-
cho, en muchos casos, los umbrales de los canales más re-
levantes no están muy próximos a la posición de la reso-
nancia, por lo cual no es extraño pensar que la considera-
ción de únicamente interacciones en onda S sea insuficiente
para la generación dinámica de algunas de estas excitaciones
mesónicas. Además, también habŕıa que considerar que al-
gunos de estos estados podŕıan ser genuinos en lugar de
dinámicamente generados. En cualquier caso, y con esta
posible salvedad, podemos concluir que el modelo derivado
en este caṕıtulo proporciona un marco adecuado para el es-
tudio de las resonancias mesónicas de paridad positiva de
más baja enerǵıa, que son dinámicamente generadas por los
logaritmos que aparecen en las correcciones necesarias para
restaurar unitariedad elástica en canales acoplados.

– Foto-producción de la resonancia Λ(1520)

En los caṕıtulos 7 y 8, hemos realizado un estudio detallado
de la reacción γp→ Λ(1520)K+ cerca del umbral utilizando
un modelo de Lagrangianos efectivos. En el análisis también
hemos considerado la existencia de efectos debidos a difusión
tipo Regge. Los parámetros libres del modelo han sido
ajustados a las medidas experimentales de las secciones efi-
caces diferenciales dσ/d(cos θc.m.) publicadas recientemente
por las colaboraciones LEPS [79] y CLAS [80].

En el primer de estos dos caṕıtulos y utilizando el modelo
de la Ref. [237] para la reacción1 γp → Λ(1520)K+, se ha
calculado por primera vez la contribución en el canal u del
hiperón Λ(1115). Este mecanismo no hab́ıa sido considerado
previamente [231, 236–238], puesto que está muy suprimido
para los ángulos de difusión pequeños del K+ saliente me-
didos en LEPS. Sin embargo, las secciones eficaces de la
colaboración CLAS cubren también ángulos grandes, para
los cuales uno espera que esta nueva contribución sea re-

1Se incluyen los mecanismos de contacto, de intercambio de un kaón, y de un
nucleón y de la resonancia N(2120), en los canales t y s, respectivamente.
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levante. La no inclusión hasta ahora del mecanismo de la
Λ(1115) explica también por qué los modelos anteriores no
describen apropiadamente los nuevos datos de CLAS. Como
se discute en el Caṕıtulo 7, gracias a la inclusión de las con-
tribuciones de la resonancia N(2120) y el término del barión
Λ(1115) se consigue una descripción simultánea bastante
buena de los dos conjuntos (LEPS y CLAS) de secciones
eficaces angulares, tanto para ángulos pequeños como para
grandes, y para todo el rango de masas invariantes (W )
del par γp exploradas en estos dos experimentos. La con-
tribución en el canal u del hiperón Λ(1115) incrementa de
forma significativa la sección eficaz para grandes ángulos,
siendo más y más relevante a medida que la enerǵıa del
fotón aumenta, convirtiéndose en esencial por encima de
W ≥ 2.35 GeV y cos θc.m. ≤ −0.5. Por otra parte, los
datos de CLAS (véase por ejemplo la Fig. 7.6) claramente
favorecen la existencia de una resonancia ancha (Γ ∼ 200
MeV) en la región de 2.1 GeV. Este estado tendŕıa paridad
negativa, esṕın 3/2, isosṕın 1/2 y una anchura parcial de
desintegración en el canal Λ(1520)K apreciable. Estos re-
sultados corroboran conclusiones similares obtenidas en el
estudio reciente de la Ref [242] sobre la electro-producción
de la resonancia Λ(1520) en protones. Esta resonancia se
correspondeŕıa con la D13 N(2120), que cuenta con la califi-
cación de dos estrellas en la clasificación del PDG. Además,
las caracteŕısticas de la resonancia N∗(2120) determinadas
en [242] son muy similares a las obtenidas en esta tesis, y
están en un buen acuerdo cualitativo con las predicciones del
modelo quark de Capstick y Roberts [241]. Confirmamos, de
esta forma, las conclusiones de los trabajos de las referen-
cias [237, 238] obtenidas para esta resonancia a partir del
análisis del máximo local que aparece en la sección eficaz
medida por LEPS en la región de ángulos pequeños y en
la proximidad del umbral (véase Fig. 7.4), y por otra parte
claramente estamos en desacuerdo con los resultados nega-
tivos de las Refs. [234] y [239] sobre el papel jugado por la
resonancia N∗(2120) en la descripción de los datos de LEPS.



185

Los parámetros de la resonancia N∗ obtenidos en nuestro
ajuste combinado a los datos de LEPS y CLAS comparan
cualitativamente bien con los publicados en la Ref. [237].
Por tanto, como ocurre en este trabajo previo, nuestras
predicciones para la asimetŕıa de esṕın, promediada respecto
al ángulo polar del fotón saliente, difieren en un signo de la
medida experimental de la misma realizada por la colabo-
ración LEPS [79] en el laboratorio SPring-8 (Japón).

En resumen, en este caṕıtulo concluimos que la reacción
γp→ K+Λ(1520) resulta ser un instrumento adecuado para
estudiar las propiedades de la resonancia N(2120), y que de
hecho proporciona pruebas firmes sobre su existencia. Esto
corrobora diversas predicciones teóricas al respecto que se
deducen de modelos de quarks constituyentes [241] y de es-
quemas basados en TUQ [73, 74]. Un análisis reciente [244]
de las medidas de la colaboración CBELSA/TAPS de la
reacción γp → K0Σ+, también apunta la existencia de una
excitación nucleónica con esṕın-paridad JP = 3/2− y masa
de alrededor de 2 GeV.

