Searching for SUSY LLPs at MoEDAL

Oscar Vives

K. Sakurai et al., "SUSY discovery prospects with MoEDAL", arXiv:1903.11022 [hep-ph]

MoEDAL detector

- **LT-NTD**: Low-threshold Nuclear Tracking Detector, $z/\beta\gtrsim$ 5-10
- **HCC-NTD**: Very High Charge Catcher NTD, $z/\beta \gtrsim 50$
- TimePix: TimePix radiation background monitor
- MMT: Monopole Trapping detector

MoEDAL detector

- Mostly **passive** detectors; no trigger, no readout
- Largest deployment of passive Nuclear Track Detectors (NTDs) at an accelerator
- First time that trapping detectors are deployed as a detector

High Ionization in NTDs

Bethe-Bloch formula:

$$-\frac{dE}{dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\frac{1}{2} \log \frac{2m_e^2 \beta^2 \gamma^2 T_{\max}}{l^2} - \beta^2 - \frac{\delta}{2} \right]$$

- Magnetic Monopoles: large ionization, 68.5² times higher than minimum ionizing particles.
- HCLLP: Any heavy charged long-lived particle should be slow moving and leave a track in NTDs.

High Ionization in NTDs

Bethe-Bloch formula:

$$-\frac{dE}{dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\frac{1}{2} \log \frac{2m_e^2 \beta^2 \gamma^2 T_{\max}}{l^2} - \beta^2 - \frac{\delta}{2} \right]$$

- Magnetic Monopoles: large ionization, 68.5² times higher than minimum ionizing particles.
- HCLLP: Any heavy charged long-lived particle should be slow moving and leave a track in NTDs.

Complementary to ATLAS and CMS searches a) No triggers b) No timing c) No background

Heavy SUSY LLPs at MoEDAL

MoEDAL can detect SUSY particles with $c au\gtrsim 1$ m:

- Sleptons: $\tilde{\tau}$ in GMSB with gravitino LSP or coannihilation region in CMSSM with $m_{\tilde{\tau}} m_{\chi_1^0} < m_{\tau}$.
- R-hadrons: meta-stable gluinos in Split SUSY or stop NLSPs with gravitino LSP....
- Charginos: in AMSB χ_1^+ and χ_1^0 degenerate.

Heavy SUSY LLPs at MoEDAL

MoEDAL can detect SUSY particles with $c au\gtrsim 1$ m:

- Sleptons: $\tilde{\tau}$ in GMSB with gravitino LSP or coannihilation region in CMSSM with $m_{\tilde{\tau}} m_{\chi_1^0} < m_{\tau}$.
- R-hadrons: meta-stable gluinos in Split SUSY or stop NLSPs with gravitino LSP....
- Charginos: in AMSB χ_1^+ and χ_1^0 degenerate.

High Ionization in NTDs

Slow particles & multiple charge $\Rightarrow \frac{z}{\beta} \gtrsim 5$

SUSY pair production at LHC

SUSY pair production at LHC

Study stau detection through gluino production

Long-lived charged particles at LHC

Specific searches for long-lived particles at ATLAS and CMS.

- Searches of displaced jets. PRD 97 052012 (2018), PRD 99 032012 (2019): E^{miss}_T(hadr.)> 180 GeV, m_{DV} > 10 GeV, 0.4 cm < d_{xy} < 30 cm
- Searches of displaced lepton pais. PRD 92 012010 (2015), PRD 99 012011 (2019), PRD 91 052012 (2015): muon signal or E^{miss} > 75 GeV and jet of p_T > 110 GeV, 1.0 cm < d_{xy} and hits in silicon and SCT.

Long-lived charged particles at LHC

Specific searches for long-lived particles at ATLAS and CMS.

- Searches of displaced jets. PRD 97 052012 (2018), PRD 99 032012 (2019): E^{miss}_T(hadr.)> 180 GeV, m_{DV} > 10 GeV, 0.4 cm < d_{xy} < 30 cm
- Searches of displaced lepton pais. PRD 92 012010 (2015), PRD 99 012011 (2019), PRD 91 052012 (2015): muon signal or E^{miss} > 75 GeV and jet of p_T > 110 GeV, 1.0 cm < d_{xy} and hits in silicon and SCT.

