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Introducci6

Una descripci6é adequada per a la fisica no pertorba-
tiva

Encara que pot semblar estrany comencar ’escriptura d’'una tesi que tracta la Cro-
modinamica Cuantica (QCD) a energies baixes sense parlar d’aspectes tals com
simetria quiral, teories efectives o semblants, crec que és fonamental assentar la
base sobre la qual es construiran tots els calculs discutits en este treball.

La fisica no pertorbativa no es pot estudiar amb els métodes habituals de la
Teoria Quantica de Camps (QFT), és a dir, teoria de pertorbacions. En este l-
tim cas els diferents observables admeten una expansié en poténcies de la costant
d’acoblament, que si se suposa petita (comparada amb la unitat) permet establir
una jerarquia entre els termes de I'expansio: els termes amb poténcies més altes
de la constant d’acoblament estan suprimits i per tant podem tallar ’expansi6 a
un ordre donat. La QFT garanteix que els observables acompleixen tots els req-
uisits d’una teoria quantica relativista: microcausalitat, unitarietat, analiticitat,
invariancia Poincaré, teorema spin—estadistica i descomposicié en clusters. Estos
prerequisits no defineixen univocament la QFT, pero qualsevol teoria que pretenga
donar una descripcié adequada de la fisica deu complir—los. El fet de que la fisica
no pertorbativa no es puga estudiar amb teoria de pertorbacions a QFT no vol dir
que dega ser descrita amb altres teories que no complisquen els nostres prerequisits.
Per tant en esta tesi no es consideraran models per als hadrons tals com el model de
quarks constituents no relativista (per suposat no es pretén fer una critica destruc-
tiva d’estos models, que en alguns casos donen resultats sorprenenment en acord
amb l'experiment).

Quina és doncs la manera adequada per a estudiar la fisica no pertorbativa?
En principi hom pot partir dels principis fonamentals abans esmentats i amb el
seu sol 1s tractar d’obtindre la maxima informaci6 possible de 'objecte que s’esta
estudiant. Encara que este métode és el més general i no es compromet amb ninguna
teoria, sol ser molt poc restrictiu, de tal manera que dona propietats molt generals
de I'objecte sota estudi i requereix de molta informaci6 experimental adicional per
a fer una prediccid. Per tant esta idea no és gaire atractiva. Per un altra banda,
tenint en compte la reflexio que fa Weinberg al seu llibre [1], a energies suficientment
baixes la fisica quantica relativista (a la que ens referirem genéricament com fisica
de particules) necessariament ve descrita per la QFT. Per tant, encara que no es
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puga aplicar la teoria de pertorbacions estandard a la fisica no pertorbativa, la QFT
segueix sent la descripcié adequada (i pot ser, I'inica possible).

El que hem discutit al paragraf anterior sembla un poc contradictori. Tenim que
emprar QFT pero no el métod estandard de QFT. Com podem doncs fer calculs?
Ens calen els métodes no pertorbatius de la QFT. La manera més directa de fer
ago és definint la QFT desde el formalisme d’integrals de cami, perd és prou més
facil de dir que de fer. En este formalisme tots els observables es defineixen a partir
d’integrals sobre totes les possibles configuracions dels camps de la teoria, pesades
per l'accio clasica exponenciada. Estes integrals (integrals de cami) son inabordables
analiticament i per tant tan sols métodes numérics poden calcular-les (estos métodes
es coneixen com calcus en el reticle o lattice). Tot i aixi es requereixen ordinadors
molt potents, que empren grans quantitats de temps per a fer estos calculs. Les
aproximacions que es deuen fer per a aconseguir reduir el temps de computacio
fan que els errors associats a estos calculs siguen grans. Este métode és per tant,
insatisfactori (encara que nous ordinadors més potents i refinaments en les técniques
de calcul el fan més i més precis).

Hi ha doncs alguna altra possibilitat a banda de lattice? Afortunadament la
resposta és si. Encara que la teoria fonamental siga essencialment no pertorbativa,
quan restringim el nostre estudi a un sector determinat es poden trobar parametres
que romanen menuts en este sector. Per tant podem organitzar el nostre calcul com
una expanxio en poténcies creixents d’estos parametres i establir una jerarquia entre
ells. Esta idea es manifesta plenament a les teories efectives de camps (EFT). En un
régim (d’energies, per exemple) donat, no tots els graus de llibertat (i.e., particules)
de la teoria necessiten ser considerats. Els modes pesats deuen ser integrats fun-
cionalment de 'acci6 i els seus efectes es manifestaran en les constants de energies
baixes (LECs). Per tant, el primer pas per a afrontar l'estudi de la fisica no per-
torbativa és trobar els graus de llibertat efectius adients. Esta eleccié normalment
determina també quin és el parametre d’expansio.

Esta ultima possibilitat sera la que en la majoria dels casos emprarem per a
afrontar els calculs d’esta tesi, encara que quan calga, els combinarem adequadament
amb principis axiomatics i altres técniques.

La teoria de les interaccions fortes

La Cromodinamica Cuantica (QCD) es considera la teoria fonamental que governa
les interaccions fortes. Hi ha un bon grapat d’evidéncies teoriques i experimentals
que suporten esta afirmacio [2]. QCD és la teoria gauge SU(3)¢, és a dir una teoria
que roman invariant sota transformacions locals del grup SU(3) de color. Esta inva-
riancia implica que els transmisors de la interaccié soén vuit gluons, bosons de gauge
sense massa d’spin 1, que es transformen com la representacié adjunta del grup de
gauge. El caracter no abelia del grup SU(3) implica que els gluons interactuen en-
tre ells, o dit d’un altra manera, els gluons son portadors de la carrega de color (al
contrari que en electromagnetisme, on el foté es eléctricament neutre). El contingut
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material de la teoria son els quarks (antiquarks), particules d’spin i (fermions) que
es transformen com la representacié fonamental (antifonamental) del grup de gauge,
i per tant es manifesten en tres colors diferents. Estos fermions son en general mas-
sius. Mentre el contingut en bosons de gauge de la teoria ve fixat pel grup de gauge,
el contingut material deu ser inferit de la fenomenologia (per exemple no hi ha
cap impediment teoric a incloure bosons d’spin zero transformant—se com la repre-
sentacié fonamental, com tampoc seria inconsistent incloure camps transformant—se
com altres representacions irreductibles del grup de gauge). El nombre de quarks
en la teoria (nombre de families) tampoc ve fixat. El model estandard (SM) prediu
que deuen aparéixer sempre en doblets [3|, i experimentalment s’han trobat tres

families:
(o) () G) »

El fet que siguen precisament tres families és un fet que encara no ha trobat una
explicaci teorica satisfactoria. Nosaltres acceptarem que hi ha tres families i no
ens preocuparem dels motius fonamentals que impliquen una (inexistent) teoria del
sabor. Segons la seua massa, els quarks es poden separar en lleugers (u, d i s) i
pesats (¢, b1it). L'escala que separa els dos sectors es coneix com Agep ~ 1 GeV i
es discutira a continuacio.

Concentrem-nos en el sector lleuger de QCD. En este sector és una bona aprox-
imaci6 suposar que la massa dels quarks és zero. D’esta manera la teoria tan sols
depén d’un parametre, la constant d’acoblament a,. Encara podem dir més: no
hi ha en el Lagrangia de QCD cap parametre amb dimensions de massa. Per tant
no tenim ninguna escala per a distingir energies altes de baixes (la teoria és per
tant classicament conforme). Clarament la fenomenologia distingeix energies baixes
(fisica hadronica) d’altes (fisica de jets). La solucio d’este trencaclosques la tenen
els efectes quantics. El caracter no abelia del grup de gauge SU(3) no es manifesta
tan sols en les particules transmisores de la interaccio. Es també responsable dels
fenomens de llibertat assimptotica i confinament. Correccions quantiques fan que la
constant d’acoblament no siga “constant” en el sentit estricte, sino més bé que de-
penga de 'escala d’energia. Ac¢o soluciona els problemes anteriors: la dependéncia
en energia d’a; genera una escala d’energia, Aqcep (este fenomen va ser batejat com
transmutacid dimensional) que a més trenca la simetria conforme que apareixia a
nivell classic (a nivell del Lagrangia); el caracter no abelia fa que oy siga menuda
per a energies altes (llibertat assimptotica) i gran per a baixes (confinament). Per
tant a energies menors que Aqcp la interaccid es fa tan intensa que quarks i gluons
no poden existir com a particules lliures i es veuen “confinats” en hadrons, particules
que sempre es transformen com la representacio trivial de SU(3) (és a dir, no tenen
color). Estos son els graus de llibertat assimptotics que son observats experimental-
ment a energies baixes i son els que tractarem en esta tesi.

Una consequéncia de la grandaria d’a; a energies baixes és que no podem emprar
el Lagrangia de QCD directament per als nostres calculs en una expansi6 pertorba-
tiva estandard. Els métodes no pertorbatius seran la ferramenta clau per a poder
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calcular fenomens relacionats amb les interaccions fortes.

Teories efectives: teoria de pertorbacions quiral

Trets fonamentals de les teories efectives

Seria correcte afirmar que les lleis de Newton son incorrectes? Sabem que no tenen
en compte ni la relativitat especial ni la fisica quantica. I les equacions de Maxwell?
Ignoren els efectes quantics de la natura. I I'equaci6 d’Schrédinger? Encara que
és una teoria quantica considera que la velocitat de la llum és infinita. Inclas la
teoria de la relativitat general, el gran llegat d’Einstein seria una teoria erronia al
no considerar efectes quantics, si som tant restrictius en els nostres criteris. De fet,
seguint amb el mateix criteri, seria molt atrevit dir que la QFT és correcta, ja que
ningi ens pot assegurar que no hi ha un altra teoria més fonamental que es manifesta
plenament a energies més altes.

En esta tesi, per descomptat, no adoptarem este punt de vista tan intransi-
gent. La mecanica classica newtoniana és valida si considerem ¢ = coi h = 0,
I’electrodinamica classica i la relativitat assumeixen 7 = 0 i la mecanica quantica
considera ¢ = oo. Per tant considerarem estes aproximacions com teories efec-
tives [4,5] d'una teoria més fonamental, més que considerar-les incorrectes. De fet,
en els régims en els que estes teories son valides constitueixen la menera més eficient
de calcular qualsevol procés fisic. Al cap i a la fi no hi ha que oblidar que la fisica
és una descripcio de la natura (ens diu com ocorren les coses més que dir perquée
ocorren). Per tant el terme efectiu no deu ser despreciatiu, sino més bé deu fer
referéncia a la conveniéncia del calcul.

Inclds en un escenari donat, en el que optem per una d’estes teories, podem desit-
jar assolir un nivell de precissio tal que els efectes quantics (o relativistes) no poden
ser ignorats. Per tant hom pot, en lloc de calcular en la teoria fonamental (gen-
eralment molt més complicada) considerar correccions petites degudes a esta teoria.
Per tant estes correccions es manifestaran com poténcies creixents de % (o 1/c) de
manera que podem truncar la série segons la precissié desitjada. Esta és 1'esséncia
i un dels trets més fonamentals de les teories efectives: la possibilitat d’incorporar
de manera organitzada correccions per a millorar la pressicié dels calculs. De fet,
la teoria de pertorbacions en la constant d’acoblament es pot veure com una teoria
efectiva on els efectes relativistes son exactes i els efectes quantics apareixen com
una seérie de poténcies en h.

En el marc d’'una QFT, les teories efectives s’obtenen integrant funcionalment els
camps pesats de I'accio. Si estem estudiant procesos a energies £ < A integrarem
els graus de llibertat amb massa M > A. Els calculs s’organitzaran com poténcies
creixents d’energia sobre 1'escala A. Els acoblaments dels operadors a la teoria efec-
tiva s’obtenen pertorbativament de la teoria més fonamental. Este procediment que
a priori pot pareixer senzill, es complica en els casos de teories fortament acoblades,
com és el cas de QCD. En este cas, per sota de l'escala A la teoria esdevé una
transicio de fase, i per tant I'espectre canvia. Aixi doncs tan sols podem guiar—nos
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per arguments generals com simetria: la teoria efectiva ha de tindre les mateixes
simetries que la teoria fonamental, i els acoblaments del operadors no poden fixar-se.

La simetria quiral

Restringint-nos al sector lleuger de QCD, podem considerar quarks sense massa,
m, = mgq = mg = 0. En este limit, el Lagrangia de QCD té una simetria (global)
accidental de sabor que involucra tan sols els camps de quark. El Lagrangia és
invariant sota el grup quiral G = SU(3), ® SU(3)g, que transforma de manera
independent els camps de quark dretans qr i esquerrans ¢, (estos camps de Weyl
son en realitat els camps fermionics fonamentals, que pertanyen a representacions
irreductibles del grup de Poincaré).

Esta simetria deuria tindre un efecte sobre l’espectre de la teoria, classificant
les particules en multiplets amb aproximadament la mateixa massa corresponents a
representacions irreductibles de G. En particular aco implicaria que els multiplets
deurien apareixer per parells amb igual massa i paritat oposada. FEn la natura
si trobem multiplets aproximadament degenerats en massa, pero els multiplets de
paritat oposada tenen masses prou diferents. A¢o fa pensar que el buit de QCD no
és invariant sota GG, fenomen conegut com trencament espontani de la simetria. El
fet de que si es troben multiplets corresponents al grup H = SU(3)y indica que la
simetria no esta totalment trencada: el buit és invariant sota este subgrup H C G.
Este fenomen implica ’aparici6 en la teoria de vuit particules sense massa conegudes
com els bosons de Goldstone, 7, K i 7 [6], una per cada generador que no deixa el
buit invariant (corresponent als vuit generadors axials). Encara que realment els
quarks tenen massa, esta és prou menuda i pot considerar—se una perturbacié del
cas sense masses. A¢o fa que els bosons de Goldstone adquirisquen una massa (la
simetria quiral esta explicitament trencada per les masses dels quarks), que és molt
menor que la de la resta dels hadrons de 'espectre.

A energies suficientment baixes, els bosons de Goldstone son els tnics graus
de llibertat dinamics i per tant podem construir una teoria efectiva que tinga les
mateixes simetries que QCD (simetria quiral espontaniament trencada, paritat i
conjugaci6é de carrega) tan sols amb estes particules. El formalisme general per
a parametritzar els camps describint els bosons de Goldstone va ser desenvolupat
per Callan, Coleman Wess i Zumino [7]. Com que les masses dels Goldstones son
menudes i les energies baixes, organitzarem el calcul en poténcies creixents de mo-
ments i masses sobre Aqcp. Ao es tradueix en una organitzacié del Lagrangia
efectiu en termes creixents de derivades i masses, on en principi hi ha un nombre
infinit de termes multiplicats per constants desconegudes. Esta teoria es coneix com
Teoria de Pertorbacions Quiral (xPT) i va ser desenvolupada en les Refs. [8,9].

Un dels trets caracteristics de les teories efectives és que no son renormalitzables
en el sentit classic. Calen un nombre infinit de termes per a poder absorbir les
divergéncies generades pels loops. Com que d’entrada tenim un nombre infinit
d’operadors a la nostra teoria efectiva, podem obtindre resultats finits treballant
a un ordre donat en ’expansi6 quiral.
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Expansié en 1/N¢: Resonancies i barions

Teoria quiral de resonancies

Si volem extendre el rang d’energies de xyPT per damunt de la ressonancia més
lleugera (el meso p, d’spin 1), necessitem incloure explicitament camps dinamics que
creen esta i altres resonancies. En principi aco es pot fer de manera relativament
facil, pero perdem una de les propietats més importants de yPT: I'existéncia d'un
parametre menut per a organitzar el nostre calcul. En este rang d’energies E/Agcp
no és menut, i en principi no tenim un criteri clar per a consider un operador
subdominant respectre d’un altre pel fet de tindre més derivades. Tots els operadors
son igualment importants. Ac¢o és un desastre desde el punt de vista fenomenologic,
ja que no hi ha manera de tindre la més minima capacitat predictiva.

Part de la soluci6 la trobem a I’expansio de QCD en 1/Ng, on N representa
el nombre de colors. 't Hooft [10] va suggerir que la teoria gauge SU(Ns) amb
N¢ tendint a infinit presentaria simplificacions notables i al mateix temps podria
descriure la fenomenologia de QQCD amb tres sabors. En general hom pot estudiar
este limit com una expansio en termes de 1/Ng on el primer terme representa el
limit No — oo. Entre altres coses, en este limit els loops d’hadrons estan suprimits
i poden en primera aproximacio ser ignorats. Altres consequéncies son [11]:

1. Hi ha un nombre infinit de resonancies per cada conjunt de nombres quantics.
Estes resonancies son estables i no interactuen entre elles.

2. Els vertex d’interaccio dels estats hadronics estan suprimits com 1/y/N¢ per
cada estat adicional.

3. A l'ordre dominant la dinamica hadronica es descriu mitjancant un Lagrangia
efectiu amb hadrons com a graus de llibertat actius, on només contribucions
a nivell arbre deuen ser considerades.

4. La anomalia axial dessapareix i QCD és invariant sota U(3), @ U(3)g.

5. Es pot demostrar que en este limit la simetria quiral es trenca espontaniament
[12].

6. Els mesons son estats purs qq.

Per tant, tenim un criteri d’ordenaci6 dels operadors en el Lagrangia efectiu per a les
resonancies. Termes amb més traces de sabor i calculs a un loop sén subdominants.
Encara tenim, pero, un problema: no tenim cap criteri per a ordenar termes amb
diferent nombre de derivades. Per a resoldre este problema tenim que imposar que
la nostra teoria amb resonancies, que en principi descriu la fisica en qualsevol régim
energétic, empalme bé amb QCD a energies altes. Funcions de Green, factors de
forma i amplituts de dispersi6 tendeixen a zero quan els moments es fan grans. Per
tant exigirem que la descripcié en termes de parametres hadronics tendisquen a zero
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de la mateixa manera. Este procediment es coneix com empalmament amb curtes
distancies. D’esta manera termes amb moltes derivades produiran contribucions
que no tendeixen a zero en el limit de grans moments, i per tant el corresponent
coeficient deu ser zero.

En la majoria de les ocasions, tractar amb un nombre infinit de resonancies
és massa ambicios, i s’opta per considerar tan sols un nombre de resonancies sufi-
cient per a satisfer tots els lligams que s’estan estudiant. Este procediment es coneix
com Minimal Hadronic Ansatz (MHA). En esta tesi considerarem la torre sencera de
resonancies en alguns casos particulars. Una volta que hem exigit que els parametres
hadronics satisfacen QCD, podem integrar funcionalment les resonancies per a obtin-
dre una predicci6 per a les LECs del Lagrangia de yPT. Esta predicci6 s’anomena
per saturacié amb resonancies, procediment que va ser aplicat per primera volta en

Ref. [13].

Barions en ’expansié 1/N¢

Podem aprofitar 'expansio de QCD en 1/N¢ per aprendre fisica barionica? La res-
posta és afirmativa. L’estudi conjunt de les regles de contatge en No de QCD i
el procés de dispersi6 pio—nucle6 a energies baixes permet trobar relacions de con-
sisténcia que deuen ser satisfetes pels operadors d’spin—sabor en el sector barionic de
QCD. Com a resultat es troba que en el limit de No — oo els barions deuen satisfer
una algebra SU(2ny). contreta. ny fa referéncia al nombre de sabors lleugers i el
2 denota I’spin. El parametre que contrau 'algebra és precisament 1/Nq. L’estudi
de les relacions de consisténcia és pot fer emprant una representacié explicita de
I’algebra contreta. La base optima per a este estudi és la donada pel model quark
no relativista (encara que esta eleccio no suposa cap hipotesi del caracter relati-
vista dels quarks que formen el bario). Este estudi ens permet expresar propietats
estatiques de barions (tals com masses, factors de forma, moments magnétics ...
) com una expansi6 en operadors de ’algebra d’spin-sabor, ordenats en poténcies
creixents de 1/N¢g. T el que és més interesant, podem estudiar el trencament de
simetria SU(3) de sabor de manera conjunta a les correccions en 1/N¢, ja que els
dos efectes son aproximadament del mateix ordre [12].

Funcions de Green

Com ja hem comentat, a energies baixes i intermédies els graus de llibertat efectius
no séon quarks i gluons, sino més bé hadrons. Per tant un calcul on els estats
assimptotics sén quarks, encara que siga a energies baixes, no té gaire trellat. El
calcul en principi és pot fer (si es troben els métodes necessaris), perd no ens ajudara
a tindre una millor comprensié de la fisica hadronica a energies baixes. En I'esperit
de la formula de reduccié LSZ, podem calcular el valor esperat en el buit del producte
temporalment ordenat de corrents en QCD. Estos corrents son de la forma Jr = ¢ 1" g,
on I' és una matriu de Dirac i de sabor (pero singlet de colour), i per tant involucren
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el producte de dos camps en el mateix punt de l'espai-temps. [' determina els
nombres quantics d’spin, paritat i conjugaci6 de carrega, i com el corrent Jp conecta
una determinada ressonancia amb el buit, pot fer de camp interpolador per a esta.
El métode més eficient per a calcular funcions de Green es coneix com el métode
dels corrents externs.

Una manera d’obtindre informacié del mén hadronic és fer un estudi de les fun-
cions de Green en diferents régims energétics i exigir que empalmen suaument. Per
a energies baixes i intermédies ja hem discutit com afrontar estos calculs, pero,
com procedir a energies altes? Hom podria pensar que a energies altes, on la con-
stant d’acoblament és prou menuda, un calcul pertorbatiu proporciona un resultat
satisfactori, perd aco no és cert. Les contribucions no pertorbatives també es man-
ifesten a energies altes i a més d’'una forma que no pot ser mai simulada per la
part pertorbativa. Per exemple, per a una familia de funcions de Green coneguda
com a parametres d’ordre del trencament espontani de la simetria quiral, el calcul
pertorbatiu és zero a tots els ordres d’ay, perd agd no pot ser tota la veritat. Son
precisament els efectes no pertorbatius els que fan que estes funcions de Green no
siguen idénticament nul-les.

El métode emprat per a estudiar les correccions no pertorbatives a transferéncia
de moment alta es basa en 'expansié en producte d’operadors (OPE) [15]. Esta
expansio permet escriure el producte de dos (o més) operadors situats en diferents
punts de I'espai—temps x i y, com una série d’operadors locals definits a el punt de
'espai-temps x multiplicats per coefficients (anomenats de Wilson) que depenen de
la diferéncia © — y. El primer operador de I’expansi6 és la identitat, que correspon
al resultat pertorbatiu. Normalment hom tracta les funcions de Green a l’espai de
moments, de manera que I’OPE es transforma en una expanssié en poténcies inverses
del moment. En prendre el valor d’expectacio en el buit dels operadors, en teories
pertorbatives tan sols 'operador identitat dona una contribuci6 no nul-la. La idea
de les regles de suma [16] va ser considerar que el buit de QCD és essencialment no
pertorbatiu i per tant el valor d’expectaci6 en el buit d’operadors n—ordenats no és
zero. Estos elements de matriu s’anomenen condensats de buit i parametritzen el
nostre desconeixement dels mecanismes no pertorbatius.

Aixi doncs ja tenim les ferramentes adequades per a calcular les funcions de
Green en les diferents regions energétiques. Després d’exigir un empalmament suau
a les regions intermédies podrem obtindre molta informacié rellevant del mecanisme
d’hadronitzacio.

Relacions de dispersi6

Tal i com hem esmentat préviament, la descripcié teorica adequada per als feno-
mens no pertorbatius és la QFT. No obstant aixo, en moltes ocasions els principis
axiomatics de la fisica de particules poden complementar la descripcié en termes
d’una teoria de camps. Ac¢o pot pareixer a primera vista un poc contradictori. Com
es poden complementar si tota la informacié dels principis axiomatics ja esta au-
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tomaticament inclosa en la QFT? La resposta és senzilla: en la majoria dels casos
tan sols sabem calcular en teories de camps mitjangant una expansio (no necessari-
ament en la constant d’acoblament), de tal manera que els principis axiomatics tan
sols es compleixen de manera pertorbativa. Els principis axiomatics ens proporcio-
nen propietats que deuen complir (per exemple) les amplituts de dispersio a tots els
ordres i en tots el régims energétics: son essencialment resultats no pertorbatius.
Certament aquesta informacio és massa suculenta per a deixar de considerar—la. En
esta tesi emprarem els segiients principis:

1. Simetria Poincaré. Este és el requeriment més basic. En primer lloc implica
que en tots els processos energia i moment (és a dir, tetra—moment) s6n mag-
nituds conservades. En segon lloc considerem la simetria de Lorentz (subgrup
del grup de Poincaré). Tal i com deia Einstein, les equacions que governen la
fisica s’escriuen de la mateixa manera en qualsevol sistema de referéncia. Ac¢o
es tradueix en que I'amplitut de dispersio tan sols pot dependre de quantitats
invariants Lorentz (és a dir, productes escalars).

2. Unitarietat. Es el principi més intuitiu, i basicament ens diu que de la proba-
bilitat de que de la col-lisi6 de dos (0 més) particules es produisca algun estat
final és del 100%:; i a 'inrevés, que donat un estat final, hi ha una probabili-
tat maxima de que es puga produir de la col-lisi6 d’algunes particules. Estos
requeriments es tradueixen en que la matriu de dispersié és unitaria:

Sst=g9ts =1, (2)

3. Simetria de crenament. Este principi relaciona les amplituts de dispersio dels
processos obtesos intercanviant particules de 'estat inicial i final (convertint—
les en antiparticules). Els processos aixi obtesos s’anomenen canals creuats.

4. Analiticitat. Este principi és el menys intuitiu, pero és molt i molt 1util. Do-
nada una amplitut de dispersié6 per a un procés de dos particules anant a
dos particules podem extraure les diferents ones parcials. Mentre I'amplitud
de dispersié depén de l'energia i angles, les ones parcials tan sols depenen
de I'energia (normalment emprarem l'energia total en el centre de masses, o
equivalentment l'invariant relativista s). Suposant que s és una variable com-
plexa, les ones parcials passen a ser funcions definides en el pla complex C.
Analiticitat imposa que cadascuna de les ones parcials és una funci6 analitica
de s excepte per un tall a ’eix real positiu, necessari per a satisfer unitarietat.
Com que una amplitud parcial en el canal s conté a totes les ones parcials
dels canals ¢ i u, la condicié d’analiticitat es pot traduir en una condici6 per a
I'amplitut de dispersié com a funcié de s i t.

Per tant I'ts conjunt de la QFT (com a teories efectives) i els principis axiomatics
és una ferramenta fonamental per a la fisica no pertorbativa.
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Objectius de la tesi

Totes estes técniques tenen com a primer objectiu una major comprensio dels feno-
mens no pertorbatius en general i de I’hadronitzaci6 en particular. Un segon objectiu
és obtindre valuosa informaci6 de la dinamica del sabor. Encara que en QCD el sa-
bor és sempre conservat, les interaccions electrofebles en general violen el sabor (i
també simetries discretes tals com P, C'i C'P) [3|. Encara que el model estandard
s’escriga en termes de quarks (i per suposat també leptons), els procesos fisics ocor-
ren entre hadrons. Normalment les interaccions febles descriuen la dessintegracid
d’un quark (per exemple s) en un altre quark (u) i un parell de leptons, mitjancant
corrents vectorials i vector—axials. Com ja hem discutit, els estats assimptotics son
hadrons, i per tant hem de calcular elements de matriu hadronics de corrents de
quarks. El métode dels corrents externs aplicat a les teories efectives és idoni per al
seu calcul. Es per tant essencial controlar el fenomen de I’hadronitzacié per a poder
entendre correctament les interaccions electrofebles.

Al Capitol 1 es fa una introduccié a la xYPT i en particular es discutira com in-
cloure corrents i fonts tensorials en QCD i en teories efectives. Estos corrents, a més
de codificar informacié important per a entendre I'estructura bariénica i la dessinte-
gracio de mesons pesats amb bellesa, apareixen de manera natural en escenaris més
enlla del SM. En particular es construira la base d’operadors d’ordres O(p?) i O(p®),
discutint els mecanismes que fan que siga minima i no redundant. Al Capitol 2
s'introduira I'expansi6 en 1/Ng de QCD i com dona lloc a la teoria de resonancies
quiral (RxT). En particular s’introduiran les fonts tensorials i les resonancies amb
nombres quantics J7¢ = 17~ També s’escriura la base d’operadors en el sector de
paritat intrinseca negativa. Al Capitol 3 s’aplicaran les técniques de 1/N¢ en el sec-
tor barionic. Es trobaran les relacions de consisténcia i les identitats entre operadors
de l'algebra d’spin—sabor. Com a aplicacié calcularem els factors de forma vecto-
rial i vector-axial tenint en compte el trencament de simetria SU(3). Al Capitol 4
introduirem les funcions de Green i derivarem les diferents identitats de Ward. Es
discutira ’OPE i es calcularan les funcions de Green rellevants per a la fenomenolo-
gia en els diferents régims energétics. Al Capitol 5 emprarem els resultats anteriors
per a dues aplicacions fenomenologiques : la desintegraci6 radiativa del pio carregat
i la determinaci6 del parametre Vs en desintegracions semileptoniques d’hiperons.
Finalment, al Capitol 6 es discutiran ampliament les aplicacions dels principis axio-
matics de la fisica de particules. Fent una analisi combinada amb teories efectives
obtindrem, per una banda, cotes per a les LECs de xPT, i per un altra obtindrem
la descripci6é optima de la produccié de mesons mitjancant fotons sota el llindar de
producci6 de quatre pions.



Chapter 1

Chiral Perturbation Theory

1.1 Introduction to effective field theories

Although the ultimate goal of physics is a description of nature in terms of a funda-
mental theory (let us say, the theory of everything), this does not mean that in order
to get a prediction for a given phenomenon we necessarily need to know that theory.
Even if that theory were known (which is very unlikely to happen), it would not be
sensible to employ it for describing any process that one may imagine. Moreover,
the knowledge of this ultimate theory does not necessarily invalidate less fundamen-
tal theories (however, a model can indeed be invalidated by a more fundamental
theory). This less fundamental theory must be regarded as a valid theory that only
applies under certain conditions.

Let us illustrate this with an example. If we are interested in the description of
the translational movement of the Earth around the Sun, it is of little sense to use
quantum mechanics. For instance the radial excitation quantum number would have
a value n ~ 3 x 10% clearly pointing out that the system is utterly classic (although
in principle it is not forbidden at all, it seems more sensible to use the Schrodinger
equation for describing the hydrogen atom, where the radial excitation number lies
between one and ten). It seems more reasonable then to assume i = 0 and use
classical mechanics. It is also an excellent approximation to use the Newtonian
description (assuming then ¢ = oc) for the gravitational force and use Newton’s
laws (this will give us a description which is valid within a 5% accuracy). But if
we want to beat that precision we need to include relativistic corrections due to
the finiteness of the speed of light and the curvature of the space-time. Since this
problem possesses spherical symmetry the exact analytic solution can be obtained
easily, but in general this is not the case. For those more complicated cases, one can
employ numerical methods and obtain the exact solution, but the lack of an analytic
structure will translate into less insight into the physical situation. If the corrections
are expected to be small, as it is the case for our example, there is another approach
which yields to analytic solutions. We can identify a small quantity that can qualify
as an expansion parameter, as for example 1/¢ (since it is more desirable to have
dimensionless quantities one might choose § = v/c with v the speed of the object
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under study). Then the first term in the expansion would correspond to ¢ = oo
(8 = 0) representing the Newtonian description, and the rest of the terms would
correspond to the relativistic corrections. The more accurate we want our result
to be, the more terms in the expansion we need to include. And what it is more
important, the magnitude of the corrections decreases with the number of powers
(so corrections are under control). Other usual expansion parameters are i, Qem,
me/my ...

From the example discussed above we learn that the appropriate choice of the
theory is essential. In the case of Quantum Field Theory, though, it is compulsory to
make the optimum choice of the degrees of freedom. This is so because any particle
existing in the spectrum of nature, no matter how heavy it is, enters our calculations
as virtual excitations from the vacuum. Since it is impossible to know the whole
spectrum of particles (let alone the details of their interactions with the particles
we are interested in) we need a smart way of tackling this problem. The concepts of
symmetry and Effective Field Theory are the key to solve it and constitute the main
tool to study the physics at energies much smaller than a typical scale. Using a more
technical language, if we are interested in an energy scale F < A we should integrate
out of the action those degrees of freedom heavier than A (typically particles with
mass higher than A). Those local operators remaining after the integration (in
general an infinite number of them) will have the same symmetries as the underlying
more fundamental theory and the effects of the degrees of freedom that have been
integrated out will be encoded in the couplings. The Applequist-Carazonne theorem
is the rigorous formulation of this result [17]. For the cases where the theory is known
and it is weakly coupled, this integration can be performed analytically. In those
cases where the fundamental theory is not known, or where the theory is strongly
coupled, symmetry will be the only guidance for building the Effective Field Theory.

As a last remark, Effective Field Theories are not renormalizable in the usual,
strict sense, because they have operators with dimension higher than four. This is
not however a drawback, as from the very beginning we are dealing with an infinite
number of operators. For the case of theories built only from symmetry principles
the coefficients accompanying each operator are a priory unknown, in such a way
that if we want to increase the precision of the calculations we will face more and
more unknown parameters.

The theoretical issues discussed in this chapters are nicely explained in Refs. [4,
5,18,19|.

1.2 The QCD Lagrangian and its symmetries

Nowadays Quantum Chromodynamics (QCD for short) is regarded as the theory of
the strong interactions. It is the gauge theory associated to the Lie group SU(N¢)
where N¢ stands for the number of colours. The colour degree of freedom was first
introduced to account for the apparent violation of the Pauli principle in hadronic
states with spin 3/2 such as A" (uwwu); then it played the r'i&%le of a quantum
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number associated to a global symmetry (it restricts the form of the interaction).
The gauge principle is a successful method to generate interactions between matter
fields carried by gauge bosons (massless in the case of unbroken symmetry) ensuring
its renormalizability. Furthermore, in the case of non—Abelian theories the full lot of
processes is governed by a single coupling, namely a;; (now the symmetry is dictating
the form of the interaction). There are plenty of arguments pointing out that the
number of colours is indeed three [2].

Once the symmetry group and matter content is specified, the Lagrangian is
unique. In our case the building blocks are N; (number of flavours) massive spin—1/2
particles called quarks. We will use a rather compact notation and use a single
symbol ¢ to denote an N;—component vector column, each component having N¢
different colours. The QCD Lagrangian then reads:

. | B
‘CQCD = q(zp_M)q_ZGuuGZ +£FP+£GF;

. 0 Ao
D, = 0, — zgsGﬂg,

Go, = 0,Gy — 0,G% + g, [ GG,
2
ay = g—s, agz%, (1.1)
47 T

where G, are the NZ — 1 spin-one massless gluon fields, g, is the strong coupling
constant, £ are the structure constants of the SU(N¢) group and A\® are its gener-
ators. Lrp stands for the Faddeev—Popov term and Lgp for the Gauge Fixing term,
both required for a correct quantization of the theory. Two nice features of this La-
grangian are that a mass term for the gluons is forbidden and that their coupling to
the fermions does not depend on the particular flavour. M = diag{m,,, mq, ms ...}
stands for the mass matrix, which without loss of generality can be chosen to be
diagonal. Unfortunately symmetry does not constrain the value of the masses.

In order to discuss the (accidental) global symmetries of (1.1) we will restrict
ourselves to the so called light sector of QCD with n light flavours. It comprises the
u, d and s (light) quarks whose mass is much lighter than the so called heavy quarks
(¢, b and t), which will not be discussed in this thesis. It is not a bad approximation
to consider their mass equal to zero (the so called chiral limit), being (1.1) reduced
to

. a 1 )
Loop = iGPar + iGpPar — 3 GG + Lrp + Lor (1.2)

where ¢ and gg correspond to the left— and right-handed quark fields defined as'

1
qr.,r = Prrq, Prr = B (1 F 7). (1.3)

'In our conventions v; = iv%y'72y% and o#¥ = £ [y#,4"].
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Since the left— and right-handed quarks do not mix among each other, (1.2) is
invariant under independent phase redefinitions and rotations for each set of chiral
fields, what can be expressed in group theoretical language as an invariance under
the action of the group Uy (1) ® Ua(1) @ SU(ng), @ SU(ng)r. Quantum effects
(anomalies) break the U(1),4 transformations and the U(1)y symmetry is trivially
realized as the baryonic number. The remaining transformations belong to the so
called chiral group G' = SU(ny);, ® SU(ny)r whose elements can be written as

_ g, O _ 1oy Tt 0
- (0 9R>‘exp< 0 iayTy

= (91, 9r) = [exp(iag T7) exp (iaR Tg)] (1.4)

being T7 p = % the generators of the subgroups SU(3) g. Its action on the quark
fields is

qz,r(z) = gr.R qL.R(T) . (1.5)

The chiral group has two obvious invariant subgroups SU(3);, and SU(3)r whose
elements are of the type (g7, 1) and (1, gg), respectively. There is another non—
invariant but interesting subgroup, H = SU(3)y, whose elements are defined as
(gv, gv) or equivalently af = a%. We can define the set of axial transformations
defined as = = (gA,gL) or af = —a% that do not form a subgroup of G. One can
take the quotient G/H but since H is not invariant the result has not the structure
of a group. There is, however, a one to one correspondence between the elements of
the quotient space and the elements of either SU(3)., SU(3)g or =. This freedom
will be exploited to find the building blocks of Chiral Perturbation Theory (xPT for
short). The 2 x (n} — 1) associated Noether currents, L{ and R are conserved and
the corresponding charges Q% = [ d*Z X are time-independent. They satisfy the
group algebra of a direct product space:

Q% Q4] = idxy [ Q5 . (1.6)

For future purposes it is better to use linear combinations of them, called the octets
of vector and axial-vector currents, associated to the sets of vector and axial-vector
transformations:

a a a = A a a a ~ A
Vu (3?) = Ru + Lu = q(:r) -5 Tu Q(l“), Au(‘r) = Ru - Lu q(:r) > Tus Q(x)i

2 2
(1.7)

their associated charges satisfying the group algebra structure

[Q 4y, Qb eay] = i [ QY [Q%, QY] =i Q4, (1.8)

transforming under parity as

PRYPT =Qv,  PQIYPT = -Q%. (1.9)
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Of course they commute with the Hamiltonian of massless QCD [Qf, Hop] =
[QY%, HOQCD] = 0. The electromagnetic current and the electric charge can be written
as linear combinations of the octet of vector currents and charges:

1 1
ﬁvé = V;;%, Qem = Qs + ﬁQg = Qs (110)

The vector and axial-vector currents that mediate the weak decay of hadrons are
also linear combinations of the octet of currents:

T = Vi +

L N
v;+i5,A;ﬁ+i5, sS—u . (1.11)

We will introduce now for future use the rest of the QCD octets of currents: scalar,
pseudo—scalar and tensor currents

S x) = q(x) A\ q(x), P(x) = iq(x) A v5q(x),
T (x) = q(x) A7owq(:c), (1.12)

Vilo) = al@)yeala),  Aule) = ale) s ala).
S(@) = () ala). P(z) = iq(x) v q(a),
T, (1) = () o (). (1.13)

These comprise all independent sources because we have used a complete basis of
the Dirac Algebra. We remind the reader that there is no pseudo-tensor current
because of the identity ?:

0" s = SN . (1.14)

Of course one can handle with octets and singlets of currents within a single expres-
sion allowing a to take the value 0 and defining \° = V2/ns L3ys. It will turn out
useful to define the left— and right-handed scalar and tensor currents

]‘ a . a va vo a
S(S+iPY), Tt = PTG,
1
5% = 5 (5S¢ —ipP?) | TH' = PRl T, (1.15)
where Pp g are defined later in Eq. (1.24). It is interesting to know the derivatives of

the vector and axial-vector currents when the chiral symmetry is explicitly broken.
Using the identities

(G qi) = i(mj —my)q; qi, 0u(Gi Y v5qi)) = (mj+m;)qjivsqi, (1.16)

>We will use the convention €°'?* = +1 for the Levi-Civiti;3 tensor e*”®" throughout this
thesis.
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inferred from the equations of motion we get :

E} q(z), oMV, (xz) =0,

"Vi(z) = iq(w) {M, 5

. A?
oasle) = iale) { M prsato)
- ny gg v af
0" Au(w) = 2iq(x) Mrsq(@) + -5 Eap G5 (2) G55 (), (L17)

where the gluon term in the last divergence comes from the axial anomaly. Note
that in the special case of M = m 1, [that is, having exact SU(ny) symmetry |
the octet—vector current is still conserved and

"AL(x) = 2mP(z),

2
s

PA(x) = 2mP(z) + L9

20, e G (2) G2 (). (118)

1.3 The running of a,: non—perturbative regime
and confinement

In the chiral limit the QCD Lagrangian (1.2) has no energy scale. Na'l'(;%vely one can
think then that there is no possible distinction between long and short distances,
since there is no mass scale to compare with. This is in clear contradiction with the
phenomenology, which shows that at energies below one GeV QCD is a confining
theory and at high energies the quarks and gluons are almost free (this is the cel-
ebrated asymptotic freedom of QCD [20,21]). The quantum behaviour of QCD is
generating an energy scale, usually denoted by Agcp.

To get a firmer grip on that idea let us have a look at the renormalization group
equation of QCD at the one-loop level:

:U’das o (1) Qs 3
~L = Paonon) = Ao (7)) + Olad),
11 n
baon = 5 Ne— - (1.19)

This equation is only valid in perturbation theory, that is, as we shall see, at high
energies. For the physical values of ny and N¢ Bqcep > 0, what points out that the
strength of the interaction increases at low energies and decreases at high energies (a
distinctive feature of non—Abelian theories). The solution of (1.19) is widely known :

as(/m) s

as(p) = ﬁ(l) = &) 1 P ) (1.20)
T Ko
where a new scale Aqecp = o exp {— m] has emerged due to quantum

effects. Now we have a scale to compare with and thence we are able to distinguish
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between long and short distances. At the scale y = My = 91.12GeV the strong
couplig constant has a value of ay(Mz) = 0.119 small enough for perturbation
theory to work. Applying the four-loop running equation and taking into account
the matching factors when quark thresholds are crossed, at a tipical low—energy scale
m, = 1GeV one gets a;(1 GeV) = 0.5. Then at low energies the coupling constant
is so big that the theory becomes non-perturbative and confining. Of course in
such regime Eq. (1.19) no longer applies, but we can extrapolate its behaviour to
conclude that the theory becomes strongly coupled. Being non—perturbative implies
that the mathematical expression of the observables does not admit an expansion
as a power series in the coupling constant. Confinement means that the degrees of
freedom are not quark and gluons any more, but rather hadrons.

1.4 QCD in the presence of external sources: trans-
formation properties of the tensor source

As explained in this chapter, the asymptotic states of QCD are not quarks and
gluons, but hadrons. Then it is of little use to calculate matrix elements with quarks
as initial or final states. It makes more sense to calculate vacuum expectation values
of colour singlet operators having the same quantum numbers as the hadronic states.
This objects are usually called Green functions and their discussion is relegated to
Chapter 4.

There is a powerful method for computing matrix elements of operators made of
quark fields in the same space—time point called the external field method [22]. At
the same time this method ensures that the chiral Ward identities are automatically
satisfied for any Green function (the concept of Ward identities will be explained in
detail in Chapter 4). The idea is to extend the massless QCD Lagrangian (1.2) with
external sources coupled to the different quark bilinears:

Locp = E%CD + Loyt
£ea:t = QVM(UM + 75au)q - Q(s_i75p)q+qathuuq
= qr vt qr + Gl ar — Gr(s +ip)ar — qu(s + ip)qr +
qr. UWtL,,QR + qro™ tuwqr, (1.21)
where we have defined r, = v, +a, and ¢, = v, — a,. The vector and axial-vector

external fields are chosen to be traceless in flavour space, but the rest of them will
in general have a non—vanishing trace; for instance

Z % (1.22)

The scalar current has been introduced with a minus sign for latter convenience
(it has the same sign as the mass term). It is well known that an antisymmetric
tensor t* does not correspond to an irreducible representation of the Lorentz group,
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moreover, it is completely reducible. So it can be decomposed into two irreducible
representations using the identity [23]

th = Py PR

L, =PI, (1.23)

where Pff'RAp are the analogs of P g in Eq. (1.3) for the tensor fields, given by

1 t
P = L(gh g — g ey P = () )
Actually one can check that indeed they satisfy the usual properties of chiral pro-
jectors

[V af _ puraf KvAp
PR PR(L),\p _PR Py PR

aff
(5 (L) (R) v =0 (1.25)

(L)
Eq. (1.23) above just states the fact that ¢,, and ¢}, are the left- and right-handed
projections of the tensor field and can be seen as the analog of Eq. (1.3). The six
independent components of t#” can be split in a covariant way into three left— and
three right-handed components. A chiral rotation could mix v, with a,, s with p
and the tensor with itself. This is precisely what one expects, since 75 acting on o*”
is not an independent Dirac matrix, but decomposable in terms of o** alone.

These external sources are ny X ny hermitian matrices. They are not operators
but rather functions, hence they are not quantized and can only appear as asymp-
totic states (they do not propagate). We want (1.21) to have the same symmetries
as (1.2) and this imposes restrictions in the way this sources transform under either
discrete symmetries (parity and charge conjugation) and the chiral group. Further-
more, we can now impose the invariance of (1.21) under local chiral transformations,
where the transformation matrices gr 7, now depend on the space-time point in which
they are applied. Something similar is impossible to be satisfied in (1.2). It is pre-
cisely this local invariance what makes chiral Ward identities to be satisfied for any
Green function at any order [22|. These transformation properties are sketched in
Table 1.1.

Glz)=SUB)L®SUB)r | P C
s +ip gr(s+ip)g} s—ip | (s—ip)’
by grlugy +igroug; T —r,
T IRT WG % + 1 gROuGh l, =
t IRt gh th, —t,

Table 1.1: Transformation properties of the external sources.

If one defines the generating functional, which can be regarded as the vacuum-—
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to-vacuum transition amplitude in the presence of external fields

exp (i Z[vy, ay, $,p, L)) = /D(qu DG, exp [i/d% {LYecp + Leat(Vp apy 8,0, 8w) }
= (0|Texp[iLy s (v aus 5,0 1)]0)
= (Oout | Oin)y, a5 o (1.26)

then Green functions are computed by functional derivatives taken with respect to
the external sources.

As a last comment, we can use the external source s to explicitly introduce a
symmetry breaking term due to the non—zero masses of the quarks and the external
sources 7, and £,, to break explicitly the symmetry due to electromagnetic and weak
interactions:

ry — T, +eQA,,

2
l(, - 0, +eQA, + ——— (W'T, + hc.),
% u 1% \/isinﬁw( + )
s s+ M, (1.27)
being
2.0 0 0 Via Vi
Q=10-f 0 |, Ty=[0 0 0 |- (1.28)
0 0 —3 0 0 0

1.5 Spontaneous chiral symmetry breaking and the
CCWZ formalism

Since (1.2) is invariant under global transformations of the G' group, we expect the
hadronic spectrum to organize itself according to irreducible representations of G.
This implies the existence of an equal-mass parity partner for each particle, a sit-
uation that does not seem to occur in nature. The hadronic spectrum is however,
organized as a series of irreducible representation of the group SU(3)y. This indi-
cates that we are facing the phenomenon of spontaneous breakdown of the symmetry
group G into a smaller subgroup H C G, where some generators of the group G do
not annihilate the vacuum of the theory (so the interaction is indeed invariant but
the vacuum is not).

1.5.1 The appearance of the Goldstone bosons

In Ref. [24] it was shown that for massless QCD the ground state must be invariant
under vector transformations (much as happens in quantum mechanics: the ground
state of a system described by a symmetric potential has even parity) and then
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the vacuum is annihilated by their corresponding operators. So the chiral group
G = SU(3), ® SU(3)g is spontaneously broken to SU(3)y and we can choose the
axial generators to be the ones not annihilating the vacuum:

Qy10) =0,  Q%4]0) #0. (1.29)

The Goldstone theorem [6] tells us that there must appear a number of massless
particles (the so called Goldstone bosons) equal to the number of operators that do
not annihilate the vacuum (broken generators), eight in our case. We can associate
these particles to the lightest pseudoscalar octet.

Let us show now that the existence of a non—vanishing scalar quark condensate
implies Eq. (1.29). It can be shown that (the procedure to reach this result is
relegated to the next chapters)

[Q%, 8 (x)] = i [ Se(), (1.30)
and taking Vacuum expectation Value of this expression and using (1.29) we arrive
at (S.) = 0 or ( = (dd) = (3s) = (gq). With this result we can show that

(0]i[Q%, P'(x ]\0>_— q) #0, (1.31)

being the right-hand side of (1.31) the order parameter of the spontaneous break-
down of the chiral symmetry. Then the Goldstone theorem tells that there exists a
set of massless states ¢® such that (no summation implied)

(0] AG[o") (" | P*[0) # 0, (1.32)

being the quantum numbers of these states are determined by this expression. Let
us first determine the parity of the Goldstone bosons?

(0[Q%1¢") = (0|P'PQYP 'P|¢") = —(0]Q4P|¢") ,
Plo") = —1¢"), (1.33)

and now we concentrate in their transformation behaviour under an infinitesimal
transformation of SU(3)y

(01Q4/¢") = (09 gv Qhgigv]e®)
= (0[(1—im Q)1+ QY)Q4(1 i QY) (1 +imQy)|¢")
= (01Q%10") + ap f*(01Q%]6") + i (0|Q%4 Q% 6" )
(0]Q4QYV|¢") = if™(0]Q4]6") = —if*(0|Q%¢%)
Q% [¢") = if" ") . (1.34)
So they form an octet of pseudoscalar mesons. We can parametrize the non—
vanishing matrix element in Eq. (1.32) as

(0145(0) ¢"(p) ) = ip, F ™, (1.35)

3We assume our vacuum state invariant under parity and transformations generated by H.
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where F' has dimensions of energy and its approximate value is F' &~ 92.4 MeV. Since
the axial-vector current is conserved, its matrix element between the Goldstone
bosons and the vacuum must be zero

(0]0"A4(0)| ¢"(p) ) = m* Fé6* =0, (1.36)

what points out that either m or F' is zero. The latter case corresponds to a sym-
metry realized a la Wigner-Weyl whereas the former corresponds to the Nambu-—
Goldstone realization. So, if (1.35) is not zero then the Goldstone bosons are mass-
less.

1.5.2 The Callan—Coleman—Wess—Zumino formalism

The general formalism to parametrize the set of fields describing the dynamics of
the Goldstone bosons of a system suffering spontaneous breakdown of a continuous
symmetry was developed by Callan, Coleman, Wess and Zumino (CCWZ prescrip-
tion) [7]. We review here the most relevant aspects. Let us consider a dimension—n
group G being spontaneously broken to one dimension—ny (non-invariant) subgroup
H, giving rise to ng —ny massless Goldstone bosons. First let us show that there is
an isomorphism between the Goldstone boson fields vector space My and the quo-
tient space G/H. Let us define the transformation ¢ of the set of fields (or vector)
¢ of the Goldstone bosons under one element g of the group G (it will be shown
that it is not a linear transformation)

Y GXM1—>M1,
©(9,0)=0¢", (1.37)

satisfying 4

ple,9) = ¢ Voe My,
©(91,0(92,90) = ©(9192,90) VYg1,02 € G, Vo € M. (1.38)

We then require that the origin ¢ = 0 of M; (ground state configuration) is mapped
onto itself when transformed by elements h € H or ¢(h,0) = 0 (and so H constitutes
the little group of ¢ = 0). With this it is clear that the origin is mapped into the
same configuration field by all elements satisfying ¢, g, * € H, that is, all elements
belonging to the same left coset of H, which is one element of the quotient space
G/H: ¢(gH,0) = (g,0). This defines a one to one (it can be shown to be invert-
ible) mapping between the coset space and the vector space of the Goldstone bosons
fields: ¢ = ¢(f,0) = p(gH,0) where f € G/H and can be chosen to be represented
by an element ¢ € f. Then the transformation properties of the Goldstone fields
under an element § € G read ¢(g,¢) = ¢(g, ¢(f,0)) = ¢(g9H,0) = ¢(gH,0) where
g = ggh is the representative of the element of the coset space ggH (in general
different from ¢g).