Finalmente es interesante mencionar que este estudio de la
reacción γp→ K+Λ(1520) también proporciona detalles so-
bre la resonancia Λ(1520) [74, 263], y de algunas de sus
propiedades tales como la naturaleza de los vértices K̄∗NΛ∗

y KΛ∗N∗ (este trabajo y la Refs. [236, 237]) y su desinte-
gración radiativa Λ∗ → Λγ [acoplamientos magnéticos h1 y
h2, Eq. (7.7), determinados en este caṕıtulo].

En el último caṕıtulo de la tesis (Caṕıtulo 8 ) hemos estu-
diado de nuevo las secciones eficaces de la reacción γp →
Λ(1520)K+ medidas por la colaboración CLAS, en especial
en la dirección hacia delante. En esta región de ángulos
pequeños y para Eγ > 2.3 − 2.4 GeV, existen pequeñas,
aunque sistemáticas, discrepancias entre las predicciones del
modelo desarrollado en el caṕıtulo anterior y los datos ex-
perimentales. Hemos correlacionado estas desviaciones con
efectos difractivos o Regge, a pesar de que las enerǵıas
involucradas son solo moderadamente altas. Aśı en este
caṕıtulo, hemos considerado la contribución de una trayec-
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toria Regge con números cuánticos de kaón para ángulos
pequeños y las enerǵıas invariantes W más altas exploradas
por CLAS. Gracias a la inclusión de este nuevo mecanismo,
se consigue una descripción de los datos de CLAS mucho
más precisa que con los Lagrangianos efectivos utilizados en
el Caṕıtulo 7. De hecho, no son visibles ahora discrepancias
sistemáticas. Estos resultados confirman parcialmente las
conclusiones del reciente estudio realizado en la Ref. [268].

En este último caṕıtulo, se ha diseñado un modelo h́ıbrido,
invariante gauge, que interpola suavemente entre el esquema
basado en Lagrangianos efectivos del Caṕıtulo 7, para ener-
ǵıas cercanas al umbral de producción, y un modelo de di-
fusión Regge para altas enerǵıas y ángulos de K+ pequeños.
Los efectos Regge son prácticamente despreciables para las
enerǵıas y ángulos relevantes en las medidas de LEPS, que
restringen las propiedades de la resonancia N∗(2120). Los
efectos Regge juegan un papel importante solo para ángulos
pequeños y enerǵıas del fotón por encima de 2.35 GeV. Gra-
cias a esta descripción más precisa de los datos de CLAS y
LEPS, no solo concluimos la posible existencia de difusión
difractiva en las medidas de CLAS, sino que ganan más cre-
dibilidad las conclusiones del caṕıtulo anterior referentes a
la resonancia N∗(2120) y a la importancia del mecanismo
del hiperón Λ(1115).

El rango de valores de la variable de Mandelstam t explo-
rado en las medidas de CLAS no es, sin embargo, lo sufi-
cientemente amplio como para restringir de forma efectiva
el factor de forma de Regge. Es precisamente, este factor
de forma la principal diferencia entre los dos modelos estu-
diados en este caṕıtulo. Aśı, aunque para valores de t nega-
tivos, el propagador tipo Regge de la Eq. (8.12) presenta un
crecimiento factorial, en principio inaceptable, el limitado
rango de momentos transferidos accesibles en los datos de
CLAS no permite que este comportamiento indeseado sea
visible. Esta es la misma razón por la cual no se puede de-
terminar el parámetro de corte Gaussiano a introducido en
el factor de forma de la Eq. (8.14). Finalmente, es intere-
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sante mencionar que en la región donde se solapan, existen
importantes discrepancias en el tamaño global, aunque no
en la dependencia de t, entre los datos de CLAS y los más
antiguos del experimento LAMP2 (Daresbury LAB [227]).
Esto constituye un problema abierto, y requeriŕıa una nueva
medida experimental independiente. Los datos de LAMP2
se extienden hasta enerǵıas del fotón más altas (alrededor de
5 GeV), y en ellos se aprecian claramente trazas de un com-
portamiento tipo Regge (Fig. 8.4). Sin embargo, y debido
al problema con la normalización global, no hemos incluido
este conjunto de datos en nuestros ajustes.
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Appendix A

Reference formulae

A.1 Metric and conventions

Matrices

The components of the Pauli spin vector ~σ = (σ1, σ2, σ3) matrices are,

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.1)

and they fulfill,
(σi)

2 = 1 , Tr[σi] = 0 , (A.2)

σiσj = i
∑
k

εijkσ
k + δijI , (A.3)

where εijk is the totally anti-symmetric Levi-Civita tensor, ε123 = +1,
and I is the 2× 2 identity matrix.

Dirac matrix

For the Dirac matrices, we use the following representation,

~γ = (γ1, γ2, γ3) =

(
0 ~σ
−~σ 0

)
, (A.4)

γ0 = γ0 =

(
I 0
0 −I

)
, (A.5)
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γ5 = γ5 =

(
0 I
I 0

)
, (A.6)

γi = −γi , γ5 = iγ0γ1γ2γ3. (A.7)

The matrices have the following properties:

σµν =
i

2
[γµ, γν ] , (A.8)

{γµ, γν} = 2gµν , (A.9){
γµ, γ5

}
= 0 , (A.10)

where the metric tensor gµν is,

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.11)

Traces of Dirac matrices can be evaluated as follows,

Tr[1] = 4 , (A.12)

Tr[any odd of γ′s] = 0 , (A.13)

Tr[γµγν ] = 4gµν , (A.14)

Tr[γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (A.15)

Tr[γ5] = Tr[γµγνγ5] = 0 , (A.16)

Tr[γµγνγργσ · · · ] = Tr[· · · γσγργνγµ] . (A.17)

Contractions of the Dirac matrices can be computed using,

γλγ
λ = 4 , (A.18)

γλγ
νγλ = −2γν , (A.19)

γλγ
αγβγλ = 4gαβ , (A.20)