Work in progress ...

Searches for long-lived charged particles in pp collisions JHEP 07 122 (2013) CMS

$ \eta $	<2.1
p_T (GeV/c)	>45
d_z and d_{xy} (cm)	<0.5
σ_{p_T}/p_T	<0.25
Track χ^2/n_d	<5
# Pixel hits	>1
# Tracker hits	>7
Frac. Valid hits	>0.8
1/eta	>1 ()

Searches for long-lived charged particles in pp collisions JHEP 07 122 (2013) CMS

$ \eta $	<2.1
p_T (GeV/c)	>45
d_z and d_{xy} (cm)	<0.5
σ_{p_T}/p_T	<0.25
Track χ^2/n_d	<5
# Pixel hits	>1
# Tracker hits	>7
Frac. Valid hits	>0.8
1/eta	>1 ()

Similar in ATLAS and CMS analysis.

$\left(\begin{array}{c} \tilde{g} \rightarrow j j \chi_1^0 \rightarrow j j \pi \tilde{\tau}_1 \end{array} \right)$

- Long-lived neutralino in $\chi_1^0 \tilde{\tau}_1$ coannihilation \Rightarrow No pixel hit.
- Stau decaying to gravitino or singlino.

 $\tilde{g} \rightarrow jj\chi_1^0 \rightarrow jj\pi\tilde{\tau}_1$

• Long-lived neutralino in $\chi_1^0 - \tilde{\tau}_1$ coannihilation \Rightarrow No pixel hit. • Stau decaying to gravitino or singlino.

$\left(\begin{array}{c} \tilde{g} \rightarrow j j \chi_1^0 \rightarrow j j \tau \tilde{\tau}_1 \end{array} \right)$

- Long-lived χ_1^0 & large mass difference \Rightarrow No pixel hit & kink.
- Stau decaying to gravitino or singlino.

 $\tilde{g} \rightarrow jj\chi_1^0 \rightarrow jj\tau\tilde{\tau}_1$

Long-lived χ₁⁰ & large mass difference ⇒ No pixel hit & kink.
Stau decaying to gravitino or singlino.

ANITA staus??

- <u>ANITA</u>, balloon-borne on Antartic. Polarized radio emission from e.m. component of cosmic-ray showers $\rightarrow \tau$ leptons.
- Can distinguish reflected (on ice) from earth-emerging events. Parent τ zenit angle determined with 0.3°.
- 4 flights of \sim 30 days, $h \sim$ 30 km. ANITA-1 and ANITA-3 trig. HPol and VPol (UHECR's), ANITA-2 VPol (bett. ν accept.).

ANITA staus??

- <u>ANITA</u>, balloon-borne on Antartic. Polarized radio emission from e.m. component of cosmic-ray showers $\rightarrow \tau$ leptons.
- Can distinguish reflected (on ice) from earth-emerging events. Parent τ zenit angle determined with 0.3°.
- 4 flights of \sim 30 days, $h \sim$ 30 km. ANITA-1 and ANITA-3 trig. HPol and VPol (UHECR's), ANITA-2 VPol (bett. ν accept.).

- $\varepsilon_{cr} \simeq 0.6$ EeV (0.6 $\times 10^9$ GeV)
- upgoing through $\mathit{I}_{\mathrm{eart\,h}}\sim 6000$ km
- on ANITA-1 and ANITA-3

Properties of the ANITA Anomalous Events

Property	AAE 061228	AAE141220
Flight & Event	ANITA-1 #3985267	AN TA-3 #15717147
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5
Equatorial coordinates	R.A. 282.14 $^{\circ}$, Dec. $+20.33^{\circ}$	R.A. 50.78 $^\circ$, Dec. $+38.65^\circ$
Energy $arepsilon_{cr}$	0.6 ± 0.4 EeV	0.56 ^{+0.30} -0.20 EeV
Zenith angle z'/z	117.4 $^\circ$ / 116.8 $^\circ$ \pm 0.3 $^\circ$	125.0° / $124.5^{\circ} \pm 0.3^{\circ}$
Earth chord length, /	5740 \pm 60 km	7210 \pm 55 km
Mean int. length $(arepsilon_ u=1{ t EeV})$	290 km	265 km
$p_{\mathrm{SM}}(arepsilon_{ au} > 0.1 \mathrm{EeV})$	4.4×10^{-7}	$3.2 imes 10^{-8}$
$p_{ m SM}(z>z_{ m obs})~arepsilon_{ au}>0.1{\sf EeV}$	6.7×10^{-5}	3.8×10^{-6}

Not possible in SM !!