4We do not require the linear condition ¢(g, A ¢) = X (g, ¢).
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An easy way of understanding the formal procedure followed above is to consider
the parametrization of the vector of Goldstone boson fields ¢(z) as a local rotation
under an element g(x) € G of the constant vacuum state (¢) vector: ¢(z) = g(z) ().
Then the Goldstone fields are specified by ¢g(z). But since by assumption h (¢) = (¢)
for h € H, two elements g, and g, satisfying ¢g;g;' € H render the same ¢(z),
g2 () = g1h () = g1 (¢). We only need then to consider elements of G belonging to
the same left coset gH to fully specify a given ¢(z) configuration. Then, as stated
above, to each element of G/H corresponds one field configuration ¢.

The CCWZ prescription consists in picking a set of eight broken generators { A%}
such that A (¢) # 0 and choose as a representative for each element of G/H the
following SU(3) x SU(S)R matrix:

(x) = 4 = [€1(2), Er(2)] = ¢(2) = = () () . (1.39)

Once we select from the continuum of degenerate states with equal minimal en-
ergy one to be the vacuum, we are at the same time spontaneously breaking the
symmetry and specifying the broken generators. But of course this choice is com-
pletely arbitrary and so are the broken generators (as far as we do not choose the
ones generating H!). Under a global ¢ € G transformation the =Z(x) rotates to
another matrix which is not necessarily of the form (1.39), but can be written as
g=(z) = Z'(x) h='(g,Z(x)) where Z'(z) has the form (1.39) and h(g,=(z)) € H is
denoted as the compensating field. Tt is clear that g Z(x) (¢) = Z'(x) (#). h(g,Z(z))
has an implicit = dependence through its dependence on Z(x) and since it is a vector
transformation can be written as h(g, Z(z)) = [h(g, Z(z)), h(g, Z(z))]. Then we can
write the transformation of =(x) as

plg.E(x) = gE(x)h*1(9,§(fr)),
o) (9:6um(@) = gum) Eumy(®) h™' (9. E(2)). (1.40)

We comment on passing that the mapping ¢ is a non-linear realization of the group
because the matrices =(x) do not form a vector space (the sum of two unitary
matrices is no longer unitary). The vacuum state (that is, the configuration with the
Goldstone boson fields equal to zero) according to (1.39) is represented by = = 1
(&, = &g = 1). Since we want the vacuum to be mapped onto itself by vector
transformations g = (gv, gy ), according to (1.40) h(gw, 1) = g or h(gw, 1) = gy
One can get rid of the compensating field combining the relations of (1.40) into
the simpler form U(z) = &x(x) €} (z) transforming under g as U(x) — g U(z) g1,
which is equivalent to choose as broken generators Tp or &i(z) = 1, &gr(z) =
U(z) and the compensating field h(g,z) = g,. This is denoted as the U-basis.
Another possibility is to take ¥(z) = Uf(z) = &(z) £l (z) transforming under ¢
as ©(z) — gL 2(z) gl, which is equivalent to choose as broken generators Tg or
Er(x) = 1, & = S(z) and h(g,z) = gr. These is to the so called Y-basis and
corresponds to the choice £r(z) = 1, ,(x) = U(x) and the compensating field
h(g,z) = gr. Choosing the axial generators T — T% as the broken ones (the so
called £-basis) corresponds to £, (z) = €5 (z) = £(x) transforming under g as &(z) —

(1]
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g0 €(x) ™' (g, z) = h(g, ) £(z) gk This transformation implies that if g, = gr = gv
then B(g,x) = gy and it is independent of =(z), as it happens also in the U-
basis. Our preferred choice is the u—basis corresponding to the choice T — T} for
broken generators, and u(z) = &g(x) = £l (z) = €(z) transforming as u(z) —
gru() h='(g,z) = h(g,z) u(z) g}.

The Goldstone boson fields are angular variables and hence dimensionless. How-
ever for a field theoretical description we want them to have dimension one and so
we write

u(z) = exp [z \q;(;” , (1.41)

where it can be shown that at lowest order F' equals that of Eq. (1.35). The matrix
® () in terms of physical fields reads

8 %WO + %778 m Kt
O(zx) = V2 T,n%z) = T —5m’+ Joms KO (1.42)
o K~ K —\/gns

Under a vector transformation of the fields u(x) — gy u(z) gi,, the ®(z) — gy @ (x)g!,
undergoes the same transformation, pointing it transforms as an octet. For the case
of a general transformation (e.g. an axial transformation) the Goldstone bosons are
transformed as a non-linear function of the fields.

As a final comment in the U-basis representation we can identify

V20(z)

), —————

F

2

U(x) = u(z)” = exp : (1.43)

and of course in the Y-basis, X(z) = £(x)%

1.6 Effective Lagrangians of order O(p?) and O(p?)

If one restricts oneself to very low energies then the only interacting particles will
be the Goldstone bosons. With the ingredients discussed in the preceding section
one can build a theory made only of the Goldstone boson fields as active degrees of
freedom. This theory is known as Chiral Perturbation Theory and was developed
in Ref. [9]. In this range of energies one can expand the observables in increasing
powers of both the external momentum and quark masses, what translates into an
organization of the Lagrangian in terms of an increasing number of derivatives and
mass operators

Lypr =Y Loy (1.44)
n=1
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The range of validity of the theory is provided by a characteristic chiral symmetry
breaking scale A,. When computing the chiral expansion each loop correction is
accompanied by a factor 1/(4 mF)? giving us an estimate A, ~ 47F ~ 1.2 GeV [25].
Counterterms have a typical size of the inverse of the mass of a resonance, what
gives us Ay, ~ mpr ~ 1GeV. So the radius of convergence of the power expansion
corresponds to the mass of the lightest resonance m, = 775 MeV.

The calculations performed in xPT are organized in the so called Weinberg power
counting [8]. Given a diagram with Ny, vertices from L, and L loops it has a chiral
dimension

Dy =2L+2+2Y Ny(n—1). (1.45)

Since n > 0, D, is always positive. Expression (1.45) makes clear that only a finite
number of terms in the Lagrangian (1.44) is needed to a given order in the chiral
expansion, and then the Lagrangian behaves as a regular renormalizable theory.

1.6.1 Building blocks and £,

Our strategy is to find the most general Lagrangian having the same symmetries as
(1.21) (local chiral symmetry, parity and charge conjugation) built with Goldstone
fields described as in (1.41) and the external sources. Then the QCD generating
functional (1.26) when restricted to low energies will read

Z(vy, sy S, Dy L) :/DUDUT exp [i/d% L (U, vy, au, 8,0, tu)]| (1.46)

and the Green functions will be obtained by functional differentiation. If one works
in the U-basis, the building blocks are the U(z) matrix with a covariant derivative
for the pion fields

DU =8,U~ir,U+iUl, , DU — grD,Ugl,
DU =0,U +iU'r, —it¢,U" | DU — g, DU gr, (1.47)

and x = 2 By (s + ip). For the right— and left-handed fields, field strength tensors
arise naturally

[D*, D)X = i XF" — i F'"X
FiY = n0 — U0 —i [ 0", R =9t = 0 — i ], (148)

The set (U, F}'z, X, ) along with their adjoints and covariant derivatives, are the
building blocks to construct a theory with chiral symmetry. The next step would
be to assemble them together in chiral invariant combinations which respect parity,
charge conjugation and hermiticity. However, the building blocks listed above trans-
form differently under the chiral group. This is not a problem when one is dealing
with the lowest orders in the chiral expansion, where the combinatorics are simple
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and only a small number of operators result. However, already at next-to-leading
order the number of operators involved recommends to deal with building blocks in
a more efficient way. In order to easily identify the invariant operators it is better to
use the &-basis and use a set of building blocks that transform under the G' group
as

X — h(g,®)X h(g,®)", (1.49)

and under discrete symmetries they transform onto (—1)” times themselves. As
a result, one can define a unique covariant derivative for objects transforming as

(1.49),

1
V,X =39,X+[l,,X], T,= 5{uT (0, —ir,)u+u(d,—il,)u'}, (1.50)
where the last term is the chiral connection. The set of building blocks used in this
thesis follows and their transformation properties are sketched in Table 1.2

w, = i{ut (0, —ir)u—u(d,—il,)u'} = iu' DU,
hyw = Vuu,+Vou,, g :uFf”uTiuTFguu,

= ottt £ utt Ty, xe = ulxul £ uxu. (1.51)

There is a field strength tensor associated to the covariant derivative, namely

[Vuavu]X = [Fuva X]a (152)
with
1 1
FHV = a‘ury - ayl—‘u + [FM,FV] = Z [uu,uy] — §f+ﬁ“/' (153)

The list of elements in the left-hand side of Eq. (1.51) is complete : u, is self-adjoint
and the combination V,u, — V,u, = f_,, is redundant. All along our analysis we
will make extensive use of the tracelessness properties (r,) = 0= (Fp"), ({,) =0 =
(FE) and (u,) = 0= ().
Then the lowest order Lagrangian has the simple form
F2
£2 = I<UMUM+X+> s (154)

where (- ) stands for the trace in n; flavour space. At this point several comments
are in order. The tensor does not appear at this order, the vector and axial-vector
sources only appear through u* and there is only one operator involving the scalar
source. Expanding (1.54) and identifying the mass term for the Goldstone bosons
we get (we assume exact isospin symmetry in this thesis)

2By M = 0 M2 0 : (1.55)
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@ P C h.c.
ut | —uy (u*

WY =l | (T R
)

utM

X+ | EX=+ (x+)" | £xx
B S | F TR
| it | — T | £

Table 1.2: Various transformation properties of the elements of Eq. (1.51)

and computing the quark condensate we get the relation By = — % The equations

of motion at this order read

Vot = 2 (M - X_> | (1.56)

_Q_i nf

and will be used to remove redundant operators from the basis of the Lagrangians
of higher dimension.

1.6.2 On the power counting for the tensor source

Let us begin by briefly reviewing the chiral counting for the remaining Dirac exter-
nal fields. We have motivated the introduction of external fields coupled to QCD
currents as a way to automatically ensure the chiral Ward identities when comput-
ing Green functions. For this to happen, the global chiral symmetry of the QCD
Lagrangian has to be promoted to a local one. From the point of view of external
fields, this step only affects the vector and axial-vector, which play the ri'(;%le of
chiral gauge fields entering the chiral covariant derivative, which replaces the or-
dinary derivative. One is then naturally led to make the chiral dimension of the
vector and axial-vector sources coincide with that of the ordinary derivative, i.e.,
Oy, ay ~ O(p). Furthermore, the combination g, (v + 75 a*) ¢ has no anomalous
dimension® (as it is a piece of the QCD Lagrangian). Both vector and axial-vector
currents are conserved (in the chiral limit), what in turn implies they have zero
anomalous dimension. Then both vector and axial-vector sources have no anoma-
lous dimension. Notice that no reference to the actual physical meaning of the
sources was needed : gauge invariance is enough and the sources can be regarded as
formal entities.

However, for scalar and pseudoscalar sources the situation changes. In order
to motivate their chiral scaling contact has to be made with QCD through quark
masses. Quark masses are formally introduced as external scalar sources, and chiral
invariance groups the scalar and pseudoscalar densities in the combination xy =

5The concept of anomalous dimension will be discussed in Chapter 4.
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2By (s +ip) (and its hermitian conjugate), where By can be seen as a coupling
required by naive dimensional analysis. At the sight of Eq. (1.55) one is naturally
led to consider xy ~ m2 ~ O(p?). This scaling assignment is of course subject to
assuming By > F', which seems to be the picture supported by phenomenology.
Again the combination ¢ (s — i s p) ¢ is renormalization invariant. The anomalous
dimension of the scalar and pseudoscalar currents is known to be the opposite of that
of the quark mass. Then the running of s and p coincides with the running of the
quark mass. Since combination By m, is renormalization invariant xy = 2 By(s +ip)
is also invariant.

Therefore, gauge symmetry alone motivates the scaling for vector and axial—-
vector sources, whereas the momentum scaling for scalars and pseudoscalars is sug-
gested by the way chiral symmetry is broken.

Let us examine the situation for tensor sources. The tensor field coupled to
¢ 0, q induces a chirality flip (much like scalars and pseudoscalars do) and therefore
transforms in the same way under a chiral transformation. However, unlike scalars
and pseudoscalars, tensor fields do not have a physical realization as symmetry
breaking terms in the chiral Lagrangian. Their chiral power counting is therefore
not motivated by physical arguments and should be seen only as a formal theoretical
tool to compute Green functions. Whatever choice is made for the chiral counting,
however, it will only affect the way operators with different number of tensor sources
are organized in the chiral expansion, but it will not affect the chiral expansion of
each different Green function. A convenient choice is to assign the tensor source
with the same chiral counting as the scalar and pseudo-scalar sources, i.e., O(p?).
This has two main advantages: (a) the tensor source only generates even terms in
the chiral expansion, and therefore does not change the standard chiral counting
scheme; (b) operators involving resonance exchange appear at O(p*) [26], leaving
only universal terms at O(p?).

Since we are assigning the same chiral counting to all spin—flipping sources s, p
and t,,, one could equally well define, by analogy to x = 2 By (s+ip), a tensor chiral
field 7, related to our tensor fields ¢,, by 7, = by t,,. Here by would be the analog
of By for tensor fields. Another advantage of introducing the dimensionful parameter
by is that all the low—energy couplings at a given order in the chiral expansion then
have the same mass dimension. For instance, at O(p'), the complete set of chiral
low energy couplings

Li, Z:]_,,]_O, Hl,HQ; )\j,jzl,"',4, (157)

are dimensionless, where \; are defined in terms of the A; of Eq. (1.62) as A; = by A,
n being the number of tensor sources in the associated operators. For instance,
Ay = by Ay but Az = b2 \s.

Again the combination go,, t*” ¢ has zero anomalous dimension, but unfortu-
nately the running of the tensor current can only be calculated in the perturbative
regime. This can be better understood by means of a renormalization group analysis
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(all these concepts will be explained in Chapter 4). For the tensor current,
pn—Tag = =11y, (1.58)

where 77 is the tensor anomalous dimension. In the high-momentum transfer regime
(u > Agep), the anomalous dimension can be computed at leading order to give
(see Chapter 4)

_ Qs 2
Yr = CF o + O(as). (159)

Invariance of the QCD Lagrangian implies that the tensor external source ¢,, has
to evolve as

d 7a 7a

Consider now a term in the yPT Lagrangian with n tensor sources, A™ A, (Z,,).
When related to QCD parameters, the low energy coupling A will pick the QCD

scale dependence. Defining 7, = by fw,, the term can now be written as A(™® A (tw) =

A A (1) = b A A, (T,,). Therefore A = bp A and all the QCD scale de-

pendence is contained in by, namely

d
—by = —~7by. 1.61
/Ld,u 0 Y1 Yo ( )

This is in complete analogy to the r'i&%le played by By in the scalar—pseudoscalar
sector. This analogy can be best illustrated with the example of Section 1.9.

1.6.3 The order O(p') Lagrangian

Operators containing tensor sources appear for the first time at O(p?), together with
a new set of operators. At this order one obtains operators that only depend on the
external sources and have no Goldstone boson dependence. These are called contact
terms and contain no dynamics, are needed only to renormalize the theory. Also
one gets a different number of independent operators depending on the number of
flavours considered, due to the Cayley—Hamilton theorem discussed in Appendix A.
For three flavours it reads:

Ly = Ly (uu') + Ly (uu”) (uhu,) + Ls (uufu,u’) + Ly (uul) (x4
+ Ls (upux4) + Lo (x4)” + Le (x)* + Ls/2 (G +X°)
— i Lo (f upuy) + Lio/4 (frw i = fou f2°) (1.62)
+i Lyy (x=(Vu" +i/2x_)) — Lo ((Vuh +1i/2x2)%)
A faw) — iRt wuw) + As(t7L) + Aa(t]")?
"'Hl/2 <f—|—uufﬁy + f—uufiw> + H2/4 <X?|- - X2_> ;
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where the operators proportional to L;; and L5 vanish when using the equations
of motion and the terms proportional to H; and H, are contact terms. They can
be rewritten in the U-basis to make them manifestly independent of the Goldstone
boson fields: Hy (FYFp,, + Fr' Fru) + Hs <XXT>- The terms A;_4 have tensor
sources and since they appear for the first time do not require renormalization. It is
interesting to remark that a potential contact term like t“”tLV cancels identically due
to orthogonality of chiralities, as can be easily checked using the chiral projectors
of Eq. (1.23). Hence, it follows that ¢4} = "t and t{"t,, = t""t! . These
relations have been used in deriving Eq. (1.62) and will be used hereafter. When
computing loop diagrams with the operators contained in the Lagrangian (1.54)
divergences will occur and must be regularized. Using dimensional regularization
one does not spoil the symmetries of the theory and then the counterterms needed
to renormalize the divergences are contained in (1.62). This leads to a splitting
of the couplings of (1.62) into a divergent part and a finite part, called renormal-
ized coupling. Since this splitting is arbitrary it will lead to a dependence of the
renormalized coupling on an arbitrary scale p:

uD74 2
() =+ 327r2{D—4+ }
~ ,uD_4 2
H = H D 1.
: ) + 1327TQ{D—4+C}’ (1.63)

where D = 4 — 2 ¢ is the space-time dimension and C' is a constant that fixes the
renormalization scheme®. One has to take into account that in D dimensions, the
O(p*) L; LECs have energy dimension of E”~*. Since each term in Eq. (1.63) must
have the same energy dimension, we have to multiply the second term by pP~%,
where p is an arbitrary parameter with mass dimension (the chiral scale). Since L;
does not depend on p, the p dependence of L7 is canceled by the divergent piece.
In xPT the usual choice is C' = g — log(4m) — 1 where v ~ 0.5772 is the Euler
constant, and the so called MS scheme is defined by the choice C' = v — log(47).
Eq. (1.63) also dictates the running of the renormalized piece:
dLi(p) _ 1

S .
du 16 72

(1.64)
The explicit calculation of the one-loop generating functional gives [9] :

Fy=3, To=1 T3=0, Ty=g, Is=2, Te=11

144>

Observables are written in terms of the renormalized couplings L!(x) and are of
course p—independent.

6Tn this thesis we will regularize loops in dimensional regularization, defining € = %.
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1.7 The O(p°) Lagrangian with tensor sources

At next-to-next-to-leading order O(p°), the number of operators increases dramat-
ically. For the sector without tensor sources the full set of operators in the U-basis
was first found in [27]. Latter, in [28] it was found that the set was not minimal and
a new one written in the u—basis for two and three flavours was given.

In Ref. [23] this list of operators was enlarged to include also operators with tensor
sources. The purpose of this section is to sketch the steps followed in reaching the
basis of chiral invariant operators listed in Table B.1, in Appendix B. In particular,
we will outline the strategies followed to reduce the set of operators to a non-—
redundant minimal one, focusing on the results obtained rather than giving the
technical details, which can be found in [27,28].

The full set of O(p®) operators which results from combining the building blocks
of Eq. (1.51) and their covariant derivatives falls into one of the following generic
groups

b T U U™ tuw f* X b T X
b x U U b FH0 115 tuw 70 B,
b 7P up U by PP RY R
b [ U u; Y X Uy ; b B0 17, ;
Vot VO Ly P fY V" N fon;
Vot B u” VA [P u, Vath b, u;
by Ug UM UY Ug ; (1.65)

where emphasis has been placed only on operator combinations, i.e., traces and
¢ factors have been omitted and + subscripts have been skipped for simplicity.
The previous list is however complete in the sense that it contains all the indepen-
dent operator combinations. For instance, operators like V*¢,,, Vyy are generically
C-violating and V#,, u” uy u® or t* V> f,, uy can be shown to be redundant using
partial integration and the chain rule.

Table B.1 lists the full set of hermitian operators invariant under parity and
charge conjugation, organized in blocks of operators below each of the representatives
of Eq. (1.65).

Obviously, the most challenging task in going from Eq. (1.65) above to our final
set of operators in Table B.1 is to make sure that the set is minimal, i.e., linearly
dependent operators have been removed and we can talk of a true chiral basis of
operators. In the following we will discuss the commonly used strategies, namely
integration by parts, use of the equations of motion” and the Bianchi identity.

"In determining the higher order terms in the chiral expansion the equations of motion for the
leading order can be used. As discussed in [28], its enforcement is equivalent to a transformation
of fields and therefore physics is left invariant.
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1.7.1 Partial integration and equations of motion

Integration by parts was already used to obtain Eq. (1.65). The list can be further
reduced, however, if one notices that the covariant derivatives of u, satisfy

1
Vit = 5 (b = f) (1.66)
If we combine Eqs. (1.66) and (1.56) with integration by parts we find the following

relations,

1
VA"t ut = — iVttt L e — — Yt (x),

f
. v . 14 Z rvo Z ro
Vit e du® = —i (VMY + §{ti,,,t,w}h + §{tiy,t,m}f_ ,
. v . v Z rvo Z ro
iVt et = =i VMt u + 3 {th, t ua} B — 3 {th ot e [,

(1.67)

where in the first line the lowest—order equations of motion of Eq. (1.56) were used.
The second and third relations follow from Eq. (1.66).

Further relations can be found using the properties of the chiral connection listed
in Egs. (1.52) and (1.53). In particular,

v v v 1 1
v/\t;\ruvﬂti - vptj\ruv/\ti = [FAp: tj\r ] t:;ru = = 5 lel + 5 Yv12 + Yv89 ’
1 1
V)\t;VVPtp*U - thiuv)\tpfy = [F/\p’ t;’/ ] tp_u = - 5 }/23 + 5 Yv24 + YE)O ’
14 v v ]. ]_
VALV Y = VP VAR = [T, 47" = 1 Y — 1 Ysg — Yae. (1.68)

In a similar fashion (but after a more involved calculation), one can show that
iVt {2, uP}) and i (Vb4 {f2°, u”}) are also redundant.

1.7.2 Bianchi identity

In Egs. (1.50)—(1.53) we introduced the chiral connection and the field strength T,
that naturally stems from it. There is also an associated Bianchi identity, which in
this case takes the form

VuTup + VT + VT = 0. (1.69)

and reads

Viufiva +Vifran+Vafiw = % ([f—uvaua] + [f—uaauu] + [f—auaUV]) . (1.70)
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Tracing this equation with V7" and integrating by parts we get one additional rela-
tion between operators. We choose to remove from our list the operator i (V#¢,,V , f7").
There is a second Bianchi identity

0

5 ([f+uvaua] + [f+vowuu] + [f—l—auauu]) , (L.71)

vuf—ua + Vuf—au + vaf—;w = 9

that does not lead to further reduction of our basis.

1.7.3 Contact terms

So far, to the best of our knowledge the number of operators for general n is com-
plete and minimal. However, in our list there are contact terms, .e., combinations
of operators which only depend on external sources. Since they do not contain the
pion field, they cannot be determined from phenomenology, but are necessary to
correctly account for the ultraviolet behaviour of Green functions.

In the u—basis we have been using, contact terms do not arise in a natural way,
but are hidden in linear combinations of operators. It is easier to express them in
the U—basis. As we already discussed, chirality prevents a contact term like ¢#” tLU
at order O(p*). At the next order, one finds the following ones

(D" Dty = — (V" V.0,) — % (V" V% o) — % (VY {t_a,u®})
+ % (e (0 15 1+ g 2% %)) + é o 21 g ")
— 1i6 (i (u” " Uy 4 up 9% u”)) — % (t_ tM" U u”)
+ (vt {mw, u})

(P 1" Frpy + 171" Fru) = (t”” oy o) — = (t”” " fruw)

+ 7 ) fow)

v v 1 1 v
<quTFM +X ;wFu +hC> - t+;w{f+ 7X+}> 4<t*uu[fﬁ 7X+]>

- i (o (2 X) = o [ D) (172)

NH

where V5 = (D, ")+ + £ {u,,t;"} has been used in the first relation. We will
incorporate the previous contact terms in our basis, and accordingly remove the
following monomials, which otherwise would be redundant :

it fow) = —Yag 4 Yoo +4 Vi,
L 1 1 1 1
(VY V% o) = §Y11+ZY13—§Y23—13354'3%2—3/1044‘3/105—43/118,

(o [f27x-]) = Yoz = Yo+ Y5 — 4 Y1y (1.73)
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All the relations discussed above finally reduce the number of operators to 117
and 3 contact terms. This is the number of independent operators for any number
of flavours. However, only ny = 2,3 are phenomenologically relevant. For such
cases, the Cayley-Hamilton theorem provides further relations between traces. For
reference, we list them in Appendix B. We end up with 110-+3 independent operators
for three flavours and 77-+3 for two flavours.

In order to have a minimal basis of O(p®) chiral invariant monomials with tensor
sources, we have followed the same procedure as in Ref. [28]. However, a recent
paper [29] has pointed out that the basis of [28] for two flavours is not yet minimal :
an identity among several operators of that basis was found, which does not become
trivial when setting to zero the external sources. Interestingly, such identity does
not require new algebraic manipulations other than the Cayley-Hamilton relations,
Bianchi identities, partial integration and equations of motion. The fact that even
after the sophisticated analysis of [28] an additional relation was found shows that
reaching a minimal set of operators at higher orders in the chiral expansion is quite
a challenging task. With tensor sources, however, highly nontrivial relations such
as the one reported in Ref. [29] are unlikely to be found, mainly because: (a) the
tensor source does not enter the lowest order equations of motion and (b) there is no
Bianchi identity associated with it. As a result, algebraic manipulations are simpler
and we do not expect our basis to suffer further reduction.

1.8 Odd-intrinsic—parity sector

So far we have restricted our analysis to the even—intrinsic—parity sector of the
chiral expansion. The Lagrangians discussed exhibit a larger symmetry than the
“real world”. For instance, if we switch off the external sources, our Lagrangians are
invariant under the substitution ¢(z) — — ¢(x) (they contain terms with an even
number of Goldstone bosons only). There is no odd-intrinsic—parity chiral invariant
operator of dimension lower than six. But QCD suffers an anomaly that affects the
whole U(3), ® U(3)g symmetry group and has its origin in the fact that it is not
possible to preserve the simultaneous invariance of the generating functional under
vector and axial-vector transformations. This anomaly translates into a dimension
four piece of the chiral Lagrangian which is not chiral invariant: the Wess-Zumino
term. So the odd-intrinsic-parity sector starts already at O(p*) with the non chiral
invariant anomalous term and contains an infinite number of chiral invariat operators
of higher dimension.

1.8.1 Wess—Zumino—Witten functional

Wess and Zumino were the first to derive a functional involving only pseudoscalar
fields generating this anomaly [30]|. For pions alone, its form is fixed by cohomology
theory and is expressible in a 5-dimensional manifold. They emphasized that these
interaction Lagrangians cannot be chiral invariant. However, the terms that involve
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external sources can be cast as a four-dimensional integral proportional to the Levi—
Civiti};% tensor €,,5,. It is more convenient to use the functional derived by Witten
[31] and here we will follow the discussion of [32].

The fermionic determinant does not allow for a chiral invariant regularization.
Given the transformations

gr = 1 +ila(z)+5(x)], g =1+ ila(z)-p2)], (1.74)

the conventions in the definition of the fermionic determinant may be chosen to
preserve the invariance of the generating functional Z, either under vector transfor-
mations, or under the axial ones; but not both simultaneously. Choosing to preserve
invariance under the transformations generated by the vector currents, the change
in Z only involves the difference 3(x) between gr and g

52::—/humwﬂu»,

Qo) = 5= [taav + 3 Dot Dyt + 5 105 0,0)
81 4
+§auva5a,j + gaaaﬁaua,j ,
Vo = Oa¥p — Opla — 0 [Va, 5] ,
Daag = 0Oagap — i[va,ag] . (1.75)

Notice that € only depends of the external sources v, and a, and that the quark
mass matrix does not play any ri'(;%le. The explicit form for the functional is:
ZWU L rlywyw = — i No / APz eMm (sl yl v el el
Y 240 72 J s P Tk
i N¢
4872

/d‘lxgwﬂ (W(U, I, r)y™*? — W(L, 1, r)**?)

1
WU, L, 1) yvap = <Uzuz,,zaUTrg + ZUZMUW,,UZQUWB + iU 0,1, 1, Ul rg

+i0ury Ul Ulrg — iXi L, U roUls + SL UM 9,1 Ulg
— XS U o Uls + 31,0015 + S0, Lo ls

. 1 .
—iSil, ol + 525@2515 — 2252525@

—(L «— R), N¢c = 3,
©o= UlgU S =U38,U", (1.76)

where (L <— R) stands for the exchange

U+— UL, +—r,, S« 3. (1.77)
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This functional governs processes such as K* K~ — 7t7= 70, 70 — v v, 70 — vyete~

and m — ev . The last two processes are discussed in this thesis in Chapter 5.
For the calculation of the (VVP) Green function and the radiative pion decay
process it suffices to work with the following piece of the anomalous Lagrangian :

V2 Ne ) e
['%)ZW = T g2 Cmwes (® Ov” 9%vP ) . (1.78)

1.8.2 Odd-intrinsic—parity sector with tensor sources

The Wess—Zumino—Witten functional is of odd—intrinsic—parity and it enters in Ly,
so it constitutes the lowest order odd-intrinsic—parity Lagrangian. But of course at
higher orders this sector appears and it is not related to the anomaly any more. In
Ref. [33,34] it was explicitly calculated for Lg. In this thesis we will make use of
two of the operators of this sector, namely

Lo = e {C7W <X,f¢” 15> v icw <VAfi“{ zﬁ,u"}>} . (1.79)

In the following we will argue that such terms for the tensor source only arise at the
order p®.

In order to obtain the lowest order odd—intrinsic—parity operators in the chiral
expansion, the tensor source must have some indices contracted with the Levi—
Civiti};% symbol. It is straightforward to show that they all vanish.

Consider first the case when both tensor indices are paired to the LeVi*CiVit'l'[)%
symbol, e.g.

Ewapth B, (1.80)

where B?? stands for any antisymmetric tensor structure compatible with chiral and
discrete symmetries. From the definition of the chiral projectors, Eq. (1.3), one can
write

swed = 2 (P — PRt (1.81)
whence it follows that
Cwap s = —2itou, (1.82)

and therefore, such terms will not show up in the odd—intrinsic—parity sector. Notice
that this is a consequence of the fact that the tensor source has no chiral partner,
or equivalently that 75 0,4 is not an independent Dirac structure.

Consider now the case when only one of the indices of the tensor operator is
contracted with the Levi-Civiti; 1 density, namely ®

€uvap ti’y nyua,@ ) (183)

8 All other contractions can be rendered equivalent by means of partial integration.
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where By”o‘ﬂ stands for any generic chiral tensor (completely antisymmetric in v, «
and /3) made out of the elements of Eq. (1.51). We will use the Schouten identity :

g ehvab _ g°* ewel _ g ehrab g™ M _ gp,@ e = (), (1.84)

which stems from the fact that any 5-form vanishes in 4 dimensions. Contracting
it with 47 B.¥*% it is not difficult to show [with the use of Eq. (1.82)] that it can
be rewritten in the following way :

€was ' B,V = Bityas B, (1.85)

and then once more the LeVi*CiVit'l'[)% density vanishes.

Obviously, when none of the indices of the tensor source is contracted with the
LevifCivitI&% density, these identities are no longer useful and odd-intrinsic—parity
operators will arise. If we take, for instance, any of the operators of our basis at
O(p*) and multiply it by any of the O(p?) odd-intrinsic—parity operators of Ref. [33]
we will get an odd—intrinsic—parity operator involving tensor currents. But this
operator will be at least of O(p®) and thus falls beyond the scope of the present
work.

1.9 A simple application: One loop corrections to
[y
Consider the following two-point correlator in the chiral limit
Mvp(a) = Z/ d'z e (0T {V(2) T),(0)}0) = i(¢"g" — ¢"9"") Ty (q?)
(1.86)

where T, () = u(x) 0,, d(z) and V,(x) = a(x) v, d(x).
Using dimensional regularization with minimal subtraction, a straightforward com-
putation of the diagrams of Fig. 4.12 leads to

A 1 8
Myr(¢®) = —2A; — Qoyq° 212 —log(—¢*) + | ¢ 1.87
vr(q7) 1 94¢" + 927 |2 og( Q)+3 q . (1.87)
where
1 1
z = — vg + log(4n). (1.88)

The coupling €2y, is the LEC coefficient of the operator Yy, of the chiral basis with
tensor sources, that can be found in Appendix B. In xPT, renormalization proceeds
order by order in the chiral expansion. This means that the logarithmic divergence
of Fig. 4.12 (b) has to be absorbed by the counterterm Qg4 of Fig. 4.12(c) to render
Myr(g?) finite. This defines the renormalized coupling Q& to be

As o f 2
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in D dimensions €; and consequently Qf, have energy dimension of EP~%; A; and
F; have E”=% and EP/?7!, respectively. Since each term in Eq. (1.89) must have the
same energy dimension, we have to multiply the second term by p”~*. Addopting
the usual choice C' = v —log(4 ) —1 the fully renormalized Green function therefore
reads

A 5 2

2y _ R 2 2 q 2

Myr(¢”) = =271 — Qgu(p) ¢ + 3022 {g — log (‘ ?ﬂ q - (1.90)
So far, the scale dependence associated to the tensor current has been implicitly
stored into Ay, €294 and Ay. If we now introduce the aforementioned parameter by,
we find ALQ = bo )\1’2 and Qg4 = bg Wa4 and as a result

Ao b 5 2
Myr(g?) = —2 A by — wﬁ(u) bo ¢> + 3 ;2;2 [5 — log <— %)] 7. (1.91)

Notice that with the by parameter, the chiral scale and the QCD scale factorize.
For comparison consider now the following scalar—pseudoscalar two—point Green
function :

s pplq) = i/d‘lxeiq-ImT{S(a:)sT(O) ~ P@PIO)Y0),  (1.92)

where S(x) = u(x) d(z) and P(z) = u(x)ivysd(x). After evaluating the correspond-
ing Feynman diagrams, one obtains, in the chiral limit,

2 F? B2 5B [1
Mss_pr(q?) = ;2 0 4+ 32B7 Ls + 48;2 [g—log(—q2)+2} : (1.93)

The previous equation is finite when using Eq. (1.63), which also determines the
(chiral) scale dependence of the renormalized coupling :

5 01 . 2
LSZLé{(ﬂ)_EWﬂ {m‘FC}, (1.94)

leading to the one—loop renormalized two—point Green function

2 F? B? 5 B2 &
2\ 0 0 2 TR 0
Mss_pp(q°) = z + 32Bj L () + 18 12 {1 — log <— _/ﬂ)] . (1.95)

All the QCD scale dependence, arising from the non—conservation of the scalar and
pseudoscalar currents, is factored out in By, whereas L (1) shows the running with
the chiral scale. Notice the analogy with Eq. (1.91).

Unfortunately, by cannot be matched onto the QCD Lagrangian in a way sim-
ilar to what is done for By: the lowest dimension operators linear in the tensor
source (and consequently in bg) are coupled to the low—energy couplings A; and As.
These couplings are insensitive to pion dynamics and instead do receive contribu-
tions from vector meson resonances (see Chapter 2). Therefore, there is an inherent
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ambiguity in the determination of by, because it cannot be decoupled from A; and
Ay. The dimensionful coupling by should not contain information on the hadronic
resonances integrated out of the theory, but otherwise it remains unspecified. To
avoid confusion, we have omitted in our treatment any reference to by.

As a result, one should keep in mind that, besides the chirally renormalized
low—energy couplings, each operator with n tensor sources bears a non—vanishing
anomalous dimension, namely n 7.



Chapter 2

The 1/N¢ expansion I: Resonance
Chiral Theory

2.1 Introduction

Many years ago, 't Hooft [10] proposed that many features of QCD at low and
intermediate energies could be understood if considering a gauge theory SU(N¢) of
quarks and gluons when the limit No — oo is taken. Even though one may thing
that this theory has little to do with reality, this limit can always be regarded as
the first term of an expansion in terms of the “small” parameter 1/N¢. As we will
see, this expansion is equivalent to a semiclassical expansion for an effective theory
having colour—singlet hadrons as asymptotic degrees of freedom.

It could be thought that a large number of colours, since we are enhancing
the gauge group and the number of degrees of freedom, would instead of simplify,
complicate the understanding of QCD. In fact this is not the case and many simpli-
fications will occur. Finally one may wonder if the parameter 1/N¢ is small enough
to qualify as an expansion parameter and how fast the convergence is. In QED the
expansion parameter is not e but rather ey, = €?/41 ~ 1073 meaning that e ~ 1/3.
Although something similar does not happen in QCD, still 1/N¢ is a useful expan-
sion parameter. On the other hand, 1/N¢ corrections are of the same order as the
corrections due to the SU(3)y symmetry breaking, and an expansion of QCD in
terms of the breaking parameter of this symmetry works fine. As a last comment, in
certain observables the 1/N¢ correction vanishes being the first non-zero corrections
1/NE ~10%.

Although at low energies we can make a perturbative expansion in small mo-
menta, it would be desirable to have a more direct connexion with the fundamental
theory. xPT only exploits the global (accidental) symmetries of QCD, and any other
theory with the same symmetries (and with the phenomenon of spontaneous chiral
symmetry breaking) would have the same low—energy effective theory (with different
coefficients). The 1/N¢ expansion allows us to have the number of colours as a free
parameter of YPT directly related to QCD.

Finally, for several features of the low—energy phenomenology of the strong inter-
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actions, the 1/N¢ expansion is the only satisfactory explanation from a fundamental
point of view. Moreover, in the intermediate energy region where the resonances lie
(above the p mass but below the perturbative regime) there is no other expansion
parameter than 1/N¢, since the quark masses can be set to zero and the strong cou-
pling constant still is far too large. These reasons constitute additional motivations
to take this expansion seriously.

For the elaboration of this chapter I have followed Refs. [11,35-37].

2.2 Large—Ng QCD : counting rules
One may think that the renormalization group equation (1.19) behaves badly in the

Ne — oo limit. We can cure this by rescaling the coupling constant g = §/+/N¢ to
obtain:

dg 11 2Nz 3 )
M£:_<__——F> I 1 0(5). (2.1)

In this way we keep the hadronization scale Aqcp independent of the number of
colours when N¢ is big enough. It is convenient to define

(G)3 = Go (TS, (Gu)S = G2y (TS (2.2)

in such a way that

: g 1 a v 1 v
DM = a”—'_l\/T_CG’“ Z(GWGZL):§TT(GWGM%
9

G, = 0G, —0,G, +i—1G,.G,], 2.3
J 1 Ju \/N—C[u ] (2.3)

reading the Lagrangian (1.1) then

1
Locp = — §TTGW G" + q(ip — M)q. (2.4)

The large—N¢ counting rules can be obtained using a trick developed by 't Hooft.
The quark and gluon propagators read :

(0" (@)@ (y)) = 0°°S(z—y), (Gl (2)G,(y) = "Dy (w—y), (25)

and are represented as in Fig. 2.1 (a) and (b). Instead, using the SU(N¢) Fierz
identity

1

a o
AR (2.6)

a\Q& a 1a
(T5(T"); = 56565 ~

we will use the representation of (2.2) to write:
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1 1
(1G5 (o) G} ) = Do =) (50507 = 5 9597) . 2
which in the limit No — oo is reduced to
1
(G5 () (G} 1) = & Dy —0) 83 6}, 28)

and admits the graphic representation of Fig. 2.1 (b). Any Feynman diagram can be
drawn using the double line representation, as in Figs. 2.2 and 2.3. One can think of
Feynman diagrams depicted in the double line representation as a surface obtained
gluing together polygons in the double lines.

“H000000°
@ (b)
3 P
3 2 Py
3 (666&@% &%,
I )& >/<
(© (d) ®

Figure 2.1: Double line representation for gluon fields.

For deriving the N-—counting rules it is convenient to use a Lagrangian in which
we redefine the quark and gluon fields:

) 1
G = L_gm —gam, = (2.9)

obtaining then

=7 ~ 1 Na Ay
Locn = Ne [é (zlp - M) §— — G5, G (2.10)
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Although the Lagrangian (2.10) has now a global N¢ factor it does not reduce to a
semiclassical theory of quarks and gluons in the No — oo limit because the number
of quarks and gluons grows with Ng. Now it is easy to read the counting rules from
(2.10) for vacuum self energy diagrams: each vertex has an N factor and each
propagator 1/N¢; in addition, each colour loop has an N¢ factor. In the double
line notation and considering the diagrams as polygons glued to form surfaces, each
colour loop corresponds to the face of a polygon forming part of the surface and
each propagator (either quark or gluon) corresponds to an edge of one polygon (two
lines with arrows pointing in opposite directions are glued edges and count only as
one). With this, the order of a vacuum connected diagram is

Ny ETE = NX | (2.11)

where V stands for the number of vertices, E for the number of edges and F' for the
number of faces; and y is a topological invariant known as the Euler character. For
a connected orientable surface

X=2-2h—b, (2.12)

where b is the number of boundaries and h is the number of handles (or holes).
Of course one can directly use Witten’s counting rules [37] to obtain the correct
N¢—counting rules: each colour loop gives an N¢ factor and each interaction vertex
gives a factor 1/v/N¢ or 1/N¢ for quark—gluon and three—gluons or for four—gluons,
respectively. But with these rules the connexion with topology is more involved.
In the case of unconnected diagrams the order is the product of the order of each
connected diagram. For instance Fig. 2.2 has V =4, E =6 and F' = 3 giving y = 1,
correspondingly h = 0 and b = 1 and for Fig. 23 V =4, F = 6 and F = 4 giving
x = 2, correspondingly ~ = 0 and b = 0. A quark loop represents a hole and then
it gives a 1/N¢ suppression. The maximum Ng power we can reach is two and it
corresponds to h = b = 0, that is, connected vacuum diagrams with the topology of
a sphere. Let as see how Fig. 2.3 has indeed the topology of a sphere. Let us start
from a hollow sphere and cut it into two parts (two surfaces that can be chosen to
be equal); one of them can be flatten to a plane giving Fig. 2.2. In order to glue the
second surface we identify its center (or the “north” pole) with the border of a circle
with infinity radius; that is, this second surface is the full ®? plane with a circle
removed in its origin. Now we can glue the two surfaces to get Fig. 2.3. So order
NZ diagrams are planar diagrams consisting only on gluons (they can be drawn on
a sheet of paper without any gluon jumping on top of other).

If we are interested in correlation functions that depend on properties of quarks,
such as masses, our diagram must have at least one quark loop that, without lose
of generality can be pushed to the outermost edge. The leading diagrams with one
quark loop are of order N and have the topology of a hollow sphere with one hole
(the quark loop) on its surface, corresponding to h = 0 and b = 1. Then these
diagrams are planar diagrams with a single quark loop which forms the outermost
edge. An example of a subdominant diagram is Fig. 2.4: F =1,V =4, E =6 or
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>

Figure 2.2: Flat diagram in both the ordinary and double line representations.

Figure 2.3: Flat diagram with the topology of a sphere in ordinary and double line
representation.

h =1, b =1 corresponding to y = — 1. In general a gluon that cannot be drawn in
the same plane as the rest of the figure represents a handle and this corresponds to
a 1/NZ suppression.

(b) (©

Figure 2.4: An example of a non—planar diagram.

It is important that we have been able to express the order of a given diagram in
terms of a topological invariant, because this makes our results general, regardless
of the number of gluons present in the diagram. To close this section, let us review
the concept of the 1/N¢ expansion of QCD. In a perturbative expansion in terms of
the g coupling, each order corresponds to all Feynman diagrams having the same
number of loops, and it comprises a finite number. On the other hand, each order
in the 1/N¢ expansion corresponds to all Feynman diagrams with a given topology
described by (2.12) and it comprises an infinite number. This idea is sketched in
Fig. 2.5.
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Figure 2.5: Representation of the Feynman diagrams contributing to a given order
of the 1/N¢ expansion.

2.3 N¢g—counting rules for correlation functions

Using the counting rules derived for connected vacuum diagrams we can derive the
counting rules for correlation functions of quark and gluon composite operators.
We will concentrate on gauge invariant operators that cannot be split into separate
gauge invariant pieces. This requires, for instance, that quark operators must be
bilinear. We will use again the method of adding to the QCD Lagrangian external
sources coupled to these operators. We need to express Eq. (1.21) in terms of the
rescaled quark (and gluon) fields as in Eq. (2.9) and this adds an extra N¢ factor to
the source. We will add then to the QCD Lagrangian a source term as Ne J; () O; ()
where O;(z) is one operator written in terms of the rescaled fields and J;(z) is the
corresponding external source. Furthermore, the full extended Lagrangian again has
a global N¢ factor ensuring that the counting rule (2.11) still holds. To obtain the
correlation functions we perform the appropriate functional derivatives:

W (2.13)

J=0

L . 1 9 1 0
<0102 "'O"> " iINoOJ,  iNooJ,

from where it can be clearly established that each functional derivative (i.e. each
source insertion) implies a 1/N¢ suppression. The order N2 contributions to W (.J)
come from planar graphs with only gluons lines. They can contribute to correlation
functions of purely gluonic operators. Thus pure—gluon r—point correlation functions
are of order NZT’". If we want to calculate correlation functions involving quark
bilinears we will need order N¢ contributions from W (J) given by planar diagrams
with a quark loop in the outermost border as shown in Fig. 2.6. Thus r—point
correlation functions with quark bilinears are of order N, ". To obtain the counting
rules for correlation functions made up from non—normalized quark fields we have
to multiply the former result by N/ obtaining then that the order does not depend
on the number of quark bilinear insertions and it is equal to Ng.

We can use the Ngo—counting rules for correlation functions to derive the counting
rules for meson and glueball scattering. We have to require that both meson and
glueball are created with an amplitude independent of N¢ (that is equivalent to
making use of the LSZ formula). From now on, H; will denote a quark bilinear
operator and Gi a gluon operator, both expressed in terms of the rescaled fields
(2.9), that qualify as interpolating fields for mesons or gluons. Generically we can
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Figure 2.6: Dominant contribution to a 4-point correlation function involving quark
bilinears.

write a meson field as a colour singlet made up of quarks and anti-quarks:

NO N(j
1 ~ A
My = Zaarqa = +/N¢ anfcja = /N¢ Hry, (2_14)
=1 i=1

Ve &

where the quantum numbers of the meson are specified by the Dirac and flavour
matrix I and the factor 1/N¢ is included to make the probability of creating a meson
equal to one. The two point correlation function (G Gs) is of order unity and so G;
creates a glueball with unit amplitude. This could have been inferred from Eq. (2.9)
since the reescaled gluon field is not reescaled by N¢ powers. (Gy ... G,) is of order
NZ", thus an r—glueball interaction vertex is of order NZ ", and each additional
glueball gives a 1/N¢ suppression. The meson two point correlation function (ﬁl ﬁg)
is of order 1/N¢ and thus /Ng H; creates a meson with unit amplitude, as shown

in Eq. (2.14). The r—point correlation function (/N¢ H, ... v/N¢ H,) is of order

Néﬁ as well as the 7—meson interacting vertex, and each additional meson gives a
1/+/N¢ suppression. Mixed quark—-meson vertices with r glueballs and s mesons are

of order NCI;PE. All these counting rules are summarized in Fig. 2.7.

O (N2) 0 (Ne7F)

Figure 2.7: Ng—counting rules for the scattering of mesons (continuous line) and
glueballs (wiggly line).

One important result is that the pion decay constant F'is of order v/N¢ as can be
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read from Eq. (1.35) as this matrix element is of the type (NCI':Il \/N—C[:IQ) ~ v/N¢
where the first N factor is added to write the axial current in terms of non—
normalized quark fields and the second /N¢ factor to make the amplitude to create
a pion unitary.

2.4 Phenomenology and main results

The Ne—counting rules imply that one has a weakly coupled theory of mesons and
glueballs with a coupling constant 1/v/N¢. As a weakly interacting theory, one can
perturbatively expand in the coupling constant 1/v/N¢. The leading-order graphs
are tree—graphs, and the leading—order singularities are poles. QCD, a strongly
interacting theory of quarks and gluons has been rewritten as a weakly interacting
theory of hadrons. The leading N¢ interactions bind the quarks and gluons into
colour singlet hadrons. The residual interactions between these hadrons are 1/N¢
suppressed. The 1/N¢ expansion is also equivalent to a semiclassical expansion for
the meson theory.

The spectrum of the theory contains an infinite number of narrow glueballs and
meson resonances. They are narrow because their widths vanish as No — oo (as
their interaction vertices are 1/N¢ suppressed). There must be an infinite number
of resonances to match the logarithmic running of QCD correlation functions in the
high—energy regime (see Chapter 4):

[t e @ueo) = 3 qf—m (2.15)

where m; is the mass of the i—th hadronic resonance H; and it is ~ O(1), and
fi = (0| Q(0)] H;) is the decay constant of the resonance for the current ) , and it
is ~ O(v/N¢). This can be seen in Fig. 2.8. The same argument can be applied to
three—point Green functions, as shown in Fig. 2.9

(JT) =% (@) ! ®

Figure 2.8: Two-point correlation function in the large- N limit.
Other features ruled by the expansion are [35,37]:

1. Mesons are pure ¢q states, that is, one finds a suppression of the ¢g sea at
N¢e — oo ; suppression of exotic qqgq states.

2. Zweig’s rule is exact in the large—/N¢ limit, that is, mesons should be classified
as nonets rather than octets. The axial anomaly has disappeared and flavour
U(ns)r, @ U(ns)g has been restored.
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Figure 2.9: Three-point correlation functions in the large- N limit.

3. In the large-N¢ limit and under reasonable assumptions, U(ng)r @ U(ny)r,
symmetry must spontaneously break down to U(ny)y [12].

4. Meson physics in the large—N¢ limit is described by the tree diagrams of an
effective local Lagrangian, with local vertices and local meson fields. This fact
invites us quickly to think about the proper approach of the phenomenological
Lagrangians.

2.5 The 1/N¢ expansion in YPT

We can use the No—counting rules obtained in the previous sections to derive useful
results for the effective field theory of QCD at very low energies. It turns out to be
a useful source of dynamical information [35,38], in the sense that it comes directly
from QCD.

One can imagine computing the chiral Lagrangian by evaluating the QCD func-
tional integral with sources (quark bilinears) for the Goldstone bosons. We have
seen that the leading order diagrams contributing to correlation functions of quark
bilinears are O(N¢) and contain a single quark loop, Fig. 2.6. This implies that
the leading order terms in the Lagrangian are O(N¢). At the sight of this figure it
is clear that the leading order terms can be written as a single flavour trace since
the outgoing flavour quark in one vertex is the incoming flavour at the next vertex.
Similarly terms with two quark loops are O(1) and consist in two traces and those
with 7 loops have r flavour traces and are O(N}5").

Since in the large-N¢ limit the U(ns);, ® U(ns)g symmetry is restored, we have
nine Goldstone bosons which can be cast together in the matrix

40 1 L + +
a=0 V2 - 70 2 1
K K — /2 +

(2.16)

Let us concentrate first in the £, Lagrangian (1.54). It has a global factor F? that
translates into a global factor of N¢ and it is split into two terms, the kinetic and
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i Li(M,) | O(N¢) source LYo
2Ly — Ly | —0.6+0.6 || O(1) | Key, 7 — 7w 0.0
L, 1.4+ 0.3 || O(N¢) | Key, 7w — 7 1.8
Ls —3.5+1.1 || O(Ng) | Key, mm — 7w | — 4.3
L, —-0.3+£05 | O(1) Zweig’s rule 0.0
Ls 14405 || O(Ne) | Fx : F, 2.1
Ly —-02+£03 1| O(1) Zweig’s rule 0.0
Ly | -04402]| O(1) | GMO, Ls, Ls | — 0.3
Ls 0.9£0.3 || ONe) | My, Ls 0.8
Ly 6.9+£0.7 || O(Ne) (r2)T, 7.1
Lo —5.5+0.7 || O(N¢) T evy —54

Table 2.1: Experimental values of the coupling constants L](M,) in units of
1073 [35]. The fourth column shows the experimental source employed. Predictions

in the large-N¢ limit are obtained in the one-resonance approximation working
within U(3) ® U(3).

the mass term. Since (gg) = No(H;) ~ O(N¢) then By ~ O(1) and both terms in
(1.54) are O(N¢) as it corresponds to the fact that we have a single flavour trace.
The u matrix has an expansion in powers of 7/F and so each additional meson field
has a factor 1/F o 1/1/N¢ as required by the Ng—counting rules. The Lagrangian
(1.54) has an overall N factor and the u matrix is N¢ independent, so the 1/N¢
expansion is equivalent to a semiclassical expansion. Graphs computed using the
chiral Lagrangian have a 1/N¢ suppression for each loop as it implies an additional
quark loop. It is reflected in the fact that each chiral loop in accompanied by a
1/(47F)? factor.