γλγ
αγβγργλ = −2γργβγα . (A.21)
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Gell-Mann matrices

We use the standard Gell-Mann form of the SU(3) matrices represent-
ing flavor (or color) degrees of freedom:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 0 0
0 0 −2

 , (A.22)

with,

λ± = (λ1 ± iλ2). (A.23)

A.2 Spinors

J=1/2

The Dirac equation reads,

(iγµ∂
µ −m)ψ(x) = 0 , (A.24)

which is Lorentz invariant. The general solutions can be written as a
linear combination of plane waves,

ψ(x) =
∑

s=±1/2

∫
d3p

2E(2π)3
[
b(p, s)us(p)e

−ip·x + d†(p, s)vs(p)e
+ip·x] ,
(A.25)

where s is the spin projection, and E =
√
~p 2 +m2. The operators

b†(p, s) and b(p, s) create or annihilate a Dirac particle of spin projec-
tion s and four momentum pµ, while the operators d†(p, s) and d(p, s)
create or annihilate an antiparticle. The explicit form of the positive
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energy spinors us(p) reads,

us(p) =
√
E +m

(
1
~σ·~p

E+m

)
ϕs, (A.26)

ϕ 1
2
=

(
1
0

)
, ϕ− 1

2
=

(
0
1

)
, (A.27)

the antiparticle spinor vs(p) is related to us(p) by charge conjugation,

vs(p) = iηcγ
2u∗s(p) (A.28)

where ηc is an arbitrary phase factor.
The spinors us(p) and vs(p) satisfy,

(γµp
µ −m)us(p) = 0 , (A.29)

(γµp
µ +m)vs(p) = 0 , (A.30)

and the relations,

u†s(p)ur(p) = v†s(p)vr(p) = 2Eδsr , (A.31)

ūs(p)ur(p) = −v̄s(p)vr(p) = 2Mδsr , (A.32)

where ūs = u†s(p)γ0 and v̄s = v†s(p)γ0. Thus, we arrive at the complete-
ness relations,∑

s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m, (A.33)

with /p = γµp
µ.

J=3/2

For spin 3/2 resonances, the Rarita–Schwinger spinors can be con-
structed by combining Dirac spinors us(p) with the spin 1 vector eµ(p).
The intermediate photon can have three polarizations εµ(i) defined as

εµ± = ∓ 1√
2

(
0; 1,±i, 0) , (A.34)

εµ0 =
1√
Q2

(
qz; 0, 0, q0) , (A.35)
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and Q2 = −q2. The general form of the four-vector eµ(p, λ) is obtained
by boosting from the particle rest frame to any Lorentz frame,

eµ(p, λ) =

(
~ελ · ~p
M∆

,~ελ +
~p (~ελ · ~p)
M∆ + p0

)
, (A.36)

with the polarization vectors given by

~ε±1 = ∓ 1√
2

(
1,±i, 0), (A.37)

~ε0 =
(
0, 0, 1). (A.38)

Through this thesis εµ(i) and e
µ
(i) refer to photons and to J = 3/2 baryon

states, respectively.

The Rarita–Schwinger spinors are constructed from the polariza-
tion vector eµ(p, λ) and the spinors us(p) as,

uµ(p, s∆) =
∑
λ,s

〈1λ 1

2
s|3
2
s∆〉eµ(p, λ)us(p) . (A.39)

The states with various helicities are given by,

ψ(3/2)
µ = eµ(p,+1)u 1

2
(p) , (A.40)

ψ(1/2)
µ =

√
2

3
eµ(p, 0)u 1

2
(p) +

√
1

3
eµ(p,+1)u− 1

2
(p) , (A.41)

ψ(−1/2)
µ =

√
2

3
eµ(p, 0)u− 1

2
(p) +

√
1

3
eµ(p,−1)u 1

2
(p) , (A.42)

ψ(−3/2)
µ = eµ(p,−1)u 1

2
(p) , (A.43)

with the spinors given in Eq. (A.27).
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A.3 Feynman rules and cross section for-

mulae

External particles

• Fermion

us(k) for an incoming particle (A.44)

ūs(k) for an outgoing particle (A.45)

v̄s(k) for an incoming antiparticle (A.46)

vs(k) for an outgoing antiparticle (A.47)

• Photon

εµ(kγ) for an incoming photon (A.48)

ε∗µ(kγ) for an outgoing photon (A.49)

Propagators

• Photon:

−ig
µν

k2γ
(A.50)

• Massive vector boson (W± or Z0):

i

q2 −M2
V

(
−gµν + qµqν

M2
V

)
≈ igµν

M2
V

, |q|2 �M2
V (A.51)

where MV is the mass of the W± or Z0 bosons.

• J = 1/2 Fermion:
/p+m

p2 −m2 + iε
(A.52)

• J = 3/2 Fermion:
/p+M∗

p2 −M∗2 + iε
Pρσ (A.53)
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with

Pρσ = −gρσ +
1

3
γργσ +

2

3M2
N∗

(k1 + k2)ρ(k1 + k2)σ

+
1

3MN∗
(γρ(k1 + k2)σ − γσ(k1 + k2)ρ). (A.54)

Vertices

• Electromagnetic vertex:
− ieγµ (A.55)

• Weak vertex: W± exchange:

−i g

2
√
2
γµ(1− γ5), for leptons , (A.56)

−i g

2
√
2
γµC(1− γ5), for quarks , (A.57)

(A.58)

where C is the Cabbibo mixing matrix, as shown in Eq. (2.22).

• Weak vertex: Z0 exchange:

−i g

2cosθW

1

2
γµ(1− γ5), for leptons , (A.59)

−i g

2cosθW
[CL(1− γ5) + CR(1 + γ5)] , for quarks(A.60)

where CL = t3 − Q × sin2θW and CR = Q × sin2θW , with Q the
quark charge.