 $l_{
m
u}(0.6\,{
m EeV})\simeq 100$ km, only steep events seen.

• Range of UHE HSCP $\sim 10^4$ Km (interactions slow it to rest) • For $m_{\tilde{\tau}} \simeq 500$ GeV and $\tau_{\tilde{\tau}} \simeq 10$ ns, reduces γ after 6000 Km, decays close to the surface for $\theta \simeq 120^{\circ}!!$

 \bullet IceCube should see a factor \sim 10 more events than ANITA of these UHCR.

 \bullet IceCube should see a factor \sim 10 more events than ANITA of these UHCR.

• It has seen two events with $\varepsilon_{\nu}\gtrsim 1$ PeV deposited energy. They could be interepreted as misidentified τ tracks of $\varepsilon_{\tau}\sim$ 70 PeV.

 \bullet IceCube should see a factor \sim 10 more events than ANITA of these UHCR.

- It has seen two events with $\varepsilon_{\nu}\gtrsim 1$ PeV deposited energy. They could be interepreted as misidentified τ tracks of $\varepsilon_{\tau}\sim$ 70 PeV.
- LHC could directly produce these HSCP!!!. But electroweak production too low for heavy masses.

 \bullet IceCube should see a factor \sim 10 more events than ANITA of these UHCR.

- It has seen two events with $\varepsilon_{\nu}\gtrsim 1$ PeV deposited energy. They could be interepreted as misidentified τ tracks of $\varepsilon_{\tau}\sim$ 70 PeV.
- LHC could directly produce these HSCP!!!. But electroweak production too low for heavy masses.
- Can they be produced at the end of a gluino chain??

(ANITA events @ MoEDAL)

• $ilde{ au}_1$ with 500 GeV $\leq m_{ ilde{ au}} \leq 1$ TeV and $au_{ ilde{ au}} \simeq 10$ ns.

ANITA events @ MoEDAL

- $ilde{ au}_1$ with 500 GeV $\leq m_{ ilde{ au}} \leq 1$ TeV and $au_{ ilde{ au}} \simeq 10$ ns.
- For $m_{\tilde{g}} \simeq 1$ TeV and $m_{\tilde{g}} m_{\chi_1} \leq 30$ GeV and $m_{\chi} m_{\tilde{\tau}_1} \leq 1$ GeV, MoEDAL could detect these events.

ANITA events @ MoEDAL

- $ilde{ au}_1$ with 500 GeV $\leq m_{ ilde{ au}} \leq 1$ TeV and $au_{ ilde{ au}} \simeq 10$ ns.
- For $m_{\tilde{g}} \simeq 1$ TeV and $m_{\tilde{g}} m_{\chi_1} \leq 30$ GeV and $m_{\chi} m_{\tilde{\tau}_1} \leq 1$ GeV, MoEDAL could detect these events.
- Electroweak production would be able to confirm/discard these events.

ANITA events @ MoEDAL

- $ilde{ au}_1$ with 500 GeV $\leq m_{ ilde{ au}} \leq 1$ TeV and $au_{ ilde{ au}} \simeq 10$ ns.
- For $m_{\tilde{g}} \simeq 1$ TeV and $m_{\tilde{g}} m_{\chi_1} \leq 30$ GeV and $m_{\chi} m_{\tilde{\tau}_1} \leq 1$ GeV, MoEDAL could detect these events.
- Electroweak production would be able to confirm/discard these events.

Conclusions

- MoEDAL complementary to ATLAS and CMS in HSCPs searches.
- Strong constraints on metastable SUSY particles.
- Possible signal of stau production in high-energy cosmic rays.
- \bullet ANITA has seen two events compatible with electroweak production of staus, $\lesssim 1$ TeV.
- For light coloured sparticles, MoEDAL could constrain these processes.