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Abstract
Nuclear effects in neutrino-nucleus interactions: the role of spectral functions

by Joanna E. SOBCZYK

In this Thesis we present a wide analysis of nuclear effects which are crucial for a proper
description of neutrino-nucleus scattering. We use a well-established many-body framework,
successful in modelling a great variety of nuclear processes. In particular, we analyze the role
of the spectral functions accounting for the modifications of the dispersion relation of nucleons
embedded in the nuclear medium. We concentrate on processes mostly governed by one-body
mechanisms, studying possible approximations to evaluate the particle-hole propagator using
spectral functions and performing a series of analyses and comparisons with other approaches
for the quasielastic mechanism.

We also investigate how to include together spectral functions and long-range random-phase
approximation (RPA) correlations in the evaluation of nuclear responses, discussing the existing
interplay between both types of nuclear effects. At low energy transfers (≤ 50 MeV), we com-
pare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current
(CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of
intermediate energy quasielastic neutrino scattering for various targets and both neutrino and
antineutrino CC driven processes. Moreover, we briefly compare our spectral function and RPA
results to predictions obtained within other representative approaches. Since there is no precise
data available for CC neutrino-nucleus cross section, we perform a comparison of our spectral
function model (and other approaches) with the electron scattering inclusive data on 12C, in the
energy region relevant for the T2K experiment.

Further, we pay attention to the scaling properties of our model. Scaling features of the
nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial
for interpreting neutrino- and electron-scattering data. Obtained scaling functions are character-
ized by an asymmetric shape, although less pronounced than that exhibited by the experimental
one, derived from the longitudinal electromagnetic response function. We also show that this
asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon
correlations, encoded in the continuum component of the hole spectral function.

Next, we present results for the quasielastic weak production of Λ and Σ hyperons induced
by ν̄ scattering off nuclei. We employ hole spectral functions and we describe the propaga-
tion of the hyperons in the nuclear medium by means of a Monte Carlo cascade. The latter
strongly modifies the kinematics and the relative production rates of the hyperons, leading to a
non-vanishing Σ+ cross section, to a sizable enhancement of the Λ production and to drastic
reductions of the Σ0 and Σ− distributions. We also compute the quasielastic weak Λc produc-
tion cross section, paying special attention to estimate the uncertainties induced by the model
dependence of the n→ Λc weak matrix element in the free space.

Lastly, we study the τ polarization in CC quasielastic (anti)neutrino-nucleus scattering. We
show that the spectral functions, while playing an important role in the prediction of the differ-
ential cross sections, produce much less visible effects on the polarization components of the
outgoing τ .
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Resumen

En esta tesis hemos estudiado la interacción neutrino-núcleo, en el régimen cuasielástico, ha-
ciendo un especial énfasis en la importancia de las correcciones nucleares.

Motivación

En el estudio de la física de oscilaciones de neutrinos, los desafíos más importantes que se pre-
sentan en la actualidad son (i) medir el valor de la fase de la violación de la simetría CP y (ii)
discernir entre jerarquía normal o invertida en el respeto de masas de los neutrinos. Los futuros
experimentos diseñados para resolver estas (y otras) cuestiones, incluyendo posibles descubri-
mientos de Física más allá del Modelo Estándar, sobre todo DUNE y T2HK, contarán con una
estadística muy alta, así que las incertidumbres sistemáticas van a jugar un papel principal. Los
errores sistemáticos que vienen de las secciones eficaces (anti)neutrino-núcleo están entre las
fuentes más importantes de incertidumbres, y tienen que ser reducidas al nivel de 1−3%, para
cumplir las expectativas experimentales.

La teoría de interacciones de neutrinos con núcleos entra en el análisis de los parámetros
de oscilaciones de manera no trivial, influyendo en varias etapas de los estudios. Además, el
flujo de neutrinos nunca es mono-energético, y su distribución tiene incertidumbres del orden
del 5% (el número exacto depende del experimento). Como la probabilidad de oscilación es
función de la energía del neutrino, hay que reconstruir esta última, con suficiente precisión, en
función de la energía. Siguiendo la discusión presentada en la Ref. [1], la información sobre las
interacciones neutrino-núcleo influye en el análisis de oscilaciones de varios modos

• El método para la reconstrucción de la energía del neutrino depende del tipo de detector.
En general, sus limitaciones (por ejemplo el hecho de que se detectan sólo partículas a
partir de un cierto umbral energético o que no se observan las partículas neutras, etc.),
requieren la utilización de generadores Monte Carlo que se basan, a su vez, en modelos
nucleares.

• Aceptación de los eventos de una cierta topología (los detalles del análisis en cada ex-
perimento son distintos). También es importante controlar los procesos que contribuyen
al fondo, y pueden imitar a otros, induciendo identificaciones erróneas. Por ejemplo, los
piones producidos en interacciones de corrientes neutras pueden ser malinterpretados co-
mo electrones producidos por procesos de corrientes cargadas debidos a un νe incidente.
La manera de distinguir entre los dos depende básicamente de los modelos teóricos im-
plementados en los generadores Monte Carlo.

• La eficiencia de los detectores también depende de los modelos nucleares, porque está
en gran medida basada en las predicciones de las distribuciones de partículas salientes,
obtenidas a partir de distribuciones Monte Carlo.

Las incertidumbres sistemáticas en el detector lejano (que mide el espectro de neutrinos
después de la posible oscilación) se pueden reducir parcialmente usando información del detec-
tor cercano. Su papel consiste en medir el flujo de neutrinos y las secciones eficaces, y a partir
de ahí corregir y correlacionar las observaciones de ambos detectores. Aunque gracias a esto
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se pueden disminuir los errores, no se cancelan totalmente (la eficacia de los detectores, el tipo
de núcleo y el flujo de neutrinos son distintos en ambos casos), y los modelos de interacciones
neutrino-núcleo siguen jugando un papel importante en el análisis de datos del detector lejano.

Formalismo

En el Capítulo 2 hemos introducido el formalismo empleado en esta Tesis. Hemos empezado
por el Modelo Estándar que describe las interacciones fundamentales. En particular, hemos
discutido en cierto detalle las interacciones de neutrinos con el sector de los quarks. En la
teoría efectiva nuclear que describe la física de bajas energías, los grados de libertad relevantes
son bariones y mesones, estados compuestos de quarks. Los mecanismos que exploramos en
la Tesis involucran nucleones e hiperones. Su interacción cuasielástica (QE) con una prueba
electrodébil se puede parametrizar en términos de seis factores de forma. Los factores de forma
que aparecen en las transiciones N → N y N → Y se relacionan bajo el supuesto de simetría
de sabor SU(3). Más adelante, cuando se consideran interacciones con núcleos, es necesario
incluir efectos nucleares. El problema es difícil de resolver, con diversos mecanismos, cuya
importancia cambia con el momento transferido al núcleo. El enfoque más básico, discutido
en la Sec. 2.3.1, consiste en incluir sólo correlaciones estadísticas. En un sistema de fermiones
a temperatura cero, de acuerdo con el principio de exclusión de Pauli, las partículas ocupan
todos niveles energéticos hasta el nivel de Fermi. Además, utilizando la LDA (aproximación de
densidad local), el nivel de Fermi se relaciona con el perfil de densidad, y se llega así al modelo
LFG (local Fermi gas). Es un punto de partida para profundizar en los detalles del modelo
teórico presentado en la Tesis.

En primer lugar hemos introducido algunas nociones básicas para describir la dinámica
del nucleón en el medio nuclear. En particular, sus funciones de Green (y su modificación
cuando se incluye la autoenergía en el medio) y su relación con las funciones espectrales (SF).
A continuación se discute como la respuesta del sistema nuclear frente a una sonda electrodébil,
para momentos transferidos suficientemente altos, se puede expresar en términos de funciones
espectrales. En la última parte del Capítulo 2 introducimos otros efectos nucleares, como la
resumación RPA (Random Phase Approximation) o la implementación del balance energético
correcto, relevantes a bajas energías.

En el Capítulo 3 se estudia más en detalle las funciones espectrales. Siguiendo el mismo
esquema que en el Capítulo 2, hemos tomado como punto de partida el modelo del gas de Fer-
mi. Las funciones espectrales en este caso tienen simplemente forma de funciones paso, que
representan una distribución plana para el momento de nucleón (el caso de LFG es un poco
distinto porque el nivel de Fermi depende de la densidad del núcleo). En la Sec. 3.2 se discuten
rasgos dinámicos fundamentales del modelo semi-fenomenológico desarrollado en la Ref. [2]
para calcular la autoenergía del nucleón en el medio nuclear. Este método utiliza los datos ex-
perimentales de dispersión nucleón-nucleón (NN) para definir una interacción efectiva NN en
el medio, que incluye correlaciones de corto y largo alcance (RPA). Como ha sido demostrado
en las Refs. [3, 4, 5, 6, 7, 8, 9, 10], el modelo describe satisfactoriamente diversos procesos
nucleares. Una de sus ventajas reside en el hecho de que se puede tratar dentro del mismo
esquema, tanto a los nucleones iniciales como a los finales, y se puede aplicar para cualquier
núcleo simétrico de isospín. A pesar de que el cálculo de la Ref. [2] se realizó utilizando aproxi-
maciones no relativistas, después fue extendido al caso relativista en la Ref. [5]. Esta extensión
se puede realizar gracias a que el elemento principal del modelo, la sección eficaz NN experi-
mental, obviamente es consistente con un tratamiento relativista. También, hemos considerado
la posibilidad de no incluir efectos nucleares en la función espectral de partícula para grandes
transferencias de momento. A tal efecto es necesario fijar el origen absoluto de energías, in-
cluyendo un término fenomenológico adicional, ajustando el valor experimental de la energía
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de extracción (removal energy), utilizando las reglas de suma de D. Koltun discutidas en la
Ref. [11].

El estudio de la interacción neutrino-núcleo, en el régimen cuasielástico, ha sido abordado
desde distintos modelos teóricos. En la Sec. 3.3 hemos hecho un resumen de los más utilizados
en el análisis de datos experimentales de dispersión de neutrinos, y en los generadores Monte
Carlo. Así, en la Subsec. 3.3.1 nos hemos concentrado en el formalismo CBF [12, 13] basado en
la aproximación de impulso (Impulse Approximation), que describe con éxito varias reacciones
electrodébiles nucleares [14, 15, 16, 17, 18, 19]. En los Capítulos 5-7 hemos realizado diver-
sas comparaciones utilizando este modelo y el derivado en la Ref. [2]. La función espectral de
agujero en el modelo CBF está compuesta de dos partes. La dominante viene dada por cálculos
obtenidos utilizando el modelo de capas, corregidos incluyendo factores espectroscópicos ex-
perimentales. Esta descripción de campo medio (mean-field, MF) no es adecuada para describir
la parte de altas energías y momentos de la función de onda del nucleón. Esta contribución se
considera utilizando un formalismo ab initio tipo Correlated Basis Function para materia nu-
clear simétrica, y se añade a la parte MF utilizando la LDA. Para incluir las interacciones de
estados finales, se emplea otra estrategia, basada en la teoría general de Glauber que usa datos
de transparencias nucleares y la parte real del potencial óptico NN, obtenido del ajuste de un
potencial fenomenológico tipo Dirac a los datos experimentales.

Hemos considerado otros cuatro esquemas teóricos. El modelo GiBUU [20] está basado
también en la LDA y utiliza un potencial fenomenológico (que depende de la densidad del
medio y del momento de nucleón) obtenido de los estudios sobre reacciones de iones pesados.
Este formalismo es relativista, permitiendo así una descripción consistente del estado inicial
y final. El modelo SuSA (Superscaling Approach) [21] sigue otra idea. Empezando por las
propiedades de escala (scaling) de la sección eficaz electrón-núcleo, es posible extraer una
función universal de scaling de los datos experimentales, que no depende de forma separada
de q0, |~q| (energía y momento transferidos al núcleo) sino que lo hace de una única variable
construida a partir de ambas, y usarla para predecir reacciones neutrino-núcleo en el régimen
QE. El grupo de Ghent ha desarrollado un formalismo MF usando un potencial Skyrme con
parámetros ajustados a las excitaciones de bajas energías en núcleos esféricos [22]. El efecto
de las correlaciones de largo alcance (RPA) está incluido usando la misma interacción residual.
Por último, el modelo MECM [23], desarrollado inicialmente por el grupo de Lyon, también
considera estas últimas correcciones utilizando una interacción efectiva residual tipo Landau-
Migdal, similar a la discutida en la Sec. 2.5.2.

En el Capítulo 4 hemos empezado estudiando dos procesos inclusivos, descritos por el me-
canismo de reacción QE, la captura muonica y la captura radioactiva de piones en núcleos. Estas
reacciones involucran transferencias de energía-momento al núcleo muy pequeñas, y constitu-
yen por tanto tests muy exigentes de la aplicabilidad del modelo de la Ref. [3] utilizado en esta
tesis. Se observa que las SFs son responsables de la reducción del pico QE, extienden la magni-
tud de las funciones de respuesta hasta energías transferidas más altas y mueven la posición del
pico en la misma dirección. El resultado general es una disminución de las anchuras integradas
y cambios considerables de las distribuciones diferenciales. Los efectos tipo RPA en los obser-
vables integrados son significativamente más pequeños cuando las correcciones debidas al uso
de SFs realistas están incluidas. Este patrón es muy diferente a lo que ocurre en el modelo del
LFG, donde las correcciones inducidas por la resumación tipo RPA son muy importantes, de
hasta un 40%. Este interesante resultado fue mencionado ya en [3], y es debido al cambio de las
relaciones de dispersión del nucleón en el medio nuclear. Además, este efecto está de acuerdo
con los resultados de las Refs. [22, 24], donde se concluye que los efectos RPA en cálculos de
MF son moderados para valores de Q2 suficientemente grandes, fuera del régimen de excitación
de las resonancias gigantes.

En líneas generales, los resultados obtenidos para procesos de energías bajas (incluyendo
correcciones debidas a RPA y SF), presentados en el Capítulo 4, aunque sujetos a ciertos errores
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teóricos (debido a las incertidumbres de los parámetros RPA y a posibles contribuciones de
estados discretos), describen los datos experimentales con buena precisión, y proporcionan una
mejora sobre la descripción que se obtiene en modelos donde sólo se considera el bloqueo de
Pauli y el balance energético correcto de la reacción.

En la captura radiativa de piones hemos observado que el uso de SF realistas coloca el pico
QE en una posición razonable y modifica de forma apreciable la distribución diferencial de la
anchura de desintegración. Estos resultados son mucho más robustos que las predicciones obte-
nidas sólo con LFG o RPA. No obstante, la descripción está sujeta a incertidumbres inducidos
por el espectro discreto de estados nucleares que no se incluye en el modelo. Para la captura
muonica sólo disponemos de los datos de anchuras integradas. Nuestro modelo describe estos
datos muy bien para varios núcleos simétricos de isospín. Estos resultados junto con los de
las secciones eficaces inclusivas medidas por los detectores LSND, KARMEN y LAMPF en
carbono cerca del umbral energético de la reacción, y que también están de acuerdo con las
predicciones obtenidas incluyendo efectos nucleares del tipo SF+RPA, confirman la fiabilidad
del marco teórico principal analizado en este trabajo.

La discusión anterior también proporciona una mayor veracidad para las predicciones obte-
nidas en esta tesis para energías intermedias de neutrinos, interesantes desde el punto de vista
de los experimentos de oscilaciones y que se presentan a continuación. Calculamos en función
de la energía los efectos nucleares tipo RPA y debido a SF para reacciones nucleares inclusivas
inducidas por neutrinos y antineutrinos. Mostramos resultados para secciones eficaces totales
y diferenciales y se presenta un análisis detallado de los incertidumbres teóricos de las pre-
dicciones. A continuación discutimos diferentes predicciones de los otros esquemas teóricos
detallados en el Cápitulo 3 con los obtenidos con el modelo teórico utilizado previamente. Se
analiza el origen de las diferencias y similitudes de los resultados, correlacionándoles con los
elementos dinámicos que incluye cada modelo. También discutimos las razones σµ /σe en di-
versos núcleos y mostramos que las incertidumbres teóricas en las mismas están por debajo del
5%.

Por último en este cápitulo, hemos realizado también una comparación exhaustiva de di-
versos modelos teóricos con los datos inclusivos de dispersión electrón-núcleo, en la región de
momento-energía transferidos importantes para el experimento T2K. Todos los esquemas teóri-
cos que hemos considerado LDA, CBF, GiBUU, proporcionan una descripción muy razonable
de los datos. No obstante, para hacer una comparación más significativa, sería imprescindible
incluir otros mecanismos que dan contribuciones a la sección eficaz en esta región cinemáti-
ca, como por ejemplo la excitación de la resonancia ∆(1232) o contribuciones debidas a la
excitación de dos partículas y dos agujeros (2p2h).

Propiedades de scaling

El Capítulo 5 está dedicado a estudiar las propiedades de scaling de la respuesta nuclear que se
infiere de la densidad de nucleones, una magnitud muy importante para entender el scaling de
las funciones de respuesta electromagnética longitudinal y transversal [25]. Hemos estudiado
la respuesta asociada a la densidad de nucleones en 12C en una región cinemática con grandes
transferencias de momento y energía, donde se pueden ignorar modos colectivos de excitación
nuclear. En el estudio hemos utilizado SF realistas obtenidas dentro de los esquemas CBF y
LDA SF.

Hemos visto que los dos modelos producen funciones de scaling (de la densidad de nucleo-
nes) similares en 12C, que se caracterizan por una forma asimétrica, aunque menos pronunciada
que la obtenida de los datos experimentales. La CBF SF incluye una descripción más exacta
del estado fundamental de 12C, pero puede ser sólo utilizada para núcleos con capas cerradas
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(closed-shell). Por otra parte, dentro del modelo LDA se puede ampliar a la descripción al nú-
cleo de 40Ar, que se va a emplear en el futuro detector del experimento DUNE [26].

Hemos también discutido un modelo simplificado para la dinámica nuclear, que retiene
los aspectos principales del problema de muchos cuerpos, para analizar el origen dinámico
del scaling de primer tipo exhibido por la función de respuesta de la densidad de nucleones.
Hemos argumentado que su forma asimétrica se debe principalmente a la dinámica asociada
con la excitación del tipo 2p1h incorporada en la componente del continuo de la SF de agujero
derivada en la Ref. [27], que a su vez está íntimamente relacionada con las correlaciones NN de
corto alcance. En el modelo semi-fenomenológico de la Ref. [2], este efecto se incluye a través
de la parte imaginaria de la autoenergía del agujero, ImΣ. En este último modelo se encuentra
también una apreciable reducción de ImΣ, debida a los efectos de polarización, en la región
de bajos momentos y energías del nucleón. Sin embargo, las correcciones de RPA producen
pequeñas modificaciones en las componentes de alto momento, responsables de la asimetría.
Por otra parte, la asimetría se ve solo suavemente aumentada por los efectos de interacción de
estados finales (FSI). Estas correcciones, relevantes sobre todo en la región de bajos momentos
transferidos, producen un desplazamiento del pico hacia valores más bajos de ψnr (una función
de q0 y |~q|) y una redistribución del espectro hacia valores mayores de ψnr. De acuerdo con
los estudios de relativistic mean-field (RMF) llevados a cabo en la Ref. [28], la asimetría de
la función de scaling se atribuye a un aumento dinámico de las componentes pequeñas de
los espinores de Dirac, que no están presentes en la función de respuesta no relativista. Sin
embargo, en este estudio y de forma análoga a los resultados de GFMC (Green Function MC)
de la Ref. [25], observamos la asimetría usando un modelo no relativista para las funciones
espectrales de partícula y agujero. Nuestros resultados no están en contradicción con la visión
de scaling en RMF. La hipótesis es que algunas correlaciones pueden tener su origen en la
reducción no relativista realizada a nivel de MF. La corroboración de esta hipótesis requiere un
estudio más detallado.

En el ámbito del formalismo de SF, encontramos que, una vez se divide por los prefacto-
res que describen los vértices de interacción con un nucleón, las respuestas electromagnéticas
longitudinal y transversal dan lugar a la misma función, que está íntimamente conectada con la
respuesta asociada a la densidad de nucleones. Las pequeñas diferencias existentes se deben a
las discrepancias entre los prefactores calculados para un gas de Fermi o con SF realistas. Por
lo tanto, además de corrientes de dos cuerpos y efectos colectivos, la ruptura del scaling de
tipos cero y uno hay que atribuirla a las deficiencias del modelo nuclear usado para estimar los
elementos de transición del nucleón inmerso en el medio nuclear.

Producción de hiperones

En el Capítulo 6 hemos estudiado la producción débil de hiperones Λ y Σ en la dispersión de
ν̄µ por núcleos. Hemos prestado especial atención a los efectos nucleares resultantes del uso
de SFs de agujero realistas. Como en otras partes de esta tesis, para describir las correlaciones
del estado inicial, hemos empleado dos modelos de la función espectral de agujero. Por otra
parte la propagación de hiperones en el medio nuclear ha sido aproximada por una cascada
Monte Carlo (MCC), que trata al movimiento de los hiperones de manera clásica. La MCC
no cambia la sección eficaz inclusiva (ν̄l , l±Y ), si se considera la suma de canales Y = Λ,
Σ0, Σ− y Σ+. Sin embargo los efectos producidos por la MCC son claramente visibles en
procesos exclusivos, como el espectro energético o las distribuciones angulares de los hiperones
salientes. Por ejemplo, a pesar de que el Σ+ no se produce en el vértice de interacción débil,
las colisiones secundarias son responsables de su producción. Por supuesto, cuando se suman
todos los posibles canales, se recupera la sección eficaz inclusiva, como ya hemos mencionado
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Los resultados obtenidos con el modelo semi-fenomenológico LDA SF [2] y el esquema
CBF SF [29, 27] coinciden bastante bien, y así proporcionan una estimación robusta de la im-
portancia de correlaciones dinámicas del estado nuclear inicial, que no se consideraron en el
trabajo de Ref. [30], basado en el modelo LFG. En este cápitulo discutimos también cómo las
secciones eficaces inclusivas doble diferenciales d2σ/(d cosθdq0), [θ es el ángulo de disper-
sión del leptón cargado saliente] están afectadas por las correlaciones presentes en la función
espectral de agujero, que causan una reducción del pico QE y una redistribución hacia la re-
gión de energías transferidas más altas. En el caso de la distribución dσ/dq2 y la sección
eficaz total, los efectos de utilizar una SF realista no son tan importantes como para el caso de
d2σ/(d cosθdq0), y menores que los producidos por la FSI del hiperón en su camino de salida
del núcleo. La MCC modifica de forma significativa los resultados obtenidos con la aproxima-
ción de impulso para procesos exclusivos, dando lugar a una sección eficaz no nula para Σ+, a
un aumento de la producción de hiperones Λ y a una reducción drástica de Σ− y Σ0 en el estado
final.

Hay que mencionar que los efectos de la MCC obtenidos en nuestro cálculo son mucho más
visibles que los reflejados en la Ref. [30]. Esto se debe a una implementación imprecisa, en este
último trabajo, del bloqueo de Pauli para los nucleones salientes producidos en interacciones
secundarias, que llevaron a una reducción importante del número de colisiones experimentadas
por los hiperones durante su trayectoria por el núcleo.

Motivados por las recientes mediciones de la colaboración BESIII de las anchuras parciales
de la desintegración Λc→ Λ`±ν` (`= e,ν), y por los resultados de CHORUS para la razón de
la sección eficaz de producción de Λc en la dispersión CC neutrino-núcleo, hemos calculado
también en este cápitulo la producción débil de Λc en 16O. Hemos estimado cuidadosamente
las incertidumbres teóricas que afectan al elemento de matriz n→ Λc. Para tal fin, hemos utili-
zado factores de forma calculados en diversos esquemas teóricos, empezando por los resultados
de QCD en el retículo (LQCD) de la Ref. [31], hasta usar los modelos quark relativista y no
relativista de las Refs. [32, 33, 34, 35]. Hay que señalar que mientras que para las transicio-
nes N → Λ, Σ0, Σ− las predicciones teóricas son consistentes con los datos experimentales a
nivel de nucleón, en el caso de la producción de Λc la incertidumbre más relevante está rela-
cionada con diferentes parametrizaciones de los factores de forma. Por eso no hemos tenido en
cuenta efectos nucleares más allá de los incluidos en modelo de gas de Fermi, porque su in-
clusión introduciría errores teóricos adicionales (el comportamiento de Λc en el medio nuclear
no es bien conocido). También es probable que las correcciones provenientes de estos efec-
tos nucleares sean más pequeñas que las discrepancias producidas por el uso de los diversos
conjuntos de factores de forma. Encontramos una variación significativa entre las prediccio-
nes obtenidas con los diferentes modelos, a pesar de que todos estén constreñidos por el valor
experimental de la anchura de desintegración Λc → Λe+νe. Es una consecuencia directa de
la ambigüedad inevitable inducida por la extrapolación de los factores de forma desde la re-
gión de q2 relevante para la desintegración del barión encantado Λc hasta la cinemática que
gobierna su producción en reacciones inducidas por neutrinos. Hemos estimado no obstante,
que las incertidumbres teóricas están por debajo del 30% para Eν . 3,5 GeV. Para las energías
de neutrino correspondientes a los flujos de MINERvA y DUNE, predecimos secciones efica-
ces – normalizadas al número de neutrones – de σ(Eν = 3GeV)/N = (0,9+0,2

−0,1)×10−40cm2 y
σ(Eν = 5GeV)/N = (4,5+2,0

−0,9)× 10−40cm2, respectivamente. Como hemos mencionado, por
simplicidad en este análisis preliminar, no hemos incluido correlaciones dinámicas del estado
inicial, ni efectos de FSI.
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Observables de polarización en producción de lepton τ

En la última parte de la tesis hemos estudiado la polarización del leptón τ saliente en el proceso
de corrientes cargadas inducido por (anti)neutrinos en núcleos (el análisis está hecho para 16O
y considerando sólo el mecanismo cuasielástico). Desde el punto de vista teórico, la dispersión
de ντ /ν̄τ por núcleos posibilita un estudio más amplio del papel que juegan las correlaciones
nucleares del estado fundamental en la descripción de la interacción neutrino-núcleo. La masa
de los leptones de τ±, mucho más pesada que la de los leptones µ± y e±, permite acceder a
detalles de la respuesta nuclear no explorados con la interacción electrón-núcleo o νe,µ -núcleo.
Hay en total cinco funciones de estructura necesarias para la descripción del tensor hadrónico
en la dispersión neutrino-núcleo. Las reacciones inducidas por νµ y νe son principalmente sen-
sibles sólo a tres de ellas, mientras que las contribuciones de las otras dos están suprimidas por
las masas pequeñas de µ± y e±.

Los componentes de polarización longitudinal y transversal del τ saliente son observables
interesantes desde el punto de vista experimental y teórico. Como ya hemos mencionado, ofre-
cen una visión más profunda de las propiedades del tensor hadrónico, ya que son sensibles a
varias combinaciones de funciones de estructura. Para obtener una descripción realista de la
dinámica nuclear, incluyendo correlaciones NN, hemos utilizado también en este contexto las
funciones espectrales LDA y CBF, derivadas en las Refs. [2] y [29, 27]. Estas SF son realistas y
como ya hemos puesto de manifiesto predicen respuestas nucleares inclusivas, en la región del
pico QE, en buen acuerdo con medidas experimentales para reacciones inducidas por neutrinos
y electrones. Debemos mencionar en este contexto, que el uso de funciones espectrales de agu-
jero es considerablemente más realista que la utilización de masas efectivas para el nucleón en
la descripción del estado inicial, como se hizo en el estudio previo de la Ref. [36]. Utilizar una
masa efectiva constante, es sólo una aproximación a los efectos producidos por el cambio de la
relación de dispersión del nucleón en el medio nuclear.

Para cada uno de los modelos, CBF y LDA, hemos usado una prescripción ligeramente
distinta en el cálculo del elemento de matriz de la corriente entre nucleones en el medio nuclear.
La ambigüedad viene del hecho de que el nucleón que sufre la interacción con el bosón de gauge
W± está fuera de la capa de masas, con una distribución de energía-momento determinada por
la SF. En el caso del modelo CBF, el nucleón inicial se asume que está en la capa de masas
pero con la distribución de momentos de la SF. La distribución de energía de la SF se utiliza
para corregir la energía transferida. El modelo LDA trata al nucleón inicial fuera de la capa de
masas con energía y momento determinado por la función espectral de agujero. No obstante,
sigue existiendo una ambigüedad porque el elemento de matriz a nivel de nucleón (incluyendo
la suma sobre espines) está calculado asumiendo nucleones en capa de masas. Los resultados
para los ángulos hacia delante dependen mucho de la prescripción, que afecta a las secciones
eficaces y a las componentes de polarización. Sin embargo, las discrepancias se hacen muy
pequeñas ya para ángulos de 4◦. Hemos mostrado que los efectos nucleares presentes en las
funciones espectrales son considerables en el caso de distribuciones diferenciales, produciendo
una reducción del pico QE y un desplazamiento hacia las energías transferidas más altas, como
en casos anteriores. Los efectos nucleares son menos importantes para las componentes de
polarización, porque estas se obtienen como un cociente de términos proporcionales al tensor
hadrónico, y se producen cancelaciones importantes de los efectos nucleares.
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Chapter 1

Introduction

Neutrinos play a crucial role in the history of particle physics. Their existence and physical
properties were proposed and discussed by theoretical physicists; confirmed or rejected by a
series of experiments, which have become increasingly complex and nowadays are conducted
by extended international collaborations. The evidence of this turbulent, though fruitful history,
are four Nobel Prizes received in the span of the last 50 years.

The prehistory of neutrino physics began over a century ago, with the discovery of radioac-
tivity. In 1914, J. Chadwick observed that the β -decay with one outgoing electron (as the pro-
cess was understood at that time) has a continuous energy spectrum while the final state with
just two particles should restrict the electron energy to a single well-defined value. In 1927,
Ellis and Wooster repeated the experiment measuring the energy loss in Radium to Polonium
decay and confirmed the previous results.

A quest of explaining this queer observation began, leading Niels Bohr as far as to propose
that the energy is conserved in a statistical way, but not in every process. W. Pauli was looking
for another solution to this puzzle, such that the fundamental law of energy conservation was
saved. In 1930, (rather timidly) he suggested that an unknown, neutral, spin 1/2 and very light
particle was produced in the process, leaving the scene undetected. He called this particle
a neutron, which a few years later was renamed by E. Fermi to “neutrino” - after Chadwick
discovered a particle we call neutron nowadays.

This hypothesis was at first received rather reluctantly, since it could not be experimentally
confirmed. Nevertheless, Pauli’s ideas had strong supporters and few years later (1933) E. Fermi
developed a theory of four-fermion Hamiltonian to describe β -decay process:

H = GF p̄γ
µn ēγµν + h.c. (1.1)

with GF known nowadays as the Fermi constant. This theory was universal, since it described all
the processes for which four fermions interact (proton, neutron, electron, neutrino and/or their
antiparticles). The coupling GF governs the strength of all these processes, among them ν̄ +
p→ n+ e+ interaction. It seemed that the cross section for antineutrino interaction with proton
was so small that it would be technically impossible ever to measure it [37]. This conclusion,
driven by H. Bethe and R. Peierls from Fermi’s theory, was challenged almost 10 years later
by B. Pontecorvo. In 1946 he proposed an experiment of inverse β -process with a powerful
source of neutrinos, like the Sun or a nuclear reactor. Ten years later, this idea served for the
first neutrino detection in the experiment by C. Cowan and F. Reines (who received a Nobel
Prize in 1995).

These first steps both in experimental and theoretical neutrino physics were just the be-
ginning of a long history. They opened doors to further investigations, which have expanded
greatly in the 20th and 21st century, along with other developments in various branches of
particle physics. Neutrinos were found to be left-handed particles (and therefore they do not
conserve parity, one of the three fundamental discrete symmetries together with time reversal
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FIGURE 1.1: K0 
 K̄0 mixing through W+ boson exchange. Weak interactions do not conserve
strangeness.

and charge conjugation). The distinction between electron and muon neutrinos was experimen-
tally confirmed in 1962. In the 1960s Glashow, Weinberg and Salam proposed the Standard
Model (SM) to unify electromagnetic and weak interactions through the symmetry breaking
of the pattern SU(2)L×U(1)Y → U(1)EM. This theory was a milestone for particle physics.
Neutrinos were included into the SM, along with other known fermions: charged leptons and
quarks. Their properties are unique, in comparison to the latter mentioned particles, since they
appear only as the left-handed helicity states. According to the SM, neutrinos are massless. This
theoretical assumption, however, was experimentally rejected in 1998 by the SuperKamiokande
experiment. It is the only strong hint about physics beyond the SM that we are aware of nowa-
days. This observation belongs to a separate chapter of neutrino’s history - their peculiar feature
which nowadays we know as neutrino oscillations.

1.1 Neutrino oscillations

The idea of neutrino oscillations was proposed by B. Pontecorvo already in the late 1950s, tak-
ing inspiration from the work of Gell-Mann and Pais [38] on K0 
 K̄0 oscillations. Neutral
kaons K0 and K̄0 have opposite strangeness number (±1) and are produced in strong interac-
tion processes: π−+ p→ K0 +Λ and π+ + p→ K+ + K̄0 + p. The strong force conserves
strangeness, so both kaons are indistinguishable if the weak interactions are turned off. How-
ever, while propagating, neutral kaons can change their identity through the weak processes
which do not conserve strangeness. We understand this process nowadays as shown in the
Feynman diagram depicted in Fig. 1.1.

Pontecorvo considered a similar mixing mechanism between ν and ν̄ states. Let us re-
call, that at that time only one neutrino flavour was known. Ten years later, an experiment in
Brookhaven [39] confirmed that (at least) two types of neutrino exist in Nature, νe and νµ . Pon-
tecorvo explored the possibilities of various transitions between them (and their antiparticles).
In the same paper [40] he pointed out that the Sun is an excellent source of neutrinos.

Theory of neutrino oscillations is based on the assumption that flavour states are not mass
eigenstates. In the following we will assume that only three flavours of neutrinos exist. 1 The
two bases can be related by a complex rotation, represented by a unitary 3×3 matrix U :

|να〉= ∑
i

U∗αi|νi〉 , i = 1,2,3 , α = e, µ ,τ . (1.2)

It is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, and is an analog to the
Cabibbo–Kobayashi–Maskawa (CKM) matrix which describes quark mixing in the SM. The

1We do not consider sterile neutrinos or any other extension to the SM. Their existence would change the exposed
analysis of neutrino mixing, introducing some additional parameters.
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matrix is conventionally parametrized by three angles (θ12, θ13, θ23) and one phase δ (there are
additional two phases if neutrinos are Majorana particles which are not included below since
they do not influence the oscillation analyses):

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

 (1.3)

with si j ≡ sinθi j and ci j ≡ cosθi j. The goal of oscillation experiments is to determine the
parameters of the PMNS matrix by measuring probabilities of (dis)appearance of neutrinos of
a given flavour. Let us consider the propagation of free neutrinos:

|νi(t)〉= e−i(Eit−~pi~x)|νi(0)〉 . (1.4)

Neutrinos, nearly massless, can be safely treated as ultrarelativistic particles: Ei =
√

p2 +m2
i ≈

E +
m2

i
2E with E = p. Since their velocity v ≈ c, we have also t ≈ L, with L – the distance they

travel in time t (c = 1). With all of this, we get

|νi(L)〉= e−im2
i L/2E |νi(0)〉 (1.5)

Neutrinos are produced and detected in electroweak processes, in which they have a determined
weak lepton flavour. Between the source and the detector, they propagate as free particles
according to Eq. (1.5). Each mass eigenstate propagates differently (due to the mass splitting)
leading to a non-zero probability of finding a distinct neutrino flavour after travelling a distance
L:

P(α → β ) = |〈vβ (L)|να(0)〉|2 =
∣∣∑

i
U∗αiUβ ie

−im2
i L/2E

∣∣2 (1.6)

Therefore, oscillations can only occur if the mass splitting is different from 0, so at least one of
neutrinos has to be massive.

In a simple case of two flavour mixing, U2×2 is a rotation matrix with just one parameter,
the angle θ :

U2×2 =

(
cosθ sinθ

−sinθ cosθ

)
(1.7)

The probability of detecting neutrino flavour β if the source produces να (with α 6= β ) is given
by

Pα→β = sin2(2θ ) sin2 (∆m2L
4E

)
. (1.8)

Since the aim of experiments is the determination of the unknown parameters of the model (in
this simplified situation there are only two: θ and ∆m2), one needs to measure the probability
Pα→β , for different values of E or/and L.

A huge effort has been devoted to determine the unknown parameters of Eq. (1.3). They are
fitted using global analysis of the results obtained from various oscillation experiments sensitive
to different combinations of the PMNS matrix parameters and mass splittings. The sensitivity
depends on the interplay between neutrino energies, source-detector distances, and neutrino
flavours (both produced and detected).

The recent discussion in Ref. [1] indicates that there are three main challenges in this field.
The most demanding one is to determine whether (and to what extent) the lepton sector breaks
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FIGURE 1.2: Flux of neutrinos from various sources as a function of their energy [41].

CP (charge conjugation and parity symmetry). The strength of the CP violation is driven by
the phase δ in Eq. (1.6). The other two challenges are to improve our knowledge of the value
of θ23 and establish the neutrino mass ordering (normal or inverted, i.e. what is the order of
the eigenstates m3 > m2 > m1 or m2 > m1 > m3). The latter information can be determined in
oscillation experiments when the matter effects in Earth are taken into account.

One of the fundamental reasons why neutrino oscillation experiments are so demanding,
is the fact that neutrinos interact weakly. The cross-sections are many orders of magnitudes
smaller than the ones obtained in electromagnetic processes. Since neutrinos cannot be directly
detected, their properties can be inferred only through analyses of their interactions with the
nuclei that form the detectors.

1.2 Neutrino experiments

Since the time of the first experiment of neutrino detection in 1956 by Cowan and Reines, a lot
has been explored about neutrino properties. Our current knowledge about the natural sources
of neutrinos observed on Earth is shown in Fig. 1.2. Neutrinos, along with photons, are the most
abundant particles in the Universe. The cosmic neutrino background is a reminiscence of the
Big-Bang, a fingerprint of the very beginning of the Universe. Cosmic neutrinos being far the
most abundant source, are also the lowest energetic ones (with the mean energy ∼ 0.1 MeV),
making their detection extremely demanding and not yet achieved. However, the study of the
cosmic microwave background has given an upper limit on the sum of neutrino masses (an
information which cannot be inferred from oscillation analyses which are sensitive to squared
neutrino mass differences).

Further, in Fig. 1.2 we see that the Sun is the next leading source of (electron) neutrinos
measured on Earth. In 1968, the Homestake experiment [42] observed for the first time a deficit
of solar neutrinos with respect to the predictions of solar models (it could detect only νe, while
νµ flew through undetected). This puzzle, called the solar neutrino problem, was later confirmed
by the Kamiokande detector [43], and the GALLEX [44, 45] and SAGE [46] experiments which
– to corroborate the result – used different detection methods. Finally, the Sudbury Neutrino
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Observatory (SNO) in 2001 measured the total flux of incoming neutrinos which agreed with
the predictions of solar models, and confirmed the electron neutrino disappearance [47]. Solar
neutrino experiments are sensitive to the θ12 angle. Together with KamLand [48] (which de-
tected antineutrinos from reactor sources of a similar energy range to the solar neutrinos), these
experiments were able to give estimates for θ12 and ∆m2

12.
Few years before SNO results, in 1998, SuperKamiokande finally confirmed the theory of

neutrino oscillations, measuring the appearance of electron neutrinos, νµ → νe, produced in the
atmosphere [49]. When cosmic-rays (mostly protons) interact with nuclei in the high altitude
atmosphere, they produce π and K mesons. Subsequently they decay, producing neutrinos.
In particular, π+ decays predominantly to µ+ and νµ . Since µ+ is also unstable, it decays
further µ+ → e+ + νe + ν̄µ . For neutrino energies < 1 GeV, the ratio of muon to electron
(anti)neutrinos is to good approximation known to be equal to two. The neutrino oscillation
experiment at Kamioka measured neutrinos coming from all directions, which means that they
travelled different distances until reaching the detector. This zenith-angular dependence gave a
clear signal of neutrino oscillations (a change of the νµ /νe ratio) and put constraints on the θ23
and ∆m2

23 parameters. Later, this result has been confirmed by other experiments with higher
precision (MINOS [50], T2K [51]). The next generation of atmospheric neutrino experiments
(PINGU [52], ORCA [53], Hyper-Kamiokande [54]) will focus its effort on determining the
mass ordering.

The two mixing angles measured for solar and atmospheric neutrinos appeared to be large
(which is opposite to the situation in the quark sector where the mixing angles of the CKM ma-
trix are small). The third angle θ13 was determined by the reactor experiments Daya Bay [55],
Double Chooz [56] and RENO [57].

Apart from natural sources of neutrinos, an effective way to produce an intense neutrino
beam is to use proton accelerators. This is done in J-PARC (Japan), CERN (Switzerland)
and Fermi National Lab (USA). These three facilities produce neutrinos which are then de-
tected in short-baseline (the distance from the source is of the order of few hundred meters)
and long-baseline (distances are now of the order of hundreds of kilometers) experiments, and
their energy is in the range of hundreds of MeV or few GeV. These neutrino beams are used to
perform precise measurements of the PMNS matrix and neutrino mass differences. In the near
future, the scientific program of the long-baseline experiments will be focused especially on the
determination of the CP violating phase. It is an observable very difficult to measure, which
requires not only a highly precision experiments, but also a detailed knowledge of other oscil-
lation parameters. DUNE [58, 26] and T2HK [59] experiments, which both will start operating
in 2026, are designed to perform this measurement by observing both νµ → νe and ν̄µ → ν̄e

disappearance processes. They follow two complementary approaches. T2HK will use a water
Cherenkov detector placed at 295 km from the source which corresponds to the position of the
first oscillation maximum for the neutrino energy beam peaking at ∼ 0.5 GeV. DUNE, with a
much longer baseline of 1300 km, has a broader and higher energetic flux to cover the first and
the second oscillation maxima. One of the challenges of this measurement is the fact that both
CP violation and the matter effects inside the Earth affect the shape of the Pα→β probability
distribution. Moreover, their strengths are of comparable size. Depending on the mass hier-
archy, the combined effect is either very strong, or it partially cancels. DUNE is designed to
discern both the mass ordering and estimate the CP violating phase, since it will have access to
two oscillation maxima.

As a final remark, we would like to mention that the neutrino studies do not concentrate only
on the oscillation analysis (which comprises also searches of physics beyond the three-flavour
scenario). Neutrino, thanks to its weak interactions, can travel cosmic distances with practi-
cally no distortion. This feature opens many opportunities of observing physical phenomena
or studying astrophysical objects which could not be explored with other elementary particles.
In supernovae explosions, 99% of the gravitational energy is released through an outburst of
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neutrinos, which escape faster than any other particles. From the last detected supernova ex-
plosion 1987A, over 30 years ago in the Large Magellanic Cloud, 25 neutrino events were
detected by three experiments on Earth. This information was used to constrain our knowledge
on both neutrino properties and astrophysical processes (like the mechanisms responsible for
the explosion of massive stars) [60]. Quite recently we have entered the era of multi-messenger
astrophysics, in which combined information from gravitational waves, neutrinos and gamma
rays is available.

1.3 Challenges in neutrino detection

The greatest challenge of the experiments which plan to measure the CP violating phase, is
the control of uncertainties. They should not exceed few percent to obtain the required preci-
sion. T2HK and DUNE are designed to keep the statistical error at the level of ∼ 3%. This
precision is unprecedented in the neutrino long baseline experiments which – especially for the
antineutrino mode – usually exceeded 10%. Therefore, the control of systematic uncertainties
will become a major issue since they should not be larger than a few percent. At the current
running experiments, T2K and NOvA, the reported values are in the range of 3− 10%. There
are various sources of systematic errors. Among them, there are uncertainties which arise due to
the imperfect flux determination, not fully understood detector response or imprecise modeling
of neutrino-nucleus interactions. In the following we will focus on the latter problem, being the
main motivation for our studies. The theory of neutrino-nucleus interactions enters the analysis
of oscillation parameters in a non trivial way. It affects the experimental studies on various
stages and the fact that the neutrino beams are not monochromatic poses further difficulties. In
order to mark the most important issues, let us start with a general expression for the event rate
for oscillation να → νβ (for a given event topology). Following the discussion of Ref. [1], one
can express it as:

Nα→β (preco) = ∑
i

φα(Ereal)×Pα→β (Ereal)×σ
i
β
(preal)× εα(preal)×Ri(preal; preco) (1.9)

with preco and preal being neutrino reconstructed and real momenta, respectively. The sum is
done over i - all the possible interactions, which can lead to an observed event topology. Besides,
φα(Ereal) is a flux of incoming neutrinos of a flavour α , Pα→β (Ereal) is the probability of
oscillation, σ i

β
(preal) is the total cross section for interaction channel i, εα(preal) is the detector

efficiency and Ri(preal; preco) is the probability of reconstruction of preal as preco in the case of
reaction mechanism i.

As can be noted, the functions on the right hand side of Eq. (1.9) depend on the real neu-
trino energy-momentum, while the event rate Nα→β is a function of reconstructed energy. The
energy of the neutrino for a particular event is not known, since the accelerator neutrinos are
produced in a flux with a width of the order of a few hundred MeV or even GeV. It could be
precisely reconstructed if the detector was able to measure all the outgoing particles. However,
this is far from being true. Detection of every event has its limitations: it is insensitive to the
particles below a certain threshold, or neutral particles, or those which are not contained in the
fiducial volume of the detector. The details of the reconstruction analysis depend on the specific
experimental technique which is used. Water Cherenkov detectors (e.g. HyperKamiokande) are
sensitive only to the radiation of particles above a certain threshold. In the case of the T2K
experiment (and this will be also inherited by T2HK) the energy is reconstructed assuming
knowledge about the interaction that took place (i.e. the presumption about the initial and final
hadrons), using as an input the measured outgoing lepton energy-momentum. This so-called
kinematical method has a clear shortcoming. In the case when there are many possible interac-
tion channels leading to the same observed topology, the method does not discern between them
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and might reconstruct the energy wrongly assuming a process different from the one which ac-
tually took place. Another approach is used in liquid argon detectors (e.g. DUNE), in which
the energy deposition of the outgoing particles is measured, and therefore they are sensitive
to the hadrons produced in each interaction. Using this knowledge and energy conservation,
the energy of the incoming neutrino can be estimated. However, this procedure, known as
calorimetric method, also has its deficiencies. It requires a precise identification of the pro-
duced hadrons, which is not always possible; especially for neutral particles which may leave
the detector without being observed. This poses a serious threat since the undetected low en-
ergetic neutrons or pions drastically influence the result of the analysis. In both kinematical
and calorimetric methods, it is therefore indispensable to support the analysis with a precise
knowledge about neutrino-nucleus interactions (not only providing the total cross sections but
also exclusive observables, like outgoing particles distributions).

Furthermore, the sum over i in Eq. (1.9) should be done over all the interactions which lead
to the same observed topology. Let us notice, that the success of the correct prediction depends
strongly on whether all the physical processes are taken into account. An omission of any mech-
anism (which gives a substantial contribution) can bias the analysis. Usually, there are several
possible contributions. A strategy for their acceptance depends on every experiment. For in-
stance, T2K selects CC0π events (no pion in the final state and any number of nucleons). This,
however, does not mean that pions have not been produced in the primary vertex, since they can
be reabsorbed on their way through the nucleus. It should be noted that measurements are ad-
ditionally distorted by the presence of backgrounds. As mentioned, some processes can mimic
others: e.g. in large Cherenkov tanks, photons from π0s produced in neutral current interactions
can be misinterpreted as electrons produced in charge current processes. In these cases our
ability to discern between the two situations depends on our knowledge of the neutrino-nucleus
interactions encoded into the Monte Carlo event generators. In some cases the background gives
a substantial contribution and should be kept well under control.

Lastly, the determination of the detectors efficiency is also affected by uncertainties coming
from the modeling of the neutrino-nucleus interactions, since it is based on the Monte Carlo
predictions of the distribution of outgoing particles in the detector.

Systematic uncertainties partially cancel if both near and far detectors are used. In the near
detector no oscillation α → β takes place, and therefore the expression for the event rate in
Eq. (1.9) has a simpler form. One might expect that some systematic errors of measurements
done in the two detectors are correlated and therefore data taken from the near detector can be
used to obtain higher precision in the far detector. To a large extent this is true. Nevertheless,
the errors do not cancel exactly (e.g. if the material of the detectors is different) and the analysis
is very challenging.

The theoretical input from neutrino-nucleus interactions enters the analysis of experimental
data through the Monte Carlo (MC) event generators. They should contain reliable models for
neutrino-nucleus interactions, and thus be able to simulate the “real” events, which – statistically
– coincide with the experimental observations. A great majority of neutrino-nucleus scattering
studies is focused on serving oscillation experiments to better understand the nuclear responses.
Some of them are directly implemented in the MC generators.

1.4 Outline

Apart from a strong motivation coming from the experimental studies, neutrino-nucleus scat-
tering is also an interesting topic for nuclear physics. Neutrino cross sections incorporate richer
information than electron-scattering ones, providing an excellent testing ground for nuclear
structure, many-body mechanisms and reaction models. In addition, neutrino cross section
measurements allow to investigate the axial structure of the nucleon and baryon resonances,
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enlarging the views of hadron structure beyond what is presently known from experiments with
hadronic and electromagnetic probes. Thus, and besides the large activity in the last 15 years,
a new wave of neutrino-nucleus theoretical works and detailed analysis have recently become
available [14, 61, 62, 63, 64, 65, 66, 67, 68, 19].

In this Thesis we will focus our investigation on neutrino and antineutrino scattering on
nuclei without pions produced in the primary vertex of the interaction. When in this first step the
gauge boson interacts with only one nucleon, it is the so-called quasielastic mechanism (QE).
It is a fundamental detection channel for long-baseline neutrino experiments, such as T2K,
MINOS, NOvA and the future DUNE and T2HK. At intermediate energies, a microscopical
description of the interaction of neutrinos with nuclei (which form part of the detectors), should
at least account for three distinctive nuclear corrections, in addition to the well-established
Pauli-blocking effects. These are in-medium nucleon dispersion relation, long-range collective
RPA2 effects, and gauge boson multinucleon absorption modes.

We will focus on the first one (also investigating its interplay with RPA), since we will study
processes mostly governed by one-body mechanisms when a single nucleon is produced. We
shall also investigate the case when the final state is a strange or charm baryon, however these
processes are much suppressed and play a lesser role in the experimental analysis. There exists
an abundant literature addressing multinucleon contributions to the pionless QE cross section
in the context of the so-called MiniBooNE axial mass puzzle and the problem of the neutrino
energy reconstruction [69, 70, 71, 72, 23, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], and we refer
the reader to these works for details. We would only like to mention that this topic has become
quite relevant in neutrino reactions since the neutrino beams are not monochromatic but wide-
band [84, 85] (in particular, DUNE will use much wider neutrino flux than HyperKamiokande
and therefore the energy reconstruction will depend stronger on the understanding of the nuclear
effects).

In Chpt. 2 we introduce fundamental theoretical concepts which form a basis for further
studies. We will start with a general description of neutrinos and the other fermions in the SM,
and their interactions. This very elegant theory in the strong sector (QCD) works properly in the
high-energy regime, while perturbative QCD is not able to describe physical processes at lower
energies. Quarks confinement brings in new degrees of freedom: mesons and baryons. The
interactions of these composed particles with leptons are described by a complicated dynamics.
In Subsec. 2.2.2, we present in general processes in which neutrinos scatter off a nucleon, pro-
ducing a single baryon state: either a nucleon or a strange hyperon. A good understanding of
these reactions in the free space is not enough from the point of view of oscillation experiments,
since detectors are build of nuclei rather than of free nucleons. Therefore, in Sec. 2.3 we intro-
duce some notions that serve for a description of nucleons inside of a nuclear medium (nucleon
self-energy and propagator, spectral functions, etc.). Next, the formalism for the QE process is
developed with a particular emphasis put on the Lindhard function, which will be used in further
analyses. Finally, Sec.2.5 presents an overview of various nuclear effects: Coulomb distortion
of outgoing lepton, considerations about a correct energy balance, RPA effects and final state
interactions.

Spectral functions account for the modifications of the dispersion relation of nucleons em-
bedded in the nuclear medium. Their role in the description of electroweak interactions with
nuclei is the main topic of this Thesis. We begin Chpt. 3 with the simplest model for spectral
functions which takes into account only statistical correlations between fermions (the Fermi
gas model). Afterwards, in Sec. 3.2 we introduce a semi-phenomenological model, developed

2RPA stands for the random phase approximation to compute the effects of long-range nucleon-nucleon correla-
tions.
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in [2], which we will extensively use in further studies in Chpts. 4-7. Within this model, the nu-
cleon properties in the nuclear matter are derived starting from the experimental elastic NN scat-
tering cross section, incorporating, consistently with the low density theorems, some medium
polarization (RPA) corrections. The approach is nonrelativistic and it is derived for isospin
symmetric nuclear matter. The resulting nucleon self-energies stay in good agreement with
microscopic calculations, and provide effective masses, nucleon momentum distributions, etc.
which also coincide with sophisticated many-body results. There are many other approaches
that are used to describe the QE process. They account for nuclear effects in various ways. A
short survey is given in Sec. 3.3.

Due to many challenges in the detection of neutrinos, there is very scarce (and rather low-
quality) data available which could serve as a benchmark to check models of neutrino-nucleus
interaction. In Chpt. 4 we present a comparison of the predictions of the model of Sec. 3.2
in the case of various physical processes not only induced by neutrinos. Firstly, we consider
muon and radiative pion captures in nuclei. These low-energy processes serve as an excellent
test for nuclear effects, since their role for this kinematics is increasingly important. Next, we
show a detailed comparison of various models and an analysis of inclusive neutrino induced
charge-current processes in the intermediate and low energy regimes. Lastly, we perform a
detailed comparison of various models for the case of electron scattering on 12C in the energy-
momentum range particularly important for the T2K experiment. Using electrons instead of
neutrinos as a probing particle changes the interaction from vector-axial to pure vector. How-
ever, the spectral functions to be used are the same both in weak and electromagnetic processes.

Electron scattering experiments performed in the 1970s revealed an interesting property
in the region of low energy transfer and high momentum (corresponding to the QE region).
The inclusive electron-nucleus cross section, or response functions, divided by a factor which
encompasses physics of electron-nucleon scattering, exhibit the scaling property. Scaling func-
tions obtained from the data can serve as a benchmark for theoretical models. Also, a universal
scaling function has become a starting point for a phenomenological SuperScaling Approach
(see Subsec. 3.3.3). In Chpt. 5 we define the scaling function from the nucleon-density response
function and analyze the scaling properties for the two models of spectral functions, introduced
in Secs. 3.2 and 3.3.1, also identifying the sources of scaling breaking.

The production of strange and charm ground-state baryons in weak processes is the topic of
Chpt. 6. The obtained cross sections are much lower than these of the dominating QE scattering
because of the small value of the Cabibbo angle. Still, the decaying hyperons produce pions
which give contributions to the background and therefore are important in the field of oscillation
studies. For the case of strange hyperons, we investigate how the inclusion of spectral functions
changes their final distributions. Also, hyperons suffer final state interactions due to rescattering
processes on their way through the nucleus. These effects modelled by means of a Monte Carlo
cascade turn out to play a major role. Next, we focus on weak Λc production. In this case SU(3)
flavour symmetry that can be used to relate c→ d with c→ s processes, is strongly broken. We
analyze the model dependence of the form factors proposed by various theoretical calculations,
and find the uncertainties that are induced in the nuclear cross section.

A great majority of oscillation experiments measure appearance or disappearance of elec-
tron and muon neutrinos. The physics of τ neutrinos is more challenging to be explored since
much higher energies are needed to produce τ±, which on top of that decays very rapidly. In
Chpt. 7 the spectral function formalism is used to compute the differential cross section and the
polarization components for several kinematical setups, relevant for neutrino-oscillation experi-
ments. The effects of the nuclear corrections in these observables are investigated by comparing
the results obtained using realistic spectral functions previously introduced (Secs. 3.2 and 3.3.1),
with those deduced within the global Fermi gas model, where only statistical correlations are
accounted for.
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Lastly, the main conclusions and an outlook are presented in Chpt. 8. The notation, normal-
izations and conventions used in this Thesis are gathered and exposed in Appendix A.
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Chapter 2

Theoretical concepts

The complex nature of neutrino-nucleus interactions demands a careful analysis of both initial
and final nuclear states. As mentioned, it combines various physical reaction mechanisms at
different energy scales, ranging from low-energetic processes in which collective phenomena
play a crucial role, up to energies in which neutrinos probe the structure of nucleons.

A nucleus is a system of nucleons with nontrivial interactions which requires the inclusion
of two- and many-body forces acting between them to describe some properties, like the binding
energy in light nuclei. Already at this “fundamental” level of defining the nucleon-nucleon
(NN) potential, the problem suffers from theoretical uncertainties. Interaction between two
nucleons inside of the nuclear medium is even more intricate and it is governed by a complicated
dynamics.

In the span of the last 70 years a lot of effort has been devoted to describe nuclear forces.
There are potentials proposed by various theoretical groups (for a topical review see Ref. [86]).
In the 1960s models based on one-boson-exchange were introduced and developed. The NN
potential was modelled by an exchange of bosons, most importantly π , ρ , ω and σ . Each of
these mesons was introduced to describe a different property of the nuclear force, since they
dominate at various energy ranges and isospin channels of the NN potential. Together they
recover some basic properties of the nuclear force: a strong repulsive core at short distances
and a long tail produced by the one pion exchange (see Fig. 2.1). Still, the obtained agreement
with the NN scattering data was qualitative rather than quantitative. Afterwards, a two-pion-
exchange contribution was added to the potentials in order to improve their performance (e.g.
the Bonn meson exchange model of Ref. [87]). In the 1990s with abundant NN scattering data
sets available, a different phenomenological approach was developed. The proposed potentials
(e.g. Nijmegen group [88], CD-Bonn [89] or v18 potential by Argonne group [90]) were con-
structed by introducing a large set of possible nonrelativistic operators and fixing the coupling
constants to successfully describe the large samples of experimental phase shifts. More recently,
the potentials calculated within the Chiral Perturbation Theory (χPT) have gained on popular-
ity [91]. The idea of χPT consists in constructing the most general Lagrangian respecting chiral
symmetry, ordering the terms in number of derivatives (since the small parameter of the the-
ory is the pion momentum). The χPT calculations are more difficult when applied to nuclear
physics since in the chiral limit (q→ 0, mu,md ,mπ → 0), the nuclear interactions do not vanish.
The foundation for this approach was suggested by S. Weinberg in a series of works [92, 93,
94]. He proposed to use the Lippman-Schwinger equation to iterate the NN potential calculated
perturbatively within χPT.

A description of the nucleus requires solving the many-body problem using some free-
space NN potential. In the era of advanced numerical calculations, the task can be approached
within the so-called ab-initio methods, which provide a description of the nuclear system with
a great precision. Nevertheless, the accurateness of these approaches has a high price: a huge
computational time and memory consumption. In many practical applications there is a need
for simpler, more phenomenological models, which would still reproduce the bulk of physical
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FIGURE 2.1: A schematic picture of the central part of the NN potential. One pion exchange is respon-
sible of the long-range part of the interaction. At intermediate distances, the dynamics is governed by
two-pion exchange (and other contributions). At short-distances the potential becomes strongly repul-
sive.

properties, failing, however, to recover some details of the system. A family of mean-field (MF)
methods follows this approach.

Lepton scattering

When a lepton scatters off a nucleus, the interaction depends on the transferred energy-momentum.
Already at this level, we should be aware that one makes an approximation, assuming one-boson
(γ , Z0, W±) exchange with the nuclear target. The assumption, however, is well grounded
since this first-order contribution is much larger than further corrections coming from two- (and
many-) gauge boson exchanges.

FIGURE 2.2: Spectra of lepton-nucleon (upper panel) and lepton-nucleus (lower panel) scattering.

In Fig. 2.2 we show a schematic shape of the differential cross section dσ/dq0 of a lepton
scattering off a nucleon (top panel) and off a nucleus (bottom panel), where q0 is the energy
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transfer in the laboratory system. One can observe that various physical mechanisms dominate
the cross section, depending on the energy-momentum transferred to the hadronic system.

In the case of scattering on a single nucleon, three regions can be distinguished. Starting
from low q0 values, the first peak corresponds to the QE scattering (it is an elastic process when
no charge is exchanged) for which the relation between the transferred energy and momentum
~q is fixed by the conservation law: (M + q0)2−~q 2 = M2 (where we use an average nucleon
mass M). Next, for higher q0 we observe a region of resonance excitations. The lightest one,
∆(1232), gives the biggest contribution to the cross section. At higher energy transfers, the
deep inelastic scattering (DIS) starts dominating. In this region we have scattering with quarks
and gluons instead of individual nucleons.

An analogous situation occurs when the interaction takes place on a nucleus. In this case,
however, the underlying dynamics of the constituent nucleons makes the description more de-
manding. We additionally observe new low-energy mechanisms: elastic scattering and the
region of excitation of giant resonances (collective nuclear modes). The QE peak becomes
broader because of the motion of the nucleons. At intermediate energies the scattering can be
described fairly well as taking place on a single nucleon bound in the nucleus (so-called Impulse
Approximation, IA). This assumption is correct when the resolution of the electroweak probe is
high enough and the wavelength of the interacting gauge boson is smaller than the typical range
of the inter-nucleon distances in a nucleus ∼ 1 fm≈ 200 MeV−1. The QE scattering observed
as a delta-like peak for a single nucleon, here gives rise to a peak which is much wider and
shifted due to the NN interactions inside the nucleus. Similarly, the produced resonances above
the QE peak should also be properly treated inside the nuclear medium, with different proper-
ties from those exhibited in the vacuum. One can also observe that the tails of distributions of
the QE and ∆ excitation overlap. In fact, there is an additional contribution in this so-called dip
region, not visible in the spectrum as a separate peak, coming from the scattering on two (or
more) nucleons leading to multi-nucleon knockout processes. This mechanism is essential to
describe correctly the experimental data, although its strength is significantly smaller than the
contribution coming from the scattering on a single in-medium bound nucleon.

This Thesis will be mainly devoted to the description of the role played by nuclear effects
(especially concentrating on the SFs) in lepton-nucleus scattering. In the energy regime in
which the IA is applicable, it becomes increasingly important to model properly the nucleons’
behaviour inside the nucleus in terms of SFs. The QE mechanism is particularly well suited
to perform such analysis. Firstly, the vertex of interaction ν`+N → `+N′ has a simple and
well established structure1 and, thus, the theoretical uncertainties are dominated by the nuclear
model. Secondly, one can study how both initial and outgoing nucleons are affected by the
nuclear medium. The SFs provide a coherent picture in which the particle and the hole states
can, in principle, be described in the same formalism. Lastly, the QE scattering is a dominating
channel for many neutrino oscillation experiments. Therefore, it is crucial to understand the
physics which governs this process to be able to reconstruct the incoming neutrino energy.

Outline

We will start this chapter with a short overview of the electroweak interactions in the SM. In
particular, we will focus on how neutrinos couple to quarks via intermediating gauge bosons.
This description is applicable only in the high-energy regime (for high values of Q2 = −q2 =
~q 2− (q0)2), where a meaningful perturbative expansion in terms of quark fields can be per-
formed. At lower Q2, the theory becomes nonperturbative. An effective description has to

1This is certainly true for the vector part of interaction which is known from electron scattering experiments. The
axial part is not so well constrained.
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be introduced to model the dynamics of the new emerging degrees of freedom: mesons and
baryons.

In Sec. 2.2, we introduce the lepton-nucleon interactions. Let us notice that for some dynam-
ical mechanisms already at this level, various theoretical models have considerable problems to
describe the experimental data (an important example from the point of view of neutrino exper-
iments is the pion production reaction). Therefore, it is important to establish their reliability
before considering the scattering off nucleus (i.e. embedding the interaction into the nuclear
medium). In Subsec. 2.2.2 we focus our attention on the QE scattering expressing the hadronic
current in terms of form factors. In the limit of unbroken SU(3) flavour symmetry of three light
quarks, the form factors of the N→ N′ processes can be related to the ones which describe the
production of strange hyperons. This is a topic explored with some details in Subsec. 2.2.3.

In Sec. 2.3 we introduce basic notions used in nuclear physics to describe the behaviour of
nucleons inside the nuclear medium: they gain a self-energy which modifies their dispersion
relations with respect to their properties in the vacuum. Next, the Green’s function (propagator)
will enable us to define the spectral functions. We will start the discussion from a simple model
of noninteracting particles in Subsec. 2.3.1. In the language of thermodynamics, the system is
an ideal gas of fermions at zero temperature. Even though the Fermi gas (FG) model seems
to be too simplistic to give any meaningful physical results, it works surprisingly well in some
cases. Still, in general it should not be treated as a trustworthy approach. In Subsec. 2.3.2 we
will introduce the Local Density Approximation (LDA) according to which a nucleus can be
locally treated as nuclear matter of constant density. This allows to introduce the local Fermi
Gas (LFG) model, which we will adopt as a starting point for our approach, further improved
with some additional nuclear effects.

Having introduced all the preliminaries, we will proceed in Sec. 2.4 to the description of
the neutrino interaction with nuclei. Assuming the LDA in Subsec. 2.4.1, we develop a general
formalism to relate the cross section of the neutrino-nucleus interaction with the self-energy
of the W± boson in the nuclear medium. The main dynamical mechanism we will explore is
the QE scattering (although we will also consider strange and charmed hyperon production in
Chpt. 6). During the discussion, the notion of the Lindhard function will naturally emerge. We
will pay special attention to it, showing in Subsec. 2.4.4 how it can be expressed in terms of the
spectral functions.

In Sec. 2.5 we will introduce some further nuclear effects: Coulomb corrections which
affect charged leptons, the correct energy balance and the Random Phase Approximation (RPA).
Lastly, we will devote few words on the Final State Interactions (FSI). In general terms the
latter effect is related to the description of the outgoing hadron particles which interact with the
residual nucleus (in this Thesis we will focus on nucleons and hyperons).

2.1 Neutrinos in the Standard Model

The SM of fundamental interactions was proposed by Salam, Weinberg and Glashow in 1967
[95, 96, 97]. The theory describes the dynamics of elemental particles: leptons and quarks,
introducing gauge fields (four mediating bosons of the electroweak sector and eight gluons),
and one scalar particle: the Higgs boson, which realizes the Higgs mechanism of spontaneous
symmetry breaking in the electroweak sector. The SM is based on an assumption that SU(3)×
SU(2)L×U(1)Y is an internal local gauge symmetry of the system, where SU(3) describes
quantum chromodynamics (QCD), while SU(2)L×U(1)Y are gauge groups of the electroweak
sector, called respectively weak isospin and hypercharge. In the following we will concentrate
on the electromagnetic and weak interactions parts of the SM, leaving aside the dynamics of
the QCD sector. The structure of the SM is based on a formalism developed by Yang and Mills
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[98] who, inspired by electromagnetism, considered gauge theories of the nonabelian SU(N)
group.

The abelian U(1)Y group has one generator, while SU(2)L has three generators Ta which
obey the commutation relation:

[Ta,Tb] = iεabcTc (2.1)

with εabc the three dimensional fully antisymmetric Levi-Civita tensor. Particularly, we are
interested in representations of the Lie algebras of the SU(2)L and U(1) groups acting on the
physical fields of our theory. The generators Ta and Y

2 of the fundamental representation act on
the fermion fields ψ of the SM. In analogy to spin, Ta are weak isospin generators defined in
terms of Pauli matrices Ta =

1
2 σa. The general transformation under a local rotation is given by

ψ(x)
U(1)Y−−−→ e−iY α(x)/2

ψ(x) ψ(x)
SU(2)Y−−−−→ e−iTjα j(x)ψ(x) (2.2)

with α(x) being the local parameter of the rotation. According to the SM, neutrinos are massless
particles, grouped into three families. They exist only as left-handed particles, forming three
doublets with the corresponding charged leptons, which appear in both chirality states2:

ψL =

(
νe

e−L

)
,
(

νµ

µ
−
L

)
,
(

ντ

τ
−
L

)
, e−R , µ

−
R , τ

−
R . (2.3)

with e−L,R = (1∓ γ5)e−, and similarly for the other fermion fields.
Quarks, similarly to charged leptons, exist in both chirality states, and are grouped into three

doublets for left-handed quarks, and six right-handed singlets:

qL =

(
uL

dL

)
,
(

sL

cL

)
,
(

tL
bL

)
, uR , dR , sR , cR , bR , tR . (2.4)

In what follows we will consider only the first generation of leptons and quarks. The de-
scription of the other two families runs in parallel with the only difference due to the mass of
the particles.