Let us have a look at the £, Lagrangian (1.62). The terms with a single trace,
L; 5 5.9 should be O(N¢) and those with two traces Ly 9 467 should be O(1). However
due to the Cayley—Hamilton relation for three flavours we can write

(upuy utu”y = —2 (uy u u, u”y + 3 (up w2+ (g u,) (Ul u”) (2.17)

The correct statement is then that L; and Ly are O(N¢) but the linear combination
2 Ly — Ly is O(1). The full set of predictions is shown in Table 2.1.
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2.6 Resonance Chiral Theory

2.6.1 General considerations

Already in the 50’s and 60’s, it was realized that in pion—nucleon scattering processes,
for certain spin—isospin channels, peaks of probability showed up. Of course these
peaks where pinning down the existence of a resonance as an intermediate state,
and in the frame of the quark model it was given a gq content.

The aim of this section is to find an effective theory with these resonances as
active degrees of freedom. The energy region where these resonances play an essential
rijsle is m, < E < 2GeV. Tt has been already pointed out that at this range of
energies the only known expansion parameter is 1/N¢, and in this framework it was
discussed that we can describe the physics by means of effective Lagrangians with
hadronic degrees of freedom. In fact, at leading order in 1/N¢ we will only consider
tree-level diagrams given by terms with only one trace.

We have learned how to deal with theories suffering spontaneous breakdown of
symmetries, and so we know how to parametrize the Goldstone fields. On the other
hand, the U(ny), @ U(ns)r symmetry is restored and our resonance fields, as for the
Goldstones, will be grouped in nonets rather than octets and singlets. The resonance
fields do not know anything about the underlying chiral symmetry, and so they
must have well defined transformation properties under the Uy (3) subgroup. The
fundamental work to develop this Resonance Chiral Theory (RxT) was performed
in [13].

But the r'ij)%le played by RxT is not only to describe the hadronic physics at the
scale where resonances manifest themselves as active degrees of freedom. It will be an
essential link between the very low—energy regime ruled by yPT and the high—energy
regime ruled by the Operator Product Expansion (OPE). Since RxT is supposed to
describe correctly physics at all energy regimes, we can find relations that must be
satisfied by their parameters in order to match the asymptotic behaviour of QCD
at high energies (RxT is not QCD for arbitrary values of its parameters). After a
functional integration of the resonance fields (that is, restricting the energy below
the lightest integrated resonance) we recover the yPT Lagrangian structure, but
with predictions for its couplings in terms of the Rx'T parameters, those constrained
by the asymptotic behaviour. So we can link the high— and low—energy regimes of
QCD, and the missing link is precisely RxT. This matching procedure and functional
integration can be better understood using the language of path integrals (1.26) and
(1.46) :
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e'? = /DquDG#eifd4IEQOD

B / Du || DViDA; DSy DPF DB, e’/ '+ Erxr(lisd; SeFi.Bn)

i!j’q’l’m:]‘

= /Du et/ d'e Lypr(u) (2.18)

where V, A, S, P and B represent the vector, axial-vector, scalar, pseudoscalar
and pseudovector resonance fields, respectively. As a last comment, although the
large—N¢ behaviour of QCD predicts an infinite number of resonances for any given
set of quantum numbers, in most cases one only deals with the first multiplet, what
is known as the Single Resonance Approrimation; or if instead we take the mini-
mum number of resonances in each channel such that we fulfill all the short distance
requirements, the approach is known as the Minimal Hadronic Ansatz (MHA). Deal-
ing with the infinite tower of resonances is complicated because their couplings are
not a priory determined by QCD, and moreover, phenomenology supports the MHA
approach. If we are far from the resonance pole, its influence is suppressed by the
inverse of its mass.

2.6.2 The RxT Lagrangian

As discussed previously, the transformation properties of the resonance fields under
the chiral group must ensure that they transform as nonets under the vector sub-
group. The nine resonance fields are then grouped together in an U(3) matrix, and
for instance, for the first multiplet of vector mesons it takes the following form :

8
1
Viw = — E V5, =
g ﬂa:O 8

G Jas e p* K
T N YT
K* F*U — %U}g + \/%U)g w

where instead of the more familiar Proca formalism, we have used the antisymmetric
one, to be discussed in Appendix C. This formalism will be used throughout this
thesis for the spin—one resonance fields, unless otherwise stated. There are many
possible ways to transform the resonance fields that lead to the same transformation
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under the vector group, we give some examples

( 9.V gk
9. Vgl
h(g,®)V g
V- (9, 2) gRT : (2.20)
gLVh(g;(b)
h(g, @)V h(g, @)
\

but it can be shown that all of them are equivalent after a field redefinition. Working
as we are in the u-basis, obviously the most convenient choice is R — h(g, ®) R h(g, ®)'.
The RxT Lagrangian can be split in two parts:

Lryvr(u,V,A, S, P,B) = L, pr(u) + Lr(u,V,A,S,P,B). (2.21)

The first is the xPT Lagrangian describing the dynamics of the Goldstone bosons
among themselves, but with different coupling constants, and the second contains
the coupling of the mesonic resonances R(J7%) of the type V(177), A(1*F), B(177),
S(0**) and P(0™") to the Goldstone bosons. At this point a comment is in order:
the values of the chiral LECs in [ﬁXpT depend on the specific choice of the formal-
ism for describing the spin—one resonance fields. Thus these LECs lack of physical
meaning but are nevertheless necessary to ensure that the theory complies with the
short—distance behaviour.

The discrete transformation properties of the fields describing the resonances are
depicted in Table 2.2. Now using as building blocks the resonance fields plus the
chiral tensors of (1.51) we have to write the most general Lagrangian being invariant
under the U(3);, ® U(3)g group and the discrete transformations P and C (and of
course being hermitian and Lorentz invariant). Of course the problem now is that
there are an infinite number of terms and we do not have a perturbative expansion
in small momenta; so terms with many derivatives are not suppressed with respect
to terms with less derivatives. However, if we want this Lagrangian to describe the
high—energy regime, it cannot have many derivatives (at high energies form factors
and Green functions vanish) and this limits the number of operators drastically. The
usual way to proceed is to write those pieces of the Lagrangian needed for a given
goal. In this section we provide the pieces necessary to calculate all the two—point
Green functions yielding at the same time upon functional integration the chiral
LECs of £4. These consist of the kinetic terms for the resonances (those are bilinear
in the resonance fields) plus terms linear in the resonance fields times an O(p?) chiral
operator involving only Goldstone fields and external sources:

Lr= >  A{Lw(R) + L:(R)}, (2.22)

R=V,A,S,P,B
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with kinetic term '

1 1
— §<VARMV,,R”“ — §M§ R, R"™), R=V,A B |,

1
Liin(R) = 3 (VFRV,R — MjR*), R=SP |, (2.23)

where Mp is the corresponding mass in the chiral limit. The interaction term is
given by

VAT = SV ) + SVl ) + VIR mu{Viu ¢,
LA = S (A ).

Lo[BAM)] = iV2F] mp(Bu t") + % (Buv frap) e + G—\/g (Buw ta ug) 7,
LISO )] = calSupu) + cm (Sxs)

LoP(0H)] = idm(Py ), (2.24)

where all coupling constants are real. The interactions of the B(177) resonances
were first introduced in Ref. [39] and the interactions with tensor sources in Ref. [26].
The interaction of the V' (177) with tensor sources was first introduced in Ref. [40].
It is remarkable that in the Proca formalism the B(17 ) resonances decouple from
vector sources:

FB <A FB ~
5 By fea >5W“5 - 7<V B, fia >gﬂ”a5 2.95
WN2mp \ " Fros 2v2mp \ " Fras ( )
. FB <A . FB >
= - —(B,V a>5’“"15:—17<By as U >5’“’“6,
2V/2mpg ul+es 42mp [fﬂl g

where BW = VMB,, — VVBM and Bu corresponds to the Proca field. Apart from inte-
gration by parts, in the last step we have used the first Bianchi identity, Eq. (1.70).
From a physical point of view this fact can be easily understood, since the matrix
element (0 |V,%(0) | b°(p, A)) is identically zero.

2.7 Functional integration of the resonances

It is a common lore to believe that the dynamics of the Goldstone bosons is largely
affected by the existence of the lowest mass resonances. Much as happens in the
Fermi theory, at energies well below the pole of the corresponding resonance, we can
substitute its propagator by a tower of local operators involving only light degrees
of freedom. Since the lowest order yPT Lagrangian Lo (1.54) is universal, it cannot
receive any influence from heavier degrees of freedom. Then we expect that the

I This kinetic term includes an interaction due to the covariant derivative.
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Table 2.2: Discrete transformation properties of the resonance fields.

o P C |hec
Vo | V| =V |V,
A | —Am | AT | A,

s | s ST | s

p| -pP | P | P
Bu | —B" | — B, | Bu

resonances will give a contribution to the LECs appearing at higher orders in the
chiral expansion, namely £; and Lg. Of course, the formal procedure is to perform a
functional integration of the resonance fields in the generating functional (2.18). In
the large—N¢ limit and after imposing that Rx'T matches the known short-distance
behaviour, one can demonstrate that for almost all the cases, the LECs of yPT are
fully determined by the resonance exchange; this phenomenon is known as resonance
saturation.

In this section we will express the chiral LECs involving tensor currents in terms
of the RxT parameters. In order for that, one must only integrate out the vector
and pseudovector fields and pick the operators containing at least one tensor source.

We outline the general procedure. One can reexpress (2.24) for vectors and
pseudo—vectors in the following way :

Ly = (Vo JJ)y + (B Jg' ), (2.26)
The equation of motion then reads

VIV VS = VIV VI + my VY = =201,
VEVLBY — V'V B + my BY = —2J4. (2.27)

We can solve this equation iteratively and find the classical solution :

v 2 v 2 av v « 1
Vi = _—m%/ J + —m%/ (VEV I = VIV o M) + O (—m%) ,
B o= 2wy i(wv Jo — V'V I8 + O L (2.28)
. AT A e )

when substituting back in (2.24) we find the effective Lagrangian :

1 1 1
Lot = =V Ty + BY Jpu) = — —5 (J¥ Jvw) — —5 (J5 Tpuw
ff 2<cl Vu"‘ cl Bu> m%/<v Vu> m2B<B Bu>

2 2 1
- — (VE Ty Vo dy") — — (VFIBu Vo dg") + O<—6> (2.29)
my, mp
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So considering terms having at least one tensor field we find (we only expand to
1/mf those terms needed in this thesis) :

FyFp  FyFT 2i FgGy  2i FLGy
['e = — Vt’“’ _ to o,V
2 T\2 inz 4(F$)2 o av
+2 [Fp = (F))?] (tyw t) — 7 (V' Vat$”)
4 F? . 2 Fy FY .
+ M%B (VHt_p Vat™) — M{”/V (VH fr Vaty”) . (2.30)

By comparison with the yPT Lagrangian of [23] shown in Eq. (1.62) and Table B.1
in Appendix A.2 and defining the chiral LECs as L; = L; + L one concludes that

\r_ (FuFe _EEL\ o (2FLGy  2FyGu
b MB MV , 2 MV MB ’
4FT2
AF = 2[F2— (FIY), of =0, of = 20
M
4 F2 QFVFT
Q%:F;f’ Qﬁz—Mi‘%V, HfEg = 0. (2.31)

Of course with (2.24) we cannot saturate all the LECs appearing in Lg of [23]. For
these we would need to consider terms with more that one resonance.

To end with this subsection and for the sake of completeness we review the results
obtained for the LECs of £4 not involving tensor sources [13]:

i i Lo 3G d
8 M2’ AME AME T 2M2
L, =0 L, = S46m Ls = 0
4 = 5 5 = ) 6 — 5
Mg
C72n d72n FvGV
Lz =0, s =532 o = 2
S P 1%
F2 F? F2 F? c d2
Ly=-—%2 4+ 4 H=-—Y _ 4 g =7 4 ™ (239
AIMZ A SMZ ~ 8M? MZ MR

2.8 Odd-intrinsic—parity sector

If one wants to calculate three-point Green functions it is not enough to use the
Lagrangian depicted in (2.22). One then would need terms consisting in two reso-
nance fields plus one O(p?) chiral operator and terms linear in the resonance fields
times one O(p') tensor operator |typically this is achieved with the product of two
O(p?) chiral operators|. But this is not the only reason to go beyond the (2.22)
Lagrangian. If we want to determine the O(p®) LECs in terms of the resonance
parameters, one might think that the procedure is simply to use Eq. (2.29) up to
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the O(My*) order. However this is not enough, since the complete set of O(My?)
operators is not totally rendered by the second order expansion of (2.22): one gets
contributions of the same order precisely from the terms needed to calculate the
three—point Green functions. The full set of operators needed to saturate the even—
intrinsic-parity sector O(p®) LECs not involving tensor currents can be found in
Ref. [41].

For the phenomenological studies performed in this thesis, the only three-point
Green function that we need to study in the framework of RxT is the (VVP).
This function belongs to the odd—intrinsic—parity sector of QCD, and then upon
functional integration it saturates the O(p®) LECs corresponding to this sector [33].
We remind the reader that the first contribution to the odd—intrinsic—parity sector
of the chiral Lagrangian is the WZW anomalous term, and it is O(p*). This term is
universal and does not receive any contribution from resonance exchange. Moreover,
it must be explicitly included in the odd-intrinsic-parity RxT Lagrangian.

The contributions to the odd—intrinsic—parity sector consisting only on one mul-
tiplet of vector meson resonances was first worked out in Ref. [42] and we review
here its expression. As we shall see, with only one multiplet of vector meson res-
onances, one fails to reproduce at the same time the OPE and Brodsky-Lepage
constraints. Within the antisymmetric formalism, it consists of an independent set
of odd—intrinsic—parity operators which comprise all possible vertices involving two
vector resonances and one Goldstone (VVp), and vertices with one vector resonance
and one external vector source plus one Goldstone (VJp). The basis reads:

VJp terms
O\I/Jp = Cuvpo ({ve, ia}vaua> ; O%/Jp = Cuvpo ({vre, ia}vauu> )
Oin = Cuvpo <{VW: J,;(,} X- > ) OéJp = ieuww < Vi [ffga X+] > )
O?]Jp = €upoe ({VaV", [1}u7), O?/Jp = €upo ({VaV', 71 0"),
OZ/Jp = 6/JI//)O' < {VUVMV, ia} ua) ) (233)

VVp terms

Oty = €uvpo ({V" VIV ), Ok = i€upe ({V*, V7  x2),

VVp

Ol = €upr ({VV, VPR O = € ({VIV?, V" b ) (2.34)
And the Lagrangian has then the following form:

odd
»CV = »CVJP + ['vvp )
7

4
Z Cq a o
Eva — M—V OVJP 9 EVVP — E da OVVP . (2-35)
a=1

a=1

For the computation of the (V' P) Green function one can also consider the inclu-
sion of a multiplet of pseudoscalar resonances. As we shall see in Section 5.2.3, if
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one considers a multiplet of vector and pseudoscalar resonances only, one cannot
simultaneously match the OPE behaviour and the Brodsky-Lepage condition. For
the sake of completeness we give its expression here. We now have to consider odd—
intrinsic—parity operators comprising all possible vertices involving two vector and
one pseudoscalar resonances (VVP), vertices with one vector resonance, one external
vector source and one pseudoscalar resonance (VJP), and vertices with two vector
external sources and one pseudoscalar (JJP).

OVJP = Euvap <{fﬁya VQB} P> ) OVVP = Euvap <{VMV, Voz,@}p> )
Ossp = et <{ w iﬁ} P> . (2.36)
Finally we consider the Lagrangian including two multiplets of vector meson reso-

nances, p and p’.

Fy F

Eeven _ -V V;w ,
14 2\/§< 1 f+lt> 2\/—

7 !
. ct
£ = E: Lt Y0 E:d(’)
v le vigp T 2 My, = VeIP + ViVi P

+Zd Obvup + Z dy O%vp + dy OL o, (2.38)

n=a,b,c,d,e

(VI fi ) (2.37)

Operators Oy,;p and Oy,y,p were already given in Eqs. (2.33) and (2.34) and for
the last part of the Lagrangian there are two subsets of pieces [43]:

e V115 P terms, which contain vertices with Goldstone and two vector resonances
from different multiplets :

€/1V2P = 8!“’["7 <{‘/1/JVJ ‘/Qpa} Vau0'> ) OV1V2P - Epupa' <{‘/1/Ja, ‘/—Qpa} VQUV> s
€/1V2P = Euvpo <{Vozvllwa VQM}UJ> ) OV1V2P = Euvpo <{Vavlﬂa: V2pa}uy> )
O%VQP = glﬂ/PU <{VU‘/1#Va ‘/2[)(1} ua> . (239)

e V115 J terms, with two vector resonances from different multiplets and one
pseudoscalar external source :

O‘f/1V2J = igMVﬂU <{‘/1#V7‘épa}x—> . (240)



Chapter 3

The 1/N¢ expansion I1: Baryons

3.1 Introduction

Baryons are colour singlets made up of quarks (no antiquark). Since in the SU(N¢)
gauge group the LeVi*CiVit'llj)% symbol has N¢ indices, a baryon is an Ng—quark
state,

B = # €iris.ing €147 ¢ (3.1)
Quarks forming a baryon have all different colours, since the indices of the e-symbol
must be all different for it to be non—zero. Since quarks are fermions they must obey
Fermi-Dirac statistics; the e-symbol is totally antisymmetric and hence the baryon
must be completely symmetric in the rest of quantum numbers: spin and flavour.
Baryon masses grow linearly with N, and hence they become infinitely heavy
for No — oo. For massless quarks, the only dimensionful parameter of QCD is
Aqcn, hence

MB ~ NC AQDC . (32)

The number of quarks in a baryon grows as N does, but its size is governed by
Aqcp, which is O(1). Therefore baryons become more and more dense as N¢ grows.
The 1/N¢ expansion for baryons will give us a deep connexion between QCD and
two popular models: non-relativistic quark model and Skyrme model.

For the elaboration of this chapter I have followed Refs. [11,14,44].

3.2 Counting rules for baryons

Let us draw a propagating baryon as N incoming lines with colours arranged in
order, 1 --- N¢, and the outgoing N quark lines as a permutation of 1 --- Ng. Let
us first concentrate in the counting of the baryon propagator. It is convenient to
derive the counting rules for connected diagrams. For this purpose, the incoming
and outgoing quark lines are to be treated as ending on independent vertices, so that
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Figure 3.1: Self-interaction of a baryon and its connected piece.

the connected piece of Fig. 3.1 (a) is Fig. 3.1 (b). A connected piece that contains n
quark lines will be referred to as an n—body interaction. The colours of the outgoing
lines in an n-body interaction are a permutation of the n incoming quarks. One
can relate n quarks connected graphs for baryons interactions with vacuum planar
diagrams with a single quark in the outermost edge, by cutting the quark loop in n
different places, and setting the colour of each quark line with that of an incoming
(outgoing) quark in the baryon. Curiously, dominant “planar” diagrams are not
necessarily flat when written on a sheet of paper.

An n-body interaction is of order N, since planar quark diagrams are of order
N¢ and n index sums over quark colour have been eliminated by cutting n fermion
lines. But there are No(N¢—1) -+ (Ny—n+1)/n! ~ O(N{) ways to choose n lines
out of N¢ quarks, and so the net effect of an n—body interaction is order N¢ for any
n. Diagrams with m disconnected pieces are of order N, and this should not be
surprising. Since the baryon mass increases with N, baryons are very heavy and
we can concentrate only on their static properties. In particular baryons are always
in their rest frame (pp = 0), and so the propagator we are looking for reads

M3 t?

e” Mt — 1 — Mgt — + o (3.3)
where the 1 corresponds to the quarks propagating without interactions. So, since
Mp ~ O(Ng), each term has a different N¢ scaling and corresponds to the contri-
butions with different numbers of disconnected pieces.

The Ne—counting rules can be extended to baryon matrix elements of a colour
singlet such as ( B|gI'q| B). It has N¢ terms because it can be inserted in any of the
quark lines, as shown in Fig. 3.2. In general we will assume (B |gl¢|B) < O(Ng),
because cancellations among the different insertions can occur. In general, an n—
body operator has matrix elements < O(NZ).

With the previous result we deduce that the baryon—meson coupling (Fig. 3.3)
constant g is < \/N¢, since the normalized interpolating field for creating a meson
is 1/v/N¢c @Tq. The baryon-meson scattering amplitude is < O(1). Two possible
contributions are shown in Fig. 3.4: the two mesonic operators must be inserted into
the same quark line, diagram (a), to preserve energy (the baryon is static and hence
it remains static after the interaction takes place), or a gluon must be exchanged
between the two lines, diagram (b). In general the amplitude for Baryon + meson —
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Baryon + n mesons is < Nél_"w, and hence each meson insertion is accompanied
by a 1/4/N¢ suppression factor as for the purely mesonic sector.

®

&

Figure 3.2: Baryon matrix elements of a one-body interaction and a two-body

interaction.

Figure 3.3: Diagram of baryon-meson coupling.

BN |

(@ (b)

Figure 3.4: Diagrams for baryon-meson scattering.

An observation due to Witten is that the Ng—counting rules derived in this
section are the same as in a field theory with coupling constant 1/v/N¢, where
mesons are fundamental fields and baryons are solitonic solutions.

3.3 Consistency conditions

The simplest way to derive the non—trivial consistency conditions is to consider
baryon—meson scattering at low (fixed) energy, in the chiral limit, and derive the
conditions for pion—nucleon couplings. The only assumptions needed are that both
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Figure 3.5: Momentum of the particles involved in pion—nucleon scattering.

the baryon mass and g4 are of order N¢, as they are, since that is the counting for
one-body operators.

One can extend the formalism of yPT in Chapter 1 to accommodate also baryons.
We are not going to discuss the details here, but quote the needed elements. Since
we are considering static baryons our Lagrangian will have only one baryon and
one antibaryon field. The most general such Lagrangian with the lowest number of
derivatives is (two flavours) [45]

_ - , o,
Lp = W(iD—M—i-g?A%%u”)\II =V [UD—M+Q?A%7525’ (af— ‘]L;r )}\Il,
(3.4)

where t! = 0%/2 and ¥ is a column matrix with the proton and neutron Dirac fields.
With this Lagrangian we can study the axial-vector matrix element of nucleons and
also the pion—nucleon vertex. After relating them we get:

(B|qty,vsq|B) = ga¥ (t'y,75) ¥ ~ O(Ne),
ot i Vri — i

waN:—T<B‘qt%75Q‘B>N—?<B‘qt7’Y5Q‘B>a (3.5)
The pion—nucleon vertex is order v/Ng, as stems from the counting for F' and g4,
already discussed. The baryon acts as a heavy static source for the scattering of
mesons at low energies. The absorption of the incoming meson by the heavy baryon
results in an intermediate baryon state which is off-shell by a four-momentum of

order unity. The momentum of an intermediate meson can be written as

P=Mv+k= M, (3.6)

where v is the velocity of the incoming baryon (and hence v? = 1) and k is the
incoming pion momentum. The M v piece is O(N¢) while k is order one, so the

intermediate baryon four velocity

W=+ O (]\%) | (3.7)
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is equal to the initial baryon four—velocity in the large— N limit. So recoil effects are
of order 1/N¢ and can be neglected. In this limit, the incident and emitted mesons
have the same energy, since there is no transfer to the infinitely heavy baryon, but
the three-momentum of the meson changes in the scattering process. Using the
heavy—quark techniques, we can write the heavy baryon propagator as

(1),

which does not involve the baryon mass and is manifestly O(1). In the rest frame of
the baryon v = (1, 6) the propagator projects out the two large components of the
baryon Dirac spinor, and Eq. (3.8) reduces to the non-relativistic propagator i/FE,
with F the initial and final meson energy. As shown in Eq. (3.5) the time component
of the axial-vector current between two nucleons at rest vanishes (non-relativistic
reduction). We then define

(B|qt*y' vq|B) = gNc(B| X" |B), (3.9)

where ( B| X% | B) and g are O(1). The coupling constant g has been factored out
so that the normalization of X can be chosen to simplify future expressions. Since
the non-relativistic reduction allows us to write matrix elements in terms of the two
component spinors, | B) on the right-hand side represents one of the four possible
states p', p*, n' and nt, and X% is a 4 x 4 matrix defined upon those states, that
has a finite No — oo limit :

] ) Xia Xia
X = Xie ¢ L4 T2 3.10
0 NC Ng 3 ( )
N . ~ _ N -
N ~ _ - AN e
b 1/ Tl g AN re

Figure 3.6: Diagrams for the baryon-meson scattering. The third diagram is sup-
pressed by 1/Ng¢.

The leading contribution to pion—nucleon scattering is from the pole graphs in
Fig. 3.6, which contributes at order F provided the intermediate state is degenerate
(same mass) with the initial and final states. The scattering amplitude for the
process (k) + B(q) — (k') + B'(¢') is:

Ne g°

— ik R O

(B'|[X", X"]|B), (3.11)



70 The 1/N¢ expansion II: Baryons

Apparently this amplitude is O(N¢) and it violates both unitarity and the power
counting rules derived in Section 3.2. This means that large-No QCD with a mul-
tiplet of nucleons with I = J = 1/2 is an inconsistent field theory unless some nice
cancellation occurs. There must be other intermediate states that cancel the Ngo
order of Eq. (3.11) to make it O(1). This leads to the consistency condition, derived
in Refs. [46, 47|

[Xie, X < 0 (N%) , [Xga, ng] — 0. (3.12)

Since X is an isospin triplet spin—one operator it must satisfy the following algebra
relations

[Ji; Xﬂ)} = ieiijkb; [Taa X’Lb} = ifachéca
(T T"] =i fu T° , [T, ] = e J". (3.13)

In general we can consider the case of n; flavours. Eqs. (3.12) and (3.13) constitute
a contracted SU(2ny). algebra. It is useful to compare the SU(2ny). algebra with
the SU(2ny) algebra. The only new relation is
(G GI'] = —— e 0ap J* + = Fare O3y T + = €15 dape G (3.14)
2n; 1 2

Then we can identify

(3.15)

that accurately reproduces Eq. (3.12), and is known as the contraction of a Lie
algebra. The usual spin and flavour algebra of baryons is then extended to a spin—
flavour algebra in the large-N¢ limit when X is included in the algebra. Note
that a spin—flavour symmetry which mixes internal and space—time symmetries can
emerge for large- N baryons because the baryon field is static in the large— N limit.
Then there is no violation of the Coleman—Mandula theorem [48], since the baryon
is non-relativistic. While we have just shown that the large-Ng limit of QCD has
a contracted SU(2n;) symmetry in the baryonic sector, we have not shown it for
finite N, and there is no reason to believe this is true (even if the quark model
does).

It is easy to show that the large—N¢ predictions for the pion—baryon coupling ra-
tios are the same as those obtained in either the skyrme or the non-relativistic quark
model, because both models also have a contracted SU(2ny) algebra in this limit.
There are then two natural approaches to the study of the spin—flavour algebra of
baryons, two different explicit representations of the No — oo SU(2ny),. algebra.
One can solve the consistency conditions by constructing the irreducible representa-
tions of the SU(2ny). algebra, using standard techniques from the theory of induced
representations, that can be shown to be infinitely dimensional. This is very closely
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related to the Skyrme model. One can also construct solutions considering N an
odd and large but finite number, using quark operators (quark representation), an
approach that is closely related to the non-relativistic quark model. Basically, as
we will see, the solution to the consistency conditions allows to express the ma-
trix element of a QCD operator in terms of unknown coefficients and operators of
the contracted algebra. Whereas the Skyrme representation uses X as the spin-
flavour generator, the quark representation makes use of G*®. The operators X{
and G'/N¢ only differ at subleading powers of 1/N¢, and so, to a given order in
1/N¢ results expressed in both basis only differ by higher order 1/N¢ corrections.
In this thesis we will concentrate on the quark representation.

3.4 Large—N¢ baryon representations

Figure 3.7: SU(2ny) representation of the ground state baryons. The Young tableau
has N¢o boxes.

We will discuss briefly the irreducible representations of the ground-state baryons
for an arbitrary number of flavours n; in the quark representation. The totally
symmetric representation for SU(2ny), Fig. 3.7, has baryons with spin %, %, o %,
transforming as the flavour representations shown in Table 3.1. For n; = 2 states
can be identified by its spin and isospin as I = J = %, %, ce % For three flavours,
weight diagrams look a bit complicated. We show in Fig. 3.8 an example for spin %
In general, weight diagrams for spin .J have one edge with a = 2.J + 1 weights and
another with b = (N¢+2)/2— J. The dimension of the irreducible representation is
ab(a+b)/2. The multiplicity starts by one in the edge of the polygon and increases
one unit as we move inwards till we reach the shape of a triangle. From that moment

on multiplicity remains constant.

3.5 Quark representation

In this section we present the explicit realization of the SU(2ny) algebra in the
quark representation and express the QCD matrix elements in terms of the algebra
operators. In this representation ¢ does not denote the QCD fermionic field, but an
annihilation field. These fields do not depend on position (since the spatial depen-
dence of the quark wave function is irrelevant for the computation of static baryon
matrix elements of the ground state baryons) and follow commutation relations (an-
tisymmetry is carried by colour quantum number). The quark field has three labels,



72 The 1/N¢ expansion II: Baryons
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Table 3.1: Decomposition of the =+~ representation. All Young
tableaux have Ng& boxes.

corresponding to spin (i, j), flavour (o, 8)' and quark line (I, m):
G, all] = 007 b (3.16)

The SU(2n;) algebra generators are

Ne i

J = "N=o1 1,0
;(ﬂ<2®>ql; (1,0)
Ne

T =) g (1et)a, (0, adj)
I=1

G = ;qf <5 ®t"> @,  (1,adj) (3.17)

where in brackets the transformation properties under the spin and SU(ny) sub-
groups are shown. The notation we are following is

¢'(A® B)q = ¢ AY BY qé . (3.18)

It is immediate to demonstrate with the help of Eq. (3.16) that operators (3.17)
fulfill the algebraic relations (3.13) and (3.14). It is important not to confuse the

!The spin and flavour indices in the fundamental representation are not to be confused with
the indices in the adjoint representation of the algebra generators.
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Figure 3.8: Weight diagram for the spinf% representation. In this particular example
N¢e = 17. Numbers denote the multiplicity of the states.

one-body operator G* with the two-body operator J: T
. Ne ot
6t = >d (o)
=1
Ne i
JT = f—
> (d G a

I,m

) (af t" qm) - (3.19)

The static baryon matrix element of a QCD m-body operator can be written as
a 1/N¢ expansion in terms of products of operators in Eq. (3.17) times incalculable
coefficients:

1 ; o]
Bop = N3 e () (T (G 1o (3.20)
n,lk ¢

The N7 prefactor appears due to the fact that an m-body operator has matrix
elements of order < NZ'. The 1/NJ factor is present because each generator is
accompanied by a 1/N¢ factor. The expansion (much as happens with the OPE, to
be discussed in Chapter 4) includes only operators transforming in the same way as
the QCD operator under the SU(2)® SU(ny) group. The coefficients ¢, parametrize
the unknown non-perturbative QCD dynamics, and admit an expansion in 1/N¢
starting at order one. For finite No the sum on n runs for 0 < n < Ng. The
subleading terms in ¢, are generated by non—planar diagrams or quark loops. Let
us discuss Eq. (3.20) for a one body operator. Then n = 1 corresponds to the
insertion of the operator on the different quark lines, n = 2 would correspond to the
insertion of the operator plus one-gluon exchange, n = 3 two gluon exchanges, and
so on. Each exchange brings a 1/N¢ factor from the two couplings, and this justifies
the 1/N factor.

Matrix elements of the J* operator are in general of order N¢, but we will assume
that physical baryons have spin of order unity. However, matrix elements of 7% and
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G operator are in general of order Ny and in principle, even for spin values of
order one, their value can be of order Ns. For two flavours, I = J and then we it is
straightforward to have order unity matrix elements for the I* operators.

At first sight all terms in the expansion (3.20) are equally important, since an
n—body interaction has a coefficient of order 1/N/ and matrix elements of n—body
interactions are of order NJ. So it seems that we cannot truncate the series and
hence we do not have any predictive power. However for baryons of spin O(1) oper-
ators with polynomials containing more factors of J are systematically suppressed
in 1/N¢ and the operator expansion can be truncated at various orders in the 1/N¢g
expansion. In addition there are operator identities which allow one to simplify the
general expansion (3.20) and drop certain terms as subleading in 1/N¢. The 1/N,
expansion for low spin baryons is predictive because not all spin—flavour structures
appear at a given order in 1/N¢.

3.6 Operator identities

Before entering the discussion of the operator identities, let us write the SU(2ny)
generator properly normalized. If we want the algebra matrices of the group A“ to
satisfy, as usual, Tr A*AP = 1648 and our spin ;' and flavour ¢* matrices satisfy
Trj'j7 = 16" and Tri"t" = £ 6, respectively ?, we have to write A% as

jel A
Y J _) Y
VI VI
1® ¢ ., I
V2 V2
V2(5'eT),  G™—V2G™, (3.21)

that corresponds to rescale the quark representation operators as shown in Eq. (3.21).
Only symmetric products (anticommutators) of baryon spin—flavour generators oc-
cur, because antisymmetric products (commutators) reduce to linear combinations
of lower-body operators by the SU(2ny) Lie algebra relations. Not all of the n—th
order operator products correspond to independent operators. Let us discuss the
identities among the different operators.

We can write n—-body operators in to different ways: as the multilineal product
of several one-body operators (the algebra generators) or as the normal-ordered
product of this multilineal. The former case reads

o" = M(J',T* G™), (3.22)
with M an n—grade monomial; the normal-ordered product reads

o t (i1a1)...(tnn) i1 inQn
O = G5, Gop Tip1) Gy T -0 (3.23)

’In the following, indices A, B, ... will denote adjoint SU(2ny) indices, a, b,... SU(ny) and
i, 7,... spin indices.
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In this case each quark operator acts on a different quark line, and that is why we
have omitted such label, and then the order of the creation of annihilation operators
is unimportant (they commute because the quark line label is always different). T
represents a spin and flavour tensor, and independent n—body operators correspond
to tensors completely symmetric and traceless. It must be totally symmetric be-
cause it acts on ground state baryons, that are completely symmetric (any tensor
with mixed symmetry vanish identically upon actuation on a baryon) and traceless
because non—vanishing traces reduce to lower-body operators.

Baryon matrix elements of operator products of the spin—flavour generators are
easy to evaluate, but the classification of independent operator products is nontrivial.
When operators are written in normal ordered form, it is not easy to identify the
spin and flavour quantum numbers of the operator and baryon matrix elements
are not simple to calculate. However it is straightforward to identify redundant
operators, since they correspond to tensors with non—vanishing traces (they reduce
to lower—body operators) or non completely symmetric (vanish on the ground baryon
representation).

The general structure of the identities is that certain m-body operators can be
reduced to linear combinations of n—body operators, where m > n. Since n-body
operators acting on an N¢ baryon state are generically of order NJ& the coefficient
of the n-body operator is typically of order N7 ~". The operator identities have
an elegant group theoretical structure, written in terms of SU(2n;) invariants, and
have been derived for an arbitrary number of flavours ny.

3.6.1 Zero— and one—body operators

There is only one such operator, the identity operator 1, having matrix elements of
O(1). It transforms under SU(2) ® SU(ny) as a singlet. There is no identity at this
level.

The one body operators transform under SU(2ny) as the tensor product of a
quark and antiquark representation :

(i@D):Hadj:HT;, (3.24)

where T is a traceless tensor transforming as the adjoint representation. There is
then only one identity at this level, and it is the trivial identity

Ne
¢'¢ =) afa = Ne1, (3.25)
=1

stating that ¢'q is the number operator. This identity must be understood as acting
on a baryon state.

An important result of Ref. [14] is that the only non-trivial operator identities
which are required are those which reduce 2-body operators to linear combinations
of 1- or 0-body operators. All identities for n—body operators with n > 2 can be
obtained by recursively application the 2-body identities. So next section constitutes
the all-important set of reduction rules.
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3.6.2 Two—body identities

The non—trivial identities occur among two—body operators. The two—body oper-
ators transform as the tensor product of a two—quark and two—antiquark tensor
state:

(ﬁ@ﬂj) =1+adj+5s=1+T¢ + T35, (3.26)
where T((gllﬂii) is a traceless symmetric in upper and lower indices tensor. This
tensor representation will be referred to as the §s representation (this is not, of
course, standard notation). So Eq. (3.26) tells us that we can eliminate a linear
combination of two—body operators that transforms as a singlet and another linear
combination that transforms as the adjoint representation.

We can compare this decomposition with the symmetric decomposition of two
adjoint representations:

(adj ® adj)g = 1+ adj + aa + ss, (3.27)
where aa = T[[alw;ﬂ transforms as a traceless tensor which is antisymmetric in its
upper and lower indices. Of course this representation vanishes upon actuation on
the baryon ground state and constitutes the last set of two—body identities.

The linear combination of two-body operator transforming as a singlet must be
necessarily of the form {qTAAq, qTAAq}, and it is related to one Casimir operator.
Let us calculate explicitly, as an example, its value acting on a baryon state®

2¢'Aqq'A g = 2 gl (A)5a)al, (A5 ) =2 (A5 (A, D aledl dl, ]
7,8 r,s
1
= > dadlalyqt - 5 NE, (3.28)
7,8

where we have used the Fierz identity Eq. (2.6). It is convenient to split the sum in
the last equality of Eq. (3.28) into a sum over s = r and a sum over s # r:

Y dladlalsat =20, Ne, (3.29)
r

where we have used that the normal ordered version of the sum vanishes because the
annihilation operators acting on the same quark line produces a null result. For the
other sum we can treat ¢, and ¢! as commuting objects since they act on different
quark lines

Y dadldsad = daadlsd = Ne(Ne—1), (3.30)
r#s r#£s

3For this derivation is convenient to use a label for the quark line and to collect the spin and
flavour labels in a single one with 2n possible values.
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where we have used that that the baryon state is symmetric in spin—flavour. Putting
all the contributions together we arrive at

1
{q'AYq, ¢'A*q} = Neo (N +2n5) <1 — 2—) 1, (3.31)

ny
that can be written in terms of the spin—flavour operators as
2{J°, J'} +np {T% T} + 4ns {G™, G} = No(No+2ny) (2ny —1) . (3.32)

The linear combination of two—body operators transforming as the adjoint must
be necessarily of the form d*2¢{¢"APq, q"A%q}, because a similar structure with an
f symbol would reduce to commutators. By a manipulation parallel to that leading
to the singlet identity, we can show that

d*BC {q¢"APq, ¢'A%q} = 2(Ne +ny) <1 - %) q'Aq, (3.33)
f
where one has to use the identity
o 1 a o 1 a o
5 ()5 (1)) = = i (3 ()] (A0 + 5 o8 (4] + (1))

(3.34)

Of course one can write Eq. (3.33) in terms of the spin-flavour operators, and the
explicit relations can be found in Table 3.2.

The rest of the identities follow from the fact that the aa representation is zero
upon actuation on the baryons. Their derivation is more involved and we will not
discuss it in this thesis. The complete set of identities can be found in Table 3.2
or Ref. [14]. Many simplifications occur for the values ny = 2, 3. By means of
the operator identities one can choose a set of independent 2-body operators. The
choice of the appropriate set translates into two operator reduction rules:

e Three flavours: All operator products in which two flavour indices are con-
tracted using 6%, £ or d*¢, or two spin indices on G’s are contracted using
89 or €7% can be eliminated.

e Two flavours: All operators in which two spin or isospin indices are contracted
with a § or € symbol can be eliminated with the exception of J?2.

Note that for two flavours J 2 = I 2 on ground state baryons.

3.7 Flavour symmetry breaking

An additional complication for the three flavour case is that SU(3)y flavour sym-
metry corrections are comparable in size with 1/N¢ corrections and then we cannot
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neglect symmetry breaking effects if going beyond the leading order in 1/N¢. For-
tunately, this flavour symmetry breaking can be perturbatively introduced in the
1/N¢ expansion in a combined series, producing a nice pattern in the spin—flavour
breaking, not dominated by neither symmetry breaking nor 1/N¢ effects.

Since the 1/N¢ only covers operators of No—bodies, the expansion in symmetry
breaking can only be extended to the (Ng — n) order for baryonic matrix elements
of n—body QCD operators.

3.8 Useful relations for spin—flavour operators

In this section we briefly give a non—exhaustive list of relations that are very useful
for the computation of matrix elements of spin—flavour operator between ground
state baryons

1 1
TS = —(NC_SNs)a T3 = _(Nu_Nd)a
2V/3 2
G8:2\/§(J_3Js)7 GS:i(Ju_Jd),
N S L A T
TV =79 JG® = (37 —J?-37J2),
\/12< )
o 1/ - JtGla 2 1
Jz Gz3 — Z (']u2 o Jd2 + V2 o UQ) , ? — g (Ta‘ —+ 5 {Ta,N5}> . (335)

The complete set of the actuation of the spin—flavour operators on the octet of
spinf% baryons, together with its wave functions in the completely spin—flavour
representation can be found in Ref. [49].

3.9 Vector and axial-vector form factors.

In this section we will apply the large-N¢ rules for a particular example, that will
be of phenomenological interest in Chapter 5. We anticipate here the definition
1

of those form factors. Let B and b be two spin—; octet baryons connected by the

flavour matrix ’\7‘1 We will be concerned with the matrix elements
Vi = (blgy"tq| B), A" =(b|gy"st"q| B) , (3.36)

governing the weak decay of the B baryon into b plus a pair of leptons. We are only
capable of calculating static properties of baryons, and this implies that both B and
b are at rest, that is, there is no three-momentum ¢ transfer to the vector and axial—
vector currents. This is equivalent to the non-relativistic reduction of the matrix
elements (3.36), and no momentum dependence will be determined. Moreover, since
all octet baryons have similar mass, not only the three—momentum but the four—
momentum ¢* will be zero, and hence we will determine the form factors at ¢ = 0.
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2{JZ,JZ} + nf {Ta,Ta} + 4nf {Gm,Gm}

= No(Ne+2ny) (2ny — 1) (0,0)
dabC{Gm,Gib} 4 % {JZ,GZC} 4 idabc {Ta,Tb}
= (Ne+ng) (1-2)T° (0, adj)
{T,Gi*} = (No+ng) (1-75) 7 (1,0)
% {Jk,TC} + dabc {Ta,Gkb} _ 6'ijkfabc {Gm,Gjb}
= 2 (N +ny) (1 - nl—f) Ge (1, adj)

dng (2 -n3){G",G"} + 3n3{T*, T} + 4 (1 —n}){J",J'} =0 (0,0)
dng (2 —ng){G" G} + 307 {T* T} + 4(1—n3){J,J}} =0 | (0,adj)

4{Gia,Gib} — —S{Ta,Tb} (aa) (0, aa)

1{G,G*} = {T°,T"} (55) (0, 5s)

€k {Ji, Gicy = fabe {Ta GkPY (1, adj)

ave (10,6 = (1= 2) (.17} — @t (G oY) | (Ladi
ciik {Gm,Gﬂ’} — facg goeh {Tg,Gkh} (as + 5a) (1,as + sa)

[T°,G"} =0  (aa) (1,aa)

{Go.Giny = S (1= L) (10} (1 =2) (2,0)

v {G G = (1= 2) {6 () = 2) (2,adj)

{Gie,Gi*Y =0 (J = 2,aa) (2,adj)

Table 3.2: SU(2ny) identities. Some of the identities must be projected onto a given
channel. The second column gives the transformation properties of the identities
under SU(2) ® SU(ny).

The non-relativistic reduction implies

Ve v = (b gyt q|B), A" — A =(b|gy' vst"q|B). (3.37)
So, under the SU(2) ® SU(3) group the vector current transforms as (0,8) and
the axial vector as (1,8). These transformation properties will, to a large extent,

determine its operator expansion. Let us parametrize these form factors in the 1/N¢g
and symmetry breaking expansion.

3.9.1 Vector form factor

Let us first concentrate on the operator expansion in the limit of exact symmetry.
There is one one-body operator and one two-body operator

0} =17, 05 ={J.G"} =2JG", (3.38)
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we have to stop our expansion at three-body operators. There is only one such
operator

s = {1} =20 (3.39)

that in the case of octet—to—octet transitions is equivalent to O% = %T“ and hence
can be absorbed in Of (the coefficient of both operators in undetermined). Since
in the limit of exact SU(3)y symmetry vector current is conserved, we can use this
additional information to calculate the unknown coefficients: ¢; = 1 and ¢, = 0,

and then
Vo = 1, (3.40)

Let us include now the SU(3)y breaking effects. As we shall see in Chapter 5,
Eq. (5.57), symmetry breaking effects transform as (0, 8), and so we must compute
the tensor product of irreducible representations

(0,8) ® (0,8) = (0,1) @& (0,8) @ (0,8) & (0,10) & (0,10) & (0, 27), (3.41)

for first order symmetry breaking corrections. Due to the Ademollo-Gatto theorem,
to be discussed in Chapter 5, first order symmetry breaking corrections are null, and
so we must compute second order effects. This amounts to the calculation of the
tensor product (0,8)® (0,8)® (0, 8), and results in all the irreducible representations
of Eq. (3.41) and the new ones (0,35) and (0,64). Among all those representations
we must keep only those transforming under time reversal in the same way as V%
does, and so we have:

e (0,0): only two operators

Oy =1, Oy =J2, (3.42)

but again, for octet-to-octet transitions Oy = % and can be absorbed in Q.
When it corresponds to a two—body operator we have to multiply it by an
SU(3) invariant tensor with two adjoint indices, namely §%°. One index must
be set to 8 to account for the symmetry breaking, and then §%% is zero for our
transitions. Ifit corresponds to a three—body operator, it must be accompanied
by d*®® = —1/v/34%, again zero for our transitions. So those operators do
not play any r'ig)%le in our analysis. The number of 8’s in an operator indicates

the order of the symmetry breaking.

e (0,8): those operators have been considered in Eq. (3.38). Since they corre-
spond to first order symmetry breaking, will appear as d*® O}, .

e (0,27): There are two— and three-body operators, corresponding to first— and
second—order symmetry breaking effects
op = (1.1,
O = {I"{J.G")} + {T'.(/.G"))
= 2{T", J'G"} + 2{T", J' G"}, (3.43)
and they will appear as O3% and d**® O3,
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e (0,10+10): there is one three-body operator, corresponding to second-order
symmetry breaking effects | the two-body (0, 10+410) operators are reductible |

Of = {T*.{J,G"}} — {T".{J".G"}}
= 2{T°, J'G*} — 2{T*, J' G"}, (3.44)

and contributes as 02 and d*® O%.
e (0,64): there is one three-body operator [there is no (0,64) in (0,8) ® (0, 8) |
O3 = {T* {T", T°}}, (3.45)
contributing as O3%.

In principle one has to subtract from the higher dimension representation operators
those terms corresponding to lower dimension representations. However, in practice,
these lower dimension terms already appear in our expansion and can be reabsorbed
in those. The (0,35) and (0,10 + 10) irreducible representations are odd under
time-reversal and hence do not contribute (V% is T-even). With all that, to second
order in symmetry breaking we can write

1 . :
VO = (1+4ea)T" + GaQN—{JZ,Gm} + ebd™ T +
C

1 S 1
€ by N—Cd“bS{JZ,Glb} + eay N—C{T“,Ts} +

cas 3z ((T" (. G™)} 4+ (", (7.G7})) +
a5~ (T 17,61 — (T {7, G }) +

C

1 1
62 b4 - dabS{Tb, TS} + 62 ar _Q{Ta, {TB, TS}} +

€ b Nig, A ({T° T, G®}y + {T° {J',G"}}) +
e bﬁNi%d“”S ({1, {J",G*}} = {T*,{J",G"}}) . (3.46)

We can rewrite this expression for our transitions in terms of Ny and J:. We have
to demand that AS = 0 transitions have no symmetry violation, since isospin
symmetry is unbroken
vee = 17, AS =0,
-2
VO = (14+v)T* + v {T* Ny} + vz {T%,—I*+ J, '}, |AS| = 1.(3.47)

In Table 3.3 we depict the matrix elements of the operators in front of the unknown
coefficients for the vector current.
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Transition 1 U1 Vg U3
n—p 1 0 0 0
yE 5 A 0 0 0 0
3 3 3
A=p —\/2 —\@ —\2 | 0
YT —n -1 -1 -1 2
- 3 3 3
= oA | i E 38| VB
= 0 1 1 3
= =X 7 7 7 0
SRS Sas 1 1 3 0

Table 3.3: Matrix elements for the vector form factor

3.9.2 Axial-vector form factor

Let us first concentrate on the unbroken symmetry operators. There are one—, two—
and three-body operators

Ol = Gio Oin — ikfgi Ghay — {j’?) Gia:| ,
Dy = J'T", Dy = {J{J,G'"}} = 2{J', ] G'},
. o 1. o o
oy = {J*G"} - 3 {7 AT, Gy ={T3 Gy = {J, J G/} . (3.48)

There is only one additional operator, {fg, G} that for octet-to-octet transitions
can be absorbed in O%. The operators D connect only states with the same spin,
whereas 0!, connect only states with different spin. Hence they do not contribute
to our processes. Furthermore, O3 is even under time reversal and do not contribute
(A"® is T-odd). Then we have

. . 1 1

A = aq Oia + a9 N—CD%‘I + as N—g Déa. (349)
We are now in position to drop terms subleading in 1/N¢. Since in general 7% /N¢
and G"/N¢ matrix elements can be order unity, the suppression is controlled by
the J¢/N¢ matrix elements: operators with more J! elements are suppressed. Then
Oi* and D are of the same order in the counting, but D is suppressed. Then at
leading order we have

JiTe

Aia = a1 Gia + a9 NC . (350)

Let us study the symmetry breaking corrections. In this case we will only consider
the first order effects, since there is no Ademollo—Gatto theorem for the axial-vector
current.
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Transition | a,a b, b c1 Co 3 4 p
n—p 2 1 0 0 0 0

¥E A \/g 0 0 0 8 0 o
YT —=n 3 1 1 1 L 1 0
=T = A % \/g % \/g \/g % 0
5 — X0 % % 35% % % % 0
2ot | 8 L 5 1 5 1|0

Table 3.4: Matrix elements for the axial-vector form factor.

(1,0) : there is one one-body operator
o =J, (3.51)

that will appear as §%% O and hence it is zero for our transitions

(1,8): we have those of the unbroken case, that will appear as d®® 0%’ and
d®®8 Di¢ (D¢ is already suppressed in 1/N¢).

(1,10 + 10) : we have one two-body operator
, . . 2 .
O;ab — {Gza, Tb} . {sz, Ta} . 5 fabCfcgh{ng, Th}
) ) 271 o )
= {G",T"} — {G* T"} — 3 J2 [T G| . (3.52)

The last term vanishes for octet-to-octet transitions. It will appear as O3,

(1,27) : there is one operator (we do not bother subtracting the lower dimen-
sion operators, since they are absorbed in other representations)

055, = {G™, T"} + {G*,T"}. (3.53)
It will appear as O},

With that information, we can write A% at first order in 1/N¢ and symmetry break-
ing

‘ ) Jsz Gia, Ns
A = (a (5ab +€ecy dabS) GZb + (b 5ab + €co dab8) —NC + €c3 7{ NC }
= aGU4bJ T + A1 G 4 ¢ J'TY) + ¢3{G", N} + ¢, {T, Ji},

(3.54)
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where A% is 0 fora =1, 2, 3, 8 and 1 for a = 4, 5, 6, 7. For |A S| = 1 transitions
A* =1 and 0 for AS = 0. For the latter we have then

M = aG" + bJ'T + ¢3 {G N,} + s {T% Ji},
= a+c¢,
= b4ocy. (3.55)

S N

Since we are interested only in one transition with A S = 0 , namely neutron decay
into proton, we only need an additional parameter for our analysis

—(pl(c1 G + ey J'T) [n) = p. (3.56)

In Table 3.4 we depict the matrix elements of the operators in front of the
unknown coefficients for the axial-vector current.