Cross section

Considering a scattering process in which two particles, with four-
momenta pi = (Ei, ~pi), i = 1, 2, collide and produce N final particles
with four-momenta pf = (Ef , ~pf ), f = 1, 2, · · · , N , the unpolarized
differential cross section can now be written,

dσ = (2π)4δ4

(∑
f

pf −
∑
i

pi

)
1

4E1E2vrel

×

(∏
f

d3pf
(2π)32Ef

)
|M|2, (A.61)
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where vrel is the relative velocity of the colliding particles. M is the
Feynman amplitude for the process. Eq. (A.61) holds in any Lorentz
frame in which the colliding particles move col-linearly. In such a frame
the relative velocity vrel is given by the expression,

E1E2vrel =
[
(p1p2)

2 −m2
1m

2
2

]1/2
, (A.62)

where m1 and m2 are the masses of the colliding particles.



Appendix B

Form factors

B.1 Relations between electromagnetic form

factors and helicity amplitudes

The γN → R helicity amplitudes describe the nucleon-resonance tran-
sition depending on the polarization of the incoming virtual photon and
the baryon-spin projections onto the direction of the photon momen-
tum. We follow the definitions adopted in the MAID analysis [111, 112],
from which the empirical parametrizations of the helicity amplitudes
are taken. Namely1

A1/2 =

√
2πα

kR

〈
S∗
z =

1

2

∣∣ε(+)
µ Jµ

EM

∣∣ Sz = −1

2

〉
1√

2M
√
2MR

, (B.1)

A3/2 =

√
2πα

kR

〈
S∗
z =

3

2

∣∣ε(+)
µ Jµ

EM

∣∣ Sz =
1

2

〉
1√

2M
√
2MR

, (B.2)

S1/2 = −
√

2πα

kR

〈
S∗
z =

1

2

∣∣∣∣∣ |~k |√
Q2
ε(0)µ Jµ

EM

∣∣∣∣∣ Sz =
1

2

〉
1√

2M
√
2MR

,

(B.3)

1It should be pointed out that the 1/(
√
2M

√
2MR) factor in the definition of

the helicity amplitudes comes from the normalization of Dirac spinors (ūu = 2M ,
ūRuR = 2MR) adopted in the present work.
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in the resonance rest frame (notice that S1/2 is not Lorentz invariant)
and with the z-axis parallel to the photon momentum. In other words,

kµ = (k0, 0, 0, |~k|), pµ = (

√
M2 + ~k2, 0, 0,−|~k|),

p∗µ = (p+ k)µ = (MR, 0, 0, 0) (B.4)

are the virtual photon, nucleon and resonance four-momenta. In addi-
tion, Q2 = −k2 and

kR =
M2

R −M2

2MR

. (B.5)

The photon polarization vectors are given by

εµ(±) = ∓ 1√
2
(0, 1,±i, 0), εµ(0) =

1√
Q2

(|~k |, 0, 0, k0) . (B.6)

Finally, Sz (S∗
z ) denotes the nucleon (resonance) spin projection onto

the z axis.
With these definitions and the currents of Section 3.2.2, it is straight-

forward to derive the following equations connecting helicity ampli-
tudes and electromagnetic form factors [41].

N(1440)

Ap,n
1/2 =

√
πα[(MR −M)2 +Q2]

2M(M2
R −M2)

[
Q2

2M2
F p,n
1 +

MR +M

M
F p,n
2

]
(B.7)

Sp,n
1/2 = −

√
πα[(MR +M)2 +Q2]

M(M2
R −M2)

(MR −M)2 +Q2

4MMR

×
[
MR +M

2M
F p,n
1 − F p,n

2

]
(B.8)

N(1535)

Ap,n
1/2 =

√
πα[(MR +M)2 +Q2]

2M(M2
R −M2)

[
Q2

2M2
F p,n
1 +

MR −M

M
F p,n
2

]
(B.9)
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Sp,n
1/2 =

√
πα[(MR −M)2 +Q2]

M(M2
R −M2)

(MR +M)2 +Q2

4MMR

×
[
MR −M

2M
F p,n
1 − F p,n

2

]
(B.10)

∆(1232)

Ap,n
1/2 =

√
πα[(MR −M)2 +Q2]

3M(M2
R −M2)

[
M2 +MMR +Q2

MMR

CV
3

−M
2
R −M2 −Q2

2M2
CV

4 − M2
R −M2 +Q2

2M2
CV

5

]
(B.11)

Ap,n
3/2 =

√
πα[(MR −M)2 +Q2]

M(M2
R −M2)

[
M +MR

M
CV

3 +
M2

R −M2 −Q2

2M2
CV

4

+
M2

R −M2 +Q2

2M2
CV

5

]
(B.12)

Sp,n
1/2 =

√
πα[(MR +M)2 +Q2]

6M(M2
R −M2)

(MR −M)2 +Q2

M2
R

×
[
MR

M
CV

3 +
M2

R

M2
CV

4 +
M2

R +M2 +Q2

2M2
CV

5

]
(B.13)

N(1520)

Ap,n
1/2 =

√
πα[(MR +M)2 +Q2]

3M(M2
R −M2)

[
M2 −MMR +Q2

MMR

Cp,n
3

−M
2
R −M2 −Q2

2M2
Cp,n

4 − M2
R −M2 +Q2

2M2
Cp,n

5

]
(B.14)

Ap,n
3/2 =

√
πα[(MR +M)2 +Q2]

M(M2
R −M2)

[
M −MR

M
Cp,n

3

−M
2
R −M2 −Q2

2M2
Cp,n

4 − M2
R −M2 +Q2

2M2
Cp,n

5

]
(B.15)
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Sp,n
1/2 = −

√
πα[(MR −M)2 +Q2]

6M(M2
R −M2)