Left-handed and right-handed particles transform differently under rotations of SU(2)L×
U(1)Y groups. The right-handed fermions are singlets under SU(2)L. Each particle should
be assigned the proper quantum numbers: the third component of the weak isospin T3 and
the hypercharge Y

2 . They should obey a relation which determines the electric charge (as a
consequence of the symmetry breaking SU(2)L×U(1)Y→ U(1)EM):

Q = T3 +
Y
2

. (2.5)

The values of T3 and Y /2 for the first generation of leptons and quarks are shown in Ta-
ble 2.1. Let us stress that Y /2 depends on the chosen convention (here we will fix the scale
setting the electromagnetic charge to −1 for electrons). The weak isospin is known from the
commutation relations of the generators of the SU(2) Lie algebra. This puts constraints on the
hypercharge Y .

In order to make the Lagrangian invariant under local symmetry transformations, one has
to redefine the derivatives acting on the fermion fields in such a way that new spin-1 fields are
introduced, which are used to define the covariant derivative. This set of “gauge bosons” with
their own transformation laws, will make the kinetic terms of the Lagrangian transform in a
proper way. Each gauge boson, which will be denoted as W a

µ and Bµ , corresponds to generators
of the adjoint representation of the SU(2)L and U(1) groups, respectively. Covariant derivatives

2In principle, one can extend the SM to include right-handed neutrinos which would be sterile, i.e. they will not
interact with other particles. Here, however, we will not consider this scenario.
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eL νe eR uL dL uR dR

T3 −1/2 1/2 0 1/2 −1/2 0 0
Y /2 −1/2 −1/2 −1 1/6 1/6 2/3 −1/3

TABLE 2.1: Assignment of quantum numbers of the SU(2)L×U(1)Y group.

operate differently on left-handed and right-handed fermions:

DµψR =

(
∂µ + ig′

Y
2

Bµ

)
ψR

DµψL =

(
∂µ + ig′

Y
2

Bµ + ig~T ~Wµ

)
ψL (2.6)

For the theory to be consistent, the gauge bosons transform under infinitesimal rotations as

Bµ

U(1)Y−−−→ Bµ −
1
g′

Y
2

∂µα(x)

W a
µ Ta

SU(2)L−−−−→W a
µ Ta−

1
g

∂µαa(x)Ta +W a
µ εabcαa(x)Tc (2.7)

The Lagrangian for the (first generation of) fermions before spontaneous symmetry break-
ing can be then expressed in a compact form as [99]:

LEW = ψ̄Li/DψL + ēRi/DeR + q̄Li/DqL + ūRi/DuR + d̄Ri/DdR (2.8)

This theory, however, does not describe the physical world, since both fermions and gauge
bosons remain massless particles. One has to spontaneously violate the symmetry to generate
the massive terms which – if introduced explicitly – would break the symmetry. As has been
already mentioned, this is done in the SM with the Higgs mechanism. Although it can be re-
alized in various ways, the standard solution consists in introducing a Higgs doublet of scalar
charged and neutral fields, which are coupled to the gauge bosons through the covariant deriva-
tive; and also interact with the fermionic fields through the so-called Yukawa couplings, since
these terms are allowed by the local gauge symmetry. The Higgs sector is introduced to the SM
by means of a self-interacting term (potential) which is essential since it leads to the sponta-
neous breaking of the symmetry: the vacuum state does not preserve SU(2)L×U(1)Y. After
the symmetry violation, the vacuum expectation value of the Higgs gives rise to the masses of
the remaining fields of the theory. In addition, gauge bosons W 3

µ and Bµ should be rotated to
obtain mass-definite neutral particles, while combinations of W 1

µ and W 2
µ lead to the physical

W±µ states:

Aµ = sinθWW 3
µ + cosθW Bµ

Z0
µ = cosθWW 3

µ − sinθW Bµ

W±µ =
1√
2
(W 1

µ ∓ iW 2
µ ) (2.9)

where the Weinberg angle θW can be related to the coupling constants g, g′ and the electric
charge e:

e = g′ cosθW = gsinθW , tanθW =
g′

g
(2.10)
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In terms of these newly defined physical gauge bosons we can rewrite the covariant derivative
as

Dµ = ∂µ + ieQAµ + i
g√
2

(
T+W+

µ +T−W−µ
)
+ i

g
cosθW

(T3−Qsin2
θW )Z0

µ (2.11)

with T± = T1± iT2. Now one can rewrite the Lagrangian of Eq. (2.8) as a sum of the so-called
electromagnetic (EM), charged-current (CC) and neutral-current (NC) parts [99]:

LEW = LEM +LCC +LNC

= −eAµJµ

EM−
g

2
√

2

(
W+

µ Jµ

CC +W−µ Jµ†
CC

)
− g

2cosθW
ZµJµ

NC (2.12)

When the quark mixing is ignored (considering only the first generation of fermions), the cur-
rents Jµ are given by:

Jµ

EM =− ēγ
µe+

2
3

ūγ
µu− 1

3
d̄γ

µd

Jµ

CC =ν̄eγ
µ(1− γ5)e+ ūγ

µ(1− γ5)d

Jµ

NC =
1
2

ν̄eγ
µ(1− γ5)νe−

1
2

ēγ
µ(1− γ5)e+ sin2

θW ēγ
µe

+
1
2

ūγ
µ(1− γ5)u−

1
2

d̄γ
µ(1− γ5)d + sin2

θW (−2
3
)ūγ

µu+ sin2
θW

1
3

d̄γ
µd (2.13)

When the quark mixing is turned on, we take into account the fact that quarks which couple
to gauge bosons are not the mass eigenstates. The Higgs mechanism allows mixing between
different generations in such a way that:

Ψu = (u,c, t) , Ψd = (d,s,b) − vectors of quarks in the mass basis

Ψ′u(L,R)
=Uu(L,R)Ψu(L,R) , Ψ′d(L,R)

=Ud(L,R)
Ψd(L,R)

− rotation to the flavour basis (2.14)

where the matrices Uu,d are unitary. The transformation between these two bases (of definite
flavour and mass) is described by the Cabibbo-Kobayashi-Maskawa matrix VCKM. It will affect
the quark content of the CC, which in the case of more than one generation reads

Ψ̄′uL
γ

µ Ψ′dL
= Ψ̄uLγ

µU†
uL

UdL ΨdL ≡ Ψ̄uLγ
µVCKMΨdL (2.15)

For two generations VCKM is defined just by the Cabbibo angle θC:

VCKM =

(
cosθC sinθC

−sinθC cosθC

)
(2.16)

and therefore the quark CC in this case is given by:

jµ
cc = ūγ

µ(1− γ5)(d cosθC + ssinθC) (2.17)

with u, d, s being quark mass eigenstates.

2.2 Neutrino scattering off a single nucleon

Let us consider the ν`/ν̄`(k) + N → `∓(k′) + X reaction where k is the four-momentum of
the incoming (anti)neutrino ν`. The outgoing lepton ` has momentum k′ and may be of any
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flavour: e (electron), µ (muon) or τ (tau). For the conventions used in this Thesis we refer
to the Appendix A. The scattering takes place on a nucleon N of momentum p and mass M,
producing a hadronic final state X (which in general is a multiparticle state). This CC reaction
is mediated via a W± boson of momentum q = k′− k. From the experimental point of view,
the CC reactions are the most important processes for neutrino detection, since the outgoing
charged lepton can be observed. On the other hand, in the NC processes – where the Z0 boson
instead of the W± is interchanged – the final lepton is a neutrino which is not seen in the
detectors. Still, the NC processes play an important role as a background in many experiments
and their treatment is therefore crucial for precise measurements. The cross section for the CC
reaction is given by

dσ

dEk′dΩk′
=

G2
F

4π2
|~k′|
|~k |

Lµσ (k,k′)W µσ

N (p,q) . (2.18)

where GF is the Fermi constant related to the gauge coupling g and the W± mass MW as
GF /
√

2 = g2/8M2
W and Lµν and W µν

N are the lepton and nucleon hadron tensors respectively.
The lepton tensor, which describes the interaction vertex of the neutrino, the gauge boson and
the outgoing lepton, reads

Lµσ (k,k′) =
1
8

Tr[/kγµ(1∓ γ5)(/k ′+m`)γσ (1∓ γ5)]

= kµk′σ + k′µkσ −gµσ k · k′± iεµσαβ k′αkβ (2.19)

Some more details on the normalization conventions can be found in Appendix A, and a most
general discussion is included in Appendix D. The antisymmetric part of the tensor comes with
opposite sign for neutrinos and antineutrinos. The antisymmetric part of interaction is absent
in the electromagnetic case when both incoming and outgoing leptons are unpolarized. This
richer structure of the lepton tensor (comparing to the EM case) will consequently affect the
result of the contraction with the nucleon hadron tensor, which encodes the physics of the
strong interactions:

W µσ

N (p,q) =
1

2M∑∏
i

(∫ d p3
xi

(2π)32Exi

)
(2π)3

δ (∑
i

pxi− p−q)

〈X , px| jµ
cc(0)|N, p〉〈X , px| jσ

cc(0)|N, p〉∗ , (2.20)

where we sum final and average over initial particle spins. As already mentioned, the final
state |X , px〉 is in general a multi-particle state |X , px〉 = ∏i |Xi, pxi〉. The CC for quarks jµ

cc is
given by Eq. (2.17). The fact that cosθC is much larger than sinθC reduces the cross section for
the production of strange particles. Consequently, we will see in Chpt. 6, that strange hyperon
production cross sections are one order of magnitude lower than those found for nucleon QE
scattering. We split the hadron tensor into symmetric and antisymmetric parts:

W µσ

N =W µσ

N (s)+ iW µσ

N (a) (2.21)

where the antisymmetric tensor is only probed when the antisymmetric part of the lepton tensor
is present. Therefore, (in the case of an unpolarized beam of leptons) we are sensitive to the
contribution coming from W µσ

N (a) only for neutrino induced reactions. Moreover, the difference
between neutrino and antineutrino cross sections is driven by this term. This fact is of particular
importance for future experiments measuring the CP violating phase.
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FIGURE 2.3: Three main mechanisms for neutrino-nucleon scattering: QE (left), pion production (cen-
ter) and DIS (right).

FIGURE 2.4: Neutrino-nucleus cross section as a function of the neutrino energy (plot taken from
Ref. [100]). On top of it we marked the energy range of fluxes used in T2K, DUNE and MicroBooNE.
Other long baseline experiments cover a similar energy spectrum.

2.2.1 Dynamical mechanisms

The general final state |X , px〉 introduced in Eq. (2.20) describes any possible outgoing particles
produced by the jµ

cc current of Eq. (2.17). In fact, one can consider mechanisms going beyond
the u→ d,s transition but they are much suppressed. For example charmed hyperon production
will be studied in Chpt. 6. The contribution of each particular mechanism to the total cross
section depends on the value of the energy-momentum transfer to the nucleon. The main mech-
anisms (important in the neutrino oscillation experiments) are: QE scattering, pion production
(through resonance excitations) and DIS, which are depicted schematically in Fig. 2.3. The
range of energies between the resonance region and DIS, so-called SIS (Shallow Inelastic Scat-
tering) region, is challenging to model since there is no clear distinction between both mecha-
nisms. The approximate contributions of the different mechanisms to the total cross section are
shown in Fig. 2.4. The typical energy-fluxes of accelerator neutrinos in the long baseline exper-
iments may vary from tens of MeV to few GeV (with long tails up to tens of GeV). Particularly
in Fig. 2.4, we can see the energy range of three experiments: T2K, DUNE and MicroBooNE.
We clearly observe that the QE mechanism dominates for 0.1−1 GeV, which overlaps mostly
with the flux energy of the T2K and MicroBooNE experiments. Still, even for DUNE the QE
scattering gives a large contribution.
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In addition to these three main mechanisms, there are others, suppressed either by phase-
space (when more particles are produced in the final state, e.g. two or more pion production)
or because of other dynamical reasons. Let us notice that, as mentioned, the processes driven
by the u→ s transition are smaller by a factor tan2 θC ≈ 1/18. In the following Subsection, we
will focus more on the QE mechanism.

2.2.2 Quasielastic scattering

QE scattering is the simplest mechanism among the ones enumerated in the previous Subsec-
tion. The outgoing particle is just a single nucleon |X , px〉 = |N′, p′〉. We will use relativistic
descriptions of both incoming and outgoing nucleons. The structure of the general CC operator
of Eq. (2.17) in this case leads to four terms. We refer to Appendix B for details. The vertex
can be written as

〈N′, p′| jµ
cc|N, p〉= ū(p′)Γµu(p) = ū(p′)(V µ −Aµ)u(p) (2.22)

with the vector and axial contributions given in terms of Lorentz invariant form factors:

V µ = cosθC

(
FV

1 (q2)γµ + iµV FV
2 (q2)/(2M)σ µνqν

)

Aµ = cosθC

(
GA(q2)γµ

γ5 +GP(q2)qµ /Mγ5

)
(2.23)

Isospin invariance allows to relate the vector form factors to the electromagnetic ones. The
explicit expressions for the form factors, with τ = −q2/4M2, are:

FV
1 = F p

1 −Fn
1 µV FV

2 = µpF p
2 −µnFn

2

F p,n
1 =

Gp,n
E + τGp,n

M
1+ τ

µp,nF p,n
2 =

Gp,n
M −Gp,n

E
1+ τ

(2.24)

For the proton- and neutron-electric and magnetic form factors, there are many parametrizations
available. We adopted in this work the Galster parametrization [101] where

Gp
E =

1
(1−q2/M2

V )
2 , Gp

M = µpGp
E , Gn

E = − µnτ

(1+λnτ)
Gp

E , Gn
M = µnGp

E (2.25)

with MV = 0.843 GeV, µp = 2.7928, µn = −1.9113, and λn = −5.6.
For the axial form factor GA, we assume the standard dipole parametrization

GA =
gA

(1−q2/M2
A)

2 , (2.26)

where the nucleon axial-vector coupling constant is taken to be gA = 1.257 and the axial mass
MA = 1.049 GeV. The Partially Conserved Axial Current (PCAC) theorems allow us to write
the pseudo-scalar form factor in terms of the axial one as (see Appendix B)

GP =
2M2

(m2
π −q2)

GA (2.27)

with mπ being the pion mass. Let us notice that the GP(q2) form factor plays a negligible role if
the mass of outgoing lepton is small. This is because all the terms of the hadron tensor W µν

N that
depend on GP will be proportional to qµ , qν or qµqν but qµ contracted with the lepton tensor
vanishes in the massless lepton limit. This form factor will be more important in the case of τ
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production, as discussed in Chpt. 7. It can been measured in muon and radiative muon capture
processes from the muonic hydrogen ground state [102].

2.2.3 N→ Λ,Σ0,Σ− form factors

The same discussion of the elastic mechanism can be applied to describe the weak production
of strange hyperons. They are baryons, three-quark bound states, which contain one strange
quark s.

In the limit of equal masses of quarks u, d and s, the dynamics of the system is invariant
under SU(3) rotations in the flavour space. The symmetry is not as exact as isospin SU(2)
acting in the space of u and d quarks because of the mass splitting: mu ≈ 2.2 MeV, md ≈ 4.7
MeV and ms ≈ 95 MeV. Nevertheless, it is still relatively good, taking into account that the
mass of next-heavy charm quark is mc ≈ 1275 MeV.

In the limit of unbroken SU(3) symmetry, baryons are grouped into four multiplets: 3⊗3⊗
3 = 1⊕8⊕8⊕10. The hyperons we will consider: Λ, Σ0, Σ− enter into an octet:

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 (2.28)

We want to consider an interaction with an external source jµ
cc which accounts for both

u→ d and u→ s transitions (see Eq. (2.17)). These transitions are related by SU(3) rotations,
which thus can be written in terms of the Gell-Mann matrices λi (see Appendix A). The CC can
be expressed as

jµ
cc =

(
Ψ̄u Ψ̄d Ψ̄s

)
γ

µ(1− γ5)

0 cosθC sinθC

0 0 0
0 0 0

Ψu

Ψd
Ψs

 (2.29)

Let us introduce

Tcc =

0 cosθC sinθC

0 0 0
0 0 0

=
cosθC

2
(λ1 + iλ2)+

sinθC

2
(λ4 + iλ5) (2.30)

acting in the flavour space. For the electromagnetic case we would have

Tem =

2/3 0 0
0 −1/3 0
0 0 −1/3

=
1
2

(
λ3 +

1√
3

λ8

)
(2.31)

The SU(3) invariant matrix element of the CC transition between octet baryon states. It contains
two possible terms:

〈B′, p′| jµ
cc|B, p〉= ū(p′)Γµu(p)

(
DTr

(
Tcc{B, B̄′}+

)
+FTr

(
Tcc[B, B̄′]

))
(2.32)

In the above equation B and B̄′ are understood as matrices in flavour space, with no momentum
or spin dependence and the trace is taken in the SU(3) flavour space. D and F are low energy
constants fitted to data (semileptonic decays of nucleons and hyperons): F +D = 1.267±0.003
and F−D = −0.341±0.016. We also introduced a reduced matrix element ū(p′)Γµu(p) with
Γµ being a general vertex of the interaction. Using the analog expression to Eq. (2.32) for
the electromagnetic current, we recover the relationship between the vector part of the weak
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f1(q2) f2(q2) g1(q2)

p→ Λ −
√

3
2 F p

1 (q
2) −

√
3
2

MY
M+MY

µpF p
2 (q

2) −
√

3
2

1+2x
3 GA(q2)

n→ Σ− −
(
F p

1 (q
2)+ 2Fn

1 (q
2)
)

− MY
M+MY

(µpF p
2 (q

2)+ 2µnFn
2 (q

2)) (1−2x)GA(q2)

p→ Σ0 − 1√
2

(
F p

1 (q
2)+ 2Fn

1 (q
2)
)
− MY

M+MY

1√
2

(
µpF p

2 (q
2)+ 2µnFn

2 (q
2)
) 1−2x√

2
GA(q2)

TABLE 2.2: Form factors for u→ s transitions (see Eq. (2.33)), with x = F
F+D ≈ 0.73.

interaction and the electromagnetic interaction 〈p| jµ
em|p〉− 〈n| jµ

em|n〉 = 〈p| jµ

cc(V )
|n〉. Further,

the N → N′ form factors can be related to the ones appearing in the N → Y transitions, where
Y = Λ,Σ0,Σ−. The general structure of interaction vertex W±NY can be then expressed as

Γµ

Y =
[
γ

µ f1(q2)+ iσ µν qν

MY
f2(q2)+

qµ

MY
f3(q2)

]
−
[
γ

µg1(q2)+ iσ µν qν

MY
g2(q2)+

qµ

MY
g3(q2)

]
γ5 (2.33)

with MY , the hyperon mass. Let us notice a difference of a 2M/MY (M/MY ) multiplicative
factor with respect to the previous vertex definition in Eq. (2.23), in the case of the f2 (g2)
form factor. This change of notation has been introduced to make a connection with the usual
conventions employed for the Λc→ N transition, discussed in Chpt. 6. We will neglect the f3
and g3 form factors when working only with light leptons (see the discussion below Eq. (2.27)).
From G-parity invariance we also get that for N→N′ process g2 = 0 and f3 = 0 [30]. Assuming
SU(3) the same applies to processes driven by the u→ s transition. The remaining f1, f2 and g1
form factors can be related with the form factors defined in the previous Subsection as detailed
in Table 2.2.

2.3 Nucleons in the nuclear medium

The relatively simple process of neutrino-nucleon scattering becomes a nontrivial problem when
the interaction does not take place on a free nucleon, but on a particle bound in the nucleus. Pre-
viously, all the unknown dynamics has been encoded into the form factors. For the vector part,
its q2-dependence (in the energy regime relevant for the QE mechanism) is well constrained by
various experiments. The only poorly known piece of information is the axial form factor [103].
In the near future, lattice QCD techniques will be able to provide a reliable q2 dependence of
GA [104].

In the case of the neutrino-nucleus cross section, the complicated many-body dynamics
of the nuclear system dramatically changes the situation, and introduces new theoretical un-
certainties. One of the fundamental challenges that we encounter is the fact that the majority
of nuclear calculations are done using nonrelativistic formalisms. They break down when the
energy-momentum transfer to the nucleus is high enough (already at |~q| ≈ 600 MeV). This
is a serious obstacle, which puts some strict limitations on the models. E.g. the results of
ab-initio approaches (which aspire to be a benchmark for other less sophisticated models) are
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reliable only for a limited kinematics. There are various ways to proceed in this situation –
prescriptions how to promote nonrelativistic calculations to the relativistic regime – proposed
by different theoretical groups. We will discuss some of them in the following chapters.

In addition to the already mentioned ab-initio calculations, a usual method to deal with the
many-body problem is the MF approach. It consists in reducing the many-body dynamics to
a situation in which a single nucleon is submerged in a MF potential. In this simple picture,
each constituent particle feels the same potential generated by the other particles of the system.
Nucleons being fermions occupy different quantum states. Solving the potential problem, one
obtains approximate energy levels and wave functions of the nuclear system. Although this
reduction of the many-body problem does not capture all the details and nuclear properties
of the system, it has proved to work well in many applications. The proposed potential itself
should be chosen in such a way, that the residual interaction between nucleons can be regarded
as a small correction.

In the following subsections we will introduce some fundamental notions used in nuclear
physics. Particularly we will focus on those which form the theoretical basis for the approach
developed by the Valencia group (see for instance Ref. [3]), which is predominantly employed
in this Thesis.

2.3.1 Noninteracting system

The simplest model, which will be our starting point for more advanced considerations, is the
so-called Fermi gas model, in which fermions do not interact with each other, i.e. the Hamilto-
nian has the simple form

H0 =
N

∑
i=1

p2
i

2M
. (2.34)

The ground state of the system is comprised of N particles which occupy all the available
energy levels up to the Fermi level EF with the corresponding momentum pF =

√
2MEF . Let

us notice that in the case of infinite systems (nuclear matter) modelled as ideal Fermi gases at
zero temperature T = 0, the Fermi level coincides with the chemical potential of the system µ ,
and it is equal for both adding or removing a particle from the system (for a review of statistical
and thermodynamical properties of ideal gases see Ref. [105]).

Using thermodynamical properties of the system we can relate its density ρ with the Fermi
level. The standard approach to this problem is to assume that we have N particles in a box of
volume V = L3. Particles are described as plane waves with periodic boundary conditions. We
will use the second quantization formalism with creation and annihilation operators normalized
as:

a†
α |0〉= |α〉 , {aα ,a†

α ′}= δαα ′ (2.35)

where |0〉 is the ground state and we denote by α all quantum numbers that characterize the
state. In addition to spin and isospin (which we will not write explicitly), three integers nx, ny,
nz label each state, which define the momentum components, pi = ni

2π

L (we assume h̄ = 1).

ψα(~r) =
1√
V

einx
2π

L rxeiny
2π

L ryeinz
2π

L rza†
α =

1√
V

ei~p~ra†
α (2.36)

With this normalization, we may interpret ψα(~r) as the probability density of finding a particle
in a state characterized by the quantum numbers α within the volume V :∫

V
d3r|ψα(~r)|2 = 1 (2.37)



32 Chapter 2. Theoretical concepts

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 1 2 3 4 5

𝜌(
𝑟)

[fm
−

3 ]

radius 𝑟 [fm]

Density profile for 12C

with
without

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 1 2 3 4 5

𝜌(
𝑟)

[fm
−

3 ]

radius 𝑟 [fm]

Density profile for 16O

with
without

FIGURE 2.5: Comparison of the density profiles for light nuclei with and without taking into account
that nucleons are not pointlike (the density is equal for protons and neutrons).

In the limit of infinite number of particles, the sum over {nx,ny,nz} is replaced with an integra-
tion

∑
nx,ny,nz

→ V
(2π)3

∫
d3 p (2.38)

On top of this, we have to sum over other degrees of freedom (spin, isospin) which will give an
additional ν factor. The number of particles N in the system is then given by:

N =
∫

V
d3r∑

α

〈0|ψ†
αψα |0〉=

νV
(2π)3

∫
d3 pθ (pF − p) =

νV
6π2 p3

F (2.39)

In the thermodynamical limit N → ∞, V → ∞ with constant density N /V = ρ , we find

ρ = ν
p3

F
6π2 . (2.40)

In order to model a nucleus as a Fermi gas of noninteracting particles, one can either consider
it as a system of a constant density ρ (global Fermi gas, GFG) or that it has an r-dependent
density with the density profile determined from experiments (local Fermi gas, LFG). The LFG
is based on the Local Density Approximation (LDA), introduced in the next subsection. For
isospin asymmetric nuclei, one should deal with different densities of neutrons and protons,
and therefore, distinct Fermi levels.

2.3.2 Local Density Approximation (LDA)

The primary nuclear systems of our interest will be nuclei which serve as targets in the detectors
of neutrino oscillation experiments. In many of them, the neutrino scattering takes place on
carbon 12C or oxygen 16O (with other elements also present in smaller proportion: calcium, iron,
lead...). Liquid argon detectors, among which DUNE focuses a lot of attention recently, need a
special comment in this regard. Argon is difficult to model since it is an open-shell and isospin
asymmetric nucleus. In the determination of the CP violating phase, one is required to measure
both neutrino and antineutrino oscillations. If the interaction takes place on asymmetric nucleus,
the nuclear effects affect differently the ν and ν̄ modes. It is therefore essential to understand the
peculiarity of this nuclear system in detail. In the results presented in this Thesis, we will focus
our attention mainly on carbon and oxygen targets, since the SFs we will employ are designed to
describe symmetric nuclear matter (the notion of spectral function will be introduced in the next
Subsec. 2.3.3). Nevertheless, in some cases we also provide predictions for argon, assuming
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Nucleus Rp (fm) Rn (fm) a
MHO 12C 1.692 1.692 1.082
MHO 16O 1.833 1.833 1.544
MHO 18O 1.881 1.975 1.544
Fermi 23Na 2.773 2.810 0.540
Fermi 40Ca 3.51 3.43 0.563
Fermi 44Ca 3.573 3.714 0.563

TABLE 2.3: Parameters for the charge and neutron matter density profiles given in Eq. (2.41) for different
nuclei used in this work. The parameter a is either dimensionless for MHO or is given in [fm] for the
two-parameter Fermi distributions.

that it is almost isospin symmetric, therefore in this regard similar to carbon and oxygen; and
neglecting the fact of its much more complicated nuclear structure.

The LDA assumes that each point of nucleus locally looks like infinite nuclear matter of
a given constant density. In this approximation, a nucleus is a system characterized by the
density profiles of protons and neutrons. This description certainly oversimplifies the physical
situation, in comparison to e.g. shell-models which give a much more detailed picture of the
nuclei. Nevertheless, in some applications, the LDA might be a good enough approximation,
depending on the particular observable we are interested in. It proved to be quite accurate
for the study of inclusive responses to weak probes, which explore the whole nuclear volume.
In particular, it was successfully used when considering real photon scattering off nuclei in
Ref. [106] and for the description of lepton DIS in Ref. [10]. In this Thesis we perform a
series of comparisons between the predictions obtained from a SF based on the LDA with those
derived from the SF calculated in Ref. [27]. The latter consists of two parts: a shell-model
one and a high energy-momentum component (obtained within ab-initio calculations using the
LDA).

Assuming the LDA, firstly, one performs the calculation in a nuclear medium of constant
density. Then, the result is folded with the density profile of a particular nucleus. We also
should mention that the LDA is especially well-suited to use in the MC event generators since
for each event a point of interaction can be generated according to the profile dσ/dr, where r
is the distance from the center of a nucleus.

In this Thesis, we use nucleus density profiles from [107, 108, 109]. Lighter nuclei are
described by the modified harmonic oscillator model (MHO), while heavier (beyond oxygen)
by a Fermi distribution function:

MHO : ρ(r) = ρ0

(
1+ a

( r
R

)2
)

exp
(
−
( r

R

)2
)

Fermi : ρ(r) =
ρ0

1+ exp((r−R)/a)
(2.41)

The parameters for various nuclei are compiled in Table 2.3. Additionally, we take into account
that nucleons are not point-like particles, by means of the prescription described in Sec. II of
Ref. [110] [see Eqs. (12-14) of this reference].

In Figs. 2.5 and 2.6 we show the difference between the density distribution with and with-
out this latter effect. As can be seen for heavier nuclei, described by the Fermi distribution
function, the effect is quite small.
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FIGURE 2.6: Comparison of the density profiles for sodium and calcium nuclei with and without taking
into account that nucleons are not pointlike. On the left panels – neutron density, on the right ones –
proton density.

2.3.3 Nucleon propagator in the nuclear medium. Spectral functions.

Let us consider a many-body system described by a Hamiltonian H which apart from the
kinetic energy (see Eq. (2.34)) has also two-body (and in general many-body) interaction terms.
The ground state of the system in the Heisenberg picture obeys a time-independent Schrödinger
equation:

H |Ψ0〉= E0|Ψ0〉 (2.42)

with E0, the energy of the ground system, and |Ψ0〉 normalized 〈Ψ0|Ψ0〉= 1. Solving Eq. (2.42)
(and in general finding excited states, eigenvectors and eigenvalues of the Hamiltonian) is not an
easy task, since the system is comprised of strongly interacting particles and it is very difficult
to identify convergent perturbative approximations. Some properties of the many-body system,
however, can be described in terms of the in-medium fermion propagator (Green’s function).
This approach, discussed in detail in Ref. [111] simplifies the calculation of higher order cor-
rections in perturbation theory. Also, it can be used to obtain some fundamental observables of
the system: the excitation energies and the ground state of the system; or the expectation value
of a single particle operator in the ground state (e.g. nucleon density operator which will be the
topic of Chpt. 5) [105, 111].

Let us start these considerations from the case of a single particle propagation in the free
space. The propagator of a particle with quantum numbers α ′ and energy E from the state α ′ to
the state α is given by

Gsp(α ,α ′,E) = 〈0|aα

1
E−H + iε

a†
α ′ |0〉 (2.43)
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where |0〉 represents the vacuum state. If we decompose the Hamiltonian into the kinetic and
potential parts

H = H0 +U (2.44)

and use the operator identity
1

A−B
=

1
A
+

1
A

B
1

A−B
(2.45)

to rewrite the Green’s function in terms of A≡ E−H0 and B =U :

Gsp(α ,α ′,E) =〈0|aα

1
E−H0 + iε

+
1

E−H0 + iε
U

1
E−H0−U + iε

a†
α ′ |0〉

=〈0|aα

1
E−H0 + iε

a†
α ′ |0〉

+ ∑
β ,β ′
〈0|aα

1
E−H0 + iε

a†
β
|0〉〈0|aβUa†

β ′ |0〉〈0|aβ ′
1

E−H0−U + iε
a†

α ′ |0〉

=G0
sp(α ,α ′,E)+ ∑

β ,β ′
G0

sp(α ,β ,E)U(β ,β ′)Gsp(β
′,α ′,E) . (2.46)

where we have introduced a complete set of states and the unperturbed propagator G0
sp.

Propagation in the many-body system is defined by either adding or removing a particle
from the ground state of N correlated particles |Ψ0〉. A fundamental difference with respect to
the vacuum case given by Eq. (2.43), is the fact that we should also consider the propagation of
“hole states”, which accounts for the fact that a particle can be removed from the system. Let us
start from the time representation (we will Fourier transform it to the energy one). Therefore,
the one-body Green’s function in the nuclear environment is defined as the annihilation of a
particle α ′ at time t ′ and the creation of a particle α at time t:

G(α , t;α
′, t ′) = −i〈Ψ0|T [aα(t)a

†
α ′(t

′)]|Ψ0〉 (2.47)

where T is the time-ordering operator. The time dependence of the removal and addition
operators aα(t), aα ′(t)† is given by:

aα(t) = eiH taαe−iH t . (2.48)

When we insert Eq. (2.48) into Eq. (2.47) we get that the Green’s function just depends on the
time difference ∆t = t− t ′,

G(α ,α ′;∆t) = −i
{

θ (∆t)∑
n

ei(E0−En)∆t〈Ψ0|aα |Ψn〉〈Ψn|a†
α ′ |Ψ0〉

−θ (−∆t)∑
m

ei(E0−Em)∆t〈Ψ0|a†
α |Ψm〉〈Ψm|aα ′ |Ψ0〉

}
(2.49)

where we have inserted a complete set of intermediate states |Ψn〉, |Ψm〉 with one more and one
less particles, respectively. For both cases they are eigenstates of the Hamiltonian H |Ψn,m〉=
En,m|Ψn,m〉. The Fourier transformation from the time to the energy space reads:

G(α ,α ′,E) =
∫

d(∆t)eiE∆tG(α ,α ′,∆t) (2.50)
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Using the representation of the step function in Eq. (2.49):

θ (t− t ′) = −
∫ dE

2πi
e−iE(t−t ′)

E + iε
(2.51)

and after some further calculation one can obtain G(α ,α ′,E). Taking α = α ′ in the momentum
basis α ≡ ~p (for simplicity we omit spin and isospin dependence):

G(~p,E) = 〈Ψ0|a†
p

1
E +(H −E0)− iε

ap|Ψ0〉+ 〈Ψ0|ap
1

E− (H −E0)+ iε
a†

p|Ψ0〉

≡ Gh(~p,E)+Gp(~p,E) . (2.52)

We have separated the Green’s function into two parts. The particle Green’s function Gp

describes the propagation of a particle state and therefore it is defined for E > µ , µ being the
chemical potential3, because all the states up to µ are occupied. Whereas Gh is defined for
E ≤ µ . Eq. (2.52) is the analogue to Eq. (2.43) except for the hole term [105, 111].

The physical interpretation of Eq. (2.52) is the following. If we insert a complete set of
eigenstates with either one more or less particles, like in Eq. (2.49), we will get that the poles,
which correspond to eigenvalues of the Hamiltonian H , are placed either in En−E0 or E0−Em.
They signal the position of the excited states of the system with either one additional |Ψn〉 or
one removed particle |Ψm〉 (with respect to the ground state). Therefore, it is useful to introduce
an object called spectral function (SF) which is defined as the probability density of adding or
removing a particle of a given momentum ~p and energy E from the ground state. The hole and
particle SFs are related to the imaginary-part of the corresponding Green’s functions through

Sh(~p,E) =+
1
π

ImGh(~p,E), E ≤ µ

Sp(~p,E) =− 1
π

ImGp(~p,E), E > µ , (2.53)

There is yet another notion worth introducing: the occupation number. It is defined as the
momentum distribution of the hole state,

n(~p) =
∫

µ

−∞

dESh(~p,E) (2.54)

We will use the occupation number in Chpt. 6, when analyzing the source of scaling breaking
in QE processes.

For the GFG introduced in Subsec. 2.3.1, the Green’s function takes a simple form

G0
NR(~p,E) =

θ (|~p|− pF)

E−~p 2/2M+ iε
+

θ (pF −|~p|)
E−~p 2/2M− iε

. (2.55)

As has been said before, this treatment of the nuclear physics is nonrelativistic. The starting
point of our consideration was the Schrödinger equation Eq. (2.42). However, for a noninter-
acting system the relativistic expressions of the Green’s function are straightforward to obtain
(in the case of interacting systems, the problem is much more complex). Using the relativistic
dispersion relations E2

p = M2 +~p 2, and introducing the four-vector pµ = (p0,~p ), one easily
finds

G0(p) =
θ (|~p|− pF)

p2−M2 + iε
+

θ (pF −|~p|)
p2−M2− iε

. (2.56)

3Note that the definition of the thermodynamic limit (N →∞, V →∞ but N /V constant) implies µ(N +1) =
µ(N )+O(N −1).
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In further applications we will use predominantly relativistic kinematics. Let us notice that by
doing the nonrelativistic reduction we obtain

G0(p) =
1

p0 +Ep + iε
θ (pF −|~p |)
p0−Ep− iε

+
θ (|~p |− pF)

p0−Ep + iε
1

p0 +Ep− iε

≈
non−rel

1
2M

[
θ (pF −|~p |)

p0−M−~p 2/2M− iε
+

θ (|~p |− pF)

p0−M−~p 2/2M+ iε

]
, (2.57)

where an additional factor 1/2M with respect to Eq. (2.55) has appeared.

2.3.4 Nucleon self-energy

In Eq. (2.46) we expressed in general terms a recursive relation to obtain the full propagator
in the case of a single particle affected by a potential U . In analogy to this situation, one can
consider a many-body system, which Hamiltonian contains two-body (and three-body) interac-
tions between constituent particles. The modification with respect to the noninteracting Green’s
function is accounted for an irreducible self-energy Σ(α ,α;E), which depends on the quantum
numbers α , α ′ and in general is a complex quantity. The recursive Dyson equation which re-
lates the Green’s function of the interacting system with the noninteracting propagator would
read [111]:

G(α ,α ′,E) = G0
NR(α ,α ′,E)+ ∑

β ,β ′
G(α ,β ,E)Σ(β ,β ′,E)G0

NR(β
′,α ′,E) , (2.58)

where G0
NR is a free particle propagator. Eq. (2.58) is diagrammatically depicted in Fig. 2.7. In

an infinite nuclear matter, the propagators are diagonal in momentum β = β ′≡~p (for simplicity
we neglect spin, isospin, and any other quantum numbers), and we get

G(~p,E) = G0
NR(~p,E)+G(~p,E)Σ(E,~p)G0

NR(~p,E) . (2.59)

The solution has the form:

G(~p,E) =
1

E−~p 2/2M−Σ(E,~p)
(2.60)

When the calculation is performed in nuclear matter, we implicitly assume the ρ dependence
of Σ and G. In this approximation we can clearly see that the self-energy Σ(E,~p) changes the
dispersion relations of the fermion and the imaginary part of Σ induces its width in the medium.

From the definition of the spectral functions in Eq. (2.53), we find

Sp,h(~p ,E) = ∓ 1
π

ImΣ(E,~p )(
E−~p2/2M−ReΣ(E,~p )

)2
+ ImΣ(E,~p )2

(2.61)

with E ≤ µ or E ≥ µ for Sh and Sp respectively. The chemical potential µ in this case does not
coincide with the Fermi level of noninteracting particles system. It should be corrected to take
into account the fermion self-energy:

µ(pF) =
p2

F

2M
+ReΣ(µ(pF), pF) (2.62)

At the Fermi surface we have ImΣ(µ(pF), pF) = 0 and it changes sign when crossing energies
from E < µ to E > µ . As before, we have omitted the ρ dependence in the SFs to shorten the



38 Chapter 2. Theoretical concepts

G G0
NR

G

G0
NR

= + Σ

FIGURE 2.7: Dyson equation for the full propagator G, expressed in terms of the noninteracting Green’s
function G0

NR and the irreducible self-energy Σ.

notation (they depend on the density through the nucleon self-energy).

2.4 Neutrino-nucleus interaction

In analogy to Eq. (2.18), the CC inclusive cross section for scattering of a neutrino on a nucleus
can be written as

d2σ

dΩk′dEk′
=

(
GF

2π

)2 |~k′|
|~k|

LµνW µν (2.63)

The lepton tensor is still given by Eq. (2.19), while the hadron tensor W µν describes a process
which takes place on a nucleus:

W µν =
1

2Mi
∑ f (2π)3

δ
4(Pf −P−q)〈 f | jµ

cc(0)|i〉〈 f | jν
cc(0)|i〉∗ (2.64)

where Mi is the mass of the initial nucleus and |i〉, | f 〉 are initial and final nuclear states with
momenta P and Pf , respectively. In this context there are other possible dynamical mechanisms
contributing to the cross section, apart from those mentioned in Sec. 2.2.1. One that has focused
a lot of attention in the neutrino community is the multinucleon knockout, where the scattering
takes place on two (or more) nucleons producing two (or more) outgoing nucleons.

The Lorentz structure of the hadron tensor should be built using just the two available vec-
tors, Pµ and qµ . Starting from the Lorentz invariance of the system, the most general form of
the hadron tensor is given in terms of six structure functions,

W µν

2Mi
=−gµνW1 +

PµPν

M2
i

W2 + i
εµνδσ Pδ qσ

2M2
i

W3 +
qµqν

M2
i

W4

+
Pµqν +Pνqµ

2M2
i

W5 + i
Pµqν −Pνqµ

2M2
i

W6 , (2.65)

The structure function W6 does not contribute to the cross section because its contraction with
the lepton tensor vanishes. Thus the W3 term is the only antisymmetric term that contributes
to the cross sections, and induces the differences between neutrino and antineutrino processes.
When choosing the reference frame of the static initial nucleus with the momentum transfer in
the z direction, ~q = |~q|ẑ, the structure functions can be expressed in terms of the hadron tensor
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elements:

W1 =
W xx

2Mi
, W2 =

1
2Mi

(
W 00 +W xx +

(q0)2

|~q|2 (W zz−W xx)−2
q0

|~q|ReW 0z
)

,

W3 = −i
W xy

|~q| , W4 =
Mi

2|~q|2 (W
zz−W xx) ,

W5 =
1
|~q|
(

ReW 0z− q0

|~q|2 (W
zz−W xx)

)
, W6 =

ImW 0z

|~q| . (2.66)

In this way we have reformulated our problem, which now conveniently summarizes in calcu-
lating W xx, W xy, W 00, W zz, W 0z. Because of rotational symmetry we also have that W xx =W yy.
Let us notice that W xy contracts with Lxy which is non-zero only for neutrinos (or polarized
charged leptons).

The differential CC cross section can be written as [3]:

d2σ

dEk′dΩk′
=
|~k ′|Ek′MiG2

π2

{
2W1 sin2 θ

2
+W2 cos2 θ

2
−W3

Ek +Ek′

Mi
sin2 θ

2

+
m2
`

Ek′(Ek′+ |~k ′|)

(
W1 cosθ −W2

2
cosθ +

W3

2

(
Ek′+ |~k ′|

Mi
− Ek +Ek′

Mi
cosθ

)

+
W4

2

(
m2
`

M2
i

cosθ +
2Ek′(Ek′+ |~k′|)

M2
i

sin2 θ

2

)
−W5

Ek′+ |~k ′|
2Mi

)}
. (2.67)

The second part of the above equation depends linearly on the squared mass of the outgoing
lepton. For electrons (and even muons) it can be safely neglected, leaving just the first three
terms which depend on W1, W2 and W3. The latter one, proportional to W xy does not con-
tribute in the case of charge lepton scattering driven by photon exchange. This way we get the
well-known result that the electron scattering can be described in terms of just two structure
functions (longitudinal and transverse). Certainly, the prefactor is different in that case, since
the intermediate boson is a photon instead of W+ boson.

2.4.1 Hadron tensor

The expression for the hadron tensor of Eq. (2.64) has a compact form which encompasses many
nuclear configurations. Therefore, in general its evaluation is a nontrivial task. To simplify this
problem, in our formalism we will adopt the LDA (see Subsec. 2.3.2).

In the following, we will relate the hadron tensor with the self-energy of the gauge boson
which travels through the nuclear medium (in the case of neutrino charge-current interaction it
will be W±). This discussion has been recapitulated in Refs. [6, 3, 4] for EM and CC reactions.
It follows the steps:

1. Calculating the self-energy of the incoming lepton in the nuclear medium. It depends on
the self-energy of the gauge boson, denoted as Πµη

W .

The self-energy Σr
ν(k;ρ) of a neutrino of helicity r and momentum k in nuclear matter of

density ρ , at leading order in the Fermi constant, is diagrammatically shown in Fig. 2.8.
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FIGURE 2.8: Neutrino (ν`) self-energy in the nuclear medium: in first approximation (one boson ex-
change), the neutrino interacts via a W+ boson, producing an intermediate lepton state `.

This loop diagram is given by

−iΣr
ν(k;ρ) =

∫ d4q
(2π)4 ūr(k)

[
− i

g
2
√

2
γ

µ

L iDµα(q)(−i)Παβ

W (q;ρ)

iDβσ (q)i
/k′+m`

k′2−m2
` + iε

(−i
g

2
√

2
)γσ

L

]
ur(k) (2.68)

where we have Dirac spinors ur(k) projected only to left-handed neutrinos by γ
µ

L =
γµ(1− γ5), and the W± propagator, which for a low energy transfer becomes Dµν(q) =
−gµν /M2

W leading to a contact interaction. The sum over lepton spins produces a trace
which results in the lepton tensor Lµν ,

Σν(k;ρ) =
8iGF√
2M2

W

∫ d4q
(2π)4

Lµν Πνµ

W (q;ρ)

k′2−m2
` + iε

(2.69)

2. Relating the lepton scattering cross section with the imaginary part of its self-energy,
which is computed by means of the Cutkosky cutting rules.
The first step is to relate the imaginary part of the self-energy with the decay width of the
particle in the medium,

Γ(k;ρ) = − 1
k0 ImΣν(k;ρ) (2.70)

To obtain ImΣν we cut the loops of the Feynman diagram as shown in Fig. 2.8 by a ver-
tical line putting on-shell the intermediate lepton (`) and the particles that are exchanged
in the loops of the W self-energy (we have still not shown them explicitly). This allows
to perform the integration over the energy, and thus we get for k0 > 0

ImΣν(k;ρ) =
8GF√
2M2

W

∫ d3k′

(2π)3
θ (q0)

2Ek′
Im(Lνµ Πµν

W (q;ρ)) (2.71)

Having this result, we next relate the cross section with the decay width of the particle.
The probability of decay (interaction) is given by Γdt. The cross section measures the
probability of interaction per unit of area, σ = ΓdtdS, and since the integration over time
may be related to an integration over space, dt = vdx (where v is the velocity of the
particle), we obtain

dσ = ΓdtdS = ΓvdxdS = Γvd3r (2.72)
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which leads to
σ = − 1

|~k|

∫
ImΣν(k;ρ)d3r (2.73)

The above derivation has been performed for nuclear matter of a constant density ρ . By
means of the LDA, we can obtain results for finite nuclei. At each point of the space,
we calculate Σν(k;ρ(r)) in infinite nuclear matter of constant-density ρ(r). Then we
integrate over the volume (nucleus) taking into account that the density changes with the
radius.

Thus, the relation between the inclusive cross section and the gauge boson self-energy
reads

σ = − 1

|~k|

∫
ImΣ(k;ρ)d3r = − 1

|~k|
8GF√
2M2

W

∫
d3r

∫ d3k′

(2π)3
θ (q0)

2Ek′
Im(Lµν Πνµ

W (q;ρ))

(2.74)

3. Finally, the comparison of equations (2.63) and (2.74) allows to relate the hadron tensor
to the gauge boson self-energy. Decomposing the contraction4 Lνµ Πµν

W we get:

σ = − 1

|~k|
4GF√
2M2

W

∫
d3r

∫ d3k′

(2π)3
θ (q0)

2Ek′

(
Ls

µν Im(Πµν

W (q;ρ)+Πνµ

W (q;ρ))

−La
µνRe(Πµν

W (q;ρ)−Πνµ

W (q;ρ))

)
(2.75)

from where we obtain

W µν
s = −θ (q0)

(
2
√

2
g

)2 ∫ d3r
2π

Im(Πµν

W (q;ρ)+Πνµ

W (q;ρ))

W µν
a = −θ (q0)

(
2
√

2
g

)2 ∫ d3r
2π

Re(Πµν

W (q;ρ)−Πνµ

W (q;ρ)) (2.76)

The self-energy of the gauge boson contains all possible modes of nuclear excitations: 1p1h,
1p1h1π , 2p2h, ∆h, etc. which are shown in Fig. 2.9, where ph (∆h) stands for the nuclear
excitation of a particle–hole (∆(1232)–hole)) pair [105, 112]. All these contributions were
studied in a series of publications [106, 6, 3, 73, 113] for real and virtual photons and CC and
NC neutrino inclusive reactions.

2.4.2 The quasielastic mechanism

The QE mechanism has the simplest dynamics of all listed processes in the previous section
(first diagram in Fig. 2.9). It corresponds to the situation in which the whole four momentum q
is transferred to one nucleon producing a single nucleon in the final state.

The W±NN interaction vertex has already been discussed in Subsec. 2.2.2 in the case of free
nucleons. To build the 1p1h loop diagram we also need the nucleon propagator in the nuclear
matter introduced in Subsec. 2.3.3.

Let us start with the case of the LFG. Then, the only difference with the situation in the
vacuum, are the Pauli blocking factors. For the relativistic case we define

S(p;ρ) = (/p+M)G0(p;ρ) (2.77)

4Note that lepton tensor splits also into a symmetric and antisymmetric part, i.e., Lµν = Ls
µν + iLa

µν .
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FIGURE 2.9: Different contributions to the W+ self-energy in nuclear matter.

where G0(p;ρ) was given in Eq. (2.57). With all these ingredients we can calculate the 1p1h
contribution to the W+ self-energy that reads [4]:

−iΠµν

W (q;ρ) = −
(

g
2
√

2

)2 ∫ d4 p
(2π)4 Tr[Γν(q)S(p;ρ)Γ̄µ(q)S(p+ q;ρ)]

= −cos2
θC

(
g

2
√

2

)2 ∫ d4 p
(2π)4 Aµν(p,q)G0(p;ρ)G0(p+ q;ρ) (2.78)

where Γ̄µ = γ0 (Γµ)†
γ0, with the vertex Γµ defined as in Eq. (2.22), and the hadron tensor for

a single nucleon

Aµν(p,q) =
1

cos2 θC
Tr[Γ̄µ(q)(/p+/q +M)Γν(q)(/p+M)] (2.79)

After integration over p0 using Cauchy’s theorem, we obtain (for isospin symmetric nuclear
matter)

W µν(q) = −cos2 θC

2M2

∫
∞

0
drr2

{
−θ (q0)

∫ d3 p
(2π)2

M
Ep

M
Ep+q

δ (q0 +Ep−Ep+q)

× θ (pF(r)−|~p |)θ (|~p+~q |− pF(r))Aνµ(p,q)
∣∣∣∣

p0=Ep

}
(2.80)
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In the above equation we have put both the hole and particle states on-shell by cutting
the propagators with the Cutkosky rule. We can see how the hadron tensor (neglecting the
interaction vertices in Aνµ(p,q)) is determined by the imaginary part of the 1p1h propagator,
which is also called the Lindhard function [105, 112] or polarization propagator. In Chpt. 5 we
will discuss in detail its scaling properties.

Eq. (2.80) can be generalized for the case of asymmetric nuclear matter in a straightforward
way, introducing proton and neutron densities ρp 6= ρn. For the CC process, the hole and particle
states have different charge, so θ (pF − |~p |)θ (|~p +~q | − pF) → θ (pFhole − |~p |)θ (|~p +~q | −
pFparticle) with Fermi levels obtained using ρp or ρn.

Finally, we would like to discuss the structure of the hadron tensor from Eq. (2.80). In
addition to the Pauli blocking factors, let us notice that the energy conservation function has
a simple form δ (q0 +Ep−Ep+q) and it points at the position of the free space QE peak, in
the limit of |~p| = 0. In this case we would have δ (q0 +M−Eq), which leads to a solution
q0 = −q2/2M. This is exactly the condition which has to be fulfilled in the case of scattering
on free nucleons, and it can be understood as a fixed relation between the energy and angle of
outgoing lepton. In the FG model we allow the initial nucleons to have momentum below pF .
This provides a spread of a width for the QE peak which becomes larger for growing values of
pF .

In the following chapters we will see how this simple relation for noninteracting nucleons
changes when nuclear effects are accounted for, and consequently how it affects the shape of
the QE peak.

2.4.3 The Lindhard function for a Fermi gas

The hadron tensor for the QE process is determined by the imaginary part of the 1p1h propa-
gator. In the limit of large momentum transfer (where the effect of collective excitation modes
can be safely neglected) the polarization propagator in nuclear matter for free Fermi gas reads:

Ū(q;ρ) = −2i
∫ d4 p

(2π)4 2MG0(p;ρ)2MG0(p+ q;ρ) (2.81)

which is known as the Lindhard function. The factor 2 comes from summing over spins. We do
not sum over isospin (which would give another factor 2). In Subsec. 2.5.2 we will introduce
UN = 2Ū which is the nucleon Lindhard function summed over isospin. As we will see, it is
used in the denominator of the RPA response function, whose evaluation requires the sum over
all possible intermediate ph excitations. Integrating over p0 we find

Ū(q;ρ) = 2
∫ d3 p

(2π)3
M
Ep

M
Ep+q

θ (pF −|~p |)θ (|~p+~q |− pF)

q0 +Ep−Ep+q + iε
+ · · · (q→−q) (2.82)

where some real terms for q2 < 4M2, and suppressed in the nonrelativistic limit, have been
neglected. The contribution of the free space loop function is also included in the definition of
Eq. (2.81). For q2 ≥ 4M2, the free space loop gets an imaginary part due to the creation of a
nucleon-antinucleon pair (ph excitation of the Dirac instead of the Fermi sea, using the termi-
nology of Ref. [112]), while its logarithmically divergent real part renormalizes the properties
(mass and couplings) of the nucleon in the free space. Note that non-zero imaginary parts for
q2 < 0 are only produced by ph excitations around the Fermi level.

The imaginary part of Ū(q;ρ) is easily obtained using the distribution identity

1
ω± iε

= P

(
1
ω

)
∓ iπδ (ω) (2.83)
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where P stands for the principal value. The second term (q→−q) in Eq. (2.82) describes a
crossed term which does not contribute to the imaginary part when q0 > 0, and thus we find

ImŪ(q;ρ) = −θ (q0)
∫ d3 p

(2π)2
M
Ep

M
Ep+q

δ (q0 +Ep−Ep+q)

×θ (pF −|~p |)θ (|~p+~q |− pF) (2.84)

which appears between the curly brackets of the expression for the hadron tensor in Eq. (2.80).
The integral above may be analytically calculated, even after introducing Aµν as required to
find the hadronic tensor for a noninteracting LFG. Expressions can be found in Appendix B of
Ref. [3].

The nonrelativistic reduction (ImŪNR) of ImŪ(q;ρ) is found by setting to one the factors
M/Ep and M/Ep+q and using nonrelativistic nucleon dispersion relations to solve the energy-
conserving delta function,

ImŪNR(q;ρ) = −θ (q0)
∫ d3 p

(2π)2 δ
(
q0 +~p2/2M− (~p+~q )2/2M

)
×θ (pF −|~p |)θ (|~p+~q |− pF) . (2.85)

All the integrations involving the tensor Aµν can also be done analytically and are compiled in
the Appendix C of Ref. [3] for the nonrelativistic case.

2.4.4 The Lindhard function for interacting systems

In this subsection we will investigate the situation when the nucleons are not free particles. The
nuclear effects are accounted for by introducing the self-energy into the nucleon propagator, as
it has been discussed in Subsec. 2.3.4.

The Lehmann representation of the dressed nucleon propagator in the nuclear medium can
be expressed in terms of the spectral functions [105]:

G(E, p;ρ) =
∫

∞

µ

Sp(E ′, p)
E−E ′+ iε

dE ′+
∫

µ

−∞

Sh(E ′, p)
E−E ′− iε

dE ′ . (2.86)

These modified propagators enter now the definition of the Lindhard function. Since we are
interested in the imaginary part of the Lindhard function, we may use Cauchy’s residue theorem
to obtain

ImŪSF(q,ρ) = −θ (q0)

4π2

∫
d3 p

∫
µ

µ−q0
dESh(E,~p )Sp(q0 +E,~p+~q ) . (2.87)

It means that for CCQE scattering, one can account for the nucleon self-energy effects in an
isospin symmetric nuclear medium of density ρ by modifying Eq. (2.80) accordingly:

W µν(q) =
cos2 θC

2M2
θ (q0)

4π2

∫
∞

0
drr2

∫
d3 p

∫
µ

µ−q0
dESh(E,~p )

×Sp(q0 +E,~p+~q )Aνµ(p,q)
∣∣∣∣

p0=Ep

(2.88)

2.5 Other nuclear effects

Apart from the nuclear effects which are taken into account by means of the spectral functions,
we should also consider some further modifications.
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Nucleus Q [MeV] Q̄ [MeV]
12C 16.827 13.88
16O 14.906 10.931
18O 1.144 14.413
23Na 3.546 4.887
40Ca 13.809 1.822
44Ca 3.142 6.170

TABLE 2.4: Parameters Q and Q̄ for different nuclei used in this work.

2.5.1 Correct energy balance and Coulomb distortion effects

These corrections are relevant at low energies. When a particle scatters off a nucleus and de-
posits energy, in the 1p1h approximation, it is not fully transferred into the ejected nucleon’s
energy, but some part goes to compensate the binding energy of the hit bound nucleon. This is
taken into account in the 1p1h contribution to the self-energy by considering that (we will dis-
cuss the situation for CC processes; the modifications for NC or EM ones are straightforward):

1. The initial and final nuclear configurations have different number of neutrons and protons.
In that case, some energy Q has to compensate the transition between the initial and final
ground states.

2. In an isospin asymmetric nuclear-matter, there is a gap between neutron and proton Fermi
levels, so in the calculation of the hadron tensor (Eq. (2.80)) we get already a non-zero
energy Qgap(r) which is the minimal energy needed for the process to occur within a
LFG. It should be subtracted from the experimental Q value to enforce the correct (ex-
perimental) energy balance in the reaction.

This means that in the calculation of the hadronic tensor, we use a shifted value of q0 (see
Ref. [3] for more details),

q0→ q0− (Q−Qgap(r)) (2.89)

The Q and Qgap(r) values will be different for neutrino and antineutrino driven processes and
in the latter case we will denote them as Q̄ and Q̄gap(r). The Q/Q̄ values used in this work are
collected in Table 2.4.

On the other hand, the charged lepton gets distorted by its electromagnetic interaction with
the nucleus which produces a change of its propagation in the nuclear medium. We will imple-
ment this effect using the semi-classical approach proposed in Refs. [114, 115, 116], where the
self-energy acquired by the charged lepton is taken into account. In a good approximation, this
self-energy is proportional to the Coulomb potential created by the nucleus:

Σ = 2k′0V (r) (2.90)

where V (r) depends on the charge distribution of the nucleus, ρch(r),

V (r) = −4πα

[
1
r

∫ r

0
r′2ρch(r′)dr′+

∫
∞

r
r′ρch(r′)dr′

]
(2.91)

and α is the fine structure constant. This self-energy will affect both energy and momentum of
the lepton, making them local functions depending on r, Ek′(r) and k′(r). Asymptotically for
r→ ∞ we have Ek′(r)→ Ek′ and k′(r)→ k′, so that the energy and momentum are conserved
in the reaction. From the conservation of energy we have

V (r)+Ek′(r) = Ek′ (2.92)
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FIGURE 2.10: RPA series of ph and ∆h excitations.

and then |~k′(r)| =
√
(Ek′−V (r))2−m2

` . This also affects the momentum transfer ~q(r) =~k−
~k′(r) and should be taken into account in the integration over d3k′ in Eq. (2.71).

Including these effects we get a modified CCQE hadron tensor that now reads

W µν(q) = −cos2 θC

2M2

∫
∞

0
drr2 |~k′(r)|Ek′(r)

|~k′|Ek′
θ (Ek′(r)−m`)

(
−θ (q′0)

)
∫ d3 p

(2π)2
M
Ep

M
Ep+q′

δ (q′0 +Ep−Ep+q′)

×θ (pF −|~p |)θ (|~p+~q′|− pF)Aνµ(p,q′)
∣∣∣∣

p0=Ep

(2.93)

where q′0 = q0− (Q−Qgap(r)) and~q ′ =~k−~k′(r).
Coulomb distortion is rather a small effect for light nuclei, getting only sizable for heavier

ones and low energy outgoing charged leptons, when V (r) is of the same order as Ek′ .

2.5.2 RPA

RPA correlations account for some nuclear medium polarization effects sensitive to the col-
lective degrees of freedom of the nucleus. These corrections bear some resemblance with the
polarization experienced by a probe charge inside of an electron gas [112]. Within the model
employed in [6, 3, 113], a series of ph and ∆h excitations (Fig. 2.10), which interact via an
effective spin-isospin nonrelativistic potential, is summed up [112].(Also here we are limited to
moderate energy and momentum transfers because of the use of nonrelativistic approximations.)
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This effective interaction includes a contact Landau-Migdal potential,

V = c0

{
f0(ρ)+ f ′0(ρ)~τ1 ·~τ2 + g0(ρ)~σ1 ·~σ2 + g′0(ρ) (~σ1 ·~σ2) (~τ1 ·~τ2)

}
(2.94)

The constants in Eq. (2.94) were determined from (low energy) calculations of nuclear elec-
tric and magnetic moments, transition probabilities, and giant electric and magnetic multipole
resonances [117, 118],

fi(ρ(r)) =
ρ(r)
ρ(0)

f (in)i +

(
1− ρ(r)

ρ(0)

)
f (ex)
i (2.95)

with
f (in)0 = 0.07 f (ex)

0 = −2.15 f ′(in)0 = 0.33 f ′(ex)
0 = 0.45

and c0 = 380 MeV fm3, g0 = 0.575 and g′0 = 0.725.
In the S = T = 1 sector, we improve the interaction and include explicitly pion and ρ

meson exchanges, which separate the nonrelativistic potential into transverse and longitudinal
channels,

c0g′0(~σ1 ·~σ2)(~τ1 ·~τ2)→~τ1 ·~τ2 ∑
i, j

σ
i
σ

jV στ
i j (2.96)

V στ
i j = q̂iq̂ jVl(q)+ (δi j− q̂iq̂ j)Vt(q) (2.97)

with q̂ =~q/|~q | and the longitudinal and transverse potentials given by,

Vl(q) =
f 2

m2
π

{(
Λ2

π −m2
π

Λ2
π −q2

)2
~q 2

q2−m2
π

+ g′
}

, f 2/4π = 0.08, Λπ = 1200MeV

Vt(q) =
f 2

m2
π

{
Cρ

(Λ2
ρ −m2

ρ

Λ2
ρ −q2

)2
~q 2

q2−m2
ρ

+ g′
}

, Cρ = 2, Λρ = 2500MeV (2.98)

and g′ = 0.63, as used in [6, 3, 113]. Moreover ∆(1232) degrees of freedom in the nuclear
medium are also considered, which opens the possibility of taking into account ∆h excitations
in the RPA series, as mentioned above. It affects only the S = T = 1 sector and the interaction
ph-∆h and ∆h-∆h is taken from [119] (see also [112] for details). The RPA sum leads to
substitutions in some terms of the hadron tensor obtained within the 1p1h approximation (see
Appendix A of Ref. [3]). For instance, the (S = T = 1)−RPA sum produces, in a schematic
way and for a free LFG model, a replacement of the type

ImŪ(q;ρ) [aq̂iq̂ j + b (δi j− q̂iq̂ j)]

→ ImŪ(q;ρ)

[
a

q̂iq̂ j

|1−U(q;ρ)Vl(q)|2
+ b

δi j− q̂iq̂ j

|1−U(q;ρ)Vt(q)|2
]

(2.99)

where U(q;ρ) = UN +U∆ takes into account the ph and the ∆h excitations, with UN = 2Ū
(the factor of 2 accounts for a sum over isospin, not explicitly carried out in the definition given
in Eq. (2.82)) in a symmetric medium. For positive values of q0, the backward propagating
ph excitation has no imaginary part, and for QE kinematics the ∆(1232) Lindhard function
U∆ is also real5. Nevertheless, we refer the reader to [3] for a detailed description of the RPA
resummation within this formalism.

5Analytical expressions for U∆ can be found for example in Ref. [112], while expressions for the real part of
the relativistic Lindhard function UN can be found in Ref. [120]. The corresponding nonrelativistic counterparts,
obtained by setting to one the factors M/Ep and M/Ep+q and using nonrelativistic nucleon dispersion relations in
Eq. (2.82), can be found in Refs. [105, 112].
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In this Thesis we would like to focus on the situation when RPA and SF effects are included
together. As sketched above, polarization effects are computed by summing up an infinite series
of ph and ∆h excitations. In principle to be fully consistent, one should include also the nucleon
self-energy into all of them, which means that in the denominator of each RPA correction we
should have ŪSF instead of Ū (both imaginary and real parts). Moreover one should consider
the ∆ spectral function in the nuclear medium. All these refinements would introduce further
corrections in the density expansion implicitly assumed in the model. However, one should be
cautious. The RPA coefficients that appear in the ph(∆h)–ph(∆h) effective interaction were
long time ago fitted to data, using a model of noninteracting nucleons [117, 118, 119, 121],
and since then, they have been successfully used in several nuclear calculations at intermedi-
ate energies, as mentioned. Note that the imaginary part of the ph−propagator (the Lindhard
function) appears both in the numerators and denominators of Eq. (2.99). Its contribution to the
latter ones is in general small because in most of the available phase space, the denominators
of the RPA series are being dominated by the real parts, which start by 1 in addition to the
(ReU Vl,t) contribution. However, the role of the imaginary part of the ph−propagator in the
numerators is essential, because it determines the allowed (q0, |~q |) regions, together with their
relative weight into the final response. These allowed regions are obviously different when an
interacting LFG or a free LFG of nucleons is being considered. Even in this latter case and for
moderate energy and momentum transfers, allowed (q0, |~q |) regions depend on whether rela-
tivistic or nonrelativistic nucleon kinematics is being used. Because our treatment of the RPA
and the SF effects is nonrelativistic, this will be an important source of systematic uncertainties
affecting our predictions. Later we will come back to this point in more detail.

Thus, we consider ImŪSF in the numerators of the RPA series, and to avoid having to re-
tune the RPA parameters which affect the real part of the denominators, we have adopted the
following strategy. We leave the real part of the Lindhard function in the RPA denominators
unchanged, which for consistency with the ph(∆h)− ph(∆h) force is computed in the nonrel-
ativistic limit, while we also use SFs to compute the imaginary parts in the denominators. In
this manner we remove nonphysical peaks, that would be generated when in the denominator
ImŪ = 0 and in the numerator ImŪSF 6= 0. Next and to estimate the theoretical uncertainties,
we follow the work of Ref. [122] and we take uncorrelated Gaussian distributions with relative
errors of 10%, for all the parameters that enter into the effective interaction employed in the
construction of the RPA series. In the case of CC-driven processes, these are f ′(in)0 , f ′(ex)

0 , f , f ∗,
Λπ , Cρ , Λρ and g′, since the isoscalar terms of the effective interaction do not contribute to CC
induced reactions. Finally, by means of a Monte Carlo (MC) simulation, we find for any ob-
servable predicted by the model its probability distribution. Theoretical errors and uncertainty
bands on the derived quantities will be always obtained by discarding the highest and lowest
16% of the sample values, to leave a 68% confidence level (CL) interval.

Finally, the CC hadron tensor with inclusion of Coulomb distortion, binding energy, RPA
and SF effects takes the form:

W µν(q) =
cos2 θC

2M2

∫
∞

0
drr2 |~k′(r)|Ek′(r)

|~k′|Ek′
θ (Ek′(r)−m`)θ (q′0)

×
∫ d3 p

(2π)2

∫
µ

µ−q′0
dESh(E,~p)Sp(q′0 +E,~p+~q ′)Aνµ

RPA(p,q′)
∣∣∣∣

p0=Ep

(2.100)

with q′0 = q0− (Q−Qgap(r)) and ~q ′ =~k−~k′(r), as discussed above and Aνµ

RPA given in Ap-
pendix A of Ref. [3], with the real part of the RPA denominators computed using the nonrela-
tivistic reduction of Ū(q;ρ). We recall here that the SFs depend on r through the dependence
of the particle and hole self-energies on the local density.
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2.5.3 Final state interactions

Final state interactions (FSI) denominate the effects which the nuclear medium exerts on the
outgoing hadrons produced in the primary vertex. In the inclusive processes they can be de-
scribed in terms of the particle spectral functions. They encompass both elastic and inelastic
channels which affect a particle on its way through the nuclear medium. However, since the
spectral functions are calculated using nonrelativistic theoretical models, usually one ought to
account for these effects using a more phenomenological approach.

An important issue from the point of view of neutrino experiments are distributions of out-
going hadrons. In this case, it is not enough to employ the particle SF since it incorporates
different channels of interaction, and therefore sums over all possible outgoing states. E.g. a
produced nucleon in the primary vertex on its way can change trajectory or excite a pion which
might be then detected. All these final states observed in the experiment correspond to just one
primary mechanism, the QE process.

The MC event generators used in neutrino experiments model lepton-nucleus scattering pro-
cesses generally splitting them into two stages: (1) calculation of the initial interaction (primary
vertex) and (2) the inter-nuclear cascade (which is sometimes also denoted as “final state in-
teractions”, although here we will not follow this convention). The cascade is a semi-classical
approach to describe the possible interactions that the outgoing particles suffer inside the nu-
cleus before getting outside. What is important to notice is that the cascade does not modify
the kinematics of the outgoing lepton (i.e. the differential cross section), while the FSI effects
which are accounted for by the particle SF do influence the cross section. In order to perform
a correct simulation, one has to be careful not to double count the same effect in the FSI and
inter-nuclear cascade. Still, this problem is somehow inherent to the procedure, which treats a
quantum-mechanical processes using a classical approach.

In this Thesis we will distinguish between the FSI effects which we will be modelled by
the particle SF and used to calculate the inclusive cross sections, and those described by the
inter-nuclear cascade. The latter ones will be further discussed in Chpt. 6, where we will study
the production of strange hyperons.
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Chapter 3

Models of spectral functions and other
nuclear effects

In the previous chapter we introduced some basic notions used in many-body quantum theory.
Among them we defined the one-body Green’s functions, the spectral and the Lindhard func-
tions. We have also shown in Subsec. 2.4.2 that the Lindhard function appears as the integration
kernel when the hadron tensor of the 1p1h process is calculated, and therefore it encompasses
the nuclear effects that are included by means of the in-medium modification of the Green’s
functions. This will be investigated more thoroughly in Chpt. 5 by means of the scaling proper-
ties of the response functions.