Chapter 4

Green functions of QCD

4.1 Introduction

As already pointed out in Chapter 1, the QCD Lagrangian (1.1) does not have
hadrons (which are the particles we indeed observe as asymptotic free states at
low energies) as degrees of freedom, but rather quarks and gluons. It does not
make much sense then to compute amplitudes having these fundamental particles
as asymptotic states, since we do not gain any insight on hadronic dynamics. Instead
it is better to compute Green functions (GFs for short) of composite operators (that
is, operators having more than one field in the same space-time point). We must
choose composite operators having the same quantum numbers as the hadronic
state we want to study, as they qualify as interpolating fields in the sense of the LSZ
reduction formula, having non-vanishing matrix element between the vacuum and
the hadronic state: ( H%|.J2|0) # 0. In the case of mesonic states quark bilinear
currents are the suitable composite operators, and a very detailed discussion about
them was given in Section 1.2 [see Eqgs. (1.7), (1.12) and (1.13)].

Since these currents have dimension three, we can introduce them into the QCD
Lagrangian via dimension—one external sources [see Eq. (1.21)], as was explained
in Chapter 1. In this way the extended QCD Lagrangian is still renormalizable. We
can treat the external sources as bosonic fields (spinless for scalar and pseudoscalar,
and spin—one for the rest of the currents) which are not quantized. Accordingly they
cannot propagate and only appear as current insertions in GFs and form factors.
In fact we can write Feynman rules for the coupling of the quark current to the
external source: given the generic extended Lagrangian

a

ex C L = A a
LEEn =1 q(x) F?q(x) : St (4.1)

each current insertion is accompanied by the matrix ¢’ A2—a as shown in Fig. 4.1.
From now on we will assume that all operators are normal-ordered and will drop
the symbol “: --- :” everywhere. Analogous Feynman rules can be derived for yPT
and RxT in the presence of external sources.
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Sy il

Figure 4.1: Feynman diagram of an external source insertion for quark-gluon degrees
of freedom.

At very low energies (long distances) E < m, GFs can be computed as a pertur-
bative series in the (small) momentum carried by the current and the quark masses
(although we will set them to zero). At high energies (short distances) the QCD
currents in the GF approach each other and one can expand their product as a tower
of local operators, in the Wilson operator product expansion (OPE). In momentum
space this is tantamount to an expansion in inverse powers of momenta, only valid
in the deep euclidean region — p? > mz. At intermediate energies one can only rely
on the expansion of QCD in powers of 1/N¢, as discussed in Chapter 2. This region
is populated by hadronic resonances driving the strong dynamics. One is then able
to perform a matching of the three regimes and thus to estimate the values of the
LECs present in the yPT Lagrangian. In this chapter we will calculate all two—point
GFs in the three regimes: yPT to O(p*) accuracy, RxT at leading 1/N¢ precision
and OPE up to and including dimension six operators, and including leading «
corrections in the Wilson coefficient of the(gq) operator.

The power of EFTs is enhanced by matching onto the more fundamental theory
in a region where both descriptions are sensible, and running down with the renor-
malization group equations (RGE) to a scale when the EFT is useful. This results
into a resummation of large logarithms that would otherwise spoil the perturbative
expansion. This matching between yPT and RxT is straightforward since up to a
certain mass scale A, the spectrum of both EFTs coincide, and the heavy parti-
cles can be formally integrated out of the action. However the situation drastically
changes when matching RxT onto QCD, because the spectrum no longer has any
particle in common. The reason for it is that we are going through the chiral phase
transition. One is then forced to compare GFs computed in the different EFTs in
momentum regions where their domain of validity overlap.

This matching relation is better understood for the so called order parameter of
the chiral symmetry breaking GFs (order parameters for short). These GFs have
zero Wilson coefficient for the identity operator (that is, the purely perturbative
contribution) to all orders in «ay in the chiral limit, and hence, as we shall see, its
main contribution stems form the (Gg) condensate. Since this operator is the respon-
sible for the chiral symmetry breaking those GFs encode essential information for a
better understanding of confinement. As a result, two—point GFs order parameter
do not have subtractions in their dispersion relations (in the chiral limit). Thus
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they are fully determined by its spectral function, which is of course an observable.
In this sense these GFs can be regarded as observables, and a direct matching of
their expression in the different theories (that is, in different energy domains) is
meaningfull. For two—point GFs we will match all GFs (even those not being order
parameters of the chiral symmetry breaking) to the OPE result, within different
ansitze (MHA or including the full tower of resonances).

This method has been used for two-point GFs including several orders of «;
corrections [50], but only at leading order for three-point GFs [41,42,51-53|. In
Section 4.13.1 we will match the (VVP) GF with two multiplets of vector meson
resonances. It is the purpose of some sections of this chapter to push the matching
up to O(a,). Unfortunately the O(a;) corrections to the (gq) Wilson coefficient C' 54
for three—point GFs are not known, and we will concentrate on their computation,
relegating the matching to forthcoming works. Finally, we will use the (VT) GF to
illustrate that within the MHA one cannot match the OPE result when radiative
corrections are taken into account.

Throughout this chapter we will assume the chiral limit of QCD. For the elabo-
ration of this chapter I have followed Refs. [1,54-58].

4.2 Definitions of Green functions and Ward iden-
tities
The formal definition of the GF of n—currents follows :

n—1
HJI...Jn(pl e -pn_l) = in_l/ H d4l‘j Bizz;ll ChPR <0 | T{Jl(l‘l) e Jn(o)}| U> ’
J=1

(4.2)

where the "' factor is included by convention and ensures that Feynman rules for
external currents can be applied thoroughly. It is important to remark that the |0)
state is the true non—perturbative QCD vacuum (the one which is not annihilated
by the axial generators) in contrast with the perturbative one. We will discuss its
nature in the next sections. It is customary to design the non—perturbative vacuum
as | Q), but we will not adopt this notation. In this chapter we will compute GFs
in the chiral limit, what implies that both vector and axial-vector currents are
conserved and that SU(3)y symmetry is exact. We will exploit these two features.
Some of the material covered in this section can be found in Refs. [51,59].

For those GFs having at least either one vector or one axial-vector current, we
can derive the so called Ward identities, being a consequence of their null divergence.
For bosonic operators time-ordering requires currents with bigger time components
to appear to the left. For example for two currents

T{Ji(z) J2(0)} = 0(2°) Ji(x) Jo(0) + O(— 2°) Jo(0) J;(x) , (4.3)
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and similar for more currents. With this definition we can calculate the following
derivatives:

0, T{Ji (x) J,(0)} = T{duJi'(x) J2(0)} + 4(
0. T{Ji' () J2(y) J5(0)} = T{o, J”( ) J2(y) J5(0)}
+5( y) T{[T (=), Ja(y)] J5(0)}
+(z )T{[JU(SU), J5(0)] J2(y)}- (4.4)

On the other hand, we can relate derivatives with contractions with one momentum

%) [} (x), 1(0)],

n—1
z'"/Hd4xj G e (9 ip Y (0| T{IM @) - Ju(0)}]0) = 0. (4.5)
7=1

The commutator of two quark currents can be easily computed using the identity

o[ () -

DL Ab e
4 J— 7l e — R
0 (z —y) q(x) {Fl Yo s 55 Ty Ty 55 }q(:c), (4.6)
from where we obtain the well-known current algebra relations:
0(a” = °) [Vg'(2), Vi (y)] = d(=° — o) [4§ ()] = i [ Vi(x) 8 (x —y),
02 = y°) [Vi'(2), AL (y)] = 8(2° = ¢°) [ (9)] = i f™ Ag() 6O (z —y),

S(w) {PP)Y] = Zf“”CS“( >{Pc< 1} 6@ —y),
S P )] = i [nif 5 P(2) (S ()
e Pe(a) (S°(a) 1 )]

52 ) [A5(). T )] = — = cuuns {nif T (2) + ¥ T°09(z)| 6 (z — 1)
(2" = y°) Vi (@), Th, ()] = i f Ty, (2) 6W(z — ), (4.7)
Let us apply this to two—point GFs:
P (Myvian)on (0) = =i f™(0]V(0)]0) =
P (yr)pe (0) = —if“(0]T5,(0)0) =0, (4.8)

where the right—hand side vanishes because vacuum is Lorentz invariant and flavour-
less. Let us study separately the (AP) GF. From Lorentz invariance and SU(3)y
symmetry we can write

(Map)y (p) = 06" Map(p®) py (4.9)

!Schwinger terms will be omitted in this thesis.
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and then

a . ca .2 - cab /=
P (L)) () = 1679 Tap = i =0 (0] S(0)[0) = 205" (@), (4.10)

from where we can identify I p = 2 (gq) /p*>. Thus the (AP) is fully saturated by
one pion exchange in the chiral limit [60]:

(Map)y) (p) = 2i5“bi])—g>m- (4.11)

The only remaining two—point GFs are (SS), (PP) and (T'T). The rest can be
shown to vanish due to discrete symmetries. Due to Eqgs. (4.8) plus other symmetry
considerations we can write

= 6" (pupy — P°9u) vy 1an)(P°)
i6° (g™ — p’g") Myr(p®)

= &% HSS(PP) (pQ)

= —2¢%" [I7(p*) Q)

miof3

1_ITT( )QZV aﬂ} (412)

where Q5T are defined in Appendix C.

In general one always has II¢)(p) = 6°°II;(p) and also Il (p) = +1II;;(—p)
where the — sign corresponds to (AP) and (VT) and + to the rest. One can define
the correlators of the chirality currents defined in Eq. (1.13) which, as for the (AP)
and (VT) GFs, are order parameters :

Mor(p?) = Myv(p?) — Maa(p?),
HS.S’fPP(pQ) = Tgs(p
Or(p?) = I (p*) — Myp(p?) (4.13)
Let us turn now our attention to the three—point GFs. For these we will not consider
the tensor source and will only concentrate on order parameter GFs. Bearing in mind

that the GF made out of an octet and a singlet current is zero, that Iy g, 145 and
[Ty p are identically null and the result of Eq. (4.11), we obtain:

abe
" (q )(HVVP(AAP)[VAS}{VVS}) (r,q) = 0,

v a abe qll p
P"(¢") (Maas)py, (p,q) = —2d™ (qq) =5 <—§>
q> \p
o ab _ abe | Tv q
P (Mvar), (p.a) = —2(qq) f 2t 2l
[ — abc r

¢ (Tvap)y, (0:q) = {ga) F*° 5, (4.14)
where we have defined the four—-momentum r = — (p + ¢) associated with the third

current. These results rely on the fact that the (AP) GF is fully determined by the
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chiral Ward identity Eq. (4.11), and they must be satisfied in any sensible description
of the strong interactions. The right hand sides of Eqs. (4.14) are proportional to the
quark condensate and this has deep implications. For instance in RxT it means that
once we contract with one momenta, only the pion pole can survive. In the OPE
they also have deep implications: the contribution of higher dimension condensates
vanishes when contracting with one external momenta, and since there is no as
factor all radiative corrections to the (Gg) Wilson coefficient beyond leading order
must also vanish when the contraction is done.These relations together with discrete
symmetries and SU(3)y invariance determine for the odd-intrinsic—parity sector

abe
(Hl‘L/VVP(AAP) [VAS}) (P, @) = Ewas P A yvp (aapyvas) (7. ¢ r%) - (4.15)
In addition Bose symmetry requires
HVVP(AAP)(,DQ,QQ,TQ) = HVVP(AAP)(QQaPQaTQ)a (4.16)

The even-intrinsic—parity sector can be split into a subset of GFs being rank-two
Lorentz tensors:

[s)™ (0%, a%.r%) = d™ [P*(p.q) Fovs (0°. 4% 1)
+ Q" (p,q) Gvvs (p°, 4% )] ,

(I10) ™ (0%, % %) = d™* {2 (qq) ];ZZ: + P"(p,q) Faas (0, ¢, %)
+ Q" (p,q) Gans (0, 4°,7%)]

()™ (2 r?) = 2= o) | L2 T2 pgyg)
X Fvap (P20 %) + Q" (p.q) Gvar (0*.¢*.7%) }

(4.17)
and the Lorentz scalar subset :
&S5 sppy = A Msssspry(0°,¢°, %), (4.18)

where the transverse tensors P*” and Q" are defined as

P*™(p,q) = ¢"p”" —(p-q) 9",
Q" (p,q) = P ¢"¢ +¢ " — (p-q) p"¢" — P’ 9" . (4.19)

Again Bose symmetry requires

]:[g]VVS(AAS) (anqQaTQ) = ]:[g]VVS(AAS) (QQaPQaTQ),
Uspp(p®,¢*,r*) = Hspp(p’,7,¢%), (4.20)

and Ilggg is invariant under any relabeling of the three squared momenta.
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4.3 Dispersion relations for two—point Green func-
tions

It was shown by Killen and Lehmann [61] that two-point GFs obey dispersion
relations. Dispersion relations follow from the analytic properties of TI(¢%) as a
complex function of ¢?, the only energy-momentum invariant appearing in a two—
point function. In full generality II(¢?) is an analytic function in the entire complex
¢*>-plane except for a cut in the real axis 0 < ¢? < oo.

The general proof of dispersion relations is the main topic of this section. We
first deduce them for scalar currents .J, and Jz, and generalize the discussion for
the rest of the currents afterwards. The only requirement is that the two currents
are hermitian and the key point is to insert a complete set of states between them,
using the Parseval identity

d3_’...d3_’n d4
T - Z/%qglEl,_‘?E 0 (nl = 3 [ 525006 n) (n]

n,s

d3_' 0
4)(p _
Z/ 271-4247117-‘-372 4E1 Eﬂ@(p)& (p—pa) [n)(n, (421)

where the sum runs over all possible multiparticle states and all possible polariza-

tions, d@, is the n—particle phase space, E; = \/p_;Q + m? is the on—shell energy of
the particle and p, = > ¢; is the total four-momentum of the n particles. Since all
particles in the sum are on-shell, p?> > 0 (timelike) and p® > 0 (future oriented).
The second condition is enforced by 6(p®) and we can enforce the first one by a slight
modification of Eq. (4.21)

T = Z/dt/ - dQu3(” — 1)00) 1) (n] (422

Poincaré invariance relates any operator to its value at the origin,
O(z) = " O00)e 7", (4.23)

Having in mind that vacuum carries zero four-momentum it follows

(0

L0 750)]0) = 3 [ at] 500,507 = 00670 17,(0) n) (011500) )

= [at] 555007 = 006 posls”). (124)

where we have defined the spectral function

2\ 1 *
pas(p”) = m%/d@z(olc}a(o)n><0Jﬁ(0)|n> : (4.25)
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*

It follows immediately pas(p?) = psa(p?)*, and so, if we specialize to a = f,
Paa(P?) = p(p?) = p(p?)* > 0, the spectral function is real and positive definite.
For this particular case we have

mfnﬂme»m>:Aﬁygg%&ﬁ—wmwnwwequ%+a“m—ﬁﬂ

00 d4p efip-x
= —1 [ dip(t 4.26
Z/o p()/(27r)4t—p2+i€’ ( )

where we have used the definition of the Feynman propagator, or instead the integral
expression for the Heavyside function

1 eiwx
0 = —[d : 4.27
(@) = 507 | Wi (4.27)
Finally in momentum space we have our final expression
: o0 1
M(p*) =i [d'xe™" (0| T{J JOO:/dtti. 4.28
@) = i [ataer 0 TI@ TOY 0) = [dpl) e (428)

The last goal is to relate the spectral function p(¢?) with the imaginary part of
I1(¢?). This is easy using the widely known formula

1 :p< 1 )q:mé(x—xo), (4.29)

T —xgtie T — X

1

in Eq. (4.28) to obtain p(¢?) = —ImTI(¢?). So the imaginary part is positive. Then
T

our dispersion relation is complete :

| 1
Ip?) = [ dt —ImT(t) —— . 4.30
(p) /0 T m ()t_p2—|—i6 ( )

As an example we will compute the spectral function for the single-particle inter-
mediate state a

Lmnip?) = /;%KOAMaW#@—m:MOAmmﬁgaa@—w>
— [017(0) ) 6(p* — mi2). (431)

We can derive Eq. (4.30) using Cauchy’s theorem for TI(¢?) bearing in mind that
it is analytic in the full ¢?>-plane except for a branch cut in the real positive axis,
starting in the first multiparticle threshold of the sum in Eq. (4.25). Then we perform
a contour integral as shown in Fig. 4.2 (a) and then deform it as in Fig. 4.2 (b).

1 I1(¢ 1 II(z 1 < It +ie) —II(t —1
M(¢?) = —— ¢ dt ()2: ]f dt ()2+—, Rl 2( i
2w Jo t—q 2w Jy=r t—¢q 2w Jo t—q

(4.32)
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assuming that TI(¢) falls sufficiently rapidly for ¢ — oo the first integral is zero, and
using Schwartz’s reflection principle

(t+ie) =TIt —ie) = 2iImII(t+ie), (4.33)

we recover Eq. (4.30). But, what happens if the first integral is not zero? We can
perform n-derivatives in TI(¢?) to make it converge,

<diq2>nn(q2) N 2:Lr!z' f{cdt (t _Hq(z;nﬂ’ (4.34)

each derivative is known as a subtraction. In general, if in the ¢> — oo limit
I1(¢?) ~ ¢*" log ¢*, then n + 1 subtractions are needed. When such subtractions are
performed, Eq. (4.30) is modified to

<1
M(¢*) = dt —ImTI(t
(¢”) /0 7rm ()t—q +ie€ Zaﬂq

* 1
= ¢V [ dt—ImII(¢ b 4.
¢ /0 7 ) 7 (t—q +ie) Z’q (4.35)

Any of the a;(b;) is a subtraction point |for instance by = II(0) |, generically diver-
gent.

i3 -t

(a) (b)

Figure 4.2: Contour integral yielding the dispersion relation for two—point functions.

However it seems that in the first derivation of the dispersion relation there was
no room for subtractions. In fact there is: in Eq. (4.24) we have commuted the sum
and the integral, and this can only be done if the sum is convergent.

Let us close this section with the derivation of dispersion relations for conserved
vector currents. In this case Lorentz invariance and current conservation implies

Z/dcgn 01740 ) (0] 7°(0) | n)" 6D (p — pu) = ps () (0" — Pg™)

1 u 9
~ 57 ) 2 [ 19 01O (014,00 )" 5 - )= i) 20,
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and again p;(p®) = ps(p?)* > 0. Plugging this into the time-ordered product we
get

(0| T{J"(x) 7 (0)}] 0) /dt/ SO0
) [e PT(a) + € 0(~a")]
_ z/o dt ps(t) (90" — 0 g") /(;1734 t _ep2 tie’

‘ o0 d4p e—ip-ac , ,
- —z/ dtp(t)/( — (p'p” — p*g") , (4.37)
0

2m)tt —p?+4ie

were Schwinger terms have been omitted. Fourier transforming, identifying the
scalar GF and using Eq. (4.29) we arrive at

n—1

HJJ(pQ) — /Ozlt%:[m]:[]!](t) t_pQﬁ + Zaj qu,
%Imn”(t) - _3%2(2”)2/“% (0]J%(0)[n) (0| J,(0)|n)*, (4.38)

were again possible subtractions have been included. Similar expressions can be
found for more complex GFs.

Before we close this section we should address one last point : kinematical singu-
larities in dispersion relations. This topic is closely linked to the physical meaning
of subtractions. Let us first discuss the (SS) GF as an illustration. As we shall see,
in the deep euclidean it diverges as ¢° log(— ¢*) and hence it needs two subtractions.
However we also learn from perturbative QCD that only one of the two subtractions
is unphysical, and so one could perfectly define the function Ilgg = ;—QHSS that must
be subtracted only once, being such subtraction genuinely unphysical. By doing so
one is generating at low ¢? a kinematical singularity, since we know from yPT that
at such momentum Ilgg behaves like a constant. This is not a major problem, and
we must simply have to modify Eq. (4.34) to account for a second residue

d\" n! I1(¢) 1 .
— ) TI(¢%) = dt —1)"——— lim ¢*TI(¢? 4.39
(dq2> (q ) 271 %C (t o qg)n-l—l + ( ) qQ(n+1) q21£I)10q (q ) ) ( )

where now the contour C' in the ¢ complex plane must enclose both t = ¢? and t = 0.
After integrating n times the dispersion relation reads

* 1 1
(g :/dt—ImH(t)ti, + = lim ¢*I(¢%) + Za]q (4.40)
0

T —@?+ie ¢ 0

where we insist once more that limg ,o¢?II(¢%) is a physical constant, typically
related to a chiral LEC. In this case, obviously one cannot pick ¢> = 0 as the
subtraction point, since the GF is not defined there. This singularity should never
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be confused with a pion pole: it is not, and so it will never be present in the spectral
function p(t). So the two options for writing a dispersion relation for (SS) are either
“over—subtract” and bear in mind that only one subtraction is unphysical, or divide
by ¢* and take into account the kinematical singularity as an additional pole. For
the case of (PP) we indeed have a pion pole and so if we define [Ipp = q%pr in

the chiral limit its spectral function would read p,(t) = F? } 6(¢), which is not well
defined.

Something similar happens with the (T'T) GF. With the definition of Eq. (4.12)
I17, need only one (unphysical) subtraction, but on the other hand they have a
kinematical singularity at ¢> = 0. In this case chiral symmetry predicts that the
residues of the longitudinal and transversal correlators at zero momentum are re-
lated : limgz_ 0 ¢> I (q%) = F As.

4.4 Wilson’s Operator Product Expansion (OPE)

We often find ourselves needing to know how a GF behaves when the four-momentum
brought in by one operator tends to infinity. If an operator product such as .J,(x)J3(0)
were analytic in x#, then its Fourier transform would decrease exponentially as the
Fourier variable k goes to infinity. The leading terms in the high-momentum limit
of the Fourier transform arise from the singularities of the operator product as the
space—time arguments approach one another.

Wilson [15] hypothesized that the singular part as  — y of the product of two
operators is given by a sum over other local operators

lim Oa (z, 1) Op(y, 1) = > C =y, 1) Oy, 1) (4.41)
J

were C;"B are singular c-number functions known as the Wilson coefficients and
O, are local operators of increasing dimension d;. These local operators O,(y)
must have the same global symmetry quantum numbers of the product O, Og, but
are otherwise unrestricted. In the case of QCD, aside from the identity 1 these
operators are constructed from quark and gluon fields and we will consider them
as normal-ordered. By dimensional analysis the mass—dimension of the Wilson
coefficients is dn g, = do + dg — d; and thus na'l'(;%vely its singular part behaves as
~ (z — y)~%~ds+d  So as the dimension of O; increases its numerical influence
rapidly decreases. Hence it is safe to truncate this expression at a finite order. A
relation like (4.41) holds also for commutators or time—ordered products, and the
latter are the ones we are interested in. In general operators such as O,, Og or O;
have anomalous dimension and then must be defined at a certain renormalization
scale . This scale is then also present in the Wilson coefficients modifying the
simple power—counting argument. In principle non—analytic functions are likely to
occur. The remarkable thing of the OPE is that it is an operator relation: then
the Wilson coefficients are universal and do not depend on the particular matrix
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element

lim (A| T{Oq(z, 1) Os(y, )} B) = > C3(x =y, ) (A]O;(y. )| B) . (4.42)

T—Y

J

When taking matrix elements, not all the operators entering the OPE will give a
non-zero contribution.

The standard proof of the OPE was given in perturbation theory in 1970 by
Zimmerman [62|, but it is believed that it also remains valid under non—perturbative
effects. In [1] a non—perturbative (but less rigorous) proof based on path-integral
is given. We will not enter in the details of the calculations, but merely state the
result. Basically it is proved that the vacuum expectation value of the time—ordered
product of n + m operators when the space-time arguments of n operators tend
to a common space-time point x which is far from the space-time points of the
remaining m operators can be expanded as follows:

lim (0] T{O (1) On(z) Bi(1) -+ B (ym)} 0) =

T1T;j—T

SO =, — ) (O] T{O) Bi(y) - Bulym)}10) . (443

now the idea is to use the B, fields as interpolating functions for particles in the
spirit of the LSZ formula on both sides of Eq. (4.43). Since the nature and number of
these fields is arbitrary, in principle we can interpolate any particle in the spectrum,
and so

lim (A|T{O:(z1) - On(x)}| B) =Y Ol (x =@,z — 2) (A |Op(2)| B),

X1 Ti—T

(4.44)

since the states A and B are arbitrary, we are facing an operator identity

lim T{O:(x1) - On(z,)} = Z Cy™a —ay, 2 —3,) O(z).  (4.45)

1 T;—T

Fourier transforming we write the OPE into momentum space

P1Pn—1—00

n—1
s [ [T atmemsionciso o] o0 -
k 7=1

> M1 pat) Ok(0) (4.46)

n—1
lim "1 / H d'z; e’ Zhot mep T{O:(z1) ---0,(0)} =
j=1

At this point a comment is in order. At the sight of the previous equation it seems
clear that the z# — 0 limit is dual to the p* — oo, but for this to be true we must
require in addition that p is space-like (p? < 0), that is the OPE has its validity
only in the deep euclidean region p? — — oc.
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4.5 Callan—-Symanzik equation in the OPE

As explained in Section 4.4, composite operators made out of the product of several
fields in the same space—time point, due to renormalization need to be defined at
some scale p. In the renormalization programme of QCD, also all fields and constants
in the Lagrangian must be defined at a certain scale. One then distinguishes between
bare and renormalized fields and parameters, related multiplicatively as follows:

ap(z) = Zipq(z), Bu(T) = Z5 G (7)),
Mp = Z, M, gsB — Zggsa (4'47)

where the mass will be treated as a small parameter, and will be eventually set to
zero. Whereas bare quantities do not depend on any renormalization scale, renor-
malized ones do. In D = 4—2 ¢ dimensions, g, has dimension ¢, and so we will define
as(pn) = p2¢g%/(47). Operators made out of the product of several fields at the
same space—time need additional multiplicative renormalization (it is not enough to
renormalize the fields they are made of)

¢ ZaF A?

J%ZQ()F3QB() Jr = ZJJB_Z—Ji()F?q() (4.48)

Let us introduce all these definitions in the extended QCD Lagrangian (1.21)

. 1
Locp = ZQFCY(UD—ZmM)q—Z
D, = 0,-iZ, Zg gs GoT, GV = Z2 (0,G — 0,G) + Zy Zar [ 9:G, G,

7z A?
Eemt = ZqB 1—‘_QB( )jB 2F F_q( )ja’ (449)

ZF 7() 2

ZG GZVGZV + EFP + EGF + Eemt ’

All Feynman rules must be read from the renormalized Lagrangian. For example,
the propagators, condensates and source insertions are:

1 s 1 Lo A°

S(p) — Zor B (qq) — Zom 7o (qq)(p), J*—i " 7F (4.50)

respectively. Actually, it is the GF of renormalized currents what is finite under

renormalization 2. It is not difficult to find a general formula for the Zp factor at
one loop
1 CF g 1 CF Qg 2
ZrP=1—-=—— T + -— —"+4"T~, @) , 4.51
r < €47T> + =15 =V T + 0(e) (4.51)

2 Actually this is not exactly true, since GFs needing subtractions in their dispersion relations
have a divergence in the identity Wilson coefficient that cannot be regularized with the above pro-
cedure. For the rest of the divergences, it is however enough to use the renormalization procedure
outlined in this section.
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where the Dirac algebra must be performed in four dimensions. Let us recall the
definition of the 7,, function together with the expressions for all the Z factors at
leading order:

CFOé51 _30}70&51

— _ s - 2 _ —1 _ s - 2
Zor = l—a—— €+O(a5), I = Zgpy = 1= = — é—l-(’)(ozs),
1 a, Cr odm
Zr = 1 - -==—=40(a? Z =1 m(as) = — — — 4.52
T e 1 4 + (as)a V(A) s Y (Oé) m dﬂ ( )

As previously stated, QCD currents need to be defined at a certain renormalization
scale, as they consist on the product of several fields at the same space—time point.
In other words, renormalized QCD currents depend on the scale, or “run”; this
motivates the definition of their anomalous dimension,

dJr (1) 1 dZ,(p)

— ] = — J , 4.53
dy v Jr(1) Z(n) H du r(H) ( )
The anomalous dimension depends on the coupling ag, and in perturbation theory
has an expansion

_ 9 (2)(%)2 (3)(%)3
wlas) =y’ — 4w ()t () Fee

Vector and axial-vector currents have zero anomalous dimension. This is a general
result that stems from the fact that in the chiral limit both currents are conserved.
In the MS scheme that we follow in this thesis the renormalization procedure is mass
independent and so the result holds for non—zero quark masses. Similarly one can
show that the quantities m, S® and m, P* are also independent of y (if the currents
are normal-ordered), whence it follows v = vp = —,,. For the tensor current
there is no such simple relation and we will calculate vy at leading order in ;. The
general formula for the one-loop order anomalous dimension stems directly from
Eq. (4.51) and reads:

Cr 1 )
where again the Dirac algebra must be performed in four dimensions. For the tensor
current its value is

m_Cr_2_Ne A

where the approximation corresponds to the large—N¢ limit. We are now in condition
to discuss the Callan-Symanzik equation (often also known as the renormalization
group equation or RGE). The relation of the time—ordered products of bare and
renormalized currents read

(H zz-) T{Of(z1) - OF(z,)} = T{OP(z1)---OP(w,)}.  (4.56)
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The right-hand side is a bare object, and hence finite. Applying one derivative with
respect to u to the above expression we find ?

(ZhwwﬁﬁTwﬁ@QWOﬂ%n=o. (457)

This very same equation must be satisfied once the OPE is applied for any of the
terms entering the expansion

—u@[oé (x—xl,---,x—xn)(’)k(x)] =

{ {‘“dd_ﬂ n yk} O (e =y, xn)} Oulr) =

<Z %‘) Cy ™M —ai, o w— 1) Opla) (4.58)

and so
d/j k p l_ k )
L a8 2 m) vmlo) 2+ =S | = 0, (459
H au Qg PO Do, m{p) Ym( Qs om Vk - Yi| Gk - ) :

where we have used the chain rule to separate the explicit u dependence from that en-
coded in parameters of the Lagrangian. This last expression constitutes the Callan—
Symanzik equation for the Wilson coefficients of the OPE. If we specialize for the
cases under study in this thesis, many simplifications occur. Since we are working
in the chiral limit, there is no quark mass term, and since we work at most to the
O(ay) precision, the § term does not contribute. We will only compute gluonic
corrections of the quark condensate Wilson coefficient :

0 - .
“Hgy = dm = 2| Ol =0, (4.60)
i=1

where we have used that the product m, : gq : has no running, or equivalently that
Yagy = VS = — Tm-

4.6 QCD sum rules

The physical vacuum of QCD is not the vacuum state that one uses in perturbation
theory. Physical effects discussed in Chapter 1 such as spontaneous chiral sym-
metry breaking and confinement do not appear in an order by order perturbation

3This argument is spoiled if the GF needs subtractions, that is it does not correspond to a
physical quantity. GFs that are order parameter never need subtractions.
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treatment of QCD (even if we consider all such orders). Then one might wonder
how the perturbative QCD results get modified by non—perturbative effects at long
distances. We shall see that non—perturbative effects manifest in GFs evaluated at
large momentum transfer as inverse power corrections of the squared momenta.

In this section we will apply the OPE to QCD GFs. Then we only have to take
vacuum expectation value of both sides of Eq. (4.46). Naively one could think that
since the operators appearing in the right—hand side of the OPE are normal ordered,
their vacuum expectation value must be zero and thus only the identity operator
would contribute, giving then the usual perturbative result. However, this would
only be true for the “perturbative” vacuum. The non—perturbative QCD vacuum is
by no means trivial, and the vacuum expectation value of normal-ordered operators
is in general non—vanishing due to long—distance effects. They are known as vacuum
condensates. The Wilson coefficients are calculable perturbatively and admit an
expansion in powers of a.

In fact it is known that the need of non—perturbative power corrections to GFs
can be “hinted” from what emerges already in perturbation theory when renormalon
effects are studied, as discussed in [55].

This idea was pioneered by the ITEP group [16] and consists on an explicit sep-
aration of long— and short—distance effects. The short—distance effects are encoded
in the Wilson coefficients and the long-distance ones in the condensates. This split-
ting of scales must be performed at some arbitrary scale p high enough to make a
perturbative calculation reliable. This is reflected in the p dependence of both the
Wilson coefficient and the condensate. So the Wilson coefficient covers the inter-
actions corresponding to —¢? < p? and the condensates parametrize effects due to
—¢% > p?2. Whereas the former depend on the specific GF under study, the latter
are universal parameters. In principle these condensates are calculable in QCD and
depend only on the parameters of the Lagrangian, but as happens with the chiral
LECs, their computation is only abordable with either models (instanton based) or
lattice QCD. Our approach will be to consider the condensates as phenomenological
parameters to fit. In practice, using the standard methods of Feynman diagrams,
an explicit separation of distances is impossible in the quark-gluon diagrams. One
is then forced to take into account both the soft parts of perturbative diagrams and
the long—distance condensate effects simultaneously. This yields a certain amount
of double counting, which is, fortunately, numerically insignificant, because the con-
densate contributions turn out to be much larger that the soft “tails” of perturbative
diagrams.

However, one cannot calculate in the OPE an arbitrary number of power cor-
rections. As demonstrated in [16] there is a critical dimension at which non—
perturbative effects cause the OPE to break down. We will not enter in the details
of this phenomenon, but will restrict ourselves to the first orders.

To close this section we give a list of the condensates that we are going to consider
in this thesis

(@) , as(G,GY) + 95(70wG"q) , (T XN'qqT A\q) , (4.61)
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4.7 First OPE applications

In this section we will use the results derived in Section 4.4 to obtain relations
between two- and three-point GFs when high momentum limits are taken. Of
course, in the language of Fourier transformations this limit is dual to the small
coordinate limit when momentum and coordinate are conjugate to each other. Some
of the topics discussed in this section can be found in Ref. [51]|. To start with, let us
reduce the time—ordered product of three currents when the limit of one coordinate
tending to another is taken

lim T{Jy(2) J2(y) J5(0)} = T{T{J:() J3(0)} J2(y)} - (4.62)

Thus the time—ordered product of three operators reduces to the time—ordered prod-
uct of the time—ordered of two of them with the third one, when the appropriate
limit is taken. Next we consider the OPE for two currents at O(a?):

Ne ot [dipdlq _, Te[pTagT
Lim T {J{(z).J5(y)} = ¢ /d PG ipg)a-y) TELPT24T1]

-y 2 (27)8 P°q’
+ (a7 0) @0 T ) - T T b (a6
tim T {540} = S T D)
. 16¢7r2 ZF:% {i_: (T ¢) (2) Te[ (Do T T, — Ty T'Ty) #]
+ <qr§q> () (R Tr [Ty Ty ] — hachr[nFFQ:i])} : (4.64)

where we have written the result both in momentum and position spaces. We denote
generically

)\(l
Ji(z) =:q(x) T )
The first term corresponds to the perturbative part and in general needs to be
subtracted, and the second is obtained after applying the Fierz identity in both
flavour and Dirac spaces

A? A 1 1

6(1,8 676 = 2 <7> (7) + — 6047 655 s 6ij 6kl = Z Z cr sz Fjl . (466)
ay Bo

nf T

q(z) : . (4.65)

The I'" matrices span a basis of the Dirac algebra, and their expression can be found
in Table 4.1 together with the values for the cr coefficients. For order parameter
GFs the perturbative term vanishes, whereas the second one does so for the rest.



102 Green functions of QCD

Dol Tgsea | 2% | Y | VY5 | O
ol 1 =1 1] =1

N | —

Table 4.1: Fierz identity in the Dirac algebra.

As a first application of Eq. (4.64) we can compute the leading order of both
the perturbative term and quark condensate contribution to two—point GFs in the
OPE*

lim 11{5(p) =

Z,NC(S“”/ At Te[TyfTy(f —p)]

p—00 _2 (2m)* 2(0 — p)?
+ % 8 Tr (04, To) p) + O (p72) . (4.67)

where either the first or the second term survive depending on the nature of the
GF. The integral in the first term can be explicitly calculated with the help of the
expressions in Appendix G and after properly regularized we find

N, 5ab 2 1 8 2
: ab _ c p ¢! _ _ _p_
plLrgOH12(p) = D { 5 Tr [Ty Ta ] L + 3 10g< M2>]

+ Tr [Ty pTyp] E+g—log (— Z—Z)”Jro(pﬂ) . (4.68)

The Feynman diagram leading to this result is depicted in Fig 4.3 (a).
I=p
A 3 N
l p
(a)

(b)

Figure 4.3: Feynman diagrams of: (a) the perturbative term and (b) the quark
condensate, for a two-point GF at O(a?).

4The statement O(p™) must be understood as O(A") having written p# = An* with n? = — 1.
If more than one momenta appear in the limit, we will understand p! = An!', n? = — 1 with the
same A for all i.
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Applying this formula to the set of GFs not being order parameter we obtain

Mss(pr)(p?) = (i) F +2—log <— Z—Z)} +0(p7?),
Myy aa(p®) = ; % E + g — log <— Zé)] +0 (™),
M (p?) = e E + 3~ log <— Z—Z)] +0(p™), (4.69)

And doing so with the ones being order parameter we get

ap(p?) = 2%—?, Myr(p®) = %—? +0(p°). (4.70)
and the corresponding Feynman diagram is drawn in Fig 4.3 (b). One has to multiply
this diagram by a factor of two because the counterclockwise contribution coincides
with the clockwise one. Notice that for the case of (AP) we recover the result
obtained in Eq. (4.11), which we know is the exact solution.

As a second application, we obtain the following set of relations:

lim 1% (p, q) = si > erlor (q)(h***Tr [[4TT5 p] — h*Tr [[5IT p])
B
qli)rgo 45 (p, q) = Z crIlip (p)(h™Tr [[3T T ¢f] — h**Tr [ToIT5 ¢])
1 8
lim e (p, —r — p) = — 57 Z erar (r)(A™*Tr [T TTap | — h*Tr [T5IT4]),

(4.71)

where in the last expression we have used the fact that II;;(p) = I1;;(—p). We can
now particularize Eq. (4.71) to the different three—point GFs.

lim Msssspry(0®, 4% (p+4q)*) = O(g?),
lim Tspr(p®, ¢, (0 +4)°) = —8(d0) Ifg'qu +0(p?),
lim v eas @, 7, (0 0?) = =2 28D o+ o), (4.72)
i Ty O, (9% ) = =232 4 o), (4.73)
IJILIIOIOHAAP(VAS)(anqQa(p+Q)2) = plggOHVAS( L(r+p)ir’) = 0@p™?),
plgrgofvvs(pQ,qQ, (p+9q?) = 2H%2(q?) +0(p™?),
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hrn Gvvs(aasyvar(p®, @5 (p+q)%) = qli_)rgo Fans(p®,¢*,(p+q)?) = O(g ),

lim Fyys(p?, (r+p)%r?) = plgrgoQVAp(p2,q2,(p+q)2) = 0",

(
Tim Fuvs(
(
(

Jlim Gyys p(r+p)?r?) = O@p™°),
lim Fasswar (0°. 0% (p+0)°) = O@™).
Jim Foap(®®,¢* (0 +9)°) = H%(Epg) + 0(g™"), (4.74)
And in addition we have
lim Faas(p?, (r+p)",7%) = p* Gaas(p?, (r 4+ p)".1%) = O(p7"), (4.75)
and
lim Fyap(p?, (r +p),r?) = _ lag) [ﬂ () + ELFO02) 4 of 2)}
e VAP\D p), 2 2 p )
i Guan(s?, (r+pr%) = =2 G0 1+ L1040 Lwrs)

together with

FOG) - g0e2) = L FOG2) _ g2 4 g0y = 2 (4

r r

4.8 C for three—point Green functions at O(a)

As already discussed in the introduction of this chapter, the (gq) condensate plays
a special r'ij)%le since it is believed to be driving the spontaneous breaking of chiral
symmetry. Moreover, since we are considering only order parameter GFs, there is
no perturbative contribution and the quark condensate is the first OPE term. We
recall the reader that the Wilson coefficient for two—point GFs has been already
calculated in the previous section.

The easiest way to compute the Wilson coefficient for the quark condensate
operator is a direct application of the Wick theorem leaving a pair of quark fields
uncontracted and using the identity

(G(0)475(0 >——5“”5 das (79) (4.78)

where a, b are flavour indices, i, j are Dirac indices and «, [ are colour indices. A
more efficient method to obtain C'g is to use the plane wave method, which exploits
the fact that the OPE is an operator relation. The Feynman diagrams corresponding
to this contribution are depicted in Fig. 4.4. In fact one has to consider the same
diagrams with the fermionic charge flowing counterclockwise. We will define

SSS(S _
U§SSisrr) (" ¢ % 1) = Coy ™07 m)aa) () + -+
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Myvpaapivas (a2 m) = Con " PVAS 02 g2 02) gy (u) + -+
VVS(AAS)[VAP _
]:[Q]VVS(AAS)[VAP} (an Q. p = Cf[g}<(qq> ! }(pQ, 7, 7“2) (qq)(p) + -+ .

(4.79)

It is not difficult to find a general formula for this Wilson coefficient. Defining
hate = ATe[T* TP T¢| = d*®° + i f we obtain:

1

abe
C(dtl) 123 16

{ : (habc Tr [T Tod Tap] + h* Tr [Tol1pTag )
+ # (R Te [TDip o ] + h* T[T Taf Top])

R (h Tr [Tolsf Ty ] + h*® Tr [ TyTag T1f]) }’ (4.80)

f\@@/ :

Figure 4.4: O(a?) contributions to the quark condensate operator for three—point
functions.

q-r

Applying Eq. (4.80) to the functions we are interested in we get:

A(p?, ¢% r? p' = (¢* =%’
C’<SS>S(p q, r):—QW, C<SP>P(p ¢, r?) =2 p£q2r2 : ’
VPR gt 1) — P2+ g2 +r? C,AAP(VAS)(pQ r?) = r? —p*Fq?
(g) T T 22,2 (a9) ot 2q%r?
pP*q*r prar
2 2. 2 2 _ 2 2
+qg°+r p—qg =T
CVVS(AAS) (o 2 2y _ P CVAP = -
Fa PHOT) = s ) (%% r) oy
VVS(AAS)[VAP] 1 9 o 9 1
C6 (aq) (0" ¢".7") = 2p g2r?’ (48D

4.9 Hard—gluon corrections to the quark condensate

In this section we will compute the O(as) corrections to the Wilson coefficient
corresponding to the first non-perturbative operator: (gg). In the case of order
parameter of the chiral symmetry breaking GFs this first operator is the leading
one, and so it is relevant to calculate its first order gluonic corrections. Yet another
motivation for computing the O(ay) corrections to Cigzq is to make the QCD running
coincide both in the OPE and RT.
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Let us now consider the case of the [1ggs GF. In the OPE it gets its first contri-
bution from (Gq), and at leading order its Wilson coefficient is p—independent. On
the RxT side the situation is a bit different. It is well known that each scalar and
pseudoscalar current insertion in a chiral theory is accompanied by a (gq) factor, so

25 = Clyp(p,a) (Ga)(p). Tk = (p.q) (Ga)(w)°, (4.82)

and apparently we cannot match one onto the other because the p dependence is
different. What it is happening is that whereas for C\g, we restrict our calculation
to the leading order, RxT includes all a, orders in a non—perturbative fashion. But
if we take into account the RGE for the Wilson coefficient Eq. (4.86), Eq. (4.82)
becomes meaningful and in principle the matching could be performed.

We will first discuss the case of two—point GFs and concentrate latter in the
three—point case.

4.9.1 Two—point functions

We start reviewing the derivation of the o, corrections for Cq in the case of two—
point GFs which are order parameter. In this simple scenario we will discuss the
appearance of infrared (IR) divergences and the renormalization of (gq). The only
GF that we can consider is the (V'T), since the (AP) is fully determined by the
Ward identities and does not receive any contribution (in Ref. [60] this has been
explicitly checked to the one loop level). The diagrams that contribute to this order
are shown in Fig. 4.5 (each diagram is accompanied by a factor of two as discussed
in Section 4.7).

> b

SlaTe

(d) (e) (f)

Figure 4.5: Gluonic corrections to the quark condensate.

The first thing one should observe is that diagrams (c), (e) and (f) of Fig. (4.5)
are infrared divergent since they involve gluons attached to quark lines with zero
momentum. The same diagrams contribute to I1Y,, and Eq. (4.11) shows that it
is free from IR divergences. So they cancel when adding the six diagrams, and
something similar must occur for the (VT') GF. Since these divergences cancel at the
end we might choose any method to regularize them. A first option, more intuitive,
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is to give the quark (or the gluon) a small mass, and in this way the divergence will
manifest itself as log(m). This method is analytically more involved and gets terrible
for three—point GFs. We will adopt the dimensional regularization method which
simplifies the computations notoriously. The problem with this method is that one
loses the possibility of distinguishing the ultraviolet (UV) divergences from the IR
ones. The divergences will manifest, as usual, as 1/¢ and log(y). In this scheme
diagrams (e) and (f) are zero: they are scaleless and convert the IR divergences
of (¢) into UV ones. So we are left with diagram (c) as the only one potentially

problematic. For this diagram (computed in an arbitrary gauge) we obtain in the
MS scheme:

() _ _ @ Cr{70) LR G
Myr = a1 {(a—i—3)[é log E +a+1p. (4.83)

As we see, by itself this diagram is still gauge dependent, which means that the other
diagrams are required in order to obtain a gauge—-invariant result. The divergence in
the expression has the form %@o‘?% and together with the tree-level amplitude
we get the structure:

<qq>< —1(3”)%@)  {4a) Zn Zow = (G5 a8} Zom

= b (g as) = (qq) g (1) - (4.84)

We have used the fact that the product m (gq) is a renormalization group invariant
quantity and so the divergence is absorbed in the renormalization of the conden-
sate. Summing up all diagrams, taking into account Eq. (4.84), including the wave
function renormalization of the quark fields and the renormalization of the tensor
current we find

NoPE(p?) = @‘IIZ# {1 + 0‘7 Cr {log (— Z—Z) — 1} } + O(a2,p™),  (4.85)

which is of course independent of the a parameter as required by gauge invariance,
2 _

constituting a good check for our calculation®. For N¢ flavours Cp = 1\27]0\,01 ~ %

where the approximation corresponds to the large- N limit. As a last comment, let

us write the Wilson coefficient Callan-Symanzik equation,

0 d Qg

which is identically satisfied by Eq. (4.85).

5All calculations in this chapter have been performed in an arbitrary gauge. The dependence
into the gauge parameter a cancels in all our final results.



108 Green functions of QCD

4.9.2 Three—point functions

We turn now our attention to the three-point functions which are of great interest
for different reasons. First, unlike the two—point ones, there is a quite big amount
of them that are order parameter of the chiral symmetry breaking. Second, in
the framework of RxT they involve vertices among resonances and so it is useful
to learn how they interact. Third, there are a lot of O(p®) xPT LECs that can be
determined with these GFs [41]. And fourth, by means of the LSZ reduction formula
we can relate the GFs with form factors entering the calculation of many interesting
hadronic observables.

The expressions of the a; corrections to Cyz, for the three—point GFs are quite
involved and their explicit form is relegated to Appendix D. There are two reasons for
this complexity : first, they involve three Lorentz invariants p?, ¢> and r2, and second
(and specially for VV' S, AAS and VAP) they involve different Lorentz structures
that mix with each other under quantum corrections.

The diagrams contributing to the hard gluonic corrections for the three—point
functions when the quark condensate is between the first and second currents are
shown in Fig. 4.6. Of course, the same kind of corrections must be considered for
the other two insertions of the quark condensate and the reverse fermionic flow
terms. Diagrams (h), (i) and (j) are analogous to those in Fig. 4.5 (c¢), (e) and
(f), respectively. Diagrams (d) and (e) are IR and UV safe, even though they have
gluons attached to zero momentum quark lines. Much as we did in Section 4.9.1, we
regularize both type of divergences in dimensional regularization, renormalize the
quark condensate as in Eq. (4.84) and after summing up all diagrams IR divergences
will cancel out. The rest of the (UV) divergences are absorbed in counterterms as
usual and this renders a finite (but in general scale dependent) result.

SN AN LD LN
NP

XW(/[/) X

(5)%

Figure 4.6: Gluonic corrections to Fig. (4.4)
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Loop corrections manifest themselves as logarithms, dilogarithms and constant
pieces. In general we will have the following decomposition :

Qg aS CF p2 q2 T2
C@) = s [Lplog <— E) + L,log <_E + L, log —? 4+ LsCo+ L.| ,
(4.87)

where L; are pu-independent meromorphic functions of the squared external mo-
menta. This simple structure arises because in the chiral limit all internal lines,
either quark or gluon, are massless. Cj collects all dilogarithms and its explicit
expression reads:

2 2 .2 _ . 2 d4k 1
Gl ) = =i [ G

A [ Ao Attt
DU A= —p2 2 A+ —r?

A 2 2 .2 A\ — g2 — 2 2
L[ — +q +r°—p L - q —r°+p
A=—q?—r2+p? A+q>+1r?—p?

Lis | — — Lig | — 4.88
i 12( A=12—p?4¢? 2 Ad1r2 4+ p?—q? (4.88)

where )\ is the well known Killen function A (p2, ¢2,7%) = (p2 + ¢ — r2)” — 4p2¢>.

The 1 dependence of Cgq) corresponds then to

0 Qg CF
For the (VVP), (AAP), (VAS), (VV'S), (AAS) and (VAP) GFs the total anomalous
dimension is 7 = 75 and the Callan-Symanzik equation for their Wilson coefficient
is trivial

0 VVP[S](AAP[S]) {VAS[P]}
3 Clan =0, (4.90)
having no p—dependence. For the rest of the GFs, (SSS) and (SPP), v = 375 and
the RGE is also rather simple:

{—/Li + 2%] OSSP — (4.91)
o

(qq)

It is better to study the odd-intrinsic—parity sector ((VV P), (AAP) and (VAS))
at once. The Feynman diagram for any of the three GFs has the same value up to a
44 factor. The same applies to the rest of sectors. Here a technical comment is in
order. Since we work in dimensional regularisation, there is a question how to treat
vs. In all our computations we have employed a fully anticommuting 5. Either two
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v5’s appear in a trace and can be cancelled before taking the trace, or, in the odd—
parity sector, we can first perform the v contractions before taking the trace, and
are then left with traces of only four y—matrices and a 5 which are unambiguous.

As we saw in Eq. (4.17) each rank—two even—intrinsic—parity GF ((VV'S), (AAS)
and (VAP)) decomposes into two scalar functions, F and G. At lowest order the
determination of these two scalar functions is straightforward, but once we go beyond
this level their direct computation turns out to be rather complicated. Instead
we will concentrate on the determination of linear combinations of these factors,
obtained by taking the appropriate traces in Eq. (4.17) [those traces that do not
reduce to a Ward identity | :

14 3 )\
9w yrys = 5 (p* +¢* —1%) Fyvs — (Z i 3PQQQ> v
14 1 1
G Myys = A [_ Frvs+5 (0" +a =) gvvs] ’
) 3 )\ - ,',.2 _p2 _ qQ
G T = > (pQ +¢° — TQ) Fans — (Z + 3p q2> Gaas +(qq) ( 02 2 :
v 1 ]- 2 2 2 ~ (TQ — p2 _ q2)2
qupl/HIj}AS — Z)\ |:_-7:AAS+§ (p +q - T )gAAS:| +<qq> 2p2q2
) 3 )\ ~ 5(]2 +p2 _ ,',.2
G W = (74 a?—1%) Frap - (Z + 3p2q2> Gvar +(20) — 55
y 1 1 =) ¢
G Iy = =M |=Fvap+= (> +d" —1%) Gvar| — (dq) ( 2) 2
1 2 2¢°r (4.92)

These traces have the same symmetry properties under exchange of momenta as F
and G, due to Bose symmetry. Once they are known we can reconstruct the total
GFs inverting Eq. (4.92).

The analytic expressions for Ly, L,, L,, L., and Ly can be found in Appendix D.