(MR +M)2 +Q2

M2
R[

MR

M
Cp,n

3 +
M2

R

M2
Cp,n

4 +
M2

R +M2 +Q2

2M2
Cp,n

5

]
(B.16)

B.2 Off diagonal Goldberger-Treiman re-

lations

We consider an effective Lagrangian for the RNπ vertex, which is then
used to calculate the πN decay width of the resonance. Using the
Particle Data Group (PDG) [70] values for the decay width and πN
branching ratio, one can fix the RNπ coupling. Thanks to PCAC

∂µA
µ
NCI(x) = 2fπm

2
ππ

0 , (B.17)

the latter coupling can be related to the dominant axial coupling in
Aµ

NCI , which is the isovector part of the neutral current. This is the
so called off diagonal GT relation. It establishes that in the soft pion
limit

pµπ0

〈
R|ANCI

µ (0)|N
〉
= −2ifπ

〈
R|LRNπ|Nπ0

〉
. (B.18)

As in Refs. [41, 93], we distinguish between different cases, depend-
ing on the spin, parity and isospin of the resonance. Let us start with
spin 1/2 states with isospin 1/2, like the P11(1440) and S11(1535). In
this case

LR1/2Nπ =
f

mπ

Ψ̄

{
γµγ5
γµ

}
(∂µ~π · ~τ)ΨR1/2

+ h.c. , (B.19)

where Ψ, ΨR1/2
and ~π are the nucleon, resonance and pion fields2; ~τ

are the isospin Pauli matrices. The upper (lower) Lagrangian holds
for positive (negative) parity resonances. The partial R → πN decay
width is

ΓR1/2→Nπ =
3

4πMR

(
f

mπ

)2

(MR ±M)2 (EN ∓M) |~pN | , (B.20)

2Our convention is such that (π1 − iπ2)/
√
2 creates a π− or annihilates a π+

while a π3 = π0 field creates or annihilates a π0.
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where

EN =
√
M2 + ~p 2

N =
M2

R +M2 −m2
π

2MR

. (B.21)

The upper (lower) signs in Eq. (B.20) stand for positive (negative)
parity resonances. The off diagonal GT relation amounts to

FA(R)(0) = −2
f

mπ

fπ , (B.22)

regardless of the parity. The coupling FA(R)(0) defined in Eq. (3.36) is
now expressed in terms of f/mπ extracted from the R → πN decay
width given above.

For J = 3/2 resonances, ∆(1232) and D13(1520) in our case,

LR3/2Nπ =
f ∗

mπ

Ψ̄

{
1
γ5

}(
∂µ~φ ·~t

)
Ψµ

R3/2
+ h.c. (B.23)

where Ψµ
R3/2

is the resonance spin 3/2 field in the Rarita-Schwinger

representation; ~t = ~τ stands for isospin 1/2 resonances and ~t = ~T (3/2
to 1/2 isospin transition operator)3 for isospin 3/2 ones. The upper
(lower) Lagrangian applies for positive (negative) parity states. The
partial R → πN decay width is then given by

ΓR3/2→Nπ =
cI
6π

(
f ∗

mπ

)2
EN ±M

2MR

|~pN |3, (B.24)

where the upper (lower) sign stands for positive (negative) parity res-
onances while cI = 1(3) for isospin 1/2 (3/2). Then we deduce

CA
5(R)(0) = dI

f∗

mπ

fπ , (B.25)

where the numerical value of f ∗/mπ is obtained from Eq. (B.24). The
coefficient dI = −2 is for isospin 1/2 states like the D13(1520) and
dI =

√
2/3 for isospin 3/2 ones, like the ∆(1232). The correspond-

ing CA
5(R)(0) couplings determined by this GT relation were defined in

Eqs. (3.42) and (3.29). It should be reminded that for the N−∆(1232)
transition, rather than the CA

5 (0) value from Eq. (B.25), we use the one
fitted in Ref. [40] to the νµp→ µ−pπ+ ANL and BNL bubble chamber
data.

3Normalized in such a way that the isospin matrix element
〈
3
2
3
2

∣∣T †
1 +iT †

2

∣∣ 1
2
1
2

〉
=

−
√
2.
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B.3 Decay modes of the second region res-

onances

In Table B.1, we compile the most relevant P11(1440), D13(1520) and
S11(1535) decay modes and their branching ratios, taking values within
the ranges of the PDG estimates [70].

Table B.1: Main decay modes, branching fractions (Γi/Γ) and rela-
tive angular momenta L of the decay particles, for the N∗ resonances
considered in this work.

N(1440) N(1520) N(1535)
Mode Fr(%) L Mode Fr(%) L Mode Fr(%) L
Nπ 65 1 Nπ 60 2 Nπ 45 0
∆π 20 1 ∆π 15 0 Nη 42 0
Nσ 15 0 ∆π 12.5 2 ∆π 1 2

Nρ 9 0 Nρ 2 0
Nρ 3.5 2 Nσ 2 1

N(1440)π 8 0

To obtain the partial width of a decay mode into unstable particles
we use [280]

ΓR→ab(W ) = ΓR→ab(W =MR)
ρab(W )

ρab(MR)
(B.26)

where W denotes the resonance invariant mass. The function ρab is
given by

ρab(W ) =

∫
d(p2a)d(p

2
b)A(p2a)A(p2b)

p2L+1
ab (W 2, p2a, p

2
b)

W

×Θ(W −
√
p2a −

√
p2b),

p2ab =
λ(W 2, p2a, p

2
b)

4W 2
, (B.27)
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where pab denotes the center-of-mass momentum of the final state prod-
ucts, and L the relative angular momentum (Table B.1). The vacuum
spectral function Aa reads

A(p2a) = − 1

π
Im

(
1

p2a −M2
a + iMaΓa(p2a)

)
. (B.28)