In this chapter we will focus our attention on the spectral functions. They are a convenient
tool widely used by various theoretical groups to account for nuclear effects in the neutrino-
nucleus interactions. As already mentioned in the previous chapter, the relativistic regime
(which we will mostly consider) might force us to neglect or only approximately take into
account nuclear corrections in the particle SF, which − calculated in nuclear models − is usu-
ally obtained within nonrelativistic schemes. Nevertheless, the hole SF still can be safely used,
because it describes the dynamics of nucleons whose momenta are of the order of few hundred
MeV (and typically lie below the Fermi level ∼ 250 MeV).

In this respect an important concern arises: since in certain cases we are not able to treat
nucleons (both holes and particles) within the same formalism, under what assumptions we
are allowed to describe them in terms of different approaches. And consequently, how to ac-
count for the particle SF. These questions have been answered differently by various theoretical
groups. Before making a survey of the diverse approaches, however, as an introduction, we
will briefly discuss the FG model, which is still widely used for experimental studies in the
MC event generators. Afterwards, in Sec. 3.2, we will focus on a model for the SFs which is
extensively used in this Thesis. It was originally proposed by the Valencia group in Ref. [2].
Here, we will sketch the main assumptions and demonstrate how the calculation is performed.
We also show how the SFs obtained within this model differ from those obtained in the FG
picture of the nucleus. To that end we will compare the imaginary part of the Lindhard function
calculated within both approaches. This discussion is based on the findings of Ref. [4].

Next, we analyze certain approximations to use the particle SF in the relativistic regime.
There are two possible solutions which were proposed in the past: either neglecting any in-
teraction between the struck nucleon and the nucleus (i.e. using the FG model for the particle
SF), or implementing a procedure which would account for some relativistic corrections in the
calculation of the nucleon self-energy.

The last section of this chapter is devoted to the description of other theoretical approaches
proposed by various groups working on neutrino-nucleus interactions. We will start with and
focus mainly on the SF approach of Ref. [27] which assumes the IA and uses the factorization
scheme. In further chapters we will perform various comparisons with results obtained in this
formalism. In addition to this model, in Subsec. 3.3.2 we will briefly describe how the GiBUU
framework treats nucleons in the nuclear medium. The SuperScaling Approach, introduced in
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Subsec. 3.3.3, will be interesting from the point of view of the scaling analysis of our response
function in Chpt. 5. Next, in Subsec. 3.3.4, we will present a model which is being developed
by the Ghent group based on a MF approach incorporating continuum RPA effects. Finally,
in Subsec. 3.3.5, we will introduce another RPA scheme which is used by M. Martini and
collaborators. The last two approaches include long range correlations (RPA) effects. Although
they account for different nuclear dynamics, which go beyond the description in terms of the
spectral function formalism, we will perform some comparisons of the predictions of these
approaches with the results obtained within the model including RPA effects discussed and
outlined in Subsec. 2.5.2.

3.1 Statistical correlations - Fermi gas model

We start our considerations with the most basic model, already introduced in Subsec. 2.3.1.
Here we will additionally include a binding energy B > 0, understood as a “constant mean-
field”, which affects the hole states and accounts for the binding of nucleons in the nucleus.

From Eq. (2.55) and the definition of SFs of Eq. (2.53) we obtain for the global Fermi gas
of protons or neutrons:

S̄GFG
h (~p,E) =

6π2

p3
F

θ (pF −|~p|)δ (E−~p 2/2M+B)

SGFG
p (~p,E) =θ (|~p|− pF)δ (E−~p 2/2M) , (3.1)

where S̄h(~p,E) = 2V Sh(~p,E)/N is normalized as∫ d3 p
(2π)3 dE S̄h(~p,E) = 1. (3.2)

In the case of the local Fermi gas, the SFs depend on the density because pF is a function of
ρ:1

SLFG
h (~p,E) =θ (pF −|~p|)δ (E−~p 2/2M+B) ,

SLFG
p (~p,E) =θ (|~p|− pF)δ (E−~p 2/2M) . (3.3)

As we can appreciate, the LFG model has just one parameter - the binding energy B. Its value
was fixed using data from various experiments on electron scattering off nuclei. In the case of
the GFG, there is also the Fermi momentum to be adjusted.

Let us notice that the binding energy enters the energy conserving function in the Lindhard
function of the FG model (see Eq. (2.87)):

δ (E− (~p 2/2M−B))δ (E + q0− (~p+~q)2/2M) =

δ (q0 +~p 2/2M−B− (~p+~q)2/2M) . (3.4)

It shifts the position of the QE peak towards higher energy transfers q0 := q0 +B. Actually,
B more than an absolute binding energy should be understood as a difference between the MF
energy felt by the hole and the particle nucleons.

1Let us notice that when we define the Lindhard function in terms of spectral functions, in the case of the LFG
we get a result which is ρ-dependent and then should be integrated over the nucleus density profile. This is not the
case of the GFG for which we do not perform the latter integration.
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FIGURE 3.1: Series of diagrams which summed up give rise to the nucleon self-energy.

In this simple case, the relativistic expressions are obtained by replacing

E−~p 2/2M→ E +M−
√
~p 2 +M2 (3.5)

in the energy conserving delta functions of Eqs. (3.1) and (3.3).

3.2 LDA SF model

In this Section, we will describe the nucleon SF derived in the semi-phenomenological model of
Ref. [2]. In spite of its simplicity, the approach has been successfully used to describe a number
of inclusive nuclear reactions [3, 4, 5, 123, 124, 6, 7, 8, 9, 10]. As has been already mentioned,
the nuclear calculations are typically performed in a nonrelativistic framework. Besides, the
derivation assumes an isospin symmetric nuclear matter. When referring to the SFs obtained
within this model we will denote them by “LDA SF", since they are obtained in Ref. [2] using
the LDA approximation. In a first step, the nucleon self-energy Σ is obtained, which will
determine the Green’s function, according to Eq. (2.60).

3.2.1 Nucleon’s self-energy

The main idea standing behind this approach, which implements the low-density theorems, is
to obtain an effective NN potential in the medium from the experimental NN elastic scattering
cross sections. In this way, some short-range correlations are also included, since they affect
the input data. In-medium effects are incorporated through polarization corrections (i.e. the
RPA sum). It has been shown that the resulting SFs obtained within this model stay in good
agreement with some of the microscopic calculations of Ref. [125, 126, 127, 128, 129]. For
the hole state, the nonrelativistic kinematics is sufficiently accurate, but this is not the case for
the nucleon ejected from the nucleus. It usually has a high momentum, that corresponds to the
energy-momentum transfer to the nucleus.

To account for the in-medium modifications, the authors of Ref. [2] perform a ladder sum
of diagrams as depicted in Fig. 3.1. The dashed lines correspond to the effective in-medium NN
potential, obtained from experimental data as has been mentioned above.

Besides performing the sum of Fig. 3.1, there are some further approximations and nuclear
effects implemented which are essential to describe properly the behaviour of the nucleons in
the nuclear medium. One of them is a prescription of how to extrapolate data, parametrized
by the on-shell nucleon momentum in the laboratory frame, to the case of off-shell nucleons.
Another one, which plays an important role, is the RPA sum of the series of diagrams depicted
in Fig. 3.2. The effective interaction between two 1p1h or ∆h excitations can be split into
longitudinal and transverse parts, originating from pion and ρ meson exchange as we already
mentioned in Sec. 2.5.2. Here, the authors of Ref. [2] approximate the potential as being driven
by the transverse channel [τiτ j σiσ j(|~q|2δi j− qiq j)], neglecting the longitudinal part, which is
largely suppressed.
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FIGURE 3.2: Series of Feynman diagrams which contribute to the polarization of the NN interaction in
the medium.

In the first step of calculation the imaginary part of the self-energy, ImΣ, is evaluated. Its
magnitude and behaviour was found to be similar to the results of Refs. [125, 126] obtained in
much more elaborated microscopic models. The imaginary part of Σ accounts for the collisional
broadening: in the nuclear medium new channels of a particle’s “decay” are possible, and even
particles which are stable in vacuum (e.g. proton) through NN collisions gain some width.

By means of a dispersion relation, the imaginary part of the self-energy can be used to
calculate the real part:

ReΣ(E,~p) = − 1
π

P
∫

∞

µ

ImΣ(E ′,~p)
E−E ′

dE ′+
1
π

P
∫

µ

−∞

ImΣ(E ′,~p)
E−E ′

dE ′ . (3.6)

An additional Fock term, depicted as the first diagram in Fig. 3.1, has to be added. It does not
contribute to ImΣ, since it is purely real. On top of that, there are some Hartree type diagrams
(giving real contributions) not included in the calculations. By definition, they do not depend
on the momentum of the nucleon. Therefore, the self-energy in this approach is calculated up
to some terms which are not momentum-dependent.

There are many properties of the nucleon in the nuclear medium which can be obtained
within this model without further knowledge of the Hartree terms. Among them, there are
nucleon momentum distributions or effective masses. These have also been compared with
some more advanced calculations of Ref. [127, 129] and proved to give comparable results.
It should be clear now that the real part of the self-energy obtained within this model cannot
be treated as an absolute value. Nevertheless, in view of further applications in principle it
should not pose a problem. We want to use the self-energy as an input to calculate the spectral
functions, which subsequently are used in the polarization propagators (Lindhard functions).
Therefore, eventually we will deal with 1p1h excitations, in which the difference between two
nucleon self-energies appear. If both the hole and the particle states contain a part which is
constant (momentum independent) they will cancel when the imaginary part of 1p1h propagator
is being computed.

Since the difference between the real parts of the self-energies is important, in Fig. 3.3 we
show them for two different nucleon momenta (E,~p ) and (E + q0,~p+~q ), respectively, as a
function of q0 and |~q |. The plots have been done for three different nuclear densities. This
difference ReΣ(E,~p;ρ)−ReΣ(E + q0,~p+~q;ρ) has a direct impact on the position of the QE
peak. We see that the it shifts towards larger energy transfers when the particle-hole state is
being “dressed”, with respect to the naive approximate position of q0 =~q 2/2M. This is because
the difference of the real parts of hole and particle self-energies is negative in the vicinity of the
naive (free) position of the QE peak.

Concerning the interest in the 2p2h excitations [72, 23, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 130, 131, 132, 133] we want to stress that there is one contribution of this type taken into
account in the nucleon self-energy (although it is only a part of the 2p2h calculation performed
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FIGURE 3.3: Difference between the real parts of hole and particle self-energies, i.e., ReΣ(E, |~p|;ρ)−
ReΣ(E + q0, |~p+~q|;ρ), with (E, p) = ( 3

5
p2

F
2M ,
√

3
5 pF ) and ~p⊥~q. Panels correspond to three different

densities: ρ = 0.05fm−3 (top left), ρ = 0.1fm−3 (top right) and ρ = 0.15fm−3 (center). Results are
displayed in [MeV] units. The contour shows the approximate position of the QE peak, q0 =~q 2/2M,
for noninteracting nucleons.

in [73]). This is depicted in Fig. 3.4, where the nucleon particle propagator is dressed up by
a 1p1h excitation. The real part of the total nucleon self-energy, obtained from the imaginary
part, also contains information about this 2p2h excitation. Even in the approximation where the
imaginary part of the nucleon self-energy is neglected in the calculation of the SFs, this 2p2h
contribution would be partially taken into account.

3.2.2 Lindhard function within the LDA SF approach

Nucleon self-energies directly enter the definition of spectral functions, see Eq. (2.61). They
change dispersion relations of nucleons in the nuclear medium, i.e. the density response of the
system which is proportional to the Lindhard function introduced in Eq. (2.87) of Subsec. 2.4.4.

A word of caution should be added at this point. The result in Eq. (2.87) has a simple
form, however it is not easy from a computational point of view. Looking at Eq. (2.61) we may
infer that the spectral functions have forms of narrow peaks (see Figs. 10,14,16 of Ref. [2]),
especially for energies close to the Fermi level (where ImΣ(q0,~q )→ 0). Moreover, in the case
of the LDA SF, ReΣ(q0,~q ) is obtained from the dispersion relation of Eq. (3.6). Therefore, it
is result of yet another integration, which is also quite time consuming. Because of the large
computational time needed to evaluate the imaginary part of the non-free Lindhard function, it
is advisable to introduce approximations that work well in some situations. For energy transfers
q0 high enough, the width of the particle SF is much larger than that of the hole SF (see analysis
in Sec. 3.2.5). In this region, one could explore the validity of approximating SLDA

h by a delta
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FIGURE 3.4: The 2p2h contribution included in the nucleon self-energy. By cutting the diagram with a
horizontal line (Cutkosky cut) we put two hole and two particle states on-shell.

function:
SLDA

h (E,~p ) = δ (E− Ē(~p ))θ (µ− Ē(~p )) (3.7)

with Ē being a self-consistent solution of

Ē(~p ) =
~p2

2M
+ReΣ(Ē(~p ),~p;ρ) (3.8)

This simplification, used in Ref. [3], saves one integration and then we are left with:

ImŪLDA
SF approx(q,ρ) = −θ (q0)

4π2

∫
d3 pSLDA

p
(
q0 + Ē(~p ),~p+~q

)
θ (µ− Ē(~p )) (3.9)

The reliability of this approximation will be discussed in detail in Sect. 3.2.5. There, we will
see that it is reasonable at intermediate energies, where it leads to cross sections around 5-10%
larger than those obtained with the full expression for ImŪSF(q,ρ). Nevertheless, in this Thesis
we will not adopt this approximation, and we will present results from the many body model
derived in Ref. [3] using either full SFs for both particle and hole nucleon lines, or leaving the
particle state free.

3.2.3 Lindhard function with a noninteracting particle SF

As has been mentioned, in the case of relativistic energies, we are interested in using just the
hole spectral function, without “dressing” the propagator of the particle state. This amounts to
take a hadron tensor of the form:

W µν

LDA IA(q) =
cos2 θC

2M2 θ (q0)
∫

d3r
∫ d3 p

(2π)3

∫
µ

µ−q0
dE SLDA

h (E,~p )
M2

Ep Ep+q

×θ (|~p+~q|− pF)δ (q0 +E +M−Ep+q)Aνµ(p,q)
∣∣∣∣

p0=Ep

(3.10)

and the corresponding Lindhard function would now read

ImŪLDA IA
SF (q,ρ) = −θ (q0)

4π2

∫
d3 p

∫
µ

µ−q0
dE SLDA

h (E,~p )
M2

Ep Ep+q

×θ (|~p+~q|− pF)δ (q0 +E +M−Ep+q) . (3.11)

This cannot be directly done in the approach outlined in the previous subsection. The model of
Ref. [2] does not give a prescription of how to calculate the constant, density dependent, con-
tribution to the real part of the nucleon self-energy generated by Hartree-type diagrams. Nev-
ertheless, one can estimate appropriate (absolute) values for the real part of the nucleon-hole



3.2. LDA SF model 57

self-energy by looking at the binding energy per nucleon. We follow here Ref. [5], where the
EMC effect was studied using the nucleon self-energy derived in [2], and include phenomeno-
logically a constant term Cρ in ReΣ requiring the binding energy per nucleon, |εA|, to be the
experimental one. When the constant term Cρ is added, the chemical potential becomes:

µ =
p2

F

2M
+ Ĉ , Ĉ = ReΣ(p2

F /2M, pF)+Cρ (3.12)

and the SFs are now

SLDA
p,h (~p,E) = ∓ 1

π

ImΣ(Ê,~p)(
E−~p2/2M−ReΣ(Ê,~p)−Cρ

)2
+ ImΣ(Ê,~p )2

(3.13)

where we have used a notation Ê ≡ E− Ĉ .
The binding energy per nucleon is then given by the sum rule [11]

|εA|= −
1
2

(
〈E〉+ A−1

A−2
〈T 〉
)

(3.14)

where T and E are average kinetic and removal energies, respectively, expressed in terms of the
hole SF [5]:

〈T 〉= 4
A

∫
d3r

∫ d3 p
(2π)3

~p 2

2M

∫
µ

−∞

Sh(~p,E)dE ,

〈E〉= 4
A

∫
d3r

∫ d3 p
(2π)3

∫
µ

−∞

Sh(~p,E)EdE , (3.15)

where A is the number of nucleons in the system.
The parameter C in carbon (which we will mainly use in our further calculations) turns out

to be around 0.8 fm2. This leads to |εA|= 7.8 MeV (see Table I of Ref. [5]) and provides around
25-30 MeV repulsion at density ρ = 0.17 fm−3.

It has to be noted that the results of Ref. [2] are not affected by the momentum-independent
term added to the self-energy, as they only depend upon energy differences. Analogously, the
Lindhard function given in Eq. (2.87) does not depend on Cρ , as this term can be removed by
the change of integration variable E→ Ê. Indeed, this change of variable leads to an expression
like that of Eq. (2.87), with particle and hole spectral functions and chemical potential given in
Eqs. (2.61) and (2.62), but with ReΣ(E,~p) replaced by ReΣ(E,~p)−ReΣ(p2

F /2M, pF). Note
also that the new integration limits become p2

F /2M and p2
F /2M− q0. This is precisely the

result that one would obtain within the semi-phenomenological model of Ref. [2], where the
calculations of the self-energy were performed assuming only kinetic energies for the nucleon
and the self-energies were always referred to the value at the Fermi surface. If Cρ is neglected
in Eqs. (3.12) and (3.13), one obtains exactly the same expression for the response function.

Knowing the absolute values of ReΣ, we can perform some comparisons with other cal-
culations and approaches. The first check will be done with energy-dependent Dirac optical
model potentials for several nuclei which were given in [134]. They were obtained by fitting
proton-nucleus elastic scattering data for the energies of the range 20-1040 MeV. This approach
has been widely employed in analyses of electron-induced proton knockout [135]. It uses scalar
(S) and vector (V ) complex potentials in the Dirac equation, and the dependencies of these po-
tentials on the kinetic energy, tkin, and radial coordinate, r, are found by fitting the scattering
solutions to the measured elastic cross section, analyzing power, and spin rotation function.
Schrödinger equivalent (SE) potentials, constructed out of the scalar and vector potentials, are
also given in [134].
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In the left panel of Fig. 3.5, we compare the SE 208Pb central potentials displayed in the
top panel of Fig. 6 of Ref. [134] for tkin = 20 MeV and 100 MeV with ReΣ(M + tkin =
M+~q2/2M,~q ;ρ), as a function of r. We reproduce quite well the Wood-Saxon form of the po-
tentials, which is not surprising since the model of Ref. [2] satisfies the low densities theorems,
and describe simultaneously the results for both kinetic energies.
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FIGURE 3.5: Left: The dashed lines stand for the Schrödinger equivalent central potentials, taken from
the top panel of Fig. 6 of Ref. [134], for tkin = 20 MeV and 100 MeV in 208Pb. The solid lines show
ReΣ(M + tkin,~q ;ρ) obtained with the model of Ref. [2], with tkin =~q2/2M. Right: The solid line (red)
shows the real part of the carbon optical potential for proton, obtained from the Dirac phenomenological
fit of Ref. [134] and taken from the Fig. 1 of Ankowski et al., [14], as a function of the nucleon kinetic
energy. Also in the right panel, the dashed, dashed-dotted and dotted lines show the results obtained
from Eq. (3.19) for three different values of the modulus of the hole (local) momentum. In all cases we
take ~p⊥~q. Both in the left and right panels, we add a constant term Cρ , with C = 0.8 fm2, to the real
part of the nucleon self-energy,

Another comparison which can be done, is to check further the energy-dependence of the
real part of the self-energy. Using the scalar and vector potentials as defined in Ref. [134], we
can write the total proton energy E ′tot as

E ′tot =
√
(M+ S)2 +~p ′2 +V . (3.16)

In Ref. [14], the authors defined a kinetic-energy dependent potential (when only the real parts
are taken, and for in-medium energy E ′tot) as

UV (tkin) =
∫

d3rρ(r)Re(E ′tot)−
√

M2 +~p ′2, tkin =
√

M2 +~p ′2−M . (3.17)

Its behaviour is shown in Fig. 1 of Ref. [14] for carbon. The potential UV is used in this reference
to modify the energy spectrum of the outgoing nucleon (thus, playing the role of the particle
spectral function):

tkin =
|~k |2(1− cosθ ′)

M+ |~k |(1− cosθ ′)
, (3.18)

with |~k | and θ ′ denoting the energy of the beam of (massless) particles and the angle of the
outgoing lepton, respectively. The region of low tkin, which is especially important for the
QE scattering, is strongly modified by the interactions between the outgoing proton and the
spectator system [14].

It means that we assume tkin = q0 and q0 =−q2/2M. The outgoing nucleon has a momen-
tum ~p+~q (with ~p being the hole state momentum). Thus the potential UV can be estimated
as

UV (tkin) ∼
1
A

∫
d3rρ(r)Ē(~p+~q )− ~q2

2M
, tkin =

~q2

2M
(3.19)
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with Ē(~p ) being a self-consistent solution of Eq. (3.8). In the right panel of Fig. 3.5, we show
results obtained with the model of Ref. [2] for ReΣ, supplemented with the constant term Cρ ,
for three different values of the hole (local) momentum (p ∝ pF(r)) and compare with the
potential obtained from the fits carried out in Ref. [134]. We find a reasonable agreement with
similar dependencies on tkin and differences in the magnitude of the potential of the order of
5− 10 MeV at most, which could be partially re-absorbed either by modifying the parameter
C or using an appropriate average momentum. The comparisons in Fig. 3.5 are sensitive to the
absolute values of ReΣ.

3.2.4 Relativistic approximation

In the calculations presented in the previous subsections, we have assumed nonrelativistic kine-
matics. In order to account for the relativistic effects in the calculation of the self-energies, the
M/Ep factors can be included in the phase space. Also the nucleon’s energy, Ep, is calculated
including some relativistic corrections.

Following Ref. [5, 123], the relativistic version of the SFs reads now

SLDA rel
p,h (~p,E) = ∓ 1

π

M
Ep

ImΣ(E,~p)(
E +M−Ep− M

Ep
ReΣ(E,~p)

)2
+
( M

Ep
ImΣ(E,~p)

)2 , (3.20)

This equation has been derived noting that the self-energy operator is diagonal in the spin space
if we consider nucleons submerged into spin and isospin symmetric nuclear matter. Also, Σ is
a short-notation for ūΣu with spinors ū and u being dimensionless normalized to unity.

3.2.5 Analysis of spectral function effects

As we have shown in Eq. (2.100) for the inclusive neutrino-nucleus and will show in Eqs. (4.11)
and (4.15) for the muon and radiative pion captures in nuclei, the cross sections of these pro-
cesses depend on the imaginary part of the Lindhard function2 ImŪSF . In the case of pion
capture this dependence is direct, while for a CC process the situation is more complicated be-
cause the interaction vertex gives rise to the LµνW µν contraction, inducing a dependence of the
Aµν(p,q) tensor on the hole momentum p. Thus, we will present first a short analysis of the SF
effects on the imaginary part of Lindhard function for two different energy regimes. Both, real
and imaginary parts of the particle and hole self-energies enter into the evaluation of ImŪSF . As
mentioned above, the real part modifies the dispersion relation of the nucleon embedded in the
nuclear medium, while the imaginary part accounts for some many-body decay channels.

In Ref. [3], the imaginary part of the hole self-energy was neglected (see Eq. (3.7)) to save
computational time. We will discuss below that, though this approximation could be reason-
able for intermediate neutrino energies, it is not appropriate for low nuclear excitation energies.
Moreover, for intermediate energies, we will show that the approximation of Eq. (3.7) overes-
timates the cross sections by around 5-10%. Given that highly accurate theoretical predictions
are essential to conduct the analysis of neutrino properties, here we will improve on this and
in Subsec. 4.2.2, neutrino and antineutrino cross sections for argon, carbon and oxygen targets
will be obtained using the full particle and hole SFs.

Low energy transfers

For low energy transfers, q0, we should take into account the width of the hole state (imaginary
part of the nucleon self-energy) going beyond the approximation of Eq. (3.7). The reason can

2For the sake of clarity, in this section we will omit the arguments of the Lindhard function when possible.
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FIGURE 3.6: ImΣ(Ē(k),k) as a function of Ē(k) (self-consistent solution of Eq. (3.8)) calculated for
two different nuclear matter densities using the model of Ref. [2].

be understood from the results of Fig. 3.6. There, we show the imaginary part of the self-
energy ImΣ(Ē(k),~k;ρ) as a function of the energy Ē(k), with Ē being the solution of Eq. (3.8),
and two different nuclear matter densities. We have adopted the model derived in Ref. [2].
Naturally, there is a lower limit for Ē, when the momentum is equal to 0, and an upper limit
to be consistent with the nonrelativistic approximations. There exists a minimum at the Fermi
surface (Ē(pF) = µ), and in its vicinity, both the hole and particle state widths are of the same
magnitude, while for higher energies the imaginary part of the particle self-energy grows and it
becomes in modulus significantly larger than the typical values taken by that of the hole state.
Hence, it is not justified to neglect the hole width in the low excitation-energy regime, while for
higher energy transfers keeping it is much less important.

In Fig. 3.7 we show both ImŪLDA
SF (using Eq. (2.87) with the SFs obtained with the LDA

model of Ref. [2]) and the approximated ImŪLDA
SF approx (see Eq. (3.9)), obtained from Eq. (3.7)

when Sh is replaced by a delta function. The full calculation leads to smaller values (in mod-
ulus), which can be even better appreciated if we compare a profile of this 3D plot. For
this, we use the energy-momentum dependence from muon and pion capture kinematics, i.e.,
ImΣ(q0, |~q |;ρ) = ImΣ(q0 = mµ/π −|~q |−Qµ/π , |~q |;ρ), for ρ = 0.074 fm−3 in 12C (Qµ/π ac-
counts for the binding energy effects and the existing difference between the experimental Q
values and those deduced from the isospin-asymmetric LFG picture of the nucleus). Results are
shown in Fig. 3.8, where we can see that the difference induced by keeping the imaginary part
of the nucleon self-energy in the hole state could reach 30% at the peak. Let us remind here
that the integration over a function which contains two delta-like peaks is highly demanding
from a computational point of view. Fig. 3.6 shows that as the excitation energy approaches the
Fermi surface, the widths of both, particle and hole, SFs are getting smaller, making both SFs
similar to delta functions. This is why for very low energy transfers, of the order of few MeV,
the calculation may show some numerical instabilities, as can be appreciated in Fig. 3.8.

Finally, in Fig. 3.9 we show the ratio ImŪLDA
SF /ImŪLDA

SF approx for low energy and momentum
transfers, where the error induced by neglecting the hole width can be better appreciated.
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FIGURE 3.7: Comparison of ImŪLDA
SF (q0,q;ρ) computed from Eq. (2.87) keeping the width of both

particle and hole lines (left) and the approximated ImŪLDA
SFapprox (Eq. (3.9)) obtained by neglecting the

imaginary part of the hole self-energy (right). The density employed is ρ = 0.09 fm−3 and the Lindhard
functions are displayed in [fm−2] units.
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FIGURE 3.8: Comparison of different approaches to ImŪ(q0, |~q |;ρ) as a function of q0 in 12C and
ρ = 0.074 fm−3. Inclusive muon/pion capture kinematics is used and hence |~q | = mµ − q0−Qµ (left)
and |~q | = mπ −q0−Qπ (right). The dashed-double dotted green curves stand for the imaginary part of
the Lindhard function computed in a free LFG using nonrelativistic kinematics.

Intermediate energy transfers

In Fig. 3.10, we show ImŪLDA
SF and the imaginary part of the free LFG nonrelativistic Lindhard

function, ImŪNR (Eq. (2.85)), in a wider energy region. We clearly observe3 that ImŪLDA
SF (on

the left) takes non-zero values in a much wider part of the (q0, |~q |) available phase-space. In
the case of ImŪNR (on the right), there is a very well marked band of nonzero values. On
the other hand, ImŪNR takes values generally lower (larger in absolute value) than ImŪLDA

SF .
These effects are clearly visible in Fig. 3.11, where ImŪLDA

SF and ImŪNR for |~q | = 300 MeV
and density ρ = 0.09 fm−3 are displayed. Although this plot cannot be directly compared with
the cross section for neutrino scattering, one may expect that the SF corrections would move the
position of the QE peak (the dispersion relation of a nucleon embedded in the nuclear medium
is different because the effects of ReΣ(q0, |~q |;ρ); see also Fig. 3.3) and this peak would be
generally lower, with a partial, but sizable, spreading of its strength.

In Fig. 3.11, we also show results for ImŪLDA
SF approx, as a function of the energy transfer.

We see that though the approximation of Eq. (3.7) used in Eq. (3.9) works better than for low
energies, it produces values of ImŪLDA

SF (in modulus) around the QE peak systematically larger
(∼ 7%) than those obtained when the width of the hole state is maintained. The largest part

3Note that in the high energy and momentum transfer region, there will be relativistic effects not considered in
the plots of Fig. 3.10.
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FIGURE 3.9: Ratio of ImŪLDA
SF /ImŪLDA

SF approx for ρ = 0.09 fm−3.

of this enhancement is produced for having neglected in Eq. (3.7) the inverse of the Jacobian
determinant ∣∣∣∣1− ∂ReΣ(E,~p )

∂E

∣∣∣∣−1

E=Ē(~p )
, (3.21)

that appears in the reduction of SLDA
h (E,~p ) to δ (E− Ē(~p )), when the ImΣ(E,~p )→ 0 limit

is taken. The above factor is the quasiparticle strength and it is related to the inverse of the
effective mass [129].

Computing the partial derivative of ReΣ(E,~p ) is also numerically involved, and since ac-
curate theoretical cross sections are important to conduct neutrino oscillation analyses, here we
improve the predictions presented in Ref. [3], by considering full SF effects also at intermedi-
ate energies. Thus in Subsec. 4.2.2, we will show results obtained using fully dressed particle
and hole propagators, maintaining both real and imaginary parts of the in-medium nucleon
self-energies.

FIGURE 3.10: Imaginary parts of the full LDA SF and the free LFG Lindhard functions in fm−2 units
and for density ρ = 0.09 fm−3. On the left, we show results for ImŪLDA

SF , while on the right panel the
noninteracting LFG ImŪNR is depicted.
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FIGURE 3.11: |ImŪLDA
SF | (solid), |ImŪLDA

SFapprox| (dashed) and |ImŪNR(q)| (dashed-dotted) for |~q | =300
MeV and density ρ = 0.09 fm−3, as a function of the energy transfer.

3.3 Other theoretical approaches

There are several frameworks which are currently used to describe neutrino-nucleus interaction
processes in the QE regime. They range from purely phenomenological approaches, like in
the case of SuSA model, to more computationally involved MF calculations. Some of them
(GiBUU [20], MEMC [72] models) are based on the LDA, and therefore substantially simplify
calculations which can be conducted in the plane wave basis. Since we focus our considerations
in the QE region, we also mention models which describe long-range correlations through the
resummation of RPA-type series. In this section we will briefly resume the building blocks of
these approaches. In the next chapters we will show some comparisons.

3.3.1 CBF spectral function approach

The formalism developed in Refs. [12, 13] based on the factorization scheme has been very
successful in describing many reaction mechanisms for neutrino-nucleus interaction. In the fol-
lowing, we will sketch how the spectral function appears in the hadron tensor when the IA is em-
ployed. The SFs discussed in Refs. [12, 13] are comprised of a MF part and a high momentum-
energy one calculated within the Correlated Basis Functions (CBF) formalism [136]. They were
calculated for 12C and 16O nuclei. In the subsequent chapters, we will denominate this model
as “CBF”, to distinguish it from other calculations of the hole SF.

Impulse Approximation

Let us recall that in Eq. (2.64) we defined initial and final nuclear states |i〉, | f 〉 and a CC
operator which describes a transition between them. Within the IA scheme the final nuclear
state factorizes as

| f 〉 −→ |l〉⊗ | f 〉A−1 . (3.22)

and the electroweak current of Eq. (2.64) is written as a sum of one-body contributions jµ
cc =

∑i ji µ
cc . This approximation can be safely applied under the assumption that the struck nucleon

is decoupled from the spectator (A− 1) particles (i.e. at relatively large momentum transfer,
|~q|& 500 MeV).

In the Eq. (3.22) we introduced |l〉, the single-nucleon state produced at the electroweak
vertex with momentum~l, energy El , and spin-isospin state ηl . The state | f 〉A−1 describes the
residual (A−1) system, its energy and recoiling momentum are fixed by energy and momentum
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conservation
EA−1

f = q0−El +E0 , ~PA−1
f =~q−~l . (3.23)

with the initial state energy E0. Exploiting the single-nucleon completeness relation

∑
p
|p〉〈p|= ∑

ηp

∫ d3 p
(2π)3 |~p,ηp〉〈~p,ηp|= 1, (3.24)

and the factorization of the final state of Eq. (3.22), the matrix element of the current can be
written as

〈i| jµ
cc| f 〉 →∑

p
〈i|[|p〉⊗ | f 〉A−1]〈p|∑

i
ji µ
cc |l〉 . (3.25)

Substituting the last equation in Eq. (2.64), the incoherent contribution to the hadron tensor
is given by

W µν(q) = A ∑
l,p,p′

∑
f
〈p|
(

j1 µ
cc
)† |l〉〈l| j1 ν

cc |p′〉

×〈0|[| f 〉A−1⊗|p〉][A−1〈 f |⊗ 〈p′|]|0〉δ (q0−El−EA−1
f +E0)θ (|~l|− pF) . (3.26)

Momentum conservation in the single-nucleon vertex implies ~p = ~p′ =~l−~q. Charge con-
servation and the assumption that the nuclear ground state is a zero-spin state imply ηp = ηp′ .
Therefore, using the identity

δ (q0−El−EA−1
f +E0) =

∫
dEδ (q0 +E +M−El)δ (E +M+EA−1

f −E0) , (3.27)

the hadron tensor can be expressed as

W µν(q) = A ∑
ηpηl

∫ d3 p
(2π)3 dES̄CBF

h (~p,ηp,E)×〈~p,ηp| j1 µ
cc |~p+~q,ηl〉†

×〈~p,ηp| j1 ν
cc |~p+~q,ηl〉δ (q0 +E +M−Ep+q) . (3.28)

The hole SF

S̄CBF
h (~p,ηp,E) = ∑

f
|〈0|[|~p,ηp〉⊗ | f 〉A−1]|2×δ (E +M+EA−1

f −E0) (3.29)

gives the probability distribution of removing a nucleon with momentum ~p and spin-isospin ηp

from the target nucleus, leaving the residual (A− 1) system with an energy E0−E−M. It is
normalized according to Eq. (3.2).

For closed-shell nuclei and isospin-symmetric nuclear nuclear matter, the SFs of spin-up and
spin-down nucleons coincide. In addition, neglecting the Coulomb interactions and the other
(small) isospin-breaking terms, the proton and neutron SFs turn out to be identical, yielding

S̄CBF
h (~p,ηp,E) ' 1

4
S̄CBF

h (~p,E) = ∑
f
|〈0|[|~p〉⊗ | f 〉A−1]|2×δ (E +M+EA−1

f −E0) (3.30)

In the relativistic regimes, the factors M/Ep and M/Ep+q have to be included to account
for the implicit covariant normalization of the four-spinors of the initial and final nucleons in
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the matrix elements of the relativistic current jµ
cc, hence

W µν(q) =
A
4 ∑

ηpηl

∫ d3 p
(2π)3 dES̄CBF

h (~p,E)
M
Ep

M
Ep+q

θ (|~p+~q|− pF)

×〈~p,ηp|
(

j1 µ
cc
)† |~p+~q,ηl〉〈~p+~q,ηl| j1 ν

cc |~p,ηp〉δ (q0 +E +M−Ep+q) . (3.31)

Note that, within the IA the ejected nucleon is treated as a plane wave and the particle SF
coincides with the one of the GFG model given in Eq. (3.1) with the relativistic expression of
Eq. (3.5) for the energy of the particle state.

CBF spectral function

The hole SF presented below has been computed following Ref. [27] and it is comprised of two
contributions

S̄CBF
h (~p,E) = S̄1h

h (~p,E)+ S̄corr
h (~p,E) . (3.32)

The 1h contribution is obtained from a modified mean-field scheme

S̄1h
h (~p,E) = ∑

α∈{F}
Zα |φα(~p)|2Fα(E−Eα) , (3.33)

where the sum includes all occupied single-particle states, labeled by the index α , and φα(~p)
is the Fourier transform of the shell-model orbital with energy Eα . Note that |φα(~p)|2 yields
the probability of finding a nucleon with momentum ~p in the state α . The spectroscopic factor
Zα < 1 and the function Fα(E −Eα), describing the energy width of the state α , account for
the effects of residual interactions that are not included in the MF picture. In the absence of
residual interactions, Zα → 1 and Fα(E−Eα)→ δα(E−Eα). The spectroscopic factors and
the widths of the s and p states of 12C have been taken from the analysis of (e,e′p) data carried
out in Refs. [137, 138].

As for the correlated part, at first CBF calculations in isospin-symmetric nuclear matter of
the hole SF are carried out for several values of the density, identifying the MF and correlated
contributions. The correlated part for finite nuclei is then obtained through an LDA procedure

S̄corr
h (~p,E) =

∫
d3r ρ(~r)S̄corr

h,NM(~p,E;ρ(~r)) , (3.34)

where ρ(~r) is the nuclear density distribution of a given nucleus and S̄corr
h ,NM(~p,E;ρ) is the

correlation component of the SF of isospin-symmetric nuclear matter at density ρ . The use of
the LDA to account for S̄corr

h (~p,E) is based on the premise that short-range nuclear dynamics
are unaffected by surface and shell effects. The energy-dependence exhibited by S̄corr

h (~p,E),
showing a widespread background extending up to large values of both ~p and E, is completely
different from that of S̄1h

h (~p,E). For |~p| > pF , S̄corr
h (~p,E) coincides with S̄CBF

h (~p,E) and its
integral over the energy gives the so-called continuous part of the momentum distribution.

Correlated Basis Function

The hole SF does not depend on the momentum transfer, hence it can be safely computed within
nonrelativistic many-body theory, where nuclear dynamics is described by the Hamiltonian

H = ∑
i

~pi
2

2M
+∑

j>i
vi j + ∑

k> j>i
Vi jk . (3.35)
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In the above equation ~pi is the momentum of the i-th nucleon, while the potentials vi j and
Vi jk describe two- and three-nucleon interactions, respectively. Realistic two-body potentials
are obtained from accurate fits to the available data on the deuteron and NN scattering, and
reduce to the Yukawa one-pion-exchange interaction at large distances. The state-of-the-art
phenomenological parametrization of vi j, referred to as Argonne v18 potential [90], is written in
the form

vi j =
18

∑
n=1

vn(ri j)On
i j, (3.36)

with ri j = |~ri−~r j| and
On≤6

i j = [1, (~σi ·~σ j),Si j]⊗ [1, (~τi ·~τ j)] , (3.37)

where ~σi and ~τi are Pauli matrices acting in the spin and isospin space, respectively, and Si j is
the tensor operator given by

Si j =
3
r2

i j
(~σi ·~ri j)(~σ j ·~ri j)− (~σi ·~σ j) . (3.38)

The operators corresponding to n = 7−14 are associated to non-static components of the NN
interaction, while those corresponding to n = 15− 18 account for small violations of charge
symmetry. The inclusion of Vi jk is needed to explain the binding energies of the three-nucleon
systems and nuclear matter saturation properties [139, 140].

In Refs. [29, 27], the nuclear overlaps, 〈0|[|~k〉⊗ | f 〉A−1], involving the ground-state and a
nonrelativistic 1h and 2h1p states were evaluated using the CBF theory. Within this formalism,
a set of correlated states (CB) is introduced

|n〉CB =
F |n〉

〈n|F †F |n〉1/2 , (3.39)

where |n〉 is an n independent particle state, generic eigenstate of the free Fermi gas (FG)
Hamiltonian, and the many-body correlation operator F is given by

F = S
[ A

∏
j>i=1

Fi j

]
. (3.40)

The form of the two-body correlation operator Fi j, reflects the complexity of the NN potential

Fi j =
6

∑
n=1

f n(ri j)On
i j , (3.41)

with On≤6
i j given in Eq. (3.37). The CB states are first orthogonalized (OCB) [141] preserving,

in the thermodynamical limit, the diagonal matrix elements between CB states. Then, stan-
dard perturbation theory is used to express the eigenstates of the many-body Hamiltonian of
Eq. (3.35) in terms of the OCB. Any eigenstate has a large overlap with the n−hole-m−particle
OCB and hence perturbation theory in this basis is rapidly converging.

The nuclear-matter SF can be conveniently split into two components, displaying distinctly
different energy dependencies [12, 13, 142, 27]. The single-particle one, associated to one-hole
(1h) states in | f 〉A−1 of Eq. (3.29), exhibits a collection of peaks corresponding to the energies of
the single-particle states belonging to the Fermi sea. The continuum, or correlation, component
corresponds to states involving at least two-hole–one-particle (2h−1p) contributions in | f 〉A−1.
Its behavior as a function of E is smooth and it extends to large values of removal energy and
momentum [29]. It has to be noted that the correlated part would be strictly zero if nuclear
correlations were not accounted for.
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Inclusion of FSI through a convolution scheme

In the kinematical region in which the interactions between the struck particle and the spectator
system can not be neglected, the CBF SF results have to be modified to include the effect of
FSI. Following Ref. [14], the real part of the optical potential U is considered. It is derived
from the Dirac phenomenological fit of Ref. [134] to describe the propagation of the knocked-
out particle in the MF generated by the spectator system. This potential, given as a function of
the kinetic energy of the nucleon tkin(~p) =

√
~p 2 +M2−M, modifies the energy spectrum of

the struck nucleon
Ẽp+q = Ep+q +U (tkin(~p+~q)) . (3.42)

The multiple scatterings that the struck particle undergoes during its propagation through
the nuclear medium are taken into account using a convolution scheme [14]. The CBF SF
responses are folded with the function f~p+~q, normalized as∫ +∞

−∞

dω f~p+~q(ω) = 1 . (3.43)

The hadron tensor is then given by

W µν(q) =
A
4 ∑

ηpηl

∫ d3 p
(2π)3 dE

∫
dω
′S̄CBF

h (~p,E)
M
Ep

M
Ep+q

θ (|~p+~q|− pF) f~p+~q(q0−ω
′)

×〈~p,ηp|
(

j1 µ
cc
)† |~p+~q,ηl〉〈~p+~q,ηl| j1 ν

cc |~p,ηp〉δ (ω ′+E +M− Ẽp+q) . (3.44)

Within the convolution scheme, correlations in both the hole and particle SFs are accounted
for. As for the latter, comparing the above result with Eq. (5.26) yields

Sp(~p+~q,q0 +E) = θ (|~p+~q|− pF)
∫

dω
′ f~p+~q(q0−ω

′)δ (ω ′+E +M− Ẽ~p+~q) . (3.45)

At moderate momentum transfers, the hole and particle SFs can be consistently obtained us-
ing nonrelativistic many-body theory. However, in the kinematical region of large momentum
transfer the dynamics of the struck nucleon in the final state can no longer be described using
the nonrelativistic formalism. The FSI folding function is estimated employing a generalization
of the Glauber theory, devised to describe high energy proton-nucleus scattering [143]

f~p(ω) = δ (ω)
√

T~p +
∫ dt

2π
eiωt

[
ŪFSI
~p (t)−

√
T~p
]
= δ (ω)

√
T~p +(1−

√
T~p)F~p(ω) , (3.46)

where the strength of the FSI is given by the nuclear transparency T~p and the finite width
function F~p(ω). The Glauber factor ŪFSI

~p (t), a detailed discussion of which can be found
in Ref. [12], is given in terms of the NN scattering amplitudes. The relation between

√
T~p and

ŪFSI
~p (t) can be best understood noting that [12]

T~p = lim
t→∞

P~p(t) = lim
t→∞
|ŪFSI

~p (t)|2 , (3.47)

where P~p(t) is the probability that the struck nucleon does not undergo re-scattering processes
during a time t after the electromagnetic interaction. In absence of FSI ŪFSI

~p (t) = 1, implying
in turn T~p = 1 and f~p(ω)→ δ (ω).

In Ref. [14] the convolution scheme was further approximated, assuming that for large mo-
mentum transfer tkin(|~p+~q|)' tkin(|~q|). As a consequence, the real part of the optical potential
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only produces a shift of the response to lower energy transfer. In the results presented in Ch-
pts. 5-7, we retain the full dependence on |~p+~q|, which brings about a Jacobian when solving
the angular integral of the initial momentum of the nucleon. This Jacobian, not negligible in the
kinematical regime where FSI are important, quenches the quasielastic peak of the response,
enhancing its tails.

In order to make contact with the LDA SF formalism of Sec. 3.2, we rewrite the particle SF
as

Sp(~p,E) = θ (|~p|− pF)
[√

T~pδ (E +M− Ẽp)+ (1−
√

T~p)F~p(E +M− Ẽp)
]

. (3.48)

In the simple case of a zero-range NN interaction and neglecting correlation effects in the
eikonal factor [144]

F~p(E +M−Ep) =−
1
π

ImV (~p)
(E +M− Ẽp)2 + ImV (~p)2 , (3.49)

where

ImV (~p) = −1
2

ρvpσp . (3.50)

In the above equation, vp = |~p|/M is the velocity of the struck particle, which in the eikonal
approximation is assumed to be constant, ρ is the average nuclear density, and σp is the total
NN cross section.

Under these assumptions, Eq. (3.48) can be rewritten as

Sp(~p,E) ' θ (|~p|− pF)
[
− 1

π

ImV (~p)
(E +M− Ẽp)2 + ImV (~p)2 + δPFSI

p

]
, (3.51)

where

δPFSI
p =

√
T~q
[
δ (E +M− Ẽp)+

1
π

ImV (~p)
(E +M− Ẽp)2 + ImV (~p)2

]
. (3.52)

The term δPFSI
p is expected to be small in large nuclei since T~p = 0 in infinite nuclear mat-

ter. In addition, it vanishes for ImV → 0, as in this limit the Lorentzian distribution cancels
the δ -function. Neglecting δPFSI

p , the expression reported in Eq. (3.51) is reminiscent of the
definition of the SF in terms of the nucleon self-energy given in Eq. (3.20). Therefore, the ap-
proaches discussed in Secs. 3.2 and 3.3.1 can be approximately connected through the following
identifications

θ (|~p|− pF)ImV (~p)→ M
Ep

ImΣ(~p, Ê)
∣∣∣
avg

, E > µ (3.53)

U (tkin(~p))→
M
Ep

ReΣ(~p, Ê)+Cρ

∣∣∣
avg

, E > µ (3.54)

for some average density. The step function in Eq. (3.53), which accounts for Pauli-blocking
effects as in the FG model, implies that the particle SF vanishes when |~p+~q|< pF . We should
stress that the LDA SF approach employs a dynamical particle self-energy that separately de-
pends on both the energy and momentum.
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3.3.2 GiBUU

GiBUU (Giessen-Boltzmann-Uehling-Uhlenbeck) is an elaborated framework that provides a
description of a great variety of nuclear processes [20], among them the lepton-nucleus inter-
action [145]. It is based on the quantum-kinetic transport theory, and allows to explore both
inclusive and exclusive processes. In this approach the key approximation is the LDA. For
the description of the nucleus ground state, nucleons’ momenta are distributed according to the
LFG model and submerged into the momentum and position dependent potential U(~p,~r). It was
obtained from an energy-density functional that reproduces the saturation for nuclear matter and
was firstly used for the description of heavy-ion reactions:

U(~p,~r) = A
ρ(~r)
ρ0

+B
(

ρ(~r)
ρ0

)τ

+
2C
ρ0

g
∫ d3 p′

(2π)3
Θ(pF −|~p|)
1+(~p−~p

′
Λ )2

, (3.55)

where ρ0 = 0.168 fm−3 and g = 4. GiBUU offers few possible parametrizations. The standard
one uses A =−29.3 MeV, B = 57.2 MeV, C =−63.6 MeV, τ = 1.76 and Λ = 2.13 fm−1. This
translates into an effective mass of the nucleons bound in a nucleus:

M∗(~p,~r) = M+U(~p,~r) (3.56)

or equivalently can be expressed in terms of spectral functions for the nuclear matter:

SGiBUU
h (E, |~p|;ρ) =θ

(
pF(ρ)− p

)
δ
(
E−M∗+

√
M∗2 + p2

)
,

SGiBUU
p (E, |~p|;ρ) =θ

(
p− pF(ρ)

)
δ
(√

M∗2 + p2−M∗−E
)
. (3.57)

In the above equations, E is the removal energy for the hole spectral function (here we follow
the notation of [64]) and for the particle spectral function E is the nucleon’s kinetic energy. Even
though the difference in the notation of SGiBUU

p and SGiBUU
h may be at first sight misleading, it

was chosen in this way to correspond to the notation of Eq. (8) of Ref. [14]. The r-dependence
of the argument of the δ function in Eq. (3.57) changes the dispersion relation in comparison
to the Fermi gas model. After integrating it over volume in SGiBUU

h , it does not have any more
the form of E(p) =

√
M2 +~p2−M, but it becomes smeared out.

The hadron tensor reads:

W µν(q) =
cos2 θC

2M2

∫
d3r

∫ d3 p
(2π)3

∫
dE

M
Ep

M
Ep+q

SGiBUU
h (E,~p ;ρ)

×SGiBUU
p (q0−E,~p+~q ;ρ)Aνµ(p,q). (3.58)

In principle GiBUU uses spectral functions that take into account collisional broadening - the
fact that nucleons interact with the nuclear medium [146]. This effect, however, is turned-off in
the standard GiBUU simulation as it yields similar results for the inclusive cross section. Not
only does the collisional broadening have to be included in the hole state, but also for the final
state interactions in order to involve off-shell nucleons. The latter effect requires a more time-
consuming computation (and it has to be taken into account when studying exclusive processes).
It is worth noticing that the phenomenological potential U is used consistently to describe the
hole and particle states. The particle state thus “feels” the same MF potential as the hole state.

3.3.3 SuperScaling Approach (SuSA)

The SuperScaling Approach of Ref. [21] is a phenomenological model which starting point is
the scaling and superscaling properties of the electromagnetic interactions with nuclei. The
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main assumption of this approach is the existence of a universal scaling function which can be
obtained analyzing the scattering data of electrons on nuclei, and that can be used also to study
the neutrino-nucleus interaction.

The procedure to obtain the scaling function consists of two steps. First, the experimental
differential cross section is divided by the cross section of lepton-nucleon scattering. The result-
ing “reduced cross section” is in principle function of two variables: energy q0 and momentum
|~q| transfers. In the second step, the reduced cross section is considered as a function of a new
scaling variable ψ ′(q0, |~q|). It happens that below the QE peak, the separate energy-momentum
transfer dependencies and nuclear target dependence disappear. This property was called su-
perscaling. Above the QE, the situation becomes more complex since there are other processes
playing an increasing role and they break the scaling properties of the system.

It has been studied that the longitudinal response of the system scales well in all the kine-
matical region of the QE peak while the transverse one breaks down for energy transfer above
the peak. This is because some non-elastic processes contribute largely to the latter response.
Therefore, the authors of Ref. [147] introduced the “experimental longitudinal scaling func-
tion”, f exp

L extracting it from the data. This function was then used as the universal scaling
function to study the nuclear response to a weak probe.

A lot of effort has been devoted to explore how the scaling properties of electron-nucleus
process can be used to predict the neutrino scattering cross sections, for which – as we have
already explained – the nuclear response of the system is more complex than for electrons.
SuSA assumes that both processes (electromagnetic and charge-current) scale in the same way.
This hypothesis has been found to be reasonable, since most of the models based on the Impulse
Approximation also retain this feature [148]. Different nuclear responses are build multiplying
f exp
L by a corresponding responses on a single nucleon.

As a final remark, we want to say that in 2014 a new version of the SuperScaling model has
been proposed [148], denoted as SuSAv2. It combines the scaling properties of the nuclear sys-
tem with results computed for isovector and isoscalar response functions within the relativistic
mean field (RMF) in the region of medium and high energy transfers.

3.3.4 Ghent model

The theoretical approach developed in Ghent [22] is based on a mean field approximation. Sin-
gle particle bound states are calculated using an effective Skyrme interaction. The parameters
of this NN potential (SkE2) were fixed against the low-energy excitations of spherical nuclei.

On top of this, some long-range correlation effects are implemented. They are included as
a modification of the particle-hole Green’s function, by resolving the self-consistent equation:

ΠRPA(x1,x2;E) = Π0(x1,x2;E)+
1
/h

∫
dxdx′Π0(x1,x;E)Ṽ (x,x′)ΠRPA(x′,x2;E) (3.59)

where Ṽ is a Skyrme residual interaction between the ph excitations (∆h excitations are not
considered). The same potential is employed to obtain the Hartree-Fock wave functions with
the inclusion of a form factor, and thus the NN interaction is treated in a consistent way.

In the model, both the hole and the particle states are calculated within the same, nonrel-
ativistic Skyrme potential. On the one hand, in this way the outgoing nucleon’s description
includes the effects of final state interactions. On the other, this approach has problems in
the relativistic regime and should not be used at high energies. Nevertheless, it provides an
excellent description of low-lying giant resonances which cannot be recovered by any other
approaches presented in this section. They are particularly well visible for forward angles of
scattered lepton (i.e. at low energy transfer).

The influence of Coulomb forces between the outgoing charged lepton and the nucleus
has been addressed for intermediate energies by implementing a modified effective momentum
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approach (MEMA), while for low energies it was accounted for using a Fermi function. This
correction is important at low momentum transfers, as has been explained in Sec. 2.5.

The model has been validated for the inclusive double-differential cross sections of electron-
nucleus scattering in the energy region of the QE peak (and below). In order to be able to use
the model approximately for higher energy-momentum transfers, a procedure of how to include
relativistic corrections to the kinematics has been introduced.

3.3.5 MECM model

Martini, Ericson, Chanfray, Marteau (MECM) model of Ref. [72, 149] has many features in
common with the approach described here in Sec. 2.5.2. The calculations are also conducted for
nuclear matter, using the LDA. One of the virtues of this approach is a consistent incorporation
of various dynamical mechanisms, in particular a series of ph and ∆h excitations, as a sum of
inclusions to the polarization propagator. Each response function, which contributes to the cross
section, is obtained from the imaginary part of the polarization propagator:

R(q) = − 1
π

ImΠ0(q) (3.60)

In a first step, a propagator without nuclear corrections is calculated Π0(q), i.e. FG, obtained
for infinite nuclear matter. Next, the RPA summation is performed by solving

Π = Π0 +Π0V Π (3.61)

which has the same structure as Eq. (3.59), but is calculated in the momentum basis (this can
be done since one assumes infinite nuclear matter).

Interactions between ph and ∆h excitations are parametrized as:

VNN = ( f ′+Vπ +Vρ +Vg′)~τ1 ·~τ2

VN∆ = (Vπ +Vρ +Vg′)~τ1 ·~T †
2

V∆N = (Vπ +Vρ +Vg′)~T1 ·~τ2

V∆∆ = (Vπ +Vρ +Vg′)~T1 ·~T †
2 (3.62)

with

Vπ = F2
π (q)

~q 2

q2−m2
π

~σ1 · q̂~σ2 · q̂

Vρ = F2
ρ (q)

~q 2

q2−m2
ρ

~σ1× q̂~σ2× q̂

Vg′ = F2
π (q)g

′~σ1 ·~σ2 (3.63)

This effective interaction has an analogous structure as the one in Eq. (2.98). It has longitudinal
and transverse parts, described in terms of π and ρ meson exchange. All the parameters can be
found in Ref. [72] below Eq. (9). In particular, the effective Landau-Migdal parameter is taken
to be g′NN = 0.7 and g′N∆ = 0.5, as compared to g′ = 0.63 used in our case.

The solution of Eq. (3.61) has a form:

ImΠ = |Π|2ImV + |1+ΠV |2ImΠ0 (3.64)

The first term represents pion production. The second one is a correction to bare polarization
propagator Π0 where the factor |1+ΠV |2 accounts for collective effects.
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As a last remark, we want to add that the presented formalism is only valid for limited
kinematics. To push its applicability to higher energy transfers, the responses are divided by
r2 = (1+ q0/M)2, a factor which corrects for relativistic corrections [72]. Still, the collective
modes play an important role only for low energy transfers.
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Chapter 4

How to validate and compare models?

Neutrino oscillation experiments are the main motivation for the studies of neutrino-nucleus
interactions. The uncertainty of nuclear models is an important source of systematic error. The
latter should be at the level of 1−3% for the next generation experiments, in particular in ratios
of nuclear cross sections.

Questions appear regarding the size of the theoretical uncertainty in the MC simulations
and the limit of this uncertainty below which one cannot reach with the existing models. It is
difficult to properly address these questions in a straightforward way because no verification
of the model predictions against the data can be done in the case of neutrinos. Not only do
they interact weakly, but also the neutrino beams are not monoenergetic, which blurs the final
analysis.

Validation of the models for neutrino-nucleus scattering is an urgent need and at the same
time a nontrivial task. Experimental difficulties to detect neutrinos require from models a good
predictivity in a wide range of energies (see Fig. 2.4). They should incorporate all dynami-
cal mechanisms that give (substantial) contribution to the cross section. Neutrino experiments
depend on the MC generators which themselves make use of theoretical models developed by
various groups. It is therefore equally important – for models which aim to be used in the MCs
– that they were reliable and capable of fast computation.

In this chapter we will present different ways to test the validity of our model that includes
full SF [2] and RPA [3] effects. The chapter is based on the findings of Refs. [4, 150]. We will
begin with an analysis of two low-energy processes: inclusive nuclear muon and pion radiative
captures. The dynamics of the first one is the same as in antineutrino scattering off nuclei, while
the latter one has a simpler interaction structure. Both of them will serve us to investigate how
the spectral functions (e.i. their influence on the Lindhard function) and the RPA effects describe
experimental data. In the kinematics probed in these processes the nuclear effects tend to play
a very important role. Therefore, they will provide us with a valuable piece of information.

There is some low-energy neutrino scattering data available from LSND, KARMEN and
LAMPF experiments [151, 152, 153]. Usually, the measurements are affected by considerable
uncertainties. We will also show the predictions of our model with these cross sections. For the
CC neutrino-nucleus interaction at intermediate energies we will perform a wide analysis of the
nuclear effects included in our model, focusing our attention mainly on the interplay between
SFs and RPA corrections. In addition, we present a broad comparison with other theoretical
approaches introduced and shortly described in the previous chapter.

A different idea of how to perform a comparison between the models, is to use electron scat-
tering data. There are plenty of measurements done, for a wide energy spectrum and various
nuclei. The measurements done on 12C are especially convenient from our perspective (car-
bon is used in many neutrino detectors) and the abundant data covers a wide range of energy-
momentum transfers. The electron interaction with nucleons has a vector structure (there is
no antisymmetric part of the lepton tensor), while for neutrinos it has a vector-axial character.
Therefore, electrons can give us just partial information about the reliability of the different the-
oretical models. Still, this comparison might be treated as an indispensable test of the models.
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4.1 Muon capture and radiative pion capture

In this section we will shortly describe the capture of a bound pion or muon by the nucleus. In
particular, we will study

(AZ−µ
−)1s

bound→ νµ +X (4.1)

(AZ−π
−)bound→ γ +X (4.2)

Both µ− and π− are electromagnetically bound to the nucleus, but since their masses are of
the order of 200-300 heavier than that of the electron, their wave functions significantly overlap
with the density distribution of the nucleus. This is the reason why they do not form stable
atoms and the strong interaction produces (complex) corrections to the electromagnetic energy
levels in the case of pionic atoms. We analyze these low energetic1 processes because in this
energy range, the nuclear effects are essential and clearly visible, while they play a lesser role
at intermediate energies. Muon capture dynamics is governed by CC interactions and hence the
formalism presented in Subsec. 2.4.1 can be employed. Radiative pion capture is on the other
hand governed by a different dynamics, which will be shortly presented in the next subsection.
The general argumentation from Subsec. 2.4.1 holds, but the self-energies of the pion and the
muon in the nuclear medium are strongly dominated, because of kinematical reasons, by the
QE reaction mechanism (i.e., 1p1h excitation).
The decay width is computed (schematically) in the following way within the LDA:

1. We calculate the width Γ̂(q,ρn(r),ρp(r)) for proton and neutron nuclear matter densities.

2. For the considered nucleus, we obtain the µ− or π− wave functions, φ (r), and the en-
ergy levels by solving the Schrödinger or Klein-Gordon equations, respectively. In this
latter case (pionic atoms), besides the electromagnetic potential2 , a pion-nucleus optical
(strong) potential is additionally taken into account. This potential has been developed
microscopically and it is exposed in detail in Ref. [121].

3. Finally, we evaluate

Γ =
∫

d3r|φ (r)|2Γ̂(q,ρn(r),ρp(r)) (4.3)

to obtain the decay width in finite nuclei.

The idea behind the above approximation is the following: At every point of the nuclear matter,
there is “a piece” of µ− (π−) given by |φ (r)|2d3r, which has a decay width Γ̂(q,ρn(r),ρp(r)).
The integration over the whole volume leads to the total width. We make the additional kine-
matical assumption that the bound µ− or π− is at rest.

4.1.1 Pion radiative capture

In the case of radiative pion capture, following the formalism derived in Ref. [154], its 1p1h
self-energy (see Fig. 4.1) is given by

−iΠ(q;ρ) = −∑
s,λ

∫ d4k
(2π)4

∫ d4 p
(2π)4 iG(p;ρ)iG(q− k+ p;ρ)

× iD0(k)(−i)Tλ (−i)T †
λ

(4.4)

1Note that the energy transferred to the nuclear system is at most the mass (m) of the muon or the pion, and in
practice, it is significantly smaller since the QE peak is located in the vicinity of m2/2M.

2Both for the muon and pion cases, finite size and vacuum polarization corrections are taken into account in the
derivation of this part of the potential.
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FIGURE 4.1: Pion self-energy related to the πN→ γN process.

where a sum over the spin s of the nucleons and the photon polarization λ is performed. On the
other hand, D0(k) = 1/((k0)2−~k2+ iε) is the photon propagator and T is the amplitude for the
process π−p→ nγ . For low π momentum (the pion is bound), the contact (Kroll-Ruderman)
term gives by far the largest contribution, which with recoil corrections reads

Tλ = i2Me
√

2
f

mπ

(1+
mπ

2M
)~σ~ε(λ ) (4.5)

where e is the proton charge (e2/4π = α ∼ 1/137) and~ε is the photon polarization vector. Let
us notice that there is no dependence on momenta in the vertex, so the integration over p gives
us directly the Lindhard function Ū(q− k). After summing over spins and polarizations we get

Π(q;ρ) = i
∫ d4k

(2π)4Ū(q− k;ρ)D0(k)16πα
f 2

m2
π

(
1+

mπ

2M

)2

(4.6)

Next we use the Cutkosky rules to calculate the imaginary part of this self-energy diagram
(putting the particles cut by the dotted line in Fig. 4.1 on-shell), and assuming a static pion
q0 = mπ ,~q = 0, justified to study the capture from bound states, and thus we find

ImΠ(q;ρ) =
∫ mπ

0

d|~k||~k|
(2π)2 ImŪ(mπ −|~k|,~k;ρ)16πα

f 2

m2
π

(
1+

mπ

2M

)2

(4.7)

Recalling Eq. (2.70), we find

dΓ̂(ρ)
d|~k|

= −θ (mπ −|~k|)
mπ

4α|~k|
π

ImŪ(mπ −|~k|,~k;ρ)
f 2

m2
π

(
1+

mπ

2M

)2

(4.8)

The final result in finite nuclei is obtained by folding the above expression with the pion bound
wave function as indicated in Eq. (4.3). We will also enforce the correct energy balance in the
decay, which changes the argument of the Lindhard function (energy that is transferred into the
final nuclear system).

ImŪ(mπ −|~k|,~k;ρ)→ ImŪ
(

mπ −|~k|− (Q−Qgap(r)),~k;ρ

)
(4.9)

Taking into account the RPA effects is also much less complicated in this decay than in the case
of lepton scattering because of the simplicity of the vertex. We have only one RPA series to
sum up (driven by the transverse effective interaction in the medium), where we include both
the ph and the ∆h excitations [154]:

ImŪ → ImŪ
|1− (UN +U∆)Vt |2

(4.10)
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Nucleus 12C 40Ca
nl 1s 2p 2p 3d
wnl 0.1 0.9 0.7 0.3

Γabs
nl [keV] 3.14±0.14 0.00136±0.00020 1.59±0.02 0.0007±0.0003

Pauli [eV] 88.9 18.3×10−3 41.5 20.9×10−3

RPA [eV] 48.3±2.1 (11.1±0.4)×10−3 24.3±0.9 (13.8±0.4)×10−3

LDA SF [eV] 58.6 12.2×10−3 23.9 11.7×10−3

LDA SF+RPA [eV] 50.6±1.3 (11.1±0.2)×10−3 21.5±0.5 (11.1±0.1)×10−3

TABLE 4.1: Inclusive radiative pion capture widths from the 1s and 2p and the 2p and 3d levels in 12C
and 40Ca, respectively. Theoretical errors in the RPA predictions show MC 68% CL intervals derived
from the uncertainties on the ph(∆h)–ph(∆h) effective interaction as discussed in Sec. 2.5.2. Within the
LDA SF+RPA scheme, we obtain ratios R(γ) of (0.9±0.1)% and (1.4±0.2)% for carbon and calcium,
respectively. The experimental values reported in Ref. [155] for these ratios are (1.92± 0.20)% for
12C and (1.94± 0.18)% for 40Ca. In this latter reference, in the case of carbon, the contributions of
transitions to the 12B ground and excited states turned out to be around 20-25% of the total ratio. Thus,
the continuum contribution for 12C was estimated to be (1.50±0.15)% [155].

In addition, the consideration of the particle and hole SFs affects only the imaginary part of the
Lindhard function, and including all effects together,

dΓ̂(ρ)
d|~k|

= −4α

π

f 2

m2
π

(
1+

mπ

2M

)2

θ

(
m̂π(r)−|~k|

)
|~k|

ImŪLDA
SF

(
m̂π(r)−|~k|,~k;ρ

)
|1− (U ′N +U∆)Vt |2

(4.11)

with m̂π(r) = mπ − (Q−Qgap(r)), and we use the notation U ′N to recall that its imaginary part
is computed using LDA SFs to avoid fictitious singularities.

Comparison with data

Let us analyze how the total decay width changes when we include additional nuclear effects
to Pauli blocking, implemented through the imaginary part of the Lindhard function calculated
for a noninteracting LFG of nucleons. Neither SF effects, nor the correct energy balance in the
reaction were considered in the previous work of Ref. [154], where this formalism (LFG+RPA)
was used for the first time. Experimentally, it is rather difficult to distinguish between radiative
pion capture processes from different pionic atom orbits. Indeed, only the weighted ratio

dR(γ)

d|~k |
= ∑

nl

wnl

Γabs
nl

dΓ(γ)
nl

d|~k |
(4.12)

can be measured. In the above equation |~k | is the outgoing photon energy, wnl (normalized
to unity) gives the absorption probability from each nl pionic level, taking into account the
electromagnetic transitions and the strong absorption. Γabs

nl is the total pion absorption width

from the orbit nl and Γ(γ)
nl is the width due to the radiative capture of the pion from the orbit nl.

We will present results for carbon and calcium, and we use the same values for wnl and Γabs
nl as

in Ref. [154], which are collected in Table 4.1. Our predictions are also given in the same table,
while the differential decay branching ratios are displayed in Fig. 4.2.

Let us first notice that also here the use of interacting LDA SFs produces a quenching of the
QE peak. Actually, the in-medium dispersion relations shift the position of the peak about 10
MeV towards lower outgoing photon energies (higher transferred energies to the nucleus), and
generate a tail which goes into the low photon energy region. The width of the particle-nucleon
(see diagram of Fig. 3.4 in Chpt. 3) also contributes to this tail. This 10 MeV difference between
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FIGURE 4.2: Photon energy distributions (arbitrary units) from pion capture in 12C (left) and 40Ca
(right). Experimental spectra are taken from Ref. [155]. Theoretical LDA SF+RPA curves were adjusted
to data in the peak, other curves (LFG, RPA, LDA SF) were scaled by the same factor. Error bands on
the RPA predictions show MC 68% CL intervals derived from the uncertainties in the ph(∆h)–ph(∆h)
effective interaction as discussed in Sec. 2.5.2. The vertical lines show the maximum photon energy for
the continuum contribution, (AZ −π−)bound→ γ + n+(A−1)Z−1, where the final nucleus is left in its
ground state.

the position of the peaks, which was almost unnoticed for intermediate energies, here plays an
important role.