4.10 Soft—gluon corrections: the (Go,, G'"q) opera-
tor

In this section we calculate the next non—perturbative correction to the (VT) GF.
We will compute the corresponding Wilson coefficient only at leading order in a.
The operator (go,, G*"¢) has dimension five and represents interactions due to a
soft quark pair and a soft gluon from the vacuum. One can of course calculate
this coefficient directly using Wick’s theorem, but in this way many diagrams are
infrared divergent constituting a redefinition of the (gg) condensate itself, as shown
in Fig. 4.7 (a). There is, however, a smart procedure for computing soft—gluonic cor-
rections without confronting such difficulties, the so called background field method.
This idea was originally proposed by Fock [63] and Schwinger [64] and rediscovered
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by a number of people [65,66]. In this method one introduces an external gauge
field G, () into the QCD Lagrangian with the following gauge condition (Schwinger
or fixed point gauge):

(z — mo)'GY(z) = 0, (4.93)

where xq is an arbitrary but fixed point in space-time that can be eventually set
to the origin. The gauge field can be then directly expressed in terms of gauge
covariant derivatives

1
1
G, = / adaGy(ax)r” = 3 2"Gpu(0) + - - (4.94)
0

RS &

Figure 4.7: Diagrams of the mixed quark-gluon condensate: (a) Infrared divergent
diagram renormalizing the (gq) condensate, (b) contribution to the quark-gluon
condensate coming from the background gluons.

Gluonic corrections can now be calculated by considering that our virtual quarks
and gluons propagate into this background field, being propagators modified (in
fact we will only need the modification of the quark propagator). This modified
propagator in momentum space and for massless quarks reads

- 19GOS B + 50, DGO EL (0 4 ) 4
(4.95)

and its diagrammatic representation is shown in Fig. 4.8. It is also simple to express
the quark propagator in coordinate space, what makes computations easier

Sp(x) = sol@)¢ — 9, Gula) s1(a){#. 0™} +---, (4.96)
11 1 1
w@) = gE W =555

The only missing ingredient for the computation of gluonic corrections is the
following integral

. (_1)n 24—271 71.2
7
dix . I'(n—1)T o
T girr _ (n=1)T(n) . (4.97)
x?n .47.‘.2
— —q2 s n = ].
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Figure 4.8: Quark propagator in a background of gluon fields.

But the Wilson coefficient of the (§o,, G*q) operator does not only come from soft
background gluons, but also from the expansion of the quark condensate in diagrams
like Fig. 4.3 (b). So, after applying Wick’s theorem, one has to consider

(T ()4j5(0)) = Wéabé Oa (( q) + 11—696295 (GO G’“’q)) e (4.98)

For the computation of the contribution from gluons coming from the background
one has to take into account that
1

(0:(0)6"(0) ¢;(0)) = 1o

Let us now concentrate on the computation of the Wilson coefficient for a generic
two—point GF. The first contribution coming from the expansion of the quark con-
densate gives

(qouw G"™ >(0W)ji - (4.99)

ab
(1) 0 T ([, o] p)
C(‘jauu Grrg) 9s 5 p4 ; (4100)
whereas the second one, coming from a diagram like the one in Fig. 4.7 gives
6ab
2
C<((j)a‘“, G““’Q) 384 4Tr [{]ﬁ J } (FQ UMU Fl Fl O-;u/ FQ)] . (4101)

It is reassuring to check that for the (AP) GF, both contributions exactly cancel,
as the Ward identity demands. For (VT') we obtain [adding also Eq. (4.85)]:

ey (v*) = @{ CF[log (— Z—2> - 1] } g 0o 00w G0y 1)

D 3 pt

4.11 Soft gluon corrections: the (G}, G}") operator

We will now consider the first non—perturbative correction to the two-point GFs
that are not order parameters. These are purely gluonic corrections due to the in-
teractions of the hard quarks with the vacuum gluons. For its computation it is
better to use once more the background field method in position space. The corre-
sponding Feynman diagrams are shown in Fig. 4.9 and the expression for arbitrary
currents of its Wilson coefficient is

6aba5 DuPv af v
CTERE ol O L (G L I TR
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(D CHC

Figure 4.9: Gluon condensate Feynman diagrams.

In particular, for the different GFs we obtain:

VV(AA) oF SS(PP)  _ oF 7T+ _ Qs (4 104)
(Ga,Gh") 24 pt’ (Ge,GE") — 4mp?’ (Ga.ah") 48 Tt '

4.12 The four—quark operator (GI' \%q g \%q)

This operator is specially important because it is the first non—perturbative con-
tribution that distinguishes (V'V) from (AA), (SS) from (PP) and (T'T)" from
(TT) . However, there are additional contributions of the same order in 1/p? that
vanish wt ore. We are not going

to calcula

Figure 4.10: Four—quark condensate contribution.

Even though we are calculating corrections involving one gluon (see Fig. 4.10),
the background field method is no longer useful for two reasons: first, the gluon is a
virtual, hard gluon and it is not taken into account in the modified quark propagator
(it comes from the QCD action); second, we are integrating over three space-time
points x (were the first current is defined) y and z (the two hard-gluon insertions).
The most efficient way to calculate the Wilson coefficient is the plane wave method
in combination with the Fierz identity (4.66).

In fact there is not only one operator but rather five, one per each independent
Dirac matrix (no summation over flavour index implied) :

) Am e VAP LY
s = q2qq2q ) np = QQZ%QQQZ%Q )
e Dt e
Hyv = qE’Yuqq?'Y q ), Ha = QE%L%QQ?’Y V54
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@ @
ur = <q70uuqq70’“’q>, (4.105)

where A% are color matrices of the SU(N¢) group. All those contributions stem
from diagrams like those depicted in Fig. (4.10). The general formula for the Wilson
coefficient is easily obtained and reads

2
Cur = 9% % e g2 TH(P[TAT ]) Tr ([ T =TT ,]). (4.106)

For the different functions it renders

C,VV(AA) _ 293 C,SS(PP) _ i49§ TT*

4 ¢?
Av) T e T POk Copy = £ =5

e (4.107)
Since very little is known about the numeric value of the four—quark condensates,
an approximation only valid in the strict large-/N¢ limit is normally assumed. It
is known as the vacuum saturation hypothesis and it basically assumes that the
intermediate state giving the main contribution when inserting a Parseval identity
is precisely the vacuum

a

- - )\b - @ - @
(a0 T Thqql> 5 T"q) = Z(OIqFlgT"‘QIM<N\qF2?TBQIU>

n
a

Ao A
(01qT15-T"¢]0)(0/gTy - T%q|0)

2 2
~ (a9)”*
64 N2

Q

6 548 Te[ T\ Ty, (4.108)

and certainly it makes sense since large-Ngs QCD favours contributions with as
less number of intermediate particles as possible. Eq. (4.108) leads to tremendous
simplifications in the calculation and, in particular, it reduces the five independent
operators in Eq. (4.105) to only one, namely ((jq)Q. The general expression for the
Wilson coefficient of that operator is

2
9; Cr
Clag? = 16 Ne g {Tr [yup Loy p ] + Tr [pyLopyTh] — 8 Tr [[415]}, (4.109)

and its value for the GFs under study is

vV 9: OS5 (PP) T 3_92 CTT% ~ ¥ g_f (4.110)
@)’ T 26 @’ T pt ()" = g pS '

where we perform the approximation Cr &~ N¢/2 because the vacuum saturation
hypothesis is only valid in the strict large—N¢ limit. However, several tests seem to
indicate that the vacuum saturation hypothesis is quite inaccurate, and in certain
condensates the deviation is about 100%. We will assume that this error does not
change the sign.
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4.13 Calculation in yPT

In this section we calculate some GFs in the opposite regime: the low energy region.
The basic ideas of yPT and the operators needed for these calculations have been
covered in Chapter 1. Again we will assume the chiral limit.

4.13.1 Three—point Green function: (VVP)

For this function and bearing in mind the application it will be used for (see Chap-
ter 5), we will concentrate only on the leading 1/N¢ term of the O(p*) result. So
there will be no logarithms. The leading term is produced by the WZW anomalous
term in Eq. (1.78), giving rise to a piece proportional to N¢, and the next corrections
are produced by the odd-intrinsic-parity L) Lagrangian (1.79). The result reads

r+¢  No
r2 4722

Y = By (6457W ~ 16y ) +O(p*, N) . (4.111)

and the Feynman diagrams leading to it are shown in Fig. 4.11.
P
®
|
ot &

vru A 9%
~ Vv

Figure 4.11: (VVP) GF in xPT.

4.13.2 Two—point Green functions

For this simple case we will perform the calculations to the next—to-leading order in
both the chiral and 1/N¢ expansions. So we will in principle find chiral logarithms.
The three possible contributions are drawn in Fig. 4.12. To (AA) and (PP) only
Fig. 4.12 (a) and (c) contribute, for (V') and (SS) only 4.12 (b) and (c), for (VT)
only 4.12 (b) and (c) and for (T'T) only 4.12 (c):

T () = — 2L, — AH + 1 §_1 N
vy \P ) = 10 17392 (3 0g 2 ;
xPT / 2 _ F2 r r

I, (%) - —4H] +2L,,

H 5 p?
T2 = B2l32(Lr + =2 1—log| - =

F? H}
M) = - a5 s (- 1))
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2 O 2

o PP Aa(p) | Qoalp) 1 y 5 o
HVT(p ) - Al (M) + F2 { 2 + 64 71'2 C + 3 IOg MQ 3
XD (p?) = i% + Q5 T % - H;S. (4.112)

It is interesting to stress the fact that in the chiral limit and at next—to—leading order
the (T'T) GF does not get any logarithmic correction. This is so because the tensor
source is O(p?) and appears for the first time L4y. So the one-loop corrections is
formed with two vertices from L4, which is already O(p®).

// \\
® ----- ® + ® ® + @®
\

Figure 4.12: Two-point GFs in xPT.

4.14 Calculation in RxT

In this section we will calculate some GFs in the large-N¢ limit. The many sim-
plifications occurring in this limit where already exposed in Chapter 2. Whereas in
Section 4.4 we used quark and gluon degrees of freedom, the calculations will now
be performed with hadronic degrees of freedom. All these features are implemented
in the RxT Lagrangian of Sections 2.6.2 and 2.8. The expressions obtained will have
validity (in principle) in all energy domains. We will restrict ourselves to the MHA
approximation, that is, considering only the minimal number of resonances needed
to satisfy several constraints. Use of quark-hadron duality is done when comparing
the results of this section with those of Section 4.4.

4.14.1 Three—point Green function: (VVP)

Our purpose is now to build a representation of the (VVP) GF which is valid at all
energies. In particular we have already calculated its expression in the asymptotic
energy region, including hard—gluonic corrections to the leading order condensate
{(qq). For our ansatz it suffices to consider only the O(a?) quark condensate contri-
bution. Our parametrization has to reproduce this behaviour for large values of the
momenta. In addition, we also have to enforce the conditions of Eq. (4.72) when
only one momentum is large. In the very low energy region, the GF has to satisfy the
constraints of chiral symmetry encoded in xPT that can be read from Eq. (4.111).
In addition to these constraints on the (VVP) GF there is also a requirement that
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we will enforce in any hadronic form factor of vector or axial-vector QCD currents.
It is known [67] that the leading perturbative contribution, within QCD, to the
spectral functions of both vector and axial-vector correlators is constant. Then it
comes out, as a heuristic deduction, that any of the infinite hadron contributions to
the spectral functions should vanish at high transfer of momentum. This implies, in
order, that hadron form factors of those currents should behave smoothly at high
energy [68,69|. Incidentally this feature coincides with the known Brodsky-Lepage
condition on form factors (derived from a partonic framework) [70]. Specifically the
condition, in our case, reads:
lim 72 Iyyp(0,¢%,7%) = 0. (4.113)

r2—0,¢2—oc
Our task is to construct a function for (VVP) that satisfies, at least, the conditions
defined above. In general the large—N¢ predictions allows us to parametrize Ilyyp
with meromorphic functions (i.e. functions with real poles as singularities) with
poles in the corresponding resonances propagating between the QCD currents. In
general we have then

3+m—1 2 2 .2
Myvp = Zn:g,m PnQ(p ’QQ’T ) ; (4.114)
Hi,j:l(pi - mj)

where m; are the masses of the resonances that couple to the current J; =V, P, and
p? = p?,¢% r* is the momentum flowing from this current. P, is the most general
n—grade monomial in p?, ¢% and r?:

n k
Po= > crr ()" H@)F 00 (4.115)
k=0 1=0
Bose symmetry requires that cgpmi = Crim.

In Ref. [42| a Lagrangian theory, including one multiplet of vector resonances
only, was designed in order to obtain an expression for IIyyp that satisfied all condi-
tions but for the one in Eq. (4.113). Indeed the fact that only one multiplet of vector
resonances was not enough in order to satisfy all short-distance constraints for this
GF was already noticed [51| with the use of a parametric ansatz. It is already well
known [51,71] that the MHA is more involved if we want that our representation of
the GF satisfies both OPE and the Brodsky-Lepage requirements. To see that let
us use (4.114) for this ansatz:

Cooo + 100 7% + cor0 (P + ¢%)
(M — ¢2) (M3 — p?) r?

Matching to OPE requires cigo = 919 = — B F'? whereas the Brodsky-Lepage would
imply cg19 = 0, thence these two requirements cannot be satisfied at the same time.

The obvious extension is to extend our spectrum by including also a multi-
plet of pseudoscalar resonances in the construction of the IIyyp function. Al-
though it can be shown that indeed this parametrization satisfies conditions in
Eqs. (4.111,4.81,4.113), it fails to meet the OPE condition in Eq. (4.73) ®. Eq. (4.114)

6Constraints in Eq. (4.72) are, in this case, undetermined.

e (0%, 6% %) = (4.116)
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reads for this ansatz :

. 1
We (0. 0°7) = G =y (0 = ) 2 (g =) (o e+ cono (07 +4)

+ ca00 Tt + cozo (p* + ¢*) + crio 7 (P° + ¢%) + cor1 7 QQ} . (4.117)

After matching this result with the OPE we get
co20 = cor1 = 0, ¢0 = c110 = By FQ, (4-118)

whereas the Brodsky-Lepage condition implies ¢q19 = 0, and so they do not clash.
However when we try to satisfy Eq. (4.73) we find that instead of a pion pole we
have a pseudoscalar resonance pole

ByF? 1 1
A2 p? ME— @2

Jim 5, ((Ap)*, (g = Ap)*, %) =~ 2 +o (4.119)

It is not difficult to relate this problem to the fact that the (AP) correlator in the
chiral limit is saturated by one pion exchange [60].

It can be seen that all conditions are met if we consider in the spectrum of the
(VVP) GF two non-degenerated multiplets of vector resonances, together with the
Goldstone pseudoscalar mesons. Then the ansatz would read [40]:

1
= O =P OR, =P 07, — P 0, )7 |
+ cowo (P° + ¢°) + cono (¢" + ") + ot p* @ + cro”’ (P* + ¢%)
+ 300" + coz0 (P° +¢°) + o PP PP+ ) + i PP ¢
+ (Pt +¢") + ' (0 +¢%) ] . (4.120)

res 2 4
II5p Cooo + Croo 7~ + Cooo T

The chiral symmetry behaviour (4.111) gives

N,
Cooo = B[] MélMéQ 4—71_02 s (4121)
and the OPE matching demands
C300 = Co30 = Ci20 = €210 = 0, oo =111 = —Bo F? . (4.122)

Finally the Brodsky-Lepage behaviour on the vector form factor, defined by condi-
tion (4.113), fixes one additional parameter, namely :

Co20 = 0. (4.123)

Our ansatz, with all these constraints, satisfies also the OPE conditions in Eqgs. (4.73).

The study of the (VVP) GF along the lines outlined in this section can also be
carried out within a resonance Lagrange theory instead of a parametric representa-
tion as given by Eq. (4.120). We collect this procedure in Appendix E.
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4.14.2 Two—point Green functions

For the case of the two point GFs, the parameters appearing in the large—N¢ limit
are only masses and decay constants. The definition of the latter follow :

(O[VH0) [ ph(p. N) = 6° Fynmuyn e,
(01T5,(0) [ po(p, A)) = i6“ FY, (1) (€p, — €py),
(0 T5,(0) [B,(p, ) = 6% Fgy(11) €upo €y 17
(0] A%0) [l (p, N)) = 6° Fanmane),
(015%0)[sh(p)) = 4V26” Bo(p) Cn »
(0] P*(0) [ph(p)) = 426" Bo(pt) dnn - (4.124)

The scale dependence of the F%(y) and FZ(p) in Eq. (4.124) [much as happens
with Bg(pu) | reflects the fact that the tensor current has a non—vanishing anomalous
dimension. In the literature it is also common to work with the lowercase decay
constants fy,, f, and fL . which are related to the uppercase ones in a trivial way :
fvn = —V2Fy,, ft,=—V2FL  fb = —+2FE . Also, for future convenience
we introduce the parameter &,, defined as
T T
g = v _ Ivn (4.125)

an FVn .
In the strict large— N, limit two—point functions are saturated by the single-particle

exchange of an infinite number of stable mesons. Therefore, the spectral functions
above take the simple forms

1 1 2

n

1. p 1
—ImIl7(1) = > (R ot —miy), — Im Iy (1) :Zn:FvFVTanné(t— Min),

n

1 1
—Tma(t) = Zn:(p,m)2 6t —m?,),  —TImTlss(t) = 32 Bg;c;n 3(t—m3,),

1

—TmTIpp(t) = 32 By di,, 0(t—mp,). (4.126)

In this section we will consider only the first multiplet for each set of quan-
tum numbers, and apply the matching to the short—distance behaviour (OPE). The
expression for the two—point GFs in the antisymmetric formalism read :

F2 F?

! (p°) = . R 2L~ 41, e
v B
FQ FQ ~

W (0") = ——5 + s —4Hi +2 L,

p? my—p
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62 ~ gg
_m Lot 22
m?q—p2+<8+2)]’

s () = 32B;

@2 F? - H
X (p?) = —32B2 | — —- ™ Ly — =2
pp (P7) 0 m%,—p2+8p2+ 875 ;
Fy Fr'm Fg FL -
Rty — vivmv  Felp 1
v () e, — p? 2mp 1s
I N 07 L S PR ™2 R 1 (s Hug
7™ (p)_m_?{(FB)_(FV)_A3}+§ Q51 — 3 ;
+RxT/, 2y _ (Fg)Z 1 T2 T2 A L& Q52 I:IHS
7™ (p)—mJFP{(FB)—(Fv)—M}—i Q51+7+ 3 ;
A matching to short distances implies
- Fé
Lm:——4m2 , F: — F3=F?, m:, FE = Fim?%,
B
. 3T
Lg =0, 8(c2, — d%) = F?, 2 my — d2mh = 7T4a F*,
~ Fp F F?B
A = -T2t ok, - e (2, B R = T,
2mB my
Fl(w)my = FE(w)mp, Qs + % = 0. (4.128)
. . Fy FL F2B oy .
In particular this fixes Ay = — m—VV = =10, In addition we can match the quartic
\2

condensate to obtain
Femy (m% —mi) = dra, F*By(p) > 0,
[FE()]” m3 (m% —m?) = 2ma, F*B2(p) > 0. (4.129)

The results above deserve some comments. In this MHA approximation we predict
that my > my and mg > my, but we cannot say anything similar for mg and
mp. Phenomenology supports this picture, and of course there are more sophis-
ticate theoretical methods that also conclude the same. It is remarkable that the
aforementioned kinematical singularity in (7'T) is playing the same r'ig)%le as that
of the pion pole in (PP) and (AA). Had it been zero, my = mg, in clear con-
tradiction with experimental determinations. B mesons only play a r'i&%le in GFs
involving tensor currents (and also in the tensor form factor of the pions). Matching
to short—distance QCD implies that the contributions of B mesons on (VV) and
(VT) must be compensated with local counterterms from the chiral Lagrangian.
This was first noticed in Ref. [39], and as we saw in Chapter 2, in the Proca for-
malism B mesons decouple from the vector current. In the case of (VT) and in this
MHA approximation, the matching to short distances fully determines the product
FVFVT-
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It is worth calculating the (T'T) GF in the Proca formalism, where for simplicity
we ignore the O(p®) xPT contributions

B FT)Q AP (FT)Q AP
I RxT( 2y _ ( Vv 3 H+RXT 2y B _ 3
" (p7) m%/ 7 + 2 7 (P7) mQB 2 P2’
FT)Q (FT)Q 2]\P
HA(res) 2y _ ( B _ Vv _ 3 4.130
Tr (p ) mQB B pg m%/ o p2 pg ’ ( )

in this case the longitudinal part of the propagator does not “pollute” the GFs with
kinematical singularities. In this formalism the matching to short distances implies
2AY = (FL)?2— (FL)? Either in antisymmetric or Proca formalism, once we impose
short—distance matching we obtain the same result, namely :

2 FT)2 1 1
a0e) 2y = My - . 4131
rr (P7) 2 m2, — p? m?, — p? ( )
This result fixes the A3 chiral LEC and its sign:
1 1 1 F* B? 1 1
b= L ()T (11
my  my 2 Fy my  my,
1 1 1
= - F’B; — - — ] <0 4.132
P80 (5 - o) <0, (1.132)

where in the second step we have used one relation of Eqs. (4.128) and in the last
we used Fyy = /2 F, which comes from assuming unsubtracted dispersion relations
for both the pion electromagnetic form factor and the axial form factor in radiative
pion decay [13] and has been shown to be satisfied in sum rule analysis of vector
and axial channels.

As a last comment, in Eq. (4.128) several relations have scale dependence. In
some cases the scale dependence on the left— and right—hand sides coincide, making
the matching p—independent. But in some other cases the dependence is not the
same, and it seems that the matching condition is different for different values of
p. In fact what is happening is that our calculation in the OPE is truncated in
the number of loops (in fact, it has no loops at all), and so we do not generate the
explicit u dependence that makes the anomalous dimensions of left— and right—hand
sides coincide, at least formally.

4.15 Can we match the MHA to the OPE at O(ay)?

In this section we shall see that even if the MHA does not suffice to match order
parameter GFs to the the OPE when radiative corrections to the quark—condensate
Wilson coefficient are taken into account, |that is we cannot match Eqs. (4.85) and
(4.127) | we can make a refinement of the mathing at tree-level.

Since the (VT) GF in the chiral limit does not need to be subtracted, it is
completely determined by its spectral function. Then it can be regarded as an ob-
servable and thus we can directly match its expression in different approximations,
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such as OPE and RxT. However, we still have the problem that the tensor current
requires renormalisation, and thus, the (VT) GF is scale and scheme dependent.
This renormalisation dependence would then be reflected in a scale dependent cou-
pling of the tensor current to vector mesons Fit (1) on the hadronic side. Since we
prefer to work with hadronic quantities which are explicitly scale independent, an-
other possibility is to multiply Fi*(u) by an appropriate scale factor Ry (u), which
results in a scale independent tensor decay constant F_"j; This is analogous to the
definition of scale-invariant B—factors, which parametrise hadronic matrix elements

of four—quark operators, in the case of weak hadronic decays [72]. Therefore, we
define

as ()

T T _ 4T oxnd — vr(as) a

v = fr(wRr(p) = frr(p) p{ B0 d s}
_ T —M /B 75“2) 6275"1) 2
=) [ [1— (ﬁ— = )as(mw(%)]
Y ) ] # 1= B o+ 0. (1.133)

The anomalous dimension of the tensor current is known up to order o? [73,74], and
thus one could even extend Eq. (4.133). However, at the order considered here this
does not make sense, since we only stay at the next—to—leading order level.

C
RO i(257NC— 117CF — 26ny) =

@ ~ g N2
36~ 576 ¢’
were the exact number corresponds to three colours and flavours, and the approxi-

mation to the large—N¢ limit. For our numerics we also need the 3 function [75]:

17
12

1 5 17
g—ZC’an—— CanS%ﬁN(Qj

2 —
P 12

Now multiplying our result (4.85) for the Green function with the scale factor Ry (p),
it is a trivial exercise to convince oneself that Ry (u) IOV (p?, 1) is scale indepen-
dent at the considered order. Nevertheless, it should be kept in mind that it still
depends on the renormalisation scheme, for example on the scheme in which (gq) is
renormalised.

In principle, since the next—to-leading order result for the (VT) GF contains a
logarithm in the dynamical variable p?, let us strongly emphasise that an infinite
tower of resonances would be required for a sound matching to the RyxT. Still,
as a simple-minded approach, we will next consider the aforementioned minimal
hadronic ansatz (MHA). This amounts to the assumption that a single resonance
is enough to correctly describe the physics in a certain energy regime. In Ref. [40]
the matching for the (VT) GF was performed at O(a?), and here we will include
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the O(ay) corrections. Again multiplying the GF with the scale factor in order to
obtain a scale-invariant quantity, the hadronic ansatz reads:

Fy FTm
Re(n) T () = =550 (4.134)
mv P

Eq. (4.134) is in principle assumed to be valid at all energies at leading order in
1/Ng¢, since it incorporates chiral symmetry and the correct high—energy behaviour.
It can be expanded in inverse powers of p?, permitting a direct comparison with the
OPE in Eq. (4.85). However while Eq. (4.127) is explicitly scale independent, (4.85)
contains a logarithm which compensate the running of the tensor source and the
quark condensate.

To perform the matching in practice, we choose a particular matching point and
scale. First of all, to sum up the logarithm, we will employ the scale p? = — p? = M?2.
Then, M? should be large enough so that only keeping the first term in the OPE
is a good approximation, while it should not be too large so that only putting one
resonance on the hadronic side is reasonable. From these considerations, we would
conclude, that M should be in the range 1-2 GeV. For the matching relation, we
then find

Fy Flmy = — [ay(M2)]" 7 152} (Gg) (M?) [1 ~ % {%55176 NC} as(MQ)] :

(4.135)

where in the curly brackets, we have also included the numbers corresponding to
the large-N¢ limit. Eq. (4.135) can be viewed as a refinement over the analogous
estimate of Ref. [40].

Let us finally come to a numerical analysis of Eq. (4.135). Employing the central
values Fyy, = 156 MeV and My, = T775MeV, as well as the value for the quark
condensate (gq)(2 GeV) = — (267 MeV)? [76], we obtain

Fl = 1384 40 MeV , (4.136)

where the quoted uncertainty dominantly results from a variation of the match-
ing scale M in the range 1-2GeV, and to a lesser extent from either taking the
renormalisation—group coefficients in full QCD, or the large- N limit. The large
matching-scale dependence of our result reflects the imperfection of the match-
ing. At a scale of 1 GeV, the scale dependent vector—meson tensor coupling reads:
F(1GeV) = 118 + 33 MeV. Given the large uncertainties from the matching scale,
this finding is in surprising agreement to the leading order result FZ(1GeV) =
117 MeV [40] and to determinations of the tensor coupling Fi* from QCD sum rules
and lattice QCD of Refs. [77-80].

For the tree—point GFs one cannot even get rid of logarithms (and dilogarithms)
by a convenient choice of the p scale and hence the full spectrum of resonances
should be considered as well.
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4.16 Matching to the OPE with an infinite number
of resonances

In this section we will obtain a quantitative prediction of the large—N¢ limit in the
sector of vector mesons. In particular, we will show that perturbative QCD alone sets
a relation between the couplings of vector mesons to the vector and tensor currents.
This power of prediction is due to the exceptional status of the two—point correlators
Iy, pp and Iy, As we saw in Section 4.14.2 JP¢ = (1) p-like mesons
are exchanged in the three correlators, a situation that strongly constrains and, as
we will show, sets a distinct pattern for the decay constants of vector resonances
in the large-N¢ limit. To the best of our knowledge, no similar self-constrained
set of correlators exists for particles other than vector resonances. This system of
correlators was first discussed in [81], where, in their words, the (177) vector meson
sector was ‘bootstrapped’. However in their analysis they ignored the kinematical
singularity of the Tl GFs at ¢> = 0 and hence their results should be read with
care.

So far, when comparing the OPE results of Section 4.4 with the calculations of
Section 4.14 we have restricted ourselves to the MHA approximation. Since we were
interested in GF's being order parameter of the chiral symmetry breaking, the Wilson
coefficient of the identity operator in the OPE was identically zero. This implied that
at leading order in gluonic corrections there was no logarithm to worry about, and
then the OPE was simply a pure expansion in inverse powers of the momentum.
Since in the large- N limit GFs are described by meromorphic functions of the
resonances, the high-momentum limit of those expressions is precisely in inverse
powers of the momentum. So the matching procedure was straightforward, even
when considering only one multiplet of resonances.

But one might wonder what kind of information is obtained by matching the
large—N¢ resonance expression onto the perturbative parton logarithm, i.e., for func-
tions that are not order parameters. Having a finite number of multiplets, we can
only obtain a series in inverse powers of the momentum. It is then impossible to
match a logarithm and one is forced to introduce an infinite number of them (as
explained in Chapter 2). If we have an infinite number of resonances of increasing
mass, the process of taking the high-momentum limit and the sum over an infinite
number of terms no longer commute. This can be seen as follows: let n be an
integer number labeling the resonances with equal quantum numbers ordered by
increasing mass; when expanding in 1/p? no matter how large is p?, there will be in
the spectrum an integer ny such that m?2 > [p?|, and then for n > n, we cannot
expand in 1/p?%. So we have first to sum up the infinite number of resonances, and
afterwards, perform the 1/p? expansion.

But, how can we deal with this? We can trade the infinite for integrals over the
resonance counting index n with the use of Euler-Maclaurin theorem

N+1

S = [ fmydn + S{FO) = SN HD} +

0
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- Bon (2n—1) _ r(2n-1)
+ n; @] {fE=D(N +1) — O D)}, (4.137)
that is nothing more than the familiar trapezoidal rule for numerical integrations.
This idea was pioneered by a series of authors [82,83] and recently in Ref. [50] the
method has been extended to include radiative corrections. In Ref. [84] an attempt
to estimate the error committed by the truncation of the infinite tower was done.

Let us apply this formula to the case of the (VV') correlator, and generalize it
latter for the rest:

N

Oyv(p?) = 7":/ dn —X— 4+ ... 4.138
M= m s ety (4.138)

where the dots stand for the terms subleading in inverse powers of p? that will
contribute to higher order terms in the OPE. Let us concentrate on the integral and
split it in the following way

N+1 2 N+1 2 n 2
F F A F

Vn A my, — my, — D

where n, is a large but finite number, defined such that for an arbitrarily large |p?|,
—p?> m%,nA. By using n,, we have split the integral keeping the contribution that
will match the parton model logarithm of perturbative QCD | ¢f, Eqs. (4.69)]. We
expect that for n 2 n, the masses and decay constants follow a regular pattern in
n. The remaining piece can therefore be safely expanded in inverse powers of the
momentum and together with the omitted terms determines the OPE condensates;
it is in general model dependent. We are left with the first integral, where the cutoff
N will eventually be sent to infinity. Whatever the precise form of Fy,, and my,,
may take, the integral has to match the parton model logarithm of Eq. (4.69). By
looking at Eq. (4.139) one concludes that for highly excited resonances

dm? dm?
FI%n :AV Tcrll,r‘;n’ (an)Q :Ag Zl,r‘;n’
dm? dm?
F2 = A, d:“, F2 = Ap dr’f”, (4.140)

for both vector and tensor decay constants, and correspondingly with axial-vector
and pseudovector resonances. Actually, this is the only possibility if we want to
ensure the right high energy behaviour.

The scaling of the vector and tensor form factors makes possible to convert the
integral in Eq. (4.139) over the radial excitation number n into an integral over the
mass. The integration is performed trivially yielding:

m?\rﬂ 2 2 2

- . T m T m q

Moy () (4°) = <A<V>>7 dm? —— = (AD)10g (h) (4141
A
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and analogously for TT44 and IT}.,. Tt is important to stress that the limits N — oo
and ¢?> — oo do not commute. The former must be taken in first place, and together
with the requirement lim,_,,, m, = oo the parton model logarithm is reproduced.
So our first prediction is that vector masses grow to infinity as n does. Moreover,
imposing that the quark—gluon picture is dual to the hadronic one, we obtain

N, Ne 1
A2 =A% = € 2 = A% = — lim & == . (4.142)

2472’ As T 48 72 n—oo "
The definition of &, can be found in Eq. (4.125). Incidentally, note that for the
determination of &, no use was made of the b mesons entering IT;,. In order to
relate both parity sectors in Ilpy, additional assumptions on the spectrum would
have to be made. For instance, if some relation between my,, and mpg,, were specified,
a prediction for f& /fp, would then follow.

For the case of scalar and pseudoscalar correlators, the OPE result in Eqgs. (4.69)
has ~ p%logp?, and so we have to perform the following manipulation to the reso-
nance propagator

2 2 2 2
Cmn Cmn Cmn p
2 s = 5 T 5 2 2 (4.143)
mg, =P mg, mg, Mg, —P

and similarly for the pseudoscalar correlator. Then we obtain

4
den

d )

dm4
2 2 Sn 2 2
& = A d = A%
mn S n s mn

(4.144)

and again matching to the perturbative result fixes B3 A% = B3 A% = ¢ In this
case the anomalous dimensions in both sides of the equality do not match. Indeed

we already faced the same situation for FIL, (u).

4.16.1 Sign alternation in &,

So far we have been able to fix the magnitude of &, from the asymptotic behaviour
of ITyy and Il,. However, it turns out that even the sign can be predicted. To
show this we turn our attention to the crossed—correlator Ily,. In this case, the
Euler-MacLaurin theorem takes the form

F N+1 F2

Myr(p _22 vnfnmm _2/ ngZLm‘;njL..., (4.145)
n—0 mVn nA my, —P

With the help of our previous combined analysis of Ilyy and Il we can also
transform Eq. (4.145) into an integral over the mass. Taking the limit N — oo we
obtain

V= +0(q™?) (4.146)

Myr(q®) = 24\/§7r
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However, in order to comply with the short distance behaviour, it should converge
as ¢~2. The only possibility left is to allow for an alternate series, with &, showing
a pattern of alternation in sign’. Note that, unlike ITyy (AA); H%T and Ilss(pp),
[Ty 7 is not positive definite: the corresponding spectral function in Eq. (4.126) can
contain both positive and negative contributions.

The most general situation that complies with QCD is the presence of some
cancellations for high-resonance contributions, no matter how they are arranged.
So we need an infinite number of positive contributions v, with cut—off N* and an
infinite number of negative ones v~ with cut-off N7. So one consequence is that
not all vector mesons are alike. Let us show that this general scenario does not
contradict QCD. We will have to find a representation for the GF such that the
result is independent of the cut-offs N* for N*¥ — oco. An unsubtracted dispersion
relation does not satisfy this basic requirement, and so we will addopt a once (over—)
subtracted one. For highly excited states, for both v* and v~ we have

2
NC’ dmvni

F nt = 4.147
Vat dnt 24\/272  dn (4.147)
The once subtracted dispersion relation reads
yr(p?) = ¢° / at—r L Myr(t) — Ay, (4.148)
tt—p?) w ’

Imposing that this GF must vanish for ¢> — oo we get the following sum rule

. 1 1

g%2—o0 ™

Eq. (4.148) leads to

. Nep? v 1 - 1
HVT(pQ) = ¢ / dnﬁ —/ dnﬁ

24212 \ Jm . m* —p m _ m* —p
A N
Ne p? Mt 1 Mo 1
—r_ / dnﬁ+/ Ydn——— | . (4.150)
24212 \ Sy M =P S, m’—p
N

The first integral vanishes when taking the limits N* — oo in an independent
(uncorrelated) way (that is, the limit is defined); the second integral involves only
the finite quantities and so can be safely expanded in inverse powers of p?. Then
we comply with the OPE because there are only integer powers of p? and the series
starts with 1/p? terms.

"Note that &, is a real number because fy and fi- are defined to be real, so this is indeed the
only possible scenario. To the best of our knowledge, the first instance of alternating contributions
in the hadronic spectrum was found in Ref. [85] in the context of ete™ — hadrons.
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The simplest (and most natural) scenario consists of a regular pattern of sign—
alternating contributions. For this particular scenario, consistency with perturbative
QCD leads to the prediction

=(-1)" _—:071 4.151

En = (=1)" &l |Gl 7 (4.151)

for highly excited p-like vector meson resonances. Interestingly, the & parameter

has been recently computed in the lattice for the p(770) meson |79, 80,86]. Quite

remarkably, the value reported is &, = 0.72(2) for u = 2GeV®. In Section 5.2.9

we shall see that either sum rules or RxT within the minimal hadronic ansatz get
similar answers.

This result is extremely interesting, suggesting that &, may be a constant in-
dependent of the resonance excitation number. Therefore, one would like to assess
what is the range of validity of the pattern shown in Eq. (4.151). Incidentally, one
would also like to identify the specific realization of opposite—sign contributions.
Note that strictly speaking, short distances only demand that some cancellations
between high-resonance contributions have to take place in Iy 7. It would certainly
look odd if the alternation started at some energy scale u ~ m,,_, but it cannot be
ruled out. However, if this were the case, some triggering dynamical mechanism at
this scale should be invoked. The natural thing to expect is that a regular pattern
of sign—flipping contributions be a feature of the whole meson tower.

So far we have been dealing with large-Ngz QCD. A more ambitious and in-
teresting issue is to check whether the result of Eq. (4.151) and the conjectured
opposite-sign pattern we advocate as its most natural realization has anything to
do with QCD. In the following section we will see that sum rules nicely comply with
this picture.

4.16.2 Comparison with QCD spectral sum rules

In order to test the ideas of the previous section, we will consider a set of sum rules.
We will start with the Ilyy and Il correlators and afterwards consider Iy .
We choose as hadronic ansitze the following functions,

1 B 1 N, _
I (1) = GER20E )+ ELFAA — i) + 3 e B~ )
lImnvv(t) = F26(t—m2)+F26(t—m2)+g Ne kp Ot — s0), (4.152)
T p p o ol 3(4m) ’

consisting of two isolated single poles, corresponding to the p(770) and p(1450) plus
a continuum, whose onset is determined by the parameters s, and 5y, which in

8In a recent paper [40] this ratio was also determined for u = 1 GeV, the value reported being
» = 0.75(14). Sum rules also obtain similar results [77,78]. Incidentally, in the ENJL model [87]
one also finds £, = 1/1/2.
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general are different. The factors in front of the theta terms have been chosen so as
to match the parton model logarithms. The parameters k7, Ky are given by

s 7 t s
k() = 1+ ag(:) (5 + 2 log ?> L kp =14 0‘7(:‘). (4.153)

They represent the first-order ay correction to the perturbative contribution, the
former also accounting for the fact that the tensor current has a non-vanishing
anomalous dimension.

Using once subtracted dispersion relations and expanding the result in inverse
powers of momenta and matching onto the OPE result one finds

2 N,
Fp2+F2———/£V50 = 0,

73 (4m)?
1 N,
2 2 | 2 2 c _
5pr+5pIFpI+A3_§(4ﬂ_)2K}250 - 07
1 N, 1
2 9 2 2 c 2 v
Fyms + F,me, — 5(4%)2 Ky S = — P (asG*" G ),
EF?m’+ & Fom? — 1 N Ky 55 = L (asG*" G ) (4.154)
o lo e S B e T G g )2 1S 71 2

where k9 and k4 are given by

Laslvs) = oy =gy 2aslVso) (4.155)

Sy -
fi2(%0) + 9 1w 9 7

Notice that above the renormalization point was chosen to be p? = 5.

As already noticed in Ref. [88], oy corrections in the vector channel induce at
most a 8% change in the decay constants and will be dismissed. For the tensor chan-
nel, the equations above show that the ay correction in the sum rules is extremely
small. For instance, at 5o = 1.5 GeV?, they represent less than 2% for x5 and about
6% for k4. Therefore, the perturbative corrections in ay can be safely neglected.

For the numerical analysis, we will take as inputs the masses, m, = 770 MeV
and m, = 1440 MeV, and the gluon condensate. Due to the existing uncertainty,
we will choose it to lie in the range (a;G*G,,) = (0.001 — 0.021) 7 GeV*, which
includes both the values extracted from charmonium sum rules and 7 decays [89].
Additionally, we will use the relation F, = V2 F. With F = 92 MeV, one obtains
F, = 131 MeV. Finally, we will further impose fg = 0.5, in accord with the lattice
determination. Notice that in the sum rules we have included the A3 term. However,
lacking any estimate of the parameter, for our numerical analysis we will set A3 = 0,
as commonly assumed in the literature.

Solving Eqs. (4.154) for F),, sq, 50 and &,, one finds

V50 = (1.64 £0.02) GeV, /55 = (1.59 £ 0.02) GeV,
F,=(129+4)MeV, &, =(0.95+0.05)¢&,, (4.156)
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where the errors quoted are due to the variation of the gluon condensate. Note that
both sy and 5y yield reasonable values, i.e., they satisfy m,440) < /50 ~ /50 <

M p(1750) -

The following comments are in order:

e Lower values of the gluon condensate, typical in analysis of 7 decays, favor
§p ~ &p- In particular, notice that a vanishing gluon condensate, not excluded
by 7 decay analyses, implies £, = &, (together with so = §p).

e Eqs. (4.154) provide a solution only for the narrow range 126 MeV < f, < 133
MeV. Interestingly, the range complies with the relation F? ~ 2 F*,

In order to test our conjectured pattern of signs we have to consider ITyr. Our
spectral ansatz will be the following:

1
;ImHVT(t) = & Fim,0(t —m3) + £ Fomy 6(t —mp,), (4.157)

Inserting the last expression and the OPE of Eq. (4.70) into the dispersion relation,
equating powers of g2 on both sides we get

_<QQ> = gpF,?mp_ngle%mpl:
9s ,_ v
- §<q O G* q> = gp Fp2 m/?; + fpl FpQ, m3 (4158)

ple

upon solving these equations for £, and &, we find

¢ (aq)ym}, {1 R }
P F2 my(m2, —m2) m? '
(aqym?, A
= — 1-— 4.159
& F2m,(m2 —m2) m?2, ' ( )
where
\ = 95 (40w G"q) (4.160)

3 (qq)

is the ratio between the mixed and the quark condensates. In view of Egs. (4.159)
there are three possible scenarios, depending on the magnitude of A (recall that the
quark condensate is negative) :

2 . . . . . .. .
e \ < my, leading to alternation in sign, with positive &;

2

o m) < A< ml,

where both £, and £, are positive;

e \>m?

> leading to alternation in sign but with a negative £,.
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The last possibility is in clear contradiction with the lattice result and can be readily
excluded. Independent sum rule analyses [90] indeed concluded that

a=0.22GeV?, (4.161)

so that the mixed condensate is small enough and leads to alternation in sign. (Inci-
dentally, notice that arbitrarily large negative values of A would have also led to this
scenario). Note that the small value of the mixed condensate in the second equation
forces the alternation in sign, whereas the quark condensate fixes the contribution
of the p(770) to be positive.

More sophisticated sum rules have confirmed the pattern of alternating contribu-
tions in Iy [91]. However, a word of caution should be issued on the quantitative
values of the parameters extracted from such sum rules. We already pointed out
in the previous section that the presence of a mass factor multiplying each reso-
nance contribution in Eq. (4.157) spoils the convergence of the series. As a result,
the sum rules are not stable under addition of new resonance states in the spectral
function. However, Eqs. (4.159) distinctly show that there has to be some negative
contribution to outweight the p(770) contribution.

4.16.3 Discussion

A remarkable property of QCD in the large—N¢ limit is that the qualitative char-
acteristics of hadrons emerge naturally from imposing quark—hadron duality consis-
tency conditions on the correlators of the theory. This very general analysis does
not rely on the particular flavour or Dirac structure of the correlators. Therefore,
any relation between a certain subset of correlators may turn out to yield additional
useful constraints on the spectrum of large-Ng QCD.

From a combined analysis of three correlators we concluded that, for highly
excited states, F\. /Fy, ~ (=1)"|FE /Fyy|, where |FL /Fy,| = 1/4/2. The ratio of
decay constants is fixed by the Dirac structure of the currents and equals the ratio
of the leading perturbative behaviour of 1y, and II7r, while the alternate character
is required to ensure the convergence of [Ty .

We find this result particularly beautiful. It is a really striking prediction which
relies only on the simultaneous high—energy consistency of the correlators. In this
sense, the previous result can be rendered as a high—energy theorem of large-Ng
QCD. Our analysis was restricted to light-flavour vector mesons, but similar pre-
dictions should be obtained for mesons with heavy flavours.

A natural issue to address at this point is whether this pattern, valid for highly
excited mesons in the large—N, limit, resembles QCD. The lattice recently computed
the ratio of the p(770) decay constants, with the result F)/F, = 0.72(2). The
agreement is certainly impressive, and it seems suggestive to entertain the scenario of
n—independent decay constant ratios for the p-meson radial excitations. We tested
this possibility with QCD sum rules and the pattern is qualitatively reproduced.
Corrections due to light quark masses and the anomalous dimension of the tensor
current have not been considered.
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Chapter 5

Phenomenological applications

5.1 Weak decays

In this chapter we are going to discuss some applications of the methods we have
studied in this thesis. By phenomenological we mean computations that can be
directly compared with the experimental data.

We will be concerned by the phenomenology of particle decays mediated by weak
interactions. Most of the particles decay due to the weak force, and this certainly
makes sense, because it is the only known interaction that couples particles within
one family (electron with neutrino, up with down quark), and also mixes the different
families (in the quark sector). It is in this sense that this thesis deals with the topic
of flavour—dynamics.

If gauge interactions only coupled particles with themselves (we will call then
diagonal interactions), such as QED or QCD, particles would not be able to decay
because a particle cannot decay into itself (this statement is true for fundamental
particles, not for composite particles such as hadrons or atoms). This special feature
of the weak interactions is linked with the spontaneous symmetry breakdown of a
local gauge symmetry known as the Higgs mechanism. It is this breakdown what
provides fundamental particles with non-zero masses, and gives rise to the known
Higgs boson. The details of this mechanism are not going to be discussed in this
thesis (a nice review can be found for instance in Refs. [3,57,92,93]). We will
however, comment the results that we need for our computations.

The standard model of electroweak interactions has three gauge particles, each
one associated with one force. As discussed in Chapter 1, the gluon mediates the
strong interactions (QCD) and is a massless spin—one boson. The photon is also
massless, and governs the electromagnetic interactions. The fact that these parti-
cles are massless points that the corresponding symmetry is unbroken. The weak
interactions are mediated by two particles, one neutral boson Z coupled to all par-
ticles in a diagonal way, and the charged W particle, the one that couples the two
weak partners and the different families among themselves. These three particles are
far from being massless, in fact my ~ myz ~ 90 GeV. At the energies we are work-
ing, we can integrate out of the action these particles, along with the heavy quarks.
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Then we are left with four—fermion local interactions (non-renormalizable). Since
we are interested in the leptonic decay of hadrons we will write only this piece of the
weak Lagrangian. A fundamental feature of the flavour changing weak interactions
is that they only involve left-handed currents [3]

G
Lw = —— (J,L"+hc),
w \/i(u )

Lt = E,yﬂ(l_’%)ye: J#:V#_Aﬂa
VI = Vyguy'd + Vsuyts, A* = Vyguy'vsd + Vsuy  vss. (5.1)

G is the Fermi constant, L* and J* denote the leptonic and hadronic currents,
respectively; V# and A* stand for the vector and axial-vector currents. V4 and V
are the CKM matrix elements [94, 95|, that can be chosen to be real [96], and to
a very good approximation satisfy |V,q4|> + |Vus|> = 1, or equivalently V,4 = sin#,.,
Vus = cosf., being 6. the Cabibbo angle. The hadronic currents can be written in
terms of the Noether currents as

VI = Vg V2 Vi VTP AR = Vg ATV AT (5.2)

Whereas the leptonic part is always trivial, and can be analyzed perturbatively,
the quark current deserves a specific treatment. Even if the effective Lagrangian
(5.1) is written in terms of quarks, we know that the effective degrees of freedom
are hadrons, and so we are facing a non-perturbative problem. For the case of
pseudoscalar mesons decaying weakly into a pair of leptons, only the axial current
has a non—vanishing matrix element with the vacuum, and the problem simplifies
somehow. But if the pseudoscalar is decaying into a pair of leptons plus a photon
(involving then the electromagnetic interactions), then both vector and axial-vector
currents play a ri'(;%le. The same can be said if a baryon is decaying into another
baryon and a couple of leptons. These two last “pathologic” cases are the ones to be
discussed in this chapter.

5.2 Radiative pion decay

5.2.1 Introduction

The radiative decay of the pion is a suitable process to be analysed within yPT.
This framework provides the structure of the relevant form factors through: i) a
polynomial expansion in momenta, essentially driven by the contributions of heav-
ier degrees of freedom that have been integrated out, and ii) the required chiral
logarithms generated by the loop expansion and compelled by unitarity. Both con-
tributions correspond to the chiral expansion in p®/Mg and p®/A%, respectively,
where A, ~ 47F [25]. Hence their magnitude is, in principle, comparable. The
chiral logarithms have thoroughly been studied in later years up to and including
O(p®) both in SU(2) [97] and SU(3) [98,99].
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However the size of the polynomial contributions is more controversial. They
involve short—distance dynamics through the chiral low—energy constants (LECs)
of the yPT Lagrangian and their determination from QCD is a difficult non—
perturbative problem. Phenomenology and theoretical arguments suggest that the
main ri'(;%le is played by the physics at the scale My, i.e. the physics of low-lying
resonances. This assumption, widely known as resonance saturation of the LECs in
xPT, implies that the structure of the form factors is given by the pole dynamics of
resonances and this hint works well in all known cases.

Because m, < My, it is expected that the structure of the form factors in
pion decays should be less relevant and, accordingly, the approach provided by yPT
should be good enough even when only the first terms of the chiral expansion are
included. This is the case of the radiative pion decay, namely 7 — lvyy, { = pu, e,
where constant form factors (that correspond to the leading order contribution in
the chiral expansion) have widely been employed in the analyses of data. However
the PIBETA collaboration [100] showed that a strong discrepancy between theory
and experiment arises for the branching ratio of the process in a specific region of
the electron and photon energies. Lately the same collaboration, after their 2004
analysis, concludes that the discrepancy has faded away [101]. Curiously enough this
decay has a persistent story of deceptive comparisons between theory and experi-
ment [102] that have prompted the publication of proposals beyond the Standard
Model (SM) to account for the variance [103-107]. Between these it has received par-
ticular attention the possibility of allowing a tensor contribution that could explain
the discrepancy by interfering destructively with the Standard Model prescription
though showing some inconsistency with the corresponding tensor contribution in
nuclear 5 decay [108]. Related with this issue it is essential, seeking to discern the
presence of a new physics contribution to the radiative decay of the pion, to provide
an accurate profile of the involved form factors within QCD.

In order to settle the Standard Model description of the vector and axial-vector
form factors participating in 7 — £ v,y decays we study, in this section, the structure
provided by the lightest meson resonances. This is very much relevant on the exper-
imental side because high—statistics experiments as PIBETA [101] already are able
to determine, for instance, the slopes of the form factors involved in these decays.

5.2.2 Radiative pion decay: vector and axial-vector form
factors

The amplitude that describes the 77 — £*1, v process can be split into two different
contributions:

M(7T+ —>é+l/g"}/) = M;g + Msp .

Here M;p is the inner bremsstrahlung (IB) amplitude where the photon is radiated
by the electrically charged external legs, either pion or lepton; consequently the
interaction is driven by the axial-vector current. Mgp is the structure—dependent
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(SD) contribution where the photon is emitted from intermediate states generated
by strong interactions. In this later case both vector and axial-vector form factors
arise from the hadronization of the QCD currents within the Standard Model.

Because 77 — e'v, is helicity suppressed, the IB contribution to its radiative
counterpart suffers the same inhibition and, consequently, the electron case is the
appropriate channel to uncover the non—perturbative SD amplitude. Contrarily, the
mt — pty,y decay is fairly dominated by IB. As a consequence the 7t — eTv,7y is
of great interest to investigate the hadronization of the currents contributing to the
SD amplitudes that are driven, within the Standard Model, by the vector [Fy (¢?)]
and axial-vector [F4(¢?)] form factors defined by :

—_— — 6 * 14
<'V‘U’Yad|7r > - _M,r+ ef FV(q2)EaBNVTup 3
e . D
(V[T d|7) = i Fa@) (1) gas — pars) + i€ VI, (5.3

where r and p are the pion and photon momenta, respectively, ¢*> = (r — p)? and

e is the electric charge of the electron. The second term in the matrix element of
the axial-vector current corresponds to the pion pole contribution (which coupling
is given by the decay constant of the pion F') to the IB amplitude.