If one of the decay products (a) is a stable particle, then Γa = 0 and
the vacuum spectral function can be written as

A(p2a) = δ(p2a −M2
a ) (B.29)

so that ρab becomes,

ρab(W ) =
Mb

πW

∫
d(p2b)

Γb(p
2
b)

(p2b −M2
b )

2 +M2
b Γ

2
b(p

2
b)

×p2L+1
ab (W 2,M2

a , p
2
b)Θ(W −Ma −

√
p2b) . (B.30)

If both final particles are stable, then

ρab(W ) =
p2L+1
ab (W 2,M2

a ,M
2
b )

W
Θ(W −Ma −Mb) . (B.31)
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Appendix C

Nuclear medium
∆-properties and the
Lindhard function

C.1 ∆ selfenergy

We give expressions for the coefficients (CQ, CA2 and CA3) and expo-
nents (α and β = γ/2) of the imaginary part of the ∆ self-energy
(Eq. (3.66) of Chapter 3) [119]. The coefficients and exponents could
be parametrized in an approximate way in the range of 85 < Tπ < 315
MeV with the formula given by,

C(Tπ) = ax2 + bx+ c; x =
ωπ −mπ

mπ

, (C.1)

where C stands for any of the 5 coefficients and exponents (CQ, CA2 ,
CA3 , α and β = γ/2). ω and mπ are the energy and mass of the pion
that would excite a ∆ with the corresponding invariant mass in the
LAB frame. The values of a, b and c are compiled in Table C.1. In
some occasions, and for simplicity, we use some averages for momentum
and energy of the particles inside of the nuclear environment. Thus, in
the Lab frame of pion collision experiments, the average momentum of

205
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Table C.1: Coefficient of Eq. (C.1) for an analytical interpolation of
ImΣ∆ [119].

CQ (MeV) CA2 (MeV) CA3 (MeV) α β
a -5.19 1.06 -13.46 0.382 -0.038
b 15.35 -6.64 46.17 -1.322 0.204
c 2.06 22.66 -20.34 1.466 0.613

the nucleon is given by,

〈
~p 2
N

〉
=

1
(2π)3

∫ pF
0

~p 2
NnN(~pN)d

3~pN
1

(2π)3

∫ pF
0
nN(~pN)d3~pN

=
3

5
p2F , (C.2)

the average energy and momentum of the ∆ resonance are,

E∆ = ωπ + EN

= ωπ +
√
M2

N + ~p2N

≈ ωπ +MN +
3

5
p2F , (C.3)〈

~p 2
∆

〉
=

〈
(~p 2

N + ~k 2
π )
〉

=
〈
~p 2
N

〉
+
〈
~k 22π

〉
+ 2

〈
(~pN · ~kπ

〉
≈ 3

5
p2F + ~k 2

π . (C.4)

and the invariant mass of ∆ could be approximated by,

s∆ = E 2
∆ −

〈
~p 2
∆

〉
, (C.5)

while the average energy of pion can be averaged by

ωπ =
s∆ −m2

π −M2
N −

(
3p2F

10MN

)2
3p2F

10MN
+MN

. (C.6)
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C.2 Pauli blocking of the ∆ → πN decay

The Pauli blocking of the ∆ → πN decay reduces the Γfree
∆ free width

in the nuclear environment. For the Pauli blocked width, we use the
approximation derived in [98]

ΓPauli
∆ = Γfree

∆

I1 + I2
2

. (C.7)

The angular integrals I1 and I2 read,

I1 = 1 + Θ(q̃ − 1)

(
− 1

5q̃2

)
Θ(1− q̃)

[
q̃ − 1− q̃3

5

]
, (C.8)

I2 = 1 + Θ(q̃ − 1)

[
− 3

5q̃2
− 4

21q̃6
+

18

35q̃4

]
, (C.9)

with
q̃ =

q

kF
, (C.10)

where q is the pion-nucleon c.m. momentum, and kF is the Fermi
momentum.

C.3 Lindhard function

In a non-symmetric nuclear medium, the relativistic Lindhard function
is defined as

UR(q, k
n
F , k

p
F ) = 2

∫
d3p

(2π)3
M

E(~p)

M

E(~p+ ~q)

Θ(knF − |~p |)Θ(|~p+ ~q | − kpF )

q0 + E(~p)− E(~p+ ~q) + i ε

+(q → −q) (C.11)

The two contributions above correspond to the direct and the crossed
ph excitation terms, respectively. For positive transferred energy only
the direct term has imaginary part, which is given by

ImUR(q, k
n
F , k

p
F ) =

∫
d3pFR(q, ~p, k

n
F , k

p
F )

= −M2Θ(q0)Θ(−q2)
2π|~q |

Θ(En
F − Ep

F + q0)

×Θ(En
F − Ep

R)(E
n
F − Ep

R) (C.12)
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with

FR(q, ~p, k
n
F , k

p
F ) = −M

2

4π2

Θ(q0)δ(q0 + E(~p)− E(~p+ ~q ))

E(~p)E(~p+ ~q)

×Θ(knF − |~p |)Θ(|~p+ ~q | − kpF ) (C.13)

Ep
R = Max

{
M,Ep

F − q0,
−q0 + |~q |

√
1− 4M2/q2

2

}
,

En,p
F =

√
M2 + (kn,pF )2, (C.14)

being Max(...) the maximum of the quantities included in the bracket.
In the low density approximation,

ImUN(q) ≈ −πρkF (|~q |)δ(q0 − ε(~q). (C.15)



Appendix D

SU(6)

D.1 Chiral invariant four meson interac-

tion with a single trace

In this appendix we show that, the operators O1, O2, O3 in Eq. (6.13),
already saturate the most general chiral invariant interaction, modulo
O(Φ6

6), stemming from single trace Lagrangian terms.
Rather than doing the expansion of the most general term Tr(UijUkl · · · )

in powers of the meson field, we just write down the possible operators
in terms of the meson field and seek the most general combination in-
variant under infinitesimal chiral rotations. To alleviate the notation,
we use U6 = eφ, φ being antihermitian and dimensionless. This is
related with the usual meson field by φ = 2iΦ6/f .