In the case of 40Ca we see that the position of the QE peak for the LDA SF+RPA stays
in very good agreement with the data. However, and despite the improvement due to the use
of realistic SFs, we observe a clear discrepancy with experiment at photon energies below 100
MeV. In our microscopic description, the origin of the distribution comes from the motion of
the nucleons in the nucleus. Mechanisms where two nucleons are simultaneously excited with
the γ creation would give rise to photons with less energy3 (these are different mechanisms
than final state interaction of the struck nucleon in one body processes because the photon has
already been created and does not modify its energy). It was argued in Ref. [154] that such con-
tributions could explain the observed discrepancies at low photon energies. This was confirmed
in [156], where two-body mechanisms were taken into account using a semi-phenomenological
approach. The LDA SF+RPA decay width distribution also underestimates the data for photon
energies above 130 MeV (marked with a vertical line in Fig. 4.2), this is to say above the 39K+n
threshold. This region cannot be properly described with the present formalism, because it can
only be filled in by discrete transitions (delta-like peaks convoluted with the experimental pho-
ton energy resolution, which is around 2 MeV [155]) of the type,

(40Ca−π
−)bound→ γ +40 K∗ (4.13)

where the final 40K nucleus is left either in the ground or in an excited state. These contributions
are not properly included in the present approach, and their evaluation requires certainly a good
description of the nuclear states of the initial and final nuclei. The contribution above 130 MeV
is moderately small, but together with the deficiencies discussed above at low energies explain
why the current model underestimates by around a 30% of the measured ratio R(γ) (see caption
of Table 4.1).

For 12C the situation is somehow different and discrete transitions play a more important
role and they are clearly visible in the spectrum. In this case, the 11B+ n threshold is located

3As mentioned, the particle-nucleon width included in the particle SF contributes to the tail. Note however,
there exist other 2p2h mechanisms, involving meson-exchange-currents or the excitation of the ∆(1232) (see the
discussion of Sect. 8 of Ref. [154]).
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at |~k | ∼ 122 MeV, and peaks above a continuum are observed at 117, 120, and 125 MeV. The
peak at 125 MeV can be associated with the production of the 12B ground state, while the
other two peaks are related to transitions to excited states of 12B∗ [155]. Except for the high
photon energy region, clearly dominated by these peaks, and the low energy tail, where two-
nucleon mechanisms need to be included, the LDA SF+RPA distribution provides also in carbon
a reasonable description of the spectrum. It is remarkably better than that obtained when these
nuclear effects are not taken into account. With respect to integrated ratios, and for meaningful
comparison of our predictions with data, it is necessary to subtract the discrete contributions.
The integrated ratio accounting for the one neutron knock-out contribution is estimated to be
R(γ)

exp;cont ∼ (1.50± 0.15)% in [155], that is around a 40% higher than our prediction. The
difference should be partially attributed to the low energy tail, but other source of the deviations
comes from the experimental absorption widths used in the present calculation and those in
which the experimental set–up was based on. The deviations may also be due to the uncertainty
of the values of wnl . It would be interesting to disentangle experimentally the capture from
different atomic states to allow a direct comparison with the theory, free of the assumptions
made on the values of wnl .

4.1.2 Muon capture

Muon capture is studied in full analogy to pion capture. A major difference is that the outgoing
particle is a neutrino νµ instead of a γ , which implies that this process is driven by CC interac-
tions. We have shown in Subsec. 2.4.1 that the neutrino self-energy is determined by the W+

spectral properties. The inclusive decay width of a bound muon absorbed by the nucleus is ob-
tained from the imaginary part of its self-energy (spin-averaged) in the nuclear medium, which
in turn is determined by the W− self-energy, Π̄µν

W (q;ρp,ρn) = Πµν

W (q;ρn,ρp), in this case. The
latter quantity is computed following the steps outlined in Subsec. 2.4.1 for the W+ case. Thus
one easily gets [3]

Γ̂(ρp,ρn) = −
1

mµ

4GF√
2M2

W

∫ d3k
(2π)3

θ (q0)

2|~k|
Im
[
Lµν Π̄µν

W (q;ρp,ρn)
]

=
G2

F cos2 θC

mµ

∫ d3k
(2π)3

1

2|~k|
LµνT µν(q;ρp,ρn) (4.14)

where we have assumed that the muon is at rest, which simplifies the kinematics and the
computation of the hadronic tensor (T µν ) that is clearly dominated by the excitation of a ph
nuclear component (QE mechanism). The muon binding energy, B1s

µ , is also taken into account,
however its value for the considered (light) nuclei is at most 1 MeV – see Table 4.2. We have
also enforced the correct energy balance: q0→ q0− [Q̄− Q̄gap] = mµ −B1s

µ −|k̄|− [Q̄− Q̄gap],
considering that the muon is captured from the 1s orbit. The 1p1h hadron tensor, after including
LDA SF and RPA corrections reads

T µν(q;ρp,ρn) =
θ (q0)

4M2

∫ d3 p
(2π)2

∫
µp

µn−q0
dESLDA

h (E,~p)

×SLDA
p (E + q0,~p+~q )Aµν

RPA(p,q)
∣∣∣∣

p0=Ep

(4.15)

As in the case of radiative pion capture, the final result in finite nuclei is obtained by folding
with the muon bound wave function as indicated in Eq. (4.3).
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12C 16O 18O 23Na 40Ca
B1s

µ 0.100 0.178 0.178 0.336 1.064

TABLE 4.2: The B1s
µ value used to enforce the correct energy balance in muon capture processes.
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FIGURE 4.3: Inclusive muon capture differential widths for 12C (left) and 40Ca (right), as a function of
the energy transfer. Error bands on the RPA predictions show MC 68% CL intervals derived from the
uncertainties in the ph(∆h)–ph(∆h) effective interaction as discussed in Sec. 2.5.2.

Comparison with data

The analysis of the inclusive muon capture results is similar to that presented in the previous
subsection for the radiative pion capture. The most important difference is that obviously the
outgoing neutrino distributions have not been measured. In addition, the interaction vertex is
also different, and the transferred energy to the nucleus, and thus the maximum momentum
transfer, is around 35 MeV (mass difference between the pion and the muon) smaller than in the
case of pion capture. This different kinematics influences the effects produced by the non-free
SFs, as shown in Fig. 3.8.

The results for muon capture are shown in Table 4.3. We do not study heavy nuclei, like
208Pb, because LDA SFs were evaluated for symmetric nuclear matter. Our predictions stay
in a very good agreement with the data, however the actual description could be likely poorer
since, in principle, discrete contributions have not been properly taken into account, as we
discussed for the case of pion capture. Nevertheless, the results of Table 4.3 clearly show
that RPA and LDA SF effects provide a much better description of the data. RPA correlations
induce modifications on the LDA SF integrated decay rates significantly less important than
those appreciated in the free LFG results. However, the RPA collective effects significantly
modify the shape of the decay width distributions, as can be seen in Fig. 4.3, producing a shift
of the maximum position, which is moved towards (higher) energies transferred to the nucleus
of around 20 MeV. Indeed the RPA produces an enhancement of the distribution in this region
of excitation energies, which can be related to the nuclear giant resonances (see for instance
Refs. [117, 118, 157, 158]). A similar situation could be also seen in Fig. 4.2 for the case
of pion capture, where we also see that the RPA correlations increase the LDA SF results for
photon energies of around 100 (110) MeV in carbon (calcium). Note however, the individual
giant resonances would show up as narrow peaks in the decay width distributions, while in the
present approach, the RPA correlations provide only an enhanced signature, which likely will
give a reasonable description of the integrated distributions.
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Nucleus Pauli
(104 s−1)

RPA
(104 s−1)

LDA SF
(104 s−1)

LDA
SF+RPA
(104 s−1)

Exp.
(104 s−1)

12C 5.76 3.37±0.16 3.22 3.19±0.06 3.79±0.03
16O 18.7 10.9±0.4 10.6 10.3±0.2 10.24±0.06
18O 13.8 8.2±0.4 7.0 8.7±0.1 8.80±0.15
23Na 64.5 37.0±1.5 30.9 34.3±0.4 37.73±0.14
40Ca 498 272±11 242 242±6 252.5±0.6

TABLE 4.3: Experimental and theoretical total muon capture widths for different nuclei. Data are taken
from Ref. [159], and when more than one measurement is quoted in [159], we use a weighted average:
Γ/σ2 = ∑i Γi/σ2

i , with 1/σ2 = ∑i 1/σ2
i . Theoretical errors in the RPA predictions show MC 68%

CL intervals derived from the uncertainties on the ph(∆h)–ph(∆h) effective interaction as discussed in
Sec. 2.5.2.

4.2 Neutrino scattering

4.2.1 The inclusive 12C(νµ , µ−)X and 12C(νe,e−)X reactions near threshold

The low energy pion and muon capture decay rates discussed in the Sec. 4.1 were measured
with a good precision and certainly provide an important test for our model. Here we will
compare our results with other existing experimental neutrino low energy data. One of the
characteristics of neutrino experiments is that the beams are not monochromatic and thus the
nuclear cross section should be folded with the neutrino energy-flux F(Eν),

σ =
1
N

∫ Emax
ν

Emin
ν

dEνσ(Eν)F(Eν), N =
∫ Emax

ν

Emin
ν

dEνF(Eν) . (4.16)

The flux depends on the neutrino source and for the experiments (LAMPF, KARMEN, LSND)
that we will consider in this subsection, electron neutrinos were produced from the muon decay
at rest (µ+→ νe + ν̄µ + e−), and in this case the flux is approximately described by the Michel
distribution,

F(Eν) ∝ E2
ν(E

max
ν −Eν), Emax

ν =
m2

µ −m2
e

2mµ

≈ 53MeV, Emin
ν = 0. (4.17)

In the LSND experiment at Los Alamos, the inclusive 12C(νµ , µ−)X cross section was mea-
sured using a pion decay in flight νµ beam, with energies ranging from zero4 to 300 MeV
(distribution is given in [160]). The electron neutrino flux distribution has a maximum around
35 MeV, while for the muon neutrino beam, over 80% of the flux has an energy below 180 MeV.
Thus, these processes involve very low energy transfers, as can be seen in Fig. 4.4, especially
in the electron neutrino case where the excitation energies are only of few MeV, and hence we
are facing the limit of applicability of the model. Nevertheless, the results compiled in Table
4.4 (flux-weighted distributions shown in Fig. 4.5) stay in surprisingly good agreement with the
data from LSND, KARMEN and LAMPF experiments. Nuclear effects (LDA SF+RPA) turn
out to be essential and clearly improve the results obtained by only imposing Pauli blocking
and the correct energy balance in the reactions (results denoted as LFG in Fig. 4.5 and Table
4.4). In the table, a few selected theoretical calculations [large basis shell model (SM) results of
Refs. [161, 162] and the CRPA ones from Ref. [163]] are also compiled. Our approach might
look simplified with respect to the ones just mentioned, but it incorporates both RPA and LDA

4The neutrino laboratory threshold energy Emin
ν is around 123 MeV.
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the uncertainties in the ph(∆h)–ph(∆h) effective interaction as discussed in Sec. 2.5.2.

SF corrections and provides a description of these low energy cross sections as good, if not
better, that any of them.

With all kinds of precautions, minding the low excitation energies involved, the LFG model
of interacting nucleons, supplemented with a proper energy balance and RPA collective effects,
provides a more than reasonable combined description of the inclusive muon capture in 12C and
of the measurements of the 12C (νµ , µ−)X and 12C (νe,e−)X reactions near threshold.

4.2.2 Intermediate energy transfers

The use of nonrelativistic kinematics is sufficiently accurate for the computation of hole SF,
but its applicability to the ejected nucleon limits the range of energy (q0) and momentum (|~q |)
transfers to regions where, at least, |~q |< 500−600 MeV. The energy of the projectile is an issue
for totally integrated cross sections because if it is high, there will be phase space regions where
the q0 and |~q |will be too large to accept the accurateness of our nonrelativistic description of the
particle SF. For differential cross sections, however, we could address large projectile energies
at forward angles to keep |~q | sufficiently small. On the other hand, RPA effects decrease as−q2

increases, and become necessarily small when the associated wave-length of the electroweak
probe is much shorter than the nuclear size. As the energy of the projectile increases, the
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σ̄(νµ , µ−)

LFG RPA LDA
SF

LDA SF+RPA SM
[161]

SM
[162]

CRPA
[163]

23.1 13.2±0.7 12.2 9.7±0.3 13.2 15.2 19.2
Experiment

LSND [160] LSND [164] LSND [165]
8.3±0.7±1.6 11.2±0.3±1.8 10.6±0.3±1.8

σ̄(νe,e−)

LFG RPA LDA
SF

LDA SF+RPA SM SM CRPA

0.200 0.143±0.006 0.086 0.138±0.004 0.12 0.16 0.15
Experiment

KARMEN [151] LSND [152] LAMPF [153]

0.15±0.01±0.01 0.15±0.01 0.141±0.023

TABLE 4.4: Experimental and theoretical flux averaged 12C(νµ , µ−)X and 12C(νe,e−)X cross sections
in 10−40 cm2 units. Theoretical errors in the RPA predictions show MC 68% CL intervals derived
from the uncertainties on the ph(∆h)–ph(∆h) effective interaction. We also quote results from other
calculations (see text for details).

available phase-space includes larger regions where one might expect that RPA effects are small.
However, one should admit larger uncertainties in the RPA corrections at these large values of
−q2, because their calculation probes NN, N∆ and ∆∆ interactions at high virtualities. The
model used here includes some exchanges of virtual mesons, and it has been shown to work
well at intermediate energies in different hadronic processes. Thus, with some precautions, the
idea is that we could realistically compute RPA corrections up to a region of −q2 values where
they become quite small and hence, the possible existence of some systematic errors on their
computation will have little effect in the final observables. Indeed, the present model for RPA
corrections has been successfully applied to describe MiniBooNE [74] (see Fig. 4.10 below)
and MINERνA [79] CCQE integrated cross sections.

In Tables 4.5 and 4.6, we present results in oxygen for inclusive electron and muon (anti)
neutrino-nucleus scattering and energy transfers up to 400 MeV. We examine RPA and the LDA
SF corrections and their dependence on the energy. First, we observe the differences stemming
from the use of nonrelativistic and relativistic Lindhard functions. (As mentioned, in the case of
nonrelativistic kinematics, we use the nonrelativistic nucleon dispersion relations and set to one
the factors M/Ep and M/Ep+q in Eq. (2.80).) For the highest considered energies (Eνµ

= 500
MeV), relativistic effects are approximately 7− 10% and decrease down to 3− 4% for Eνµ

=
250 MeV. We should be aware of this fact when considering LDA SF+RPA corrections because
they have been computed using nonrelativistic kinematics.

Next, we pay attention to both RPA and LDA SF corrections that suppress the total cross
sections. Results are graphically shown in Fig. 4.6. For a free LFG, the RPA effects5 are espe-
cially significant at lower energies, where we find a very drastic reduction of about 35− 40%,
the corrections being still large (of the order of 20–25%) for the higher energies examined in
Table 4.5. SF effects change importantly both, the integrated and the shape of the differential
cross sections, as we will see. When medium polarization (RPA) effects are not considered,
the LDA SFs provide significant reductions (20–35%) of the neutrino cross sections, and some-
what smaller effects in the case of antineutrinos6. The LDA SF corrections decrease as the
(anti-)neutrino energy increases. However, when RPA correlations are included, the reductions

5For both the nonrelativistic and SF set of results, the real part of the ph−Lindhard function that appear in the
RPA denominators has been computed using its nonrelativistic expression derived in a free LFG.

6The SF effects reported in Ref. [3] were smaller because in that work, the imaginary part of the hole self-energy
was neglected.
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σ(νµ+16O→ µ−+X) [10−40cm2]
Nonrelativistic Relativistic LDA SF

500 MeV Pauli 625 580 494
RPA 520±40 470±40 445±27

375 MeV Pauli 443 418 328
RPA 329±24 308±22 274±14

250 MeV Pauli 199 192 132
RPA 123±7 118±7 101±5

σ(ν̄µ+16O→ µ++X) [10−40cm2]
Nonrelativistic Relativistic LDA SF

500 MeV Pauli 143.8 134.4 118.9
RPA 106.3±1.9 98.5±1.9 105.6±1.5

375 MeV Pauli 99.8 94.1 78.2
RPA 71.6±1.4 66.9±1.3 68.6±1.2

250 MeV Pauli 51.5 49.0 37.6
RPA 34.3±0.8 32.5±0.8 31.0±0.7

TABLE 4.5: Muon neutrino and antineutrino inclusive QE integrated cross sections from oxygen. We
present results for relativistic and nonrelativistic nucleon kinematics. In this latter case, we present
results with and without LDA SFs effects. Results, denoted as RPA and Pauli have been obtained with
and without including RPA and Coulomb corrections, respectively. LDA SF results have been computed
using a complex self-energy to dress both particle and hole nucleon lines. Theoretical errors on the RPA
predictions show MC 68% CL intervals derived from the uncertainties in the ph(∆h)–ph(∆h) effective
interaction, as detailed in Subsec. 2.5.2.

become more moderate, around 15% for neutrino reactions, and much smaller for antineutrinos.
Indeed, in this latter case and for the higher energies examined in the Tables 4.5 and 4.6, the
integrated cross sections remain practically unchanged. LDA SF effects are responsible for a
certain quenching of the QE peak and a redistribution of its strength as can be seen in Fig. 4.7,
where (anti-)neutrino differential cross sections from 16O at various energies are shown. The
use of non-free SFs produces a tail which goes to higher energies inducing in general a signif-
icant change of the (q0, |~q |)-region accessible in the process. It does not change the strength of
the interaction between the gauge boson and the nucleons (the form–factors), which is how the
RPA effect is included in our formalism.

As mentioned above, when we take into account RPA corrections, the differences between
SF and nonrelativistic LFG total cross sections are small, and in general mostly covered by
the theoretical errors of the RPA predictions (see Fig. 4.6), derived from the uncertainties on
the ph(∆h)–ph(∆h) effective interaction. This is because the LDA SFs diminish the height
of the QE peak and increase the cross section for the high energy transfers. But for nuclear
excitation energies higher than those around the QE peak, the RPA corrections are certainly
less important than in the peak region. Hence, the RPA suppression of the LDA SF distribution
is significantly smaller than the RPA reduction of the distributions determined by the ordinary
Lindhard function. In Fig. 4.7, we also observe that antineutrino distributions are narrower
than neutrino ones and more significantly peaked towards lower energy transfers. Also in these
plots, we can see (stripped pattern bands) the size of the relativistic effects. These introduce
a systematic error in our predictions in the higher energy transfer region of the differential
cross sections, because LDA SF+RPA corrections have been computed within a nonrelativistic
scheme.

In Fig. 4.6 we present how the size of the nuclear effects depends on the energy of the
incoming (anti)neutrino. We appreciate some differences between neutrino and antineutrino
reactions. Both LDA SF and RPA effects suppress the cross section and as already mentioned,
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σ(νe+16O→ e−+X) [10−40cm2]
Nonrelativistic Relativistic LDA SF

310 MeV Pauli 370 350 271
RPA 259±18 244±16 219±11

220 MeV Pauli 191 183 131
RPA 117±7 112±6 101±5

130 MeV Pauli 44.6 43.1 28.3
RPA 25.6±1.2 24.8±1.1 23.2±0.8

σ(ν̄e+16O→ e++X) [10−40cm2]
Nonrelativistic Relativistic LDA SF

310 MeV Pauli 81.6 77.3 63.1
RPA 57.9±1.1 54.2±1.1 55.6±0.9

220 MeV Pauli 49.2 47.0 36.2
RPA 32.3±0.8 30.8±0.8 30.4±0.7

130 MeV Pauli 17.9 17.3 12.2
RPA 10.3±0.3 9.8±0.3 9.6±0.3

TABLE 4.6: As in Table 4.5 but for electron neutrino and antineutrino inclusive QE scattering.

these two combined effects yield results similar to those obtained when only RPA correlations
are considered. On the other hand, for antineutrinos, the use of non-free SFs leads to smaller
effects.

Theoretical errors practically cancel out in the ratio σ(νµ)/σ(νe) ≡ σ(νµ +A Z→ µ−+
X)/σ(νe +A Z → e− + X), and in the equivalent one constructed for antineutrinos. These
ratios are depicted in Fig. 4.8 for carbon, oxygen and argon. Theoretical uncertainties on these
ratios turn out to be much smaller than 1% and are hardly visible in the plots. On the other
hand, predictions for these ratios obtained from a simple Lindhard function7 incorporating a
correct energy balance in the reaction (lines denoted as “LFG” in the plots) differ from the most
realistic ones obtained including also LDA SF+RPA effects at the level of 5-10% for neutrino
energies above 300 MeV, in sharp contrast with the situation found for each of the individual
σ(νµ +A Z→ µ−+X), σ(νe+A Z→ e−+X), σ(ν̄µ +A Z→ µ++X) and σ(ν̄e+A Z→ e++
X) cross sections (see Fig. 4.6). However, these differences are much larger at low energies,
especially for the antineutrino ratios. Note that RPA corrections greatly cancel out, especially
in carbon and oxygen, in the neutrino ratios calculated with full SFs. For antineutrino ratios,
though, RPA effects are clearly visible when LDA SFs are used. Besides, we should note that
in the ratio σ(νµ)/σ(νe), relativistic nucleon kinematics effects are quite small, being always
smaller than 1% in the whole energy interval studied here, as it was pointed out in Ref. [122]
(see Fig. 6 of that reference).

4.2.3 Comparison with other approaches

Here, we briefly discuss predictions obtained within other approaches. As we commented, there
is an abundant literature in the field, and we do not aim at performing an exhaustive comparison,
but we will rather focus on some representative works, where RPA or SF effects have been
examined.

We will begin with the continuum RPA (CRPA) scheme examined in Ref. [163]. As ex-
plained in this latter reference, the main difference between RPA and CRPA approaches lies in
the treatment of the excited states. In the case of RPA, all of them are treated as bound states,

7It is to say from a local Fermi gas model of noninteracting nucleons.
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FIGURE 4.6: Importance of nuclear effects compared to the nonrelativistic free LFG cross section (σ0).
We display (σnuc eff − σ0)/σ0 where “nuc eff” stands for a nuclear effect (RPA, LDA SF or LDA
SF+RPA). The bands show 68% CL intervals derived from the uncertainties on the ph(∆h)–ph(∆h)
effective interaction.

leading to a discrete excitation spectrum, while within a CRPA scheme, the final states asymp-
totically have the appropriate scattering wave-function for energies above the nucleon-emission
thresholds; consequently the excitation spectrum in the CRPA is continuous. In this sense, it is
clear that the approach followed here (see Subsec. 2.5.2) should be understood as a CRPA one.

In Ref. [163], it is argued that the RPA or CRPA are the methods of choice at intermedi-
ate neutrino energies. The CRPA calculations carried out in this reference used a finite range
residual force based on the Bonn potential, and all multipole operators with J ≤ 9 and both
parities were included. Free nucleon form factors were used in [163], with no quenching, and
thus this RPA approach provided a realistic description of collective nuclear excitations due to
one-particle one-hole excitations of the correlated ground state. However, neither short range
nucleon-nucleon correlation effects included in realistic SFs, nor the excitation of ∆h compo-
nents in the RPA responses are taken into account in the scheme of Ref. [163].

In Fig. 4.9, we compare our RPA predictions for dσ/d(cosθ ) with those obtained in [163]
for oxygen and two different electron–neutrino energies. We find a reasonable agreement, which
is substantially improved when ∆h excitations are not allowed in our approach (black dashed
curves). (The role played by the inclusion of ∆h components in the RPA series at intermediate
energies was already mentioned in Ref. [3].) There exist some discrepancies for Eν = 500
MeV and θ > 900. In this region, the momentum transfers are larger than those for which our
nonrelativistic RPA treatment is adequate. Nevertheless, we clearly see that in both approaches,
RPA corrections lower the cross section at forward angles, but raise it at more backwards angles.
This is also seen for Eν = 300 MeV.
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FIGURE 4.7: Neutrino and antineutrino differential cross sections from 16O at various energies. “LFG”
and “RPA” curves were calculated with nonrelativistic kinematics. The use of relativistic kinematics
causes a decrease of the cross section shown as striped pattern bands below those curves. LDA SF
results have been computed using a complex self-energy to dress both, particle and hole nucleon lines.
Theoretical errors on the LDA SF+RPA predictions show MC 68% CL intervals (red bands).

The double differential neutrino-carbon quasielastic cross sections measured by the Mini-
BooNE collaboration triggered an enormous theoretical activity, since a large value of the axial
nucleon mass, MA, is needed to describe the data when RPA and 2p2h nuclear effects are not
considered [166]. The solution to this puzzle came from the consideration of these nuclear cor-
rections, which were computed by two different groups: Lyon [75] and IFIC [74]. The latter
one included RPA corrections using the many-body scheme described in Subsec. 2.5.2, while
the Lyon group accounted for RPA effects as described in Ref. [72]. In Fig. 4.10, we show
results [74], for the QE contribution to the CC quasielastic νµ−12C double differential cross
section convoluted with the MiniBooNE flux. There, we also display results from the Lyon
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FIGURE 4.8: Ratio σ(µ)/σ(e) of inclusive neutrino (first row) and antineutrino (second row) QE cross
sections for carbon, oxygen and argon, as a function of the incoming (anti-)neutrino energy. We show
nonrelativistic free LFG, RPA, LDA SF and LDA SF+RPA results. In the two bottom plots, we show
bands (red for carbon, blue for oxygen and green for argon) whose upper and lower limits are given by
the LFG and LDA SF+RPA predictions, respectively.

model taken from [75]. Both sets of predictions for this genuine QE contribution, with and
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FIGURE 4.9: Angular distributions of the emitted electron in the νe+16O→ e−+X inclusive reaction
for Eν = 300 MeV (left) and 500 MeV (right). The curves labeled by GFG and Kolbe et al. are taken
from the bottom panel of Fig. 3 of Ref. [163], and stand for the relativistic global Fermi gas model
and the CRPA calculations presented in that work, respectively. In addition, we also show our full RPA
predictions and the distributions obtained when the excitation of ∆h components in the RPA responses are
not taken into account (this amounts to setting U∆ to zero in the denominators of Eq. (2.99)). Relativistic
free LFG (noninteracting) SFs have been used in all cases.

without RPA effects, turn out to be in an excellent agreement, despite the large corrections pro-
duced by the RPA re-summation. Note that the comparison in Fig. 4.10 is quite appropriate,
not only for the repercussion of the MA puzzle, but also because the MiniBooNE flux peaks at
muon-neutrino energies around 600 MeV [167], below 1 GeV that is the energy used to show
predictions in Ref. [72]. Our RPA treatment is nonrelativistic and it should be used with some
caution, as discussed at the beginning of Subsec. 4.2.2, for neutrino energies well above those
compiled in Table 4.5. We understand that some relativistic corrections could also limit the
validity of the RPA predictions of Ref. [72].
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FIGURE 4.10: RPA effects on the QE contribution to the MiniBooNE flux–averaged νµ−12C double
differential cross section per neutron for 0.8 < cosθµ < 0.9, as a function of the outgoing muon kinetic
energy. The curves labeled by Martini et al. and Pandey et al. are taken from Fig. 6 of Ref. [75] and Fig.
4 of Ref. [24], respectively, while the other two curves have been calculated using the model presented
in this work, and they were first shown in Fig. 3 of Ref. [74]. Relativistic free LFG (noninteracting) SFs
have been used in our predictions.
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There exist other RPA or CRPA approaches available in the literature. Thus, for instance
a detailed study of a CRPA approach to QE electron-nucleus and neutrino-nucleus scattering
has been recently presented in Ref. [22] and briefly described in Subsec. 3.3.4. There, a spe-
cial attention to low-energy excitations is paid, together with an exhaustive comparison of the
12C(e,e′) and 16O(e,e′) experimental double differential cross sections with CRPA and Hartree-
Fock (HF) predictions. The work of Ref. [22] is in principle self-consistent, because the same
interaction is used in both the HF and CRPA calculations. This is however not completely true,
since the parameters of the momentum-dependent nucleon-nucleon force used in [22] were op-
timized against ground-state and low-excitation energy properties [168], and this force tends
to be unrealistically strong at large Q2 = −q2 values. This is corrected in [22] by introducing
a phenomenological dipole hadronic form factor at the nucleon-nucleon interaction vertices.
Qualitative features reported in [22] agree with our model. To be more specific, let us focus in
the 12C(e,e′) cross sections showed for different kinematics in Fig. 5 of this reference. There,
we see that being a collective effect, RPA corrections decrease as the associated wave-length of
the virtual photon becomes significantly shorter than the typical size of the nucleus [79]. Thus,
RPA effects become little relevant for the highest Q2−panels showed in that figure, which in
general correspond to incoming electron energies above 1 GeV or in the case of smaller ener-
gies to large scattering angles. However, large RPA corrections are clearly visible for the lowest
electron energies (first seven panels of the figure), where in addition Q2 < 0.1 GeV2. Indeed,
in most of these panels, where Q2 is even smaller than 0.025 GeV2, we see how the consid-
eration of RPA correlations lead to the appearance of peaks in some regions. In the previous
subsection (Subsec. 4.2.1), where the predictions of our model for low energies are discussed,
we will see how something similar also occurs within our model, and in some regions we find
clear enhancements of the LDA SF+RPA distributions as compared to those obtained without
including RPA corrections.

In general, and besides the extremely low Q2−panels, we conclude from Fig. 5 of Ref. [22]
that RPA effects on top of the HF results are moderately small. This is in good agreement
with our observation that RPA corrections are smaller when realistic SFs are taken into account.
(Note that within a HF scheme, the nucleons acquire a real self-energy, and thus somehow this
would be equivalent to use SFs obtained neglecting the particle and hole widths). The less
important role played by RPA corrections, at sufficiently high Q2 values when some realistic
MF potentials are used, could provide some understanding of the success of the SuSA [21, 169,
170, 171, 172, 148] or the bound local FG model (used in the GiBUU–Giessen Boltzmann-
Uehling–Uhlenbeck- transport approach [64]), in predicting neutrino cross sections despite not
incorporating RPA effects.

Nevertheless, the approach of Ref. [22] has some limitations mostly because zero-range
Skyrme interactions do not properly describe processes involving momentum transfers, signif-
icantly larger than mπ . Indeed, though a zero-range Skyrme force might be adequate for a
microscopic description of both ground- and excited-state properties of nuclei, it might not be
well suited to describe the dynamics of the ejected nucleon (Sp) or to compute RPA correc-
tions for large momentum and energy transfers (let us say above 150 MeV). In this latter case,
including ∆(1232) degrees of freedom (as we have shown in the discussion of the results of
Ref. [163]), or considering explicitly pion exchange contributions to the interaction produce
significant effects. This has been shown in a multitude of works [119, 173, 106, 2, 174, 175,
176, 177, 121, 178, 179, 7, 180, 7, 181, 182, 6, 183, 184, 185], where photon, electron, pion,
kaon, Λ,Σ−hyperons etc. interactions with nuclei have been described within the many-body
framework used here. Thus, as an example, in Fig. 4.11, we compare with data the predictions
of the approach of Ref. [22] for inclusive QE cross section for scattering of electrons on carbon
at 560 MeV and 60◦ (|~q | = −0.508 GeV). We observe that the results of Ref. [22] already de-
scribe the data in the region of QE peak, leaving almost no room for 2p2h contributions, which
according to the empirical fit to electron-nucleus scattering data carried out in [186] provide
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a significant cross section in that region. Note that the LDA SF+RPA QE predictions (RPA
effects are moderately small, as one can expect for this value of q2) lie below the data, and one
might expect that some 2p2h contributions would improve notably the agreement with data8. In
addition, one should bear in mind that our results for the energy transfers larger than that of the
QE peak are affected from relativistic corrections, which will make the distribution narrower,
as can be inferred from the reddish-shaded region shown in Fig. 4.11. Indeed, the position of
the QE peak is also affected and a relativistic calculation will shift its position around 10 MeV
towards lower energy transfers.

We should note that the GiBUU 2016 QE plus 2p2h cross sections, supplemented by ∆(1232)−driven
mechanisms and some non-resonant pion background terms provide a fairly good description
of the data for all energy transfers shown in Fig. 4.11, as can be seen in the original Fig. 3 of
Ref. [64].
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FIGURE 4.11: Inclusive QE cross section for scattering of electrons on carbon at 560 MeV and 60◦

(q2 = −0.242 GeV2 at the QE peak). Besides the LDA SF and LDA SF+RPA results (RPA corrections
are included as in the case of the vector contributions to the neutrino-induced inclusive QE reaction
driven by the electroweak NC studied in Ref. [113]; see also [6]), predictions from Refs. [22] (Pandey et
al.) and [64] (GiBUU 2016) are also shown. These latter curves are taken from panel j of Fig. 5 of [22]
and Fig. 3 of [64], respectively. The 2p2h curve, taken also from Fig. 3 of [64], stands for contributions
of meson exchange currents (genuine 2p2h), and it might include also short-range and RPA effects [64].
It is obtained from an empirical fit to electron-nucleus scattering data carried out in [186]. Finally, the
reddish-shaded region shows the difference between relativistic and nonrelativistic noninteracting LFG
predictions. Data taken from Ref. [187].

The HF and CRPA approaches of Ref. [22] were used in Ref. [24] to evaluate the QE
contribution to the CC quasielastic νµ−12C double differential cross section convoluted with
the MiniBooNE flux. These latter results for 0.8 < cosθµ < 0.9, as a function of the outgoing
muon kinetic energy, are also displayed in Fig. 4.10. The size of the quenching is smaller
in the CRPA model of Refs. [22, 24], resulting in a larger predicted cross section for the QE
process, than in the approaches of Refs. [74] and [75]. We expect here a situation similar to that
discussed in Fig. 4.11 for electron scattering, since all the available estimates [74, 75, 66, 64]

8We cannot simply add up the 2p2h contribution displayed in Fig. 4.11 to our predicted cross section. This
is because our model for the SFs contains contributions from the 2p2h diagram depicted in Fig. 3.4, and then the
addition of the rest of 2p2h contributions will include some interference terms which sign is not defined. Moreover
and according to Ref. [64], the 2p2h curve also accounts for some short-range and RPA effects.
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for the 2p2h contribution to the CCQE-like cross section measured by MiniBooNE will lead to
the CRPA or HF models used in [24] to overestimate the data9.

Next we pay attention to schemes involving realistic SFs. We begin with the CBF SF for-
malism, based on factorization and a state-of-the-art model of the nuclear SFs, used in Refs. [15,
16, 17, 18, 19] to describe neutrino-nucleus interactions. Such scheme has been extensively and
successfully tested in electro-nuclear reactions at relatively large energies. We first compare in
Fig. 4.12 our results with the most recent QE neutrino predictions reported in Ref. [19]. The
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FIGURE 4.12: CCQE cross section of the reaction σ(νµ +12 C→ µ−+X) as a function of neutrino
energy. Besides the results taken from the bottom panel of Fig. 3 of Ref. [19], and labeled as Vagnoni
et al., we also display (blue dashed line) our LDA SF predictions up to 500 MeV, and relativistic and
nonrelativistic free LFG (upper limit of the reddish band) cross sections for the entire neutrino energy
range. We also show results LDA SF IA obtained using the hadron tensor of Eq. (3.10), keeping the full
hole LDA SF while treating the outgoing nucleon as a free particle.

calculation of Ref. [19] considers a fully dressed nucleon-hole, but uses a free particle SF, i.e., it
employs a plane wave for the outgoing nucleon, satisfying a free relativistic energy-momentum
dispersion relation. In the terminology of this reference, FSI effects are not taken into ac-
count. In spite of this, we see that our results, obtained dressing both particle and hole nucleon
lines with a complex self-energy, agree quite well with the predictions given in Ref. [19] up
to Eν = 500 MeV, where relativistic corrections could start being relevant. This confirms the
validity of the approximation, sometimes used by this group, of neglecting FSI nuclear effects
when studying inclusive total cross sections10. To extend the comparison to higher energies,
we have adopted the same approximation as in [19], and replaced Sp in Eq. (2.87) by an energy
conserving delta function11, including also the M/Ep+q factor that appears in the evaluation
of the Lindhard function when relativistic kinematics is used. The green dash-dotted curve,
labeled as LDA SF IA, in Fig. 4.12 shows the results of this new calculation. The agreement

9See for instance the results for the QE and 2p2h cross sections given in Fig. 5 of Ref. [64], which sum describes
fairly well the MiniBooNE data.

10FSI effects on inclusive integrated cross sections are mostly produced by the consideration of the real part of
the self-energy in the energy conservation equation, and are in general small.

11As discussed in Subsec. 3.3.1, the real part of the nucleon self-energy is evaluated in [2] up to momentum
independent pieces that appear both in the hole and particle self-energies and that cancel in the computation of
the imaginary part of the fully dressed Lindhard function. However, to obtain results using a dressed hole and an
undressed particle, an absolute value for the real part of the nucleon-hole self-energy is needed. Here, we include
phenomenologically a constant term Cρ in the nucleon self-energy, with C = 0.8 fm2 for carbon, fixed to a binding
energy per nucleon |εA|= 7.8 MeV (see Subsec. 3.2.3).
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with the predictions of Ref. [19] is remarkable for the entire neutrino energy range displayed in
the figure, even above 1 GeV.

Note that the use of a realistic hole SF produces significant corrections, which clearly need
to be accounted for to achieve an accurate description of the cross section.

FSI effects (use of a nontrivial particle SF) in the scheme of Refs. [15, 16, 17, 18] are taken
into account by means of a convolution [144, 14], which involves the real part of a nucleon-
nucleus optical potential–responsible for a certain shift in the QE peak position–, the nuclear
transparency, and the in-medium NN scattering cross section. The imaginary part of the Lind-
hard function calculated using the SFs of Ref. [2] also nicely agrees with that deduced within
the scheme of Refs. [15, 16, 17, 18] when FSI effects are taken into account. In a comparison
presented in Ref. [188] and in Chpt. 5 the scaling function [189, 190, 191] is computed and
compared in both approaches (the scaling function is essentially, up to a factor |~q | and some
other constants, the imaginary part of the Lindhard function [25]).

In Fig. 4.13, we have also compared the results of our approach in the QE region for sev-
eral e+12 C→ e′X double differential distributions at different scattering angles and incoming
electron energies with data and with the predictions of Ref. [14]. The approach of Ref. [14], in
addition to the use of a realistic hole spectral function, takes also into account the effects of FSI
(nontrivial particle SF) between the struck nucleon and the residual nucleus through the con-
volution mentioned above. Our LDA SF results agree reasonably well with the predictions of
Ref. [14] for all examined kinematics. Nevertheless in the bottom panels, for which |~q | > 365
MeV, our distributions are wider than those obtained within the approach of Ref. [14], show-
ing clear differences above the QE peak. Relativistic corrections will make our distributions
narrower, as can be inferred from the reddish-shaded regions in Fig. 4.13.

We finish these comparisons discussing the similarities of our approach with the GiBUU
framework used in Ref. [145] to make predictions for CC and NC inclusive scattering of oxygen
at beam energies ranging from 0.5 to 1.5 GeV. The scheme takes into account various nuclear
effects: the LDA for the nuclear ground state, mean-field potentials, and in-medium spectral
functions. For the spectral function of the initial state nucleon, it was considered only the real
part of the self-energy generated by a MF potential and neglected the imaginary part12. All these
in-medium modifications were tested by comparing the predictions of the model with electron
scattering results.

In Fig. 4.14, we show the CCQE predictions for oxygen at Eν = 0.5 GeV given in the
top panel of Fig.13 of Ref. [145] (orange-dotted curve labeled as Leitner et al in Fig. 4.14),
together with our LDA SF and free LFG results. The agreement is not as good as in the previous
cases, and our full SF distribution at the QE peak is smaller (around 30%) than that obtained
in Ref. [145], and it is also significantly wider. The agreement improves when the results of
Ref. [145] are compared with the differential cross section obtained within our model neglecting
the imaginary part of the hole self-energy, as in [145].

We should note that the GiBUU framework used in [145] overestimates the similar (e,e′)
differential QE cross sections for incoming electron energies and outgoing scattering angles
close to those examined in Fig. 4.14. This can be seen in Figs. 10 and 11 of the same reference
[145]. Indeed looking at the top panels of these two figures, one can appreciate deviations from
data of around 20-25% at the QE peak. Moreover, the discrepancies seem to increase when
both the incoming electron energy and scattering angle decrease. (Note that in the top panels of
Figs. 10 and 11, both scattering angle and energy are larger than those examined in Fig. 4.14.)
One certainly expects that the approximate SF-treatment used in [145] should work much better
and be quite accurate for angular-integrated cross sections.

12Neglecting the hole width is a priori a reasonable approximation, as can be inferred from Fig. 3.6, and it was
also used in Ref. [3]. Note however that in this latter work, the Jacobian determinant discussed in Eq. (3.21) was
further approximated to one.
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FIGURE 4.13: Inclusive QE cross sections for scattering of electrons on carbon at different scattering
angles and incoming electron energies. Besides LDA SF results, predictions (Ankowski et al.) taken
from panels (d)–(i) of Fig. 2 of Ref. [14] are also shown. At the QE peaks, the momentum transfers
|~q | are 259, 295, 331, 366, 390 and 450 MeV, respectively. Data taken from Refs. [192, 193, 194].
As in Fig. 4.11, the reddish-shaded regions show the difference between relativistic and nonrelativistic
noninteracting LFG predictions.

A new release of GiBUU became available in 2016 [64], among other improvements, a
better preparation of the nuclear ground state and its momentum distribution are implemented.
This corresponds in our language to use more accurate SFs. The new result is also shown (blue-
dashed curve, labeled as GiBUU 2016) in Fig. 4.14, where we could see the agreement with the
two versions of the present work is now quite good.

Moreover, the update GiBUU version provides an excellent description of electron data, not
only for QE scattering here discussed, but also in the dip and ∆−peak regions [64, 195].
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FIGURE 4.14: CCQE neutrino double differential cross section d2σ/dΩ(k̂′)dE ′ on 16O as a function of
the energy transfer at Eν = 0.5 GeV and a scattering angle of θ = 30o. The orange-short-dashed curve,
labeled by Leitner et al., stands for the full calculation of Ref. [145] (full in-med. SF curve of top panel
of Fig. 13 of this reference). We also show relativistic and nonrelativistic free LFG, and the LDA SF and
approximated LDA SF (neglecting the hole width) sets of predictions. Finally the blue-dashed curve,
labeled as GiBUU 2016, has been obtained with the 2016 updated version of the GiBUU code [64].

4.3 Electron scattering

In this section, we will confront the nuclear effects incorporated by the means of realistic SFs
with electron scattering data. It is based on the findings of Ref. [150].

4.3.1 Electron selection criterion

There is a large set of electron-nucleus cross-section measurements. In order to perform a com-
parison with electron data we will choose the data sets that are most important for the T2K ex-
periment. To do this, we consider the flux-averaged differential cross section (dσ/d|~q|dq0)CCQE

from carbon. The muon neutrino flux used in the T2K experiment, F (E), is shown in Fig. 4.15.
The cross section averaged over the flux is given by:

dσ

d|~q|dq0

∣∣∣
T2K

=
1
F

∫
dE

dσCCQE

d|~q|dq0 F (E), F =
∫

dEF (E). (4.18)

We have also looked at the distribution of the oscillated neutrinos investigated in both the
appearance and the disappearance measurements, taking into account the probability of oscil-
lation Pνµ→νe for the ND280 near detector with parameters given in [51]. It shifts slightly the
peak and makes it narrower (see Fig. 4.15). Thus we consider now:

dσ

d|~q|dq0

∣∣∣osc

T2K
=

1
W

∫
dE

dσCCQE

d|~q|dq0 F (E)Pνµ→νe(E),

W =
∫

dEF (E)Pνµ→νe(E). (4.19)

The results of the analysis done with Eqs. (4.18) and (4.19) are very similar because the spectra
for the muon neutrinos and oscillated neutrinos are very much alike (see Fig. 4.15). In what
follows, the latter option will be chosen. In order to calculate (dσ/d|~q|dq0)CCQE we have used
the LDA SF IA model (with a free particle spectral function, see Sec. 3.2.3 because of its fast
numerical performance). The results are shown in Fig. 4.16, where we can also see the position
of the QE peak, defined as the maximal value of (dσ/d|~q|dq0)CCQE for a given q0 (note that its
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position is very close to~q2 = (q0)2+2Mq0). The use of different models might slightly change
the shape shown in Fig. 4.16 (e.g. shift the position of the QE peak, spread it, etc.); however,
it would not influence the final conclusions of this analysis since it is used only to sieve the
electron data.
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FIGURE 4.15: The muon neutrino flux in the ND280 detector of the T2K experiment, taken from [196].
The dashed line shows the flux, the solid curve shows the flux multiplied by the oscillation probability
Pνµ→νe [51]. Both curves are normalized to the same area.

In total there are 66 data sets of electron-carbon scattering data gathered in [187]. They
cover a wide range of incoming electron energies and scattering angles which can be translated
into energy and momentum transfer variables. Using this change of variables, one can plot
them all on the (q0, |~q|) plane, just as shown in Fig. 4.16 for three example data sets. The usage
of (q0, |~q|) variables is more natural because they are the arguments of the nuclear response
functions, which play the same role for neutrino and electron scattering processes (the difference
lies in the interaction vertex). In Fig. 4.16 we show how three typical electron data sets coincide
with the CCQE region for the T2K flux.

The next problem is to define a criterion to select which data sets are most important for
neutrino studies. We propose to quantify the significance of data using the following procedure:

1. Calculate dσ/d|~q|dq0
∣∣osc
T2K for the range of q0 ∈ (0,500) MeV, |~q| ∈ (0,1000) MeV.

2. We look at the QE peak defined as the maximal value of dσ/d|~q|dq0
∣∣osc
T2K for a given q0

(it leads to a "CCQE line" marked as a black solid curve in Fig. 4.16 )

3. Plot the different electron data sets on the (q0, |~q|) plane.

4. Choose only those data sets which CCQE value (the value of dσ/d|~q|dq0
∣∣osc
T2K at the

crossing point with the “CCQE line”) is at least 67% of the maximal value taken by this
flux-averaged differential cross section along the “CCQE line”, see Fig. 4.17.

This procedure largely reduces the available electron scattering data, basically removing
those with low or high energy transfers in the QE peak. There are in total 33 data sets fulfilling
this condition. To introduce further order, we divide them into three groups according to their
importance, calculating again the value of the CCQE peak that corresponds to their position.
In Fig. 4.17 we plot the dependence of the CCQE peak height on the energy transfer q0 (using
the LDA SF IA model) and mark three regions. In the energy range 30− 200 MeV the height
varies from 43.7 to 62.5×10−38cm2/GeV2 . The maximal value is reached for q0 ∼ 80 MeV.
The three regions that we consider are:
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• Region I (energy transfer 30-50 MeV). The momentum transfer in this region is |~q| <
300 MeV, which means that one is actually beyond the limit of usability of the Impulse
Approximation and giant resonances might be visible in the data. This is also the smallest
sample with only five data sets.

• Region II (energy transfer 50-125 MeV). This will be our main region of interest, it
covers data with at least 95% of the maximal height. There exist eighteen data sets in this
region.

• Region III (energy transfer 125-200 MeV). The importance of this region is similar
to that of Region I, however, they are separated for the sake of a clearer analysis (since
theoretical models behave differently in Regions I and III). There are ten data sets in this
region of energy transfer.

4.3.2 Data sets

The selected 33 data sets are gathered in Tables 4.7 (Region II) and 4.8 (Regions I and III). Each
data set is identified by the energy of the incoming electron and the scattering angle (columns 1
and 2), and for all of them we find the point (q0, |~q|) for which dσ/d|~q|dq0

∣∣osc
T2K is maximal. The

point coordinates are denoted by ((q0)QE, |~q|QE) and shown in columns 3 and 4. The numerical
value of dσ/d|~q|dq0

∣∣osc
T2K((q

0)QE, |~q|QE) is given in the fifth column. Finally, the ratio of these
latter values and the absolute maximal one for dσ/d|~q|dq0

∣∣osc
T2K are collected in the column

number six (among all the sets it corresponds to the kinematics E=1500 MeV, θ = 13.54◦ and
q0 ∼ 80 MeV). This serves as a measure of the importance of the set.

We will consider different theoretical models and compare the various predictions to the in-
clusive electron-nucleus scattering data. We will restrict this study to the QE region. For future
discussions we estimate also contributions from the longitudinal and transverse responses. For
electron-nucleus scattering, the cross section is the sum of two contributions from either a trans-
verse or longitudinally polarized virtual photon. It can be expressed in terms of RT (q), RL(q)
response functions which enter in the definitions of σL,T (see Eq. (5.1) of the next chapter):

d2σ

dΩk′dq0 =

(
dσ

dΩk′

)
Mott

[
σL +σT

]
, (4.20)

It is well known that non-QE processes, like 2p2h excitations or the ∆ production, mostly
contribute to the σT part. Therefore, for σL� σT one might expect those mechanisms to give
small contributions in the QE region. We will come back to this point in Sec. 4.3.4. Thus, in the
column 7, σT /σL is also shown. Those ratios are calculated at the QE peaks and provide some
information on how large contributions from 2p2h and ∆ mechanisms should be expected.

4.3.3 Analysis

In the following section, the results predicted by different models are described. We will include
LDA SF (Sec. 3.2), CBF SF (Subsec. 3.3.1), GiBUU (Subsec. 3.3.2) and – as a benchmark –
LFG and GFG relativistic models. In order to make the plots legible, the results of CBF SF
without including FSI are not depicted. However, its behaviour is briefly mentioned in the dis-
cussion. Also, CBF SF+FSI results will be shown in the figures included in Subsec. 4.3.4. Since
we are comparing theoretical QE approaches with inclusive electron scattering data, one must
be careful in drawing definite conclusions about precision of the different models. In some kine-
matical setups the 2p2h and the ∆ production mechanisms might give sizable contributions in
the QE peak region. Therefore, one should not expect a perfect agreement of the QE theoretical
models with data. This issue will be separately discussed for each region.
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FIGURE 4.16: dσ/d|~q|dq0
∣∣osc
T2K [10−38cm2/GeV2] in carbon for the T2K flux (using the LDA SF IA

model), see Eq. (4.19). The position of the CCQE peak is marked with the solid line. Three typical
electron data sets are also shown (experimental points are connected by lines for better legibility): solid
line E= 200 MeV, θ = 60◦; dashed line E= 1500 MeV, θ = 13.54◦, dotted-dashed line E= 680 MeV,
θ = 60◦. Each of them crosses the black solid curve (“CCQE line”) at different points. The value of
dσ/d|~q|dq0

∣∣osc
T2K in this crossing point is taken as the measure of the importance of the data set.

I Region (energy transfer 30-50 MeV)

In this region, the longitudinal part of the cross section is overwhelmingly dominant (see Table.
4.8), and contributions of the 2p2h and the ∆ mechanisms are supposed to be quite small, hardly
influencing the analysis. Thus, one can compare the models directly to the data. On the other
hand, this region is sensitive to collective effects, which are clearly visible in the data (Figs.
4.18a-4.18e). With such small energy transfers, one is on the verge of the applicability of some
models, and the data points lying on the left of the QE peak are usually not correctly described
using just spectral functions.

In these kinematical setups, the importance of SF nuclear effects is clearly visible. The LFG
predicts the QE peak sometimes twice higher than data and shifted (up to 15 MeV). The GFG
predictions are slightly lower but also clearly overestimate the experimental cross section. CBF
SF (not shown in the plots) misplaces the QE peak (even by 20-25 MeV) and overestimates it
(up to 10% effect), confirming that it is not enough to describe properly the data using only a
realistic hole SF. When applying the complete models: LDA SF, CBF SF+FSI and GiBUU, the
results are close to the data and all the models work remarkably well (Figs. 4.18a-4.18e).

LDA SF and CBF SF+FSI performances are probably slightly better than that of GiBUU.
The latter model overestimates slightly the strength of the QE peak and the slope of the data.
Also, one observes that LDA SF and CBF SF+FSI produce a long tail which is not present in
GiBUU results; however, this influences only the high energy transfer region. The tail would
appear also for GiBUU if the collisional broadening had been taken into account (here we
present the results of the standard calculation where these effects were neglected).

In this region, the fact of using nonrelativistic kinematics hardly influences the results. This
can be observed for the LFG model, where the difference between relativistic and nonrelativistic
kinematics is small (see the gray band on Fig. 4.18a-4.18e).

II Region (energy transfer 50-125 MeV)

This is the most important region where the highest dσ/d|~q|dq0
∣∣osc
T2K cross sections are found.

There are many data sets (18) to compare with, for various kinematical setups (both low and
intermediate scattering angles). Results are shown in Figs. 4.19, 4.20 and 4.21.
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FIGURE 4.17: Flux (T2K) average CCQE dσ/d|~q|dq0
∣∣osc
T2K [10−38cm2/GeV2] cross section in carbon

at the QE peak as a function of the energy transfer. The LDA SF IA model has been used to evaluate the
nuclear cross section.

First of all, one notices that GiBUU, CBF SF+FSI and LDA SF predictions stay in a
very good agreement with the data in this region. For higher energy transfers (above the
QE peak) LDA SF predicts broader QE distributions than the other two models, however,
this can be explained by the nonrelativistic kinematics that is employed. GiBUU and CBF
SF+FSI models in some cases underestimate the data (especially on the right side of the peak).
This can, however, be partially understood by the 2p2h contribution that is not included in
the calculations, as will be discussed in Subsec. 4.3.4 (see Figs. 4.21a, 4.21e and 4.21f).
The difference between the models at the QE peak is rather small (a few percent difference,
with GiBUU lying below). For the lower energy transfers (below 50-75 MeV) the discrepan-
cies are more pronounced. GiBUU in some cases slightly overestimates the data (e.g. Fig.
4.21f), while CBF SF+FSI and LDA SF underestimate it (e.g. Fig. 4.21c). We also see in
Figs. 4.19a, 4.19c, 4.19d, 4.19f, 4.20a, 4.20b, 4.20e, 4.20f some additional low-energy struc-
tures which might be described by collective modes.

Fermi gas models have a tendency to overestimate the QE peak. The LFG predicts the QE
peak far too high, for the lower energy transfers almost twice as high, going down to 40−60%
effect. It is also displaced for about 10−15 MeV in the case of a high-energy incoming electron
and a small scattering angle (see for instance Figs. 4.20c, 4.20d, 4.21b). Even though the
change of the binding energy would move the QE peak position, it is impossible to choose a
unique value which would be correct for all kinematics.

If one neglects FSI, using CBF SF, the QE peak is shifted - up to 25 MeV - and slightly
overestimated (what is especially pronounced for low scattering angles). The latter effect is,
however, rather small (few percent). Similarly to Region I, CBF SF+FSI and LDA SF predict
a long tail spreading to the high energy transfer. There, the two approaches describe the data
remarkably well, as can be observed e.g. in Fig. 4.19. In this region in general σT /σL < 1 but
– as can be seen in Figs. 4.21d-4.21f – where σT /σL ≈ 1 other mechanisms start to be visible
in the data and lead to some enhancement in the cross section for large q0.

Region III (energy transfer 125-200 MeV)

In this region, σT ∼ σL and therefore 2p2h and ∆ mechanisms are expected to overlap with the
QE peak in a significant way. However, as will be shown in Subsec. 4.3.4, the effect of these
reaction channels is not drastic in the vicinity of the peak. It influences mostly the slope at the
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Energy
[MeV]

Angle
[degrees]

(q0)QE

[MeV]
|~q|QE

[MeV]

dσ

d|~q|dq0
osc

T2K
((q0)QE, |~q|QE)

[10−38 cm2/GeV2]
height

max height [%]
σT /σL

((q0)QE, |~q|QE)

280 60◦ 53 258 60.1 96.1 0.4
1300 11.95◦ 60 271 61.2 98.0 0.2
480 36◦ 62 284 61.5 98.3 0.3
320 60◦ 63 294 61.3 98.1 0.5
1500 11.95◦ 70 313 61.7 98.8 0.3
1300 13.54◦ 70 306 61.9 99.1 0.3
560 36◦ 72 331 62.2 99.4 0.4
361 60◦ 73 331 62.2 99.5 0.6
1650 11.95◦ 80 345 62.1 99.4 0.4
1500 13.54◦ 80 353 62.4 100 0.4
401 60◦ 88 365 62.3 99.7 0.7
620 36◦ 92 365 62.3 99.7 0.5
440 60◦ 98 400 61.7 98.7 0.8
1650 13.54◦ 100 390 62.0 99.2 0.4
680 36◦ 102 401 61.5 98.5 0.6
480 60◦ 112 435 60.5 96.9 0.9
730 37.1◦ 115 442 60.2 96.3 0.7
500 60◦ 125 451 59.9 95.8 1.0

TABLE 4.7: Data sets of Region II sorted by (q0)QE . Columns 3 and 4: coordinates ((q0)QE, |~q|QE)
in Fig. 4.16 for which dσ/d|~q|dq0

∣∣osc
T2K in carbon is maximum for the given electron data set, being the

latter value collected in the fifth column. Column 6: ratio of the flux averaged cross section displayed
in column 5 (“height”) and the absolute maximum one that corresponds to kinematics E=1500 MeV,
θ = 13.54◦ (“max height”). Finally, in the last column we give the ratio σL/σT (Eq. (4.20)) for electron-
nucleus scattering. The numbers given in the last column where obtained in the LFG model. The results
of column 5 have been evaluated using the LDA SF IA nuclear model. For some more details see the
text in Subsec. 4.3.2.

right hand side of the QE maximum, though in some cases it might even change the height of
the peak.

The higher energy transfers are, the less visible SF nuclear effects become. Comparing to
Regions I and II, the differences between the Fermi gas and other models are less pronounced.
Surprisingly, the GFG gives predictions very similar to models which contain nuclear correc-
tions while the LFG overestimates the peak (as is Regions I and II). Here the effect is not so
drastic, yet clearly visible, about 35% of the discrepancy.

CBF SF model also slightly misplaces the peak (up to 15 MeV towards high energies),
however, not overestimating it. The inclusion of FSI, which caused quite a strong quenching
in Regions I and II, here produces a rather small effect. The peak gets shifted towards lower
energies because of the real part of the optical potential UV .

In this region, because of the large relativistic effects, for all the cases but the four cor-
responding to the lowest energy transfers (Figs. 4.22a, 4.22b, 4.22c, 4.22d) we have used an
approximated version of the LDA SF model, where the particle spectral function is approxi-
mated by the free relativistic one (LDA SF IA). We have neglected FSI effects and we have
used the approximated expression of Eq. (3.11). The results are shown in Figs. 4.22e, 4.22f
and 4.23. Comparing the predictions of the latter model with those obtained with the GiBUU
and CBF SF+FSI ones, the peak is around 10-15% higher and slightly broader on the right
side of the QE peak, which makes them closer to data, however not leaving much room for the
inclusion of 2p2h and ∆ effects.



100 Chapter 4. How to validate and compare models?

Energy
[MeV]

Angle
[degrees]

(q0)QE

[MeV]
|~q|QE

[MeV]

dσ

d|~q|dq0
osc

T2K
((q0)QE, |~q|QE)

[10−38 cm2/GeV2]
height

max height [%]
σT /σL

((q0)QE, |~q|QE)

200 60◦ 43 182 50.3 80.5 0.2
320 36◦ 43 189 51.9 83.0 0.2
240 36◦ 48 141 44.7 71.5 0.1
240 60◦ 48 220 56.8 90.9 0.3
400 36◦ 52 236 58.3 93.3 0.2
519 60◦ 131 468 59.0 94.3 1.0
560 60◦ 142 504 57.0 91.2 1.2
2020 15.022◦ 150 530 54.2 86.7 0.7
2000 15◦ 150 524 55.0 88.0 0.7
1930 16◦ 164 539 53.2 85.1 0.8
620 60◦ 168 555 51.6 82.6 1.3
2130 16◦ 179 595 47.2 75.5 0.9
1930 18◦ 182 603 46.0 73.7 0.9
961 37.5◦ 183 585 48.7 78.0 1.0
680 60◦ 188 608 46.0 73.7 1.5

TABLE 4.8: As in Table 4.7, but now the data sample belong to Regions I (first five sets) and III (last ten
sets) sorted by (q0)QE.

GiBUU and CBF SF+FSI models give very similar predictions for the height of the QE peak
(a few percent difference with GiBUU ones lying lower), but slightly shifted. One observes that
the GiBUU peak is much broader and for this reason in general for lower energy transfers this
model better describes the data, though in some occasions overestimate the experimental cross
section. CBF SF+FSI and LDA SF models underestimate the data at the left hand side of the QE
peak and this cannot be explained by 2p2h or ∆(1232) excitation mechanisms. This difference
between models was already visible in Region II.

4.3.4 Discussion

One encounters various practical problems when trying to perform a more quantitative com-
parison of the models. The description of the QE peak means not only its position, height and
width. The peak’s shape also changes, from almost symmetric to some appreciable degree of
asymmetry (e.g. Figs. 4.18d, 4.20a). Moreover, one does not have enough “direct informa-
tion” even to measure these basic nuclear quantities. In Regions I and II we cannot calculate
the peak’s width because the experimental points for low energy transfers are obscured by the
existence of giant resonances. On the other hand, in Regions II and III, the contributions from
2p2h and ∆ mechanisms broaden the peak, changing also its height and modifying the shape.

In order to overcome these obstacles, we will attempt to subtract the 2p2h and the ∆ contri-
butions from the data, using a model from Ref. [197] (this is not a unique possibility; one can
use e.g. the empirical fit proposed in Ref. [186]). We are well aware of the fact that this is only
an approximated procedure because predictions for 2p2h and ∆ mechanism contributions are
model dependent and there may be non-negligible interference effects. However, we hope that
at least basic properties of the different schemes can be analyzed in this way.

We will first concentrate on two characteristics of the QE peak: its position and height.
Subtracting the 2p2h and the ∆ contributions affects mainly the width of the QE peak, changing
the QE peak’s height only for the higher energy transfers by less than 10% percent (according
to the model from [197]). Lastly, we will compare the QE peak’s height and width (defined as



4.3. Electron scattering 101

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

0 20 40 60 80 100

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(a) 𝐸 = 200 MeV, 𝜃 = 60∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 20 40 60 80 100 120

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(b) 𝐸 = 320 MeV, 𝜃 = 36∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1 × 106

0 20 40 60 80 100

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(c) 𝐸 = 240 MeV, 𝜃 = 36∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(d) 𝐸 = 240 MeV, 𝜃 = 60∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140 160

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(e) 𝐸 = 400 MeV, 𝜃 = 36∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

FIGURE 4.18: Comparison of different electron-nucleus scattering models in Region I. For the local
Fermi gas, relativistic kinematics is employed and the difference from nonrelativistic results is shown as
a gray band.

the distance to the peak position where the strength has been reduced by a factor 1/2) predicted
by various models with those find in the LFG one.

2p2h and ∆ contribution

Two particle two hole (2p2h) mechanisms, also called meson-exchange current (MEC) con-
tributions, describe a situation where the lepton interacts with two nucleons from the ground
state, creating another pair of nucleons. On the other hand, the virtual photon can also excite
a ∆(1232) resonance that subsequently decays into a πN pair or disappears through nucleon



102 Chapter 4. How to validate and compare models?

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(a) 𝐸 = 280 MeV, 𝜃 = 60∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0
200000
400000
600000
800000
1 × 106

1.2 × 106
1.4 × 106
1.6 × 106
1.8 × 106

2 × 106

0 50 100 150 200

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(b) 𝐸 = 1300 MeV, 𝜃 = 11.95∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0

20000

40000

60000

80000

100000

120000

140000

160000

0 50 100 150 200

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(c) 𝐸 = 480 MeV, 𝜃 = 36∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 20 40 60 80 100 120 140 160

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(d) 𝐸 = 320 MeV, 𝜃 = 60∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0

200000

400000

600000

800000

1 × 106

1.2 × 106

0 50 100 150 200 250 300

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(e) 𝐸 = 1500 MeV, 𝜃 = 11.95∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1 × 106

0 50 100 150 200 250

𝑑𝜎
/𝑑

Ω
𝑑𝑞

0
[n

b/
(s

r
G

eV
)]

𝑞0 [MeV]

(f) 𝐸 = 1300 MeV, 𝜃 = 13.54∘

LDA SF
CBF SF+FSI

GIBUU
GFG
LFG

FIGURE 4.19: The same as in Fig. 4.18, but for Region II with (q0)QE ≤ 70 MeV.

collisions ∆N→ NN. In some kinematical regions, the 2p2h and the ∆ mechanisms may give
a noticeable contribution to the QE region. These new physical reaction channels overlap with
the QE peak, as can be observed with a naked eye when looking at the data: the cross section
grows instead of diminishing for higher energy transfers (above the QE peak), see e.g. Fig. 4.22.
This large contribution is in general due to the fact that the transverse response function gives a
sizable contribution to the cross section.

In Tables 4.7 and 4.8 the ratio σT /σL at the QE peak for every data set was shown. In
general, for low energy transfers the ratio is small (< 1), increasing for higher energies. A low
ratio means that RT is suppressed and thus one suspects that the 2p2h and the ∆ contributions
are relatively small. This refers mainly to the data from Region I and partially from Region II.
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FIGURE 4.20: The same as Fig. 4.19, but 70 < (q0)QE ≤ 95 MeV.

However, for a kinematics with a high σT /σL ratio such conclusion cannot be safely drawn.
We must also note that the CBF SF model includes initial nucleons’ correlations which are

partially responsible for the 2p2h contributions, so one should expect the sum of the QE and
2p2h mechanisms to exceed experimental data. The same occurs with the LDA SF model which
also contains some 2p2h dynamics.

To gauge the effect, in Figs. 4.24a and 4.24b we show two examples (from Region III),
where the 2p2h and the ∆ play an important role. One may see that all the models (in particular,
the CBF SF+FSI and GiBUU ones) underestimate the data, especially at the right hand side of
the QE peak. After the approximate subtraction of the 2p2h and the ∆ contributions from data,
the agreement becomes much better. Nevertheless, even then the height of the QE peak is still
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FIGURE 4.21: The same as Figs. 4.19 and 4.20 but for (q0)QE ≥ 95 MeV.

underestimated by GiBUU. The LDA SF model overestimates the corrected (green points) cross
sections at the right hand side of the QE peak for both kinematics, but for different reasons. In
Fig. 4.24a this is probably due to applying nonrelativistic kinematics while in Fig. 4.24b it is
because the approximated LDA SF IA is used.

We want to emphasize that the above analysis is model-dependent and should not be treated
quantitatively. It just aims to show the main features of the 2p2h and the ∆ inclusion.

QE peak’s height and position

In Fig. 4.25 we show the ratio (dσ/dΩdq0)model/(dσ/dΩdq0)data at the QE peak for various
models, as a function of the QE peak position.
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FIGURE 4.22: The same as Fig. 4.18, but for Region III with (q0)QE ≤ 180 MeV. For the last two
panels, the predictions of the LDA SF model have been obtained using a free relativistic particle SF (see
Eq. (3.10)). In general the 2p2h and ∆ contributions are large and influence the QE region.

We see how the ratio changes drastically for both relativistic Fermi gas models, which
overestimate the QE peak height very strongly, especially for low energy transfers. The GFG
model describes reasonably well the data for q0 > 100 MeV.

In the other more realistic models, the ratio does not depend so strongly on the values of the
energy transfer and their predictions are quite similar. GiBUU slightly overestimates the data
for low energies and then underestimates it for moderate and high energy transfers. The LDA
SF and the CBF SF+FSI models provide similar results, although for high energy transfers –
where the approximation of neglecting nuclear effects on the particle SF is used – the former
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FIGURE 4.23: The same as Fig. 4.22 but for (q0)QE > 180 MeV.
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FIGURE 4.24: Comparison of GiBUU, LDA SF and CBF SF+FSI models, with data (green points). We
also display some data-points for which 2p2h and the ∆ contributions have been subtracted using results
from [197] (black points). In the left panel: the full LDA SF model (nonrelativistic) is used, while in the
right panel, the particle SF is approximated by the relativistic free one in this latter model.

one overestimates the data.
In Fig. 4.26 we compare the position of the QE peak, according to the various models,

with that inferred from data, as a function of the energy transfer. In Region I the Fermi gas
models shift the peak by more than 10-20 MeV towards higher energy transfers. In Region II
the effect is smaller and the predictions are already comparable with those obtained from the



4.3. Electron scattering 107

other models. Surprisingly, for Region III the LFG model seems to be the closest one to data.
One must, however, remember that here the 2p2h contribution might be responsible for moving
slightly the peak towards higher energy transfers.
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FIGURE 4.25: Ratio (dσ/dΩdq0)model/(dσ/dΩdq0)data at the QE peak for various models. The band
above the CBF SF+FSI curve shows the difference from the predictions obtained within the CBF SF
model, where the FSI effects are not considered. Two vertical lines at 50 and 125 MeV tentatively mark
Regions I, II and III.

Comparison to the LFG for the QE peak width and height

The Fermi gas model is a reasonable benchmark to estimate the importance of nuclear effects.
Hence we want to show how the SF nuclear corrections influence the height and the width of
the QE peak and how these modifications depend on the energy transfer. Though a comparison
of the peak’s width with data is not possible to perform, such analysis can be done for the
predictions of theoretical models. In the left panel of Fig. 4.27 an analogous plot to Fig. 4.25,
for the ratio (dσ/dΩdq0)model/(dσ/dΩdq0)LFG at the QE peak is shown. The difference
between the LFG and all the models is more pronounced at low energy transfers. CBF SF+FSI
causes stronger quenching of the QE peak with respect to the CBF SF model (the difference
is marked by a band). The GiBUU predictions lie even lower; however, the general behaviour
is the same for these models: the ratio starts around 0.5 and grows up to ≈ 0.7− 0.8 for 200
MeV. The LDA SF ratios for low energy transfers (Region I) follow GiBUU but for q0 > 90
MeV get closer to the CBF SF+FSI ratio. In Region III, above the 150 MeV, the LDA SF ratios
are higher than those found with the other two models because nuclear effects in the particle
spectral function are neglected. The introduction of such effects would produce some quenching
of the peak, similar of what can be seen for the CBF model.