Form factors drive the hadronization of QCD currents and embed non—perturbative
aspects that we still do not know how to evaluate from the underlying strong in-
teraction theory. Their determination is all-important in order to disentangle those
aspects. It is reasonable to assume, as has been common lore in the literature on
this topic, that hadronic resonance states should dominate the structure of form fac-
tors and, accordingly, meromorphic functions with poles in the relevant resonances
coupled to the corresponding channels have been extensively proposed in order to
fit hadronic data. This procedure by itself is, however, not fully satisfactory because
it does not impose known QCD constraints.

On one side chiral symmetry of massless QCD drives the very low—energy region
of form factors. Hence the latter have to satisfy its constraints in this energy domain.
On the other, one can also demand that form factors in the resonance energy region
should match short—distance QCD properties.

In the following we apply these techniques in order to determine the Standard
Model description of the vector and axial-vector form factors in the radiative pion
decay. Their definition, given by Eq. (5.3), illustrates the fact that they follow from
three—point GFs of the corresponding QCD currents. The proper GF in this case,
namely (VVP) and (VAP), happen to be order parameters of the spontaneous break-
ing of chiral symmetry hence free of perturbative contributions in the chiral limit.
This is a key aspect required by our procedure. Hence we consider in this article
their study in the chiral limit, that otherwise should provide the dominant features.
In the following we handle the GF in order to provide a description constrained by
QCD and then we will work out the form factors.
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5.2.3 Vector form factor

For the determination of the vector form factor defined by Eq. (5.3) we will use the
LSZ formula (valid in the chiral limit)

B V2 M, +

FV(QQ) = lim r? HVVP(an QQ, 7“2) )

6 FBO p2,r2—0
on the (VVP) GF determined in Eq. (4.120) to obtain:

2
M+ Cooo + Co10 ¢

Fy(¢®) =
V(@) 3V2 By F Mg M2, (M3, — ¢%) (Mg, — ¢?)

, (5.4)

and we observe that only one parameter, cg1g, has not been fixed by our proce-
dure. The expression for the vector form factor in the radiative pion decay given
by Eq. (5.4) is the most general one that satisfies the short-distance constraints
specified above. As the transferred momenta in the 7+ — e™ 1, v process is small
by comparison with the mass of the lightest vector meson resonance, ¢> < M3, it
is appropriate to perform the relevant expansion until first order in ¢?. Using the
result for cogo given by Eq. (4.121) it gives:

Fo(@®) = F(0) |1+ v 2 + O(g")] . (5.5)
T+
where Ay = AY_ o + AY/NC + -+ admits an expansion in 1/N¢ and
2Ne M
Fr(0) = V2 No My ,
24 w2 F
M?,  M? c

AY = Tt M 5.6
Nog—o0 M\2/1 + ]\/[‘2/2 + Mzt Cooo ( )

We must compare our value' for Fy-(0) ~ 0.0271 with the result coming from
(7% — vv) and CVC, Fy(0) = 0.0261(9), and with the recent experimental fit
by the PIBETA collaboration, Fy (0) = 0.0259(18) [109]. We recall that our result
for the vector form factor (5.4) arises from a large—N¢ procedure where a model of
the No — oo has been implemented, namely the cut in the spectrum. At ¢ <
M3 this form factor has been studied up to O(p®) in xPT [97,98]. At O(p*) the
Wess—Zumino Lagrangian determines Fy(0) as given in Eq. (5.6). Higher chiral
order corrections to this result vanish in the chiral limit, accordingly their size is
suppressed over the leading order by powers of MZ?/Mg; or M?/A? that are tiny.
Indeed, using the O(p®) odd-intrinsic-parity Lagrangian £ worked out in Ref. [33],
this modification to Fy(0) is proportional to a low—energy constant as Mfr+ cw,
that also contributes to the 7° — v+ decay. From the latter one obtains [110]
CW ~ (0.01341.17) x 1072 GeV~?, i.e. compatible with zero.

'In the following numerical determinations we will use F = 0.0924 GeV, M, = 0.138 GeV,
My =0.496 GeV, Mo = 0.135GeV, M+ = 0.140 GeV and My, = M 779y = 0.775 GeV.




138 Phenomenological applications

The slope Ay arises at O(p®) with the usual two features: the local operator O}
in £} provides the No — oo contribution :

64 72
PT r

A?Vo%oo = NC M72+ C;}g (/L)a (57)
and a one-loop calculation provides the chiral logs that correspond to the next—to—
leading order in the 1/N¢ expansion [98]:

M? M?
PT mt by
Aing = — T [1 + log (—ILQ )] : (5.8)

There is another process directly related with the (VVP) GF, namely 7 — ~v~*;
hence it should be related with the radiative pion decay. Indeed within the assump-
tions that carried us to Fy-(¢®) in Eq. (5.4), the momenta structure for the 7 — v ~*
decay should be the same, though with different normalization. In consequence the
ANe—eo Slope in Eq. (5.6) is the same for both processes.
The 7 — yeTe™ amplitude can be expressed by :

2
My = Moy, [1 + )\7]\3—20 + } , (5.9)

where ¢* = (po+ + pe-)?. The slope arises at O(p°®) in xPT and it is [111]2:

UL M2, 20,
Fortunately it has been measured rather accurately [112|, A, = 0.032 £ 0.004 and
then we can input this measure to determine the LEC C}} (1) obtaining :

Cyy'(M,) = 7.052 x 107 GeV ™2, (5.11)

where the error includes also the incertitude of the renormalization point p between
M, and 1GeV. Coming back to the slope of Fy(¢*) we get:

Ay = 0.04175:001 (5.12)

that compares well with the recent PIBETA measurement Ay, = 0.070 4 0.058 [109].
By comparing now Ay __, . in Eq. (5.6) and A}‘VIZZOO in Eq. (5.7) we can provide
a determination for the undetermined parameter in the GF and then give a full
prescription for the Fy,(¢?) form factor in Eq. (5.4). For the mass of the first multiplet
of vector resonances we take M, 770) and for the second M, 1450) = 1.459 GeV':

D10 _ (—0.74+0.3) GeV 2. (5.13)

Co00

2Notice that one-loop O(p®) YPT contributions, encoded in Ai‘ﬁg;, coincide in m — e v,y and

m — v* in the SU(3) limit, i.e. for Mg = M.
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Notice that the size of this parameter is of the same order that the other two terms
in Ay .. With this result we end the construction of the vector form factor in
radiative pion decays in the large-N¢ limit given by Eq. (5.4).

It is interesting to compare our results with those in Ref. [42]. As commented
above the construction of the (VVP) GF in those references was carried out using
only one multiplet of vector resonances, hence the vector form factor in radiative
pion decay did not satisfy the constraint in Eq. (4.113). With this setting they are

able to give a full prediction for the leading contribution to the slope Ay, namely,

M? 472 F?
N p— 1 [1 — } 5.14
Ne= M2 Ne M2 (5:14)
Using My = M, they get AJ? _, . ~ 0.027 to be compared with AY__, = 0.028 +

0.006 from our analysis above.

5.2.4 Axial-vector form factor

We now come back to the axial-vector form factor defined by Eq. (5.3) . In order
to determine the F,(¢?) form factor we follow an analogous procedure to the one
outlined before for the vector form factor. The LSZ formula then reads:

B V2 M, +

Fa(g?) = lim r? F(p* ¢, r?) . (5.15)

BU Fop2e2o0

A detailed study of this GF was performed in Ref. [52]. One of the conclusions
achieved was that the inclusion of one multiplet of vector, axial-vector and pseu-
doscalar resonances (together with the pseudoscalar mesons) was enough to satisfy
the matching to the OPE of the (VAP) GF at leading order. Moreover the analo-
gous to the Brodsky-Lepage condition (4.113), in this case, was also satisfied, i.e.
the resulting axial-vector form factor F4(¢?) behaves smoothly at high ¢*>. Hence
we obtain, for No — oo with a cut spectrum:

V2F M.+ [ M?
FA(qQ) = M,% _ qQ M‘;: -1 ) (516)

At ¢*> < M3 we may resort again to xPT [97,99] with the expansion :

2
Fa(g®) = Fa(0) [1+AA 7 +} : (5.17)
M2,
Both terms, F4(0) and slope, satisfy an expansion in 1/Ng, for instance Ay, =
Ao oo + Ay, + -+ From our result above we get :

A%, = : (5.18)
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Experiment [101] | SU(2) Ref. [97] | SU(3) Ref. [99] | Our work
Fr(0) | 0.0258(18) 0.0271 0.0272 0.0271
Ay 0.070(58) 0.044 0.045 0.041
Fi(0) | 0.0121(18) 0.0091 0.0112 exp. input
AA not measured 0.0034 ~0 0.0197(19)

Table 5.1: Comparison of theoretical and experimental determinations for the low—
energy expansion of vector and axial-vector form factors. The PIBETA determina-
tion assumes that the axial-vector form factor is constant, i.e. it does not consider
a slope.

Fa(q?) arises first at O(p*) with a constant local contribution from the yPT La-
grangian, namely :

M+

F(¢") = V2 =]

(Ly + LY,) - (5.19)

The next corrections appear at O(p°) in the chiral expansion [99]. One of them
results from local operators of the O(p®) chiral Lagrangian that, in the chiral limit,
only contribute to A4 :
M? 1

There is also a subleading term, in the large—Ng expansion, that comes from one—
loop diagrams involving the O(p?) chiral Lagrangian. However it only affects F4(0)
and it is zero in the chiral limit. The third correction is sub—subleading and results
from two-loop diagrams evaluated with the O(p?) chiral Lagrangian. The latter
contributes both to F4(0) and A4. All local additions, F/(f)(qg) and )\f)|NO%OO, cor-
respond to our result in Eq. (5.18), i.e. Ng — oo, when LECs are saturated by reso-
nance contributions [52]. Though the full O(p®) chiral result is rather cumbersome,
the authors of Ref. [99] have provided a numerical expression for the renormalization
scale u = M,. The conclusion is that, in the chiral limit, subleading contributions to
the slope are negligible. Notwithstanding it is relevant to emphasize that both xYPT
results of Refs. [97,99] use models to evaluate the resonance contributions to the
O(p®) local terms and, accordingly, their final conclusion is tamed by this estimate.

We turn now to give our numerical results. Contrarily to what happens in the
vector case, where the lightest vector resonance mass in the Ng — oo limit is well
approximated by the p(770) mass, the axial-vector mass in that limit (M) differs
appreciably from the lightest multiplet of these resonances, namely a;(1260). The
result M, = /2 My was obtained in Ref. [13] by imposing several short-distance
constraints on the couplings of the resonance Lagrangian. Lately [68,69] it has been
noticed that the inclusion of NLO effects in the large-Ns expansion points out to
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My < /2 My,. These results are rather different from the mass of the lightest axial-
vector meson determined experimentally My ~ 1.230 GeV ~ Mg (1960) [113] but it is
important to remind that this resonance is rather wide.

Our strategy is the following: we will use the experimental value of F4(0) as
given in Tab. 5.2.4 to determine M, through Eq. (5.18); then we provide a prediction
for 4. We find?:

My = 998 (49) MeV, A4 = 0.0197(19), (5.21)

where the error stems only from the experimental uncertainty in F4(0). Notice that
this result satisfies M4 < v/2 My ~ 1096 MeV.

5.2.5 Theory versus Experiment

We are now ready to compare our results with other theoretical settings and exper-
imental determinations. In Tab. 5.2.4 we compare our outcome for the low—energy
expansion of the form factors with the one provided by O(p®) xPT and the recent
PIBETA published values.

As Fy(0) is ruled by the Wess—Zumino anomaly all the theoretical results agree
for this parameter. Leading corrections to this value are driven by the pion mass and
as a result happen to be tiny [42]. This is also reflected in the excellent comparison
with the experimental determination. The agreement is also good for the slope of
the vector form factor, considering the large error of the experimental value.

The axial-vector form factor does not arise a similar consensus. As indicated
above YPT can only predict reliably all loop contributions [up to O(p*) in the even—
intrinsic-parity and O(p®) in the odd-intrinsic-parity sectors| while higher order
loops involve the couplings of local operators. Moreover tree-level O(p?) (5.19)
and O(p®) (5.20) terms can only be determined in different models for resonance
saturation contributions. The excellent agreement between the yPT results and
the experimental determination of F4(0) is, indeed, not a major issue as the axial-
vector form factor in radiative pion decay is the main phenomenological source *
to fix the value of L], . It happens that FXL)(O) arises from a strong cancellation
between the Ly and L}, LECs and, in consequence, it is very sensitive to the chosen
value for L,. In terms of resonance saturation this sensitivity moves to the value
of the axial-vector mass M, input in the numerical determination. The value of
L7y~ —5.5x 1073, used by Ref . [99], arises for M, ~ 1 GeV.

Our model of large-N¢ gives the leading result for the axial-vector form factor
parameters and there are leading Goldstone-mass driven contributions that we have
not considered. In the YPT framework these O(p®) corrections arise from the LECs
and, a priory, it is difficult to estimate their contribution due to our lack of reliable
knowledge on those low—energy couplings. However it has been pointed out [99] that

3Tt is important to notice that the value of F4(0) measured by the PIBETA experiment assumes
no slope for the axial-vector form factor. We should repeat this exercise when )\ 4 is included.

4 L% is rather well determined from the phenomenology (squared charge radius of the pion) and
its numerical value agrees nicely with resonance saturation.
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the ri'(;%le of LECs is unimportant in the O(p®) corrections. As the subleading loop
contributions are also tiny, it is concluded that A, is not sizeable and F4(0) is ruled
by the leading O(p*) contribution by far.

However using as input the experimental value of F4(0) we find a large value for
Aa. As subleading 1/N¢ loop contributions seem to be tiny our leading result shows
a clear discrepancy with the estimates of tree—level contributions performed in the
chiral framework [97,99]. It would be very much interesting to have an experimental
determination of A4 in order to disentangle the different resonance models.

5.2.6 Beyond SM: Tensor form factor

As pointed out in theSection 5.2.1, the history of the radiative decay of the pion
accumulates a few clashes between theory and experiment. It seems though that,
after the latest analysis by the PIBETA collaboration, the landscape has very much
soothed. However it has become customary to investigate possible contributions
beyond the Standard Model in order to appease alleged discrepancies. Between
the latter the possible ri'(;%le played by a tensor form factor has thoroughly been
studied [103-107].
The new short-distance interaction can be written in terms of quark and lepton
currents and it reads:
Lr= Y vp (G0 (1=75)q] [Lo™ (1 —5) ] (5.22)
T—Qﬂuquuu V5) 4 Ys5) Ve | .
where Fr is an adimensional parameter measuring the strength of the new interac-
tion. Because of the identity (1.14) we can write (5.22) as:
Gr ~ -
»CT — _—VudFT[qO-uu’)%q] [go-lw(l_’)%)yé} . (523)
V2
In the Standard Model the later structure, a tensor-like quark-lepton interaction,
arises from loop corrections to the tree—level amplitudes and gives a tiny value
for Fr ~ 1078 [104]. More sizeable contributions could come from New Physics
models. Leptoquark exchanges, for instance, could give Fr ~ 1072 [105], while SUSY
contributions provide Fr ~ 107" — 107 [104] for light supersymmetric partners.
The hadronization of the tensor current, at very low transfer of momenta, is
driven by the constant fr defined by :

_ _ e
<'Y|U‘7;w75d|7r >: _ifT(pMGV_pveu): (5'24)
where p is the photon momentum 5. The determination of fr involves QCD in its
non—perturbative regime and, consequently, is a non—trivial task. We will come back
to this issue in the next Subsection.

SThere is in fact another Lorentz structure contributing to this matrix element but it carries
higher orders in momenta. If the latter is included fr acquires a dependence in the squared of the
transferred momenta, i.e. fr(q?). See Section 5.2.8 for a detailed evaluation of both form factors.
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Em | Bl g exp no slopes | with slopes | SU(2) SU(3)
50 | 50 | — | 2.614(21) | 2.78(38) | 2.81(38) | 2.46(35) | 2.72(38)
10 | 50 | 40° | 14.46(22) | 14.81(54) | 15.08(38) | 14.73(53) | 15.00(37)
(

50 | 10 | 40° | 37.69(46) | 37.69(98) | 38.41(103) | 37.51(94) | 38.17(103)

Table 5.2: Comparison of the theoretical predictions and the experimental data for
Rg = 10® Rg for constant form factors and different predictions of the ¢* depen-
dence. All energies are measured in MeV.

It is possible to obtain the product 7 = Fr fr from the analyses of different
processes. Hence from some previous discrepancy in the m — e,y process it is
found that 7, = — (5.64+1.7) x 1072 [103], while from the introduction of a Gamow—
Teller term in the amplitude of nuclear f—decay [108] gives Ty = (1.8 +1.7) x 1073,

5.2.7 (VT) Green function: the tensor form factor

If we want to extract information on the value of Fr from experimental data, we
need a reliable QCD-based determination of the hadronic tensor form factor. Using
LSZ and at leading order in the pion mass we can express the matrix element (5.24)
as follows % :

1 V2e

<7|ﬂa1w’75d‘7r_> = ﬁ<’7 ‘ ao—uu“"'cza;wd ‘ 0> = _ZS—FHVT(O)(pMGU — Pv Gu),
(5.25)

where in the last step we have used again the LSZ reduction formula applied to the
(VT) correlator. Then we have:

2V/2
= 1 ——=1IIyr(0). 5.26
Jr=is5 vr(0) (5.26)
The correlator has been calculated in Chapter 4 and after imposing matching to the

OPE result we get :

By F?
2y . 0
yr(¢”) = —Zm- (5.27)
Using Eq. (5.27) in Eq. (5.26) yields:
2V2 By F
= —. 5.28
An educated guess can be obtained by writing By F' = —(dq), /F and using the

estimate (1)) (1 GeV) = — (242 + 15 MeV)” [76].

6See Appendix A.2 for a derivation of this expression.




144 Phenomenological applications

Another parameter of interest is the susceptibility of the quark condensate Yy,
defined by the vacuum expectation value of the tensor current in the presence of an
external source Z,, [114,115]:

<0|qo';w(”0>z = Gy Xz <(jq>0 Z;w- (529)

In our case we consider the magnetic susceptibility yx given by an external electro-
magnetic field as:

(v|laowu+do,d|0) = —ie(e,+eq) x (70)y Fuv, (5.30)
with e, = 2/3 and e; = — 1/3. Using the first equality of Eq. (5.25) we get:

fr = —ngoF, (5.31)

and comparing with Eq. (5.28) we obtain:

2

T ~ —3.3GeV 2. (5.32)

X:

There are several determinations of the magnetic susceptibility that provide a range
that runs from y = — (8.16 4+ 0.41) GeV~? [114] up to x ~ — 2.7 GeV~? [77].

5.2.8 g’-dependence of the tensor form factor

As mentioned in Section 5.2.7 there are two form factors involved in the hadronic
tensor matrix element

(&

<7|ﬂ‘7w/75d‘777> = _§fT(q2)(pu6V_pV€u)
e 14 v v 124
—§gT(q2)[6-q(p"q —p'¢") +q-p(¢"e — ¢’ )],

(5.33)

where p is the photon momentum and ¢ the transferred momentum by the tensor
current. To generate the second Lorentz structure one needs operators of higher
order in the chiral expansion, such as

Yo = <Vﬂtiu vaeraV) ) (5'34)

of Ref. [23] that can be found in Appendix B. In the framework of resonance chiral
theory one needs in addition of the operators in (2.24) the basis of odd-intrinsic—
parity operators of Eqs. (2.34) and (2.35). These new contributions do not modify
result of the fr = fr(0). The result reads:

VIFY
3 F My,

2
fr(¢®) = {QFV — |:4\/§MV (¢ — g — 5+ 2¢6) + 8 Fy ds qi]} ,

Mz — ¢?
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SFL [2MZ — ¢ M?
2 v v v
97(q°) 3FM‘2/[M‘2/—(]2 (01—02—05)+2m06—2c7
Fy ME
2 ds +d . 5.35
+fMV (Mé—cf 3+ 4>] (5.35)

The spectral function of the tensor—tensor currents correlator to which the amplitude
in Eq. (5.33) contributes behaves as a constant at high ¢* and leading order in
a, [81]. Hence the fr(g?) and gr(q?) form factor should exhibit a smooth behaviour,
vanishing at large transferred momentum.

Imposing that the fr(q?) form factor vanishes at large momentum we get the
constraint :

2 Fy
61—62—65—266:—§M—V(1+4d3). (536)
|4

The same procedure with gr(g?) gives:

j2
Cl—C—c5—2¢r = —\V2——d,. (5.37)
My

Interestingly enough these constraints fully determine both form factors:

2V2FEFy My

fT(qQ) - 3F M‘2/_q2’
2
gr(®) = — f?\;‘é) . (5.38)

Notice that the contribution of the gr(g?) form factor to the matrix element under
study is fairly suppressed, typically O(¢?/M3%) over the fr(g*) contribution.

5.2.9 Lattice data and sum rules

The last years have witnessed and increasing attention to the determination of ma-
trix elements of tensor quark currents. For instance, together with the QCD sum
rules technique [77,78|, lattice has also performed evaluations of amplitudes involv-
ing the tensor current and a vector resonance |79,80].

The Fy coupling can be obtained from the measured T'(p° — eTe™) [112]. We
obtain Fy ~ 156 MeV with an expected tiny error”. Then from Eq. (4.128) and
using the value of the quark condensate quoted above we get :

FI(1GeV) = 117 422 MeV,, (5.39)

"The vector coupling can also be determined from short-distance analyses within resonance

% that translates into fy = 207 (15) MV for M4 = 998 (49) MeV

(5.21), in excellent agreement with the quoted phenomenological result.

theory [52], giving f2 = 2
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where the error collects only the uncertainty in the value of <zﬁw>0. Our result is in
excellent agreement with those coming from QCD sum rules: F = 113(7) MeV [77]
and F;[ = 111(4) MeV [78].

Lattice evaluations determine the ratio with the vector coupling. From our
results we get

T

F
YV (1GeV) = 0.75+0.14, (5.40)
Fy

to be compared with the quenched value [79,80], run down to = 1GeV :

T

F
?” (1GeV) = 0.744+0.03. (5.41)

p

Finally from the later result and the phenomenological value of Fy, lattice provides
the determination:

T
FT (1GeV) = 164+ 7MeV, (5.42)

to compare with our figure in Eq. (5.39).

5.2.10 Analysis of the photon spectrum in the radiative pion
decay

The PIBETA experiment has thoroughly measured the photon spectrum in the
radiative decay of the pion [100]. Though the results of that reference seemed to
confirm a serious discrepancy with theoretical determinations, an ensuing analysis
of more data and the refinement of systematic errors [101,109] has brought a close
agreement between Theory and Experiment.

The experimental available data amounts to the branching ratio of the radiative
pion decay integrated in different subregions (@) of the final state phase space:

1

Rq = /Q 10 M B (5.43)

Fﬂ'—)e 14

where the sum runs over the polarizations of the final particles. The three regions
and the experimental results are shown in Tab. 5.2.

We test the predictions ruled by our determination for the hadronic form factors
with the experimental data, ignoring first a possible tensor interaction, and compare
them with other theoretical settings. In order to achieve the accuracy required by
the experimental information higher order radiative corrections to the decay [116]
must be included and they have been implemented in our analysis. The numerical
input for vector and axial-vector form factors is given in Tab. 5.2.4.

In the fourth column of Tab. 5.2 the latest experimental data are given; in the
fifth and sixth we show the results provided by our analysis. We study the numerical
impact of the momenta dependence of the form factors by setting the slopes to zero
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and we conclude that it is tiny: the ¢?> dependence tends to increase the central
value of R but the modification is by far within the errors. The last two columns
bring the results yielded by two— and three—flavour two—loop xyPT calculations. The
evaluation of the errors for the theoretical predictions is ruled by those in the form
factors. The estimate of the latter has been done in the following way: we assume
no error coming from the slopes (since their numerical impact is very poor); to the
vector form factor we assign the same error as that of the experimental determination
~ 7% and to the axial-vector form factor we attach the error of the experimental
input. Finally the error given for the yPT calculations only considers the scale
dependence that is a tiny 5%.

We conclude then that the corrections induced by the ¢ dependence of vector
and axial-vector form factors are numerically negligible unless the theoretical error
is reduced. For this we would need a better determination of vector and, specially,
axial-vector form factors at ¢> = 0. When comparing our results with experimental
data, we see that our predictions are in agreement with previous estimates.

As a final exercise we use the experimental data to fit the value of T = Fpfr
defined above. In order to reach this purpose we use the experimentally fitted values
for the hadronic inputs Fy/(0) and F4(0), and our results for the slopes Ay and A 4.
Finally, to extract the value of the Fr coupling from the fit, we use our determination
for the tensor form factor fr. The value that we obtain is compatible with zero and
its order of magnitude is compatible with that dictated by SUSY :

Fr = (1+£14) x 107, (5.44)

5.2.11 Conclusions

Radiative pion decay has been a continuous source of debate between theoretical
predictions and experimental determinations. Nevertheless the latest analysis by
the PIBETA Collaboration seems to bring a close agreement between both sides.

In this thesis we have performed a detailed analysis of the structure-dependent
amplitudes contributing to @ — erv,y. The ¢* dependence of vector and axial-
vector form factors, driven by the Standard Model, has been rigorously constructed
through the study of the (VVP) and (VAP) GFs, by matching meromorphic ansdtze
with their leading OPE contributions. Moreover we have also required that our form
factors are soft at high transfer of momenta. Hence we obtain the most general (and
simple) functions that satisfy all those constraints. The appropriate structure of
the form factors requires a double vector resonance pole for the vector form factor
and a single axial-vector resonance pole for the axial-vector form factor. After a
small momenta expansion we compare our results with those of YPT and while in
the vector sector we find complete agreement, our slope for the axial-vector form
factor is much larger than the one provided by modelizations of local terms in the
chiral framework.

The ri'(;%le of a tensor contribution to the radiative pion decay has customarily
been taken into account in order to analyse the experimental results. We use those
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in order to fix the size of the contribution and we find that it is compatible with
zero. Incidentally we have given a prediction for F{" that measures the coupling of
a vector resonance J’¢ = 17~ to the tensor current. Our results agree well with
determinations from QCD sum rules and quenched lattice.

We conclude that the Standard Model is able to embody the experimentally
known features of the radiative pion decay. As it happens with other decays involving
non-perturbative strong effects, the rather large size of the numerical incertitudes
generated by our lack of knowledge of this QCD regime shows that this process is,
at present, unsuitable for the search of New Physics.

5.3 V,s from hyperon semileptonic decay

5.3.1 Introduction

Accurate determinations of the quark mixing parameters are of fundamental im-
portance to test the flavour structure of the Standard Model. In particular, the
unitarity of the CKM matrix [94,95] has been tested to the 0.2% level [3,117] with
the precise measurement of its first-row entries |V,4| and |V, | [119]. At that level
of precision, a good control of systematic uncertainties becomes mandatory. In fact,
the existence of small deviations from unitarity has been a long—standing question
for many years [120].

Recently, there have been many relevant changes to this unitarity test, which
have motivated a very alive discussion. While the standard |V,,4| determination from
superallowed nuclear beta decays remains stable, |V,4| = 0.97418+0.00026 [117], the
information from neutron decay is suffering strong fluctuations, due to conflicting
data on the axial coupling g4 measured through decay asymmetries [112] and the
large decrease of the neutron lifetime by more than 6 o obtained in the most recent
precision measurement [121].

On the other side, the K — 7 [ v branching ratios have been found to be signifi-
cantly larger than the previously quoted world averages. Taking into account the re-
cently improved calculation of radiative and isospin-breaking corrections [122-124],
the new experimental data from BNL-E865 [125], KTeV [126], NA48 [127] and
KLOE [128] imply [129].

Vas £5°77(0)] = 0.21661 + 0.00047 . (5.45)

In the SU(3)y limit, vector current conservation guarantees that the K3 form factor

foﬂf([]) is equal to one. Moreover, the Ademollo-Gatto theorem [130, 131] states
that corrections to this result are at least of second order in SU(3) breaking. They
were calculated long time ago, at O(p*) in Chiral Perturbation Theory, by Leutwyler
and Roos [132] with the result fK"7 (0) = 0.961 + 0.008. Using the calculated two-
loop chiral corrections [133,134], two recent estimates of the O(p®) contributions
obtain the updated values fX'™ (0) = 0.974 4 0.011 [135] and fX°™ (0) = 0.984 +
0.012 [53], while a lattice simulation in the quenched approximation gives the result
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foﬂ_((]) = 0.960 £ 0.0054¢ £ 0.0074y [136] (the quoted lattice systematic error
does not account for quenching effects, which are unfortunately unknown). Taking
K7 (0) = 0.974 + 0.012, one derives from K3 :

Vi, = 0.2233 4 0.0028. (5.46)

An independent determination of |V,s| can be obtained from the Cabibbo-suppressed
hadronic decays of the 7 lepton [137]. The present data implies [138] |Vis| =
0.2208 + 0.0034. The uncertainty is dominated by experimental errors in the 7
decay distribution and it is expected to be significantly improved at the B fac-
tories. |V,,| can be also determined from I'(Kt — pfv,)/T'(nt — ptv,) [139)],
using the lattice evaluation of the ratio of decay constants fr/fr [140]; one gets
Vius| = 0.2219 4 0.0025.

The |V,s| determination from hyperon decays is supposed to be affected by larger
theoretical uncertainties, because the axial-vector form factors contributing to the
relevant baryonic matrix elements are not protected by the Ademollo-Gatto the-
orem. Thus, it suffers from first-order SU(3)y breaking corrections. Moreover,
the second—order corrections to the leading vector—current contribution are badly
known. In spite of that, two recent analyses of the hyperon decay data claim accu-
racies which, surprisingly, are competitive with the previous determinations:

Vus| = 0.2250+0.0027,  Ref. [141] (5.47)
Vsl = 0.2199+0.0026,  Ref. [142] (5.48)

Although they use basically the same data, the two analyses result in rather different
central values for |V,5| and obtain a qualitatively different conclusion on the pattern
of SU(3) violations. While the fit of Ref. [141] finds no indication of SU(3)y break-
ing effects in the data, Ref. [142| claims sizeable second—order symmetry breaking
contributions which increase the vector form factors over their SU(3)y predictions.
Clearly, systematic uncertainties seem to be underestimated.

In order to clarify the situation, we have performed a new numerical analysis [143]
of the semileptonic hyperon decay data, trying to understand the differences between
the results (5.47) and (5.48).

5.3.2 Theoretical Description of Hyperon Semileptonic De-
cays

The semileptonic decay of a spinf% hyperon, B; — Byl 1, involves the hadronic
matrix elements of the vector and axial-vector currents:

(Balp) |V 1Bulo)) = o) | )7+ 1 B o, ) o],

(Balp) A4 Bu(p)) = tp) |on(?) 7+ 12 v 1 ) ).
1 1 (5.49)
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Bi—»By||n—=p|A=p|E =-n|Z A= -5 =0 8F
B2 B 3 3 1
ByB 1 1 1

" | Y | "% L | % 7 !

Table 5.3: Clebsh—Gordan coefficients for octet baryon decays.

where ¢ = p; — py is the four-momentum transfer. Since the corresponding V' — A
leptonic current satisfies ¢“L, ~ my, the contribution of the form factors f3(¢?)
and g3(¢?) to the decay amplitude is suppressed by the charged lepton mass m;.
Therefore, these two form factors can be safely neglected in the electronic decays
which we are going to consider.

In the limit of exact SU(3)y symmetry, we can use the Clebsh—Gordan theorem

<Ba‘jb‘Bc> = ijabc + DjdabCa (550)

and then the current matrix elements among the different members of the baryon
octet are related [144]:

NG = CREPUER(e®) + C5P Di(q?),
@"™(?) = CPP Fuya(d®) + Cp?P Diis(d?), (5.51)

where Fj(¢?) and Dj(¢?) are reduced form factors and Cp*?" and C5*P' are well-
known Clebsh—Gordan coefficients. The conservation of the vector current implies
F3(¢*) = D3(q*) = 0. Moreover, the electromagnetic current belongs to the same
octet of vector currents, and from general principles such as Lorentz and gauge
invariance it is known that

i Fy(q?) o™

(0] 92, B) = i) |[Futa) 7 + L)

qu:| UB(,’DB) ) (552)
with F1(0) = Qem and 2 F5(0) = g, —2. Then the values at ¢* = 0 of the vector form
factors are determined by the electric charges and the anomalous magnetic moments
of the two nucleons, p, = 1.792847351 (28) and u,, = —1.9130427 (5) [112]:

FO)=1. DO =0, B0 = (m+5m). DO=3m. (5
The values at ¢> = 0 of the two reduced form factors determining g, (¢?) are the usual
F and D parameters: Fy(0) = F, D4(0) = D. SU(3)y symmetry also implies a
vanishing “weak—electricity” form factor g;(¢q?), because charge conjugation does not
allow a C-odd g» term in the matrix elements of the neutral axial-vector currents
A3 and A%, which are C-even.
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The available kinematic phase space is bounded by m? < ¢*> < (Mp, — Mp,)>.
Thus, ¢* is a parametrically small SU(3) breaking effect. Since the form factor
f2(q%) appears multiplied by a factor g,, it gives a small contribution to the decay
rate. To O(q?) accuracy, which seems sufficient to analyze the current data, the
only momentum dependence which needs to be taken into account is the one of the
leading form factors f1(¢®) and g¢;(¢%):

2

2
A~ A0 (14 ) - el = a0 (140 55) . 6

Moreover, f5(0) and ¢5(0) can be fixed to their SU(3)y values, because any devia-
tions from the symmetry limit would give a second—order symmetry breaking effect.
Therefore, the form factor g»(¢?) can be neglected.

The slopes )\{ and )] are usually fixed assuming a dipole form regulated by the
mesonic resonance with the appropriate quantum numbers [145, 146] :

2 f1(0) ;_ 2Mg
= - )\ =
fl(Q) ( _]3[_22>2: 1 M‘Q/ 3
v
g1(0 2M?3
gl(q2) = 1( ) P -‘{: Mgl (555)

Previous analyses have adopted the mass values My = 0.97 GeV [141,142,144-146]
and My = 1.25 GeV [141,145] or M4 = 1.11 GeV [142,144,146]. We will analyze
the systematic uncertainties associated with these inputs.

It is useful to define the ratio of the physical value of fi(0) over the SU(3)y
prediction Cp>P"

fi = [(0)/CEP =1+ 0(e). (5.56)

Due to the Ademollo-Gatto theorem [130,131], fl is equal to one up to second—order
SU(3) breaking effects.

The transition amplitudes for hyperon semileptonic decays have been extensively
studied, using standard techniques. We will not repeat the detailed expressions of
the different observables, which can be found in Refs. [142,145-147|. In order to
make a precision determination of |V, one needs to include the effect of radiative
corrections [146,148-150]. To the present level of experimental precision, the mea-
sured angular correlation and angular spin—asymmetry coefficients are unaffected by
higher—order electroweak contributions. However, these corrections are sizeable in
the total decay rates. To a very good approximation, their effect can be taken into
account as a global correction to the partial decay widths: T ~ G%|V,|*(1 + drc).
The Fermi coupling measured in y decay, G = 1.16637 (1) - 107> GeV 2 [112], ab-
sorbs some common radiative contributions. The numerical values of the remaining
corrections dgrc can be obtained from Ref. [146].
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5.3.3 The Ademollo-Gatto theorem

Before studding the SU(3)y breaking effects in the 1/N¢ framework, it is convenient
to discuss a general theorem that will give us hints about the symmetry breaking
pattern. It is known as the Ademollo-Gatto theorem and it applies to vector cur-
rents, not only in the hyperon sector, but also for mesons.

As already discussed in Chapter 1, the symmetry breaking effects come entirely
from the mass difference between the up/down quark (that will be regarded as
degenerate) and the strange quark. We can write the quark mass matrix (denoting
my = mg = 1m) as

)\8

1
M = - (mg+m) 1l + 5

3 (ms + m)

1
— 5.57
7 (5.57)
where the first term is symmetry conserving [an SU(3)y singlet | and the second one
is symmetry violating, and transforms as an octet (adjoint representation). More-
over, it is proportional to the flavour generator T%. The adimensional parameter e
giving the order of the symmetry breaking can be estimated as

My 1

~ = 5.98

€ v

Using the commutation relations for the vector charges mediating AS =1 tran-
sitions at equal times we get

[Q4+i5,Q4715] — Q3+\/§Q8 — Qem_|_Y,

2 8
= EQ , (5.59)

where Y corresponds to the hypercharge operator. Since G“Vlf’s = 0 even for differ-
ent quark masses, the right-hand side, and correspondingly the left-hand side, are
time independent. Let us take the matrix element of Eq. (5.59) for a spinf% baryon
B with mass mp and three-momentum pp

(@™ +Y)p (B (pB)\B(pBD =
— [(b1Q"*"|B(pp)) +Z\ m|Q"""*|B(pp)) Z\ (n]Q"* | B(pg))|’

— [(b1Q" % B(pp))|” + O(e), (5.60)

where b is the only octet baryon connected to B through Q**?° and m, n are
decuplet baryons. The second and third terms of Eq. (5.60) are O(e?), because in
the exact SU(3) limit (n |Q* "% B(pp)) = 0, and so it must be O(e). The covariant
normalization for particles reads

(B(pg) | B(pn)) = 2E5(27)*6%(0), (5.61)
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and will be used latter. From the first term in Eq. (5.60) we get
(0., A Q| B(pp)) = /d?’f(b,p,/\ﬂ(x) 7 s(z) |B(pp))
= [ @7 (b7 H0) ) s(0) ¢ 7 Bon)

_ / dB7 e (b, p, A |7(0) 1 5(0) |B(ps))

= [ezerupo [+ LR g B )
= @ T A+ 28

= (2m)%69(Q) fila) u' (p, ) ulps) + O(%). (5.62)

where we drop the f3 factor because it is O(¢) and as we will see ¢° ~ O(e). Lorentz
invariance enforces ¢> = (¢°)? in the rest frame of the baryons. With that, summing
over polarizations and integrating over the phase space we obtain

S [ Gy 00 1@ 3w

= 3 [ 5 050 @) 5@ 126 Tow) 2P i, ) X))

E
N /%(2@36‘3’@ d(0) f1(q*) u(ps) (B + my) ul(ps)
_ / gig(g )2 83(q) 6P (0) f2(¢®) u(pn) {(Ep + E)y° + (my — mp)] u(ps),
= (2E71r)3 (S( )(6) [EB(EB + Eb) + mB(mb )] s (563)

where we understand Ep = \/pg + m%, E = \/p? + mj and E, = \/p3 + mi. We
have used

]éb = Eryo - p_; s

# o= E¥ +p-7,

(EB ’YO S ’7) u(pp) = mpu(ps). (5.64)

We will consider the phenomenologically interesting rest frame of the B baryon pp =

0, and hence Eg = mp, E, = my. In this frame ¢*> = (¢°)> = (mp — my)? ~ O(€?).
Eq. (5.63) reduces to

5 [ |02 1€1 B = 2maor)'500) fi0) + O

(5.65)
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A—pe 7, Y= nev, |2 —=Aev, |2 =2Xw, | B> XteT,
R 3.161 £0.058 6.88 +0.24 | 3.44+0.19 0.53 £0.10 0.93+0.14
e | —0.019+0.013 0.347+0.024 | 0.534+0.10
Qe 0.1254+0.066 | —0.519+0.104
ay, 0.821 +0.060 | —0.230+0.061
ag | —0.508+0.065 0.509+£0.102
A 0.62 +0.10
ai/fi 0.718 £0.015 | —0.340£0.017 | 0.254+0.05 1.287+£0.158 | 1.32£0.22

Table 5.4: Experimental data on |AS| = 1 hyperon semileptonic decays [112]. R is
given in units of 10°s71.

Comparing Eqgs. (5.60), (5.61) and (5.65) we obtain

f1(0)? = = (@™ +Y)g+0O(*),  f1(0) = f7™(0) + O(e”). (5.66)
Last equation is equivalent to Eq. (5.56).
5.3.4 g;/f; analysis
A—=p ¥ —=n = oA | BTt
i Vis 102221 (33) | 0.2274 (49) | 0.2367 (97) | 0.216 (33)

Table 5.5: Results for | f; V,,| obtained from the measured rates and g;(0)/f;(0)
ratios. The quoted errors only reflect the statistical uncertainties.

The experimentally measured observables in hyperon semileptonic decays [112] are
given in Table 5.4, which collects the total decay rate R, the angular correlation
coefficient ., and the angular-asymmetry coefficients a., a,, ag, A and B. The
precise definition of these quantities can be found in Refs. [145,146]. Also given is
the ratio g1(0)/f1(0), which is determined from the measured asymmetries.

The simplest way to analyze [141] these experimental results is to use the mea-
sured values of the rates and the ratios ¢;(0)/f1(0). Taking for f,(0) the SU(3)y

predictions, this determines the product |f1 Vius|. Table 5.5 shows the results ob-
tained from the four available decay modes. The differences with the values given
in Ref. [141] are very small; the largest one is due to the slightly different value
of the =% — STe 1, branching ratio [151]. The four decays give consistent results
(x%/d.o.f. = 2.52/3), which allows one (assuming a common value for f) to derive

a combined average

i Vis| = 0.2247 + 0.0026 . (5.67)
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This number agrees (assuming f; = 1) with the value in Eq. (5.47).

The quoted uncertainty only reflects the statistical errors and does not account
for the unknown SU(3)y breaking contributions to f; — 1, and other sources of
theoretical uncertainties such as the values of f,(0) and g,(0) [SU(3)y has been
assumed |, or the momentum dependence of f;(¢*) and g¢;(¢?). We will estimate
later on the size of all these effects. For the moment, let us just mention that
changing the dipole ansatz for fi(¢?) and g;(¢?) to a monopole form, the central
value in (5.67) increases to 0.2278, with a x?/d.o.f. = 3.24/3.

The agreement among the four determinations in Table 5.5 has been claimed to
be a strong indication that SU(3)y breaking effects are indeed small [141]. Note,
however, that first-order symmetry breaking corrections in the ratio g;(0)/f1(0) are
effectively taken into account, since we have used the experimental measurements.
What Table 5.5 shows is that the fitted results are consistent, within errors, with
a common fl value for the four hyperon decays. The deviations of f~1 from one
are of second order in symmetry breaking, but unfortunately even their sign seems
controversial [152-155].

5.3.5 1/N¢ Analysis of SU(3)y Breaking Effects

As explained in Chapter 3, the 1/N¢ expansion of QCD provides a framework to
analyze the spin—flavour structure of baryons [14,156|, which can be used to inves-
tigate the size of SU(3)y breaking effects through a combined expansion in 1/N¢
and SU(3)y symmetry breaking. A detailed analysis, within this framework, of
SU(3)y breaking in hyperon semileptonic decays was performed in Refs. [142,144],
and we performed an explicit calculation in Chapter 3, where all relevant formulae
can be found. To avoid unnecessary repetition we will only show explicitly the most
important ingredients which have been used in the recent |V, determination of
Ref. [142].

At ¢> = 0 the hadronic matrix elements of the vector current are governed
by the associated charge or SU(3) generator. In the limit of exact SU(3) flavour
symmetry, V% = T to all orders in the 1/N¢ expansion, where T are the baryon
flavour generators. The SU(3) symmetry breaking corrections to V% have been
computed to second order [144,157|. For the hyperon |[AS| = 1 decays that we are
considering, the final result can be written in the form [144] of Eq. (3.47) which we
repeat here:

VO = (14 0) T+ vy {T*, N} +vs {T*, - "+ J7} (5.68)

where Ny counts the number of strange quarks, I denotes the isospin and .J; the
strange quark spin. The parameters v; constitute a second—order effect in agreement
with the Ademollo-Gatto theorem [130,131].

The 1/N¢ expansion for the axial-vector current was studied in Refs. [14,158].
For the hyperon |AS| =1 decay modes, one can write the result in a simplified form
which accounts for first-order symmetry breaking effects [142,144] of Eq. (3.55)
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Decay 91(0) fl
n-—p g a+b+ P
A=p —\/§<&+B+c3+c4) 1+ vy + vo
YT —n l(a+03+04 —b 14+ v 4+ v9 — 203
ET = A %(a+7c4)+\[<b+c3> 14+ v +3vy+2v;
=2 | 5o (@+3es) + f<b+c4> 1+ v + 30
=05 ot §a+b+5c3+c4 14+v 4+ 30,
Table 5.6: Parameterization of ¢;(0) and fl to first and second order, respectively,

in symmetry breaking [144]. The neutron decay involves an additional parameter p,
not included in (5.69).

which for the reader’s convenience we repeat here:

%Aia = aG " +bJ' T+ c3 {G™ Ny} + s {T°, T2} .

(5.69)
The coefficients @ = a + ¢; and b=1b+ cs reabsorb the effect of two additional
operators considered in Ref. [144]. These operators generate an additional contribu-
tion to neutron decay, which we parametrize as p = — (g c1 + 02). Table 5.6 shows
the resulting values of ¢;(0) and f1 for the relevant decay modes, in terms of the
parameters @, b, cs, ¢4, p, U1, Us and v;.

In the strict SU(3)y symmetry limit, ¢; = v; = 0, i.e. f; = 1 while the values of
g1(0) are determined by two parameters a and b, or equivalently by the more usual
quantities D = a and F = %a + b. A 3-parameter fit to the hyperon decay data
gives the results shown in Table 5.7. Column 2 uses directly the measured values of
the different rates and asymmetries, while in column 3 the asymmetries have been
substituted by the derived ¢(0)/f1(0) values in Table 5.4. Both procedures give
consistent results, but the direct fit to the asymmetries has a worse x?/d.o.f. = 3.09
(2.36 for the g;(0)/f1(0) fit). These x? values indicate the need for SU(3)y breaking
corrections. The fitted parameters agree within errors with the ones obtained in
Ref. [142], although our central value for |V,,| is 1o smaller. For the F and D
parameters, we obtain:

F =0.462 +0.011, D = 0.808 £+ 0.006, F+D=1270+0.015. (5.70)

The last number, can be compared with the value of g,(0)/f1(0) measured in
neutron decay: [¢1(0)/f1(0)],.,, = D+ F = 1.2695 & 0.0029 [112]. Using the |V,|
value determined from superallowed nuclear beta decays and the neutron lifetime
quoted by the Particle Data Group [112], a more precise value, [g;(0)/f1(0)]
1.2703 £ 0.0008, has been derived in Ref. [118].

n—)p
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SU(3) symmetric fit 1%t-order symmetry breaking
Asymmetries 91(0)/ f1(0) Asymmetries 91(0)/ f1(0)
|Viss | 0.2214 +0.0017 | 0.2216 £ 0.0017 | 0.2266 £+ 0.0027 | 0.2239 £ 0.0027

a 0.805 £ 0.006 0.810 £ 0.006 0.69 £ 0.03 0.72 £0.03

b —0.072£0.010 | —0.081 £0.010 | —0.071+0.010 | —0.081 £ 0.011

C3 0.026 £ 0.024 0.022 £0.023

C4 0.047 £0.018 0.049 £0.018

x%/d.o.f. 40.23/13 14.15/6 18.09/11 2.15/4

Table 5.7: Results of different fits to the semileptonic hyperon decay data.

Including first-order SU(3) breaking effects in g,(0), the fit has two more free
parameters. The fitted values are given in the last two columns of Table 5.7. The
effect of SU(3)y breaking manifests through a value of a lower than a [i.e. ¢ =
—0.10 £ 0.03 # 0, taking a from the SU(3)y fits], and the non-zero value of ¢4.
The fit to the asymmetries has again a worse x?/d.o.f. = 1.64 than the g;(0)/f1(0)
fit (x*/d.o.f. = 0.54) and gives a 10 higher value of |V,s|. Taking |V,,| from the
best fit, its central value is about 1 ¢ higher than the value obtained with exact
SU(3)y symmetry. These results agree within errors with the corresponding fits in
Ref. [142].

One can repeat the fits including also the neutron decay, which introduces the
additional parameter p. Taking V,, = 0.97418 £+ 0.00026 [117], this gives a size-
able measure of SU(3)y breaking, p = 0.16 + 0.05. The other parameters remain
unchanged.

Ref. [142] presents the results of another fit, including second-order SU(3)y
breaking effects in f; through the parameters v;. The final value quoted for |Viss |
comes in fact from this fit, where |V,,|, v1, vo and v3 are fitted simultaneously
(together with @, b, ¢3 and ¢,), obtaining a very good x?/d.o.f. = 0.72/2 = 0.36.
We cannot understand the meaning of this numerical exercise. While it is indeed
possible to fit the data with the parameters given in Ref. [142], one can obtain an
infinite amount of different parameter sets giving fits of acceptable quality, because
there is a flat x? distribution in this case. This can be easily understood looking to
the last column in Table 5.6. From the four analyzed |AS| = 1 hyperon semileptonic
decays, one could only determine the global factor |V, (1 + v1 + vq) |, v2 and wv. It
is not possible to perform separate determinations of |V,,| and v; because, as shown
in Eq. (5.68), the contribution to the vector current of the flavour generator 7% is
always multiplied by the same global factor (1 + vy).

To assess the possible size of these second—order effects, we have also performed a
7T—parameter fit to the data. The results are shown in Table 5.8. Once more, the fit to
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2"d_order symmetry breaking
Asymmetries g1(0)/f1(0)
(1 + v+ vy) Vis| | 0.2280 4+ 0.0034 | 0.2220 + 0.0038

a 0.69 + 0.03 0.74 + 0.04

b —0.075+£0.010 | —0.083 £0.011
3 0.03 +0.03 0.02 +0.03
Cq 0.04 + 0.02 0.04 + 0.02
Vg 0.01 +0.03 0.04 +0.03

U3 —0.004 +0.013 | —0.013£0.014

x%/d.o.f. 16.5/9 0.53/2

Table 5.8: Second order fits to the semileptonic hyperon decay data.

the asymmetries has a worse x?/d.o.f. and gives a larger value for |V, (1 + vy + va) |.
The fitted values are consistent with the results in Table 5.7 from the first—order
fit. Within the present experimental uncertainties, the 7-parameter fit is not able
to clearly identify any non-zero effect from second-order SU(3)y breaking. Notice,
that in this numerical exercise one is only considering second—order contributions
to fi, while ¢,(0) is still kept at first order. Unfortunately, it is not possible at
present to perform a complete second-order analysis, owing to the large number of
operators contributing to the axial current at this order.

Comparing the results from all fits, it seems safe to conclude that the g;(0)/ f1(0)
ratios are less sensitive to SU(3)y breaking than the asymmetries. Therefore, we
will take as our best estimate the corresponding first—order result in Table 5.7,

f1 Vis| = 0.2239 + 0.0027 . (5.71)

This number is in good agreement with the simplest phenomenological fit in Eq. (5.67)
and could give a very adequate estimate of |V,,|, once the systematic uncertainties
are properly included.

5.3.6 Systematic Uncertainties

In our analysis the lepton masses, and therefore the form factors f3(¢?) and g3(q?),
have been neglected. This approximation does not introduce any relevant uncer-
tainty at the present level of experimental accuracy. The errors associated with
radiative corrections have been already taken into account in the fits, together with
the experimental uncertainties. At first order in symmetry breaking, the main source
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Parameter SU(3)y symmetric fit 1%*—order SU(3)y breaking

Asymmetries | g1(0)/f1(0) | Asymmetries | ¢1(0)/f1(0)
57 =240+ 0.20 To.0001 00001 1 0:0000 To0.0001
;"= -232+0.28 +0.0000 " 00000 " 00000 0.0000
f5 7 =017840.030 | “5on00 " 00000 " 00000 " 00000
f5T ==32+06 ¥ 0.0000 1 0:0000 1 0:0000 1 0:0000
fE¥ = 44408 £0:0000 00000 00000 £0:0000
My =1.10 +0.09 * 00001 T 00001 T 00001 T 00001
My = 0.91+0.07 ¥ 0:0006 T 00005 * 00002 " 00006
Total systematic error 0.0006 0.0004 0.0002 0.0006

Table 5.9: Parametric uncertainties of the V,; determination from hyperon decays

of parametric uncertainties comes from the numerical values of f5(0) and the slopes
A and \? governing the low—¢2 behaviour of the form factors f;(0) and g, (0).