The 8 possible terms, assuming other symmetries but not chiral
invariance, are as follows

A1 = Tr(φ2),

A2 = Tr(σiφσiφ),

A3 = Tr(φ4),

A4 = Tr(σiφσiφ
3),

A5 = Tr(σiφ
2σiφ

2),

A6 = iεijkTr(σiφσjφσkφ
2),

A7 = Tr(σiφσiφσjφσjφ),

A8 = Tr(σiφσjφσiφσjφ). (D.1)
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The operators A1 and A2 give mass to the mesons, the other provide
interaction.

Under a chiral rotation U6 → Ω†
LU6ΩR, and this induces a non

linear transformation on φ. Vector invariance (ΩL = ΩR) is a similarity
transformation which produces the same transformation on φ and it
is trivially satisfied by the 8 operators. Therefore we consider just
axial transformations ΩL = Ω†

R. Only infinitesimal transformations
are needed, ΩR = eδα/2 = 1+ 1

2
δα, with δα infinitesimal, antihermitian

and spinless. This induces the transformation

δφ = δα+
1

12
δαφ2 +

1

12
φ2δα− 1

6
φδαφ+O(φ4). (D.2)

(To all orders in the meson field, the infinitesimal axial variation con-
tains only even powers of φ.)

The variations of A1 and A2 produce terms of O(φ) that can only be
canceled by choosing a suitable combination of the two operators. Also
they produce terms of O(φ3). They should cancel with the correspond-
ing variations from the quartic terms, taking suitable combinations of
them. The cancellation to order O(φ5) is of no concern to us as this
involves O(φ6) interactions. The cancellation will be automatic for the
expansion of any of the terms Tr(UijUkl · · · ) since chiral invariance is
manifest in those terms.

For a generic operator H =
∑8

i=1 ciAi, the condition δH = O(φ5)
gives the following conditions

0 = 2c1 + 6c2,

0 = 4c3 + 3c4,

0 = −1

3
c2 + c4 + 8c7 + 4c8,

0 =
1

6
c2 + c4 + 2c5 − 2c6,

0 =
1

6
c2 + c4 + 2c5 − 2c6,

0 = 2c6 − 2c7 + 4c8. (D.3)

They correspond, respectively, to the vanishing of the coefficients of
Tr(φδα), Tr(φ3δα), Tr(φσiφσiφδα), Tr(σiφσiφ

2δα), Tr(σiφ
2σiφδα), and

iεijkTr(σiφσjφσkφδα).
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The 5 independent relations leave 3 chiral invariant combinations.
They can be taken as

Hinv = c1(A1 −
1

3
A2 −

1

36
A6 −

1

60
A7 +

1

180
A8)

+c3(A3 −
4

3
A4 −

2

3
A6 +

1

3
A8) + c5(A5 + A6 +

1

5
A7 −

2

5
A8)

(D.4)

The three combinations O1, (O2 − 20O1)/12, and O3/3 in Section
6.3 correspond, respectively, to (c1, c3, c5) = (3, 1/4, 1/4), (0, 1, 5/6),
and (0, 1, 0).

D.2 Coefficients of the S-wave tree level

amplitudes

This appendix gives the D2 and D3 matrices of the S-wave tree level
meson-meson amplitudes in Eq. (6.21), for the various Y IJ sectors
(Tables D.1-D.38). Note that for the Y = 0 channels, G-parity is
conserved, and that all Y = 0 states have well-defined G-parity except
the K̄∗K and K∗K̄ states, but the combinations

(
K̄K∗ ±KK̄∗) /√2

are actually G-parity eigenstates with eigenvalues ±1. These states
will be denoted (K̄K∗)S and (K̄K∗)A, respectively.
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D2 matrices

Table D.1: (Y, I, J) = (0, 0, 0).

ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −208
3

80√
3

0 24
√
3 0

0 0 0 80√
3

− 80
3 0 −24 0

0 0 0 0 0 0 16
3 0

0 0 0 24
√
3 −24 16

3 −72 −48

0 0 0 0 0 0 −48 −160
3
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Table D.2: (Y, I, J) = (0, 0, 1).

G ηφ ηω πρ (K̄K∗)A K̄∗K∗ ωφ (K̄K∗)S

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 −28

+ 0 0

+ 0 0

Table D.3: (Y, I, J) = (0, 0, 2).

ρρ ωω ωφ K̄∗K∗ φφ

−16
3

32√
3

0 4
√
3 0

32√
3

−32
3 0 −4 0

0 0 0 40
3 0

4
√
3 −4 40

3 −12 −8

0 0 0 −8 − 64
3
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Table D.4: (Y, I, J) = (0, 1, 0).

ηπ K̄K ωρ φρ K̄∗K∗

0 0 0 0 0

0 0 0 0 0

0 0 −160
3 0 24

√
2

0 0 0 0 −16
3

0 0 24
√
2 −16

3 −24

Table D.5: (Y, I, J) = (0, 1, 1).

G πφ πω ηρ (K̄K∗)S ρρ K̄∗K∗ πρ (K̄K∗)A ωρ φρ

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 −56
3

28
√
2

3

+ 0 0 0 0 28
√
2

3 −28
3

− 0 0 0 0

− 0 0 0 0

− 0 0 0 0

− 0 0 0 0
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Table D.6: (Y, I, J) = (0, 1, 2).

ωρ φρ K̄∗K∗

− 64
3 0 4

√
2

0 0 −40
3

4
√
2 − 40

3 −4

Table D.7: (Y, I, J) = (0, 2, 0).