The behaviour of the QE peak’s width is shown in the right panel of Fig. 4.27. It is defined
as q0

R−q0
L where q0

R,L correspond to the energy transfer at the right/left of the QE peak, where
the cross section is a half of that at the peak. Again the largest nuclear effects are visible in
Region I. There, one can see that CBF SF+FSI, GiBUU and LDA SF give very similar results.
In Region II, however, CBF SF+FSI distributions are narrower. Looking at the data sets, one
can see that the difference comes from the low-energy transfer region (below the QE peak).
For higher energy transfers one should remember that relativistic effects are already visible and
that LDA SF peak’s width is overestimated. One can also observe that when neglecting nuclear
effects in the particle spectral function, the LDA SF model gives narrower distributions (for
energy transfers q0 > 150 MeV).

The general energy dependence in all three models is similar (the ratio diminishes for grow-
ing energies comparing to Region I). The spreading of the peak caused by the FSI is also well
visible.
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FIGURE 4.26: Position of the QE peak with respect to the data (difference between the position of the
maximum of the experimental differential cross section and that of the theoretical prediction for various
models). Because of the discrete nature of experimental points, an error band of 5 MeV is also shown
with a dotted line. The two vertical lines at 50 and 125 MeV tentatively mark Regions I, II and III. In the
bottom panel (LDA SF), the last six points (q0 > 150 MeV) have been obtained using a free relativistic
Pauli-blocked particle SF.

Conclusions

We have analyzed how various SF models of electron-nucleus QE scattering behave in the
kinematical region important to the T2K experiment.

The conclusions drawn from inclusive electron-nucleus data analysis cannot be straight-
forwardly applied to the neutrino case. This is not only because of the different interaction
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FIGURE 4.27: Left: Ratios (dσ/dΩdq0)model/(dσ/dΩdq0)LFG at the QE peak for CBF SF+FSI,
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the energy transfer values for which the strength of the differential cross section gets reduced to one half
of the value at the maximum (for q0 = [(q0)QE]). The bands above/below the CBF SF+FSI curve show
the prediction obtained with the CBF SF model (neglecting the FSI effects). As in Fig. 4.26, for q0 > 150
MeV the LDA SF predictions were calculated using a free relativistic Pauli-blocked particle SF. The two
vertical lines at 50 and 125 MeV tentatively mark Regions I, II and III.

vertex (the neutrino-nucleon interaction has an additional axial part) but mainly because neu-
trino fluxes are not monochromatic. Integration over the incoming neutrino beam blurs the
picture. As we have seen, each electron-nucleus scattering model works differently for various
kinematical regions (depending on the scattering angle and the energy) and some effects may
be enhanced or canceled out in integrated distributions (e.g. an overestimation in one region and
an underestimation in another may accidentally sum up to a good result).

The LFG model, in general, overestimates the height of the QE peak. The effect grows
as the energy transfer decreases, starting from a 20− 40% in Region III, through 40− 80% in
Region II, up to 100% in Region I. The GFG model, comparing with the LFG one, describes
the data much better. It does not overestimate the QE peak so strongly – yet, the effect is also
fairly visible. In both models, the position of the peak is sometimes shifted (even by 25 MeV)
but this is important only for low energy transfers and depends strongly on the scattering angle.
We have seen that a binding energy suitable for all the setups cannot be chosen. The peak’s
shape is also far from the experimental one, failing to spread to higher energies. The inclusion
of the nuclear corrections encoded in realistic SFs is needed to bring the predictions closer to
reality.

Taking into account the hole CBF SF causes quenching of the QE peak, but still overesti-
mating it (up to 10% effect which is more pronounced for low energy transfers; for Region II
it is only a few percent effect). It displaces the peak’s position (up to 25 MeV). However, its
shape is much closer to the experimental data, which can be especially observed in Region II
where the spectral function recovers a high energy tail present in the data. The shortcoming
of the CBF SF model are greatly healed by introducing FSI effects. The peak is shifted and
slightly suppressed so that it matches the experimental points almost perfectly in the QE peak
region. However, for Regions II and III at lower energy transfers, (at the left of the QE peak)
the cross sections are underestimated.

LDA SFs describe in general the data well, in a very similar way to the CBF SF+FSI model.
The main drawback is the nonrelativistic treatment of the nucleons, which has forced us to
neglect nuclear effects in the particle spectral function for the highest energy transfers studied
here (Region III). This approximation leads to a slight overestimation of the QE peak.

The GiBUU predictions also describe the data with good precision. The GiBUU model
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slightly overestimates the QE peak height in Region I and underestimates it in Regions II and
III; however, one cannot say exactly how much because of the unknown 2p2h contributions.
Still, we expect effects below 10%. The GiBUU predictions for the low-energy part of the QE
spectrum differ a little with respect to those obtained with the CBF and LDA models. In general,
the GiBUU broader widths fit better with the data, yet, overestimating some measurements (for
Region II).

Among all the analyzed models, it is difficult to choose the one which would reproduce
electron data with the greatest accuracy in all three regions. What is absolutely clear is that
Fermi Gas models are not able to properly describe the data. This study clearly shows the need
of incorporating more sophisticated nuclear corrections. It is also clear that a good model of the
2p2h and the ∆ contributions is also necessary to accurately model the QE peak region.
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Chapter 5

Scaling in the Spectral Function
approach

The analysis of scaling properties of a composite system interacting with a weak probe was pro-
posed in the field of particle physics already in the 1960s, as a tool to understand the underlying
dynamics of the many-body system. The idea standing behind the concept of scaling is the fact
that at sufficiently high energies the probe scatters on the single constituents of the interacting
system. With the increasingly higher resolution this property does not change. Therefore, the
inclusive cross section which in general depends on two variables (e.g. energy and momentum
transfer), becomes a function of just one, while it stays independent of the resolution scale.
One of the examples of this phenomena is the famous x−scaling in the deep inelastic region,
proposed by Bjorken in [198]. His theoretical idea, together with experimental data from SLAC
allowed to get insight into the quark structure of nucleons through scattering of high energetic
leptons.

Afterwards, this concept was introduced by West for a lower energy regime to probe the
structure of nuclei and was called in analogy as y-scaling [199]. In this case the point-like
constituents are nucleons, which knocked out at sufficiently high momentum transfer hardly
interact with the rest of the nuclear system. In the limit where the final state interactions can be
neglected, the electron scattering cross section is expressed in terms of a factor which encodes
physics of electron-nucleon scattering (and kinematical setup of the reaction), multiplied by a
function which exhibits scaling properties (i.e. depends only on y(q0, |~q|) but not separately on
~q and q0). The first analysis of y-scaling properties was done using nonrelativistic kinematics
of nucleons and later generalized to relativistic energies in Ref. [189]. This property was called
the scaling of the first kind.

The scaling analysis can be applied not only to the cross section, but also separately to
the electromagnetic transverse and longitudinal nuclear responses. For energies above the QE
peak there are other physical mechanisms contributing to the response of the system, which
cause breaking of the scaling property. They are visible in the transverse channel, while the
longitudinal one, dominated by the QE mechanism, exhibits scaling properties even in higher
energy transfer region.

In Ref. [200], authors moved a step further and proposed a modified scaling variable ψ ′

which would additionally be independent of nuclear species, calling it second kind scaling.
Both properties - scaling of the first and second kind - was then named superscaling [189].

The analysis of scaling properties of nuclear response functions has proven to be a useful
tool to unveil information on the underlying nuclear structure and dynamics [199, 201, 202]. In-
deed, singling-out individual-nucleon interactions allows to disentangle the many-body aspects
of the calculation [203, 204]. These properties are relevant for interpreting electron-scattering
data and to predict quantities of interest for neutrino-oscillation experiments. It has been pro-
posed that an empirical scaling function extracted from electron scattering data can be used to
predict neutrino-nucleus cross sections or to validate neutrino-nucleus interaction models [205,
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206, 207, 148]. In particular, the use of RMF in such calculations has found support in its ca-
pability of properly reproducing the asymmetric shape and the transverse enhancement of the
empirical scaling function [205].

Recently, an analysis of the scaling properties of the electromagnetic response functions of
4He and 12C nuclei computed by the Green’s Function Monte Carlo (GFMC) approach [208],
retaining only one-body current contributions, was carried out in Ref. [25]. The results of this
work are consistent with scaling of zeroth, first and second kind and show that the characteristic
asymmetric shape of the experimental scaling function emerges in the calculations in spite of
the nonrelativistic nature of the model. A novel interpretation of the longitudinal and transverse
scaling functions in terms of a universal scaling function, defined in terms of the nucleon-
density response function was discussed. However, the reason why the nucleon-density scaling
function depends on the energy and momentum transfers only through the scaling variable is
yet to be fully understood.

In this chapter based on Ref. [188], we will perform a comparison and analysis of the scaling
properties of two nucleon-density response functions obtained within different spectral function
models.

The chapter is organized as follows. In Sec. 5.1 we present the definitions of longitudinal
and transverse responses. Next, in Sec. 5.2 the scaling variables are introduced and we perform
an analysis of scaling properties in the Fermi gas model, following Ref. [189]. In Sec. 5.4 –
as suggested in Ref. [25] – we introduce the nucleon-density response expressed in terms of
spectral functions. The origin of scaling in the interacting many-body systems is much more
complicated than in the case of the Fermi gas model. In Sec. 5.5 we perform a short analysis
of how various approximations affect the scaling properties of the models for nuclear effects.
Finally, in Sec. 5.6 we present the results of the comparison of the two realistic approaches
outlined in Sec. 3.2 and 3.3.1, paying special attention to the role played by the final state
interactions.

5.1 Responses for electron scattering

The cross section for electron-nucleus interaction can be split into longitudinal and transverse
components

dσ2

dEk′dΩk′
=

(
dσ

dΩk′

)
Mott

[
AL(q0, |~q|,θ )RL(q0, |~q|)+AT (q0, |~q|,θ )RT (q0, |~q|)

]
(5.1)

where the Mott cross section is given by(
dσ

dΩk′

)
Mott

=

(
α cos(θ /2)

2Ek′ sin2(θ /2)

)2

(5.2)

It describes scattering on a point-like spinless target in laboratory reference frame. The kine-
matic factors AL and AT depend on the scattering angle θ of outgoing electron, while the re-
sponse functions encompass the dynamics of the hadronic system:

AL =

(
q2

|~q|2
)2

, AT = −1
2

q2

|~q|2 + tan2 θ

2
(5.3)

The electromagnetic longitudinal and transverse response functions are given by

Rα(q0,~q) = ∑
f
〈 f |Jα(~q,q0)|i〉〈i|J†

α(~q,q0)| f 〉δ (q0−E f +Ei) , (5.4)
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where |i〉 and | f 〉 represent the nuclear initial ground-state and final bound- or scattering-state
of energies Ei and E f , respectively, and Jα(~q,q0) (α = L,T ) denotes the longitudinal and trans-
verse components of the electromagnetic current.

We can relate the responses to the hadron tensor defined in Eq. (2.64), for jµ
em instead of jµ

cc,
assuming that~q||ẑ:

RL =W 00 , RT =W xx +W yy (5.5)

5.2 Scaling in the Fermi gas model

The scaling properties of the nuclear responses were analyzed in the framework of the relativis-
tic global Fermi gas (GFG) model for the first time in Ref. [189].

The transverse and longitudinal responses of Eq. (5.5) are obtained from the hadronic ten-
sor, which for the case of CC and LFG was developed in Eq. (2.80). Here, we follow the
normalization of Ref. [189] to keep contact with previous calculations:

W µν(q) =
3N

4π p3
F

∫
d3 p

M
Ep

M
Ep+q

δ (q0 +Ep−Ep+q)

×θ (pF −|~p|)θ (|~p+~q|− pF)A
µν

EM(p,q) (5.6)

where N is the number of protons or neutrons (we consider only symmetric nuclei). The
single-nucleon hadron tensor, Aµν

EM, describes the response

Aµν

EM(p,q) = −W1(q2)

(
gµν − qµqν

q2

)
+W2(q2)

1
M2

(
pµ − p ·q

q2 qµ

)(
pν − p ·q

q2 qν

)
(5.7)

The structure functions can be written in terms of Sachs form factors:

W1(q2) = τG2
M(q

2)

W2(q2) =
1

1+ τ

(
G2

E(q
2)+ τG2

M(q
2)
)

(5.8)

with τ = − q2

4M2 and

GE(q2) = Gp
E(q

2)
1
2
(1+ τz,i)+Gn

E(q
2)

1
2
(1− τz,i)

GM(q2) = Gp
M(q

2)
1
2
(1+ τz,i)+Gn

M(q
2)

1
2
(1− τz,i)

τz,p/n = ±1 (5.9)

In order to make contact with previous studies, we introduce the following set of dimen-
sionless variables [189]

λ = q0/2M , κ = |~q|/2M , τ = κ
2−λ

2 ,

ηF = pF /M , εF =

√
p2

F +M2

M
, ξF = εF −1 . (5.10)

We also define:
λ0 =

1
2

(√
1+ 4κ2−1

)
(5.11)

which corresponds to the value of λ in the QE peak.
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Next we introduce

∆ ≡ τ

κ2

(
1
3
(
ε

2
F + εF Γ+Γ2)+λ (εF +Γ)+λ

2
)
− (1+ τ) (5.12)

with

Γ ≡max

{
εF −2λ ,Γ2 ≡ κ

√
1+

1
τ
−λ

}
(5.13)

With the above definitions the responses can be cast into form:

RL,T =
3N

4Mκη3
F
(εF −Γ)θ (εF −Γ)

{
×GL(q2) for RL

×GT (q2) for RT
(5.14)

Different factors in RL and RT coming from integration over Aµν

EM in Eq. (5.6) are given by:

GL =
κ2

τ

((
(1+ τ)W2(q2)−W1(q2)

)
+∆W2(q2)

)
GT = 2W1(q2)+∆W2(q2) (5.15)

The common kernel of RT and RL is written in such a way that all the information about the
q dependence is hidden in (εF − Γ)/κ . Let us notice that in the limit in which |~q| ≥ 2pF the
outgoing nucleon is not Pauli-blocked. In this regime of high momentum transfer we have that
Γ = Γ2.

Both responses can be mapped into a parabola if we properly define a dimensionless scaling
variable

ψ ≡ sign(λ −λ0)
1√
ξF

√
Γ2−1 =

1√
ξF

λ − τ√
(1+λ )τ +κ

√
τ(1+ τ)

. (5.16)

The longitudinal and transverse scaling functions are obtained by dividing the response
functions RL,T by appropriate prefactors, encompassing single-nucleon dynamics within the
GFG model in Eq. (5.15).

fL,T (ψ) = pF ×
RL,T

GL,T
. (5.17)

It has to be noted that the GFG longitudinal and transverse scaling functions coincide (the
model exhibits zeroth kind scaling). The analytical expression of the common function, sym-
metric and centered in ψ = 0, reads

f GFG
L (ψ) = f GFG

T (ψ) =
3ξF

2η2
F

(
1−ψ

2)θ (1−ψ
2) . (5.18)

5.3 Nucleon-density scaling function

In the following we discuss how the inclusion of nuclear interactions affects the shape of the
scaling functions, possibly leading to scaling violations. In Ref. [25] it has been suggested
that, for large momentum transfers, the longitudinal and transverse scaling functions can be
interpreted in terms of the proton and neutron-density responses

Rp(n)(~q,q0) =∑
f
〈i|ρ†

p(n)(~q)| f 〉〈 f |ρp(n)(~q)|i〉δ (q0−E f +E0) , (5.19)
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where the proton (neutron)-density operator is given by

ρp(n)(~q) ≡∑
j

ei~q·~r j
(1± τ j,z)

2
. (5.20)

In isospin-symmetric nuclear matter, the proton- and neutron-density responses coincide. It is
convenient to refer to them as the nucleon-density response, proportional to the imaginary-part
of the polarization propagator

Rρ(~q,q0) =
1
π

Im Π(~q,q0) , (5.21)

with

Π(~q,q0) = 〈i|ρ†
q

1
H −E0−q0− iε

ρq|i〉 , (5.22)

where H is the Hamiltonian, ρ~q = ∑~p a†
p+qap is the proton- or neutron-density fluctuation

operator and a†
p and ap are either the proton or the neutron creation and annihilation operators,

respectively. In the limit of large momentum transfer and for isospin symmetric nuclei, where
the effect of collective excitation modes is expected to be negligible, the polarization propagator
in nuclear matter reduces to

Π(~q,q0) = 2iV
∫ d3 p

(2π)3
dE
2π

G(~p,E)G(~p+~q,q0 +E) (5.23)

where the discrete sum ∑p has been replaced by V
∫

d3 p/(2π)3, with V being the volume of the
system, and the factor 2 stems from the spin sums. The one-body Green’s function G(~p,E) in
nuclear matter was defined in Eq. (2.52). Let us notice that Π(~q,q0) is proportional to Lindhard
function defined in Eq. (2.81). The nucleon-density response for positive excitation energies
(q0 > 0) is then given by

Rρ(~q,q0) = −2V
π2

∫ d3 p
(2π)3 dE ImGh(~p,E)ImGp(~p+~q,q0 +E). (5.24)

using S̄h(~p,E) = 2V Sh(~p,E)/N , as introduced in Eq. (3.2) and employing the definition given
in Eq.(2.53) for the hole and particle SFs, the nucleon-density response reads

Rρ(~q,q0) = N
∫ d3 p

(2π)3 dES̄h(~p,E)Sp(~p+~q,E + q0) (5.25)

When a relativistic fermion propagator is employed, its imaginary part is a matrix in the Dirac
space and contains the factor (/p+M)/2Ep (with dimensionless spinors normalized as u†

r us =
δr,s). This can be rewritten as [(/p + M)/2M]× [M/Ep]. The first term enters in the ma-
trix elements of the external current, while the second one is included in the definition of
the nucleon-density response. For the spinor normalization used in the previous chapters,
∑ ūu = (/p+M), we have an additional factor 1/2M which enters into the definition of hadron
tensor, see Eq. (2.80). Therefore in the relativistic case the nucleon-density response is:

Rρ(~q,q0) = N
∫ d3 p

(2π)3 dE
M
Ep

M
Ep+q

S̄h(|~p|,E)Sp(|~p+~q|,E + q0) . (5.26)

The factors M/Ep, which reduce to one in the nonrelativistic limit, become relevant when the
struck particle is relativistic. The GFG SFs defined in Eq. (3.1), with the relativistic energy of
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Eq. (3.5), yield the scaling function of Eq. (5.18).

5.4 Responses in LDA and CBF models

For the sake of clarity, we explicitly give here the definitions of the nucleon-density responses
(and scaling functions) obtained within the models of Secs. 3.2 and 3.3.1, used for comparisons
in this chapter.

• For the model of Ref. [2], we consider both hole and particle spectral functions, SLDA rel
p,h (~p,E)

defined in Eq. (3.20). After performing the integration over the nuclear volume:

RLDA SF
ρ (~q,q0) =

θ (q0)

4π3

∫
d3r

∫
d3 p

∫
µ

µ−q0

dE
M
Ep

M
Ep+q

SLDA rel
h (~p,E)

×SLDA rel
p (~p+~q,E + q0) . (5.27)

• When in the model of Ref. [2], only nuclear effects in the hole spectral function (defined
in Eq. (3.13)) are included, while the particle is taken as a free state, we have:

RSF LDA IA
ρ (~q,q0) =

θ (q0)

4π3

∫
d3r

∫
d3 p

∫
µ

µ−q0

dE
M
Ep

M
Ep+q

SLDA
h (~p,E)

×δ (q0 +E +M−Ep+q)θ (|~p+~q|− pF(ρ)) . (5.28)

• For the model of Sec. 3.3.1, in which the FSI effects are not taken into account, we have:

RCBF SF
ρ (~q,q0) = N

∫ d3 p
(2π)3

∫
dES̄CBF

h (~p,E)
M
Ep

M
Ep+q

×δ (q0 +E +M−Ep+q)θ (|~p+~q|− pF) . (5.29)

• In the case when the FSI are also included in terms of the convolution scheme, we have:

RCBF SF+FSI
ρ (~q,q0) = N

∫ d3 p
(2π)3

∫
dE
∫

dω
′ fp+q(q0−ω

′)

× M
Ep

M
Ep+q

S̄CBF
h (~p,E)δ (ω ′+E +M− Ẽp+q)θ (|~p+~q|− pF) .

(5.30)

We recall that Ẽp+q corresponds to energy of outgoing nucleon shifted with the optical
potential, as discussed in Eq. (3.42).

The corresponding scaling functions are then defined as:

f X (ψ) = pF ×2κRX
ρ /N (5.31)

with X denoting SF LDA, SF LDA IA, CBF SF or CBF SF+FSI.
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5.5 Origin of scaling

The origin of the scaling exhibited by the nuclear responses has a simple and exact formulation
within the GFG model, which, however, largely fails to reproduce experimental data. Under-
standing the scaling features of nuclear responses becomes challenging when the nucleus is
treated as a fully-interacting many-body system.

In order to avoid the complications arising when GFG model prefactors are used to remove
single-nucleon dynamics, we will focus on the nucleon-density scaling function, defined in
Eq.(5.31). To address the dynamical origin of first-kind scaling, we will consider a simplified
description of the nucleus, yet retaining the key aspects of the many-body problem. For sim-
plicity, our analysis is limited to nonrelativistic kinematics. Hence, in the following we will use
the nonrelativistic scaling variable [25]

ψ
nr =

1
pF

(
Mq0

|~q| −
|~q|
2

)
. (5.32)

A generalization to the relativistic case does not involve conceptual difficulties.

PWIA model

Within the CBF SF, the nonrelativistic nucleon-density scaling function is defined as

f CBF SF(~q,q0) =2κ pF

∫ d3 p
(2π)3 dES̄CBF

h (|~p|,E)θ (|~p+~q|− pF)δ
(
q0 +E− (~p+~q)2/2M

)
,

(5.33)

The above expression can be further simplified within the plane wave impulse approxima-
tion (PWIA), which amounts to neglect information on the target removal energy distribution.
The hole SF is written in the approximate form

S̄h(~p,E) ' n̄(|~p|)δ
(
E−~p 2/2M

)
, (5.34)

where the momentum distribution is defined as

n̄(|~p|) =
∫

dES̄h(|~p|,E) ,
∫ d3 p

(2π)3 n̄(|~p|) = 1. (5.35)

We will use a state-of-the-art momentum distribution computed within variational Monte Carlo
in Ref. [209].

Within the PWIA, the nucleon-density scaling function reads

f PWIA(|~q|,q0) = 2κ pF

∫ d3 p
(2π)3 n(~p)θ (|~p+~q|− pF)δ

(
q0 +~p 2/2M− (~p+~q)2/2M

)
.

(5.36)

To better elucidate the emergence of first-kind scaling and the asymmetry of the scaling
function, we consider three different scenarios with increasing sophistication for the description
of the energy spectrum.

Let us first assume a free energy spectrum for both the hole and particle states in the energy-
conserving δ function

δ (q0 +~p 2/2M− (~p+~q)2/2M) = δ

(
q0− |~q|

2

2M
− |~p||~q|cosθ

M

)
, (5.37)
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where θ is the angle between ~p and ~q. The integration over cosθ can be performed using the
δ -function, which gives rise to a Jacobian

J =
M
|~p||~q| =

1
2|~p|κ . (5.38)

The fact that |cosθ | ≤ 1 provides a lower bound to the momentum of the hole

|~p| ≥ pF |ψnr| . (5.39)

An additional constraint comes from the step function θ (|~p+~q| − pF) = θ (~p 2/2M + q0−
p2

F /2M), yielding
|~p|2 ≥ p2

F −2Mq0 . (5.40)

The latter constraint is always satisfied for sufficiently large values of q0, in which case the
integration range of |~p| is limited by Eq. (5.39) only. For low momentum and energy transfers,
the lower limit is instead the one of Eq. (5.40) leading to violations of first-kind scaling, unless
a piecewise definition of |ψnr| is adopted [189].

Since the factor κ that appears in Eq. (5.36) simplifies with the Jacobian, the result of the
integration only depends upon the lower integration limit, pF |ψnr|, and thus it is easily found
that f PWIA is a symmetric function of ψnr, as it only depends on the modulus of this variable.

Figure 5.1 shows the PWIA nucleon-density scaling functions of 12C, using the energy-
conserving δ function of Eq. (5.37), for different momentum transfers. Scaling is perfectly
satisfied: the curves are peaked around ψnr = 0 and do not show any asymmetry, as expected
from the above discussion. The only difference with the GFG case is that the scaling function
extends to values of |ψnr| larger than 1. This is due to the fact that n̄(p) does not vanish above
pF .
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FIGURE 5.1: Non-relativistic PWIA scaling responses, using the momentum distribution of 12C derived
in Ref. [209] for |~q|= 0.5, 0.7, 1 and 1.2 GeV. The Fermi momentum has been fixed to pF = 225 MeV.

As a second step, we treat the hole as a bound state using the energy spectrum of nuclear
matter at saturation density of Ref. [210] (see also the recent work of Ref. [211]). In this case
the energy conserving δ -function is given by

δ

(
q0 +U (~p)− |~q|

2

2M
− |~p||~q|cosθ

M

)
. (5.41)

where the single-particle potential U (~p) < 0 has been added to ~p 2/2M. Modifying the hole
energy spectrum does not change the Jacobian of Eq. (5.38). However, the lower bound of
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Eq. (5.39) now reads

|~p| ≥
∣∣∣∣pF ψ

nr +M
U (~p)
|~q|

∣∣∣∣ . (5.42)

The term U (~p)/|~q| introduces further dependencies on |~q| and leads to violations of first-
kind scaling. These violations are apparent in the results displayed in Fig. 5.2, where the |~p|-
dependent term in the energy-conserving δ -function leads to a shift of the different curves. The
peaks move to higher excitation energies, as expected for an attractive average hole potential.
For |~q|=1.0, 1.2 GeV, the curves peak approximately at ψnr = 0 and the result found in the free
energy case is recovered to a very large extent. This can be easily understood, since the average
U (~p)avg/|~q| correction becomes small for large values of the momentum transfer. The shape
of the scaling functions, which is still symmetric around ψnr = 0, is almost unaffected by the
single-particle potential.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

𝑓𝑖𝑛
(𝜓

𝑛
𝑟 )

𝜓𝑛𝑟

q=1.2 GeV
q=1.0 GeV
q=0.7 GeV
q=0.5 GeV

FIGURE 5.2: Non relativistic scaling responses obtained within PWIA (Eq. (5.36)) as a function of
ψnr for |~q| = 0.5, 0.7, and 1 GeV. The momentum distribution of 12C derived in Ref. [209] has been
used, and the energy of the hole state has been extracted from the calculations of the nuclear matter
energy spectrum of Ref. [210] and implemented in the energy conservation (see Eq. (5.41)). The Fermi
momentum, pF , has been fixed to 225 MeV.
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FIGURE 5.3: Same as in Fig.5.2, but nuclear potentials have been used to determine both the hole and
particle state energies (see Eq. (5.43)).

Finally, we consistently include a single-particle potential in the hole and particle energy
spectra. The energy conserving δ -function reads

δ

(
q0− |~q|

2

2M
− |~p||~q|cosθ

M
+U (|~p|)−U (|~p+~q|)

)
. (5.43)
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FIGURE 5.4: Scaling functions for 12C obtained with the nonrelativistic kinematics, Eq. (5.33), using
the hole CBF SF for |~q|= 0.5, 0.7, 1.0, and 1.2 GeV.

The nontrivial dependence on cosθ hidden in U (|~p+~q|) prevents, in general, from analytically
solving the integral. To circumvent this problem, we performed a numerical integration, treating
the δ -function as the limit of a Gaussian. This allows us to properly evaluate the Jacobian,
which differs from the one reported in Eq. (5.38). This introduces a first source of scaling
violations, as the κ factor of Eq. (5.36) does not exactly cancel with the Jacobian. Nevertheless,
the cancellation is still partially produced and becomes exact in the |~q| � |~p| limit. Fig. 5.3
displays the scaling functions computed using Eq. (5.43) for the energy-conserving δ function
for the same kinematical setups as in Figs. 5.1 and 5.2. The curves are still shifted1 compared
to the free case, although the position of the peaks is closer to ψnr = 0 than in Fig. 5.2. This
indicates a partial cancellation of single-particle potentials in the hole and particle spectra, as
discussed in Ref. [4]. At |~q| = 0.5 GeV including the single-particle potential in the particle
energy spectrum shifts the peak to lower ψnr, at |~q| = 0.7 GeV the peak position does not
change, while at |~q| = 1.0 GeV and |~q| = 1.2 GeV the peak is shifted to higher ψnr. This is
due to the sign of the single particle potential: U (~p+~q) is negative (positive) for small (large)
values of the momentum transfer. As alluded to earlier, the new Jacobian introduces a residual
dependence on |~q|, specifically in the magnitude of the scaling functions. First kind scaling is
almost recovered for |~q| ≥ 1 GeV, although scaling violations are already small for |~q| = 0.7
GeV. As in the other cases, scaling functions exhibit only a small asymmetry.

Up to now, we have neglected the imaginary part of the in-medium potentials. As discussed
in Refs. [2, 4], effects on the ejected-nucleon are expected to be larger than in the hole state.
The corrections induced by the imaginary part of the optical potential on the particle states
can be estimated, following the approach detailed in Subsec. 3.3.1, by convoluting the PWIA
scaling function as in Eq. (5.30). Since Eq. (5.43) consistently includes the single-particle
potential, both in the hole and particle energy spectra, the real part of the potential does not
have to be included in the argument of the folding function. Analogously to the discussion in
Fig. 5.7, the corrections are very small and have little effects on the discussion about the origin
of the scaling. Moreover, these FSI corrections do not induce any appreciable asymmetry in the
scaling functions.
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FIGURE 5.5: Left: Breakdown of the scaling response of 12C at |~q|=1.2 GeV showed in Fig. 5.4 into
the total, hole, and background contributions. Right: Dashed (black) and solid (green) lines correspond
to the scaling function calculated with and without the inclusion of FSI effect at |~q| = 1 GeV in 12C.
The CBF SF curve corresponds to that displayed in Fig. 5.4, and it is used in the convolution detailed in
Eq. (5.30) to incorporate the FSI effects.

Beyond PWIA

The hole SF S̄h(|~p|,E) is a function of two independent variables, which are related in a nontriv-
ial way. It is long known that the PWIA of Eq. (5.35), which disregards the dependence on the
removal energy of the nucleus, is inaccurate. Realistic Sh(|~p|,E) exhibits a strong correlation
between momentum and removal energy, implying that large momenta always correspond to
large removal energies. For instance, for nuclear matter hole SF calculated within the CBF ap-
proach, around 50% of the strength at |~p|= 3 fm−1 resides at E > 200 MeV [29]. Furthermore,
the shell structure of the nucleus is completely disregarded in the PWIA of Eq. (5.35).

In the following, we argue that the use of a realistic hole SF produces noticeably different
scaling features of the nucleon-density response from those obtained within the PWIA model.
In the IA, the energy conserving δ function of Eq. (5.29) reads

δ

(
q0 +E− |~p|

2

2M
− |~q|

2

2M
− |~p||~q|cosθ

M

)
. (5.45)

Imposing |cosθ | ≤ 1 gives a boundary condition on both E and |~p|, which are related through
S̄h(~p,E). The Jacobian still yields a factor κ that cancels the one of Eq. (5.36). The binding
energies associated with the continuum part of the hole SF are generally larger than |~p|2/2M+
U (|~p|). This feature is particularly relevant for ψnr > 1, as larger values of q0 are needed to
compensate for the large removal energy. Hence, for sufficiently large momentum transfers we
expect violations of first-kind scaling, and the appearance of a more significant tail at the right
of the QE peak that will enhance the asymmetry of the scaling function compared to the PWIA
case.

Scaling violations are apparent in Fig. 5.4, as the positions of the peaks of the scaling
functions depend upon the momentum transfer. These shifts are likely to be ascribed to the
energy of the bound hole state described by the hole SF, analogously to Fig. 5.2. However, the
scaling functions obtained using the hole SF show a more pronounced asymmetric shape than
those displayed in Fig. 5.2.

In the left panel of Fig.5.5 we show the breakdown of the scaling response at |~q| = 1 GeV
into the one-hole and correlation contributions, coming from the pole and the continuum part

1The resulting breaking scaling pattern can be understood taking into account that

U (|~p|)−U (|~p+~q|) < 0 (5.44)

and that in the large momentum transfer, this difference becomes independent of cosθ , and has little influence in the
lower limit of the |~p|−integration.
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.

of the hole Green’s function. The asymmetric shape is mostly determined by the background
contribution, with a large tail in the region of large ψ . Interestingly, the scaling response ob-
tained by retaining only the one-hole contribution in the SF is not completely symmetric. This
has to be ascribed to the presence of two independent integration variables, i.e. |~p| and E.
This more sophisticated description of nuclear dynamics likely contributes to the asymmetry
observed in the experimental data. In the right panel of the figure, we show how FSI affect the
scaling function for |~q|= 1 GeV, comparing the CBF SF (dashed black) and the CBF SF+FSI
(solid green) results. Although FSI are significant for moderate momentum transfer, they are
practically negligible in the kinematical region displayed in the figure. Overall FSI provide a
shift and a redistribution of the strength of the scaling function, bringing about an enhancement
of the asymmetry.

5.6 Results

In this section we present the 12C electromagnetic scaling functions obtained using the SF ap-
proaches outlined in Secs. 3.2 and 3.3.1. When defining the scaling variable ψ , we used
pF = 225 MeV, accordingly to the analysis of electron-scattering data of Ref. [147]. As dis-
cussed above, the model described in Sec. 3.2 makes an extensive use of the LDA. In this case,
the response of the nucleus is obtained by averaging the nuclear-matter responses obtained for
a given value of ρ over the density profile ρ(r). As for the CBF spectral function, the LDA is
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employed to estimate the correlated part of the hole spectral function deduced from the CBF
calculations carried out in isospin-symmetric nuclear matter (see Eq. (3.34)). In the following
we employ for 12C a harmonic-oscillator density profile introduced in Subsec. 2.3.2. To obtain
the point-proton density from the charge density we unfold the charge form factor of the proton.
This procedure relies on the tenet that the contribution of longitudinal two-body currents to the
charge form factor is small, as proven, for instance, in Ref. [212].

In the following we denote with “CBF SF+FSI” the results of the CBF hole SF supple-
mented by the convolution scheme and with “CBF SF” those in which FSI are neglected, as in
Eq. (5.29). With “SF LDA” we indicate the semi-phenomenological approach of Sec. 3.2 consis-
tently adopted for both the hole and particle SFs (using the relativistic definition of Eq. (3.20)).
When a relativistic free nucleon in the final state (delta distribution for the particle SF) and a
fully dressed hole are considered, the curves are labeled as “SF LDA IA”. This is consistent
with the definitions of Sec. 5.4.

In Fig. 5.6, the transverse, longitudinal and nucleon-density scaling functions obtained using
the CBF SF are compared. In all cases FSI effects are included. Despite only one-body current
contributions are considered, an enhancement in the transverse channel (red dotted curve) with
respect to the longitudinal one (blue dashed curve) is apparent. The nucleon-density scaling
function (solid black curve) lies between the transverse and the longitudinal ones, corroborating
this choice of the scaling function. Our analysis suggests that the differences between the three
curves have to be ascribed to the use of the GFG model prefactors in the scaling functions.

FSI effects in the CBF SF scheme can be appreciated from Fig. 5.7. The CBF SF and CBF
SF+FSI longitudinal scaling functions at |~q|= 0.57, 0.8, 0.9, 1.0, and 1.2 GeV, obtained within
the CBF SF approach using the hole SF of Ref. [27], are displayed in the left and right panels,
respectively. FSI do not play a major role, leading to very small modifications of the CBF SF
results except for |~q| = 0.57 GeV, where they improve the agreement with experimental data.
Our findings are at variance with those of Ref. [28], where the violation of zeroth-kind scaling
are ascribed to relativistic effects in the FSI. The asymmetric shape of the theoretical scaling
functions, mildly affected by the inclusion of FSI, is clearly visible, although less pronounced
than in the data. It has to be noted that the scaling functions of Fig. 5.7 peak at slightly larger
values of ψ compared to those obtained within the GFMC approach in Ref. [25]. The origin
of this difference is probably twofold. On the one hand, whilst the GFMC predictions give
full account of nuclear dynamics in the final state, SF approaches are based on the factorization
ansatz; the dynamics of the knocked-out nucleon is taken care in a somewhat simplified fashion,
by means of either the particle spectral function or a convolution scheme. On the other hand,
as stated in Refs. [213, 214], the GFMC Euclidean response functions are obtained from vari-
ational estimates of the ground-state wave function rather then from the evolved GFMC wave
function. Hence, the ground-state energy E0 in the energy-conserving delta-function entering
the definitions of the response functions of Eq.(5.4) is approximated by the variational energy
ET . Since the best variational wave-function for 12C underbinds the nucleus by ET −E0 ' 20
MeV, the GFMC response functions could be shifted to lower values of q0 compared to the ex-
perimental ones. This can be best appreciated by looking at Fig. 4 of Ref. [25]. The variational
energy for 4He is much closer to the experimental ones, ET −E0 ' 1 MeV. This might well ex-
plain why the longitudinal scaling functions of 4He are shifted to larger values of ψ compared
to those of 12C (see Fig. 14 of Ref. [25].)

In Fig. 5.8 we compare the nucleon-density scaling functions obtained using the relativized
SF LDA approach against those of the CBF SF+FSI, for the same momentum transfer values of
Fig. 5.7. Both approaches provide asymmetric scaling functions that satisfy scaling of the first
kind. The comparison between LDA and CBF predictions can be better appreciated in Fig. 5.9,
where results for |~q| = 0.57 and 0.9 GeV are highlighted. In the left panel, CBF SF+FSI and
SF LDA results nicely agree for both momentum transfers. In the right panel, we show that
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the consistency between the two approaches is preserved also also when the FSI effects are sup-
pressed, provided the Cρ term is included in the real part of the LDA self-energy (see discussion
in Subsec. 3.2.3). Comparing the left and right panels, we find appreciable FSI effects only for
|~q| = 0.57 GeV. The mean value of ψ , defined by

∫
ψ f (ψ)dψ/

∫
f (ψ)dψ becomes smaller

when FSI are included. Indeed, a redistribution of the strength is produced, which slightly en-
hances the asymmetry of the nucleon-density scaling functions. The differences in the position
of the quasielastic peak – the CBF SF curves are shifted towards larger excitation energies com-
pared to those of the LDA SF – have to be ascribed to the more accurate description of the
structure of 12C provided by the CBF SF. This is encoded in the MF contribution S̄1h

h (|~p|,E),
extracted from (e,e′p) experiments, and cannot be encompassed by the LDA SF approach of
Sec. 3.2. It is also remarkable that the LDA SF model leads to tails of the scaling functions
comparable to those arising in the CBF SF formalism. In the latter case, these tails are mostly
provided by the correlation contribution S̄corr

h (|~p|,E) of the hole SF, and hence they are quite
sensitive to short-range correlations. In the LDA SF approach these correlations are incorpo-
rated in the in-medium NN potential obtained from the experimental elastic NN scattering cross
section, modified to include some medium polarization corrections.
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Chapter 6

Weak production of strange and
charmed ground-state baryons in
nuclei

In this chapter we analyze the QE weak production of Λ and Σ hyperons induced by ν̄ scattering
off nuclei. Electroweak CC can induce the production of strange particles through both the
∆S = 0 and ∆S = 1 channels, where S denotes the strangeness quantum number. We focus our
analysis on ∆S = 1 processes, for initial ν̄ energies in the range Eν = 1−3 GeV, of interest for
accelerator neutrino experiments. Although ∆S = 1 transitions are generally suppressed with
respect to ∆S = 0 reactions by a factor tanθC, in this energy region the latter is strongly reduced
by the available phase space and the rates of two processes become comparable. To describe the
propagation of hyperons in the nuclear medium we have devised a Monte Carlo cascade (MCC)
algorithm. We treat the rescattering processes that the hyperon undergoes before exiting the
nucleus in a classical way, using the experimental data for the hyperon-nucleon cross sections
as an input.

Our analysis improves upon the pioneering work of Ref. [30], where nuclear effects were for
the first time included in the description of ∆S = 1 processes, although a simplified description
of the initial nuclear target – the LFG model – was employed. Here we provide a realistic
description of the nuclear structure, employing two distinct hole SFs. We analyze the role of
nuclear correlations in the ground-state and FSI between the produced hyperon and the spectator
nucleons, in double and single-differential, and total inclusive ν̄l+

16O cross sections in which
Λ and Σ hyperons are produced. The dependence of these effects on the initial nuclear species
is also discussed by comparing the results obtained for total cross sections in 12C,16O, and
40Ca. All these findings might have important implications in the analysis of SciBooNE [215],
MicroBooNE [216], MINERvA [217] and ArgoNeuT [218] experiments once the data collected
using ν̄ beams become available.

The BESIII Collaboration has recently reported on the absolute measurement of the branch-
ing ratios of Λc → Λe+νe [219] and Λc → Λµ+νµ [220], which can serve as an important
benchmark to compare various theoretical predictions. These decays have been studied within
several relativistic and nonrelativistic constituent quark models (CQMs), which provide predic-
tions for the transition form factors [35, 34, 32, 221]. Some of the groups have also presented
results for the Λc → N form factors [33, 32]. The first lattice QCD (LQCD) calculation of
the Λc→ Λ and Λc→ N form factors reported in Refs. [222] and [31], respectively, deserves
special mention.

Capitalizing on these recent developments, we also present realistic results for the weak
Λc production cross section in nuclei, providing estimates of the theoretical uncertainty of our
predictions. We limit our analysis to relatively-low neutrino energies, close to threshold, and we
assume that the QE mechanism, W+nb→Λc where nb is a neutron bound in the nucleus, is the
dominant one. To estimate the theoretical uncertainties related to the elementary amplitudes,
we consider two different scenarios. In the first one, we relate the Λc→ Λ and Λc→ N form
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factors by a SU(3) rotation, neglecting the effects of SU(3) symmetry breaking. In the second
one, we directly use Λc→ N form factors from theoretical calculations, whenever available.

The kinematical region of interest for neutrino experiments corresponds to q2 ∈ (−5,0)
GeV2. Since the semileptonic Λc decay occurs for q2 > 0, the analysis of the neutrino cross
section requires an extrapolation of the form factors to negative q2, which is not expected to be
completely free of uncertainties. Therefore, in our analysis, we select models that are capable to
reproduce the measured BR(Λc→Λe+νe) branching ratio, and whose form factor parametriza-
tions do not lead to pathological behaviors in the q2 < 0 region. We use four different models
for the Λc→ N form factors to compute the νµ + 16O→ µ−ΛcX total cross section. Particular
emphasis shall be devoted to the results obtained employing the analytical continuation of the
LQCD calculations of Ref. [31]. The latter are supplemented by estimates of the theoretical
uncertainties that we propagate throughout our calculations to the neutrino cross sections. A
more conservative theoretical uncertainty is obtained from the spread of the predictions found
when the different sets of CQM form factors are also considered.

Finally, we would like to point out that since the calculation of the total nuclear cross section
and the semileptonic Λc → Λ decay width are sensitive to different kinematical regions, and
therefore presumably to different form factors, the combined study of the two processes allows
to better elucidate the differences between models.

This chapter follows the findings of Ref. [223]. In Sec. 6.1, we provide the general ex-
pressions for hyperon production cross section in the vacuum. In Sec. 6.2, we outline the main
features of the different schemes examined in the case of the N→ Λc transition. Our approach
to account for SF and FSI nuclear effects is described in Sec. 6.3, while the main results of this
study are presented in Sec. 6.4.

6.1 Cross section for ν̄`+N→ `++Y

The unpolarized differential cross section for the ν̄`(k)+N(p)→ `+(k′)+Y (p′) reaction, in
which an antineutrino ν̄` scatters off a nucleon N, and in the final state the charged lepton `+

and the hyperon Y are produced, is given in the laboratory frame by1

dσ

dEk′dΩk′
=

G2
F

4π2
|~k′|
|~k |

L(ν̄)
µσ (k,k′)W µσ

N (p,q) . (6.1)

The lepton tensor is given in Eq. (2.19) and nucleon tensor reads

W µσ

N (p,q) =
sin2

θC

2M

∫ d3 p′

2EY
p′

δ
4(q+ p− p′)Aµσ

Y (p,q, p′)

=
1

MEY
p′

δ (q0 +M−EY
p′)A

µσ

Y (p,q, p+ q) (6.2)

and
Aµσ

Y (p,q) =
1
2

Tr
[
(/p+/q+MY )Γ

µ

Y (/p+M)γ0Γσ†
Y γ

0
]

(6.3)

The Dirac operator Γµ

Y is given in Eq. (2.33). The explicit structure of N → Λ,Σ0,Σ− form
factors can be found in Sec. 2.2.3.

1In the case of Λc production, the reaction is obviously induced by neutrinos instead of antineutrinos. We will
come back to this point below.
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The integration over Ek′ needed to obtain the angular cross section can be carried out ex-
ploiting the energy-conserving delta function of Eq. (6.2)

I(|~k |, cosθ ) =
∫

dEk′ |~k′|
δ

(
q0 +M−

√
M2

Y +~q2

)
√

M2
Y +~q2

=
|~k′|

M+ |~k |− Ek′
|~k′| |~k |cosθ

(6.4)

where |~k′| depends on the lepton scattering angle θ through the energy conservation equation

Ek′ = |~k |+M−
√

M2
Y +~q2, with ~q2 =~k2 +~k

′2−2|~k ||~k′|cosθ , Ek′ =
√
~k′2 +m2

` and m` is the
mass of the outgoing lepton. Neglecting m`, the expressions simplify to

dσ

dΩk′
=

G2
F sin2

θC

4π2
|~k′|2
|~k |2

L(ν̄)
µσ (k,k′)Aµσ

Y (p,q)

1+ M2−M2
Y

2|~k |M

, (6.5)

with

Ek′ = |~k′|=
|~k |M+(M2−M2

Y )/2

M+ |~k |(1− cosθ )
(6.6)

The differential cross section for the neutrino ν`(k)+N(p)→ `−(k′)+Yc(p′) charm pro-
duction reaction can be obtained from the above expressions replacing L(ν̄)

µσ by L(ν)
µσ = L(ν̄)

σ µ and
using the appropriate masses and form factors.

6.2 Form factors for N→ Λc transition

The study of charmed baryon production in weak processes is still in its infancy; it involves non-
trivial theoretical calculations and scarce experimental data are available. The CHORUS collab-
oration recently measured the ratio of the cross section for Λc production in neutrino-nucleon
CC interaction to the total charged-current cross section, σ(Λc)/σ(CC) = (1.54±0.35(stat)±
0.18(syst))×10−2 for a highly energetic neutrino beam, Eν = 27 GeV [224]. However, in this
energy region no reliable theoretical predictions for the form factors are currently available.

Previous analyses on Λc weak production in QE processes [225] do not seem to provide
robust predictions for the total nuclear cross section. In fact, they rely on theoretical models
for the N → Λc form factors whose predictions, never confronted with experimental data, dif-
fer by an order of magnitude for Eν = 10 GeV. Here, we compute the total cross section of
Λc weak production adopting form factors calculated within four independent approaches: the
LQCD simulation of Refs. [222, 31] and the CQMs of Refs. [32, 33, 34, 35]. The LQCD re-
sults for both Λc → N and Λc → Λ have been obtained using two different lattice spacings
and including one ensemble with a physical pion mass, mπ = 139(2) MeV. The nonrelativis-
tic harmonic-oscillator basis (NRHOQM) approach of Ref. [35] calculates the form factors
with the parameters for the baryon wave functions derived in Ref. [226]. A relativistic CQM
(RCQM) with infrared confinement [227, 228, 229] is employed in Ref. [33] to perform a de-
tailed analysis of the Λc→ n`+ν` invariant and helicity amplitudes, form factors, angular decay
distributions, decay width, and asymmetry parameters. Lastly, a quark-model picture was used
to obtain the results of Ref. [32], improving previous predictions [230] for the semileptonic
decays of 1

2
+charm baryons, belonging to the representation 20 of SU(4), obtained in the four-

flavor symmetric limit. Some SU(4) symmetry-breaking corrections, calculated within the MIT
bag model (MBM) [231, 232] and a nonrelativistic quark model (NRQM) [233], are included.
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The q2 parametrizations of the above mentioned models, validated against the experimental
data for the Λc semileptonic decay reported by the BESIII Collaboration [219, 220], can be ex-
tended to the q2 < 0 region, relevant for neutrino scattering. The same strategy is not applicable
to the form factors of Ref. [221], as they have poles for q2 < 0. As mentioned, the measure-
ment of the Λc → Λ`+ν` (` = e, µ) decay width provides a constraint for the ν̄` Λc → Λ`+

transition form factors. In the limit of unbroken SU(3) symmetry, the latter can be related
to the ν̄` Λc → n`+ form factors by performing a rotation in the SU(3) space – the resulting
Clebsh-Gordan coefficient being

√
3/2 [33].

In the following we briefly review the four approaches utilized to compute the form factors
relevant for the N→ Λc-transition considered here and we provide their explicit expressions.

6.2.1 Theoretical models for the form factors

The NRHOQM is used to compute the Λc→ Λ semileptonic decay width, but not the Λc→ n
transition. The calculated branching fractions are Γ(Λc → Λ`+ν`)/ΓΛc = 3.84% and 3.72%
for the electron and muon modes2, respectively. Though theoretical uncertainties were not pro-
vided, these predictions agree rather well with the experimental fractions, (3.63±0.38±0.20)%
[e] and (3.49±0.46±0.27) [µ] measured by BESIII. In addition, in Ref. [35] semileptonic de-
cays to excited Λ∗ resonances are calculated and leading order heavy-quark effective theory
predictions are also derived, the latter being largely consistent with the quark-model form fac-
tors used in that work. Assuming SU(3) invariance, the form factors of the Λc→ Λ transition
can be used to estimate the weak production of the Λc charm hyperon off a neutron by multi-
plying them by the appropriate Clebsh-Gordan coefficient. The matrix elements of the vector
and axial c→ s currents are expressed in Ref. [35] in terms of the F1,2,3(q2) and G1,2,3(q2) form
factors, which are related to those introduced in Eq. (2.33) by

f1(q2) =

√
3
2

(
F1(q2)+

MΛc +MΛ

2MΛcMΛ

(
MΛF2(q2)+MΛcF3(q2)

))
,

f2(q2) = −
√

3
2
× 1

2

(
F2(q2)+

MΛc

MΛ
F3(q2)

)
,

g1(q2) =

√
3
2

(
G1(q2)−MΛc−MΛ

2MΛcMΛ

(
MΛG2(q2)+MΛcG3(q2)

))
,

g2(q2) =

√
3
2
× 1

2

(
G2(q2)+

MΛc

MΛ
G3(q2)

)
(6.7)

where the
√

3/2 Clebsh-Gordan coefficient has been explicitly included to use these for the
n→ Λc transition. The NRHOQM form factors of Ref. [35] have the simple form

F1,2,3(q2)

G1,2,3(q2)

}
= (A+Bq2 +Cq4)e−

3
2

(
mq pΛ
αMΛ

)2

(6.8)

where mq = 0.2848 GeV, α2 = (0.4242+0.3872)/2 GeV and pΛ = λ 1/2(M2
Λc

,M2
Λ,q2)/2MΛc ,

with λ (x,y,z) ≡ x2 + y2 + z2− 2xy− 2xz− 2yz. The coefficients A, B, and C can be found in
Table 6.1.

The RCQM scheme predicted an absolute branching fractions of Λc → Λ`+ν`, which
turned out to be 2.78% and 2.69% for the electron and muon channels, respectively – no theoret-
ical uncertainties are provided [34] . These values are consistent with the lower limits of the data

2ΓΛc is the total decay width of the Λc hyperon.
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A B [GeV−2] C [GeV−4]
F1(q2) 1.382 −0.073 0
F2(q2) −0.235 0.022 0.006
F3(q2) −0.146 −0.003 −0.001
G1(q2) 0.868 0.013 0.004
G2(q2) −0.440 0.116 0.003
G3(q2) 0.203 -0.009 0

TABLE 6.1: Parameters introduced in Eq. (6.8) to describe the q2−dependence of the form factors used
in the NRHOQM of Ref. [35]. Note that the we have changed the sign of the B coefficient of the G2
form factor, with respect to that quoted in Table III of Ref. [35]. Only in this way, we could reproduce
the form factor displayed in Fig. 4(a) of this latter reference.

from the BESIII Collaboration [219, 220]. They also agree rather well with those (2.9±0.5%
and 2.7± 0.6%) quoted in the 2014 edition of the Review of Particle Physics [234], obtained
from the first model-independent measurement of the branching fraction of the Λ+

c → pK−π+

mode, reported in 2013 by the Belle Collaboration [235]. Within the RCQM, the q2 behavior
of the form factors is well represented by a double-pole parametrization of the form

f1,2(q2)

g1,2(q2)

}
=

A
1−B(q2/M2

Λc
)+C(q2/M2

Λc
)2 . (6.9)

For convenience, the parameters A, B, and C, taken form these references, are reported in Ta-
ble 6.2.

A B C
f1(q2) 0.470 1.111 0.303

0.511 1.736 0.760
f2(q2) 0.247 1.240 0.390

0.289 1.970 1.054
g1(q2) 0.414 0.978 0.235

0.466 1.594 0.647
g2(q2) −0.073 0.781 0.225

0.025 0.321 8.127

TABLE 6.2: Coefficients employed in Eq. (6.9) to construct the weak Λc production form factors from
the RCQM results of Refs. [33, 34]. For each form factor, the upper (lower) value corresponds to the
Λc → N (Λc → Λ) transition. Note that g2(q2) = − f A

2 (q
2), being the latter form factor calculated in

[33, 34].

The main difference between MBM and NRQM lies in how the initial and final baryon
overlap integrations are accounted for: they are limited to the bag space in MBM while in the
NRQM they are not. The MBM is expected to be more realistic than the NRQM at the price
of introducing additional parameters, such as the bag radius and the masses of the quarks in the
bag. Additional corrections to the NRQM and MBM predictions, such as the hard-gluon QCD
contributions [32], are also encompassed. Both the monopole and the dipole q2 dependencies of
the form factors have been employed within the MBM and the NRQM. For simplicity we only
consider the latter, since monopole form factors overestimate the experimental Λc → Λe+νe

branching ratio. Dipole form factors provide reasonable estimates for this observable: 3.2%
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and 3.9% for the MBM and the NRQM, respectively. They have the general form

f1,2(q2)

g1,2(q2)

}
=

A
(1−q2/M2

R)
2 , (6.10)

where the values of A and MR are listed in Table 6.3.

NRQM MBM
A MR [GeV] A MR [GeV]

f1(q2) 0.22 2.01 0.33 2.01
0.35 2.11 0.46 2.11

f2(q2) 0.11 2.01 0.18 2.01
0.09 2.11 0.19 2.11

g1(q2) 0.58 2.42 0.41 2.42
0.61 2.51 0.50 2.51

g2(q2) 0.04 2.42 0.07 2.42
0.04 2.51 0.05 2.51

TABLE 6.3: Coefficients employed in Eq. (6.10) to construct the weak Λc production form factors for the
MBM and NRQM models of Refs. [32, 230]. For each form factor, the upper (lower) value corresponds
to the Λc→ N (Λc→ Λ) transition. The values of the form factors at q2 = 0 are taken from [32], and
contain some SU(4) breaking corrections, while the pole masses collected in the table are taken from
[230]. Note that g2(q2) = −gA

2 (q
2), being the latter form factors calculated in [32].

The LQCD works [222, 31] are based on gauge field configurations generated by the RBC
and UKQCD collaborations [236, 237] with 2+1 flavors of dynamical domain-wall fermions,
for lattice spacings a ≈ 0.11 fm and 0.085 fm and pion masses in the range 230MeV ≤ mπ ≤
350MeV, although in Ref. [222] an additional ensemble with mπ = 139(2) MeV was also con-
sidered. The form factors are extrapolated to the continuum limit and to the physical pion mass
employing a modified z−expansions [238]. Taking the Cabbibo-Kobayashi-Maskawa matrix el-
ement |Vcs| from a unitarity global fit and the Λc lifetime from experiments, branching fractions
B(Λc→ Λe+νe) = (3.80±0.19±0.11)% and B(Λc→ Λµ+νµ) = (3.69±0.19±0.11)%
were found in [222], consistent with, and twice more precise than, the BESIII measurements.
The LQCD weak transition matrix elements are parameterized in terms of the f⊥,+(q2) and
g⊥,+(q2) form factors, which are related to those defined in Eq. (2.33) for the Λc weak produc-
tion in the following way3:

f1(q2) = − q2

s+(q2)
f⊥(q2)+

(MΛc +M1)2

s+(q2)
f+(q2),

f2(q2) =
MΛc(MΛc +M1)

s+(q2)

(
f⊥(q2)− f+(q2)

)
,

g1(q2) = − q2

s−(q2)
g⊥(q2)+

(MΛc−M1)2

s−(q2)
g+(q2),

g2(q2) =
MΛc(MΛc−M1)

s−(q2)

(
g⊥(q2)−g+(q2)

)
(6.11)

3The additional form factors, f0 and g0, computed within LQCD, which only contribute to f3 and g3 in Eq. (2.33),
are not reported, as they do not contribute to the cross section in the limit of vanishing lepton mass.
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where s±(q2) =
[
(MΛc±M1)2−q2

]
, and M1 is either M or MΛ, depending on the Λc weak

transition considered. The q2 behavior is parameterized as

f⊥,+(q2)

g⊥,+(q2)

}
=

1
1−q2/M2

R

(
A+Bz(q2)+Cz2(q2)

)
,

z(q2) =

√
t+−q2−√t+− t0√
t+−q2 +

√
t+− t0

,

t+ =

{
(MD +MK)2 for c→ s

(MD +Mπ)2 for c→ d
(6.12)

with t0 = (MΛc−M1)2, MD = 1.87 GeV,MK = 0.494 GeV and Mπ = 0.135 GeV and the A, B,
C and MR coefficients are taken from the nominal fits carried out in Refs. [222, 31], providing
the central values and statistical uncertainties of the form factors. We list all these parameters
in Table 6.4.

A B C MR [GeV]
f⊥(q2) 1.36±0.07 −1.70±0.83 0.71±4.34 2.01

1.30±0.06 −3.27±1.18 7.16±11.6 2.112
f+(q2) 0.83±0.04 −2.33±0.56 8.41±3.05 2.01

0.81±0.03 −2.89±0.52 7.82±4.53 2.112
g⊥(q2) 0.69±0.02 −0.68±0.32 0.70±2.18 2.423

0.68±0.02 −1.91±0.35 6.24±4.89 2.46
g+(q2) 0.69±0.02 −0.90±0.29 2.25±1.90 2.423

0.68±0.02 −2.44±0.25 13.7±2.15 2.46

TABLE 6.4: Coefficients, taken from the nominal fits carried out in Refs. [222, 31], of the LQCD
form factors used in the parametrization of Eq. (6.12). For each form factor, the upper (lower) value
corresponds to the Λc→ N (Λc→ Λ) transition.

The semileptonic branching ratios BR(Λc→Λe+νe) calculated with the five different sets
of form factors turn out to be in a reasonable agreement with each other and with the BESIII
measurement. The predictions range from the 2.78% of the RCQM [33], to the 3.9% obtained
within the NRQM scheme [32], corresponding to a' 30% variation. Hence, one should expect a
similar spread among the predictions for the total ν`+n→Λ+

c +`− cross section. However, the
theoretical uncertainty on the latter observables could be even larger for the following reasons.
(i) Experimental measurements effectively constraint the Λc → Λ form factors, while we are
interested in the n→ Λc transition. The form factors for Λc→ Λ and n→ Λc transitions may
be related by an SU(3) rotation but, because of SU(3) breaking effects, these are subject to
additional corrections. In this regard, one has to note that for most of the models we have also
access to direct predictions for the c→ d transition form factors. (ii) The form factors have been
fitted to the experimental decay width in the range 0 ≤ q2 ≤ (MΛc −MΛ)

2, while Λc neutrino
production is characterized by q2 < 0. The extrapolation of the form factors to moderately large
negative q2 values, corresponding to medium-energy neutrino beams, entails a certain degree of
ambiguity. In order to quantify the uncertainty of this procedure, we consider five different sets
of form factors characterized by a variety of q2 dependencies. (iii) The Λc→ Λe+νe decay is
mostly sensitive to the axial g1(q2) form factor, which dominates the total width. On the other
hand, both f1(q2) and g1(q2) are important in the ν`+n→Λ+

c + `− process. Thus, the f1(q2)
form factor, being less constrained by the experiment, may introduce an additional error to the
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FIGURE 6.1: Form factors for the n→ Λc transition deduced from extrapolating to Q2 = −q2 > 0 the
results reported in Refs. [31] (LQCD), [33] (RCQM) and [32] (MBM and NRQM).

cross-section prediction.
To evaluate the ν` + n→ Λ+

c + `− cross section for the LQCD [222, 31], the RCQM of
Refs. [33, 34] and the MBM & NRQM [32] schemes, we pursue two different avenues. The
first one corresponds to the unbroken SU(3) limit, in which we take the Λc→ Λ form factors
and use the

√
3/2 Clebsh-Gordan coefficient to compute the Λc production off the neutron. In

the second one, we directly apply the Λc → N form factors reported in these references. As
for the NRHOQM of Ref. [35], the only available parametrization, obtained from the SU(3)
rotation, will be employed.

In Fig. 6.1, we show the form factors for the N → Λc transition, for Q2 = −q2 > 0, cor-
responding to the kinematics of neutrino production. As we mentioned, the main contribution
to the cross section and to the decay width is driven by f1(Q2) and g1(Q2). LQCD predicts
the largest values for these two form factors, while the MBM and NRQM models provide the
far lowest ones for f1(Q2) and, at high Q2, for g1(Q2). Note that the LQCD and RCQM form
factors exhibit similar Q2 dependencies, except for f2, being the f1 and g1 from RCQM form
factors ∼ 30% smaller than those computed within LQCD. Analogous behaviors are observed
for the Λc → Λ form factors, discussed in detail in Subsec. 6.2.2, where further comparisons
among the various approaches are provided.

As a final remark, analogously to the case of Λ and Σ production, the f3 and g3 form factors
have been neglected in the cross-section calculations, as they are suppressed by a factor m2

`/M2.

6.2.2 Further details on the Λc→ Λ,N form factors

When computing the νµ + n→ µ−+Λ+
c cross section, we might assume SU(3) symmetry to

relate the Λc → Λ form factors to the Λc → N ones. To estimate SU(3)-breaking effects, we
have computed the BR(Λc→ Λe+νe) comparing the results obtained using either the rescaled
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FIGURE 6.2: Λc → Λe+νe differential decay width from NRHOQM [35], RCQM [34], MBM and
NRQM [32], CQM approaches, and the LQCD simulation of Ref. [222].

Λc→ N or the Λc→ Λ form factors. We performed this comparison for the LQCD, RCQM,
NRQM and MBM approaches of Refs. [222, 34, 32]. As for the LQCD form factors, the
branching ratios attained assuming SU(3) symmetry are ∼ 20% lower than the direct calcula-
tions with the actual Λ→ Λc form factors. This reduction is even more evident, ∼ 40−50%,
for the RCQM, NRQM, and MBM approaches. This source of uncertainties should be consid-
ered when analyzing the different predictions for σ(νµ +16 O→ µ−+Λc +X)/N displayed
in Fig. 6.10.

The differential widths dΓ(Λc→Λe+νe)/dq2 are shown in Fig. 6.2 for all the approaches
used to compute the Λ → Λc form factors. LQCD, NRHOQM and MBM provide similar
distributions, while the NRQM yields significantly different shape, the strength being shifted
towards higher values of q2. Note however, that no major differences in the total width are
observed. As discussed in the previous Subsection, the RCQM predicts the lowest branching
ratio, about ∼ 40% smaller than the LQCD result reported in Ref. [222]. However, once the
RCQM differential distribution [34] is rescaled by a factor 1.4, the shape of dΓ/dq2 turns out
to be very close to the LQCD one.

The main contribution to the total width (∼ 65% in most of the models) comes from the
axial form factor g1(Q2), while the rest of the strength is driven by f1(Q2) – there is no axial-
vector interference contributing to dΓ/dq2. Because of the kinematical reasons, the ratio of
the vector to axial parts is different for the νµ + n→ µ−+Λc reaction, with f1(Q2) playing a
more important role. Because both f1 and g1 dominate the total cross section, it is interesting
to pay some further attention to their behavior, when extrapolating them to the region of Q2

relevant for neutrino scattering. The Q2 dependence of the Λc→ Λ form factors is displayed
in Fig. 6.3. They are multiplied by the factor

√
3/2, as dictated by the SU(3) symmetry to

get the c→ d matrix elements from the c→ s ones. Besides the phase-space available in the
semileptonic decay, corresponding to Q2 < 0, we also show the behavior of the form factors in
the Q2 > 0 region accessible in Λc neutrino-production reactions. It is interesting to compare
the LQCD, RCQM, NRQM and MBM form factors of Fig. 6.3 with those shown in Fig. 6.1,
the latter being computed employing the appropriate Λc → N form factors. Such comparison
helps estimating the size of SU(3)-breaking contributions, complementing the discussion on
integrated BR(Λc → Λe+νe) that we alluded to earlier. Focusing on f1 and g1, these SU(3)-
breaking effects are more apparent in the vicinity of Q2 = 0, while they are less important as
Q2 increases, becoming moderately small for Q2 = 5 GeV2.
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FIGURE 6.3: Vector and axial form factors for the Λc→Λ transition calculated for the different models
as detailed in Sec. 6.2. The form factors are multiplied by the Clebsh-Gordan coefficient

√
3/2 in order

to estimate them for the n→ Λc transition, assuming unbroken SU(3) flavor symmetry. Negative values
of Q2 correspond to the kinematics of the Λc semileptonic decay, while Q2 is positive for the Λc neutrino
production.

Fig. 6.3 shows that the LQCD and RCQM calculations for f1(Q2), f2(Q2) and g1(Q2)
exhibit a similar Q2 dependence, while their predictions for g2(Q2) are quite different. Note,
however, that this is not much relevant for the neutrino-induced Λc production, since the g2
contributions for this process are negligible. As for the absolute size, both approaches predict
almost the same f2(Q2), but the RCQM results for f1(Q2) and g1(Q2) at Q2 < 0 are ∼ 20%
smaller than those of LQCD. This discrepancy is more significant in the region of large Q2,
relevant for scattering processes. This latter behavior is less visible in the Λc → N transition
form factors shown in Fig. 6.1, where the LQCD and RCQM shapes of f1 and g1 turn out to be
remarkably similar for the entire range of Q2, translating into the comparable dΓ/dq2 shapes
of Fig. 6.2.

We should also note that the Q2 dependencies of the NRHOQM form factors are sig-
nificantly different than those of the other models considered here. By only looking at the
dΓ/dq2 shape in Fig. 6.2, one might expect that the NRHOQM and the LQCD predictions for
the neutrino-induced Λc production to be similar. However, this is not the case, as shown in
Fig. 6.10, where the NRHOQM results lie well below those from LQCD. This is because f1 and
g1 computed within the NRHOQM becomes smaller with increasing Q2 much more rapidly
than in any of the other models. Finally, both the NRQM and the MBM predict g1 comparable
with those obtained within other schemes. However, their results for f1 at Q2 > 0 lie below
the results of LQCD, RCQM, and NRHOQM. Nevertheless, the NRQM and MBM Λc → Λ
form factors are in an overall better agreement with those of the RCQM than in the case of the
Λc→ N transition shown in Fig. 6.1.
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6.3 Nuclear effects

In this Section we generalize the discussion of Sec. 6.1 to the case in which the ν̄ beam scatters
off a nucleus with A nucleons producing a hadronic final state comprised of a hyperon Y and an
(A− 1)-nucleon residual system. In the kinematical region in which the IA is expected to be
applicable, the nuclear matrix element can be still expressed as in Eq. (6.3), provided that the
elementary interactions occur on single bound nucleons. In what follows, we will restrict the
discussion to isospin-symmetric nuclei, for which we assume the neutron and proton densities to
coincide. Within this scheme, the double-differential cross section is evaluated as in Eq. (6.1),
but the hadron tensor is obtained from the convolution of the hole SF and the spin averaged
squared amplitude of the hadron matrix element, Aµν

Y , reported in Eq. (6.3)

W µν

Y (q) =
sin2

θC

4MMY

∫ d3 p
(2π)3

∫
dES̄h(E,~p )

M
Ep

MY

EY
p+q

δ (E +M+ q0−EY
p+q)A

µν

Y (p,q) . (6.13)

In Ref. [30], the LFG model was adopted to describe nuclear dynamics. Generalized Lind-
hard function in this case (when the mass of outgoing particle is different and hyperons are not
Pauli blocked) can be computed analytically and is reported in Appendix C. This amounts to
rewriting the hole SF as

S̄LFG
h (E,~p ) =

∫
d3r

ρ(r)
2

6π2

p3
F(r)

θ (pF(r)−|~p |)δ (E +M−
√
~p 2 +M2) . (6.14)

It has long been known that models based on an independent-particle description of the
nuclear structure largely fail to account for the complexity of nucleon correlations in nuclei.
Here we improved the model of Ref. [30] by considering two different realistic hole SFs: a
semi-phenomenological LDA SF (see Sec. 3.2), and CBF SF (see Sec. 3.3.1).