Since the f(q?) contribution to the decay amplitude appears multiplied by g,,
which is already a parametrically small SU(3) breaking effect, at O(e) the value of
f2(0) can be fixed in the SU(3) limit from the proton and neutron magnetic moments
[see Eq. (5.53) |. However, what appears in the vector matrix elements (5.49) are the
ratios fo(q*)/Mp,. The SU(3)y limit can either be applied to f,(0) or fo(0)/Mp,,
because the baryon masses are the same for the whole octet multiplet in the limit of
exact SU(3)y symmetry. Taking the physical baryon masses, the numerical results
would be obviously different. In order to estimate the associated uncertainty in f5(0)
we will vary its value within the range obtained with these two possibilities.

The slopes A/ and X! are determined from electroproduction and neutrino scat-
tering data with nucleons, which are sensitive to the flavour—diagonal vector and
axial-vector form factors in the Q? = — ¢ > 0 region. The obtained distributions
are well fitted with dipole parametrizations Gv.4(Q%) = Gv,4(0)/ (1 + QQ/M‘Q,’A)Q,
with MY = (0.84 4 0.04) GeV and MY = (1.08 & 0.08) GeV [145]. Extrapolating
these functional forms to ¢? > 0, one gets a rough estimate of the needed hyperon
form factor slopes in the SU(3) limit. To account for SU(3) breaking, one usu-
ally modifies the parameters My and M, in a rather na'l';)%ve way, adopting the
values My = MY (mg-/m,) = 0.98GeV and My = M§ (mg, /ma) = 1.12GeV.
To estimate the systematic uncertainty associated with )\{ and N, we adopt these
dipole parametrizations, varying the values of the vector and axial-vector mass pa-
rameters between M&A and My 4. As mentioned in previous sections, a monopole
parametrization could lead to a significative shift of the fitted V,, value; however,
in this case one should take different values for the parameters My, 4, in order to fit
the ¢? < 0 data.
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Reference A=p|Y =2n|E A |2 =X B0 8f

DHK’S7 [152] (quark model) | 0.987 | 0.987 | 0.987 | 0.987 0.987
Sch’95 [153] (quark model) | 0.976 | 0.975 | 0.976 | 0.976
Kr'90 [154] (chiral loops) 0.943 0.987 0.957 0.943
AL03 [155| (chiral loops) | 1.024 | 1.100 | 1.059 | 1.011
LKM [159] (chiral loops) 0.943 | 1.028 0.989 0.944

Table 5.10: Theoretical predictions for f.

In Table 5.9 we show the sensitivity of the resulting V,, value to these para-
metric uncertainties. Columns 2 and 3 give the induced systematic errors in the 3—
parameter | SU(3) symmetric | fits, while columns 4 and 5 contain the corresponding
numbers for the 5—parameter fits including first-order SU(3) breaking in g;(0). In
both cases, we indicate separately the estimates obtained for the fits to the asymme-
tries and the g1(0)/f1(0) fits. The numbers in the table show that the vector slope
)\{ is the dominant source of parametric uncertainty. In any case, these uncertainties
are much smaller than the statistical errors of the corresponding fits.

At second order, one should take into account the unknown value of g5(0) and the
O(€?) corrections to f,(0) and g;,(0). There exist a few estimates of f;(0) using quark
models and baryon chiral Lagrangians. Unfortunately, they give rather different re-
sults as shown in Table 5.10. The quark-model calculations agree with the nal};%ve
expectation that SU(3)y corrections should be negative, i.e. f; < 1 [152,153].
In contrast, the chiral-loop estimates obtain large corrections with opposite signs:
while Ref. [155] finds values for f1 which are larger than one for all analyzed decays,
Ref. [154] gets results more consistent with the quark-model evaluations. The two
references use slightly different chiral techniques, and are probably taking into ac-
count different sets of Feynman diagram contributions. Ref. [159] is the latest xPT
calculation. They use the infrared regularization scheme, which is a relativistic for-
mulation that preserves chiral counting. However they do not take into account the
effect of the spinf% decuplet and hence their results should be read with care. In
Ref. [160] the heavy baryon formalism is used, but it is found that the contributions
of the spinf% decuplet spoil the convergence of the chiral series. Clearly, a new and
more complete calculation is needed.

Nothing useful is known about g(0) and the needed O(e?) corrections to g;(0).
However, go(0) is not expected to give a sizeable contribution, while g;(0)/f1(0)
can be directly taken from experiment using the phenomenological fit of previous
sections. In fact, the experimental ¢;(0)/f(0) ratios given in Table 5.4 assume
already ¢2(0) = 0. Thus, the value of fl constitute the main theoretical problem for
an accurate determination of V,; from hyperon decays. Although corrections to the
SU(3)y symmetric value are of O(e?), it has been argued that they are numerically
enhanced by infrared—sensitive denominators [144,155]. In the absence of a reliable
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theoretical calculation, and in view of the estimates shown in Table 5.10, we adopt
the common value

fi = 0.99+0.02, (5.72)

for the five decay modes we have studied. While the two quark model estimates are
in the range f; = 0.98 & 0.01, the disagreement between the two chiral calculations
expands the interval of published results to fl = 1.02 £ 0.08. However, for some
decay modes such as >~ — ne 7, one can show that fl should indeed be smaller
than one, as na'i;)%vely expected [141,161]. This disagrees with the results obtained
in Ref. [155]. Our educated guess in (5.72) spans the whole interval of quark model
results, allowing also for higher values of fl within a reasonable range. Applying
this correction to our best estimate in Eq. (5.71), gives the final result :

|Vis| = 0.226 £ 0.005. (5.73)

5.3.7 V,4 from Neutron Decay

A recent reanalysis of radiative corrections to the neutron decay amplitude has given
the updated relation [118,162]:

4908 (4) sec \ /2
Vgl = [ ——222) . 5.74
Vud (Tn (1+39,24)> ( )

Using V4 = 0.97418 4+ 0.0005, Ref. [118] derives the Standard Model prediction for
the axial coupling

g4 = 91(0)/f1(0) = 1.2703 + 0.0008 , (5.75)

which is more precise than the direct measurements through neutron decay asym-
metries.

In order to extract V4 from (5.74), using as inputs the measured values of the
neutron lifetime and g4, one would need to clarify the present experimental situation.
The Particle Data Group [112]| quotes the world averages

7, = (885.74£0.8)s, g4 = 1.2695 £ 0.0029 , (5.76)
which implies
Vil = 0.9745 £ 0.0019 (5.77)

However, the most recent measurement of the neutron lifetime [121] has lead to a
very precise value which is lower than the world average by 6.5 0,

7w = (87854 0.740.3)s. (5.78)
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Source || K3 [53,122-128,132-136] | K [139,140] T [137,138] Hyperons
Vs 0.2233 + 0.0028 0.2219 4+ 0.0025 | 0.2208 £ 0.0034 | 0.226 + 0.005
Table 5.11: Determinations of V.
Taking g4 from (5.76), this would imply a 2 ¢ higher |V,4|:
Vgl = 0.9785 + 0.0019. (5.79)

Actually, the PDG value of g4 in (5.76) comes from an average of five measure-
ments which do not agree among them (x? = 15.5, confidence level = 0.004). If one
adopts the value obtained in the most recent and precise experiment [163],

ga = 1.2739 4 0.0019 (5.80)

one gets the results:

0.9717 4 0.0013
Via| = : (5.81)
0.9757 & 0.0013

5.3.8 Summary

At present, the determinations of |V,4| and |V,5| from baryon semileptonic decays
have large uncertainties and cannot compete with the more precise information
obtained from other sources.

Hyperon semileptonic decays could provide an independent determination of
|Vius|, to be compared with the ones obtained from kaon decays or from the Cabibbo-
suppressed 7 decay width. However, our theoretical understanding of SU(3)y break-
ing effects constitutes a severe limitation to the achievable precision. We have pre-
sented a new numerical analysis of the available data, trying to understand the
discrepancies between the results previously obtained in Refs. [141] and [142], and
the systematic uncertainties entering the calculation.

The 1/N¢ expansion of QCD is a convenient theoretical framework to study the
baryon decay amplitudes and estimate the size of SU(3)y breaking effects. From the
comparison of fits done at different orders in symmetry breaking, one can clearly
identify the presence of a sizeable SU(3)y breaking at first order. However, the
present uncertainties are too large to pin down these effects at second order.

One can use the measured decay rates and ¢;(0)/f1(0) ratios to perform a rather
clean determination of |f1 Vus|. However it is impossible to disentangle Vs from fl
without additional theoretical input. The Ademollo-Gatto theorem guarantees that
fi = 1+ O(e?), but it has been argued that the second-order SU(3) corrections
to fi = 1 are numerically enhanced by infrared-sensitive denominators [144, 155].
The existing calculations, using quark models or baryon chiral perturbation theory,
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give contradictory results and signal the possible presence of sizable corrections.
Adopting as an educated guess the value f1 = 0.99 + 0.02, we find our final result
in Eq. (5.73).

Table 5.11 compares the hyperon determination of V,s, with the results obtained
from other sources. The present hyperon value has the largest uncertainty. To get
a competitive determination one would need more precise experimental information
and a better theoretical understanding of fi, beyond its symmetric value. The
average of all determinations is

Vsl = 0.2225 £ 0.0016. (5.82)

Without the information from hyperon semileptonic decays, the average would be
0.2221 £+ 0.0016. Taking |[V,4| = 0.97418 + 0.00026, from superallowed nuclear beta
decays [117], the resulting first—row unitarity test gives (the |V, contribution is
negligible) :

Vaal? + [Vis 2 4 [Vip|* = 0.9985 + 0.0009 . (5.83)

Thus, the unitarity of the quark mixing matrix is satisfied at the 1.7 o level.
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Chapter 6

Dispersion relations and unitarity

6.1 Introduction

The failure of early attempts to apply perturbative quantum field theory to the
strong and weak nuclear forces led theorists by the late sixties to attempt the use of
the analyticity and unitarity of scattering amplitudes as a way of deriving general
non—perturbative results that would not depend on any particular field theory. This
started with a revival of interest in dispersion relations.

Even before quantum field theory (QFT for short) was regarded as the theory
capable of describing a relativistic quantum theory of particles (at least at low
energies [1]), some of the basic ingredients (S—matrix, scattering amplitudes, ... )
and their properties (unitarity, crossing, ... ) where already known, or at least
conjectured. In fact QFT provides a method of calculating these basic ingredients,
and of course with its axiomatic properties. However, in most (if not all) of the cases
the QFT calculation is of perturbative nature (by perturbative we mean any kind
of organization allowing to drop some terms as subleading, and not necessarily an
expansion in the coupling constant), and then some of the properties of the S—matrix
are only satisfied at the perturbative level (it is well known that the absorptive part
of an amplitude appears for the first time at one loop, and not at tree level).

So some times it is good to “forget” for a while the goods of QFT and derive
general expressions for the S—matrix elements or the scattering amplitudes (for
instance, dispersion relations), and afterwards combine these relations with QFT
results to obtain the maximum information possible. In the case of non—perturbative
dynamics where the information is rather scarce, these relations (of non—perturbative
nature) are an essential tool for the QCD practitioner.

In this chapter we use axiomatic field theory together with YPT to derive bounds
on the chiral LECs and to constrain the predictions for the production of mesons in
two photon reactions. For writing some of the technicals aspects of this chapter I
have followed [57,164, 165].
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6.2 Unitarity and partial wave decomposition

Unitarity is the simplest and more fundamental requirement that any sensible the-
ory must fulfill. Basically it is equivalent to the quantum mechanical principle of
“probability conservation”. Of course, in a relativistic quantum theory particles are
created and destroyed all the time, and so the quantum mechanics concept of “prob-
ability” loses its meaning. Instead one must require that the probability of finding
any final state |4 ) out of the collision of several particles |«) must be 100% :

1=Z|<i\5\a>l2ZZW\SIU(Z’\SWM:<a|55*|a>, (6.1)

i

and also that the probability of finding a given final state | ) when trying with all
possible initial states | i) must be one: (a|SST|a) =1 for any state |«a). If now
we write | ) = a; |a1) + as |as) with |a1) # |as) and a? + a2 = 1 we obtain

1 =1+ atay(ay|SST|ay) 4+ aral(as| SSTay). (6.2)

Since this must be satisfied for arbitrary a;, as, necessarily (a; | SST|ay) = 0. This
relation together with Eq. (6.1) enables us to write the unitarity requirement as an
operator identity :

SSt = S8Ts = 1. (6.3)

It is customary to separate the trivial part of the S—matrix describing the probability
of the particles not to interact at all from the so called T—matrix, encoding the
dynamics :

S=1+iT. (6.4)

Moreover, since the S-matrix must commute with the generators of the Poincar'i;)%
group, when the initial and final states have well defined total momentum P; and
Py it must have an overall momentum conservation Dirac delta function, that can
be factored out as well:

(P TPy = (2m)' 6W(Py — PYM, (6.5)
being M the reduced matrix element. Inserting Eq. (6.4) into (6.3) we obtain
—i(T-T" =T'T. (6.6)

Let us consider the scattering process of two particles into two particles, and let us
insert a Parseval identity in the right-hand side of Eq. (6.6)

— i [M(kiky = pip2) — M(pip2 = kiks)"] = Z/deM(k1k2 — f)M(pip2 — )",
/

(6.7)
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Of course time reversal invariance (if it applies) requires M (p — k) = M (k — p).
Let us assume now that the identity of the initial and final states is the same, and
also that p; = k; (forward scattering). Then Eq. (6.7) reduces to the so called Optical
theorem

ImM(kle — klkg) = )\(s,m%, mg) O'tot(klkg — all) > 0. (68)

The diagrammatic representation of this equation is shown in Fig. 6.1. Although
this expression is very interesting by itself, it only applies for the specific case of
forward scattering. It would be desirable to have a similar expressions for more
general situations. In fact one can write unitarity relations like in Eq. (6.8) for
the partial wave amplitudes. We can characterize the initial and final states by
the value of the total spin of the two particles, its total energy and two angles
defining the orientation of the three-momentum (the option we have used so far).
Without lose of generality we can choose the initial state momenta to point in
the z direction. Another possible choice (corresponding to another complete set of
commuting operators) is the value of the spin of the two particles, its total energy,
the value of the total angular momentum J and its third component M. It is
convenient to separate the uninteresting center of mass three-momentum :

| D1, D2; s1,52) = ‘]3> ® |E. 0, ¢; 51, 59) ,
\PE,J, M; si,s) = |P)Y®|E,J, M;s,ss), (6.9)

The two basis are related by (we label the total energy in the center of mass frame
by F)

|E797d)1 31,82> = ZCJD%,)M(d))ga _d)) |E7J7M;sla82> )

JM
|Ea J,M;81,82> = CJ/dQD(]\;[],)u*(d)aga_d)) |Ea9a¢;81732>a
poo= 1= Mo,

/2T +1
cj = P , (610)

where D(A}II’)N are the usual rotation matrices. Matrix elements of the T-matrix taken
with states of definite angular momentum are known as partial waves

(B'. J M"; s, sy | T|E,J M;sy,s3) = (47)(27)* 615 0pmd(E — E'Y My 1y(E),
<E’,Q;SII,SIQ|T|E,O;51,SQ> = (27T)45(E—E’) M12*>1/2/(E, Q), (611)

and the two decompositions of the T-matrix are related

Mg r2(E,Q) = 2(2 J+1) DL{ZI*(@ 0,— ¢) Mis_10(E),

J

M (B) = (27+1) / 42 DY) (6.0, — 6) Mz (F,9) . (6.12)
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The first relation of Eq. (6.12) is known as the partial wave decomposition of the
scattering amplitude. Taking matrix elements of Eq. (6.6) with angular momentum
eigenstates, and inserting a Parseval identity, expressed in the angular momentum
basis, we obtain (the sum over final states includes integrations and sum over po-
larizations)

M12—>1'2'( ) — M1'2'—>12 =1 ZMf—n'Q' 12—>f(E)*a (6.13)

where f is a multiparticle state with total energy E and total angular momentum
J. If the identity (and hence spin) of the initial and final states coincide we obtain
the optical theorem for partial wave amplitudes

QImMi]Q—)lQ( = Z ‘M12—>f )‘2 >0, (6.14)
f

and when inserting this result back into Eq. (6.12) we get

2Im Muzsi2(E) = Y (27 +1) D) (6.6, — 6) | M, (B)|” (6.15)
J.f
a C a C
AN
2Im — Zf I f
b d b d

Figure 6.1: Diagrammatic representation of the optical theorem.

To close this section we will comment on the concepts of crossing symmetry and
analyticity. Crossing symmetry states that (for simplicity we will assume spinless
particles) given the reaction a b — c¢d described by the matrix element Mgy .q(s, t)
being s, t and u the usual Mandelstam variables! defined as

s=(pa+ 1) = (Pc+pa)* 5> (mg+my)?,
L= (pa - pc)2 = (pb - pd)2 t < Min [(ma - mc)Z; (mb - md)ﬂ )
u = (pa - pd)2 = (pb - pc)2 u < Min [(ma - md)27 (mb - mc)Q] ) (616)

satisfying the on-shell constraint

s+t+u=m2+m+m:+m], (6.17)

'For the definition of the Mandelstam variables the ordering of the initial and final state particles
is important. For instance Mp—4c(8,t) = Map—eca(s,u).
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the crossed channel reactions (see Fig. 6.2) are described by the same matrix element
as follows: M spa(8,t) = Mapsea(t, s), Madsen(S,t) = Map—ea(u, t).

Analyticity states that, if we regard the amplitude M(s,t) as a function of the
complex variables s and ¢, the amplitude is analytic everywhere in the complex s —¢
space except for a number of isolated points, due to single particle exchange and
branch cuts along the real axis, necessary for unitarity to be satisfied. So all the
branch cuts overlap and we have a single branch cut, its branch point coinciding
with the first possible intermediate state. The rest of branch cuts are dictated by
crossing symmetry. The physical amplitudes are defined for certain (real) values of s
and t with a certain prescription, acceptable for all the crossed channels. The three
physical regions are non-overlaping, and out of them the amplitude is defined by
analytic continuation. So physical amplitudes are boundaries of the same analytic
function M(s,t). This statement can be translated to the partial wave amplitudes
M7 (s). Let us keep in mind that one partial wave amplitude from the s—channel
receives contributions from all the partial waves defined in the ¢t— or u—channels.

Figure 6.2: Graphic representation of the s and ¢ crossed channels.

6.3 The linear sigma model

In this section we introduce and discuss the SU(2) linear sigma model of Gell-Mann
and Levy [166]. This model was originally developed as a toy model for nuclear
forces, describing the nucleon—pion interactions. It incorporates in an specific way
the breakdown of chiral symmetry. Here we will concentrate only in the scalar sector
of the model. For this section I have followed Refs. [92,93,167].

In linear sigma models, basic fields are assumed to belong to linear represen-
tations of the chiral group G. We will consider representations of low dimensions,
playing the main ri'(;%le at low energies. Then one builds the most general La-
grangian being renormalizable and chiral invariant. For denoting the irreducible
representations of G we will use the notation (m,n), being m and n the dimen-
sion of the corresponding left and right SU(2) subgroups [note that SU(2) is a real
group|. The fundamental left— and right-handed fields x;, xr are fermionic. They
transform under G as (2,1) and (1,2): X,z = 9Lr Xrr.- Under parity, of course
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X1 <> Xgr- The Dirac representations ¢ = xg + Xz and 5% = xg — Xz transform
as (2,1) 4+ (1,2) and are parity eigenstates.

Of particular importance is the (chiral) four-vector representation, that can be
built out of the fundamental ones

Ba = Xh7axt, (6.18)

where 7, = (1, 7;) are the Pauli matrices acting on the isospin indices. The basic
transformation rule of B, under an infinitesimal chiral transformation is

+iByd, (6.19)
where we have written the chiral transformation Eq. (1.4) as
g=-expli(0—a) -7, i(0+a) T]. (6.20)

Eq. (6.19) implies that the group SU(2) ® SU(2) is isomorphic to O(4). The four-
vector B, is not a parity eigenstate: B? = BI. We can form the appropriate
combinations with definite parity

Oo = XhTaXp + XL TaXr = VT,
To = Z.(X]}L{TQXL _XE TaXR) = wTai75w; (621)

and so there are two chiral four—vectors of (Lorentz) scalars and pseudoscalars. Their
infinitesimal transformations under G are

oy — Oy -+ e C-L),

g —
9 — Tg—O0-a,
T = TH+UXT—o0pd, (6.22)
from these we see that there are two invariants in quadratic form: o2 + @2 and
75 + 2. Since in nature there are three degenerate negative parity states (pions)
we will adopt the first combination as the basic building block. It constitutes the
length of a four—vector (og, 7) in notation of the O(4) group. We will identify oy = o
and, in order to have a more direct connection with the chiral group G we will group
the particles in the matrix >

YN =o04if- 7, (6.23)

which reproduces the transformation rules (6.22) if it transforms under G as ¥’ =
gL g}z (of course the choice ¥ = 1y + 7 - & is transformed in a similar way with

?By a field redefinition the ¥ matrix can be cast into the form ¥ = ¢ exp(iZZ). Then ¥ X = o2
and the pion dynamics is entirely contained in the kinetic term.
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L < R). Now, since SXF = 218 = (62 4+ 72) 1 and det ¥ = o2 + 72 it follows
that ¥ % is /o2 + 72 times a unitary unimodular matrix, and that ¢® + @2 is the
only possible chiral invariant. So the most general invariant Lagrangian is

2
L= (0205 V(e +7) = 1 (9505 + L (sx) - L (nsh)’
]_ g 2
= 1(0.20"%") - 1 (& o) — 207%)
= % (Oyo "o + 0,7 ') — % (0 +7%) - 1)2}2 : (6.24)

with v2 = p?/g. If u?> < 0 the symmetry is realized a la Wigner-Weyl, and all
particles have a common mass of \/—p2. For g > 0 the symmetry is realized a
la Nambu-Goldstone and the Lagrangian exhibits the phenomenon of spontaneous
symmetry breaking. This last possibility is the one concerning us.

The vacuum, which has the lowest energy is expected to be static and uniform
(0,0; = 0), and so the energy minimum satisfies 9V/3¢; = 0. The minimum
condition is?

ol + 72 = ?, (6.25)

and so we have an infinite number of configurations with minimum energy. Now we
can use our freedom to make chiral transformations to rotate any vacuum expec-
tation value into the o direction. If the minimum has a non—vanishing component
in a pion direction, it does not have definite parity, contradicting nature. So that
without any loss of generality we can assume

() =wv, (7)=0, (6.26)

and perturb around the vacuum. Thus we define the shifted field and the shifted
matrix

od=0c-v, ¥ =%-vl, (6.27)

in which the Lagrangian reads

L= (00T - L (T +o(T+2)’ (6.28)

N | — | =

(0u0' 00" — m2 0" + 0,7 - O'7) — % (0" + 7?2)2 — \/gmg o' (o'* +7?),

with m2 = 2 pu? = 2gv?. The new Lagrangian (6.28) do not have the full SU(2) ®
SU(2) ~ O(4) symmetry any more, but possesses a remnant SU(2) ~ O(3) symme-
try. So, as expected from the Goldstone theorem, there appear in the theory three

3In the form ¥ = o exp(iZZ) the minimum condition reads directly 0 = v? and S’ = (v +

o) exp(i?).
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massless spin—zero particles, the Goldstone bosons. The ¢ scalar particle, however,
has acquired a non-vanishing mass.

As discussed in Chapter 1, in the real world the SU(2)®@SU(2) ~ O(4) symmetry
is also explicitly broken by the mass term of the u and d quarks. Assuming that
isospin is preserved by this mass term (that is, m, = my) the linear sigma model
Lagrangian is only invariant under SU(2) ~ O(3). So, we must introduce a term
violating chiral symmetry but preserving isospin symmetry (and of course, being
renormalizable and hermitian). The simplest choice is to add to Eq. (6.24) a term
like (¥ 4 ') (analogous to an external magnetic field):

1 2
L= (@2oT) + (e — @ s pmes) . (629

When trying to find the minimum of the potential, we find that there is no degen-
eracy in the vacuum state as in Eq. (6.25) any more. Now the minimum condition
imposes (7) = 0 and (o) = v, where v must satisfy the third order equation

wv—gvP+48=0. (6.30)
We can use Eq. (6.30) in order to write the Lagrangian in a more apparent way
1 g n2 B
L=2(0,% sty — 5 (& Sy —20%)" - (& S+ 8(Z'+ 5, (6.31)

and after writing the Lagrangian in terms of the excitations around the true vacuum
one gets:

1 g 2 B
L = Z@z'a#z’*) ~ 1 ('S +o(Z'+ ') - - ('8
1
= S (0000 =m0 + 9,7 O'F—m?FF) = T (0 + 7’
2 _ 2
_ /9 (m02 m?) o' (012 i 7?2) , (6.32)
where we have used the following relations and definitions:
2 2 2 2 2 2 2
9 m, —3m 9 my —m m° [mi—m
- o "7 - 9 = — /2 —. 6.33

By means of a tree level matching with yPT we can relate the g constant with the
pion decay constant

m_—m

g = 7"2 7z (6.34)
“Note that in Ref. [9] the relation 2g = m2/F2 is used. However we identify F, with the
vacuum expectation value of the o field v, which can be shown to coincide with the pion decay
constant at leading order. In addition, in the non-linear parametrization of the LSM the pion
fields are collected in the exponential matrix exp(i 7 - @/v), wich compares well with yPT after
the identification F,, = v is made. Finally, m, depends on the pion mass but at leading order
the combination m2 —m? does not. Although in practice this choice does not affect the results of

Eq. (6.60) and the discussion of this section, we prefer to use the notation of Ref. [182].
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which allows us the write the Lagrangian as

1
L= 5 (00 90 —mlo" + 0,7 0'F —m’7?)
4
— 22 (047 - S — el (01 +72) . (6.35)

Let us calculate the minimum value Z—; can achieve. From (6.33)

™

3
Mo _ 4 90 (6.36)
m

: 28"
and then could na'i;)%vely think that for ¢ — 0 Z—‘j’ — 1 but this is not true

because from (6.30) follows that gv* — 43 > 0, and 50 B — 0 as g does. Defining
gv® =45+ ¢g'v?, we always fulfill the minimum condition for ¢’ > 0. Rewriting
(6.36) we get

S

g/v3

28

where the limit is achieved for g’ — 0%,

As a last comment, all the derivations we have done for finding the minimum of
the potential are only valid at tree level. If one is to perform a one—loop calculation,
the minimum condition has to be derived imposing a vanishing ¢ one-point function,
as discussed in Appendix H.

=3+ (6.37)

I
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w
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6.4 Bounds on chiral LECs from dispersion rela-
tions

Low energy pion dynamics, particularly elastic pion—pion scattering encodes useful
information about the confining dynamics of the strong interactions. The pions (and
kaons) are the pseudo Goldstone bosons associated with the spontaneous breakdown
of the chiral symmetry in QCD, a purely non—perturbative phenomenon.

As explained in Chapter 1, the standard technique to study the pion dynamics
at very low energies as a series expansion in powers of the momentum and the
quark masses is Chiral Perturbation Theory (xPT). It is formulated in terms of
a Lagrangian whose only degrees of freedom are pions and which incorporates the
symmetries of QCD, including spontaneously broken chiral symmetry. It also has
all the usual benefits of a Lagrangian formalism.

At lowest order the physical observables are determined it terms of two param-
eters, namely the pion decay constant F' and the pion (and kaon) mass m, (mg).
The determination of their values from the experimental data is very precise. If
one wants to go beyond the lowest order, a number of LECs /; or L;, not fixed by
symmetries must be included. The grow of low energy constants (LECs for short)
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is even more dramatic in the theory with three flavours | SU(3) case| because the
Cayley-Hamilton relations are less restrictive than for the SU(2) theory. These
can be determined by fitting to experimental data (for the best determination see
Refs. [168,169]) or estimated by vector-meson dominance as discussed in Chapter 2
(see also [13,170]), but both methods have large uncertainties.

An alternative formulation of 77 (and 7 K) scattering can be obtained based
only on axiomatic principles of quantum field theory, such as analyticity, unitarity
and crossing symmetry. This allows one to obtain relations between observable
quantities that must hold, regardless of the theory used for the description of the
phenomenon under study. Of course, one of the usual benefits of an effective theory
approach is that many of these principles are automatically satisfied by the scattering
amplitudes computed using the effective theory. Nevertheless, there is still useful
information missing in the effective theory approach, and one obtains interesting
results by studying the constraints imposed by axiomatic principles on the effective
Lagrangian. Analyticity and unitarity can be exploited to write the well known
dispersion relations for the scattering amplitudes. These, together with crossing
symmetry, can be converted into positivity conditions on scattering amplitudes,
which in turn, can be combined with the yPT predictions to give bounds on the /4
and [, LECs in the chiral Lagrangian at O(p*) [171]. We will extend this study also
to the SU(3) case, in which the kaon and eta particles also appear in the Lagrangian,
to obtain bounds for Ly, Ly and L3 [172].

Two-flavour xyPT was combined with axiomatic principles in Ref [173], which
analyzed constraints on s and p partial wave amplitudes in the framework of disper-
sion relations. The analysis was done in xPT at the one-loop level. In Ref. [174]
this study was extended to cover all three isospin amplitudes of 7 7 scattering at
the two—loop level in xYPT. The best bounds were found for positivity conditions
on full amplitudes (in contrast with partial wave amplitudes), and we follow this
approach in the present work. However, we find inconsistencies in the domain of
applicability of the positivity constraints used in Ref. [174] which will be explained
in Section 6.4.1. Similar bounds where first found in Ref. [170] in the context of
the Froissart-Gribov representation for the scattering lengths. More recently, in
Ref. [175], the very same bounds of Ref. [170] were rediscovered using the same
procedure as in Ref. [174] but using a more restricted domain of validity (in the
Mandelstam plane) of the positivity constraint. References [170,175] both used one—
loop xPT amplitudes. We show that the methods of Ref. [170] and Refs. [174,175]
are equivalent, and we improve the bounds by properly using the domain of validity
considered in Ref. [174], which is bigger than that considered in Ref. [175].

To our knowledge the first attempt to confront dispersion relations with three—
flavour xPT to bound linear combinations of LECs was Ref. [176]. However, in
this early work, the contribution from chiral logarithms in the O(p*) amplitude
was ignored. This simplification becomes exact in the limit of infinite number of
colours, but for a numerical analysis better results are obtained maintaining also
chiral loops. In Ref. [176] it was only possible to assert that certain linear combi-
nations of LECs were positive, and no information about the scale at which these
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LECs were evaluated could be obtained.

In Ref. [177] a different approach was followed for putting bounds on some yPT
parameters. QCD inequalities on Green functions of quark bilinear currents were
used to obtain relations (inequalities) that involve light quark masses, the quark
condensate and some LECs. With our method we are insensitive to the quark mass
and condensate, since these are lowest order quantities and our analysis starts at
O(p"). On the other hand, since our study relies on scattering amplitudes, we only
make use of the chiral Lagrangian when vector, axial-vector and scalar sources are
switched off (one always needs the scalar source for giving masses to the pseudo—
Goldstone bosons). In fact we can only give bounds for the O(p*) LECs of operators
containing only pseudo-Goldstone fields, L;, Ly and L3, and so our results do not
overlap with theirs.

The LSM Lagrangian is renormalizable and thus has a reduced (finite) number
of parameters compared with the most general chiral Lagrangian. It shares the same
symmetries as YPT but has an additional (o) particle in its spectrum. If the o mass
is sufficiently greater than that of the pions, it can be formally integrated out of the
action, leaving behind the xPT Lagrangian, with all the LECs having specific values
which can be predicted in terms of the finite number of parameters of the LSM.

The values for [; and [, predicted by the LSM do not satisfy the dispersion
relation bounds for low values of the ¢ mass. We will demonstrate that the LSM
is perfectly consistent with the dispersion relation bounds and that the apparent
contradiction results because for low values of the ¢ mass, integrating out the o is
not valid, or equivalently, that higher order terms in the chiral expansion cannot be
neglected.

It is the purpose of Section 6.4.2 to generalize those results to the SU(3) theory,
and in particular to extend the method to cover the situation of different masses
[ this is, considering SU(3)y symmetry breaking|. In this way we will find out if for
three flavours xyPT suffers the same anomaly as the linear sigma model.

Since yPT consists on an expansion in both the external momenta and quark
masses, the coefficients of the expansion (that is, the LECs) cannot depend on either
of them. This means that LECs do not depend on the pseudo—Goldstone bosons
masses. In other words the value of chiral LECs in our universe with my # m,, = my
is the same as in “another” universe in which the symmetry is unbroken, m, = my =
my. It is common lore in the literature, for instance, to consider massless quarks for
estimating the values of some LECs, but this limit is not suitable for a dispersion
relation analysis. The most straightforward generalization of the method used for 7 7
is thus to consider the exact SU(3)y limit in which there are only five independent
amplitudes.

The bounds derived in this limit have two drawbacks: first, it is not clear what
common mass should be adopted for the degenerate octet, what is essential to com-
pare our bounds with the values obtained by fitting the experimental data (usually
displayed at the ;. = m, scale); second, the results are not very challenging. In order
to assess these two problems we will repeat our analysis with the physical values
for the K and n masses. In this case the dispersive integrals will imply positivity
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conditions only under more severe conditions. Once these are addressed the new
bounds turn out to be much more restrictive, and remarkably the central values of
the fitted LEC values lie precisely on the border dictated by axiomatic principles.

6.4.1 SU(2) bounds

Dispersion relations for 77 scattering

In this section, we find the region of the Mandelstam s — ¢ plane in which the 77
scattering amplitude is analytic, and derive the corresponding dispersion relations.

We begin by briefly reviewing a few properties of w7 scattering. For further
details the reader is referred, for instance, to Ref. [178|. The three pionic states can
be labeled either by Is = — 1, 0, 1 or by Cartesian indices a = 1, 2, 3. Both sets of
states are linearly related between them and to the physical pion states:

) = s (mER). ) = [,

[1L,£1) = F|77), [1,0) = [7°), (6.38)

where | 7% ) denotes the Cartesian basis, and | 1, I3 ) denotes the isospin basis states.
[sospin invariance implies that there are only three linearly independent scattering
amplitudes in the I = 0,1, 2 channels, and crossing symmetry relates them to each
other, so they can all be described by a single function of s and ¢. In the Cartesian
basis we can write the Chew-Mandelstam formula

T(ab— cd) = A(s,t,u) 00 + A(t,s,u) 66" + A(u,t,s) 56" .(6.39)

Crossing symmetry implies A(z,y,2) = A(z,2,y) = A(z,y) = A(z,4m? —x — y)
where m is the pion mass. The function A is related to the isospin amplitudes
through

T°(s,t) = 3A(s,t) + A(t,s) + A(u, s), T"?(s,t) = A(t,s) F A(u,s).  (6.40)

The I = 0,2 amplitudes are symmetric under the exchange of the final states,
whereas the T = 1 is antisymmetric: T2 (s,t) = T2 (s, u), T'(s,t) = — T'(s,u).

The isospin amplitudes in the different kinematic channels are also linearly re-
lated. For our present purposes, we only need the relation with the crossed u—
channel. This follows directly from Eq. (6.40) and can be conveniently displayed in
matrix notation

2 —6 10
! ! ! ! 1
T'(s1) = Of'T"(wt), CICT =6, Cu= 2| —2 3 5 [ (641)
2 3 1

where, as expected, the crossing—matrix C,, is its own inverse. T'7(s,t) is the scat-
tering amplitude with isospin I in the s—channel, and 77 (u, t) is the amplitude with
isospin I’ in the u—channel.
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Axiomatic principles can be used to show that scattering amplitudes are analytic
in the full complex s plane except for possible isolated points, due to single particle
exchange, and branch cuts, due to unitarity. For our purposes we only need to know
the position sy of the first branch point along the real axis of the complex s plane.
There is then a branch cut along the real s—axis for s > s5. Any other singularities
along the real s—axis will be along this cut. The remaining branch cuts will be
determined by crossing symmetry.

Let us concentrate on the s channel keeping ¢ fixed. Unitarity ensures that for real
s, the scattering amplitude only develops an imaginary part above the lowest mass
threshold of possible intermediate states®. In our case the threshold corresponds to
two-pion states, i.e. so = 4 m?. This means that above the production threshold (for
physical amplitudes) the scattering amplitude is complex. Since below threshold, the
amplitude is real and analytic away from the real axis, it follows from the Schwarz
reflection principle that T* (s +i€) = T (s —i€) and hence T' (s +i€) =T (s —i€) =
2iImT (s +i€) # 0. This means there must be a branch point at s = 4m? and
a discontinuity in the amplitude along the real axis for s > 4m?2. We will choose
the branch cut to run along the real s axis, because as already explained, the other
branch points due to higher mass thresholds (e.g. four-pion state s; = 16 m?) or
singularities due to single-particle states (e.g. p exchange s, = m%) will lie along it.
We conclude that our amplitude is non—analytic for s > 4 m?, regardless of the value
of t. The amplitude must also reproduce the singularities in the crossed channels,
so it is non—analytic for s,¢,u > 4m? The region in the s — ¢ plane where the
amplitude is analytic is limited to the inside of the triangle defined by the conditions
s, t<4m?, s+t >0. 4m? is referred to as the normal threshold, associated to the
production of two pions. In Refs. [173,175] it is assumed that the amplitude is only
analytic between the normal threshold and the abnormal threshold, corresponding
to s, t, u = 0. The region delimited by the condition 0 < s, t, u < 4m? is known as
the Mandelstam triangle (see Fig. 6.3).

However it has been proved [164] using very general arguments that rely on per-
turbation theory to all orders (i.e. that are true for every single Feynman diagram),
that the amplitude becomes non—analytic only above the normal threshold, and that
nothing particular happens at s = 0. The region bounded by s,¢,u < 4m? is the
larger triangle shown in Fig. 6.3. This is the main difference between our method
and that of Ref. [175]. We use analyticity in a larger domain, and so obtain more
restrictive conditions on the scattering amplitude. Ref. [174] uses the same analyt-
icity domain as we do. However, in their numeric computations, they include points
outside this region, which is not justified.

The derivation of the dispersion relation is quite straightforward and is very
nicely explained, for instance, in Ref. [165]. For our derivation we consider ¢ as a

5 Above threshold, the physical scattering amplitude is defined as the value given by approaching
the cut from above, TP"S(s,t) = T(s+ i€, t), with ¢ — 0. This corresponds to the Feynman i e
prescription for propagators
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t-channel

o
s-channel

u-channel

Figure 6.3: Mandelstam plane for 7 7 scattering. The small triangle in the center is
the Mandelstam triangle. The big triangle is the region free from singularities. The
outer dashed regions denote the physical regions for the three crossed channels, and
the inner dashed region corresponds to the area A in which the positivity conditions
are defined.

fixed parameter. We can then use Cauchy’s theorem to write

Tist) = —— ¢ 4 80 (6.42)

211 5 T — S

wherever the amplitude is analytic in a neighborhood (in s) of the point (s,#), and
where the contour 7 encloses the point z = s [see Fig. 6.4 (a)|.

K , s

(a) (b)

Figure 6.4: Contour integrals leading to the fixed ¢ dispersion relations.

Then t < 4m?, and if s > 0, we have to use s — s + i ¢, as already mentioned.
From the results of Ref. [164] we infer that fixed—¢ dispersion relations hold for
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t < 4m?, but using solely axiomatic principles it can be shown (Ref. [179]) that
they are at least valid in the interval — 28 m? < t < 4m?, which will be adequate
for our purposes. For fixed ¢, we have along the real s—axis a right—hand branch cut
for s > 4m? and a left-hand branch cut for s < —¢. The 7 contour in Eq. (6.42)
can be deformed into 7', as shown in Fig. 6.4 (b) in order to express the integral in
terms of the discontinuity of the amplitude along the real axis. In order to do this,
the amplitude must fall sufficiently rapidly that the contribution from the contour
at infinity vanishes. If it does not, we can perform n derivatives (subtractions) to
increase the convergence at infinity,

ar _, n! T (z,t)

ds”T (s,t) = o ’ydx @ s (6.43)
For large enough n that the contour at infinity does not contribute, one finds after
some straightforward manipulations that

dar n! [ s cIr ,

—T'(s,t) = = doy | ———— 1) — | ImT’ €. 1) .

e (s,1) 7T/4 x[(m—s)"“-'_( ) (:r:—u)"“] mT" (z+ie,t)
(6.44)

m?2

The first term is from the discontinuity across the right—hand cut. The second term
is from the discontinuity across the left—hand cut, rewritten using crossing symmetry
and Eq. (6.41) to relate the s—channel discontinuity in the unphysical region s < 0
to the u—channel discontinuity in the physical region.

The best constraint comes from using Eq. (6.44) with the smallest possible value
of n. The Froissart bound [180] fixes the minimum number of subtractions needed
for pion—pion scattering to n = 2. Clearly, if we restrict ourselves to s < 4m? and
s+t > 0, both denominators in Eq. (6.44) are positive, and if n is an even number

(for instance, in our case n = 2) the relative sign is also positive, except for the sign
of CIT".

Figure 6.5: Lowest mass branch points in the three crossed channels, corresponding
to the physical threshold of two—pion production .

Bounds implied by the dispersion relation

Each isospin amplitude admits a partial wave expansion. In the case of spin—zero
particles, the amplitude depends only on the scattering angle , defined as the angle
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between the three-momenta of the first initial and final pions, in the center of
mass frame. Specializing Eq. (6.12) to spin-zero particles, taking ¢ = 0 and using
Dy (4,0, —¢) = Pi(cos ) we get :

s —4m?

o o0 2
T'(s,1) :Z (204 1) f1(s)Pi(cosh) Z (20+1) f/(s)P, <1+7t>,
=0 =0
(6.45)

where f/(s) denotes the partial wave amplitudes. The optical theorem implies
Im f; (s) = sB(s) oy(s) > 0, (6.46)

where 3(s) = /1 — *2= is the velocity of the pions in the center of mass frame, and

ol are the partlalfwave cross—sections in a given isospin channel. Equation (6.46)
gives

ImT’(s,t) = i (20+1)sB(s) Jé(S)Pg(l + L) : (6.47)

s — 4dm?

The partial wave expansion of the absorptive part converges in the large Lehmann—
Martin ellipse, which, when projected onto real s translates into the interval —4m? <
s < 60m?. We also need to make sure the absorptive part is positive. In Eq. (6.44),
the region of integration is s > 4m?, and as pointed out in Ref. [173], since P,(z) > 1
for z > 1 for all ¢, if we restrict ourselves to t > 0, each partial wave contribution
to the imaginary part is positive and so the full imaginary part is itself positive. As
noted in Ref. [175], one can find certain linear combinations Y a; T" with a; > 0,
SoarCYT; =3 ,b; Ty with by =Y, a; Cl7 > 0. For these linear combinations,
the two terms in brackets in Eq. (6.44) give a positive contribution. Hence, for these
linear combinations, in the region A defined as s, t < 4m? ¢t > 0 and s+t > 0 (see
Fig. 6.3) the right-hand side of Eq. (6.44) for n = 2 is also positive.

There are three linear combinations which satisfy the positivity condition, corre-
sponding to the physical processes 7%7% — 77, 7+7+ — 7F7* and 7F7° — 770
In matrix notation we can write

ja)

o<t Lo neal O -
) ) pos —

PO 42

(6.48)

o O Wi
— N= WN

e N

These results are in fact expected and can be deduced without any mention of
isospin amplitudes. The optical theorem ensures that for processes with the same
initial and final particles @ + b — a + b, the imaginary part of each partial wave
is positive definite. The crossed u—channel for those processes has equal initial and
final states as well, a +b — a + b, so for such processes, the imaginary part along
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the right— and left-hand cuts will be always positive. The positivity conditions for
the three processes are

2

d? d

0< PT (7% = 7°7") [(s,t) € A], 0< PT (rta’ = 777°) [(s,t) € A],
s s
d2

0< PT (rtnt = 7tat) [(s,t) € A], (6.49)

s

corresponding to 2T (s,t) + 2 TO(s,t), 1 T® (s, ) + L TW (s, 1) and TP (s, 1), re-

spectively.

Bounds for 1; and 1, in yPT : choice of the most stringent point

It is simple to convert the conditions displayed in Eq. (6.49) into bounds for chiral
LECs. The region A covers a very low energy domain, and is below the 2 7 threshold
in any of the three crossed channels. In this range of energies one expects the chiral
expansion to work well, so we will approximate the right-hand side of Eq. (6.49) by
the xPT result at O(p?).

Since the yPT amplitude is derived from a local Lagrangian, it automatically
respects the principles of crossing symmetry, unitarity and analyticity. One could
na'l'(;%vely argue that the positivity constraints should also be automatically satisfied,
but this is not necessarily true. As noted in Ref. [173], xPT is an expansion in
low momenta, so the amplitude has polynomial behaviour (up to logarithms) and
grows as s> or even worse at higher orders, violating the Froissart bound. As a
result, the positivity constraints provide additional information beyond xPT, and
give restrictions on the LECs.

The xPT leading order amplitude is linear in s and ¢ and so vanishes on taking
the second derivative; the next-to-leading order amplitude does not. The O(p?)
amplitude can be found in Ref. [9, 18], and its second derivative depends only on
two LECs: [; and I, in the SU(2);, ® SU(2)r chiral Lagrangian. The amplitude
can be split into polynomial terms quadratic in momenta and masses, and chiral
logarithms. The former contain the LECs and their second derivatives yield energy
independent terms; the latter depend only on momenta and masses, are independent
of the O(p*) LECs, and give energy dependent contributions to the second derivative.
The general structure of the bound can thus be written as

2
D il — fil(si) e Al >0 j =1,2,3, (6.50)

=1

where «j; are real coefficients and f;(s, ) are functions obtained from chiral loga-
rithms and LEC-independent polynomial terms, and j labels each one of the pro-
cesses in Eq. (6.49). The most stringent restriction is obtained for those values of
(s,t) that maximize f;(s,t) inside the region A:

> ol > fil(s.t) € Al (6.51)

- max
=1
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Process LECs | Maximum position Bound Fit to Expt
o0 — 7070 | I+ 20 s=0 >0 —-39254+04| 82+0.6
7l — atr® | s =0 > 2 =1350+04| 43+0.1
atat s ottt |+ 310, 1.114m? >5.604+04 | 125+£0.7

Table 6.1: Bounds obtained by unitarity, crossing and analyticity and comparison
with values extracted from a fit to the experimental data given in Ref. [168|. The
error on the bound is an estimate of the O(p®) terms.

It is important to estimate possible corrections to the bounds in Eq. (6.51) coming
from O(p®) terms in the amplitude. The computation of the 7 7 scattering amplitude
at this level of precision was performed in Ref. [181], and can be split into three
pieces: two—loop terms (double chiral logarithms), that only depend on m and F;;
one-loop terms (single chiral logarithms), that depend linearly on several O(p?)
LECs (not only [; and I,); and tree-level terms, that depend on O(p®) LECs. In
Ref. [174], Eq. (6.50) was calculated with the corresponding O(p®) amplitude for
7070 and 770 at s = 0, t = 4m?. Unfortunately the corresponding O(p°) LECs
are badly known (resonance saturation estimates are usually used), and the chiral
LECs we want to bound, /; and [y, appear again in the one-loop terms. In addition
the rest of LECs in the one-loop terms are symmetry breaking operators, and hence
appear always multiplied by the pion mass. As a result, their numerical values are
poorly known. So we have only control over the two-loop terms. To get an educated
guess for the error from the O(p°) terms, we will multiply the value of the purely
two—loop correction by a factor of three. To be more conservative we will adopt as
a common error for the three bounds, the biggest of these, which is 0.4.

There is one last issue to be discussed before we show our results. It is well
known that the scalar one-loop two-point function is not smooth at threshold (for
instance its imaginary part is zero below threshold but non-zero above). Its first
and second derivatives tend to infinity when we approach threshold from below. So
in order for the positivity condition to hold, the coefficients in front of these first
and second derivatives must always be positive below threshold. This is indeed the
case in all processes under study in our work.

We find that the maximum of f;(s, t) is always achieved for ¢ = 4 m?, regardless of
the process (i.e. for j = 1,2, 3); the value for s does depend on the particular process.
The maximum of f; is at s = 0 for j = 1,2. For j = 3, the maximum was found
numerically to be at s = 1.114m?. Our results are summarized in Table 6.1 together
with a comparison with the values for the experimentally fitted LECs I, = — 0.4+0.6
and Iy = 4.3 £ 0.1 from Ref. [168]. In Fig. 6.6, we plot the allowed region in the
I, — I, space parameter, together with the experimentally fitted value.
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Figure 6.6: The [, —I, region allowed by the positivity conditions is shown. The three
lines correspond to the three bounds in Table 6.1. We also show the experimentally
fitted values of Ref. [168] with their error.

Comparison with previous analyses

As mentioned in Section 6.4, there are several studies in the literature that combine
xPT with axiomatic principles. In this section we compare with previous results
and point out the advantages of the method used here.

In Ref. [173] only the 7%7° amplitude was considered, and so only bounds on
l; + 21, could be obtained. From the requirement that the s—wave amplitude has a
minimum in the interval 1.217 < s/m2 < 1.697 they obtain I + 21y > 3.32 + 0.85.
This value is less restrictive than our bound, and in addition has a much bigger
uncertainty. From the once subtracted dispersion relation of the full 7%7% amplitude
they obtain l; +21, > 3.3+ 2.5 which has a very large error, and is weaker than our
bound. Using the Froissart—Gribov representation for the d-wave partial amplitude,
they obtained our value for the bound, but since a reliable estimate of its error was
not found, this result was not taken into account in the final results in Ref. [173].

In Ref. [170], the Froissart-Gribov representation for the d-wave scattering
lengths was used to derive positivity conditions. In this way they reproduce our
results for I, +2 1, and o, with no errors quoted. In the next section we demonstrate
that this method is equivalent to ours for the particular point s = 0, t = 4 m?2.

In Ref. [174], the analysis of Ref. [173] was repeated, requiring a minimum of the
s-wave amplitude in the same interval as above, 1.217 < s/m? < 1.697. Surprisingly
Ref. [174] obtained a much more stringent bound, I; +21, > 6.16 (no error quoted).
In view of the discussion in both papers, it is our believe that Ref. [173] gives the
correct answer. The main analysis of Ref. [174] uses the same method that we do,
and in the same domain A. They argue that the most stringent point necessarily
lies on the 25+t = 4m? line, but we do not see why this should be true. In fact,
we explicitly find that for the 777" amplitude it is not on this line. Furthermore,
Ref. [174] only display the bounds at s = 0 (¢ = 4m?), where we get the same results
for I, +215 and [y, and at s = —4m? (t = 12m?), where the bounds are much more
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restrictive. The result [} + 1, > 4.914 quoted in Ref. [174] at s = —4m? (t = 12m?)
is violated by the experimentally fitted values of Ref. [168]. Even though Ref. [174]
uses the same domain A as our analysis, for the numerics they trespass outside this
region. The bounds [; + 21, > 6.923, I, > 2.01 and [; + l, > 4.914 should not be
trusted since the fixed-t dispersion relations are not valid for ¢ > 4 m?.

Finally, in Ref. [175] the same method of Ref. [174] is used, but only in the
Mandelstam triangle, which is why their bound for I; + 31, is less restrictive than
ours, and does not exclude any values for [1’2 not already excluded by the bounds
on Zl + ZQ and ZQ.