ππ ρρ

0 0

0 − 16
3

Table D.8: (Y, I, J) = (0, 2, 1).

πρ

0

Table D.9: (Y, I, J) = (0, 2, 2).

ρρ

−40
3
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Table D.10: (Y, I, J) = (1, 1/2, 0).

Kπ ηK K∗ρ K∗ω K∗φ

0 0 0 0 0

0 0 0 0 0

0 0 −100
3 − 44√

3
12
√
6

0 0 − 44√
3

−44
3 12

√
2

0 0 12
√
6 12

√
2 − 88

3

Table D.11: (Y, I, J) = (1, 1/2, 1).

πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −14 − 14√
3

−14
√

2
3

0 0 0 0 0 − 14√
3

−14
3 −14

√
2

3

0 0 0 0 0 −14
√

2
3 − 14

√
2

3 −28
3
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Table D.12: (Y, I, J) = (1, 1/2, 2).

K∗ρ K∗ω K∗φ

2
3 − 26√

3
2
√
6

− 26√
3

−26
3 2

√
2

2
√
6 2

√
2 −52

3

Table D.13: (Y, I, J) = (1, 3/2, 0).

Kπ K∗ρ

0 0

0 −16
3

Table D.14: (Y, I, J) = (1, 3/2, 1).

πK∗ Kρ K∗ρ

0 0 0

0 0 0

0 0 0

Table D.15: (Y, I, J) = (1, 3/2, 2).

K∗ρ

−40
3
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Table D.16: (Y, I, J) = (2, 0, 1).

KK∗ K∗K∗

0 0

0 0

Table D.17: (Y, I, J) = (2, 1, 0).

KK K∗K∗

0 0

0 −16
3

Table D.18: (Y, I, J) = (2, 1, 1).

KK∗

0
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Table D.19: (Y, I, J) = (2, 1, 2).

K∗K∗

−40
3
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D3 matrices

Table D.20: (Y, I, J) = (0, 0, 0).

ππ K̄K ηη ρρ ωω ωφ K̄∗K∗ φφ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −128
3 0 0 32√

3
0

0 0 0 0 0 0 −32
3 0

0 0 0 0 0 0 −64
3 0

0 0 0 32√
3

−32
3 −64

3 −32 − 64
3

0 0 0 0 0 0 −64
3 0
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Table D.21: (Y, I, J) = (0, 0, 1).

G ηφ ηω πρ (K̄K∗)A K̄∗K∗ ωφ (K̄K∗)S

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 0

− 0 0 0 0 −48

+ 0 0

+ 0 0

Table D.22: (Y, I, J) = (0, 0, 2).

ρρ ωω ωφ K̄∗K∗ φφ

64
3 0 0 − 16√

3
0

0 0 0 16
3 0

0 0 0 32
3 0

− 16√
3

16
3

32
3 16 32

3

0 0 0 32
3 0
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Table D.23: (Y, I, J) = (0, 1, 0).

ηπ K̄K ωρ φρ K̄∗K∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 32
√
2

3

0 0 0 0 64
3

0 0 32
√
2

3
64
3 − 32

3

Table D.24: (Y, I, J) = (0, 1, 1).

G πφ πω ηρ (K̄K∗)S ρρ K̄∗K∗ πρ (K̄K∗)A ωρ φρ

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 0 0

+ 0 0 0 0 −32 16
√
2

+ 0 0 0 0 16
√
2 −16

− 0 0 0 0

− 0 0 0 0

− 0 0 0 0

− 0 0 0 0
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Table D.25: (Y, I, J) = (0, 1, 2).

ωρ φρ K̄∗K∗

0 0 −16
√
2

3

0 0 − 32
3

−16
√
2

3 −32
3

16
3

Table D.26: (Y, I, J) = (0, 2, 0).

ππ ρρ

0 0

0 64
3

Table D.27: (Y, I, J) = (0, 2, 1).

πρ

0

Table D.28: (Y, I, J) = (0, 2, 2).

ρρ

−32
3
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Table D.29: (Y, I, J) = (1, 1/2, 0).

Kπ ηK K∗ρ K∗ω K∗φ

0 0 0 0 0

0 0 0 0 0

0 0 − 80
3

16√
3

16
√

2
3

0 0 16√
3

16
3

16
√
2

3

0 0 16
√

2
3

16
√
2

3
32
3

Table D.30: (Y, I, J) = (1, 1/2, 1).

πK∗ Kρ Kω ηK∗ Kφ K∗ρ K∗ω K∗φ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −24 −8
√
3 −8

√
6

0 0 0 0 0 −8
√
3 −8 −8

√
2

0 0 0 0 0 −8
√
6 −8

√
2 −16
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Table D.31: (Y, I, J) = (1, 1/2, 2).

K∗ρ K∗ω K∗φ

40
3 − 8√

3
−8
√

2
3

− 8√
3

− 8
3 − 8

√
2

3

−8
√

2
3 − 8

√
2

3 −16
3

Table D.32: (Y, I, J) = (1, 3/2, 0).

Kπ K∗ρ

0 0

0 64
3

Table D.33: (Y, I, J) = (1, 3/2, 1).

πK∗ Kρ K∗ρ

0 0 0

0 0 0

0 0 0

Table D.34: (Y, I, J) = (1, 3/2, 2).

K∗ρ

−32
3



226 APPENDIX D. SU(6)

Table D.35: (Y, I, J) = (2, 0, 1).

KK∗ K∗K∗

0 0

0 0

Table D.36: (Y, I, J) = (2, 1, 0).

KK K∗K∗

0 0

0 64
3

Table D.37: (Y, I, J) = (2, 1, 1).

KK∗

0
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Table D.38: (Y, I, J) = (2, 1, 2).

K∗K∗

− 32
3
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