In analogy to Eq. (6.14), the LDA SF of finite nuclei is obtained through the LDA procedure.
The infinite nuclear matter hole SF derived in [2], denoted by SLDA

h (E,~p,ρ), is calculated for
different values of the nuclear density and integrated over the density profile of the nucleus

S̄LDA
h (E,~p ) =

∫
d3r

ρ(r)
2

6π2

p3
F(r)

SLDA
h (E,~p,ρ) = 2

∫
d3rSLDA

h (E,~p,ρ) . (6.15)

However, when computing the cross section, the integration over the nuclear volume is carried
out for the full hadron tensor [3, 4]

W µν

Y ,LDA(q) =
sin2

θC

2MMY

∫
d3r

∫ d3 p
(2π)3

∫
dE SLDA

h (E,~p,ρ)

× M
Ep

MY

EY
p+q

δ (E +M+ q0−EY
p+q(ρ))A

µν

Y (p,q) . (6.16)

For the CBF SF model we make use of the hadron tensor given in Eq. (6.13) with S̄CBF
h (E,~p )

normalized to the number of active nucleons.

6.3.1 Final state interaction for hyperons

The hole SF accounts for the complexity of nuclear interactions pertaining to the nucleon in
the initial nuclear target. However, in the kinematical region in which the interactions between
the struck particle and the spectator system cannot be neglected, the IA results have to be cor-
rected. Here the interactions between the outgoing hyperon and the A−1 nucleons are described
simply employing a phenomenological MF potential, to modify the hyperon energy spectrum as
ẼY

p+q(ρ) = EY
p+q+V (ρ), where V (ρ) =−30ρ/ρ0 MeV [239], and ρ0 = 0.16fm−3, the nuclear
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saturation density. Within the LDA SF, the density-dependent hyperon spectrum is included by
replacing the energy conservation delta function in Eq. (6.16) by δ (E +M + q0− ẼY

p+q(ρ)).
Nuclear modifications affecting the nucleon tensor Aµν

Y are expected to be much smaller and
have not been considered. On the other hand, within the CBF approach, we simply modify the
energy-conserving δ function of Eq. (6.13) as δ (E +M+q0− ĒY

p+q) with the average hyperon
spectrum

ĒY
p+q = EY

p+q +
1
A

∫
d3rρ(r)V (ρ) . (6.17)

The hyperon produced in the primary vertex travels through the nuclear environment, inter-
acting with nucleons and exchanging momentum and possibly producing a different hyperon.
Although a quantum-mechanical description of the scattering processes would be more appro-
priate, here we use a MC algorithm analogous to that presented in Ref. [30], using as input the
available measurements of hyperon-nucleon scattering cross sections. This amounts to treating
collisions in a classical fashion, as in most of the available neutrino event generators [240, 241,
242].

According to the total initial cross sections for Σ0,Σ− and Λ production, we select the type
of hyperon produced in the primary interaction vertex. Then, for this particular hyperon, we
compute the differential cross section dσ/(dΩk′dEk′d3r) or dσ/(dΩk′dEk′d|~p |), for the LDA
SF or the CBF SF cases, respectively4. These are the weights of the events that are taken as
input in the MCC.

According to the calculated profiles, we randomly generate the charged lepton energy Ek′ ∈
[m`,Eν ] and scattering angle θ ∈ [0,π ], together with the position~r1 = (r1 cosθ1 sinφ1,
r1 sinθ1 sinφ1,r1 cosφ1), in which the hyperon has been produced. (Here r1 ∈ [0,rmax], with rmax
sufficiently large to safely take ρp(n)(rmax) = 0.) Since the elementary cross section obtained
using the CBF SF does not depend upon r, we generate~r1 according to the density profile of
the nucleus. When using the LDA SF in the calculation of the cross section, we perform the
integration over the initial nucleon momentum beforehand, as in Ref. [30]. In this case, we
assume that the momentum of the hyperon produced at the interaction vertex is ~pY1 =~q+~pgen,
where ~pgen is a randomly generated three-vector below the local Fermi sea (|~pgen| ≤ pF(r)). On
the other hand, the CBF SF allows one to consistently generate the momentum modulus of the
struck nucleon on an event-by-event basis and to include it in the definition of ~pY1 , choosing
randomly an angle between ~p and ~q using a ]0,π ] flat distribution. In both approaches, we

assume that this initial hyperon is on-shell, and its energy is given by EY1 =
√

M2
Y1
+~p2

Y1
.

We simulate the hyperon propagation from the interaction vertex until it exits the nucleus
by iterating the following steps [30]:

1. Assuming that the hyperon kinetic energy is significantly larger than V (ρ), we propagate
it by a short distance ~dl = ~pY1 /EY1dt, dt being a small time interval, along its momen-
tum direction. We then randomly select a nucleon from below the Fermi sea, |~p1| < pF ,
and compute the invariant energy Einv of the Y1 +N1 system. We evaluate the interaction
probability per unit length for the various scattering processes permitted by charge con-
servation Y1+N1→Yi+Ni, where Yi = Λ,Σ−,Σ0,Σ+ and Ni = p,n. For a given channel
i, this is given by Pi =

[
ρpσ[Y1+p→Yi+Ni](Einv)+ρnσ[Y1+n→Yi+Ni](Einv)

]
, where the total

cross sections σ[Y N→Y ′N′](Einv), extracted from the available experimental data, are com-
piled in the Appendix of Ref. [30]. The probability that the interaction has occurred is
P = ∑i Pi dl. Note that dt has to be small enough so that Pdl� 1. A random number

4As for the LDA SF approach, although the initial nucleon momentum is already integrated out, some effects of
the hole SF are retained, and they modify the distribution profiles of the outgoing-lepton kinematics. Conversely, the
CBF SF scheme enables to sample the magnitude of the momentum of the initial nucleon to be used in the cascade
algorithm.
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x ∈ [0,1] is generated. If x > ∑i Pi dl the interaction has taken place and we proceed to
the next step; otherwise we skip it and go to step 3.

2. We select the interaction channel according to their respective probabilities (cross sec-
tions). We generate a random angle for the production of the outgoing (Ni,Yi) pair in the
center-of-mass of N1 +Y1 system. We boost back to the laboratory frame and we imple-
ment Pauli blocking by checking that the momentum of the final nucleon is larger than
pF(r). If this condition is satisfied, we have a new hyperon (possibly of different type)
propagating with a new direction and momentum. If not, the interaction did not occur
and the hyperon properties remain unchanged.

3. The new position of the hyperon is~ri =~r1 + ~dl. If no interaction has occurred, in this
point of the nucleus, the three-momentum and type of hyperon correspond to those of the
initial hyperon Y1. Otherwise, they correspond to those of the outgoing hyperon Yi after
the collision.

4. If the hyperon’s kinetic energy is smaller than 30 MeV, we stop the propagation and as-
sume that the hyperon has exited the nucleus without any further interaction. We recall
here that the MC code does not include the effects of the real part of the hyperon op-
tical potentials and that straight-line trajectories are always assumed. Quantum effects,
neglected in the cascade approach, are expected to become especially important at low
energies.
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FIGURE 6.4: Differential cross section d2σ(ν̄µ +16 O→ Λ+ µ++X)/(d cosθ ′dq0) for Eν̄ = 1 GeV
and two fixed antimuon scattering angles, θ = 20◦ and θ = 70◦, showed in the top and bottom panels,
respectively. The blue dashed, green dot-dashed and orange short dashed lines correspond to the LFG,
CBF SF and LDA SF calculations, respectively. The red solid and black dotted curves stand for the LDA
SF and CBF SF cross sections, when a MF potential is included in the energy spectrum of the hyperon.
All the results have been obtained without employing the MCC.

6.4 Results

6.4.1 Strange hyperon production

Let us first focus on the role played by the SFs in the description of the hyperons production.
The double-differential cross section d2σ/(d cosθdq0) of the process ν̄µ+16O→Λ+µ++X
is shown in Fig. 6.4 for different models of the hole SF, and two fixed outgoing lepton scattering
angles. Note that the MCC has not been employed to obtain these results. We observe an overall
good agreement between the LDA SF and the CBF SF results. As expected, in both cases the
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FIGURE 6.5: dσ/dQ2 cross sections, per number of target protons or neutrons, for Λ, Σ−, Σ0, and
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CBF SF and LDA SF approaches, which are depicted as blue dashed, black dotted and red solid lines,
respectively. The MCC and NO MCC labels denote whether the nuclear cascade algorithm has been
applied or not.

hyperon MF potential produces a shift of∼ 30 MeV in the position of the QE peak, also leading
to an enhancement of its height. The LFG calculations, represented by the blue dashed lines,
have been carried out assuming a free energy spectrum for both the initial nucleon and the
hyperon, as in Ref. [30]. The comparison with the other curves, in which a more realistic
description of the nuclear dynamics is adopted, reveals that nuclear correlations sizably affect
the inclusive cross sections. In particular, nuclear correlations in the initial state reduced the
height of the QE peak, redistributing the strength to the higher energy-transfer. These effects
are more apparent for θ = 20◦ than for θ = 70◦, being the cross section much bigger (between
one to two orders of magnitude) for the lower scattering angle. The q0 values relevant for
the QE cross section increase with θ ′, and thus one should expect the largest cross sections
for relatively small outgoing lepton scattering angles, where the effects of initial-state nuclear
correlations are more important.

The differential cross sections, dσ/dQ2, for Λ,Σ−,Σ0 and Σ+ production from oxygen
are shown in Fig. 6.5, for an incoming muon antineutrino energy of 1 GeV and the LFG, LDA
SF and CBF SF approaches. We compare the results obtained either applying or not applying
the MCC, the corresponding curve labeled as “MCC”, or “NO MCC”, respectively. Nucleon-
nucleon correlations, encoded in the realistic hole SFs, quench the cross sections in all the
hyperon-production channels. However, their impact is far less dramatic than for the double-
differential cross sections of Fig. 6.4. Considerably more relevant are the effects of the MCC.
They strongly modify the initial calculation leading to a non-zero Σ+ cross section, to a sizable
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enhancement of the Λ production and to a drastic reduction – more than 50% – of the Σ0 and
Σ− distributions. This can be qualitatively understood by analyzing the kinematics of these
processes. While traveling through the nucleus, the hyperons dissipate their kinetic energy in
the scattering processes. The Σ hyperons are heavier than the Λ baryon, hence their production
in the nuclear cascade is generally suppressed. In particular, for low energies the Λ→Σ process
is kinematically forbidden. Therefore, for low-energy hyperons, the Σ→Λ processes dominate.
On the other hand, Σ+ hyperons can be produced only in secondary collisions.
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FIGURE 6.6: Hyperon kinetic energy distributions, dσ/dEY
kin, for Λ, Σ−, Σ0, and Σ+ production in

oxygen and Eν̄ = 1 GeV. The different curves correspond to the LFG and CBF SF predictions, with
and without the inclusion of MCC effects. The MF potential corrections to the energy spectrum of the
hyperon have not been included. The shaded areas correspond to EY

kin ≤ 50 MeV.

In Fig. 6.6, we display the Λ and Σ hyperon kinetic-energy distributions obtained using the
LFG and the CBF SF models. Similar results can be obtained using the LDA SF. For a more
direct comparison with Ref. [30], we have not included the hyperon MF potential. Although
its effects are not negligible in the double-differential distributions displayed in Fig. 6.4, they
become very small in the single-differential and totally-integrated cross sections of Figs. 6.5,
6.6 and 6.7. In the MCC, we used a threshold energy cut of 30 MeV for QE collisions. The
shaded areas in Fig. 6.6 correspond to EY

kin≤ 50 MeV; for such low values of the hyperon kinetic
energy the details of the energy spectrum are not meaningful, although the integrals underneath
the curves provide estimates of the total number of low-energy hyperons that are produced. In
analogy with Fig. 6.5, the inclusion of the MCC leads to sizable modifications of the initial
differential cross sections. The Λ channel is sizably enhanced at low EY

kin and depleted above
100 MeV. The Σ− and Σ0 cross sections are strongly quenched, except for very low EY

kin in the
Σ0 channel. Note, however, that our results are not much reliable in this region. Lastly, the Σ+

production becomes nonvanishing because of the secondary collisions accounted for the MCC.
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FIGURE 6.7: Total cross sections for Λ, Σ−, Σ0 and Σ+ production on 16O per active nucleon, as a
function of the energy of the incoming ν̄µ . As for the Λ, Σ−, and Σ0 hyperons, we show results obtained
with and without the MCC, while the Σ+ hyperon can only be produced through secondary collisions.

The LFG distributions displayed in Fig. 6.6 should be directly comparable to those shown in
the left panels of Fig. 3 of Ref. [30]. While the NO MCC results nicely agree, we see that
the effects of the MCC computed in this latter reference turn out to be much smaller and not
as visible as those found in the present calculation. We have verified that this discrepancy has
to be ascribed to a wrong implementation in Ref. [30] of the Pauli blocking of the outgoing
nucleons produced in secondary collisions, leading to an important reduction of the number of
interactions experienced by the knocked-out hyperons.

In Fig. 6.7 we show the total cross sections for Λ, Σ−, Σ0 and Σ+ production on oxygen.
Consistently with the results of Fig. 6.5, there are small deviations among the curves referring
to LDA SF and CBF SF results, which in general agree reasonably well. On the other hand,
the application of the MCC noticeably modifies the theoretical predictions for all the hyperon
channels; these effects being larger than those associated to the use of realistic hole SFs in place
of the LFG model for the initial nuclear state. In absence of the MCC, the production rates
of Σ− and Σ0 are related by a SU(3) rotation. The associated Clebsh-Gordan coefficient,

√
2,

leads to twice as large cross section for Σ− as for Σ0. However, the corrections induced by the
MCC alter this relation, and the reduction of the Σ− is about 20% stronger than for Σ0.

It is interesting to understand how the role played by the MCC depends upon the size of
the nucleus. In this regard, in Fig. 6.8 we compare the total cross sections for Λ and Σ−

production on 12C, 16O and 40Ca, obtained using the LDA SF. To make the comparison more
transparent, for each nucleus we divided the total cross section by the corresponding number
of active nucleons. While the 16O and 12C results are almost indistinguishable, there is around
10% difference with those obtained for 40Ca. This is likely to be ascribed to the longer path that
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the hyperons have to travel before exiting the nucleus, implying a larger number of re-scattering
processes.
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the hyperon secondary collisions are accounted for through the MCC. The three lower (upper) curves
correspond to the Σ− (Λ) production.

6.4.2 Λc production

In this subsection, we discuss the results obtained for the νµ +16 O→ µ−+Λc+X cross section
using the different parametrizations of the n→Λc form factors introduced in Sec. 6.2. Our aim
is to estimate how the large theoretical uncertainties of these form factors in the free space
affect the predictions for the cross section of the Λc production in nuclei. For simplicity, in this
analysis, nuclear dynamical correlations in the initial state and hyperon FSI have been neglected
altogether. Hence, we employ a simple LFG model to describe the initial nuclear target, we
assume a free energy spectrum for the struck particle, and we do not employ the MCC. As for
the latter, it has to be mentioned that there is no available experimental information on the Λc

mean free path in a nuclear environment, and the theoretical predictions for the interactions of
the Λc with nucleons and other charmed baryons suffer from severe uncertainties.

The energy distributions of the incoming neutrino fluxes of MINERvA [243] and DUNE
[58] experiments peak at Eν ' 3 GeV and Eν ' 5 GeV, respectively. In Fig. 6.9 we present
the differential cross section dσ/dq2 for the νµ +16 O→ µ−+ Λc + X reaction, computed
employing the RCQM form factors of Ref. [33], for incoming neutrino energies of up to 5 GeV.
The maximum values of Q2 reached in the production mechanism are 1.5 GeV2 and 5 GeV2,
for Eν = 3 GeV and Eν = 5 GeV, respectively. However, the bulk of to the total cross section
stems for Q2 below 0.5 GeV2 and 2 GeV2, for neutrino energies corresponding to the peaks of
the MINERvA and DUNE fluxes, respectively. These relatively low values of Q2 justify the
use of form factors fitted to the Λc→ Λ semileptonic decay, corresponding to Q2 ∈ [−1.36,0]
GeV2. However, extrapolating the form factors to moderately large positive Q2 augment the
theoretical uncertainty in our cross-section predictions. To estimate them, we have considered
the five sets of form factors reviewed in Sec. 6.2, characterized by the different q2 dependencies
displayed in Fig. 6.1.
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FIGURE 6.10: Total cross section, per number of neutrons, for the νµ +16 O→ µ−+Λ+
c +X reaction,

as a function of the incoming neutrino energy. The LFG model for the initial nuclear state is adopted
and no FSI for the Λc are accounted for. In the left panel the curves represent the set of weak transition
form factors analyzed in the text: LQCD [31, 222], NRHOQM [35], NRQM [32], and RCQM [33, 34].
The curves labeled as SU(3) represent the results attained multiplying the Λc→ Λ form factors by the
appropriate Clebsh-Gordan coefficient. The 68% CL bands for the LQCD predictions are obtained from
the Gaussian covariance matrices of Refs. [222, 31]. In the right panel, we display results corresponding
to the direct calculations of the Λc → N form factors, the only exception being the SU(3) NRHOQM
predictions for which they are not available. The “RCQM×1.4” curve represents the results of Ref. [33]
rescaled by a factor 1.4, as inferred from the discussion on the Λc→ Λe+νe reported in Sec. 6.2.

As for the LQCD [31], the RCQM [33], and NRQM [32] approaches5, in addition to
the Λc → N form factors, we have also used those associated to the Λc → Λ transition, as-
suming unbroken SU(3) symmetry, and multiplying the matrix element by the appropriate
Clebsh-Gordan coefficient (

√
3/2). When employing the latter form factors, the predicted

νµ +16 O→ µ−+ Λc + X cross sections turn out to be around 10− 30% higher than those

5For the sake of clarity, we will not report results for the MBM model, as it does not add relevant information to
our analysis. However, we include this model in the discussion of the Λc→ Λ form factors carried out in Sec. 6.2.
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obtained from the direct weak N → Λc matrix element – see the left panel of Fig. 6.10 –
the smallest differences corresponding to the LQCD form factors. As for the NRHOQM of
Ref. [35], the results of Fig. 6.10 have been obtained from the Λc→ Λ form factors assuming
SU(3) symmetry, although it might well be that this procedure overestimates the cross section.
The 68% CL uncertainty bands pertaining to the LQCD predictions are propagated from the er-
rors and the covariance matrices of the fit parameters listed in Refs. [222, 31]. These theoretical
uncertainties grow with the neutrino energy, and become as large as ∼ 20% for Eν = 5 GeV.

There are sizable discrepancies in the νµ +16 O→ µ−+Λc +X cross sections correspond-
ing to the various form factors, despite that all of them are constrained by the experimental
Λc → Λe+νe decay width. The reason for this behavior is twofold. On the one side, the
form factors exhibit major differences in their Q2 dependence. For instance, those from the
NRHOQM [35] are suppressed with increasing Q2, leading to reduced cross sections, when
compared to other approaches – see the detailed discussion of Figs. 6.2 and 6.3 in Sec. 6.2.
On the other side, the relative importance of the vector and axial terms of the current to the
decay width turns out to be strongly model dependent. The vector contribution amounts to only
∼ 10% of the total Λc → Λ semileptonic width for the NRQM, it becomes around 30% for
the NRHOQM and RCQM, and it is about ∼ 34% in the case of the LQCD approach. The
vector form factors, f1 in particular, play a more important role in the determination of the Λc

neutrino-production cross section. Hence, it is not surprising that NRQM model, predicting a
relatively small vector form factors, leads to the lowest cross section estimates.

In the right panel of Fig. 6.10, we display the cross sections corresponding to the direct
calculations of the Λc→ N form factors within the different approaches. The NRHOQM pre-
dictions, for which this option is not available, are rescaled assuming SU(3) symmetry. We also,
show the results of RCQM of Ref. [33], rescaled by a factor 1.4, as inferred from the discussion
on the Λc→ Λe+νe total and differential widths carried out and represented in Fig. 6.2 of the
Sec. 6.2. This factor amounts for the difference in the total semileptonic decay width between
the RCQM and the LQCD predictions reported in Refs. [34] and [222], respectively. Note that
both approaches provide similar Q2 dependencies of the leading form factors, f1 and g1, not
only in the semileptonic decay phase-space, but also for the positive Q2−values, relevant for
the neutrino-production reaction – see the discussions of Figs. 6.1 and 6.3.

The total νµ +16 O→ µ−+ Λc + X cross section can be reasonably estimated to lie be-
tween the LQCD and the rescaled RCQM predictions. This range also accommodates the
SU(3) NRHOQM results, and it leads to theoretical uncertainties below 30% up to Eν ∼ 3.5
GeV. For neutrino energies corresponding to the peaks of the MINERvA and DUNE fluxes,
we thus estimate the total cross sections to be σ(Eν = 3GeV)/N = (0.9+0.2

−0.1)×10−40cm2 and
σ(Eν = 5GeV)/N = (4.5+2.0

−0.9)×10−40cm2, respectively. The central value is the average be-
tween the LQCD and the rescaled RCQM results, while the errors account for the difference
of these two sets of results, taking into account the upper limit of the LQCD uncertainty band.
Taking a somewhat less conservative perspective, if the LQCD predictions are assumed to be
sufficiently reliable, the corresponding estimates for the cross sections can be readily inferred
the plots. Nevertheless, one should also bear in mind that Λc FSI effects have not been con-
sidered in this preliminary analysis. Although their role is expected to be less relevant than for
strange hyperons, they will have some impact in the production rate of Λc baryons.
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Chapter 7

Polarization effects in quasielastic ντ

scattering

In the neutrino studies, the ντ is experimentally the least explored one among the three neutrino
flavours. Its measurement is demanding since the τ lepton, being the product of the ντ CC
interaction with matter, decays rapidly making its clear identification very challenging. There
are very few ντ (high energetic) events recorded. They were detected via CC interaction in
OPERA [244] and DONuT [245] experiments. In the near future the SHiP facility [246] will
start operating, with the ability of measuring the cross sections of ντ and ν̄τ with statistics 100
times larger than the DONuT experiment.

One of the advantages of exploring ντ and ν̄τ CC interactions is the fact that for a wide
range of energies, the outgoing τ is not fully polarized. Each of the τ− and τ+ polarization
components (longitudinal and transverse ones) is sensitive to different combinations of the nu-
clear structure functions, making them interesting observables to further explore the differences
between various nuclear models. They convey richer information, which is complementary to
the knowledge obtained by means of the cross-section predictions. In the limit of high energies
Eν � mτ , though, the outgoing τ leptons are produced in totally polarized states. Thus, the
interesting energy region to be explored is limited to the values of Eν . 10 GeV. This relatively
moderate energy range can be studied by oscillation experiments, although the measurement is
demanding because of the low statistics. From this perspective, the information about the final
τ lepton polarization could be helpful because its spin direction affects the angular distribution
of the decay products.

We will focus on the QE region in which the single nucleon knock-out is the dominant re-
action mechanism. Previous works on ντ and ν̄τ scattering have considered the nucleus as an
ensemble of free nucleons [247], or used the RPA, and an effective nucleon mass to describe the
initial nuclear state [36]. The use of an effective mass for the nucleon is a simplified method to
account for the effects due to the change of its dispersion relation inside of a nuclear medium. A
proper description, however, is achieved by dressing the nucleon propagators and constructing
realistic particle and hole SFs, which incorporate dynamical effects that depend on both the en-
ergy and momentum of the nucleons [4]. There was an attempt to include the SF formalism in
the study of the polarization of the outgoing lepton produced in CC (anti-)neutrino-nucleus re-
actions [248]. However, because of the nonrelativistic nature of the nuclear calculations carried
out in that study, the predictions were restricted to a very narrow region of the available phase
space. Here we perform an analysis which does not suffer from the above-mentioned problem,
and we use realistic hole SFs to obtain the τ−polarization vector in the whole available phase-
space for neutrino energies below 10 GeV. Moreover, to gauge the model-dependence of the
predictions, we perform the calculation using spectral functions obtained within two theoreti-
cally different frameworks: a semi-phenomenological one (LDA SF) based on the findings of
Ref. [2], and a second one [29, 27] obtained within the CBF theory [249]. Both sets of SFs
provide a realistic description of the dynamics including NN correlations in the initial target
and in the nuclear remnant. Moreover, combined with a factorization scheme, they have been
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successfully used for modeling inclusive electro– and (anti)neutrino–nuclear QE responses [6,
3, 113, 4, 150, 15, 16, 17, 18, 144, 63, 19].

Finally, we would also like to mention that the inclusion of RPA correlations does not
change appreciably the gross features of the polarization of the τ’s. The reason is that the
polarization components are obtained as a ratio between linear combinations of nuclear struc-
ture functions and the RPA changes similarly numerator and denominator. In addition, one
should bear in mind that RPA corrections take into account the absorption of the gauge boson,
mediator of the interaction, by the nucleus as a whole instead of by an individual nucleon, and
their importance decreases as the gauge boson wave-length becomes much shorter than the nu-
clear size. Thus, RPA effects on the polarization observables become little relevant, even for the
total or partially integrated cross sections [79, 4], for a great part of the phase-space accessible
in the CC reaction [36, 248].

This chapter, based on Ref. [250], is organized as follows. In Sec. 7.1 we introduce the
formalism and the basic concepts: polarization vector, its longitudinal and transverse compo-
nents. In Sec. 7.2, in the first place, we define the phase space to be explored in our analysis,
and then perform a comparison of the results obtained using two realistic SF models and the
more approximate GFG approach. In Appendix E we collect some kinematical relations for
weak charged lepton production off nucleons.

7.1 Lepton polarized CC cross section

We will investigate CC (anti-)neutrino–nucleus reactions

ν`/ν̄`(k)+A→ `∓(k′)+X , `= e, µ ,τ (7.1)

With the axis of quantization in the rest frame [k′µ = (m`,~0 )] of the outgoing `∓ specified
by the unit vector n̂, we define in this frame a unit space-like four-vector sµ as

sµ = (0, n̂). (7.2)

From the invariance of scalar products, it follows that in any other frame,

sµ =

(
~k′ · n̂

m`
, n̂+

~k′

m`

(~k′ · n̂)
Ek′+m`

)
, s2 = −1, s · k′ = 0 (7.3)

The spin-projection operators are then given by [251]

Π(s;h) =
1
2
(1+ hγ5/s ) , h = ±1, (7.4)

and commute with the energy projection operators (±/k ′+m`)/2m`.
The (anti)neutrino inclusive-differential cross section for a (s;h)−polarized outgoing lepton

is given by (we follow the conventions of Ref. [3]):

d2σ (ν`,ν̄`)

dΩk′dEk′

∣∣∣∣∣
s;h

=

(
GF

2π

)2 |~k′|
|~k|

L(ν`,ν̄`)
µν (s;h)W µν

(ν`,ν̄`)
(7.5)



7.1. Lepton polarized CC cross section 147

in the laboratory (LAB) frame (nucleus at rest). Lµν(s;h) is a polarized lepton tensor:

L(ν`,ν̄`)
µν (s;h) =

1
8

Tr
[
/k ′γµ /k(1+ηγ5)γ

ν
]
−ηh

m`

8
Tr [γµ /k(1+ηγ5)γ

ν /s ]

=
L(ν`,ν̄`)

µν

2
−ηh

m`

2
sα

(
kµgνα + kνgµα − kαgµν + iηεµναβ kβ

)
, (7.6)

where η = ± for the neutrino and antineutrino induced reactions, respectively, and Lµν the
unpolarized lepton tensor of Eq. (2.19).

From Eqs. (7.5) and (7.6), one readily finds,

d2σ (ν`,ν̄`)

dΩk′dEk′

∣∣∣∣∣
s;h

=
1
2

Σ(ν`,ν̄`)
0

(
1+ hsαPα

(`−,`+)

)
(7.7)

Σ(ν`,ν̄`)
0 =

|~k′|G2
FMi

2π2 F (ν`,ν̄`) (7.8)

where Σ0 is the LAB double differential cross section corresponding to unpolarized leptons
and Pµ is the polarization vector. The term F depends on the kinematics of the leptons and on
five out of the six structure functions, Wi, that define the hadronic tensor, see Eq. (2.65), which
are different for ν/ν̄ case. The neutrino and antineutrino W3 contributions to F have opposite
signs, and besides of that, one should take into account that in the QE-regime, the knocked
nucleon is a proton (neutron) in the case of the antineutrino (neutrino) reaction.

The polarization vector Pα of the outgoing `∓ lepton is determined by the nuclear response,

P
(`−,`+)
α = −ηm`

(
kµgνα + kνgµα − kαgµν + iηεµναβ kβ

)
W µν

(ν`,ν̄`)

[LµνW µν ](ν`,ν̄`)
, (7.9)

which can be decomposed as follows

Pα

(`−,`+) = − (PLnα
l +PT nα

t +PT T nα
tt )
∣∣
(`−,`+) (7.10)

where the three four-vectors nl , nt and ntt are given by

nα
l =

(
|~k′|
m`

,
Ek′~k′

m`|~k′|

)
, nα

t =

(
0,

(~k×~k′)×~k′
|(~k×~k′)×~k′|

)
, nα

tt =

(
0,

~k×~k′
|~k×~k′|

)
(7.11)

We have ignored the projection of Pα onto the direction of the four vector k′α , because it is
irrelevant for the (s;h)−polarized differential cross section since s ·k′= 0. In addition, P ·ntt =
0 and therefore PT T = 0, which means that the polarization three-vector lies in the lepton-
scattering plane (see Fig.1 of Ref. [248]). Note that under parity, Pα transforms as

Pα →Pα (7.12)

which automatically requires PT T = 0, since nα
tt stays invariant under a parity transformation.

(Time reversal invariance can be also used to show that PT T = 0). In addition, it is obvious that
P2, called the degree of polarization [247],

−P2
(`−,`+) = (P2

L +P2
T )
∣∣
(`−,`+) (7.13)

is a Lorentz scalar, as PL,T also are, since they can be computed taking scalar products, i.e.,
PL,T = −(P ·nl,t). From the polarized double differential cross section of Eq. (7.7), we obtain
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these longitudinal and perpendicular components of the outgoing lepton polarization vector as
follows

P(`−,`+)
L,T =

d2σ (ν` ,ν̄`)

dΩk′dEk′

∣∣∣h=+

nl,t
− d2σ (ν` ,ν̄`)

dΩk′dEk′

∣∣∣h=−
nl,t

d2σ (ν` ,ν̄`)

dΩk′dEk′

∣∣∣h=+

nl,t
+ d2σ (ν` ,ν̄`)

dΩk′dEk′

∣∣∣h=−
nl,t

=
1

Σ(ν`,ν̄`)
0

 d2σ (ν`,ν̄`)

dΩk′dEk′

∣∣∣∣∣
h=+

nl,t

− d2σ (ν`,ν̄`)

dΩk′dEk′

∣∣∣∣∣
h=−

nl,t

 (7.14)

By construction, it follows that |PL,T | ≤ 1. Furthermore, (P2
L +P2

T ) ≤ 1, because |P2 | ≤ 1.
This can be easily deduced in the outgoing lepton rest frame, considering that in this system,
| ~P · n̂| ≤ 1 for any unit vector n̂, since for both polarizations h = ±, the double differential
cross section d2σ (ν` ,ν̄`)

dΩk′dEk′

∣∣∣
n̂;h
≥ 0.

The PL,T components depend on the lepton kinematics and on the structure functions, Wi,
introduced in Eq. (2.65). Explicit expressions for these observables in the LAB system are
given in Eqs. (5) and (6) of Ref. [248], which were obtained from the findings of [247]. Besides
masses, they depend on the scalars (k ·P), (k′ ·P) and q2, which define the neutrino and outgoing
lepton energies and the angle, θ , between~k and~k′ in the LAB system.

It can be seen that for W3 = 0 , `+ and `− have opposite polarizations, up to some effects
due to the asymmetry of the role played by protons and neutrons in the nuclear system.

The operators (1± γ5 /nl)/2, with nα
l obtained from sα in Eq. (7.3) using ~k′/|~k′| as unit

vector, are helicity projectors [251], and thus, the asymmetry proposed in Eq. (7.14) for the case
of PL turns out to be the outgoing lepton helicity asymmetry. Moreover, since at high energies
helicity and chirality coincide, and the latter is conserved in CC reactions, we conclude

lim
(m`/|~k′|)→0

P`−
L = −1, lim

(m`/|~k′|)→0
P`+

L = 1, (7.15)

which follows from the negative (positive) chirality of the neutrino (antineutrino) that is inher-
ited by the outgoing `−(`+) produced in the CC transition. In addition, in the (m`/|~k′|)→ 0
limit, the transverse polarization PT vanishes, for both neutrino and antineutrino processes.
Indeed, it is proportional to the outgoing lepton mass and to sinθ [248, 247]. (Note that for
PL, m` in the definition of Pα in Eq. (7.9) cancels out with the 1/m` common factor that con-
tains nα

l in Eq. (7.11)). In this ultra-relativistic energy regime the whole nontrivial behaviour of
the polarization components, coming from the hadron tensor, cancels out in the ratio taken in
Eq. (7.9).

In the case of electron and muon CC production the cross section depends mostly on W1,
W2 and W3, while the contribution of the other structure functions are suppressed by the small
lepton mass. Therefore, PT takes small values close to zero, while PL is expected to differ little
from the asymptotic ∓1 values for neutrino or antineutrino reactions, respectively, in most of
the available phase space.

QE hadron tensor

When considering the interaction of a (anti-)neutrino with a single free nucleon the hadron dy-
namics is determined by the nucleon tensor Aµσ , see Eq. (2.79). Let us recall that for sufficiently
large values of the momentum transfer (|~q | & 500 MeV) the lepton-nucleus scattering can be
safely treated within the Impulse Approximation (IA). In this framework the hadron tensor of
Eq. (2.64) is obtained as a convolution of the spin averaged squared amplitude of the hadron
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matrix element of Eq. (2.79) and the hole SF:

W µν(q) =
cos2 θC

4M2 θ (q0)
∫ d3 p

(2π)3

∫
dES̄h(E,~p )

M
Ep

M
Ep+q

×θ (|~p+~q|− pF)δ (q0 +M+E−Ep+q)Aνµ(p,q) . (7.16)

In our analysis we will use the GFG model and spectral functions introduced in Secs. 3.2 and
3.3.1. For the GFG the hole SF is given in Eq. (3.1) with the relativistic energy of Eq. (3.5) (here
normalized to the number of active nucleons). The effective Fermi momenta pF are determined
from the analysis of electron-scattering data of Ref. [147] for different nuclear species. In this
chapter, we will show results for 16O, for which we take pF = 225 MeV and B = 15(11) MeV
for ν`(ν̄`) induced reactions.

In the case of SLDA
h (E,~p ,ρ), an additional integration over nucleus volume has to be per-

formed in Eq. (7.16) (the exact formula is given in Eq. (3.10)). Here we will set p0 = E +M,
and calculate Aµν(p,q) for an off-shell nucleon, i.e. we take the energy and momentum dis-
tributions from the hole spectral function SLDA

h (E,~p ), changing the dispersion relation of the
initial nucleon. However, there exists a little inconsistency here, since the sums over nucleons’
spins in Eq. (2.79) were carried out assuming free dispersion relations for the nucleons. As we
will see below, this procedure is more accurate than setting p0 = Ep in Eq. (3.10). Nevertheless,
the differences are relatively small and visible only for forward scattering.

The CBF SF results which we present in this chapter have been obtained replacing in the
one-body current operator jµ

cc± of Eq. (2.79), the four momentum qµ = (q0,~q ) by q̃µ = (q̃0,~q ),
such that q̃0 = q0− (Ep−M−E), in analogy with the prescription adopted in the GFG case.
The quadrispinors entering the evaluation of the hadron tensor are those of free nucleon states.
Note that this approximation leads to a violation of current conservation for the electromag-
netic case. Different procedures aimed at restoring the gauge invariance have been discussed
in Refs. [252, 12]. In particular, the authors of Ref. [12] argue that the violation of gauge in-
variance in the IA scheme is expected to become less and less important in inclusive electron
scattering at large momentum transfers.

7.2 Results

The analysis carried out in Ref. [247] clearly shows that for LAB energies of the ντ /ν̄τ beam
comprised between 3.5 and 10 GeV, the QE cross section is sizable. This study was done for a
scattering on a single nucleon and neglecting multi-nucleon emission; their contribution, albeit
nonvanishing, would be smaller than the former one. The breakdown of the total neutrino cross
section into the QE, pion production, and DIS contributions is shown in Fig. 5 of Ref. [247].
The QE mechanism is found to be dominant up to Eν ∼ 6 GeV and the same observation holds
true for ν̄τ reactions.

7.2.1 QE mechanism phase space

The large mass of the τ lepton greatly limits the phase space available for the single-nucleon
knockout processes, being prohibited the large LAB dispersion angles, as discussed in Ap-
pendix E. In Fig. 7.1, we analyze the phase space for different values of the incoming neutrino
energy, Eν , and of the lepton scattering angle in the LAB system (θ ). We show

|~q |[Eν ,q0,θ ] =

[
E2

ν +(Eν −q0)2−m2
τ −2Eν

√
(Eν −q0)2−m2

τ cosθ

] 1
2

(7.17)
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as a function of the energy transfer q0, together with the QE-peak curve |~q |QE =
√

2Mq0 +(q0)2

(black solid line). The shaded areas in Fig. 7.1 have been obtained by varying the outgo-
ing lepton scattering angle from 0◦ to 16◦,24◦,28◦ and 30◦ for Eν= 4, 6, 8 and 10 GeV,
respectively. All the angles chosen to evaluate the upper bands are greater than θmax(Eν),
introduced in the Appendix E. It corresponds to the maximum allowed LAB τ−scattering
angle for the weak production off a free nucleon, and its dependence on the incoming neu-
trino energy is given in Eq. (E.6). This limiting angle takes the approximate values of 11.4◦,
20.3◦, 23.6◦ and 25.5◦ for Eν =4 , 6, 8 and 10 GeV, respectively (see also the right panel
of Fig. E.1 for further details). The range of q0 values, [q0

min,q0
max], for which there exist

solutions (θ ) of the QE condition |~q |QE = |~q |[Eν ,q0,θ ] grows rapidly with Eν . Actually at
threshold, Eν = mτ +m2

τ /2M ∼ 3.46 GeV, q0
min = q0

max ∼ 0.58 GeV, and when the neutrino
energy gets bigger, q0

min and q0
max quickly decreases and increases, tending to zero and to

Eν − (m2
τ + M2)/2M, respectively. The q0−range is shown in the left panel of Fig. E.1 of

the Appendix E, up to Eν = 10 GeV.
Additionally in each panel of Fig. 7.1, the yellow curve shows |~q |[Eν ,q0,θ ] for an interme-

diate angle among those accounted for in the band. We see that this curve, as well as the
(θ = 0◦)−one, intercepts twice the |~q |QE−line. This is because for any LAB τ−scattering
angle θ ≤ θmax(Eν), there exist two different values of the LAB τ−energy that satisfies the
QE condition |~q |QE = |~q |[Eν ,q0,θ ]. Thus, we might expect the existence of two QE peaks in
the nuclear differential cross section, located at different values of q0 for fixed Eν and θ LAB
variables. This never occurs for charged muon or electron productions, except for a extremely
narrow range of neutrino energies. A detailed discussion can be found in Appendix E, and
in particular this nonbiunivocal correspondence between τ−lepton LAB scattering angle and
energy is shown in the right panel of Fig E.1.

One should bear in mind that the nuclear QE cross section is strongly suppressed when−q2

is above 1 GeV, and thus its size notably decreases with q0, since at the QE-peak, −q2 ≈ 2Mq0.
We see that one could only expect to obtain sizable cross sections for forward scattering angles.
For instance, at Eν = 10 GeV, the energy transfer at the QE peak ranges from very low q0 ∼ 15
MeV for θ = 0◦, up to 7 GeV for θ = θmax(Eν = 10 GeV)∼ 25.5◦. Coming back to existence
of two QE peaks, the higher one will be much more suppressed, and it might not be visible
in the differential distribution. For example, at Eν = 4 GeV and in the forward direction, the
two peaks occur for q2 = −0.36 GeV2 (q0 = 0.19 GeV) and −2.88 GeV2 (q0 = 1.53 GeV),
respectively. For larger neutrino energies the |q2 | value of the second QE peak grows rapidly,
and its impact in the cross sections should become less important. Moreover, the results should
be more sensitive to nuclear effects for small values of the scattering angle where the QE cross
section is high and peaks in the low q0 region. Hence, we have studied the impact of using the
different nuclear SFs to compute the ντ /ν̄τ differential cross section and the τ polarizations in
the region of small θ .

7.2.2 Differential cross sections and polarization observables

In Fig. 7.2, we analyze the double-differential cross section (panels in the first column), PL and
PT (panels in the second and third column, respectively) for the ντ +16 O→ τ−+X process at
Eν = 4 GeV, and θ = 0◦,2◦,4◦, and 16◦. The dotted (blue) and the dashed (red) and dot-dashed
(black) curves have been obtained using the GFG model and the LDA and the CBF hole SFs,
respectively. Predictions for Eν = 6 GeV are shown in Fig. 7.3. The comparison of the three-
different sets of results for the differential cross sections clearly reveals that the inclusion of
nucleon-nucleon correlations in the hole SF leads to a significant quenching of the QE peak and
a shift of its position towards higher energy transfers in the dashed (LDA SF IA) and dot-dashed
(CBF SF) curves with respect to the dotted one (GFG). The distinctive SF tail at high-energy-
transfers, that arises when short-range correlated pairs are included in the description of the
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FIGURE 7.1: Some regions of the available phase space for CC τ− production for Eν = 4, 6 8 and 10
GeV (panels from left to right). We display |~q |[Eν ,q0,θ ] (Eq. (7.17)) and also the approximated position of

the QE peak (|~q |QE =
√

2Mq0 +(q0)2), labeled as QE (black solid line). For each neutrino energy, the
shaded area spans between τ−scattering angle 0◦ (lower boundary) up to 16◦,24◦,28◦ and 24◦ (upper
boundary), respectively. In each panel, the yellow curve shows |~q |[Eν ,q0,θ ] for an intermediate angle
among those accounted for in the band.

ground state, is only visible for Eν = 6 GeV. Unexpectedly for Eν = 4 GeV, the GFG model
seems to provide a q0 tail similar to those found in the LDA SF IA and CBF SF calculations.
However, its origin in the former model should not be attributed to short range correlations, but
rather it is produced by the kinematics of the QE CC τ−production. If we come back to Fig. 7.1,
we discussed that the |~q |[Eν=4GeV,q0,θ=0◦]−curve intersects the QE-one for two different values
of q0 = 0.19 and 1.53 GeV. These values correspond to forward and backward ντN→ τN scat-
tering in the neutrino-nucleon CM system, respectively. The boost to the LAB system converts
both CM kinematics into forward scattering in the LAB frame1 (see Appendix E). In Fig. 7.4,
we show the dependence of the imaginary part of Lindhard function, ImU(q0, |~q |[Eν ,q0,θ ]), on q0

and q2 for charged τ production for two different kinematics (dashed red curves). As discussed
in Ref. [3], ImU(q) essentially gives the single-nucleon knockout GFG nuclear response for a
unit amplitude, at the nucleon level. For both kinematics, we clearly see two peaks, induced by
the forward and backward ντN→ τN scattering in the neutrino-nucleon CM system, which lead
to shapes different from those found for QE-processes involving massless leptons. These distri-
butions should be affected by the nucleon form factors that produce sizable q2−suppression in
the differential cross sections. As an example, in Fig. 7.4 we also display the results modulated

1For massless charged leptons, however, the CM backward kinematics does not lead to forward scattering in
the LAB frame, while the QE condition for θ = 0◦ occurs for q0

QE(m` = 0) = 0. As the dispersion angle grows,
q0

QE(m` = 0) increases, but there is still a single value where the condition of the QE peak is satisfied (Eq. (E.5)).
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FIGURE 7.2: Double-differential cross section dσ/(dq0d cosθ ) and polarization components PL, PT for
ντ scattering off 16O for Eν = 4 GeV and scattering angles 0◦, 2◦, 4◦ and 16◦.

by the square of a dipole nucleon form factor, with a cutoff of 1 GeV2 (dotted blue curves).
In these latter cases the second peak disappears, though its existence provides a longer high
q0−tail, what is qualitatively observed in the GFG predictions shown in Figs. 7.2 and 7.3.

Coming back to the discussion of these latter figures, we observe a very nice agreement
between the CBF SF and LDA SF IA cross sections for both Eν = 4, and 6 GeV and θ = 16◦

as opposed to θ = 0◦, 2◦ and 4◦ cases, where some discrepancies appear. They are likely to
be ascribed to the different approximations made to account for the off-shellness of the struck
nucleon, as discussed in Subsec. 7.1. These approximations play a more important role in the
limit of low momentum transfer and very forward angles. Let us notice that both SF approaches
converge when we move to higher scattering angles, and for 16◦ the differences practically
disappear. For the LDA SF IA model, the four-momentum p of the initial nucleon is taken from
the SF energy–momentum distribution, thus within this scheme, the hole state is treated as an
off-shell nucleon. However in the CBF SF approach, the energy transfer is modified to include
the SF effects q̃0↔ q0, leaving the hole state on-shell (with the momentum taken from the SF
and setting Ep =

√
M2 +~p2).

The production of the massive τ lepton is particularly interesting since it might present
different polarization components. This fact has a direct implication on the angular distribution
of the particles which are subsequently produced in the τ-decay. In the second and third rows on
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FIGURE 7.3: Same as Fig. 7.2 but for Eν = 6 GeV.
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to (Eν = 4 GeV, θ = 0◦) and to (Eν = 6 GeV, θ = 16◦), respectively. In addition, we also show the
expected q2−reduction in the cross section provided by dipole weak nucleon form factors, with a mass
scale of 1 GeV.
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Figs. 7.2 and 7.3 we show the impact of nuclear effects on PL and PT for different kinematical
setups. For increasing values of the scattering angle the transverse polarization, PT , of the τ

becomes more visible. This is not surprising because it is proportional to m` sinθ [248]. On the
other hand, as the incoming neutrino energy grows, PL takes values closer to −1 for low energy
transfers, as expected for the conservation of chirality in CC processes. One can also observe
that PL and PT obtained within the CBF SF and LDA SF IA approaches, in most of the cases,
do not differ so much from the simplistic GFG predictions, in spite of leading to significantly
distinct double differential cross sections. This should be ascribed to the cancellations that take
place when the ratios of Eq. (7.14) are calculated.

Figs. 7.5 and 7.6 are the analogous of Figs. 7.2 and 7.3 but for the ν̄τ +16 O→ τ+ + X
process. The results obtained for the double differential cross sections are qualitatively consis-
tent with the observations we made for the ντ case. Nuclear effects are clearly visible in all
the kinematical setups analyzed and the discrepancies between the CBF SF and LDA SF IA
predictions are sizable also in this case up to θ = 4◦, while for θ = 16◦ the two set of results
are almost coincident. It is worth noticing that the τ+’s produced in the ν̄τ -nucleus scattering
are more strongly longitudinally polarized (PL ∼ 1 and PT ∼ 0) than the τ−’s. For Eν̄ = 6 GeV
and scattering angles 0◦−4◦, PL is rather constant through the whole range of available q0 and
very close to 1; it departs significantly from 1 only at θ = 16◦, when PT takes larger values (in
modulus). For strictly forward scattering,

P(τ−,τ+)
L = ∓

(
1−2

Ek′−|~k |
Fντ ,ν̄τ (θ = 0◦)

[
2W1±

|W3|
Mi

(Ek′−|~k |)
])

= ∓
(

1−2
Ek′−|~k |

Mi F (ντ ,ν̄τ )(θ = 0◦)
[Wxx±|Wxy|]

)
(7.18)

where the factor Fν ,ν̄ can be found in Eq. (2) of Ref. [248], both for neutrino and antineutrino
reactions, and ~q is taken in the positive Z−direction. There exists a large cancellation between
the xx and xy spatial components of the hadron tensor that is responsible for the much smaller
values of the antineutrino cross sections than the neutrino ones. This cancellation also leads
to values of PL closer to 1 in the case of τ+ production, and because of the factor (Ek′ −|~k |),
deviations from chirality should increase with the transferred energy q0. Moreover, differences
between nuclear corrections stemming from different approaches should be more visible for
antineutrino distributions. Thus for instance within the LDA SF IA approach, if p0 is fixed to Ep

instead of to E+M in Eq. (3.10), values of Pτ+

L > 1 are found in the case of forward antineutrino
reactions, while |Pτ−

L | still keeps smaller than one for neutrino processes. The consistent use of
the energy and momentum distributions obtained from the hole spectral function SLDA

h (E,~p ),
changing the dispersion relation of the initial nucleon, leads to reasonable predictions for Pτ+

L
below one.

We observe that the inclusion of the CBF and LDA nuclear SFs significantly modifies also
the ν̄τ -16O differential cross section with respect to the GFG results, and leads to a significant
quenching of the QE peak and a shift of its position towards higher energy transfers. The role
played by nuclear effects in the determination of PL and PT is less systematic. The curves
corresponding to the different SFs are found to differ for most of the kinematics considered in
Figs. 7.2, 7.3 7.5 and 7.6. In particular, we find the GFG predictions for Pτ−

L and Eν = 6 GeV
lay in between the CBF SF and LDA SF IA ones. We interpret this behavior as a manifestation
of the strong dependence of the polarization variables on the approximations made in the hadron
tensor to treat the off-shell struck nucleon.
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FIGURE 7.5: Double-differential cross section dσ/(dq0d cosθ ) and polarization components PL, PT for
ν̄τ scattering off 16O for Eν̄ = 4 GeV and scattering angles 0◦, 2◦, 4◦ and 16◦.

The mean value of the degree of polarization of the τ∓ lepton is defined as

〈P(τ−,τ+)〉= 1
σ (ντ ,ν̄τ )(Eν)

∫
dEτdΩk′Σ

(ντ ,ν̄τ )
0 (Eτ ,θ )P(τ−,τ+)(Eτ ,θ ) (7.19)

with Σ0 the LAB unpolarized double differential cross section of Eq. (7.8) and the Lorentz
scalar degree of polarization for a given outgoing τ−lepton kinematics given by

P(Eτ ,θ ) =
√

P2
L (Eτ ,θ )+P2

T (Eτ ,θ ) (7.20)

The dependence of the mean value of the degree of polarization on the neutrino (antineutrino)
energy is shown in Fig. 7.7. The small discrepancies between the curves are likely to originate
from the different treatment of the nucleon off-shellness in the LDA SF IA and CBF SF results.
However, a clear-cut identification of their source can not be easily achieved in this case. For the
antineutrino, the degree of polarization reaches the asymptotic chiral value more rapidly than
for the neutrino case, saturating already at about 5 GeV. Results are in qualitative agreement
with those obtained with the simple models considered in Ref. [36].
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FIGURE 7.6: Same as Fig. 7.5 but for Eν̄ = 6 GeV.
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Chapter 8

Conclusions

We have presented an exhaustive analysis of the role played by spectral functions in the descrip-
tion of the QE neutrino-nucleus interaction mechanism. The formalism used in the calculations
presented in this Thesis was introduced in Ref. [3], and it is based on a semi-phenomenological
model for the nucleon self-energy in a (symmetric) nuclear medium [2]. This approach has
proved to describe various properties of the many-body system, important from the point of
view of the neutrino oscillation experiments, where both a correct reconstruction of the neu-
trino energy and the value of the cross section on various nuclei are needed.

We have focused on four main topics:

1. A careful and detailed comparison of several neutrino-nucleus observables, governed by
the QE mechanism, with the available data and with the results of other approaches,
taking into account also RPA effects. We have further compared with inclusive electron
scattering data which is much more precise than the neutrino measurements and puts
constraints on the vector part of the interaction.

2. The investigation of the scaling properties of the nuclear system response described in
terms of the hole and particle spectral functions. We analyzed with more profundity how
various approximations (e.g. plane-wave impulse approximation, inclusion of the final
state interactions/particle SF) influence the scaling.

3. The study of the role played by both initial-ground correlations and final state interactions
in the QE hyperon production. Here, we investigated both inclusive and semi-exclusive
(distributions of the outgoing hyperons) ∆S = 1 processes. We have also studied final
state interactions, modelled by means of an internuclear Monte Carlo cascade.

4. The analysis of the effects of the many-body description of the ground state on the polar-
ization of the outgoing τ lepton in (anti)neutrino-nucleus CCQE reactions.

These topics cover a wide range of theoretical problems and provided a valuable insight
into various aspects of the physical properties of the response of a many-body nuclear system
interacting with an electroweak probe in the QE region.

Before entering into the details of each particular analysis, in Chpt. 2 we presented a wide
introduction to the formalism used in this Thesis. We started from the Standard Model for fun-
damental interactions, focusing on how neutrinos interact with the quark sector. In the effective
low-energy nuclear theory, the emerging degrees of freedom are baryons and mesons, bound
states of quarks. The physical mechanisms we explored involved both nucleons and strange
hyperons (we will later refer also to the production of charmed baryons). Their QE interaction
with an electroweak probe can be parametrized (in general) in terms of six form factors. More-
over, the N → N′ and N → Y form factors can be related under the assumption of unbroken
SU(3) flavour symmetry.

Further, when considering interactions on nuclei, one should account for the nuclear effects.
Solving the many-body problem is a difficult task where different nuclear effects may become
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more or less relevant depending on the momentum transferred to the nucleus. The simplest
approach, introduced in Subsec. 2.3.1 consists in taking into account only statistical correlations
between nucleons. In a system of fermions at zero temperature due to the Pauli exclusion
principle, particles occupy energy levels up to the Fermi level. The additional assumption of
the LDA leads to the Local Fermi gas model.

The FG model has been used as a starting point to introduce the theoretical approach pre-
sented in this Thesis. We have briefly introduced some basic notions used to describe the prop-
erties of nucleons in the nuclear medium, in particular their Green’s functions (and their modi-
fication when the self-energy is included) and the relation with the spectral functions. We have
made also a detailed derivation of how the response of the nuclear system interacting with an
electroweak probe for high enough momentum transfers can be expressed in terms of the spec-
tral functions. In the last section of Chpt. 2 we addressed other effects like the RPA summation
or the importance of implementing a correct energy balance.

Chpt. 3 has been focused on the description of different models for the spectral functions.
Following the same scheme as in Chpt. 2, we have started our considerations from the Fermi
gas model. Spectral functions in this case are simple step functions, which further lead to flat
distributions for the nucleon momenta (the situation is slightly different in the case of a LFG
for which the Fermi level depends on the nuclear density). Next, in Sec. 3.2 we have presented
the semi-phenomenological model for the nucleon self-energy introduced in Ref. [2]. This
approach has as an input NN scattering data, which is used to construct an effective NN interac-
tion in the medium that accounts for both short and long (RPA) range nuclear correlations. The
model has proved to work well when applied to various physical reactions [3, 4, 5, 6, 7, 8, 9,
10]. One of the virtues of this approach is the possibility to describe, within the same formal-
ism, both the initial and final nucleons (i.e. states with energy below and above the Fermi level)
and its easy implementation for different isospin symmetric nuclei. Although the calculation of
Ref. [2] was performed in a nonrelativistic regime, it was then extended to the relativistic case
in Ref. [5]. This could be done, since the input experimental NN cross section data by definition
accounts for relativistic effects. Another idea of how to use this model in the relativistic regime,
consists in neglecting nuclear corrections in the particle spectral function. This requires fitting
an additional phenomenological parameter to obtain the experimental removing energy (using
the Koltun sum rule of Ref. [11]).

In neutrino-nucleus interaction studies, there exist several theoretical models describing the
QE mechanism. In Sec. 3.3 we have made a survey of those which are most widely used in the
analyses of neutrino scattering experimental data and in Monte Carlo event generators. Thus,
in Subsec. 3.3.1, we have focused our attention on the CBF approach based on the Impulse
Approximation, successfully tested in electroweak-nuclear reactions [14, 15, 16, 17, 18, 19].
In Chpts. 5-7 we have performed various comparisons between the predictions obtained within
this formalism and those found using the semi-phenomenological one described in Sec. 3.2.
Within the CBF framework, the hole spectral function is expressed as the sum of two contri-
butions. The dominating one comes from shell-model calculations, quenched by experimental
spectroscopic factors. This MF description does not account for the high momentum-energy
part of the nucleon wave function. This latter contribution is modelled within an ab initio Cor-
related Basis Function formalism for symmetric nuclear matter, and added assuming the LDA.
To account for the final state interactions, yet another strategy is employed, based on the gener-
alized Glauber theory. It takes as an input nuclear transparencies and the real part of an optical
potential obtained from a fit of a Dirac phenomenological interaction to data.

We have also explored the predictions of other four theoretical schemes. The GiBUU [20]
approach is also based on the LDA, applying a phenomenological potential (both density and
momentum dependent) obtained from heavy-ion reactions studies. The framework is relativis-
tic, allowing the description of both initial and final nucleons. SuSA (SuperScaling Approach)
model [21] follows a different idea. Starting from the scaling properties of electron-nucleus
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scattering cross section, a phenomenological scaling function is extracted from data, and used
as an input to predict neutrino-nucleus QE cross sections. The Ghent group has developed a MF
approach [22] with a Skyrme potential for which parameters were fixed against the low-energy
excitations of spherical nuclei . The effect of long-range correlations (RPA) is included using
the same residual interaction. Finally, the MECM model [23], developed initially by the Lyon
group, accounts for the latter nuclear corrections using an effective Landau-Migdal interaction
analogous to that used in our approach presented in Subsec. 2.5.2.

In Chpt. 4 we have presented a theoretical description of other QE processes – muon and
radiative pion captures in nuclei – which were used to investigate the applicability of the nuclear
model used in this Thesis. These reactions involve small energy and momentum transfers, and
hence, test the model of Refs. [3, 2] in a kinematic regime where a more elaborated description
of the initial and final nuclear states might be needed. We observe that SFs are responsible for
the quenching of the QE peak, produce a spreading of the strength of the response functions
to higher energy transfers and shift the peak position in the same direction. The overall result
is a decrease of the integrated decay rates and a considerable change of the differential shapes.
RPA effects in the integrated decay rates become significantly smaller when SF corrections are
also taken into account, in sharp contrast to the case of a free LFG where they lead to large
reductions, even of around 40%. This interesting result was mentioned already in [3], and it is
mainly due to the change of the nucleon dispersion relation in the medium (effects of the real
parts of the particle and hole nucleon self-energies). Moreover, this is also in agreement with
the findings of Refs. [22, 24], from which one can conclude that RPA effects on top of the MF
results are moderately small for sufficiently large values of Q2, far from the giant-resonance
regime.

The final results for low energy processes (including both RPA and full SF effects for the
very first time), presented in Chpt. 4, although subject to some theoretical errors (originated
from the RPA parameters uncertainty and the possible contribution of discrete states), describe
the data with a good precision, and provide a clear improvement of the poor description obtained
by only imposing Pauli blocking and the correct energy balance in the reactions. For radiative
pion capture, we observe that the use of realistic SFs places the QE peak in a reasonable position
and changes the shape of the differential decay width, making it definitely more accurate than
that obtained with the RPA model. However, the description is obscured by a discrete spectrum
of resonances not taken into account in the model. For muon capture, we only have at our
disposal data of integrated widths; these rates are well recovered by our model for various
symmetric nuclei. These results, along with the LSND, KARMEN and LAMPF neutrino cross
sections on carbon near threshold, which also stay in agreement with LDA SF+RPA predictions,
confirm the reliability of the model derived in [3, 4]. This also ensures the accuracy of the
predictions obtained within this model for intermediate energy neutrino scattering cross sections
of interest for oscillation experiments, which are also given, and that for the first time have
been obtained considering full SFs for both particle and hole nucleons. We present results
for (anti)neutrino integrated and differential cross sections, and discuss the magnitude of the
RPA and SF effects. Moreover, we use MC techniques to estimate the uncertainties of our
predictions. We also show that errors on the σµ /σe ratio are much smaller than 5%, and also
much smaller than the LDA SF+RPA nuclear corrections, which produce significant effects, not
only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV.
These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to perform
a correct analysis of appearance neutrino oscillation events in long-baseline experiments.

We have also performed a detailed analysis and comparison of various theoretical models
with electron-nucleus inclusive scattering data in the momentum-energy region important for
the T2K experiment. All the considered theoretical models: LDA SF, CBF SF (with FSI in-
cluded) and GiBUU are able to describe quite successfully the inclusive data in the QE peak
region. One has to take into account, however, that for a fully meaningful comparison with data,
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one should include other mechanisms which give some contribution to the cross section in that
kinematical region. As was shown, for some kinematical setups, both 2p2h and ∆ production
overlap with the QE peak.

Chpt. 5 was devoted to studying the scaling properties of the nucleon-density response, a key
quantity to understand the scaling of the electromagnetic longitudinal and transverse response
functions [25]. We have calculated the nucleon-density response of 12C in a kinematical region
where collective excitations can be safely neglected. To that end, we employed particle and
hole SFs obtained within two many-body methods, LDA SF and CBF SF, widely explored in
this work.

We have shown that both approaches lead to compatible 12C nucleon-density scaling func-
tions, characterized by an asymmetric shape, although less pronounced than the one derived
from the experimental data on the electromagnetic longitudinal response functions. Whilst the
CBF SF provides a more accurate description of the ground-state of 12C, presently it can only
be applied to closed-shell nuclei. On the other hand, the LDA SF model can be readily extended
to the 40Ar nucleus, which will be employed in future neutrino-oscillation experiments [26].

Employing a simplified model of nuclear dynamics, which retains the main aspects of the
many-body problem, we discussed the dynamical origin of the scaling of the first kind exhibited
by the nucleon-density response function. We have argued that its asymmetric shape is mostly
due to the 2h1p dynamics incorporated in the continuum component of the hole SF of Ref. [27],
that in turn accounts for NN correlations. Within the semi-phenomenological model developed
in Ref. [2], this effect is taken into account through the imaginary part of the nucleon hole
self-energy, ImΣ. In this latter reference, an appreciable quenching of ImΣ, due to polarization
effects, was found at low nucleon energies and momenta. However, we expect RPA (collective)
corrections to produce small modifications in the high momentum components, which are re-
sponsible for the tail. On the other hand, we have shown that the asymmetry is only slightly
enhanced by FSI effects. The latter lead to a shift of the peak position towards smaller values
of ψnr (variable constructed out of q0 and |~q|) and to a redistribution of the strength towards
larger values of the scaling variable ψnr. According to the RMF study carried out in Ref. [28],
the asymmetry of the scaling function has to be ascribed to the dynamical enhancement of the
lower component of the Dirac spinors, which, in principle, is not present in the nonrelativistic
nucleon-density response function. Analogously to the Green Function MC results of Ref. [25],
the asymmetry is also observed within the nonrelativistic scheme of nuclear dynamics based on
the particle and hole SFs. Our results do not necessarily invalidate the RMF picture of scal-
ing since some of the nonrelativistic correlations might arise from the nonrelativistic reduction
performed already at the MF level. Nevertheless, this intriguing hypothesis deserves further
investigations.

Within the SF formalism, we found that, once the prefactors describing the single-nucleon
interaction-vertices are divided out, the longitudinal and transverse electromagnetic response
functions share a common kernel, intimately connected to the one of the nucleon-density re-
sponse function. Consequently, the electromagnetic longitudinal and transverse scaling func-
tions are very similar to the nucleon-density scaling function – the small differences being
ascribable to discrepancies between GFG and SF prefactors. Therefore, besides two-body cur-
rent and collective corrections effects, the breaking of zeroth and first kind scalings has to be
attributed to deficiencies in the nuclear model used to estimate the single-nucleon electroweak
matrix elements in nuclei.

In Chpt. 6 we have presented the weak production of Λ and Σ hyperons induced by ν̄µ scat-
tering off nuclei, carefully considering the effects of nuclear dynamics. To describe correlations
in the initial nuclear target, we employed the two distinct models for the hole SFs examined
in this Thesis. The propagation of the hyperons in the nuclear medium is tackled by a MCC
algorithm, which treats the rescattering processes in a classical fashion. The MCC does not
modify the inclusive (ν̄l , l+Y ) cross sections, if the sum for Y = Λ,Σ0 and Σ± is considered.
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On the other hand, when more exclusive processes are analyzed, such as the production rates,
the energies, and the angular distributions of the specific hyperons’ species, the MCC plays
a major role. For instance, although the Σ+ hyperon is not produced in the weak interaction
vertex, because of secondary collisions, its production rate in the scattering process does not
vanish. Of course, when all the possible channels are summed, the inclusive cross section is
recovered.

We find that our calculations carried out employing semi-phenomenological LDA SF [2]
and the CBF SF [29, 27] nicely agree, providing robust estimates of the importance of dynami-
cal correlations in the initial nuclear state, neglected in the pioneering work of Ref. [30], based
on the LFG model. We show how the inclusive double-differential d2σ/(d cosθdq0) [θ is the
scattering angle of the outgoing charged lepton] distributions are significantly affected, as the
correlations encoded in the hole SFs bring about a reduction of the height of the QE peak and
a redistribution of the strength to higher energy transfers regions. In the case of the differential
cross section dσ/dq2 and the total one, the effects of considering realistic hole SFs are not as
important as in the d2σ/(d cosθdq0) distribution, and are less relevant than those produced by
the FSI of the produced hyperon. The MCC strongly modifies the IA results for the exclusive
processes, leading to a non-zero Σ+ cross section, to a sizable enhancement of the Λ production
and to drastic reductions of the Σ0 and Σ− distributions.

It has to be mentioned that the MCC effects we obtained here are much larger and more
visible than those reported in Ref. [30]. This is due to an imprecise implementation of the Pauli
blocking of the outgoing nucleons produced in secondary collisions in the latter work, that led
to an important reduction of the number of collisions experienced by the hyperons during their
path through the nucleus.

Motivated by the recent BESIII measurements of the branching ratios of Λc → Λl+νl
(l = e, µ) decays and by the CHORUS results for the ratio of the cross section for Λc pro-
duction in neutrino-nucleon scattering, we computed the QE weak Λc production cross section
on nuclei. We estimated the impact of the n→ Λc matrix-element theoretical uncertainties.
To this aim, we employed form factors computed within different approaches ranging from
the LQCD calculations of Ref. [31] to the state-of-the-art nonrelativistic and relativistic quark
models of Refs. [32, 33, 34, 35]. Note that, while for the N → Λ,Σ0,Σ− transitions the theo-
retical predictions are consistent with the available experimental data, in the Λc case, the main
source of uncertainty is associated with the different theoretical parameterizations of the form
factors. For this reason, we neglect nuclear effects beyond the Fermi gas model, as their inclu-
sion would introduce additional theoretical errors (the behaviour of Λc in the nuclear medium
is poorly known). We also expect them to provide significantly smaller corrections than the
discrepancies produced by the use of different sets of form factors. Indeed, we find significant
variations in the predictions from the different schemes adopted to compute the relevant form
factors, despite the fact that all of them are constrained by the experimental Λc→Λe+νe decay
width. This is a direct consequence of the unavoidable ambiguities induced by extrapolating
the form factors from the q2 region relevant for the Λc decay to the kinematics relevant to
the Λc production. Nevertheless, the theoretical uncertainties are estimated to be below 30%
for Eν . 3.5 GeV. For the neutrino energies corresponding to the peaks of the MINERvA and
DUNE fluxes, we predict the cross sections – normalized to the number of neutrons – to be
σ(Eν = 3GeV)/N = (0.9+0.2

−0.1)×10−40cm2 and σ(Eν = 5GeV)/N = (4.5+2.0
−0.9)×10−40cm2,

respectively.
In Chpt. 7 we have performed an analysis of the cross sections and polarization components

for the CC reaction in which a ντ /ν̄τ scatters off 16O, focusing on the QE region where the
single nucleon knock-out is the dominant reaction mechanism. From the theoretical perspective,
the ντ CC scattering gives a unique opportunity to further investigate the role played by the
nuclear correlations of the ground state in the description of neutrino-nucleus interaction. The
large mass of the τ± lepton, with respect to those of the µ± and e±, enables a deeper insight into
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the nuclear structure of the nucleus when interacting with an electroweak probe. From the total
number of five structure functions which are in general needed to describe the hadron tensor of
neutrino-nucleus scattering, νe and νµ reactions give access only to three of them, W1,2,3, being
the contribution of the others suppressed by the low e− and µ− masses.

The longitudinal and transverse polarization components of the outgoing τ are interesting
observables, both from the experimental and theoretical points of view. They allow for further
tests of the hadron tensor properties, since they are sensitive to different combinations of the
structure functions. In order to provide a realistic description of the nuclear dynamics account-
ing for NN correlations, also in this context, we have used the LDA and CBF hole SFs derived
in Refs. [2] and [29, 27], successful in modeling inclusive electro– and (anti)neutrino–nuclear
QE responses. We should mention in this context that the SF approaches are substantially more
realistic than those based on the use of an effective nucleon mass to describe the initial nuclear
state, as done in the previous study of Ref. [36]. The implementation of a constant effective
mass is just a crude approximation to account for the effects due to the change of the dispersion
relation of a nucleon inside of a nuclear medium.

For each of the considered models, CBF SF and LDA SF, we used slightly different pre-
scriptions of how the single nucleon matrix element is calculated in the nuclear medium. The
ambiguity stems from the fact that the hit nucleon is off-shell, with its energy-momentum dis-
tribution determined by the SF. In the CBF approach the initial nucleon is taken to be on-shell
with the momentum distribution taken from the SF. The energy distribution of the hole SF is
taken into account as the modification of the energy transfer. The LDA treats the initial nucleon
as an off-shell particle; however, the master equation for the matrix element at the nuclear level
(where the sum over spins is performed) is obtained assuming on-shell nucleons. The results
for very forward scattering angles turned out to be very sensitive to this choice, affecting both
the cross sections and the polarization components. Nevertheless, the discrepancies become
very small already for angles ∼ 4◦. We have shown that the effect of SFs is sizable when the
differential cross sections are considered, producing a quenching of the QE peak and a shift of
its position towards higher energy transfers, as in the other cases studied in this work. However,
nuclear effects are less pronounced for the polarization components, because they are obtained
as ratios of terms proportional to the hadron tensor, where some cancellations of the nuclear
corrections occur.

Outlook

The main motivation for this work has originated from the neutrino experimental studies. In the
current and future oscillation measurements, in particular at DUNE and T2HK long baseline
accelerator experiments, a precise knowledge of the cross sections and of the neutrino recon-
structed energy are highly desired. We have focused our attention on the QE mechanism which
is the dominant process in the energy range of T2K (and future T2HK) experiment, and one of
the main contributions for DUNE.

Bearing in mind the status of neutrino experiments and various challenges which were pre-
sented in the Introduction, we discuss some possible improvements and further developments
of the studies presented in this Thesis.

• Additional validation, tests of the model for the SFs can be done by performing compar-
isons with semi-exclusive data in which both the final lepton and the knocked-out proton
are observed. The current experimental program, aiming at high-precision measurements
of electron-nucleus scattering, in JLAB has made it possible for a wide range of kinemat-
ical setups and various nuclei. This test for the nuclear model would need an additional
Monte Carlo cascade to propagate the final nucleon through the nucleus.
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• One of the biggest challenges in neutrino detection is the fact that the beam is not monoen-
ergetic and typically covers a wide range of energies from MeV to few GeV. Therefore,
all kinematically allowed mechanisms (which usually include QE, multi-nucleon knock-
out, pion production and DIS) compete and give contributions to the total rate of observed
events. It becomes indispensable to have a theoretical framework where all these mecha-
nisms could be included. The model developed by the Valencia group is able to address
this problem. However, a full description of both CC and NC processes is yet to come.
Thus, we are currently working in the evaluation of inclusive 2p2h and pion production
cross sections driven by both CC and NC.

• It is widely known that the uncertainties of neutrino-nucleus cross sections affect the
analysis of oscillation parameters. However, the estimation of these theoretical errors is
a difficult task which has not been fully done within any nuclear model. Some attempts
have been made (see for instance Refs. [13, 68]).This analysis can be done using our
approach and certainly could be quite useful.

• To make the model available for a wider use in the experimental studies, it should be
implemented in one of the Monte Carlo event generators. This is a nontrivial task from
the point of view of numerical calculations. The shape of spectral function, particularly
in the vicinity of Fermi level, is delta-like, making the integration over it potentially
unstable.

• It might be interesting to perform further analyses for the relativistic extension of the SF
obtained within the model description in Subsec. 3.2.4, and compare their predictions to
the available electron scattering data. Besides the GiBUU phenomenological potential
which is relativistic, our model is the only one in the field of neutrino-nucleus studies
which allows for a consistent description of both the hole and particle states.
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Appendix A

Constants and conventions

Notation

When we use nonrelativistic kinematics for nucleons, we choose the origin of energy in its
mass.

notation meaning
k = (Ek,~k) incoming lepton

k′ = (Ek′ ,~k ′) outgoing lepton
p = (Ep,~p) incoming nucleon

p′ = (Ep′ ,~p ′) outgoing nucleon
q = k− k′ = (q0,~q) momentum transfer

Y hyperon

TABLE A.1: Notation used in this Thesis.

Constants

constant symbol value
Fermi constant GF 1.1664×10−5GeV−2

fine structure constant α (137.036)−1

muon mass mµ 105.66 MeV
tau mass mτ 1776.82 MeV

pion mass mπ 139.6 MeV
nucleon mass M 938 MeV

Λ mass MΛ 1115.7 MeV
Σ+ mass MΣ+ 1189.3 MeV
Σ− mass MΣ− 1197.4 MeV
Σ0 mass MΣ0 1192.6 MeV
Λc mass MΛc 2455 MeV

Cabbibo angle cosθC 0.974

TABLE A.2: Constants used in this Thesis.
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Metric tensor

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.1)

Levi-Civita symbol

We use sign convention
ε0123 = ε

0123 = +1 (A.2)

Pauli matrices

σ
1 =

(
0 1
1 0

)
, σ

2 =

(
0 −i
i 0

)
, σ

3 =

(
1 0
0 −1

)
(A.3)

Dirac matrices

Dirac matrices are defined by the anticommutation relation

{γµ ,γν}= 2gµν I4×4 (A.4)

In the Dirac basis:

γ
0 =

(
I2×2 0

0 −I2×2

)
, γ

k =

(
0 σ k

−σ k 0

)
, γ

5 = γ5 =

(
0 I2×2

I2×2 0

)
(A.5)

We also define
σ

µν =
i
2
[γµ ,γν ] (A.6)

Spinor normalization

Traditionally we denote us(p) to describe fermions with helicity s and momentum ~p while vs(p)
corresponds to antiparticles. The adjoint solution is given by ūs(p) = us(p)†γ0 and similar for
vs(p). Spinor normalization used in this Thesis (for a particle of mass M and Ep =

√
M2 +~p 2):

ū(p,s)u(p,s′) = 2Mδs,s′

v̄(p,s)v(p,s′) = −2Mδs,s′

v†(p,s)v(p,s′) = 2Epδs,s′ (A.7)

u†(p)u(p,s′) = 2Epδs,s′

∑
s

u(p,s)ū(p,s) = /p+M

∑
s

v(p,s)v̄(p,s) = /p−M
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State normalization

One-particle state normalization is given by

〈~p|~p ′〉= (2π)32Epδ
3(~p−~p ′) (A.8)

More on normalization conventions can be found in Appendix D.

Gell-Mann matrices

Gell-Mann matrices which span the Lie algebra of the SU(3) group and define the adjoint rep-
resentation are taken as

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (A.9)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


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Appendix B

Constructing the N→ N ′ vertex

The CC nucleon-nucleon transition matrix element for weak current has a general form:

〈N′; p′|Jµ |N; p〉= ū(p′)Γµu(p) (B.1)

where the Dirac matrix vertex Γµ has axial-vector structure V µ −Aµ .
To construct the most general form of the vertex we have at disposal four-vectors pµ , p′µ

and a set of 4×4 matrices which when put between two Dirac spinors give rise to an expression
with definite transformations under the Lorentz group and the space inversion operation [253]:

I4×4, γµ , σ µν = i
2 [γ

µ ,γν ]

γµγ5, γ5 (B.2)

The latter two operators containing γ5 define pseudo-vector or pseudo-scalar objects, breaking
parity conservation. In what follows we neglect the difference between proton and neutron
masses and take Mp ≈Mn ≡M.

Vector part

We consider first the vector part V µ , which is invariant under parity. It can be built out of the first
three matrices listed in Eq. (B.2). We can easily see that there exist five possibilities, each one
can be multiplied by a scalar quantity, called form factor (FF), function of the available Lorentz
scalars. Besides the masses, there is only one independent scalar, q2, since p2 = p′2 = M2 and
p · p′ = M2−q2/2, using that qµ = pµ − p′µ . Thus, in general, using only Lorentz symmetry
and parity invariance:

V µ =F1(q2)γµ +F2(q2)(pµ − p′µ)+F3(q2)(pµ + p′µ)

+F4(q2)σ µν(pν − p′ν)+F5(q2)σ µν(pν + p′ν) (B.3)

Not all of the five terms above are independent. Using the Dirac equation one can show that:

ū(p′)σµν(p+ p′)νu(p) = iū(p′)(p′− p)µu(p) (B.4)

and therefore it is possible to omit the last term F5(q2) since it is already included in F2(q2).
Thanks to the Gordon identity,

2Mū(p′)γµu(p) = ū(p′) [(p′µ + pµ)+ iσ µν(pν − p′ν)]u(p) (B.5)

we can eliminate also the term proportional to F3(q2) and we are left with:

V µ = F1(q2)γµ +F2(q2)(pµ − p′µ)+F4(q2)σ µν(pν − p′ν). (B.6)
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In the literature different sets of FFs are used. In this work we redefine them as

V µ = F1(q2)γµ +F2(q2)
iσ µνqν

2M
+F3(q2)

qµ

M
(B.7)

where are FFs are dimensionless.
Time reversal invariance of strong interactions implies that form factors Fj are all real (that is

why the imaginary unit was put into the F2 term). G-parity (a combination of charge conjugation
and isospin rotation of an angle π along the Y axis) in turn leads to the conclusion that F3 = 0.
This is often referred to as absence of a “second class vector current”. A detailed derivation can
be found in [254].

Assuming isospin symmetry, the vector part of the weak charged current is a member of
a triplet of currents which are supposed to be conserved (CVC - “conserved vector current”
hypothesis). Another member of the triplet is the isovector part of the electromagnetic current.
This allows to express the matrix elements of the vector part of the weak current in terms of
electromagnetic FFs: isoscalar parts of the electromagnetic currents cancel out. For charge
current transitions we obtain:

FV
j = F p

j −Fn
j , (B.8)

where F p/n
j are the electromagnetic FFs introduced in the standard expressions for the electro-

magnetic current matrix elements:

〈N; p′|Jµ
em|N; p〉= ū(p′)Γµ

N,emu(p) (B.9)

Γµ

N,em = FN
1 (q2)γµ +FN

2 (q2)
iσ µνqν

2M
(B.10)

with N standing for either proton or neutron.

Axial part

We can follow the same initial steps to get the axial part of the vertex. This time, however, we
make use of two latter terms from Eq. (B.2),

Aµ = GA(q2)γµ
γ5 +

GP(q2)

M
qµ

γ5 +
G3(q2)

M
(pµ + p′µ)γ5 (B.11)

Invariance of strong interactions under time reversal implies that GA,GP,G3 are real. G-parity
leads to the constrain G3 = 0, like in the case of vector current also referred to the absence of
the “second class current”.

The value of GA(0) ≈ 1.26 can be determined from β decay. On the other hand, GA and
GP are related by means of PCAC – “partial conservation of axial current” hypothesis. It states
that the axial current is conserved in the chiral limit, and that its divergence scales with the pion
mass. Thus, in the soft pion limit, we have

∂µAµ
a = − fπm2

πφa (B.12)

where fπ is the pion decay constant and φa is the pion field. This, together with the assumption
of the “pion pole dominance”, allows us to express GP in terms of GA.

The main steps of the derivation of the relation between GP and GA are as follows:
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1. From Eq. (B.11), taking G3 = 0, the divergence of the axial current is

qµAµ = 2MGA(q2)γ5 + q2 GP(q2)

M
γ5 (B.13)

where we have made use of the Dirac equation of motion.

2. In the limit of vanishing pion mass the current is conserved so

GP =
mπ→0

−GA
2M2

q2 (B.14)

3. The appearance of q2 in the denominator is interpreted as resulting from a pion propagator
and we get

GP = GA
2M2

m2
π −q2 (B.15)

4. An extra important additional relation comes from the assumption that GP term comes
from the Feynman diagram containing the NNπ vertex, the pion propagator and π decay
vertex (“pion pole dominance”). The Lagrangian for the NNπ interaction:

LNNπ = −gNNπ

fπ

ψ̄Nγµγ
5
(

∂
µ~φ
)
~σψN (B.16)

and the pion decay vertex for π− reads:

〈0|Aµ

+|π−〉= i
√

2 fπqµ (B.17)

where q is pion four-momentum and
√

2 is an isospin factor. Finally we get:

GP

M
qµ ūγ5u =

(
−
√

22M
gNNπ

fπ

ūγ5u
)
×
( −i

q2−m2
π

)
×
(

i
√

2 fπqµ

)
(B.18)

which leads to:

GP = −2gNNπ

2M2

q2−m2
π

(B.19)

5. After imposing limit mπ → 0 we obtain Goldberger-Treiman relation:

GA = 2gNNπ (B.20)

Thus we finally get

Aµ = γ
µ

γ5GA(q2)+
qµ

M
GA(q2)

2M2

m2
π −q2 γ5 (B.21)
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Appendix C

Generalized Lindhard function

We present an analytical expression for the generalized Lindhard function. In this case the
particle and hole states have different masses, Mh and Mp, and the particle state is not Pauli
blocked. This situation describes e.g. the weak hyperon production considered in Chpt. 6.

Ū(q, pF) = 2
∫ d3 p

(2π)3
Mh

Ep

Mp

Ep+q

θ (pF −|~p|)
q0 +Ep−Ep+q + iε

+(q→−q) (C.1)

We are interested in its imaginary part which corresponds to putting both particle and hole
states on-shell. Only the direct part contributes for q0 > 0

ImŪ(q, pF) = −
∫ d3 p

(2π)2
Mh

Ep

Mp

Ep+q
θ (q0)θ (pF −|~p|)δ (q0 +Ep−Ep+q) (C.2)

The integral
∫

d3 p =
∫ |~p|2d|~p|dφd cosθ can be done using (i) rotation symmetry to inte-

grate over φ and (ii) the energy conserving delta function to select an angle formed by the ~p and
~q three-vectors.

Let us introduce:
f (cosθ ) = q0 +Ep−Ep+q(cosθ ) (C.3)

∂ f
∂ cosθ

=
|~p| |~q|
Ep+q

(C.4)

and the solution of f (cosθ ) = 0 (which depends on |~p|) we will denominate as cosθ0. Then:

ImŪ(q, pF) = −
∫ |~p|2d|~p|

2π

Mh

Ep

Mp

Ep+q
θ (q0)θ (pF −|~p|)θ (1− cos2

θ0)/
∂ f

∂ cosθ

∣∣∣∣
cosθ

= −
∫ |~p|2d|~p|

2π

Mh

Ep

Mp

Ep+q
θ (q0)θ (pF −|~p|)θ (1− cos2

θ )
Ep+q

|~p| |~q|

∣∣∣∣
cosθ0

= −
∫ |~p|d|~p|

2π

Mh Mp

|~q|Ep
θ (q0)θ (pF −|~p|)θ (1− cos2

θ )

∣∣∣∣
cosθ0

= −
∫ dEp

2π

Mh Mp

|~q| θ (q0)θ (EF −Ep)θ (1− cos2
θ )

∣∣∣∣
cosθ0

(C.5)

where in the last step we used that EpdEp = |~p|d|~p| and EF =
√

M2
h + |~p|2.

Now we need to find limits of integration over Ep. The upper limit cannot be larger than EF

while the lower cannot be smaller than Mh. Further kinematical conditions can be read-off from
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the step function θ (1− cos2 θ0) that guarantees −1≤ cosθ0 ≤ 1. This amounts to:

−1≤
q2 + 2q0Ep +(M2

h −M2
p)

2|~p| |~q| ≤ 1 (C.6)

We will introduce λ :

λ ≡ 1+
M2

h −M2
p

q2 (C.7)

which is equal to 1 in the case of Mh = Mp.
Condition (C.6) gives a quadratic equation for Ep:

0≤−4q2E2
p−4q0

λ
2q2Ep−4|~q|2M2

h −λ
4(q2)2 (C.8)

After a short calculation we get that:

E∓ =
−q0λ ∓|~q|

√
λ 2−4M2

h /q2

2
(C.9)

Looking at Eq. (C.8), the condition is fulfilled for Ep ≤ E− or Ep ≥ E+. The first solution
is always negative and therefore not physical. The other one gives a lower boundary for Ep.
Finally

ImŪ(q, pF) = −
MhMp

2π|~q| θ (q
0)θ (EF −Emin)(EF −Emin) (C.10)

with

Emin = max
(

Mh,
1
2

(
−q0

λ + |~q|
√

λ 2−4M2
h /q2

))
.
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Appendix D

Normalization conventions

In quantum field theory we have the freedom to choose the normalization of the fermion and
boson fields. Following the discussion of Ref. [99], we will introduce the normalizations:

• spinors u(p,s), v(p,s) of momentum p and spin s:

u†(~p,s)u(~p,s′) = N 2Epδss′ (D.1)

Since we consider on-shell particles, p0 = Ep =
√

M2 +~p 2.

• anti-commutator relation between creation and annihilation operators a(p,s), a†(p,s)
(and for antiparticles b, b†):

{a(~p,s),a†(~p′,s′)}= Fδss′δ
3(~p−~p ′)

{b(~p,s),b†(~p′,s′)}= Fδss′δ
3(~p−~p ′) (D.2)

• integration measure in the definition of the Dirac field ψ(x):

ψ(x) = ∑
s

∫ d3 p
D

(
a(~p,s)u(~p,s)e−ipx + b†(~p,s)v(~p,s)eipx

)
(D.3)

• one-particle states:
|~p,s〉= Ga†(~p,s)|0〉 (D.4)

All the normalization factors have an implicit dependence on p. The relations between N, F
and D will be restricted when we set canonical anticommutation relations for ψ(x). For given
indices a, b and position x we have:1

{ψα(~x, t),ψ†
β
(0, t)}= δαβ δ

3(~x) (D.5)

1Here we set the position of one of the particles to 0 since the system is invariant under translations.
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Using Eq. (D.3), we get:

{ψα(~x, t),ψ†
β
(0, t)}= ψα(~x, t)ψ†

β
(0, t)+ψ

†
β
(0, t)ψα(~x, t) =

=
∫ d3 p

D
d3 p′

D′ ∑
s,s′

(
a(~p,s)uα(~p,s)e−ipx + b†(~p,s)vα(~p,s)eipx

)
×
(

a†(~p ′,s′)u†
β
(~p ′,s′)eiE ′t + b(~p ′,s′)v†

β
(~p ′,s′)e−iE ′t

)
+
∫ d3 p

D
d3 p′

D′ ∑
s,s′

(
a†(~p,s)u†

β
(~p ′,s′)eiE ′t + b(~p ′,s)v†

β
(~p ′,s′)e−iE ′t

)
×
(

a(~p,s)uα(~p,s)e−ipx + b†(~p,s)vα(~p,s)eipx
)

=
∫ d3 p

D
d3 p′

D ∑
s,s′

(
a(~p,s)a†(~p ′,s′)uα(~p,s)u†

β
(~p ′,s′)e−ipxeiE ′t

+ b†(~p,s)b(~p ′,s′)vα(~p,s)v†
β
(~p ′,s′)eipxe−iE ′t

+ a†(~p ′,s′)a(~p,s)u†
β
(~p ′,s′)uα(~p,s)e−ipxeiE ′t

+ b(~p ′,s)b†(~p,s)v†
β
(~p ′,s′)vα(~p,s)eipxe−iE ′t

)
=
∫ d3 p

D
d3 p′

D′ ∑
s,s′

(
{a(~p,s),a†(~p ′,s′)}uα(~p,s)u†

β
(~p ′,s′)e−ipxeiE ′t

+ {b†(~p,s),b(~p ′,s′)}vα(~p,s)v†
β
(~p ′,s′)eipxe−iE ′t

)
(D.6)

We make use of Eq. (D.2) and the fact that u†(~p,s) = ū(~p,s)γ0,∫ d3 p
D

d3 p′

D′
F ∑

s

(
uα(~p,s)u†

β
(~p ′,s)e−ipxeiE ′t + vα(~p,s)v†

β
(~p ′,s)e−iE ′teipx

)
δ

3(~p−~p ′)

=
∫

d3 p
F
D2 ∑

s

([
u(~p,s)u†(~p,s)

]
αβ

e−ipxeiEt +
[
v(~p,s)v†(~p,s)

]
αβ

e−iEteipx
)

=
∫

d3 p
F
D2 ∑

s

([
u(~p,s)ū(~p,s)γ0]

αβ
ei~p~x +

[
v(~p,s)v̄(~p,s)γ0]

αβ
e−i~p~x

)
=
∫

d3 p
NF
D2

([
(Epγ

0−~p~γ +M)γ0]
αβ

ei~p~x +
[
(Epγ

0−~p~γ−M)γ0]
αβ

e−i~p~x
)

(D.7)

In the second integral we change ~p→−~p:∫
d3 p

NF
D2

([
(Epγ

0−~p~γ +M)γ0]
αβ

ei~p~x +
[
(Epγ

0 +~p~γ−M)γ0]
αβ

ei~p~x
)

=
∫

d3 p
NF
D2

([
2Epγ

0
γ

0]
αβ

ei~p~x
)
=
∫

d3 p
2NFEp

D2 ei~p~x
δαβ

(D.8)
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Finally we want Eq. (D.5), so:∫
d3 p

2NFEp

D2 e−i~p~x
δαβ = δαβ δ

3(~x) (D.9)

Now we can use the identity: ∫
d3 pei~p~x = (2π)3

δ
3(~x) (D.10)

to obtain a relation between D, F and N:

FN
D2 =

1
(2π)32Ep

(D.11)

Next, let us express the probability density (since we deal with quantized fermionic fields, we
will in fact consider a single-particle expectation value of this operator):

ρ = 〈p,s|ψ†(x)ψ(x)|p,s〉 (D.12)

After a short calculations we get:

ρ =
FG2

(2π)3 . (D.13)

It has the same physical interpretation as in quantum mechanics. A free solution of Dirac
equation is not properly normalized and to treat physical particles, one has to define wave
packets which are normalized to a finite number (the most natural would be normalization to 1
if a field represents a single particle state). Here, for the sake of simplicity, we will use that the
states are normalized in a finite volume V .

Phase space per particle can be read off using completeness relations:∫ d3 p
X
|p,s〉〈p,s|= 1 → X = FG2 = (2π)3

ρ (D.14)

The relation between the scattering probability amplitude and the invariant matrix element
Mi→ f depends on the chosen normalization:

〈 f |S−1|i〉= −i(2π)4
δ

4(pA + pB−∑
i

pi) ∏
i∈A,B,1,..n

(
FiGi

Di

)
Mi→ f

= −i(2π)4
δ

4(pA + pB−∑
i

pi) ∏
i∈A,B,1,..n

(
ρi

2EiNi

)1/2

Mi→ f (D.15)

where the initial and final scattering states have defined momentum.
The transition probability i→ f per unit time and unit volume is:

|〈 f |S−1|i〉|2 = Pi→ f

dV dt
= (2π)4

δ
4(pA + pB−∑

i
pi) ∏

i∈A,B,1,..n

(
ρi

2EiNi

)
|Mi→ f |2 (D.16)

Let us consider the cross section for the process A + B→ 1 + 2 + ... + n. The incident
particles A and B move with velocities~vA and~vB. In the rest frame of particles A, we have that
the incident flux of B particles is given by f = NB/dSdt = NB/dV × dl/dt = ρB(~vA−~vB).
The cross section is defined as the transition probability per target density ρA × incident flux of
particles B, ρB(vA− vB),

σ =
1

ρAρB(vA− vB)

∫ ( n

∏
k=1

d3 pk

(2π)3ρk

)
Pi→ f

dV dt
(D.17)
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The phase space per outgoing particle is taken from Eq. (D.14). We use that:

|~vA−~vB|=
[(pA · pB)2−m2

Am2
B]

1/2

EAEB
(D.18)

And finally we get:

σ =
EAEB

ρAρB[(pA · pB)2−m2
Am2

B]
1/2

× ρAρB

4EAEBNANB

∫ ( n

∏
k=1

d3 pk

2EkNk

)
(2π)4

δ
4(pA + pB−∑

k
pk)|Mi→ f |2

=
1

4NANB[(pA · pB)2−m2
Am2

B]
1/2

∫ ( n

∏
k=1

d3 pk

2EkNk

)
(2π)4

δ
4(pA + pB−∑

k
pk)|Mi→ f |2

(D.19)

As could be predicted, the result does not depend on the chosen normalization except for Ni

factors (spinor normalization), which also enter in the invariant matrix element Mi→ f and will
cancel out.
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Appendix E

Kinematics for τ production off
nucleons
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FIGURE E.1: Left: Maximum and minimum LAB lepton transferred energies (q0
max,min = Eν−Emin,max

k′ )
as a function of the incoming neutrino energy for weak τ production off nucleons. Right: LAB τ−lepton
scattering angle (deg) as a function of µCM, or equivalently of the LAB outgoing tau energy, for several
incoming neutrino LAB energies: Eν = 4 GeV (solid–red), 6 GeV (dashed–blue), 8 GeV (dotted–green),
10 GeV (dot-dashed–black) and 50 GeV (short-dashed–cyan). In addition, the horizontal black–solid line
stands for the upper bound, θmax = arcsin (M/mτ ), that is reached in the Eν �M,mτ limit.

We will collect here some kinematical relations for the two body reaction

ν`(Eν)N→ `(k′)N′ , `= e, µ ,τ (E.1)

paying a special attention to the differences induced by the large mass of the τ , with respect to
the µ− and e−lepton cases. The LAB threshold neutrino energy, E th

ν`
= m`+m2

`/2M, is around
3.5 GeV (∼ 2mτ ) for τ production, while the correction (m2

`/2M) to m` is negligible for muons
and electrons. Taking the incoming neutrino in the positive Z−axis, the lepton scattering angle,
θCM, in the neutrino-nucleon center of mass (CM) frame is not limited and thus, µCM = cosθCM
can take any value between −1 and 1. The lepton energy (Ek′) and scattering angle (θ ) in the
LAB system are obtained through

Ek′ =
(Eν+M)ECM

k′ +µCMEν |~k′|CM
√

s , s = 2MEν +M2 , ECM
k′ =

s+m2
`−M2

2
√

s (E.2)

tanθ =
√

s
Eν+M

√
1−µ2

CM
µCM+a , a = Eν

Eν+M
ECM

k′
|~k′|CM (E.3)
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with |~k′|CM =
√
(ECM

k′ )2−m2
` . The maximum and minimum LAB energies of the outgoing

lepton correspond to µCM = +1 and −1, respectively, and they read

Emax
k′ =

(Eν +M)ECM
k′ +Eν |~k′|CM
√

s
, Emin

k′ =
(Eν +M)ECM

k′ −Eν |~k′|CM
√

s
(E.4)

The range of transferred energies to the nucleon in the LAB system, and for τ−lepton produc-
tion, is shown in the left panel of Fig. E.1 as a function of Eν , up to 10 GeV.

The parameter a > 0, introduced in Eq. (E.3), plays an important role to determine the LAB
angular distribution. It diverges at threshold and it becomes 1 when Eν � M,m`. For muon
production a < 1, except for a very narrow region (∼ 1 MeV) comprised between threshold and
Ea=1

ν = mµ(M−mµ /2)/(M−mµ), with mµ the muon mass1. The situation, conveniently re-
scaled, is similar for electron production. For τ production, however, a is a decreasing monotone
function, being always greater than 1 and reaching this latter value only in the Eν → ∞ limit.
Thus, we have

• a < 1 (muon and electron production): The LAB lepton scattering angle θ can take any
value between 0 and π , with θ > π/2 (θ ≤ π/2) for µCM < −a (µCM ≥ −a). Further-
more, there is a biunivocal correspondence between µCM and cosθ , and hence between
the LAB variables Ek′ and cosθ . Namely, neglecting the muon or electron masses with
respect to that of the nucleon or the neutrino energy, one finds

Ek′ =
MEν

M+Eν −Eν cosθ
(E.5)

• a > 1 (tau production): We see that tanθ is always greater than zero, and therefore θ <
π/2. Actually, tanθ , seen as a function of µCM or equivalently of the LAB outgoing
tau energy, has a maximum for µCM = −1/a < 0. We find that the maximum lepton
scattering angle in the LAB frame, θmax, is

θmax = arcsin

(√
s|~k′|CM

Eνmτ

)
< arcsin

(
M
mτ

)
∼ 31.9o (E.6)

where the upper bound is reached for Eν � M,mτ . The dependence of θ on µCM is
shown in the right panel of Fig. E.1 for different incoming neutrino LAB energies. We
observe that any LAB τ−scattering angle is obtained for two different values of µCM (two
different values of the LAB τ−energy, Ek′ , as inferred from Eq. (E.2)), and hence the
(θ , µCM)−correspondence is not biunivocal in this case. One of the solutions (A) always
corresponds to the τ−lepton coming out backwards in the CM frame (µCM < −1/a↔
θCM > π/2). For the second one (B) µCM > −1/a, which depending on the neutrino
energy and on θ might also correspond to µCM < 0. The CM to LAB boost transforms
both CM configurations into quite forward scattering in the LAB system (θ < 32o). The
B–solution gives rise to a larger (smaller) outgoing LAB τ−energy (transferred energy
q0 = Eν −Ek′) than the A one. The details of the θ (µCM) distribution depends on the
incoming neutrino energy, as can be seen in Fig. E.1, and its asymmetry becomes more
pronounced as Eν grows, with the the maximum position approaching to µCM = −1 and
θ at the maximum to θmax.

This is the kinematics that always applies for τ−production, while as mentioned for
muon or electron weak production, the parameter a is greater than zero only for a very

1The parameter a takes the value of 1 for Eν = Ea=1
ν , reaches a minimum above this energy and after, it begins

to grow approaching the asymptotic value of 1 for large neutrino energies.
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narrow range of LAB neutrino energies comprised between m` +m2
`/2M and m`(M−

m`/2)/(M−m`), with `= e, µ .
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SFapprox| (dashed) and |ImŪNR(q)| (dashed-dotted) for

|~q |=300 MeV and density ρ = 0.09 fm−3, as a function of the energy transfer. 63

4.1 Pion self-energy related to the πN→ γN process. . . . . . . . . . . . . . . . . 75
4.2 Photon energy distributions (arbitrary units) from pion capture in 12C (left) and

40Ca (right). Experimental spectra are taken from Ref. [155]. Theoretical LDA
SF+RPA curves were adjusted to data in the peak, other curves (LFG, RPA,
LDA SF) were scaled by the same factor. Error bands on the RPA predic-
tions show MC 68% CL intervals derived from the uncertainties in the ph(∆h)–
ph(∆h) effective interaction as discussed in Sec. 2.5.2. The vertical lines show
the maximum photon energy for the continuum contribution, (AZ−π−)bound→
γ + n+(A−1)Z−1, where the final nucleus is left in its ground state. . . . . . . 77

4.3 Inclusive muon capture differential widths for 12C (left) and 40Ca (right), as a
function of the energy transfer. Error bands on the RPA predictions show MC
68% CL intervals derived from the uncertainties in the ph(∆h)–ph(∆h) effective
interaction as discussed in Sec. 2.5.2. . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Left (right) panel: Differential cross section for inclusive CC muon (electron)
neutrino scattering from 12C at 180 (45) MeV. The calculations have been done
using nonrelativistic kinematics and with/without LDA SF and RPA effects. . . 81



List of Figures 185

4.5 Predictions for the LSND measurement of the 12C (νµ , µ−)X reaction (left
panel) and the 12C (νe,e−)X reaction near threshold (right panel). Neutrino
cross sections have been convoluted with the corresponding flux. Error bands
on the RPA predictions show MC 68% CL intervals derived from the uncer-
tainties in the ph(∆h)–ph(∆h) effective interaction as discussed in Sec. 2.5.2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Importance of nuclear effects compared to the nonrelativistic free LFG cross

section (σ0). We display (σnuc eff−σ0)/σ0 where “nuc eff” stands for a nuclear
effect (RPA, LDA SF or LDA SF+RPA). The bands show 68% CL intervals
derived from the uncertainties on the ph(∆h)–ph(∆h) effective interaction. . . . 85

4.7 Neutrino and antineutrino differential cross sections from 16O at various ener-
gies. “LFG” and “RPA” curves were calculated with nonrelativistic kinematics.
The use of relativistic kinematics causes a decrease of the cross section shown
as striped pattern bands below those curves. LDA SF results have been com-
puted using a complex self-energy to dress both, particle and hole nucleon lines.
Theoretical errors on the LDA SF+RPA predictions show MC 68% CL intervals
(red bands). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Ratio σ(µ)/σ(e) of inclusive neutrino (first row) and antineutrino (second
row) QE cross sections for carbon, oxygen and argon, as a function of the in-
coming (anti-)neutrino energy. We show nonrelativistic free LFG, RPA, LDA
SF and LDA SF+RPA results. In the two bottom plots, we show bands (red for
carbon, blue for oxygen and green for argon) whose upper and lower limits are
given by the LFG and LDA SF+RPA predictions, respectively. . . . . . . . . . 87

4.9 Angular distributions of the emitted electron in the νe+16O→ e−+X inclusive
reaction for Eν = 300 MeV (left) and 500 MeV (right). The curves labeled by
GFG and Kolbe et al. are taken from the bottom panel of Fig. 3 of Ref. [163],
and stand for the relativistic global Fermi gas model and the CRPA calculations
presented in that work, respectively. In addition, we also show our full RPA pre-
dictions and the distributions obtained when the excitation of ∆h components
in the RPA responses are not taken into account (this amounts to setting U∆ to
zero in the denominators of Eq. (2.99)). Relativistic free LFG (noninteracting)
SFs have been used in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 RPA effects on the QE contribution to the MiniBooNE flux–averaged νµ−12C
double differential cross section per neutron for 0.8 < cosθµ < 0.9, as a func-
tion of the outgoing muon kinetic energy. The curves labeled by Martini et al.
and Pandey et al. are taken from Fig. 6 of Ref. [75] and Fig. 4 of Ref. [24],
respectively, while the other two curves have been calculated using the model
presented in this work, and they were first shown in Fig. 3 of Ref. [74]. Rela-
tivistic free LFG (noninteracting) SFs have been used in our predictions. . . . 88



186 List of Figures

4.11 Inclusive QE cross section for scattering of electrons on carbon at 560 MeV
and 60◦ (q2 = −0.242 GeV2 at the QE peak). Besides the LDA SF and LDA
SF+RPA results (RPA corrections are included as in the case of the vector con-
tributions to the neutrino-induced inclusive QE reaction driven by the elec-
troweak NC studied in Ref. [113]; see also [6]), predictions from Refs. [22]
(Pandey et al.) and [64] (GiBUU 2016) are also shown. These latter curves
are taken from panel j of Fig. 5 of [22] and Fig. 3 of [64], respectively. The
2p2h curve, taken also from Fig. 3 of [64], stands for contributions of meson
exchange currents (genuine 2p2h), and it might include also short-range and
RPA effects [64]. It is obtained from an empirical fit to electron-nucleus scat-
tering data carried out in [186]. Finally, the reddish-shaded region shows the
difference between relativistic and nonrelativistic noninteracting LFG predic-
tions. Data taken from Ref. [187]. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 CCQE cross section of the reaction σ(νµ +12 C→ µ−+X) as a function of
neutrino energy. Besides the results taken from the bottom panel of Fig. 3 of
Ref. [19], and labeled as Vagnoni et al., we also display (blue dashed line) our
LDA SF predictions up to 500 MeV, and relativistic and nonrelativistic free LFG
(upper limit of the reddish band) cross sections for the entire neutrino energy
range. We also show results LDA SF IA obtained using the hadron tensor of
Eq. (3.10), keeping the full hole LDA SF while treating the outgoing nucleon
as a free particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.13 Inclusive QE cross sections for scattering of electrons on carbon at different
scattering angles and incoming electron energies. Besides LDA SF results, pre-
dictions (Ankowski et al.) taken from panels (d)–(i) of Fig. 2 of Ref. [14] are
also shown. At the QE peaks, the momentum transfers |~q | are 259, 295, 331,
366, 390 and 450 MeV, respectively. Data taken from Refs. [192, 193, 194]. As
in Fig. 4.11, the reddish-shaded regions show the difference between relativistic
and nonrelativistic noninteracting LFG predictions. . . . . . . . . . . . . . . . 93

4.14 CCQE neutrino double differential cross section d2σ/dΩ(k̂′)dE ′ on 16O as
a function of the energy transfer at Eν = 0.5 GeV and a scattering angle of
θ = 30o. The orange-short-dashed curve, labeled by Leitner et al., stands for
the full calculation of Ref. [145] (full in-med. SF curve of top panel of Fig. 13
of this reference). We also show relativistic and nonrelativistic free LFG, and
the LDA SF and approximated LDA SF (neglecting the hole width) sets of
predictions. Finally the blue-dashed curve, labeled as GiBUU 2016, has been
obtained with the 2016 updated version of the GiBUU code [64]. . . . . . . . 94

4.15 The muon neutrino flux in the ND280 detector of the T2K experiment, taken
from [196]. The dashed line shows the flux, the solid curve shows the flux mul-
tiplied by the oscillation probability Pνµ→νe [51]. Both curves are normalized
to the same area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.16 dσ/d|~q|dq0
∣∣osc
T2K [10−38cm2/GeV2] in carbon for the T2K flux (using the LDA

SF IA model), see Eq. (4.19). The position of the CCQE peak is marked with
the solid line. Three typical electron data sets are also shown (experimental
points are connected by lines for better legibility): solid line E= 200 MeV,
θ = 60◦; dashed line E= 1500 MeV, θ = 13.54◦, dotted-dashed line E= 680
MeV, θ = 60◦. Each of them crosses the black solid curve (“CCQE line”) at
different points. The value of dσ/d|~q|dq0

∣∣osc
T2K in this crossing point is taken as

the measure of the importance of the data set. . . . . . . . . . . . . . . . . . . 97
4.17 Flux (T2K) average CCQE dσ/d|~q|dq0

∣∣osc
T2K [10−38cm2/GeV2] cross section

in carbon at the QE peak as a function of the energy transfer. The LDA SF IA
model has been used to evaluate the nuclear cross section. . . . . . . . . . . . . 98



List of Figures 187

4.18 Comparison of different electron-nucleus scattering models in Region I. For
the local Fermi gas, relativistic kinematics is employed and the difference from
nonrelativistic results is shown as a gray band. . . . . . . . . . . . . . . . . . . 101

4.19 The same as in Fig. 4.18, but for Region II with (q0)QE ≤ 70 MeV. . . . . . . . 102
4.20 The same as Fig. 4.19, but 70 < (q0)QE ≤ 95 MeV. . . . . . . . . . . . . . . . 103
4.21 The same as Figs. 4.19 and 4.20 but for (q0)QE ≥ 95 MeV. . . . . . . . . . . . 104
4.22 The same as Fig. 4.18, but for Region III with (q0)QE ≤ 180 MeV. For the last

two panels, the predictions of the LDA SF model have been obtained using a
free relativistic particle SF (see Eq. (3.10)). In general the 2p2h and ∆ contri-
butions are large and influence the QE region. . . . . . . . . . . . . . . . . . . 105

4.23 The same as Fig. 4.22 but for (q0)QE > 180 MeV. . . . . . . . . . . . . . . . . 106
4.24 Comparison of GiBUU, LDA SF and CBF SF+FSI models, with data (green

points). We also display some data-points for which 2p2h and the ∆ contribu-
tions have been subtracted using results from [197] (black points). In the left
panel: the full LDA SF model (nonrelativistic) is used, while in the right panel,
the particle SF is approximated by the relativistic free one in this latter model. . 106

4.25 Ratio (dσ/dΩdq0)model/(dσ/dΩdq0)data at the QE peak for various models.
The band above the CBF SF+FSI curve shows the difference from the predic-
tions obtained within the CBF SF model, where the FSI effects are not consid-
ered. Two vertical lines at 50 and 125 MeV tentatively mark Regions I, II and
III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.26 Position of the QE peak with respect to the data (difference between the position
of the maximum of the experimental differential cross section and that of the
theoretical prediction for various models). Because of the discrete nature of
experimental points, an error band of 5 MeV is also shown with a dotted line.
The two vertical lines at 50 and 125 MeV tentatively mark Regions I, II and III.
In the bottom panel (LDA SF), the last six points (q0 > 150 MeV) have been
obtained using a free relativistic Pauli-blocked particle SF. . . . . . . . . . . . 108

4.27 Left: Ratios (dσ/dΩdq0)model/(dσ/dΩdq0)LFG at the QE peak for CBF
SF+FSI, GiBUU and LDA SF models. Right: Ratios ((q0

R)
model−(q0

L)
model)/((q0

R)
LFG−

(q0
L)

LFG) with q0
R, q0

L the energy transfer values for which the strength of the dif-
ferential cross section gets reduced to one half of the value at the maximum (for
q0 = [(q0)QE]). The bands above/below the CBF SF+FSI curve show the pre-
diction obtained with the CBF SF model (neglecting the FSI effects). As in
Fig. 4.26, for q0 > 150 MeV the LDA SF predictions were calculated using a
free relativistic Pauli-blocked particle SF. The two vertical lines at 50 and 125
MeV tentatively mark Regions I, II and III. . . . . . . . . . . . . . . . . . . . 109

5.1 Non-relativistic PWIA scaling responses, using the momentum distribution of
12C derived in Ref. [209] for |~q|= 0.5, 0.7, 1 and 1.2 GeV. The Fermi momen-
tum has been fixed to pF = 225 MeV. . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Non relativistic scaling responses obtained within PWIA (Eq. (5.36)) as a func-
tion of ψnr for |~q| = 0.5, 0.7, and 1 GeV. The momentum distribution of 12C
derived in Ref. [209] has been used, and the energy of the hole state has been ex-
tracted from the calculations of the nuclear matter energy spectrum of Ref. [210]
and implemented in the energy conservation (see Eq. (5.41)). The Fermi mo-
mentum, pF , has been fixed to 225 MeV. . . . . . . . . . . . . . . . . . . . . . 119

5.3 Same as in Fig.5.2, but nuclear potentials have been used to determine both the
hole and particle state energies (see Eq. (5.43)). . . . . . . . . . . . . . . . . . 119

5.4 Scaling functions for 12C obtained with the nonrelativistic kinematics, Eq. (5.33),
using the hole CBF SF for |~q|= 0.5, 0.7, 1.0, and 1.2 GeV. . . . . . . . . . . . 120



188 List of Figures

5.5 Left: Breakdown of the scaling response of 12C at |~q|=1.2 GeV showed in
Fig. 5.4 into the total, hole, and background contributions. Right: Dashed
(black) and solid (green) lines correspond to the scaling function calculated
with and without the inclusion of FSI effect at |~q|= 1 GeV in 12C. The CBF SF
curve corresponds to that displayed in Fig. 5.4, and it is used in the convolution
detailed in Eq. (5.30) to incorporate the FSI effects. . . . . . . . . . . . . . . . 121

5.6 Transverse (red dotted), longitudinal (blue dashed) and nucleon-density (black-
solid) scaling functions of 12C at |~q| = 1.0 GeV obtained from the CBF SF
approach including FSI corrections. . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Longitudinal scaling functions in 12C computed using the hole SF (Eq. (3.32))
of Ref. [27] for |~q| = 0.57, 0.8, 0.9, 1.0, and 1.2 GeV. Results neglecting the
nuclear effects of the particle SFs are shown in the left panel, while those in-
cluding FSI effects are displayed in the right one. The standard definition of the
longitudinal prefactor given in Eq. (30) of Ref. [25] has been used to get both
the theoretical curves and the experimental points obtained from the |~q|= 0.57
GeV data of Ref. [192] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Nucleon-density scaling functions for 12C computed for |~q|= 0.57, 0.8, 0.9, 1.0
and 1.2 GeV. In the left (right) panel, results obtained using CBF SF+FSI (LDA
SF) are shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9 Scaling functions for 12C computed for |~q| = 0.57, and 0.9 GeV. In the left
(right) panel results are obtained within the CBF SF+FSI(CBF SF) and SF LDA
(SF LDA IA) approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Form factors for the n→ Λc transition deduced from extrapolating to Q2 =
−q2 > 0 the results reported in Refs. [31] (LQCD), [33] (RCQM) and [32]
(MBM and NRQM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Λc→Λe+νe differential decay width from NRHOQM [35], RCQM [34], MBM
and NRQM [32], CQM approaches, and the LQCD simulation of Ref. [222]. . . 133

6.3 Vector and axial form factors for the Λc→ Λ transition calculated for the dif-
ferent models as detailed in Sec. 6.2. The form factors are multiplied by the
Clebsh-Gordan coefficient

√
3/2 in order to estimate them for the n→Λc tran-

sition, assuming unbroken SU(3) flavor symmetry. Negative values of Q2 cor-
respond to the kinematics of the Λc semileptonic decay, while Q2 is positive for
the Λc neutrino production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Differential cross section d2σ(ν̄µ +16 O → Λ + µ+ + X)/(d cosθ ′dq0) for
Eν̄ = 1 GeV and two fixed antimuon scattering angles, θ = 20◦ and θ = 70◦,
showed in the top and bottom panels, respectively. The blue dashed, green dot-
dashed and orange short dashed lines correspond to the LFG, CBF SF and LDA
SF calculations, respectively. The red solid and black dotted curves stand for
the LDA SF and CBF SF cross sections, when a MF potential is included in
the energy spectrum of the hyperon. All the results have been obtained without
employing the MCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 dσ/dQ2 cross sections, per number of target protons or neutrons, for Λ, Σ−,
Σ0, and Σ+ production in oxygen and Eν̄ = 1 GeV. For each type of hyperon,
we show results from the LFG, CBF SF and LDA SF approaches, which are
depicted as blue dashed, black dotted and red solid lines, respectively. The
MCC and NO MCC labels denote whether the nuclear cascade algorithm has
been applied or not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Figures 189

6.6 Hyperon kinetic energy distributions, dσ/dEY
kin, for Λ, Σ−, Σ0, and Σ+ pro-

duction in oxygen and Eν̄ = 1 GeV. The different curves correspond to the LFG
and CBF SF predictions, with and without the inclusion of MCC effects. The
MF potential corrections to the energy spectrum of the hyperon have not been
included. The shaded areas correspond to EY

kin ≤ 50 MeV. . . . . . . . . . . . 139
6.7 Total cross sections for Λ, Σ−, Σ0 and Σ+ production on 16O per active nucleon,

as a function of the energy of the incoming ν̄µ . As for the Λ, Σ−, and Σ0

hyperons, we show results obtained with and without the MCC, while the Σ+

hyperon can only be produced through secondary collisions. . . . . . . . . . . 140
6.8 Total Σ− and Λ production cross sections in 12C, 16O and 40Ca, as a function

of the antineutrino energy. The results are obtained using the LDA SF to model
the initial nuclear state and the hyperon secondary collisions are accounted for
through the MCC. The three lower (upper) curves correspond to the Σ− (Λ)
production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.9 Differential cross section dσ(νµ +16 O→ µ−+Λ+
c +X)/dq2 [10−40cm2GeV−2]

per nucleon as a function of Eν . The results are obtained within the LFG model
for the initial nuclear state and assuming a free Λc propagation in the final state.
The weak-transition form factors are taken from the RCQM of Ref. [33] and are
extrapolated to the Q2 > 0 region. . . . . . . . . . . . . . . . . . . . . . . . . 142

6.10 Total cross section, per number of neutrons, for the νµ +16 O→ µ−+Λ+
c +X

reaction, as a function of the incoming neutrino energy. The LFG model for the
initial nuclear state is adopted and no FSI for the Λc are accounted for. In the
left panel the curves represent the set of weak transition form factors analyzed
in the text: LQCD [31, 222], NRHOQM [35], NRQM [32], and RCQM [33,
34]. The curves labeled as SU(3) represent the results attained multiplying the
Λc→ Λ form factors by the appropriate Clebsh-Gordan coefficient. The 68%
CL bands for the LQCD predictions are obtained from the Gaussian covariance
matrices of Refs. [222, 31]. In the right panel, we display results correspond-
ing to the direct calculations of the Λc → N form factors, the only exception
being the SU(3) NRHOQM predictions for which they are not available. The
“RCQM×1.4” curve represents the results of Ref. [33] rescaled by a factor 1.4,
as inferred from the discussion on the Λc→ Λe+νe reported in Sec. 6.2. . . . 142

7.1 Some regions of the available phase space for CC τ− production for Eν= 4, 6
8 and 10 GeV (panels from left to right). We display |~q |[Eν ,q0,θ ] (Eq. (7.17))
and also the approximated position of the QE peak (|~q |QE =

√
2Mq0 +(q0)2),

labeled as QE (black solid line). For each neutrino energy, the shaded area
spans between τ−scattering angle 0◦ (lower boundary) up to 16◦,24◦,28◦ and
24◦ (upper boundary), respectively. In each panel, the yellow curve shows
|~q |[Eν ,q0,θ ] for an intermediate angle among those accounted for in the band.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 Double-differential cross section dσ/(dq0d cosθ ) and polarization components

PL, PT for ντ scattering off 16O for Eν = 4 GeV and scattering angles 0◦, 2◦, 4◦

and 16◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 Same as Fig. 7.2 but for Eν = 6 GeV. . . . . . . . . . . . . . . . . . . . . . . 153



190 List of Figures

7.4 Imaginary part of the Linhard particle-hole propagator as a function of q0 and
q2, with |~q | = |~q |[Eν ,q0,θ ] defined in Eq. (7.17). To evaluate ImU(q0, |~q |) we
have used Eq. (B2) of Ref. [3], with p̄F = 0.225 GeV for both neutron and
proton Fermi momenta. The left and right panels correspond to (Eν = 4 GeV,
θ = 0◦) and to (Eν = 6 GeV, θ = 16◦), respectively. In addition, we also show
the expected q2−reduction in the cross section provided by dipole weak nucleon
form factors, with a mass scale of 1 GeV. . . . . . . . . . . . . . . . . . . . . 153

7.5 Double-differential cross section dσ/(dq0d cosθ ) and polarization components
PL, PT for ν̄τ scattering off 16O for Eν̄ = 4 GeV and scattering angles 0◦, 2◦, 4◦

and 16◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.6 Same as Fig. 7.5 but for Eν̄ = 6 GeV. . . . . . . . . . . . . . . . . . . . . . . 156
7.7 Mean value of the degree of polarization of τ− (left) and τ+ (right), defined in

Eq. (7.19), as a function of the incoming neutrino energy. We show results for
the GFG model (blue–dotted) and the LDA SF IA (red-dashed) and CBF SF
(black dash-dotted) approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 156

E.1 Left: Maximum and minimum LAB lepton transferred energies (q0
max,min =

Eν −Emin,max
k′ ) as a function of the incoming neutrino energy for weak τ pro-

duction off nucleons. Right: LAB τ−lepton scattering angle (deg) as a function
of µCM, or equivalently of the LAB outgoing tau energy, for several incom-
ing neutrino LAB energies: Eν = 4 GeV (solid–red), 6 GeV (dashed–blue), 8
GeV (dotted–green), 10 GeV (dot-dashed–black) and 50 GeV (short-dashed–
cyan). In addition, the horizontal black–solid line stands for the upper bound,
θmax = arcsin (M/mτ), that is reached in the Eν �M,mτ limit. . . . . . . . . 179



191

List of Tables

2.1 Assignment of quantum numbers of the SU(2)L×U(1)Y group. . . . . . . . . 24
2.2 Form factors for u→ s transitions (see Eq. (2.33)), with x = F

F+D ≈ 0.73. . . . 30
2.3 Parameters for the charge and neutron matter density profiles given in Eq. (2.41)

for different nuclei used in this work. The parameter a is either dimensionless
for MHO or is given in [fm] for the two-parameter Fermi distributions. . . . . . 33

2.4 Parameters Q and Q̄ for different nuclei used in this work. . . . . . . . . . . . 45

4.1 Inclusive radiative pion capture widths from the 1s and 2p and the 2p and
3d levels in 12C and 40Ca, respectively. Theoretical errors in the RPA pre-
dictions show MC 68% CL intervals derived from the uncertainties on the
ph(∆h)–ph(∆h) effective interaction as discussed in Sec. 2.5.2. Within the LDA
SF+RPA scheme, we obtain ratios R(γ) of (0.9± 0.1)% and (1.4± 0.2)% for
carbon and calcium, respectively. The experimental values reported in Ref. [155]
for these ratios are (1.92±0.20)% for 12C and (1.94±0.18)% for 40Ca. In this
latter reference, in the case of carbon, the contributions of transitions to the 12B
ground and excited states turned out to be around 20-25% of the total ratio.
Thus, the continuum contribution for 12C was estimated to be (1.50± 0.15)%
[155]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 The B1s
µ value used to enforce the correct energy balance in muon capture pro-

cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Experimental and theoretical total muon capture widths for different nuclei.

Data are taken from Ref. [159], and when more than one measurement is quoted
in [159], we use a weighted average: Γ/σ2 = ∑i Γi/σ2

i , with 1/σ2 = ∑i 1/σ2
i .

Theoretical errors in the RPA predictions show MC 68% CL intervals derived
from the uncertainties on the ph(∆h)–ph(∆h) effective interaction as discussed
in Sec. 2.5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Experimental and theoretical flux averaged 12C(νµ , µ−)X and 12C(νe,e−)X
cross sections in 10−40 cm2 units. Theoretical errors in the RPA predictions
show MC 68% CL intervals derived from the uncertainties on the ph(∆h)–
ph(∆h) effective interaction. We also quote results from other calculations (see
text for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Muon neutrino and antineutrino inclusive QE integrated cross sections from
oxygen. We present results for relativistic and nonrelativistic nucleon kinemat-
ics. In this latter case, we present results with and without LDA SFs effects.
Results, denoted as RPA and Pauli have been obtained with and without in-
cluding RPA and Coulomb corrections, respectively. LDA SF results have been
computed using a complex self-energy to dress both particle and hole nucleon
lines. Theoretical errors on the RPA predictions show MC 68% CL intervals
derived from the uncertainties in the ph(∆h)–ph(∆h) effective interaction, as
detailed in Subsec. 2.5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 As in Table 4.5 but for electron neutrino and antineutrino inclusive QE scatter-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



192 List of Tables

4.7 Data sets of Region II sorted by (q0)QE . Columns 3 and 4: coordinates ((q0)QE,
|~q|QE) in Fig. 4.16 for which dσ/d|~q|dq0

∣∣osc
T2K in carbon is maximum for the

given electron data set, being the latter value collected in the fifth column. Col-
umn 6: ratio of the flux averaged cross section displayed in column 5 (“height”)
and the absolute maximum one that corresponds to kinematics E=1500 MeV,
θ = 13.54◦ (“max height”). Finally, in the last column we give the ratio σL/σT

(Eq. (4.20)) for electron-nucleus scattering. The numbers given in the last col-
umn where obtained in the LFG model. The results of column 5 have been
evaluated using the LDA SF IA nuclear model. For some more details see the
text in Subsec. 4.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 As in Table 4.7, but now the data sample belong to Regions I (first five sets) and
III (last ten sets) sorted by (q0)QE. . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Parameters introduced in Eq. (6.8) to describe the q2−dependence of the form
factors used in the NRHOQM of Ref. [35]. Note that the we have changed the
sign of the B coefficient of the G2 form factor, with respect to that quoted in
Table III of Ref. [35]. Only in this way, we could reproduce the form factor
displayed in Fig. 4(a) of this latter reference. . . . . . . . . . . . . . . . . . . 129

6.2 Coefficients employed in Eq. (6.9) to construct the weak Λc production form
factors from the RCQM results of Refs. [33, 34]. For each form factor, the
upper (lower) value corresponds to the Λc→ N (Λc→Λ) transition. Note that
g2(q2) = − f A

2 (q
2), being the latter form factor calculated in [33, 34]. . . . . . 129

6.3 Coefficients employed in Eq. (6.10) to construct the weak Λc production form
factors for the MBM and NRQM models of Refs. [32, 230]. For each form
factor, the upper (lower) value corresponds to the Λc→ N (Λc→Λ) transition.
The values of the form factors at q2 = 0 are taken from [32], and contain some
SU(4) breaking corrections, while the pole masses collected in the table are
taken from [230]. Note that g2(q2) = −gA

2 (q
2), being the latter form factors

calculated in [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4 Coefficients, taken from the nominal fits carried out in Refs. [222, 31], of the

LQCD form factors used in the parametrization of Eq. (6.12). For each form
factor, the upper (lower) value corresponds to the Λc→ N (Λc→ Λ) transition. 131

A.1 Notation used in this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2 Constants used in this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



193

Bibliography

[1] L. Alvarez-Ruso et al. “NuSTEC White Paper: Status and challenges of neutrino–nucleus
scattering”. In: Prog. Part. Nucl. Phys. 100 (2018), pp. 1–68. DOI: 10.1016/j.ppnp.
2018.01.006.

[2] P. Fernandez de Cordoba and E. Oset. “Semiphenomenological approach to nucleon
properties in nuclear matter”. In: Phys. Rev. C46 (1992), pp. 1697–1709. DOI: 10 .
1103/PhysRevC.46.1697.

[3] J. Nieves, Jose Enrique Amaro, and M. Valverde. “Inclusive quasi-elastic neutrino re-
actions”. In: Phys.Rev. C70 (2004), p. 055503. DOI: 10.1103/PhysRevC.70.055503,
10.1103/PhysRevC.72.019902.

[4] Juan Nieves and Joanna Ewa Sobczyk. “In medium dispersion relation effects in nu-
clear inclusive reactions at intermediate and low energies”. In: Annals Phys. 383 (2017),
pp. 455–496. DOI: 10.1016/j.aop.2017.06.002.

[5] E. Marco, E. Oset, and P. Fernandez de Cordoba. “Mesonic and binding contributions
to the EMC effect in a relativistic many body approach”. In: Nucl. Phys. A611 (1996),
pp. 484–513. DOI: 10.1016/S0375-9474(96)00289-8.

[6] A. Gil, J. Nieves, and E. Oset. “Many body approach to the inclusive (e, e-prime) reac-
tion from the quasielastic to the Delta excitation region”. In: Nucl.Phys. A627 (1997),
pp. 543–598. DOI: 10.1016/S0375-9474(97)00513-7.

[7] E. Oset et al. “A Review on mesonic decay of Lambda hypernuclei”. In: Prog. Theor.
Phys. Suppl. 117 (1994), pp. 461–476. DOI: 10.1143/PTPS.117.461.

[8] E. Marco and E. Oset. “Mesonic and binding contributions to the nuclear Drell-Yan
process”. In: Nucl. Phys. A645 (1999), pp. 303–313. DOI: 10.1016/S0375-9474(98)
00607-1.

[9] M. Sajjad Athar, S. K. Singh, and M. J. Vicente Vacas. “Nuclear effects in F(3) structure
function of nucleon”. In: Phys. Lett. B668 (2008), pp. 133–142. DOI: 10.1016/j.
physletb.2008.08.019.

[10] M. Sajjad Athar, I. Ruiz Simo, and M. J. Vicente Vacas. “Nuclear medium modification
of the F(2)(x,Q**2) structure function”. In: Nucl. Phys. A857 (2011), pp. 29–41. DOI:
10.1016/j.nuclphysa.2011.03.008.

[11] Daniel S. Koltun. “Theory of mean removal energies for single particles in nuclei”. In:
Phys. Rev. C9 (1974), pp. 484–497. DOI: 10.1103/PhysRevC.9.484.

[12] Omar Benhar, Donal Day, and Ingo Sick. “Inclusive quasi-elastic electron-nucleus scat-
tering”. In: Rev. Mod. Phys. 80 (2008), pp. 189–224. DOI: 10.1103/RevModPhys.80.
189.

[13] Omar Benhar et al. “Neutrino-nucleus interactions and the determination of oscillation
parameters”. In: Phys. Rept. 700 (2017), pp. 1–47. DOI: 10.1016/j.physrep.2017.
07.004.

[14] Artur M. Ankowski, Omar Benhar, and Makoto Sakuda. “Improving the accuracy of
neutrino energy reconstruction in charged-current quasielastic scattering off nuclear tar-
gets”. In: Phys. Rev. D91.3 (2015), p. 033005. DOI: 10.1103/PhysRevD.91.033005.

https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1103/PhysRevC.46.1697
https://doi.org/10.1103/PhysRevC.46.1697
https://doi.org/10.1103/PhysRevC.70.055503, 10.1103/PhysRevC.72.019902
https://doi.org/10.1103/PhysRevC.70.055503, 10.1103/PhysRevC.72.019902
https://doi.org/10.1016/j.aop.2017.06.002
https://doi.org/10.1016/S0375-9474(96)00289-8
https://doi.org/10.1016/S0375-9474(97)00513-7
https://doi.org/10.1143/PTPS.117.461
https://doi.org/10.1016/S0375-9474(98)00607-1
https://doi.org/10.1016/S0375-9474(98)00607-1
https://doi.org/10.1016/j.physletb.2008.08.019
https://doi.org/10.1016/j.physletb.2008.08.019
https://doi.org/10.1016/j.nuclphysa.2011.03.008
https://doi.org/10.1103/PhysRevC.9.484
https://doi.org/10.1103/RevModPhys.80.189
https://doi.org/10.1103/RevModPhys.80.189
https://doi.org/10.1016/j.physrep.2017.07.004
https://doi.org/10.1016/j.physrep.2017.07.004
https://doi.org/10.1103/PhysRevD.91.033005


194 Bibliography

[15] Omar Benhar et al. “Electron- and neutrino-nucleus scattering in the impulse approxi-
mation regime”. In: Phys.Rev. D72 (2005), p. 053005. DOI: 10.1103/PhysRevD.72.
053005.

[16] Omar Benhar and Davide Meloni. “Total neutrino and antineutrino nuclear cross-sections
around 1-GeV”. In: Nucl.Phys. A789 (2007), pp. 379–402. DOI: 10.1016/j.nuclphysa.
2007.02.015.

[17] Omar Benhar and Davide Meloni. “Impact of nuclear effects on the determination of the
nucleon axial mass”. In: Phys.Rev. D80 (2009), p. 073003. DOI: 10.1103/PhysRevD.
80.073003.

[18] Omar Benhar, Pietro Coletti, and Davide Meloni. “Electroweak nuclear response in
quasi-elastic regime”. In: Phys.Rev.Lett. 105 (2010), p. 132301. DOI: 10.1103/PhysRevLett.
105.132301.

[19] Erica Vagnoni, Omar Benhar, and Davide Meloni. “Inelastic Neutrino-Nucleus Inter-
actions within the Spectral Function Formalism”. In: Phys. Rev. Lett. 118.14 (2017),
p. 142502. DOI: 10.1103/PhysRevLett.118.142502.

[20] O. Buss et al. “Transport-theoretical Description of Nuclear Reactions”. In: Phys.Rept.
512 (2012), pp. 1–124. DOI: 10.1016/j.physrep.2011.12.001.

[21] Jose Enrique Amaro et al. “Using electron scattering superscaling to predict charge-
changing neutrino cross sections in nuclei”. In: Phys.Rev. C71 (2005), p. 015501. DOI:
10.1103/PhysRevC.71.015501.

[22] V. Pandey et al. “Low-energy excitations and quasielastic contribution to electron-nucleus
and neutrino-nucleus scattering in the continuum random-phase approximation”. In:
Phys. Rev. C92.2 (2015), p. 024606. DOI: 10.1103/PhysRevC.92.024606.

[23] M. Martini et al. “Neutrino and antineutrino quasielastic interactions with nuclei”. In:
Phys.Rev. C81 (2010), p. 045502. DOI: 10.1103/PhysRevC.81.045502.

[24] V. Pandey et al. “Impact of low-energy nuclear excitations on neutrino-nucleus scatter-
ing at MiniBooNE and T2K kinematics”. In: Phys. Rev. C94.5 (2016), p. 054609. DOI:
10.1103/PhysRevC.94.054609.

[25] N. Rocco et al. “Electromagnetic scaling functions within the Green’s Function Monte
Carlo approach”. In: Phys. Rev. C96 (2017), p. 015504. DOI: 10.1103/PhysRevC.96.
015504.

[26] http://www.dunescience.org.

[27] O. Benhar et al. “Spectral function of finite nuclei and scattering of GeV electrons”. In:
Nucl. Phys. A579 (1994), pp. 493–517. DOI: 10.1016/0375-9474(94)90920-2.

[28] J. A. Caballero et al. “Scaling and isospin effects in quasielastic lepton-nucleus scatter-
ing in the Relativistic Mean Field Approach”. In: Phys. Lett. B653 (2007), pp. 366–372.
DOI: 10.1016/j.physletb.2007.08.018.

[29] O. Benhar, A. Fabrocini, and S. Fantoni. “The Nucleon Spectral Function in Nuclear
Matter”. In: Nucl. Phys. A505 (1989), pp. 267–299. DOI: 10.1016/0375-9474(89)
90374-6.

[30] S. K. Singh and M. J. Vicente Vacas. “Weak quasi-elastic production of hyperons”. In:
Phys. Rev. D74 (2006), p. 053009. DOI: 10.1103/PhysRevD.74.053009.

[31] Stefan Meinel. “Λc→ N form factors from lattice QCD and phenomenology of Λc→
n`+ν` and Λc → pµ+µ− decays”. In: Phys. Rev. D97.3 (2018), p. 034511. DOI: 10.
1103/PhysRevD.97.034511.

https://doi.org/10.1103/PhysRevD.72.053005
https://doi.org/10.1103/PhysRevD.72.053005
https://doi.org/10.1016/j.nuclphysa.2007.02.015
https://doi.org/10.1016/j.nuclphysa.2007.02.015
https://doi.org/10.1103/PhysRevD.80.073003
https://doi.org/10.1103/PhysRevD.80.073003
https://doi.org/10.1103/PhysRevLett.105.132301
https://doi.org/10.1103/PhysRevLett.105.132301
https://doi.org/10.1103/PhysRevLett.118.142502
https://doi.org/10.1016/j.physrep.2011.12.001
https://doi.org/10.1103/PhysRevC.71.015501
https://doi.org/10.1103/PhysRevC.92.024606
https://doi.org/10.1103/PhysRevC.81.045502
https://doi.org/10.1103/PhysRevC.94.054609
https://doi.org/10.1103/PhysRevC.96.015504
https://doi.org/10.1103/PhysRevC.96.015504
http://www.dunescience.org
https://doi.org/10.1016/0375-9474(94)90920-2
https://doi.org/10.1016/j.physletb.2007.08.018
https://doi.org/10.1016/0375-9474(89)90374-6
https://doi.org/10.1016/0375-9474(89)90374-6
https://doi.org/10.1103/PhysRevD.74.053009
https://doi.org/10.1103/PhysRevD.97.034511
https://doi.org/10.1103/PhysRevD.97.034511


Bibliography 195

[32] R. Perez-Marcial et al. “Predictions for Semileptonic Decays of Charm Baryons. 2.
Nonrelativistic and MIT Bag Quark Models”. In: Phys. Rev. D40 (1989). [Erratum:
Phys. Rev.D44,2203(1991)], p. 2955. DOI: 10.1103/PhysRevD.44.2203,10.1103/
PhysRevD.40.2955.

[33] Thomas Gutsche et al. “Heavy-to-light semileptonic decays of Λb and Λc baryons in
the covariant confined quark model”. In: Phys. Rev. D90.11 (2014). [Erratum: Phys.
Rev.D94,no.5,059902(2016)], p. 114033. DOI: 10.1103/PhysRevD.90.114033,10.
1103/PhysRevD.94.059902.

[34] Thomas Gutsche et al. “Semileptonic decays Λ+
c → Λ`+ν` (` = e, µ) in the covariant

quark model and comparison with the new absolute branching fraction measurements of
Belle and BESIII”. In: Phys. Rev. D93.3 (2016), p. 034008. DOI: 10.1103/PhysRevD.
93.034008.

[35] Md Mozammel Hussain and Winston Roberts. “Λc Semileptonic Decays in a Quark
Model”. In: Phys. Rev. D95.5 (2017). [Addendum: Phys. Rev.D95,no.9,099901(2017)],
p. 053005. DOI: 10.1103/PhysRevD.95.099901,10.1103/PhysRevD.95.053005.

[36] Krzysztof M. Graczyk. “Tau polarization in quasielastic charge-current neutrino (an-
tineutrino) -nucleus scattering”. In: Nucl.Phys. A748 (2005), pp. 313–330. DOI: 10.
1016/j.nuclphysa.2004.10.029.

[37] H. Bethe and R. Peierls. “The ’neutrino’”. In: Nature 133 (1934), p. 532. DOI: 10.
1038/133532a0.

[38] Murray Gell-Mann and A. Pais. “Behavior of neutral particles under charge conjuga-
tion”. In: Phys. Rev. 97 (1955), pp. 1387–1389. DOI: 10.1103/PhysRev.97.1387.

[39] G. Danby et al. “Observation of High-Energy Neutrino Reactions and the Existence of
Two Kinds of Neutrinos”. In: Phys. Rev. Lett. 9 (1962), pp. 36–44. DOI: 10.1103/
PhysRevLett.9.36.

[40] B. Pontecorvo. “Neutrino Experiments and the question of lepton charge conserva-
tion”. In: Zh. Eksp. Teor. Fiz. 53 (1967). [Zh. Eksp. Teor. Fiz.53: 1717-25(Nov. 1967),
pp. 1717–25.

[41] Christian Spiering. “Towards High-Energy Neutrino Astronomy. A Historical Review”.
In: Eur. Phys. J. H37 (2012), pp. 515–565. DOI: 10.1140/epjh/e2012-30014-2.

[42] R. Davis. “Solar neutrinos. II: Experimental”. In: Phys. Rev. Lett. 12 (1964). [,107(1964)],
pp. 303–305. DOI: 10.1103/PhysRevLett.12.303.

[43] Y. Fukuda et al. “Measurements of the solar neutrino flux from Super-Kamiokande’s
first 300 days”. In: Phys. Rev. Lett. 81 (1998). [Erratum: Phys. Rev. Lett.81,4279(1998)],
pp. 1158–1162. DOI: 10.1103/PhysRevLett.81.1158,10.1103/PhysRevLett.
81.4279. arXiv: hep-ex/9805021 [hep-ex].

[44] P. Anselmann et al. “Solar neutrinos observed by GALLEX at Gran Sasso.” In: Phys.
Lett. B285 (1992), pp. 376–389. DOI: 10.1016/0370-2693(92)91521-A.

[45] W. Hampel et al. “GALLEX solar neutrino observations: Results for GALLEX IV”. In:
Phys. Lett. B447 (1999), pp. 127–133. DOI: 10.1016/S0370-2693(98)01579-2.

[46] J. N. Abdurashitov et al. “Measurement of the solar neutrino capture rate with gallium
metal”. In: Phys. Rev. C60 (1999), p. 055801. DOI: 10.1103/PhysRevC.60.055801.
arXiv: astro-ph/9907113 [astro-ph].

[47] Q. R. Ahmad et al. “Measurement of the rate of νe + d → p + p + e− interactions
produced by 8B solar neutrinos at the Sudbury Neutrino Observatory”. In: Phys. Rev.
Lett. 87 (2001), p. 071301. DOI: 10.1103/PhysRevLett.87.071301. arXiv: nucl-
ex/0106015 [nucl-ex].

https://doi.org/10.1103/PhysRevD.44.2203, 10.1103/PhysRevD.40.2955
https://doi.org/10.1103/PhysRevD.44.2203, 10.1103/PhysRevD.40.2955
https://doi.org/10.1103/PhysRevD.90.114033, 10.1103/PhysRevD.94.059902
https://doi.org/10.1103/PhysRevD.90.114033, 10.1103/PhysRevD.94.059902
https://doi.org/10.1103/PhysRevD.93.034008
https://doi.org/10.1103/PhysRevD.93.034008
https://doi.org/10.1103/PhysRevD.95.099901, 10.1103/PhysRevD.95.053005
https://doi.org/10.1016/j.nuclphysa.2004.10.029
https://doi.org/10.1016/j.nuclphysa.2004.10.029
https://doi.org/10.1038/133532a0
https://doi.org/10.1038/133532a0
https://doi.org/10.1103/PhysRev.97.1387
https://doi.org/10.1103/PhysRevLett.9.36
https://doi.org/10.1103/PhysRevLett.9.36
https://doi.org/10.1140/epjh/e2012-30014-2
https://doi.org/10.1103/PhysRevLett.12.303
https://doi.org/10.1103/PhysRevLett.81.1158, 10.1103/PhysRevLett.81.4279
https://doi.org/10.1103/PhysRevLett.81.1158, 10.1103/PhysRevLett.81.4279
https://arxiv.org/abs/hep-ex/9805021
https://doi.org/10.1016/0370-2693(92)91521-A
https://doi.org/10.1016/S0370-2693(98)01579-2
https://doi.org/10.1103/PhysRevC.60.055801
https://arxiv.org/abs/astro-ph/9907113
https://doi.org/10.1103/PhysRevLett.87.071301
https://arxiv.org/abs/nucl-ex/0106015
https://arxiv.org/abs/nucl-ex/0106015


196 Bibliography

[48] K. Eguchi et al. “First results from KamLAND: Evidence for reactor anti-neutrino dis-
appearance”. In: Phys. Rev. Lett. 90 (2003), p. 021802. DOI: 10.1103/PhysRevLett.
90.021802. arXiv: hep-ex/0212021 [hep-ex].

[49] Y. Fukuda et al. “Evidence for oscillation of atmospheric neutrinos”. In: Phys. Rev.
Lett. 81 (1998), pp. 1562–1567. DOI: 10.1103/PhysRevLett.81.1562. arXiv: hep-
ex/9807003 [hep-ex].

[50] D. G. Michael et al. “Observation of muon neutrino disappearance with the MINOS
detectors and the NuMI neutrino beam”. In: Phys. Rev. Lett. 97 (2006), p. 191801. DOI:
10.1103/PhysRevLett.97.191801. arXiv: hep-ex/0607088 [hep-ex].

[51] K. Abe et al. “Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon
Neutrino Disappearance in an Off-Axis Beam”. In: Phys. Rev. Lett. 112.18 (2014),
p. 181801. DOI: 10.1103/PhysRevLett.112.181801. arXiv: 1403.1532 [hep-ex].

[52] M. G. Aartsen et al. “PINGU: A Vision for Neutrino and Particle Physics at the South
Pole”. In: J. Phys. G44.5 (2017), p. 054006. DOI: 10.1088/1361-6471/44/5/054006.
arXiv: 1607.02671 [hep-ex].

[53] S. Adrian-Martinez et al. “Letter of intent for KM3NeT 2.0”. In: J. Phys. G43.8 (2016),
p. 084001. DOI: 10.1088/0954-3899/43/8/084001. arXiv: 1601.07459 [astro-ph.IM].

[54] K. Abe et al. “Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design
and Physics Potential —”. In: (2011). arXiv: 1109.3262 [hep-ex].

[55] Xinheng Guo et al. “A Precision measurement of the neutrino mixing angle θ13 using
reactor antineutrinos at Daya-Bay”. In: (2007). arXiv: hep-ex/0701029 [hep-ex].

[56] Y. Abe et al. “Improved measurements of the neutrino mixing angle θ13 with the Dou-
ble Chooz detector”. In: JHEP 10 (2014). [Erratum: JHEP02,074(2015)], p. 086. DOI:
10.1007/JHEP02(2015)074, 10.1007/JHEP10(2014)086. arXiv: 1406.7763
[hep-ex].

[57] J. K. Ahn et al. “Observation of Reactor Electron Antineutrino Disappearance in the
RENO Experiment”. In: Phys. Rev. Lett. 108 (2012), p. 191802. DOI: 10.1103/PhysRevLett.
108.191802. arXiv: 1204.0626 [hep-ex].

[58] R. Acciarri et al. “Long-Baseline Neutrino Facility (LBNF) and Deep Underground
Neutrino Experiment (DUNE)”. In: (2015). arXiv: 1512.06148 [physics.ins-det].

[59] K. Abe et al. “A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neu-
trino Beam and Hyper-Kamiokande”. In: 2014. arXiv: 1412.4673 [physics.ins-det].

[60] Cristina Volpe. “Neutrino Astrophysics”. In: Acta Phys. Polon. Supp. 9 (2016), p. 769.
DOI: 10.5506/APhysPolBSupp.9.769.

[61] Andrea Meucci and Carlotta Giusti. “Relativistic Green’s function model in charged-
current quasielastic neutrino and antineutrino scattering at MINERvA kinematics”. In:
Phys. Rev. D89.11 (2014), p. 117301. DOI: 10.1103/PhysRevD.89.117301.

[62] Andrea Meucci and Carlotta Giusti. “Relativistic Green’s function model and charged-
current inclusive neutrino-nucleus scattering at T2K kinematics”. In: Phys. Rev. D91.9
(2015), p. 093004. DOI: 10.1103/PhysRevD.91.093004.

[63] Noemi Rocco, Alessandro Lovato, and Omar Benhar. “Unified description of electron-
nucleus scattering within the spectral function formalism”. In: Phys. Rev. Lett. 116.19
(2016), p. 192501. DOI: 10.1103/PhysRevLett.116.192501.

[64] K. Gallmeister, U. Mosel, and J. Weil. “Neutrino-Induced Reactions on Nuclei”. In:
Phys. Rev. C94.3 (2016), p. 035502. DOI: 10.1103/PhysRevC.94.035502.

https://doi.org/10.1103/PhysRevLett.90.021802
https://doi.org/10.1103/PhysRevLett.90.021802
https://arxiv.org/abs/hep-ex/0212021
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://arxiv.org/abs/hep-ex/9807003
https://doi.org/10.1103/PhysRevLett.97.191801
https://arxiv.org/abs/hep-ex/0607088
https://doi.org/10.1103/PhysRevLett.112.181801
https://arxiv.org/abs/1403.1532
https://doi.org/10.1088/1361-6471/44/5/054006
https://arxiv.org/abs/1607.02671
https://doi.org/10.1088/0954-3899/43/8/084001
https://arxiv.org/abs/1601.07459
https://arxiv.org/abs/1109.3262
https://arxiv.org/abs/hep-ex/0701029
https://doi.org/10.1007/JHEP02(2015)074, 10.1007/JHEP10(2014)086
https://arxiv.org/abs/1406.7763
https://arxiv.org/abs/1406.7763
https://doi.org/10.1103/PhysRevLett.108.191802
https://doi.org/10.1103/PhysRevLett.108.191802
https://arxiv.org/abs/1204.0626
https://arxiv.org/abs/1512.06148
https://arxiv.org/abs/1412.4673
https://doi.org/10.5506/APhysPolBSupp.9.769
https://doi.org/10.1103/PhysRevD.89.117301
https://doi.org/10.1103/PhysRevD.91.093004
https://doi.org/10.1103/PhysRevLett.116.192501
https://doi.org/10.1103/PhysRevC.94.035502


Bibliography 197

[65] M. Martini et al. “Electron-neutrino scattering off nuclei from two different theoretical
perspectives”. In: Phys. Rev. C94.1 (2016), p. 015501. DOI: 10.1103/PhysRevC.94.
015501.

[66] G. D. Megias et al. “Charged-current neutrino-nucleus reactions within the SuSAv2-
MEC approach”. In: Phys. Rev. D94.9 (2016), p. 093004. DOI: 10.1103/PhysRevD.
94.093004.

[67] S. X. Nakamura et al. “Towards a Unified Model of Neutrino-Nucleus Reactions for
Neutrino Oscillation Experiments”. In: Rept. Prog. Phys. 80.5 (2017), p. 056301. DOI:
10.1088/1361-6633/aa5e6c. arXiv: 1610.01464 [nucl-th].

[68] Artur M Ankowski and Camillo Mariani. “Systematic uncertainties in long-baseline
neutrino-oscillation experiments”. In: J. Phys. G44.5 (2017), p. 054001. DOI: 10.1088/
1361-6471/aa61b2. arXiv: 1609.00258 [hep-ph].

[69] Jorge G. Morfin, Juan Nieves, and Jan T. Sobczyk. “Recent Developments in Neu-
trino/Antineutrino - Nucleus Interactions”. In: Adv.High Energy Phys. 2012 (2012),
p. 934597. DOI: 10.1155/2012/934597.

[70] L. Alvarez-Ruso, Y. Hayato, and J. Nieves. “Progress and open questions in the physics
of neutrino cross sections at intermediate energies”. In: New J.Phys. 16 (2014), p. 075015.
DOI: 10.1088/1367-2630/16/7/075015.

[71] Teppei Katori and Marco Martini. “Neutrino–nucleus cross sections for oscillation ex-
periments”. In: J. Phys. G45.1 (2018), p. 013001. DOI: 10.1088/1361-6471/aa8bf7.
arXiv: 1611.07770 [hep-ph].

[72] M. Martini et al. “A Unified approach for nucleon knock-out, coherent and incoher-
ent pion production in neutrino interactions with nuclei”. In: Phys.Rev. C80 (2009),
p. 065501. DOI: 10.1103/PhysRevC.80.065501.

[73] J. Nieves, I. Ruiz Simo, and M.J. Vicente Vacas. “Inclusive Charged–Current Neutrino–
Nucleus Reactions”. In: Phys.Rev. C83 (2011), p. 045501. DOI: 10.1103/PhysRevC.
83.045501.

[74] J. Nieves, I. Ruiz Simo, and M.J. Vicente Vacas. “The nucleon axial mass and the
MiniBooNE Quasielastic Neutrino-Nucleus Scattering problem”. In: Phys.Lett. B707
(2012), pp. 72–75. DOI: 10.1016/j.physletb.2011.11.061.

[75] M. Martini, M. Ericson, and G. Chanfray. “Neutrino quasielastic interaction and nu-
clear dynamics”. In: Phys.Rev. C84 (2011), p. 055502. DOI: 10.1103/PhysRevC.84.
055502.

[76] J. Nieves et al. “Neutrino Energy Reconstruction and the Shape of the CCQE-like Total
Cross Section”. In: Phys.Rev. D85 (2012), p. 113008. DOI: 10.1103/PhysRevD.85.
113008.

[77] J. Nieves, I. Ruiz Simo, and M.J. Vicente Vacas. “Two Particle-Hole Excitations in
Charged Current Quasielastic Antineutrino–Nucleus Scattering”. In: Phys.Lett. B721
(2013), pp. 90–93. DOI: 10.1016/j.physletb.2013.03.002.

[78] M. Martini and M. Ericson. “Quasielastic and multinucleon excitations in antineutrino-
nucleus interactions”. In: Phys.Rev. C87 (2013), p. 065501. DOI: 10.1103/PhysRevC.
87.065501.

[79] R. Gran et al. “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV”. In:
Phys.Rev. D88 (2013), p. 113007. DOI: 10.1103/PhysRevD.88.113007.

[80] J.E. Amaro et al. “Meson-exchange currents and quasielastic antineutrino cross sections
in the SuperScaling Approximation”. In: Phys.Rev.Lett. 108 (2012), p. 152501. DOI:
10.1103/PhysRevLett.108.152501.

https://doi.org/10.1103/PhysRevC.94.015501
https://doi.org/10.1103/PhysRevC.94.015501
https://doi.org/10.1103/PhysRevD.94.093004
https://doi.org/10.1103/PhysRevD.94.093004
https://doi.org/10.1088/1361-6633/aa5e6c
https://arxiv.org/abs/1610.01464
https://doi.org/10.1088/1361-6471/aa61b2
https://doi.org/10.1088/1361-6471/aa61b2
https://arxiv.org/abs/1609.00258
https://doi.org/10.1155/2012/934597
https://doi.org/10.1088/1367-2630/16/7/075015
https://doi.org/10.1088/1361-6471/aa8bf7
https://arxiv.org/abs/1611.07770
https://doi.org/10.1103/PhysRevC.80.065501
https://doi.org/10.1103/PhysRevC.83.045501
https://doi.org/10.1103/PhysRevC.83.045501
https://doi.org/10.1016/j.physletb.2011.11.061
https://doi.org/10.1103/PhysRevC.84.055502
https://doi.org/10.1103/PhysRevC.84.055502
https://doi.org/10.1103/PhysRevD.85.113008
https://doi.org/10.1103/PhysRevD.85.113008
https://doi.org/10.1016/j.physletb.2013.03.002
https://doi.org/10.1103/PhysRevC.87.065501
https://doi.org/10.1103/PhysRevC.87.065501
https://doi.org/10.1103/PhysRevD.88.113007
https://doi.org/10.1103/PhysRevLett.108.152501


198 Bibliography

[81] I. Ruiz Simo et al. “Angular distribution in two-particle emission induced by neutrinos
and electrons”. In: Phys. Rev. D90.5 (2014), p. 053010. DOI: 10.1103/PhysRevD.90.
053010.

[82] G. D. Megias et al. “Meson-exchange currents and quasielastic predictions for charged-
current neutrino-12C scattering in the superscaling approach”. In: Phys. Rev. D91.7
(2015), p. 073004. DOI: 10.1103/PhysRevD.91.073004.

[83] I. Ruiz Simo et al. “Emission of neutron-proton and proton-proton pairs in neutrino
scattering”. In: Phys. Lett. B762 (2016), pp. 124–130. DOI: 10.1016/j.physletb.
2016.09.021.

[84] Omar Benhar. “Confronting Electron- and Neutrino-Nucleus Scattering”. In: (2011). [J.
Phys. Conf. Ser.408,012042(2013)]. DOI: 10.1088/1742-6596/408/1/012042.

[85] J. Nieves et al. “Neutrino-nucleus CCQE-like scattering”. In: Nucl. Part. Phys. Proc.
273-275 (2016), pp. 1830–1835. DOI: 10.1016/j.nuclphysbps.2015.09.295.

[86] R. Machleidt and I. Slaus. “The Nucleon-nucleon interaction: Topical review”. In: J.
Phys. G27 (2001), R69–R108. DOI: 10.1088/0954-3899/27/5/201.

[87] R. Machleidt, K. Holinde, and C. Elster. “The Bonn Meson Exchange Model for the
Nucleon Nucleon Interaction”. In: Phys. Rept. 149 (1987), pp. 1–89. DOI: 10.1016/
S0370-1573(87)80002-9.

[88] V. G. J. Stoks et al. “Construction of high quality N N potential models”. In: Phys. Rev.
C49 (1994), pp. 2950–2962. DOI: 10.1103/PhysRevC.49.2950.

[89] R. Machleidt. “The High precision, charge dependent Bonn nucleon-nucleon potential
(CD-Bonn)”. In: Phys. Rev. C63 (2001), p. 024001. DOI: 10.1103/PhysRevC.63.
024001.

[90] Robert B. Wiringa, V. G. J. Stoks, and R. Schiavilla. “An Accurate nucleon-nucleon
potential with charge independence breaking”. In: Phys. Rev. C51 (1995), pp. 38–51.
DOI: 10.1103/PhysRevC.51.38.

[91] R. Machleidt and D. R. Entem. “Chiral effective field theory and nuclear forces”. In:
Phys. Rept. 503 (2011), pp. 1–75. DOI: 10.1016/j.physrep.2011.02.001.

[92] Steven Weinberg. “Nuclear forces from chiral Lagrangians”. In: Phys. Lett. B251 (1990),
pp. 288–292. DOI: 10.1016/0370-2693(90)90938-3.

[93] Steven Weinberg. “Effective chiral Lagrangians for nucleon - pion interactions and nu-
clear forces”. In: Nucl. Phys. B363 (1991), pp. 3–18. DOI: 10.1016/0550-3213(91)
90231-L.

[94] Steven Weinberg. “Three body interactions among nucleons and pions”. In: Phys. Lett.
B295 (1992), pp. 114–121. DOI: 10.1016/0370-2693(92)90099-P.

[95] S. L. Glashow. “Partial Symmetries of Weak Interactions”. In: Nucl. Phys. 22 (1961),
pp. 579–588. DOI: 10.1016/0029-5582(61)90469-2.

[96] Abdus Salam. “Weak and Electromagnetic Interactions”. In: Conf. Proc. C680519 (1968),
pp. 367–377.

[97] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (1967), pp. 1264–1266.
DOI: 10.1103/PhysRevLett.19.1264.

[98] Chen-Ning Yang and Robert L. Mills. “Conservation of Isotopic Spin and Isotopic
Gauge Invariance”. In: Phys. Rev. 96 (1954). [,150(1954)], pp. 191–195. DOI: 10.1103/
PhysRev.96.191.

[99] John F. Donoghue, Eugene Golowich, and Barry R. Holstein. Dynamics of the Standard
Model. Cambridge University Press, 1996. ISBN: 0-521-36288-1.

https://doi.org/10.1103/PhysRevD.90.053010
https://doi.org/10.1103/PhysRevD.90.053010
https://doi.org/10.1103/PhysRevD.91.073004
https://doi.org/10.1016/j.physletb.2016.09.021
https://doi.org/10.1016/j.physletb.2016.09.021
https://doi.org/10.1088/1742-6596/408/1/012042
https://doi.org/10.1016/j.nuclphysbps.2015.09.295
https://doi.org/10.1088/0954-3899/27/5/201
https://doi.org/10.1016/S0370-1573(87)80002-9
https://doi.org/10.1016/S0370-1573(87)80002-9
https://doi.org/10.1103/PhysRevC.49.2950
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.63.024001
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0370-2693(92)90099-P
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191


Bibliography 199

[100] Paolo Lipari, Maurizio Lusignoli, and Francesca Sartogo. “The Neutrino cross-section
and upward going muons”. In: Phys. Rev. Lett. 74 (1995), pp. 4384–4387. DOI: 10.
1103/PhysRevLett.74.4384.

[101] S. Galster et al. “Elastic electron-deuteron scattering and the electric neutron form fac-
tor at four-momentum transfers 5fm−2 < q2 < 14fm−2”. In: Nucl. Phys. B32 (1971),
pp. 221–237. DOI: 10.1016/0550-3213(71)90068-X.

[102] V. A. Andreev et al. “Measurement of Muon Capture on the Proton to 1% Precision
and Determination of the Pseudoscalar Coupling gP”. In: Phys. Rev. Lett. 110.1 (2013),
p. 012504. DOI: 10.1103/PhysRevLett.110.012504.

[103] Luis Alvarez-Ruso, Krzysztof M. Graczyk, and Eduardo Saul-Sala. “Nucleon axial
form factor from a Bayesian neural-network analysis of neutrino-scattering data”. In:
Phys. Rev. C99.2 (2019), p. 025204. DOI: 10.1103/PhysRevC.99.025204. arXiv:
1805.00905 [hep-ph].

[104] Andreas S. Kronfeld et al. “Lattice QCD and Neutrino-Nucleus Scattering”. In: (2019).
arXiv: 1904.09931 [hep-lat].

[105] Alexander L. Fetter and John Dirk Walecka. Quantum Theory of Many-particle Systems.
Dover, 2003. ISBN: 0-486-42827-3.

[106] R. C. Carrasco and E. Oset. “Interaction of Real Photons With Nuclei From 100-MeV to
500-MeV”. In: Nucl. Phys. A536 (1992), pp. 445–508. DOI: 10.1016/0375-9474(92)
90109-W.

[107] R. B. Firestone and V. S. Shirley. Table of Isotopes. 8 edition. New York: John Wiley &
Sons, 1996.

[108] C. W. de Jager, H. de Vries, and C. de Vries. “Nuclear charge and magnetization density
distribution parameters from elastic electron scattering”. In: Atom. Data Nucl. Data
Tabl. 14 (1974), pp. 479–508.

[109] C. W. de Jager, H. de Vries, and C. de Vries. “Nuclear charge and magnetization density
distribution parameters from elastic electron scattering”. In: Atom. Data Nucl. Data
Tabl. 36 (1987), pp. 495–536.

[110] C. Garcia-Recio, J. Nieves, and E. Oset. “Neutron distribution from pionic atoms”. In:
Nucl. Phys. A 547.473-487 (1992).

[111] Willem H. Dickhoff and Dimitri Van Neck. Many-Body Theory Exposed! World Scien-
tific, 2005. ISBN: 981-256-294-X.

[112] J. Nieves. “Neutrinos in Nuclear Physics: RPA, MEC, 2p2h (Pionic Modes of Excitation
in Nuclei)”. In: Springer Proc. Phys. 182 (2016), pp. 3–54. DOI: 10.1007/978-3-319-
21191-6_1.

[113] J. Nieves, M. Valverde, and M. J. Vicente Vacas. “Inclusive nucleon emission induced
by quasi-elastic neutrino-nucleus interactions”. In: Phys. Rev. C73 (2006), p. 025504.
DOI: 10.1103/PhysRevC.73.025504.

[114] S.K. Singh and E. Oset. “Quasielastic neutrino (anti-neutrino) reactions in nuclei and
the axial vector form-factor of the nucleon”. In: Nucl.Phys. A542 (1992), pp. 587–615.
DOI: 10.1016/0375-9474(92)90259-M.

[115] T.S. Kosmas and E. Oset. “Charged current neutrino nucleus reaction cross-sections
at intermediate-energies”. In: Phys.Rev. C53 (1996), pp. 1409–1415. DOI: 10.1103/
PhysRevC.53.1409.

[116] S.K. Singh, Nimai C. Mukhopadhyay, and E. Oset. “Inclusive neutrino scattering in
C-12: Implications for muon-neutrino to electron-neutrino oscillations”. In: Phys.Rev.
C57 (1998), pp. 2687–2692. DOI: 10.1103/PhysRevC.57.2687.

https://doi.org/10.1103/PhysRevLett.74.4384
https://doi.org/10.1103/PhysRevLett.74.4384
https://doi.org/10.1016/0550-3213(71)90068-X
https://doi.org/10.1103/PhysRevLett.110.012504
https://doi.org/10.1103/PhysRevC.99.025204
https://arxiv.org/abs/1805.00905
https://arxiv.org/abs/1904.09931
https://doi.org/10.1016/0375-9474(92)90109-W
https://doi.org/10.1016/0375-9474(92)90109-W
https://doi.org/10.1007/978-3-319-21191-6_1
https://doi.org/10.1007/978-3-319-21191-6_1
https://doi.org/10.1103/PhysRevC.73.025504
https://doi.org/10.1016/0375-9474(92)90259-M
https://doi.org/10.1103/PhysRevC.53.1409
https://doi.org/10.1103/PhysRevC.53.1409
https://doi.org/10.1103/PhysRevC.57.2687


200 Bibliography

[117] J. Speth et al. “The influence of the π and ρ exchange potential on magnetic properties
of nuclei”. In: Nucl.Phys. A343 (1980), pp. 382–416. DOI: 10.1016/0375-9474(80)
90660-0.

[118] J Speth, E Werner, and W Wild. “Theory of infinite Fermi systems and application to
the lead region”. In: Phys. Rept. 33 (1977), pp. 127–208.

[119] E. Oset, H. Toki, and W. Weise. “Pionic modes of excitation in nuclei”. In: Phys. Rept.
83 (1982), pp. 281–380. DOI: 10.1016/0370-1573(82)90123-5.

[120] M. B. Barbaro, R. Cenni, and M. R. Quaglia. “The generalised relativistic Lindhard
functions”. In: Eur. Phys. J. A25 (2005), pp. 299–318. DOI: 10.1140/epja/i2005-
10105-4.

[121] J. Nieves, E. Oset, and C. Garcia-Recio. “A Theoretical approach to pionic atoms and
the problem of anomalies”. In: Nucl. Phys. A554 (1993), pp. 509–553. DOI: 10.1016/
0375-9474(93)90245-S.

[122] M. Valverde, Jose Enrique Amaro, and J. Nieves. “Theoretical uncertainties on quasielas-
tic charged-current neutrino-nucleus cross sections”. In: Phys. Lett. B638 (2006), pp. 325–
332. DOI: 10.1016/j.physletb.2006.05.053.

[123] P. Fernandez de Cordoba et al. “Deep inelastic lepton scattering in nuclei at x > 1 and
the nucleon spectral function”. In: Nucl. Phys. A611 (1996), pp. 514–538. DOI: 10.
1016/S0375-9474(96)00249-7.

[124] P. Fernandez de Cordoba and E. Oset. “A mesonic decay in nuclei and the occupation
number”. In: Nucl. Phys. A528 (1991), pp. 736–744. DOI: 10.1016/0375-9474(91)
90259-9.

[125] S. Fantoni, B. L. Friman, and V. R. Pandharipande. “Correlated basis theory of nucleon
optical potential in nuclear matter”. In: Nucl. Phys. A399 (1983), pp. 51–65. DOI: 10.
1016/0375-9474(83)90593-6.

[126] S. Fantoni and V. R. Pandharipande. “Momentum distribution of nucleons in nuclear
matter”. In: Nucl. Phys. A427 (1984), pp. 473–492. DOI: 10.1016/0375-9474(84)
90226-4.

[127] A. Ramos, A. Polls, and W. H. Dickhoff. “Single-particle properties and short-range
correlations in nuclear matter”. In: Nucl. Phys. A503 (1989), pp. 1–52. DOI: 10.1016/
0375-9474(89)90252-2.

[128] H. Muther, G. Knehr, and A. Polls. “Momentum distribution in nuclear matter and
finite nuclei”. In: Phys. Rev. C52 (1995), pp. 2955–2968. DOI: 10.1103/PhysRevC.
52.2955.

[129] C. Mahaux et al. “Dynamics of the shell model”. In: Phys. Rept. 120 (1985), pp. 1–274.
DOI: 10.1016/0370-1573(85)90100-0.

[130] Teppei Katori. “Meson Exchange Current (MEC) Models in Neutrino Interaction Gen-
erators”. In: AIP Conf. Proc. 1663 (2015), p. 030001. DOI: 10.1063/1.4919465.

[131] Omar Benhar, Alessandro Lovato, and Noemi Rocco. “Contribution of two-particle
two-hole final states to the nuclear response”. In: Phys. Rev. C92.2 (2015), p. 024602.
DOI: 10.1103/PhysRevC.92.024602.

[132] M. B. Barbaro et al. “The role of meson exchange currents in charged current (anti)neutrino
-nucleus scattering”. In: 35th International Workshop on Nuclear Theory (IWNT 2016)
Rila Mountains, Bulgaria., June 26-July 2, 2016. 2016. URL: http://inspirehep.
net/record/1490921/files/arXiv:1610.02924.pdf.

https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1016/0375-9474(80)90660-0
https://doi.org/10.1016/0370-1573(82)90123-5
https://doi.org/10.1140/epja/i2005-10105-4
https://doi.org/10.1140/epja/i2005-10105-4
https://doi.org/10.1016/0375-9474(93)90245-S
https://doi.org/10.1016/0375-9474(93)90245-S
https://doi.org/10.1016/j.physletb.2006.05.053
https://doi.org/10.1016/S0375-9474(96)00249-7
https://doi.org/10.1016/S0375-9474(96)00249-7
https://doi.org/10.1016/0375-9474(91)90259-9
https://doi.org/10.1016/0375-9474(91)90259-9
https://doi.org/10.1016/0375-9474(83)90593-6
https://doi.org/10.1016/0375-9474(83)90593-6
https://doi.org/10.1016/0375-9474(84)90226-4
https://doi.org/10.1016/0375-9474(84)90226-4
https://doi.org/10.1016/0375-9474(89)90252-2
https://doi.org/10.1016/0375-9474(89)90252-2
https://doi.org/10.1103/PhysRevC.52.2955
https://doi.org/10.1103/PhysRevC.52.2955
https://doi.org/10.1016/0370-1573(85)90100-0
https://doi.org/10.1063/1.4919465
https://doi.org/10.1103/PhysRevC.92.024602
http://inspirehep.net/record/1490921/files/arXiv: 1610.02924.pdf
http://inspirehep.net/record/1490921/files/arXiv: 1610.02924.pdf


Bibliography 201

[133] S. Pastore et al. “Quantum Monte Carlo calculations of electromagnetic moments and
transitions in A ≤ 9 nuclei with meson-exchange currents derived from chiral effective
field theory”. In: Phys. Rev. C87.3 (2013), p. 035503. DOI: 10.1103/PhysRevC.87.
035503.

[134] E. D. Cooper et al. “Global Dirac phenomenology for proton nucleus elastic scattering”.
In: Phys. Rev. C47 (1993), pp. 297–311. DOI: 10.1103/PhysRevC.47.297.

[135] R. J. Woo et al. “Measurement of the Induced Proton Polarization Pn in the C-12 (e,
e-prime p –>) Reaction”. In: Phys. Rev. Lett. 80 (1998), pp. 456–459. DOI: 10.1103/
PhysRevLett.80.456.

[136] Stefano Fantoni and Adelchi Fabrocini. “Correlated basis function theory for fermion
systems”. In: Microscopic Quantum Many-Body Theories and Their Applications. Ed.
by Jesús Navarro and Artur Polls. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
ISBN: 978-3-540-69787-9.

[137] J. Mougey et al. “Quasifree (e, e’ p) Scattering on C-12, Si-28, Ca-40 and Ni-58”. In:
Nucl. Phys. A262 (1976), pp. 461–492. DOI: 10.1016/0375-9474(76)90510-8.

[138] D. Dutta et al. “A Study of the quasielastic (e,e-prime p) reaction on C-12, Fe-56 and
Au-97”. In: Phys. Rev. C68 (2003), p. 064603. DOI: 10.1103/PhysRevC.68.064603.

[139] B. S. Pudliner et al. “Quantum Monte Carlo calculations of nuclei with A <= 7”. In:
Phys. Rev. C56 (1997), pp. 1720–1750. DOI: 10.1103/PhysRevC.56.1720.

[140] Steven C. Pieper et al. “Realistic models of pion exchange three nucleon interactions”.
In: Phys. Rev. C64 (2001), p. 014001. DOI: 10.1103/PhysRevC.64.014001.

[141] S. Fantoni and V. R. Pandharipande. “Orthogonalization of correlated states”. In: Phys.
Rev. C37 (1988), pp. 1697–1707. DOI: 10.1103/PhysRevC.37.1697.

[142] Omar Benhar, Adelchi Fabrocini, and Stefano Fantoni. “Occupation probabilities and
hole-state strengths in nuclear matter”. In: Phys. Rev. C41 (1990), R24–R27. DOI: 10.
1103/PhysRevC.41.R24.

[143] O. Benhar et al. “Scattering of GeV electrons by nuclear matter”. In: Phys. Rev. C44
(1991), pp. 2328–2342. DOI: 10.1103/PhysRevC.44.2328.

[144] Omar Benhar. “Final state interactions in the nuclear response at large momentum trans-
fer”. In: Phys. Rev. C87.2 (2013), p. 024606. DOI: 10.1103/PhysRevC.87.024606.

[145] T. Leitner et al. “Electron- and neutrino-nucleus scattering from the quasielastic to the
resonance region”. In: Phys.Rev. C79 (2009), p. 034601. DOI: 10.1103/PhysRevC.
79.034601.

[146] J. Lehr et al. “Nuclear matter spectral functions by transport theory”. In: Nucl. Phys.
A703 (2002), pp. 393–408. DOI: 10.1016/S0375-9474(01)01534-2. arXiv: nucl-
th/0108008 [nucl-th].

[147] C. Maieron, T. W. Donnelly, and Ingo Sick. “Extended superscaling of electron scatter-
ing from nuclei”. In: Phys. Rev. C65 (2002), p. 025502. DOI: 10.1103/PhysRevC.65.
025502.

[148] R. Gonzaléz-Jiménez et al. “Extensions of Superscaling from Relativistic Mean Field
Theory: the SuSAv2 Model”. In: Phys. Rev. C90.3 (2014), p. 035501. DOI: 10.1103/
PhysRevC.90.035501.

[149] J. Marteau. “Effects of the nuclear correlations on the neutrino oxygen interactions”.
In: Eur. Phys. J. A5 (1999), pp. 183–190. DOI: 10 . 1007 / s100500050274. arXiv:
hep-ph/9902210 [hep-ph].

https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.47.297
https://doi.org/10.1103/PhysRevLett.80.456
https://doi.org/10.1103/PhysRevLett.80.456
https://doi.org/10.1016/0375-9474(76)90510-8
https://doi.org/10.1103/PhysRevC.68.064603
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.64.014001
https://doi.org/10.1103/PhysRevC.37.1697
https://doi.org/10.1103/PhysRevC.41.R24
https://doi.org/10.1103/PhysRevC.41.R24
https://doi.org/10.1103/PhysRevC.44.2328
https://doi.org/10.1103/PhysRevC.87.024606
https://doi.org/10.1103/PhysRevC.79.034601
https://doi.org/10.1103/PhysRevC.79.034601
https://doi.org/10.1016/S0375-9474(01)01534-2
https://arxiv.org/abs/nucl-th/0108008
https://arxiv.org/abs/nucl-th/0108008
https://doi.org/10.1103/PhysRevC.65.025502
https://doi.org/10.1103/PhysRevC.65.025502
https://doi.org/10.1103/PhysRevC.90.035501
https://doi.org/10.1103/PhysRevC.90.035501
https://doi.org/10.1007/s100500050274
https://arxiv.org/abs/hep-ph/9902210


202 Bibliography

[150] Joanna Ewa Sobczyk. “Intercomparison of the lepton-nucleus scattering models in the
quasielastic region”. In: Phys. Rev. C96.4 (2017), p. 045501. DOI: 10.1103/PhysRevC.
96.045501.

[151] B. E. Bodmann et al. “Neutrino interactions with carbon: Recent measurements and
a new test of electron-neutrino, anti-muon-neutrino universality”. In: Phys. Lett. B332
(1994), pp. 251–257. DOI: 10.1016/0370-2693(94)91250-5.

[152] C. Athanassopoulos et al. “Measurements of the reactions C-12 (electron-neutrino,
e-) N-12 (g.s.) and C-12 (electron-neutrino, e-) N*-12”. In: Phys. Rev. C55 (1997),
pp. 2078–2091. DOI: 10.1103/PhysRevC.55.2078.

[153] D. A. Krakauer et al. “Experimental study of neutrino absorption on carbon”. In: Phys.
Rev. C45 (1992), pp. 2450–2463. DOI: 10.1103/PhysRevC.45.2450.

[154] H. C. Chiang et al. “Inclusive Radiative Pion Capture in Nuclei”. In: Nucl. Phys. A510
(1990). [Erratum: Nucl. Phys.A514,749(1990)], p. 573. DOI: 10.1016/0375-9474(90)
90349-Q.

[155] J. A. Bistirlich et al. “Photon spectra from radiative absorption of pions in nuclei”. In:
Phys. Rev. C5 (1972), pp. 1867–1883. DOI: 10.1103/PhysRevC.5.1867.

[156] Jose Enrique Amaro, A. M. Lallena, and J. Nieves. “Radiative pion capture in nuclei:
A Continuum shell model approach”. In: Nucl. Phys. A623 (1997), pp. 529–547. DOI:
10.1016/S0375-9474(97)00187-5.

[157] S. Kamerdzhiev, J. Speth, and G. Tertychny. “Extended theory of finite Fermi systems:
Collective vibrations in closed shell nuclei”. In: Phys. Rept. 393 (2004), pp. 1–86. DOI:
10.1016/j.physrep.2003.11.001.

[158] Antonio Botrugno and Giampaolo Co’. “Excitation of nuclear giant resonances in neu-
trino scattering off nuclei”. In: Nucl. Phys. A761 (2005), pp. 200–231. DOI: 10.1016/
j.nuclphysa.2005.07.010.

[159] T. Suzuki, David F. Measday, and J. P. Roalsvig. “Total Nuclear Capture Rates for
Negative Muons”. In: Phys. Rev. C35 (1987), p. 2212. DOI: 10.1103/PhysRevC.35.
2212.

[160] M. Albert et al. “Measurement of the reaction C-12 (muon-neutrino, mu-) X near thresh-
old”. In: Phys. Rev. C51 (1995), pp. 1065–1069. DOI: 10.1103/PhysRevC.51.1065.

[161] A. C. Hayes and I. S. Towner. “Shell model calculations of neutrino scattering from
C-12”. In: Phys. Rev. C61 (2000), p. 044603. DOI: 10.1103/PhysRevC.61.044603.

[162] C. Volpe et al. “Microscopic theories of neutrino C-12 reactions”. In: Phys.Rev. C62
(2000), p. 015501. DOI: 10.1103/PhysRevC.62.015501.

[163] E. Kolbe et al. “Neutrino nucleus reactions and nuclear structure”. In: J. Phys. G29
(2003), pp. 2569–2596. DOI: 10.1088/0954-3899/29/11/010.

[164] C. Athanassopoulos et al. “Measurements of the reactions C-12 (muon-neutrino, mu-)
N-12 (g.s.) and C-12 (muon-neutrino, mu-) X”. In: Phys. Rev. C56 (1997), pp. 2806–
2819. DOI: 10.1103/PhysRevC.56.2806.

[165] L. B. Auerbach et al. “Measurements of charged current reactions of muon neutrinos on
C-12”. In: Phys. Rev. C66 (2002), p. 015501. DOI: 10.1103/PhysRevC.66.015501.

[166] A.A. Aguilar-Arevalo et al. “First Measurement of the Muon Neutrino Charged Current
Quasielastic Double Differential Cross Section”. In: Phys. Rev. D81 (2010), p. 092005.
DOI: 10.1103/PhysRevD.81.092005.

[167] A.A. Aguilar-Arevalo et al. “The Neutrino Flux prediction at MiniBooNE”. In: Phys.
Rev. D79 (2009), p. 072002. DOI: 10.1103/PhysRevD.79.072002.

https://doi.org/10.1103/PhysRevC.96.045501
https://doi.org/10.1103/PhysRevC.96.045501
https://doi.org/10.1016/0370-2693(94)91250-5
https://doi.org/10.1103/PhysRevC.55.2078
https://doi.org/10.1103/PhysRevC.45.2450
https://doi.org/10.1016/0375-9474(90)90349-Q
https://doi.org/10.1016/0375-9474(90)90349-Q
https://doi.org/10.1103/PhysRevC.5.1867
https://doi.org/10.1016/S0375-9474(97)00187-5
https://doi.org/10.1016/j.physrep.2003.11.001
https://doi.org/10.1016/j.nuclphysa.2005.07.010
https://doi.org/10.1016/j.nuclphysa.2005.07.010
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.1103/PhysRevC.51.1065
https://doi.org/10.1103/PhysRevC.61.044603
https://doi.org/10.1103/PhysRevC.62.015501
https://doi.org/10.1088/0954-3899/29/11/010
https://doi.org/10.1103/PhysRevC.56.2806
https://doi.org/10.1103/PhysRevC.66.015501
https://doi.org/10.1103/PhysRevD.81.092005
https://doi.org/10.1103/PhysRevD.79.072002


Bibliography 203

[168] M. Waroquier et al. “Rearrangement Effects in Shell Model Calculations Using Density
Dependent Interactions”. In: Phys. Rept. 148 (1987), p. 249. DOI: 10.1016/0370-
1573(87)90066-4.

[169] Jose Enrique Amaro et al. “Superscaling and neutral current quasielastic neutrino-nucleus
scattering”. In: Phys. Rev. C73 (2006), p. 035503. DOI: 10.1103/PhysRevC.73.
035503.

[170] J.E. Amaro et al. “Meson-exchange currents and quasielastic neutrino cross sections
in the SuperScaling Approximation model”. In: Phys.Lett. B696 (2011), pp. 151–155.
DOI: 10.1016/j.physletb.2010.12.007.

[171] J.E. Amaro et al. “Relativistic analyses of quasielastic neutrino cross sections at Mini-
BooNE kinematics”. In: Phys.Rev. D84 (2011), p. 033004. DOI: 10.1103/PhysRevD.
84.033004.

[172] R. Gonzalez-Jimenez et al. “Neutral current (anti)neutrino scattering: relativistic mean
field and superscaling predictions”. In: Phys.Lett. B718 (2013), pp. 1471–1474. DOI:
10.1016/j.physletb.2012.11.065.

[173] E. Oset et al. “Decay Modes of Σ and Λ Hypernuclei”. In: Phys. Rept. 188 (1990),
p. 79. DOI: 10.1016/0370-1573(90)90091-F.

[174] P. Fernandez de Cordoba and E. Oset. “Projectile and target delta excitation in the (He-
3, t) and (He-3, He-3) reactions”. In: Nucl. Phys. A544 (1992), pp. 793–810. DOI: 10.
1016/0375-9474(92)90541-Q.

[175] J. Nieves, E. Oset, and C. Garcia-Recio. “Many body approach to low-energy pion
nucleus scattering”. In: Nucl.Phys. A554 (1993), pp. 554–579. DOI: 10.1016/0375-
9474(93)90246-T.

[176] P. Fernandez de Cordoba et al. “Coherent pion production in the (He-3, t) reaction in
nuclei”. In: Phys.Lett. B319 (1993), pp. 416–420. DOI: 10.1016/0370- 2693(93)
91744-8.

[177] J. Nieves and E. Oset. “Pionic decay of Lambda hypernuclei”. In: Phys. Rev. C47
(1993), pp. 1478–1488. DOI: 10.1103/PhysRevC.47.1478.

[178] S. Hirenzaki et al. “Coherent pi0 electroproduction”. In: Phys.Lett. B304 (1993), pp. 198–
202. DOI: 10.1016/0370-2693(93)90282-M.

[179] R. C. Carrasco, M. J. Vicente Vacas, and E. Oset. “Inclusive (gamma, N), (gamma, N N)
and (gamma, N pi) reactions in nuclei at intermediate-energies”. In: Nucl. Phys. A570
(1994), pp. 701–721. DOI: 10.1016/0375-9474(94)90080-9.

[180] P. Fernandez de Cordoba et al. “Projectile delta excitation in alpha - proton scattering”.
In: Nucl. Phys. A586 (1995), pp. 586–606. DOI: 10.1016/0375-9474(94)00815-5.

[181] C. Garcia-Recio, J. Nieves, and E. Oset. “Pion cloud contribution to K+ nucleus scat-
tering”. In: Phys. Rev. C51 (1995), pp. 237–251. DOI: 10.1103/PhysRevC.51.237.

[182] S. Hirenzaki, P. Fernandez de Cordoba, and E. Oset. “Roper excitation in alpha - proton
scattering”. In: Phys. Rev. C53 (1996), pp. 277–284. DOI: 10.1103/PhysRevC.53.
277.

[183] A. Gil, J. Nieves, and E. Oset. “Inclusive (e, e-prime N), (e, e-prime N N), (e, e-prime
pi): Reactions in nuclei”. In: Nucl.Phys. A627 (1997), pp. 599–619. DOI: 10.1016/
S0375-9474(97)00515-0.

[184] C. Albertus, Jose Enrique Amaro, and J. Nieves. “What does free space Lambda-Lambda
interaction predict for Lambda-Lambda hypernuclei?” In: Phys. Rev. Lett. 89 (2002),
p. 032501. DOI: 10.1103/PhysRevLett.89.032501.

https://doi.org/10.1016/0370-1573(87)90066-4
https://doi.org/10.1016/0370-1573(87)90066-4
https://doi.org/10.1103/PhysRevC.73.035503
https://doi.org/10.1103/PhysRevC.73.035503
https://doi.org/10.1016/j.physletb.2010.12.007
https://doi.org/10.1103/PhysRevD.84.033004
https://doi.org/10.1103/PhysRevD.84.033004
https://doi.org/10.1016/j.physletb.2012.11.065
https://doi.org/10.1016/0370-1573(90)90091-F
https://doi.org/10.1016/0375-9474(92)90541-Q
https://doi.org/10.1016/0375-9474(92)90541-Q
https://doi.org/10.1016/0375-9474(93)90246-T
https://doi.org/10.1016/0375-9474(93)90246-T
https://doi.org/10.1016/0370-2693(93)91744-8
https://doi.org/10.1016/0370-2693(93)91744-8
https://doi.org/10.1103/PhysRevC.47.1478
https://doi.org/10.1016/0370-2693(93)90282-M
https://doi.org/10.1016/0375-9474(94)90080-9
https://doi.org/10.1016/0375-9474(94)00815-5
https://doi.org/10.1103/PhysRevC.51.237
https://doi.org/10.1103/PhysRevC.53.277
https://doi.org/10.1103/PhysRevC.53.277
https://doi.org/10.1016/S0375-9474(97)00515-0
https://doi.org/10.1016/S0375-9474(97)00515-0
https://doi.org/10.1103/PhysRevLett.89.032501


204 Bibliography

[185] C. Albertus, Jose Enrique Amaro, and J. Nieves. “Pionic decay of Lambda hypernuclei
in a continuum shell model”. In: Phys. Rev. C67 (2003), p. 034604. DOI: 10.1103/
PhysRevC.67.034604.

[186] P. E. Bosted and V. Mamyan. “Empirical Fit to electron-nucleus scattering”. In: (2012).
arXiv: 1203.2262 [nucl-th].

[187] Omar Benhar, Donal Day, and Ingo Sick. “An Archive for quasi-elastic electron-nucleus
scattering data”. In: (2006). arXiv: nucl-ex/0603032 [nucl-ex].

[188] J. E. Sobczyk et al. “Scaling within the Spectral Function approach”. In: Phys. Rev. C97
(2018), p. 035506. DOI: 10.1103/PhysRevC.97.035506.

[189] W. M. Alberico et al. “Scaling in electron scattering from a relativistic Fermi gas”. In:
Phys. Rev. C38 (1988), pp. 1801–1810. DOI: 10.1103/PhysRevC.38.1801.

[190] M. B. Barbaro et al. “Relativistic y - scaling and the Coulomb sum rule in nuclei”. In:
Nucl. Phys. A643 (1998), pp. 137–160. DOI: 10.1016/S0375-9474(98)00443-6.

[191] T.W. Donnelly and Ingo Sick. “Superscaling of inclusive electron scattering from nu-
clei”. In: Phys.Rev. C60 (1999), p. 065502. DOI: 10.1103/PhysRevC.60.065502.

[192] P. Barreau et al. “Deep Inelastic electron Scattering from Carbon”. In: Nucl. Phys. A402
(1983), pp. 515–540. DOI: 10.1016/0375-9474(83)90217-8.

[193] D. T. Baran et al. “∆ Electroproduction and Inelastic Charge Scattering From Carbon
and Iron”. In: Phys. Rev. Lett. 61 (1988), pp. 400–403. DOI: 10.1103/PhysRevLett.
61.400.

[194] R. R. Whitney et al. “Quasielastic electron Scattering”. In: Phys. Rev. C9 (1974), p. 2230.
DOI: 10.1103/PhysRevC.9.2230.

[195] U. Mosel. “Talk (April 18, 2017) given at IPPP/NuSTEC topical meeting on neutrino-
nucleus scattering (Durham, UK). ” In: (). URL: https://conference.ippp.dur.
ac.uk/event/583/.

[196] K. Abe et al. “T2K neutrino flux prediction”. In: Phys. Rev. D87.1 (2013). [Adden-
dum: Phys. Rev.D87,no.1,019902(2013)], p. 012001. DOI: 10.1103/PhysRevD.87.
012001,10.1103/PhysRevD.87.019902. arXiv: 1211.0469 [hep-ex].

[197] G. D. Megias et al. “Inclusive electron scattering within the SuSAv2 meson-exchange
current approach”. In: Phys. Rev. D94 (2016), p. 013012. DOI: 10.1103/PhysRevD.
94.013012. arXiv: 1603.08396 [nucl-th].

[198] J. D. Bjorken. “Asymptotic Sum Rules at Infinite Momentum”. In: Phys. Rev. 179
(1969), pp. 1547–1553. DOI: 10.1103/PhysRev.179.1547.

[199] Geoffrey B. West. “Electron Scattering from Atoms, Nuclei and Nucleons”. In: Phys.
Rept. 18 (1975), pp. 263–323. DOI: 10.1016/0370-1573(75)90035-6.

[200] R. Rosenfelder. “Quasielastic electron scattering from nuclei”. In: Annals Phys. 128
(1980), pp. 188–240. DOI: 10.1016/0003-4916(80)90059-7.

[201] D. B. Day et al. “Y Scaling in Electron Nucleus Scattering”. In: Phys. Rev. Lett. 59
(1987), pp. 427–430. DOI: 10.1103/PhysRevLett.59.427.

[202] T. W. Donnelly and Ingo Sick. “Superscaling in inclusive electron - nucleus scattering”.
In: Phys. Rev. Lett. 82 (1999), pp. 3212–3215. DOI: 10.1103/PhysRevLett.82.3212.

[203] E. Pace and G. Salme. “Nuclear Scaling Function and Quasielastic Electron Scattering
by Nuclei”. In: Phys. Lett. 110B (1982), p. 411. DOI: 10.1016/0370- 2693(82)
91283-7.

https://doi.org/10.1103/PhysRevC.67.034604
https://doi.org/10.1103/PhysRevC.67.034604
https://arxiv.org/abs/1203.2262
https://arxiv.org/abs/nucl-ex/0603032
https://doi.org/10.1103/PhysRevC.97.035506
https://doi.org/10.1103/PhysRevC.38.1801
https://doi.org/10.1016/S0375-9474(98)00443-6
https://doi.org/10.1103/PhysRevC.60.065502
https://doi.org/10.1016/0375-9474(83)90217-8
https://doi.org/10.1103/PhysRevLett.61.400
https://doi.org/10.1103/PhysRevLett.61.400
https://doi.org/10.1103/PhysRevC.9.2230
https://conference.ippp.dur.ac.uk/event/583/
https://conference.ippp.dur.ac.uk/event/583/
https://doi.org/10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902
https://doi.org/10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902
https://arxiv.org/abs/1211.0469
https://doi.org/10.1103/PhysRevD.94.013012
https://doi.org/10.1103/PhysRevD.94.013012
https://arxiv.org/abs/1603.08396
https://doi.org/10.1103/PhysRev.179.1547
https://doi.org/10.1016/0370-1573(75)90035-6
https://doi.org/10.1016/0003-4916(80)90059-7
https://doi.org/10.1103/PhysRevLett.59.427
https://doi.org/10.1103/PhysRevLett.82.3212
https://doi.org/10.1016/0370-2693(82)91283-7
https://doi.org/10.1016/0370-2693(82)91283-7


Bibliography 205

[204] R. Cenni, Claudio Ciofi degli Atti, and G. Salme. “A Y Scaling Analysis of the Electro-
magnetic Longitudinal and Transverse Response Functions”. In: Phys. Rev. C39 (1989),
pp. 1425–1437. DOI: 10.1103/PhysRevC.39.1425.

[205] J. A. Caballero et al. “Superscaling in charged current neutrino quasielastic scattering in
the relativistic impulse approximation”. In: Phys. Rev. Lett. 95 (2005), p. 252502. DOI:
10.1103/PhysRevLett.95.252502.

[206] A. N. Antonov et al. “Scaling Function, Spectral Function and Nucleon Momentum Dis-
tribution in Nuclei”. In: Phys. Rev. C83 (2011), p. 045504. DOI: 10.1103/PhysRevC.
83.045504.

[207] Jose Enrique Amaro et al. “Quasielastic Charged Current Neutrino-nucleus Scattering”.
In: Phys. Rev. Lett. 98 (2007), p. 242501. DOI: 10.1103/PhysRevLett.98.242501.

[208] J. Carlson et al. “Quantum Monte Carlo methods for nuclear physics”. In: Rev. Mod.
Phys. 87 (2015), p. 1067. DOI: 10.1103/RevModPhys.87.1067.

[209] R. B. Wiringa et al. “Nucleon and nucleon-pair momentum distributions in A ≤ 12
nuclei”. In: Phys. Rev. C89.2 (2014), p. 024305. DOI: 10.1103/PhysRevC.89.024305.

[210] Robert B. Wiringa. “Single-particle potential in dense nuclear matter”. In: Phys. Rev.
C38 (1988), pp. 2967–2970. DOI: 10.1103/PhysRevC.38.2967.

[211] Omar Benhar and Alessandro Lovato. “Perturbation Theory of Nuclear Matter with a
Microscopic Effective Interaction”. In: Phys. Rev. C96.5 (2017), p. 054301. DOI: 10.
1103/PhysRevC.96.054301. arXiv: 1706.00760 [nucl-th].

[212] A. Lovato et al. “Charge Form Factor and Sum Rules of Electromagnetic Response
Functions in 12C”. In: Phys.Rev.Lett. 111.9 (2013), p. 092501. DOI: 10.1103/PhysRevLett.
111.092501.

[213] A. Lovato et al. “Electromagnetic and neutral-weak response functions of 4He and 12C”.
In: Phys. Rev. C91.6 (2015), p. 062501. DOI: 10.1103/PhysRevC.91.062501.

[214] A. Lovato et al. “Electromagnetic response of 12C: A first-principles calculation”. In:
Phys. Rev. Lett. 117.8 (2016), p. 082501. DOI: 10.1103/PhysRevLett.117.082501.

[215] https://www-sciboone.fnal.gov/.

[216] https://microboone.fnal.gov/.

[217] https://minerva.fnal.gov/.

[218] http://t962.fnal.gov/.

[219] M. Ablikim et al. “Measurement of the absolute branching fraction for Λ+
c →Λe+νe”.

In: Phys. Rev. Lett. 115.22 (2015), p. 221805. DOI: 10.1103/PhysRevLett.115.
221805.

[220] Medina Ablikim et al. “Measurement of the absolute branching fraction for Λ+
c →

Λµ+νµ”. In: Phys. Lett. B767 (2017), pp. 42–47. DOI: 10.1016/j.physletb.2017.
01.047.

[221] R. N. Faustov and V. O. Galkin. “Semileptonic decays of Λc baryons in the relativistic
quark model”. In: Eur. Phys. J. C76.11 (2016), p. 628. DOI: 10.1140/epjc/s10052-
016-4492-z.

[222] Stefan Meinel. “Λc→Λl+νl form factors and decay rates from lattice QCD with phys-
ical quark masses”. In: Phys. Rev. Lett. 118.8 (2017), p. 082001. DOI: 10 . 1103 /
PhysRevLett.118.082001.

[223] J. E. Sobczyk et al. “Weak production of strange and charmed ground-state baryons in
nuclei”. In: Phys. Rev. C99.6 (2019), p. 065503. DOI: 10.1103/PhysRevC.99.065503.
arXiv: 1901.10192 [nucl-th].

https://doi.org/10.1103/PhysRevC.39.1425
https://doi.org/10.1103/PhysRevLett.95.252502
https://doi.org/10.1103/PhysRevC.83.045504
https://doi.org/10.1103/PhysRevC.83.045504
https://doi.org/10.1103/PhysRevLett.98.242501
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevC.89.024305
https://doi.org/10.1103/PhysRevC.38.2967
https://doi.org/10.1103/PhysRevC.96.054301
https://doi.org/10.1103/PhysRevC.96.054301
https://arxiv.org/abs/1706.00760
https://doi.org/10.1103/PhysRevLett.111.092501
https://doi.org/10.1103/PhysRevLett.111.092501
https://doi.org/10.1103/PhysRevC.91.062501
https://doi.org/10.1103/PhysRevLett.117.082501
https://www-sciboone.fnal.gov/
https://microboone.fnal.gov/
https://minerva.fnal.gov/
http://t962.fnal.gov/
https://doi.org/10.1103/PhysRevLett.115.221805
https://doi.org/10.1103/PhysRevLett.115.221805
https://doi.org/10.1016/j.physletb.2017.01.047
https://doi.org/10.1016/j.physletb.2017.01.047
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1103/PhysRevLett.118.082001
https://doi.org/10.1103/PhysRevLett.118.082001
https://doi.org/10.1103/PhysRevC.99.065503
https://arxiv.org/abs/1901.10192


206 Bibliography

[224] A. Kayis-Topaksu et al. “Measurement of Lambda/c+ production in neutrino charged-
current interactions”. In: Phys. Lett. B555 (2003), pp. 156–166. DOI: 10.1016/S0370-
2693(03)00045-5.

[225] Giovanni De Lellis, Pasquale Migliozzi, and Pietro Santorelli. “Charm physics with
neutrinos”. In: Phys. Rept. 399 (2004). [Erratum: Phys. Rept.411,323(2005)], pp. 227–
320. DOI: 10.1016/j.physrep.2005.02.001.

[226] W. Roberts and Muslema Pervin. “Heavy baryons in a quark model”. In: Int. J. Mod.
Phys. A23 (2008), pp. 2817–2860. DOI: 10.1142/S0217751X08041219.

[227] Mikhail A. Ivanov et al. “Heavy baryon transitions in a relativistic three quark model”.
In: Phys. Rev. D56 (1997), pp. 348–364. DOI: 10.1103/PhysRevD.56.348.

[228] Tanja Branz et al. “Relativistic constituent quark model with infrared confinement”. In:
Phys. Rev. D81 (2010), p. 034010. DOI: 10.1103/PhysRevD.81.034010.

[229] Thomas Gutsche et al. “Rare baryon decays Λb → Λl+l−(l = e, µ ,τ) and Λb → Λγ

: differential and total rates, lepton- and hadron-side forward-backward asymmetries”.
In: Phys. Rev. D87 (2013), p. 074031. DOI: 10.1103/PhysRevD.87.074031.

[230] M. Avila-Aoki et al. “Predictions for Semileptonic Decays of Charm Baryons. 1. SU(4)
Symmetry Limit”. In: Phys. Rev. D40 (1989), p. 2944. DOI: 10.1103/PhysRevD.40.
2944.

[231] A. Chodos et al. “A New Extended Model of Hadrons”. In: Phys. Rev. D9 (1974),
pp. 3471–3495. DOI: 10.1103/PhysRevD.9.3471.

[232] A. Chodos et al. “Baryon Structure in the Bag Theory”. In: Phys. Rev. D10 (1974),
p. 2599. DOI: 10.1103/PhysRevD.10.2599.

[233] J.J.J. Kokkedee. Quark Model. New York, W.A. Benjamin, 1969.

[234] K. A. Olive et al. “Review of Particle Physics”. In: Chin. Phys. C38 (2014), p. 090001.
DOI: 10.1088/1674-1137/38/9/090001.

[235] A. Zupanc et al. “Measurement of the Branching Fraction B(Λ+
c → pK−π+)”. In:

Phys. Rev. Lett. 113.4 (2014), p. 042002. DOI: 10.1103/PhysRevLett.113.042002.

[236] Y. Aoki et al. “Continuum Limit Physics from 2+1 Flavor Domain Wall QCD”. In:
Phys. Rev. D83 (2011), p. 074508. DOI: 10.1103/PhysRevD.83.074508.

[237] T. Blum et al. “Domain wall QCD with physical quark masses”. In: Phys. Rev. D93.7
(2016), p. 074505. DOI: 10.1103/PhysRevD.93.074505.

[238] Claude Bourrely, Irinel Caprini, and Laurent Lellouch. “Model-independent description
of B —> pi l nu decays and a determination of |V(ub)|”. In: Phys. Rev. D79 (2009).
[Erratum: Phys. Rev.D82,099902(2010)], p. 013008. DOI: 10.1103/PhysRevD.82.
099902,10.1103/PhysRevD.79.013008.

[239] A. Bouyssy. “Strangeness exchange reactions and hypernuclear spectroscopy”. In: Phys.
Lett. 84B (1979), pp. 41–45. DOI: 10.1016/0370-2693(79)90644-0.

[240] Y. Hayato. “NEUT”. In: Nucl. Phys. Proc. Suppl. 112 (2002). [,171(2002)], pp. 171–
176. DOI: 10.1016/S0920-5632(02)01759-0.

[241] Cezary Juszczak, Jaroslaw A. Nowak, and Jan T. Sobczyk. “Simulations from a new
neutrino event generator”. In: Nucl. Phys. Proc. Suppl. 159 (2006). [,211(2005)], pp. 211–
216. DOI: 10.1016/j.nuclphysbps.2006.08.069.

[242] C. Andreopoulos et al. “The GENIE Neutrino Monte Carlo Generator”. In: Nucl. In-
strum. Meth. A614 (2010), pp. 87–104. DOI: 10.1016/j.nima.2009.12.009.

https://doi.org/10.1016/S0370-2693(03)00045-5
https://doi.org/10.1016/S0370-2693(03)00045-5
https://doi.org/10.1016/j.physrep.2005.02.001
https://doi.org/10.1142/S0217751X08041219
https://doi.org/10.1103/PhysRevD.56.348
https://doi.org/10.1103/PhysRevD.81.034010
https://doi.org/10.1103/PhysRevD.87.074031
https://doi.org/10.1103/PhysRevD.40.2944
https://doi.org/10.1103/PhysRevD.40.2944
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.10.2599
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1103/PhysRevLett.113.042002
https://doi.org/10.1103/PhysRevD.83.074508
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.82.099902, 10.1103/PhysRevD.79.013008
https://doi.org/10.1103/PhysRevD.82.099902, 10.1103/PhysRevD.79.013008
https://doi.org/10.1016/0370-2693(79)90644-0
https://doi.org/10.1016/S0920-5632(02)01759-0
https://doi.org/10.1016/j.nuclphysbps.2006.08.069
https://doi.org/10.1016/j.nima.2009.12.009


Bibliography 207

[243] D. Drakoulakos et al. “Proposal to perform a high-statistics neutrino scattering exper-
iment using a fine-grained detector in the NuMI beam”. In: (2004). arXiv: hep-ex/
0405002 [hep-ex].

[244] N. Agafonova et al. “Evidence for νµ → ντ appearance in the CNGS neutrino beam
with the OPERA experiment”. In: Phys. Rev. D89.5 (2014), p. 051102. DOI: 10.1103/
PhysRevD.89.051102.

[245] K. Kodama et al. “Final tau-neutrino results from the DONuT experiment”. In: Phys.
Rev. D78 (2008), p. 052002. DOI: 10.1103/PhysRevD.78.052002.

[246] Walter M. Bonivento. “The SHiP experiment at CERN”. In: EPJ Web Conf. 182 (2018),
p. 02016. DOI: 10.1051/epjconf/201818202016.

[247] Kaoru Hagiwara, Kentarou Mawatari, and Hiroshi Yokoya. “Tau polarization in tau
neutrino nucleon scattering”. In: Nucl. Phys. B668 (2003). [Erratum: Nucl. Phys. B701,
405(2004)], pp. 364–384. DOI: 10.1016/S0550-3213(03)00575-3.

[248] M. Valverde et al. “Nuclear effects on lepton polarization in charged-current quasielastic
neutrino scattering”. In: Phys. Lett. B642 (2006), pp. 218–226. DOI: 10.1016/j.
physletb.2006.08.087.

[249] S. Fantoni and V. R. Pandharipande. “Correlated basis theory of nuclear matter response
functions”. In: Nucl. Phys. A473 (1987), pp. 234–266. DOI: 10.1016/0375-9474(87)
90144-8.

[250] J. E. Sobczyk, N. Rocco, and J. Nieves. “Polarization of Tau in Quasielastic (Anti)Neutrino
Scattering: The Role of Spectral Functions”. In: Phys. Rev. C100.3 (2019), p. 035501.
DOI: 10.1103/PhysRevC.100.035501. arXiv: 1906.05656 [nucl-th].

[251] Franz Mandl and Graham Shaw. Quantum Field Theory. 1985. URL: http://eu.
wiley.com/WileyCDA/WileyTitle/productCd-0471496839.html.

[252] T. De Forest. “Off-Shell electron Nucleon Cross-Sections. The Impulse Approxima-
tion”. In: Nucl. Phys. A392 (1983), pp. 232–248. DOI: 10.1016/0375- 9474(83)
90124-0.

[253] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory.
Perseus Books, 1995. ISBN: 0-201-50397-2.

[254] Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics.
2007. ISBN: 9780198508717.

https://arxiv.org/abs/hep-ex/0405002
https://arxiv.org/abs/hep-ex/0405002
https://doi.org/10.1103/PhysRevD.89.051102
https://doi.org/10.1103/PhysRevD.89.051102
https://doi.org/10.1103/PhysRevD.78.052002
https://doi.org/10.1051/epjconf/201818202016
https://doi.org/10.1016/S0550-3213(03)00575-3
https://doi.org/10.1016/j.physletb.2006.08.087
https://doi.org/10.1016/j.physletb.2006.08.087
https://doi.org/10.1016/0375-9474(87)90144-8
https://doi.org/10.1016/0375-9474(87)90144-8
https://doi.org/10.1103/PhysRevC.100.035501
https://arxiv.org/abs/1906.05656
http://eu.wiley.com/WileyCDA/WileyTitle/productCd- 0471496839.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd- 0471496839.html
https://doi.org/10.1016/0375-9474(83)90124-0
https://doi.org/10.1016/0375-9474(83)90124-0

	Abstract
	Acknowledgements
	Resumen
	Introduction
	Neutrino oscillations
	Neutrino experiments
	Challenges in neutrino detection
	Outline

	Theoretical concepts
	Neutrinos in the Standard Model
	Neutrino scattering off a single nucleon
	Dynamical mechanisms
	Quasielastic scattering
	TEXT form factors

	Nucleons in the nuclear medium
	Noninteracting system
	Local Density Approximation (LDA)
	Nucleon propagator in the nuclear medium. Spectral functions.
	Nucleon self-energy

	Neutrino-nucleus interaction
	Hadron tensor
	The quasielastic mechanism
	The Lindhard function for a Fermi gas
	The Lindhard function for interacting systems

	Other nuclear effects
	Correct energy balance and Coulomb distortion effects
	RPA
	Final state interactions


	Models of spectral functions and other nuclear effects
	Statistical correlations - Fermi gas model
	LDA SF model
	Nucleon's self-energy
	Lindhard function within the LDA SF approach
	Lindhard function with a noninteracting particle SF
	Relativistic approximation
	Analysis of spectral function effects

	Other theoretical approaches
	CBF spectral function approach
	GiBUU
	SuperScaling Approach (SuSA)
	Ghent model
	MECM model


	How to validate and compare models?
	Muon capture and radiative pion capture
	Pion radiative capture
	Muon capture

	Neutrino scattering
	The inclusive TEXT and TEXT reactions near threshold
	Intermediate energy transfers
	Comparison with other approaches

	Electron scattering
	Electron selection criterion
	Data sets
	Analysis
	Discussion


	Scaling in the Spectral Function approach
	Responses for electron scattering
	Scaling in the Fermi gas model
	Nucleon-density scaling function
	Responses in LDA and CBF models
	Origin of scaling
	Results

	Weak production of strange and charmed ground-state baryons in nuclei 
	Cross section for TEXT
	Form factors for TEXT transition
	Theoretical models for the form factors
	Further details on the TEXT form factors

	Nuclear effects
	Final state interaction for hyperons

	Results
	Strange hyperon production
	c production


	Polarization effects in quasielastic TEXT scattering
	Lepton polarized CC cross section
	Results
	QE mechanism phase space
	Differential cross sections and polarization observables


	Conclusions
	Constants and conventions
	Constructing the TEXT vertex
	Generalized Lindhard function
	Normalization conventions
	Kinematics for TEXT production off nucleons