Relation between our method with scattering lengths

In this appendix we wish to demonstrate how the procedure followed in Ref. [170]
is related to ours. Let us start by recalling the definition of the scattering lengths.
From the partial wave decomposition of Eq. (6.45), one defines for each spin and
isospin amplitude the scattering lengths a]

1
al = lim _fils) (6.52)

For even /, the I = 1 scattering length must vanish because of Bose symmetry. In
Ref. [170] these scattering lengths can be shown to satisfy the positivity conditions

as +2a3 > 0, as — a3 > 0. (6.53)
using the Froissart-Gribov representation :

16 [ ds
I T 2
Gy = p- - 8—31m F/ (s,4m?). (6.54)
It is not difficult to relate the scattering lengths to the /—derivative of the total
spin—/ scattering amplitude:

o = (24;?1) leI?tTQ’t) - (2%!1) 5 dETI,c(lss’f w65
t=0 5=0
where we have used a relation analogous to Eq. (6.41)
2 6 10
T!(s,t) = cI"'T"(t,s), cl'cl’ =6, C = é 2 3 —5 |. (6.56)
2 =3 1

which follows from crossing symmetry in the t—channel.
For even ¢ and I = 1, Eq. (6.55) implies that the corresponding scattering
length is identically zero. To see this, recall that T'(4m? t) = — T (4m? —t) by
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Bose symmetry. Now, since the point s = 0, ¢t = 4m? lies in the region A, for { = 2
we know that certain linear combinations of the derivatives appearing in the last
equality of Eq. (6.55) must be positive. Inverting Eq. (6.55) we obtain

d2T1(4m?t) 5
——— = =C/7d]. 6.57
d ¢2 —o 39 t 2 ( )
Using Eq. (6.48) we obtain
1 0 2
chlclfay =Clal >0, Co=|1 0 -1 |, (6.58)
2 =3 1

and bearing in mind that a) = 0 we immediately reproduce the result shown in
Eq. (6.53) plus the linearly dependent relation 2 a3 + a2 > 0.

We have demonstrated that the method in Ref. [170] corresponds to using posi-
tivity at the s = 0, £ = 4m? point in region A of the Mandelstam plane. This is why
Ref. [170] did not find our third bound, which arises from s = 1.114m? ¢ = 4 m?.

Unitarity relations for the linear sigma model

In Section 6.4.1, we substituted the yPT results into Eq. (6.49) and obtained bounds
on some undetermined low—energy constants in the effective Lagrangian. One can
repeat this exercise for theories in which the low—energy effective Lagrangian is
calculable, to test the validity of the bounds. In this section we perform such an
analysis for the linear sigma model.

The most straightforward method is to use the predictions of the LSM for [; and
I, for the bounds displayed in Table 6.1. As already explained the LSM is invariant
under the same symmetries as yPT, and so all operators obtained after integrating
out the o particle must belong to the yPT Lagrangian at some order in the chiral
expansion. In Ref. [9] this computation was performed at the one-loop level and at
O(p*), the following result was obtained :

- 24 2 35 - (mg) 11

=2 () - B (2 65

leading to the inequalities

24 72

+ 3 log <%> > — + 4 log <%> > 19.94.
m m

(6.60)
These results are obtained in weak—coupling perturbation theory to one-loop, and

have corrections of order ¢ from the two—loop graphs. The first and third relations
of Eq. (6.60) are always satisfied for a weakly coupled theory on which Eq. (6.59)
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rely, since the 24 72/g term is larger than the other terms for small values g. Note
that the coefficient of the 1/¢ term must have the correct sign for the inequality to
be satisfied, which it does. The second relation does not involve an inverse power
of the coupling constant, and is not satisfied for large enough values of m/m,. In
particular, it is violated if m, < 4.9m. One way out of this contradiction is that
the derivation of the inequality, which relies on the Froissart bound, is not valid.
But it is not difficult to show that the LSM is a local renormalizable theory, and
satisfies the Froissart bound. In the chiral limit m — 0 and the bound is satisfied.
The Goldstone boson is made massive by a symmetry breaking term (analogous to
an external magnetic field). The strength of the symmetric breaking term must
be increased to increase m. The symmetry breaking term also contributes to the
o mass, so another way out is if the region m,/m < 4.9 is not possible for any
values of the parameters in the LSM. But as we explicitly showed in Section 6.3 any
mey/m > V3 is allowed, and since v/3 < 4.9 there are allowed values for the mass
ratio which violate the bound.

The loophole in the argument is that for low values of the 0 mass, the higher
1/m? corrections become more important. Results in Table 6.1 rely on the fact that
in YPT, the scattering amplitude can be safely truncated at O(p*), which translates
into the statement that the LSM amplitude can be truncated at O(m,?). If m,
is not big enough, this approximation receives sizable corrections and the chiral
expansion breaks down. To violate the bound in the second of Eqs. (6.60) requires
my < 4.9.1m. The chiral expansion is formally an expansion in powers of m/m,,
and the bound is violated when m?/m2 ~ 0.04, a finite distance away from the
origin. What is surprising is that this number, which is formally of order one, is
numerically much smaller than one would have naively guessed.

As a first approach, we include the 1/m corrections to the amplitude, and find

(6.61)

m2

m? 191 m? — 734 m2 m? + 540 m*
log >
60 (m? — m2)(3m? — m2)

Taking the limit m, — oo we recover the second relation in Eq. (6.60). Solving
Eq. (6.61) we find that the bounds are violated for m, < 5m, which is not satisfac-
tory, but indicates that the 1/m? expansion is slowly converging, and the 1/m? term
contribution moves the result in the direction of restoring the validity of the bound.
To test the LSM bound we will apply directly Eq. (6.49), rather than the expanded
form Eq. (6.59), to the LSM scattering amplitude prediction for the 77% — 770
process. The second derivative of the tree—level amplitude for this process within
the LSM vanishes, and so one needs the one-loop result. In Ref. [182] this calcu-
lation was performed using a mass—dependent subtraction scheme. The result is
expressed in terms of finite two—, three— and four—point scalar one—loop integrals,
which are then expanded in inverse powers of m2. We will use instead the numerical
values for the full integral expressions. The renormalization procedure followed in
Ref. [182] is perfectly acceptable for our computation, since the physical amplitudes
are scheme independent. Most modern computations are done in the MS scheme.
In Appendix H we give the one-loop LSM amplitudes in the mass-independent MS
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scheme, a result which does not appear in the literature.

The second derivative 2 7'(s,4m?)|s—o for the 7+7° — 7 7° process in the LSM
is computed for any value of the m,/m ratio. The results are shown in Fig. 6.7,
which clearly shows that the positivity condition is satisfied at the one-loop level
in the LSM for any value of the 0 mass bigger than the pion mass (even though
it would suffice to be satisfied for m, > v/3m). The apparent contradiction of
Eq. (6.60) was only due to the poor convergence of the of the 1/m?2 expansion of
the LSM amplitude for small m,. The non-linear sigma model (understood as the
non-renormalizable effective field theory obtained by integrating the o field out the
LSM action) is consistent (i.e. obeys the axiomatic bounds) only if we (at least)
include the O(p®) contribution. well.

This should serve as a warning for the estimate of chiral LECs by resonance
saturation. In such determinations, one starts with a chiral invariant Lagrangian
with resonances as explicit degrees of freedom [13|. The values of the chiral LECs are
obtained, as in the LSM, by functionally integrating out the hadronic resonances.
The ratio m,/m ~ 5.5 is much smaller than the value m,/m that makes the LSM
chiral expansion fail. However we believe that since in the Lagrangians of [13],
all LECs are already generated at tree-level, this anomalous behaviour is absent.
In the LSM, [, is only generated at one-loop, which is why the middle inequality
in Eq. (6.60) does not have a 1/g term, and has poor convergence in the 1/m?
expansion.

At this point a natural question arises. Since mg/m ~ 3.5 < 5 it could be
inconsistent to integrate the kaon and eta out of the SU(3) xPT action to obtain
the SU(2) chiral LECs. In fact using the Li, Ly and Lz values of Ref. [169], we
obtain /; = 5.64 + 0.84 and [, = 1.95 4 0.23 which do not agree well with the
values quoted in Ref. [168], but are in agreement with our bounds. The additional
complications that arise on imposing the positivity conditions to SU(3) yPT are
discussed in next section.

6.4.2 SU(3) bounds

In this section we will apply the same procedure as in Section 6.4.1 for the SU(3)
theory. As a first approximation we will consider the SU(3)y limit in which m,, =
mg = mg and thus the masses of the eight pseudo—Goldstone bosons are the same,
and will be denoted by m. As already mentioned, the value of the chiral LECs
cannot depend of the quark masses, and so bounds for LECs derived in a world
with equal quark masses must also be satisfied in our own world. After this simple
analysis we will extend the method to cover also the case of m, = mg # ms.

SU(3) relations: coupling of two octets and irreducible amplitudes

In the limit we are considering the QCD Lagrangian exhibits an exact SU(3)y
symmetry. Then particles are classified according to the different irreducible repre-
sentations of this group (e.g. pGs belong to the real octet representation) and the
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Figure 6.7: Plot of 16 72F} d?T(s,4m?)/ds?| _ in the linear sigma model for the
7t70 — 770 process as a function of m, /m. The exact amplitude (blue) is positive
for m, > m. The amplitude up to and including 1/m? terms (red, dashed), i
positive for m, > 5m. The O(m_?) amplitude (green, dotdashed) remains negatlve
for m, < 4.9m.

Wigner-Eckart theorem drastically reduce the number of independent amplitudes
to six. To see this we simply need to look at the Clebsch—Gordan decomposition of
the direct product of two octets:

88 =27010010"® 8, @8 d 1. (6.62)

First we express the two—particle states as linear combinations of vectors with
well defined total quantum numbers, belonging to different irreducible representa-
tions. We recall the SU(3) quantum numbers for the octet mesons |u, I, I3, Y):

7ty = —18,1,1,0),  [7°) =18,1,0,0) ) = |8,1, 1,0)
11 1
=18,0.0,0 K+ -, = KU 1
) = 18,0.0,0) | | ,2,2,> | 2,>,
_ 11 1 1
K0:8———1 K )=-— - ——, — 6.63
K =[s5g-1) . 1K) ==]s55, > (6.63

and the relation between the Cartan and the physical states bases,

) (=) Filr) . K%)= (\ﬂmm) ) =17

&) (| —i[=") . |K®) =

S-Sl

ﬁ (|7 +i|x™)) , |n) =), (6.64)

The general procedure to fully decompose the direct product of irreducible represen-
tations (which is in general reducible) into irreducible representations is explained
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in Ref. [183], and we shall use its notation. Basically one must use the following
general formula:

8,1 I;, Y ®

8, I*, I3, Y?) =

o rIn.Bn)c ; i H iy, I, I3, Y) . (6.65)
T 'yt r2y? |1y

One can also calculate the inverted relation, what means that we express the vectors

with well defined total quantum numbers belonging to different irreducible repre-

sentations as linear combinations of two—particle states :

y, I I, Y)Y = Y C(IN I, 1|1, I5T,) % (6.66)
IENENENE
8 8
C = 8, ' I}, Y & |8, I, I, Y?).

'yt rPy? | 1v

Since we suppose that our QCD Lagrangian is invariant under the SU(3) flavour
group, we can make use of the identity

<M1 V1 | T | M2 l/2> = FM16M1M26V1V2 ) (667)

where o labels the irreducible representation and v labels one state inside a given
irreducible representation. Using crossing symmetry one can show that two am-
plitudes are equal: Tio(s,t,u) = Tip«(s,%,u). One can also obtain the symmetry
properties under the exchange of the final states (¢ <> u); two of the amplitudes are
antisymmetric Tgs,) (s, 1) = — To(s,) (s, u) and the rest are symmetric.

On the other hand one can find a representation analogous to the Chew—Mandelstam
in SU(3)°¢

T(ab— cd) = Ai(s,t,u) 60 + Ay(s,t,u) 6°6" + Az(s, t,u) §°%6"
+ By(s,t,u) dd“® + By(s,t,u) d*°d"* . (6.68)

Eq. (6.68) has only five independent amplitudes, what is in perfect agreement with
the aforementioned relation 77y = Tjg-. We also expect crossing symmetry to further
reduce the number of independent functions. In case of having r irreducible represen-
tation amplitudes [ r = 3 for SU(2) and r = 6 for SU(3) | crossing symmetry implies
that there are only % independent functions. This is easy to understand: the r
irreducible functions 77 I = 1,...r translate into 3r degrees of freedom TZ(s,1),
T'(t,s) and T'(4m? — s — t,t) corresponding to the s, ¢ and u crossed channels, re-

spectively. Crossing symmetry implies 2 r restrictions, since it relates the s—channel

50ne must remember the SU(3) identity 3 (d®*¢d°?® + deccdb®® + qededbee) = §abged 4 gacgbd 4
8945 to make sure that the basis of tensors is minimal. One can also add four more structures of
the type f*¢d°?, but they clash after imposing crossing symmetry.
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amplitudes with the ¢~ and u-channel ones (27 relations). So we end up with r
independent degrees of freedom, which is equivalent to 7 independent functions. So
in 7 7 scattering there is only one independent function (e.g. the Chew—Mandelstam
coordinate A) while for three flavours we are left with two independent functions.
All in all for SU(3) we can write the following crossing relations

T'(s,t) =C)l'T" (u,t), T'(s,t) =C{"T"(s,t), C{LClh = 615, (6.69)

. 1 1 1 1 1 r_1 1
40 6 5 3 8 40 6 5 3 8
5 b 3 0 - 5 b4 04
e I I I e IR
CIETRRE I $ 0 b b
2 -3 11§ 2 41 1y

Bounds for the scattering amplitudes

In this section we apply the methods of Ref. [171] to the pseudoscalar—pseudoscalar
scattering processes. The detailed derivation of the positivity conditions can be
found in Section 6.4.1 and will not be repeated here.

We can write the following twice-subtracted dispersion relation

d2 ) oo 6[[’ Ir ,
-W@@:-A m[( S T i), (6.70)

ds? T Jam? r—s)3  (r—u)

wherever (s,t) makes the amplitude analytic, that is ¢ < 4m? s+t > 0 and
if s > 4m? considering s — s + i€, corresponding to the Feynman prescription
for propagators. Again, if we restrict ourselves to s < 4m? and s +¢ > 0, both
denominators in Eq. (6.70) are positive, and for several linear combinations Y a; 7'
witha; >0, a;Cl7 T, =% b, Ty with by = >, ar CL7 > 0. These have positive
imaginary part along the integral for ¢ > 0, corresponding to physical processes with
equal initial and final states. Of course, many different processes are related by
SU(3) symmetry and need to be considered only once. If a process can be expressed
as a linear combination of other processes with positive coefficients it cannot be
more restrictive that the processes separately, so it will be discarded. With all that
we obtain the following set of positivity conditions:

2 2
%T (rtrt > atat) [(s,t) € A] >0, %T(WUWO — 7] (s,t) € A] >0,
d? d?

@T(ﬂ'—i—ﬂ'o —atr[(s,t) € A] >0, @T(nw —nm)|(s,t) € A >0,
d? d?
@T(Kn — Kn)[(s,t) € A] >0, @T(KWJr — Kr)[(s,t) € A] >0,

(6.71)
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where A is the closed region of the Mandelstam plane defined by 0 < ¢t < 4m?,
s <4m? s+t >0. Eq. (6.71) corresponds to the following linear combinations of
irreducible amplitudes

27 1 1 1 1 1
T — - -T — —Ts, + =T, 6.72
27 50 27+5 81+8 1, 5 27+3 82"'5 10 ( )
3 1 1 9 1 1 1 1 1
—T - T -T — T — - T -T —T -T
10 27+5 81+2 10 5 20 27+20 81+4 82"'4 10 5 27+2 10
respectively.

Bounds for L, L, and Ls.

It is straightforward now to convert the positivity conditions in Eq. (6.71) into
bounds for chiral LECs, since the energy domain A is well inside the convergence
radius of YPT. We simply plug into Eq. (6.71) the O(p?) xPT prediction | the O(p?)
prediction vanishes when acting with two derivatives| for the different amplitudes
and seek the most stringent point in A. These amplitudes can be found in the
literature but are collected and very nicely displayed in Ref. [184], which we follow.
Upon second derivative they only depend on three LECs: L;, L, and L3. At one—
loop the amplitudes explicitly depend on the chiral renormalization scale p, but it
is in fact canceled by the implicit p dependence of the chiral LECs. We will adopt
the value pn = m that greatly simplifies the expressions (as it is the only energy scale
in the process). So we will get our bounds for L; and L, evaluated at that energy
scale (L3 does not get renormalized and thus it is ¢ independent). Our bounds have
the following general expression

Q' Lq (m) + Quo; L;(m) + Qs Lg Z fz[ (S, t) S A] s (673)
max
where f; are functions obtained by isolating the LECs of the second derivative of
the amplitude: it contains chiral logarithms and constant LEC—independent terms.
For the processes 777t — wt7t and K 7" — K7 the minima are found for
s = 1.3684m? and s = 1.2593 m?, respectively. For the rest of the processes it is
found for s = 0.

If we are to compare our theoretical bounds with the fitted values we need to fix
the common mass m to a physical value. The most conservative value is of course
the pion mass m,, since it is the lightest particle in the octet, but in principle any
value low enough not to compromise the chiral expansion is equally good. We will
adopt the two extreme values m, and mg for our analysis. The results are shown
in Table 6.2.

If we consider the more realistic case of my; # m, = my and use the physical
value for the 7 and K states” the choice of m is absolutely transparent. This is
discussed in the next section.

"In our analysis we will assume the Gell-Mann-Okubo formula for the masses: m
2

T

2 _ 4 _
n = 3Mk

1
3m
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Figure 6.8: Scattering of particles with different masses. Inside the triangle the
amplitude scattering is free from singularities. In the dashed region the unitarity
condition applies.

Symmetry breaking corrections to the bounds

The first effect showing up when considering m, < mg is that for several processes
the unitarity branch cut might occur before reaching the physical threshold. This,
as we discuss next, spoils the positivity condition.

Let us first obtain the analytic triangle for the present situation. We will consider
only processes with equal initial and final states a + b — a + b, of masses m, = M
and m, = m (M > m), since this ensures that the imaginary part of the partial
wave amplitudes is positive. If the lowest mass intermediate state in that process is
¢ + d, the amplitude is analytic for s < (m. + my)?. Analogously from the crossed
channels we will obtain ¢ < (m, +my)? and s+t > 2 (m* + M?) — (m, + my,)?. Of
course the maximum | minimum | value for these three thresholds are (m+ M)?, 4 m?
and (M — m)?, respectively. Then the dispersion relation reads (now we directly
consider physical processes)

d? 2 [ ImT et) 2 [ ImT, €, 1
QT(s,t):—/ gy (SU+236,)+_/ 4 1M (:1:+ze,)’
ds T S (motmy)? (x —s) T Jmg+mn)? (x — u)

(6.74)

wherever the amplitude is analytic. Here T, is the amplitude corresponding to the
u—channel a + b — a + b, which has of course equal initial and final states, too.
Both denominators are positive as far as s < (m,+my)? and s+t > 2 (m? + M?) —
(my + myp)?, and so up to this point there is nothing compromising the positivity
condition. But still we have to make sure that the imaginary part remains positive
along the two cuts. Expanding the amplitude T' (and also T,,) in partial waves we
get

T(s,1) = i(%—i—l)fe(s)Pg 1+ 5t (6.75)

— (s+m?2—M?)2—4m?s]|’

with Im fo(s) = sB(s) ou(s)0[s — (me + mg)*] > 0 and with 0[s — (my, + my)?]
for the u—channel. So for getting a positive imaginary part each P, must be positive
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along the corresponding cuts. Since Py(z) > 1 for z > 1 for all ¢ it is enough to
require

st ) )
(s+m?2 — M?)2 —4m?s = fors > (me +ma)” [ (my +ma)”]. (6.76)

Since for s — oo Eq. (6.76) tends to ¢/s then we must require ¢ > 0. Then for
positive ¢ Eq. (6.76) is only satisfied if (M —m)? > s > (M + m)?. Thus if either
(me+myg) |or (my+my) | is less than (M +m) the imaginary part between (m.+my)
[or (my+my,) | and the physical threshold could turn negative, making the positivity
condition invalid.

Summarising, the positivity conditions hold for processes of the type a+b — a+b
such that the lightest pair of particles that can arise off the scattering a+b is precisely
a+ b, and analogously for a +b. Or in other words, for processes with equal initial
and final states such that the imaginary part of the s— and u—channels starts at their
physical production threshold. Moreover, the positivity condition is satisfied in the
closed area of the Mandelstam plane A defined by 0 > ¢t > 4m?, s < (M + m)?
and s+t > (M —m)?. As an additional bonus for breaking SU(3)y- we have many
independent amplitudes that are no longer related by symmetry. The final set of
positivity conditions reads:

2 2
%T (rtat = 7t t) [(s,t) € A] >0, %T(T(UT(U — 7% (s,t) € A] >0,
2 2
%T(Wﬂro — 7t (s,t) € A] >0, %T(T(U —7mn)[(s,t) € A] >0,
2
%T(K o Kah)[(s,8) € A] > 0, (6.77)

where of course, the area A depends on each specific process. There are more
processes satisfying the conditions stated above, but they give a less stringent bound
for the same linear combination of LECs and so we will not show them. Again all
minima are found at t = 4m?. For the 7*7° 71 and K 7% processes the minima
are achieved for s = 1.14384 m?, s = 16.0027 m? and s = 4.78 m?, respectively. For
the remaining two processes, it is found at s = 0.

Results

In this section we discuss the bounds obtained for the different linear combinations
of chiral LECs, and compare them with the values obtained by fitting observables
to the experimental data. In Ref. [169] those values are given at the y = m, scale,
so we will run our bounds to this scale to compare. The running equation for these
LECs reads

I; 3 3
Lip) - L) = —gtog () Ti= 20 me= s e7)

167 2
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and the values at the different scales are

Li(m,) = (0.43[0.38]+0.12) x 107%, Li(m,) = (0.73[1.59] £ 0.12) x 1072,
Ly = (—2.35[2.91]40.37) x 1073, (6.79)

Those values were obtained from a fit to the available experimental data taking as
theoretical input the O(p%) yPT prediction. Since in our analysis we are using the
O(p*) amplitude it is instructive to compare our bounds with the values of the LECs
obtained by fitting the O(p*) YPT amplitude to the same data. Those can be found
in Ref. [169] as well, and are displayed in Eq. (6.79) in brackets.

A very important issue is to estimate the error committed by truncating the
amplitude at O(p?). For the symmetric analysis this can be done in as in Ref. [171],
that is, adopting as an educated guess three times the corrections of the O(p%) am-
plitude due to chiral logarithms. When assuming m = m, the bounds are not very
stringent, and the errors are rather small; experimental values are well within the
bounds. However for m = mp the central values of the bounds greatly increase (that
is, bounds tighten) and some experimental values apparently violate the bounds.
But at the same time errors get multiplied by a factor of twelve. Thence the validiy
of the chiral expansion is not compromised.

For the symmetry breaking analysis the error cannot be estimated so straightfor-
wardly. Tt is expected that the main corrections come from chiral LECs multiplied
by the kaon mass. The O(p°®) computation of the 7 7 scattering amplitude in three-
flavour xPT was performed in Ref. [185], and the K 7 scattering at the same order
can be found in Ref. [186]. We will adopt as an educated guess the correction due to
the O(p®) LECs, that is the O(p®) tree-level piece. Unfortunately the O(p°) LECs
are unknown, so we will use the estimate given in Ref. [186], obtained by resonance
saturation. In addition, to be more conservative, we will assume a common error
for all the channels, the biggest of these, which is 3.0. This error is very large, of
the same orther as that of the symmetric analysis with m = mg.

For the three mwm scattering processes we do not see large deviations of the
corrected bounds (they increase around a 20%). However the estimated error due
to higher order corrections greatly enhances due to terms proportional to the kaon
mass. So we can conclude that the symmetric analysis is most convenient for these
relations. Incidentally experimental values satisfy these three bounds. For K7
scattering the corrected bound is much worse. However for 7 ) scattering the increase
of the corrected bound is great: 139%. In fact the experimentally fitted value is
partially in conflict with the bound, but since the error of the bound is quite large,
the validity of yPT is not compromised.

The bounds compare better to the values of the LECs obtained from an O(p*)
fit. It is quite easy to understand this. The bounds are to a large extent dominated
by the value of Ly, since in the corresponding linear combinations it always appears
multiplied by large coefficients (see second column of Table 6.2). In Eq. (6.79) we
see that the value of Ly in the O(p*) fit is twice as big as in the O(p®).

Results are displayed in Table 6.2. In the first column we show which process
is rendering each bound and in the second the corresponding linear combination
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of LECs for O(p°®) (up) and O(p*) fits (down), in the third column we display
the corresponding linear combinations of the experimentally fitted values; in the
fourth and fifth columns we display the bounds for the symmetric analysis assuming
m = m, and m = mp, respectively; in the last column we give the bounds obtained

for broken SU(3)y symmetry.

10*o; L'(m,) | Fit to exp. bound m =m, | bound m = mg | bound m, # mg

oL, + 205+ Ly | = 993405 | >—3.8840.20 | >0.684+2.50 | > —3.87 +0.20

L 0134012 | >-1.304£0.20 | >0.2242.50 | > —1.10 4+ 0.20

LT +3L5+ L3 | S8 +£06 | >—488+0.20 | >1.20+£2.50 | > —4.29 4 0.20
1205 + Ls Sl 415 | >—15.99+0.20 | >2.24 +2.50 -

3L+ Ly 005 | >—3.644+0.20 | >092+2.50 | > —0.15+2.00

ALY + Ly 07406 | >—4.704+0.20 | >1.3842.50 | >—14.75 4 2.00

Table 6.2: Experimental values for linear combinations of the LECs [upstairs O(p°)
fit and downstairs O(p?) fit] and their bounds.

6.4.3 Conclusions

There are non—trivial constraints which follow from unitarity, analyticity and cross-
ing symmetry which must be satisfied by any relativistic quantum theory. There are
some interesting and non—trivial constraints on low—energy effective theories which
arise by imposing these constraints on the effective theory scattering amplitude.

In this work we have transformed the dispersion relations for the 7 7 scattering
amplitude into positivity conditions for several processes, valid in a certain region
of the Mandelstam plane below threshold. This region is in fact larger than the
Mandelstam triangle, as commonly assumed. These positivity conditions can be
converted into bounds for two LECs of the SU(2) xPT Lagrangian. Our analysis
leads to a stronger bound than those obtained previously, since we use positivity in
a larger region of the Mandelstam plane. The values of the LECs extracted from
experiment are consistent with the bounds derived in this paper.

One nice feature of the structure of the bounds is that it correlates two distinct
pieces of the O(p!) amplitude: LECs and chiral logarithms. Whereas the for-
mer is leading order in the 1/N¢ counting and represents an expansion in 1/m? ~
(0.7GeV)™2 the latter is subleading in large-No and represents an expansion in
1/A% ~ (1.1 GeV)~? where A, ~ 47F; and Fy is the decay constant of the pion [25].

One can use Eq. (6.44) with n = 4 to obtain bounds for higher order LECs, using
the amplitude up to order O(p°). The O(p?) LECs in the O(p*) amplitude vanish
on taking the fourth derivative but the one-loop O(p?) chiral logarithmic terms do
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not. However, one-loop diagrams with one insertion of the O(p*) LECs contribute
to terms of order p® times chiral logarithms, which do not vanish on taking the
fourth derivative. The O(p®) LECs also contribute to the fourth derivative. Thus
one now gets inequalities involving the O(p?) LECs and O(p%) LECs plus O(p*)
chiral logarithms. In addition of having a lot of LECs we no longer compare terms
of the same order in the chiral expansion.

We apply this program to xPT with three flavours and find bounds for L, L,
and L3. When the exact SU(3)y limit is considered the theory becomes slowly
convergent if the common mass m for the multiplet of pGs is of the order of mxg
(albeit it converges quickly for m = m;,). When the real values for the pion and
kaon masses are employed the bounds become more stringent and in fact in one case
the experimentally fitted values are partially in contradiction with the central value
of the bound. However for this process the O(p®) corrections are very large and so
there is no contradiction.

The low—energy limit of the linear sigma model Lagrangian is a theory with
spontaneous chiral symmetry breaking in which the LECs can be computed in terms
of the coupling constant g of the LSM. The values of I; and I, for this model are
in apparent violation of the positivity bounds for m, < 4.9m, while the range
my > /3 m can be realized in the LSM. We have shown that the apparent violation
is an artifact of the truncation of the 1/m?2 corrections and that the LSM is consistent
with the positivity conditions for m, > m.

6.5 Dipion production in two photon reactions

Figure 6.9: ete™ — eTe~ X when dominated by two photon exchange.

In this section we discuss why two photon interactions are interesting and why,
in particular for the vy — 7%7% channel, the yPT prediction is not satisfactory
enough for a sensible description. A more general approach, based in unitarity and
analyticity is then mandatory, and we present here the basics of the formalism.
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We will derive a general parametrization for the two photon reaction amplitude
that preserves unitarity exactly and test the consistency of a particular model. For
writing this section I have mainly followed Refs. [165,187].

A beautiful feature of an e*e” machine is its ability to study two photon pro-
cesses. The cross—section for e"e” — ete” X is dominated by the exchange of two
almost real photons, so that one can really extract information of vy — X, where
X is hadronic, as seen in Fig. 6.9.

In the low energy region, such information not only sheds light on the structure
of hadrons, but can provide insight into the workings of QCD dynamics. At low
momenta, 7 7, having the lowest threshold energy, is naturally the most abundantly
produced hadronic final state. What this can teach can be seen by considering
v~ — mr from the t—channel point of view, where we think the photon scattering
off a pion. At low energies, the photon, having long wavelenght sees the charged
pions, but not the neutral, so the cross—section for vy — 777~ is large compared
to that form 7°7° see Fig. 6.10. However, as the energy of the photon increases
its wavelenght shortens it recognises that the pions, whether charged or neutral,
are made of the same charged constituents, namely quarks, and causes these to
resonate. Consequently, the cross—section for both v~y — 77~ and v~y — 7%7° are
dominated by the well-known tensor meson f,(1270).

In this section we will consider only the leading electromagnetic contribution
(that is, amplitudes at order a.,,), and all radiative corrections will be due to strong
interactions.

6.5.1 The pitfall of YPT

At low energy, we can calculate the amplitude of vy — 7t7~ and vy — 7%7°

using the techniques explained in Chapter 1, xPT. For the charged channel, the
leading contribution are tree-level diagrams, as shown in Fig. 6.11, that in the
following will be referred to as the Born term B. However, for the neutral case pions
do not couple to photons directly and then the reaction takes place through loop
diagrams, as shown in Fig. 6.12. Even though it is a general fact that loops need
to be renormalized and in an effective field theory this implies the introduction of
new parameters to be fixed, the neutral pion production is a remarkable exception.
Since there is no Born term, the sum of all one-loop diagrams must be finite, and
so we do not need any counterterm to get a finite answer. Moreover, there is no
contribution from £*) to this process (no direct coupling of photons to two neutral
pions) and then no new LECs appear in the scattering amplitude. The calculation
of these diagrams was done long ago in Refs. [188,189]. Another feature of this
calculation is that it is purely S—wave (it has no angular dependence).

If we compare the clean prediction of yPT for the neutral channel with the
experimental data, we become sorely disappointed, as shown in Fig. 6.13. Clearly,
xPT predicts a cross—section of the same order of magnitude, but the shape is quite
different. The data arise from threshold and are then essentially flat for hundreds
of MeV, while yPT at lowest order gives an almost linearly increasing prediction.

_|_
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Figure 6.10: vy — 77~ (open circles, left-hand scale) for |cosf| < 0.6 and the
vy — 7070 cross—section (solid circles, right-hand scale) for | cosf| < 0.8 as func-
tions of s.

Reassuringly, this crosses the data around 500 MeV, which is still where we might
expect low orders of xYPT to apply. Of course, the prediction beyond one loop is
expected to be modified at higher energies.

To attempt to resolve this puzzle, we need an independent way of modeling the
amplitude for vy — 77 and this will be discussed next.

6.5.2 Unitarity in meson—meson scattering

Before entering into the detailed discussion of the unitarity constraints for the dipion
production, we will explain with some detail the very special case of m 7 scattering.
In principle one could think that we already exploited all the nice features implied
by very first principles in Section 6.4, but if we restrict ourselves below the threshold
production of four pions (or two kaons) we can further constrain the form of the
scattering amplitude.

Let us first, for simplicity, discuss the case of 7 7 scattering below the two—kaon
threshold. The unitarity requirement for the partial waves (6.14) implies only the
two—pion intermediate state. But of course there are always two possible intermedi-
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Figure 6.11: Born amplitude for the two photon reaction of charged pions.
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Figure 6.12: Lowest order contributions to vy — 7% in YPT.

ate states, 7% and 77~ 8. If instead of employing the physical states basis we use

the isospin basis the only possible intermediate state must have the same isospin as
the initial (and final) state (in this basis pions are identical particles and we have
to include the 1/2 symmetry factor). Finally, let us write the specific form of the
Parseval identity for two particles in the isospin and angular momentum basis

11 d3p, d*ps
= -—— | — E 1.7 I, 6.80
2 247 2E1 2E2 | :];m>< 7]7m|7 ( )

Iim

Inserting last expression in Eq. (6.14) we arrive at the condition?

2
InT/(s) = pals) |Toi ()]

8Since the neutral pions are identical particles, we have to include a 1/2 symmetry factor in the
Parseval identity

In this section, we reserve T for the matrix element of 77 interaction and F for two photon
reactions.
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Figure 6.13: Integrated cross—section for 7y — 7%7% as a function of s. The dots are

the experimental data. The line marked yPT is the prediction of the lowest order
xPT [188,189] and the dashed lines are corrections to this result.

pels) = g amy) g = 1= (s

where [ is the velocity of the pions in the center of mass frame to which the angular
momentum is referred. For the sake of clarity we will omit the spin and isospin
indices. Of course Eq. (6.81) trivially leads to the relation

(ReT)? + p?|T)* = |T|" . (6.82)

It is easy to show that Eq. (6.81) completely fixes the imaginary part of the inverse
of the scattering amplitude

ImTw_ﬂl(S) = —pﬂ-(S), (683)

and this relation permits to write the most general parametrization for the scattering
amplitude

T () _ sin d(s) £19(5)
1 - Zpﬂ'(s) TBW(S) pﬂ-(S)

where T;! = ReT! is a real function. The second equality reflects the relation of
the phase shift §(s) and the modulus of the scattering amplitude. All these relations

Trr(s) =

(6.84)
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hold even above 4m?% for the I = 2 case because there is no two-kaon state with
such isospin.

Let us discuss now the case of production above the two—pion threshold. It is
now better to consider at the same time three reactions: 77 — nm, 7m - KK
and K K — K K, also for a given spin and isospin. Then we have

Im Tﬂﬂ-(S) - pﬂ'(s) |T7r7r(5)‘2 + pK(S) ‘TKK(S)F )
ImTrx(s) = pa(s) Tan(s) Tarc(s) + pr(5) Trrc(5)" Tiere(s)
InTyr(s) = pa(s) [ Terc(s)]* + pre(s) [Trere(s) [ (6.85)

These set of relations can be better gathered in matrix notation

T’Tl'ﬂ' T7T ™ 0
mT="TpT", T =TT = Sl IR . (6.86)

Tkr Tkrk 0 pr

It is easy to check that indeed Im 7 is a hermitian symmetric matrix, and hence
real. Again Eq. (6.86) fully determines the imaginary part of 7-! (now it is the
inverse of a matrix) and allows to write a general parametrization

Im(T ') =—p, T=(1-iTgp) 'Tg=Tp(1—ipTs) ', (6.87)

with T5' = Re (T~') a real matrix. We can derive two useful relations by inserting
the identity T = ReT + i TpT" back into Eq. (6.86) and requiring Im T to be real :

TpT! = (ReT)pReT)+TpT pTpT",
(ReT)pTpT! = pTpT")ReT). (6.88)
The Lippmann—Schwinger equations are a theoretical field method to find scat-

tering amplitudes satisfying unitarity exactly below the four—pion threshold. In
matrix notation they read

T=V+VGT, (6.89)
with V' =T at tree-level (hence it is real) and
d*q
VaT = | apy V(k,p;q) G(P.q) T(k,p:q), (6.90)

with V' (k, p;q) and T(k,p;q) the off-shell total and tree-level amplitudes and G a
diagonal matrix with entries
1 1

Gy = . )
> —mi +ie (q—P) —m?+ie

(6.91)

being P = p + k, p and k the incoming particle momenta. Under the assumption
VGT ~ VG(s)T (that is, the integral disappears) we arrive at the Bette-Salpeter
equations that have the trivial solution

T=VA-GV) ' = VA+GV+GVGV +---), (6.92)
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Figure 6.14: Diagrammatic representation of the Lippmann—-Schwinger and Bette—
Salpeter equations. Crossed vertices correspond to the full amplitude whereas simple
vertices represent tree—level couplings.

satisfying unitarity exactly as far as Im G(s) = p(s). Comparison of Egs. (6.92) and
(6.87) links V with Tg: Tp = V(1 — Re G V)~!. These ideas are better understood
in Fig. 6.14.

The combination of YPT and the Bette—Salpeter equations is known as the Uni-
tarized YPT or inverse amplitude method, and was pioneered in Ref. [190]. A
particularly interesting application of the method is its extension to the three-body
interactions. In Ref. [191] it was applied for the first time to the N K 7 channel, in
order to gain insight in the structure of the so called pentaquark hadron 6. The
idea was (as it is common in the literature related to the inverse amplitude method)
to seek for poles in the S—matrix, to be identified with (unstable) bound states with
the same quantum numbers as the channel under study. Although the method used
for the three-body interaction in Ref. [191] was rudimentary (refinements such as
the Faddeev equations were ignored), the conclusion that the pentaquark was not a
bound state of N K 7 in S—wave was claimed.

6.5.3 General description of the two photon reaction

We consider dipion production out of two real photons. It is well known that the
amplitude for this process has two independent helicity components F,,, F._,
which contribute incoherently to the unpolarized cross—section :

de B

A0~ 12872
and a similar formula for kaon production. The helicity amplitudes F,, and F,
correspond to photon helicity differences of A = 0, 2 respectively. These have partial
wave expansions involving even J > A, and from Eq. (6.12) with ' =0, u = A =0, 2
we get :

(‘}—++| + | F | ) (6.93)

f++(5,0, ¢) - V 167 Z f]O YJO 9 ¢)

J>0
Fi(s.0.¢) = V16T Y Frals) Yra(0, ), (6.94)
J>2

where the factor of €2v/16 ™ has been taken out for convenience. With this normal-
ization the integrated cross—section is

o= zmgm% S FEns) (6.95)

J>A



6.5 Dipion production in two photon reactions 203

There is no interference among the different partial wave amplitudes in the total
cross—section (6.95), but this is no longer true for the partially integrated cross—
section.

Since isospin symmetry is not conserved by the strong interactions, any possible
isospin two—pion state can emerge off the two photon collision. Since in the partial
wave decomposition (6.94) only even partial waves take place, only the values I =
0,2 are possible (Bose symmetry forbids odd values for I in the case of even partial
waves). Since electric charge is, of course, conserved, the only possible final states
have I, = 0. Let us explore what can we learn from unitarity below the four—
pion threshold. We remark that within electromagnetic interactions we are only
interested in the O(aey,) terms, and so there are no virtual photon corrections. Thus
the only possible intermediate states in Eq. (6.13) are hadrons, and the regime of
energies we are interested in, two—hadron states. Let us first focus in pion production
below the two—kaon production threshold, or equivalently the case of I = 2 pion
production. Since time reversal is conserved by both electromagnetic and strong
interactions we have

ImF, = pﬂf:Tﬂﬂ = pﬂ'j:ﬂ'T*

)

(6.96)

where again we drop angular momentum and isospin indices. In the derivation of
Eq. (6.96) we have taken into account that, even though isospin is not a symmetry of
electromagnetism, and hence two particles of arbitrary total isospin can in principle
be an intermediate state, the strong interaction rescattering forces its isospin to
coincide with that of the final state. Let us compare Eq. (6.81) with Eq. (6.96):
the first only involves T, and constrains its strength, because it relates 7T, with
Tﬁﬂ; the second relates F, with Ty, but it is linear in F,, and hence the strength of
Fr is not constrained. Eq. (6.96) ensures that any resonance in 77 scattering also
appears in the 7 7 two photon reaction and vice versa, as they must. One immediate
consequence of Eq. (6.96) is that since Im F, is by definition real, the phase of F,
and Ty, below 4 m?% must coincide (Watson’s final state interaction theorem [192]).
This enables us to write the following relation

_ FiTen
Tenl*

Fa(s) = ax(s) Tra(s),  ax (6.97)

with a, a real function depending on the specific partial wave and isospin. The
expression for a; is obtained taking the imaginary part of Eq. (6.97) and using rela-
tions (6.96) and (6.81). Above the unitarity threshold, again unitarity is powerful,
it says that F, and T, have the same right-hand cut structure. Our task is now
to find the most general parametrization satisfying the constraints of unitarity for
Fr(s). We will trial with and expression inspired in the Bette-Salpeter equations
and then prove that it is in fact unitarity preserving

fﬂ' = (fBﬂ + fﬂ'T?TTI')’ fB?regRa (698)
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where T, satisfies unitarity exactly. Taking the imaginary part of F'T,, and
demanding it to be zero we obtain

II’I]E7r = fBﬂ-pﬂ-,
FiTew = FprReTer +Rety |Torl” | (6.99)

Taking the imaginary part of Eq. (6.98) together with Eq. (6.99) we verify condition
(6.96) and obtain an expression for a, :

ar = Ret, + FpyReT. . (6.100)

Let us concentrate now in the production above the two—kaon threshold for I = 0, 2.
Again it is interesting to study at the same time the kaon production: unitarity
imposes

ImF, = prFiTon + pr Fi Tr s
Im Fx pr Fr T + px Fie Tk (6.101)

and the reality of the imaginary parts requires

fﬂ' = a?‘rTﬂﬂ' + aKTKﬂ'7
f[{ OtﬂTﬂK + OLKTKK. (6102)

Again it is most convenient to use matrix notation to group these equations

Fr U
ImF =TpF =T'pF, F=Ta F = a =
Fx 09¢
(6.103)
It is not difficult to find an expression for o as we did for a,
a=(TpTH T pF. (6.104)

We have now to find the most general parametrization of the F matrix satisfying
unitarity exactly. Our trial function is

F=Fp+Tt. (6.105)
By imposing that 77p F is a real matrix we easily obtain

Imf = p}—B,
T'pF = T'pT (Rei+ReT ' Fp),
a = Ret+ReT 'Fp. (6.106)
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6.5.4 Different parts of the two photon reaction amplitude

Now we will make a causal decomposition of the total amplitude F(s,t) (and not of
the different partial waves) for the production of mesons which is true at order aey,
and exact in the strong interactions part. The first part of the amplitude is the Born
term B(s,t). This term is given by the three diagrams of Fig. 6.11 and nothing else.
Low’s theorem states that the amplitude JF for the cross channel v7m — v 7 tends
to its Born amplitude as s — 0 and ¢, u — m?. Moreover, the Born amplitude has
a left-hand cut starting in s = 0 and has no right-hand cut.

Though Low’s theorem states that F equals the Born result at just one point
in the Mandelstam plane, it, in fact, approaches the limit smoothly along any line
at fixed scattering angle. Thus away from the ym threshold, we can write the
amplitude as F = B + L, where L, the left—over part, vanishes as s — 0 and
t, u — m?. Now L receives contributions from other ¢, u—channel exchanges, like p
or w. Thence L contributes with poles in the left-hand cut at the position of the
masses of the exchanged resonances, rather far away from the pion pole, and then
with little influence near threshold.

The near threshold amplitude is then almost dominated by the Born term, and
influenced by the one pion poles of the crossed channels. The closeness of the
pion poles have yet another effect in the two photon reaction process. Crossed
channel partial waves are built from an infinite number of direct—channel partial
waves. Thus the s—channel v+ — 77 amplitude must have sizeable higher partial
waves. So while the S—wave always controls the near threshold behaviour, D—waves
very rapidly become important, being only suppressed by a factor of (1 — 4m?/s).
In contrast, the lack of a Born term for 7% production and the fact that near
threshold its crossed—channel exchanges are far away means that the amplitude is
S-wave dominated even at higher energies.

In hadronic processes, it is a feature of nature that I = 2 cross—sections are
much smaller that those with I = 0. However, here in vy — 77, because of the
importance of the pion exchange contributions, the amplitude for I = 2 for the
final state pions is just as important as for I = 0. Indeed, the large 77~ cross—
section comes from a constructive interference of the I = 0, 2 amplitudes, while the
very small 7°7° cross-section comes from their destructive interference. Thus an
amplitude analysis requires the measure of both the 7+7~ and 7%#° distributions

to make the separation of the two isospin components.

Our decomposition of the two photon reaction amplitude is not complete yet.
There are two kind of contributions not being pion exchange. The first we have just
consider and called £, generated by all the t— and u—channel exchanges other that
the pion. The rest we call R, and it is generated by the final state interactions. They
generate the right-hand cut, starting at s = 4m?, and involve basically the strong
interactions. These makes the whole amplitude 7 = B+ £+ R complex. It is also
customary to group all the contributions generating the left—hand cut as H = B+ L.
Each of the pieces in which F is decomposed admits a partial wave expansion. Each
partial wave amplitude of F has a right-hand cut starting at s = 4m? and a left—
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hand cut starting at s = 0. Low’s theorem is then satisfied in each partial wave by
(again we drop isospin and angular momentum indices) by

L(s—0)—0, R(s—0)—0. (6.107)

This constrains the form of the resonance contributions to be of the type ~ s?(s + m%)?.

6.5.5 Schwinger—Dyson equations for the two photon reac-
tion

Much as happens with unitary meson-meson scattering, there is a field theoretical
method for exactly implementing unitarity in meson-meson production. Again to
O(er) precision they read (in matrix notation)

F=Fp+TGFg. (6.108)

Here Fpg collects all the tree-level amplitudes, such as pion or resonance exchange,
and so we can identify Fg = H. Again Fp G T is an integral expression :

FpGT = /%E;(lﬂ,p; q) G(P,q) T(k,p;q), (6.109)

with GG defined in Eq. 6.91. If the same approximation leading to the Bette-Salpeter
equations in Section 6.5.2 is done, we arrive at the expression

F=Fp+TGFp, (6.110)

that satisfies unitarity exactly, as it is precisely of the form of Eq. (6.105) with
t = G Fp. These ideas are diagrammatically explained in Fig. 6.15. The idea
of using the Bette—Salpeter equations for the meson production was pioneered in
Ref. [193]. We will see however, that despite the good description of the existing
data, their amplitudes violate unitarity.

p e p e P - 7~ N p e
e i e . / ® e
AN N . N N . . // AN N .
Figure 6.15: Diagrammatic picture of the Schwinger-Dyson equations. Diamond
interactions means exact amplitude at O(aep,), gray circle means all tree-level elec-

tromagnetic contributions # (or Fg) and crossed circle stands for the exact meson—
meson amplitude.
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Figure 6.16: Resonance exchange contribution to £ and to Fg.

6.5.6 Unitarity violation

Having in mind what we have exposed in the previous sections it will not be difficult
to find criteria to test and measure unitarity violation in several models. We will
concentrate in the unitary xPT extension as worked out in Ref. [193], and in parti-
cular discuss only the S-wave amplitude. In this paper basically a parametrization
similar to that of Eq. (6.15) was used, with a particular model for Re G

Their strong meson—meson scattering amplitude does satisfy unitarity exactly by
construction, since it is of the form (6.92) with the same model for Re G, and V' taken
from tree-level YPT. The particular expressions can be found in Ref. [190] for I =0
and Ref. [193] for I = 2. A feature of these amplitudes is that V' has no resonance
exchange. As long as Fp # F unitarity is violated, and in fact we shall see that this
situation happens for this model. Both F and Fp are built from xPT tree—level
diagrams as in Fig. 6.11 and resonance exchange as in Fig. 6.16. In particular they
consider p, w and a; exchange in S—wave. These contributions were first introduced
in a chiral invariant way in Ref. [194], but the rescattering effects were not considered.
In the pure xPT sector (that is, no resonances) FXPT = FX'T and hence this
contribution does not violate unitarity. Problems arise when the resonance exchange
is included, because its treatment is different in F and Fz. While in the former the
full resonance propagator is used, for the latter (that is, the one-loop computation)
they contract the propagator to a single point: 1/(¢?> — M?) — —1/M?. Despite of
the criticism that such contraction can receive from the field theoretical point of view,
it also has the consequence of unitarity violation. So we have Fp = F + O(M~?)
and unitarity is only satisfied at the 1/M? level. Corrections will become important
at energies comparable with the resonance mass.

We will define a function of s that measures the percentual unitarity violation.
Since the I = 0 amplitude above threshold is a coupled channel but the I = 2 and
the I = 0 below threshold consist of a single channel we will use a slightly different
expression for each one. We will define our violation function as:

Im(FI) —pﬂFI*T]
Im(F[)—Fp,rFI*T[ ’

Al = 9 (6.112)
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Figure 6.17: Predictions of Ref. [193] for the charged (up plot) and the neutral
(down plot) pion production cross-sections. In the charged pion production plot
we also show the born amplitude. The cross—section is measured in nanobarns as a
function of the 7w 7 invariant mass, in GeV.

And for the two—channel case we define our violation function as:

Im (Fy) — pr F} 17 — prc Fje Tk
A(12> -9 m (Fr) —p ]* I — PK {k( Km (6.113)
IIII(F‘])—|-p7TF}T]—FPKF}(T’[Qr

It is immediate to realize that these two quantities are complex. So we will use
their modulus as a measure of the unitarity violation. For the I = 0 channel we
will define the violation function as Eq. (6.112) when we are below threshold and as
Eq. (6.113) when we are above. The results are shown in Fig. 6.18. It can be seen
that there are serious violations in the region near the mass of the resonances. The
main contribution of this violation comes from w exchange.

6.5.7 Conclusions

Again we have experienced that the axiomatic principles of unitarity and crossing
are a powerful tool for the description of meson—meson scattering and two photon
processes. In particular, below the four—pion threshold, these principles severely
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Figure 6.18: Unitarity violation function |A;| for I = 0 pion production (up plot)
and I = 2 (down plot). This function can be interpreted as a percentual violation,
and it is plotted as a function of the invariant mass of the pions in GeV.

constrain the behaviour of the scattering amplitudes. In the case of meson-meson
scattering they link the phase shift with the modulus of the amplitude, constraining
the strength of the interaction. For the two photon reaction, we obtain an interesting
link between its amplitude and the meson—-meson scattering amplitude. In particular
it is easy to check that both amplitudes share the same right—hand cut structure
and the same phase (Watson’s theorem).

We have been able to find general parametrizations inspired in the Bette—Salpeter
equations that exactly satisfy unitarity. These parametrizations are then an excellent
tool for testing if unitary is respected by some models, and if violated, how much.

We have applied this criteria to a model in which the xPT results are extended
in a unitary way, and resonance exchange is considered in the tree-level term and
the rescattering. This amounts to a particular modelization of some real parts, not
fixed by unitarity.

A detailed study shows that the treatment of the resonance contributions lead
in fact to unitarity violations. Despite the excellent description of the existing data
obtained with such amplitudes, we have explicitly checked that unitarity is badly
violated at intermediate energies.
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We conclude then that a correct description of the experimental data is not
sufficient to ensure a sensible description of the two photon reaction process.



Conclusions

Donat que el camp d’estudi d’esta tesi és prou ampli, no és facil obtindre una
conclusié a nivell general. Es pot afirmar que s’han tractat tots els métodes no
pertorbatius aplicats al sector lleuger de QCD a excepcié de calculs en el reticle.
Pot ser una conclusié que si es pot extraure d’esta tesi és el paper fonamental que
juga en els fenomens no pertorbatius ’estudi conjunt dels diversos régims energétics.
Anem perod, a extraure les conclusions parcials més importants.

Teoria quiral de pertorbacions

Esta més enlla de qualsevol dubte raonable el fet que xPT és la teoria dual de QCD
en el régim d’energies molt baixes. En esta tesi hem fet una petita contribucié al
formalisme de yPT, incorporant la darrera font externa que mancava: la font ten-
sorial. Hem estudiat les transformacions d’esta font sota les simetries de QCD, és a
dir transformacions quirals, de paritat i conjugacié de carrega. Una particularitat de
la font tensorial és que no té company quiral (no hi ha cap font “pseudotensorial”).
L’estudi de les transformacions quirals ens ensenya que la font tensorial, que té sis
components independents, es parteix en dos fonts de paritat oposada, cadascuna
amb tres components independents. Por suposat cadascuna de les components és la
companya quiral de I'altra. La font tensorial té associats alguns problemes concep-
tuals adicionals. En primer lloc no hi ha cap manera transparent d’assignar—li un
contatge quiral. Per a la resta de les fonts aco era directe, ja que estan associades o
bé a les transformacions quirals o bé al trencament explicit de la simetria quiral a
través de les masses dels quarks. Ninguna d’estes situacions afecta a les fonts tenso-
rials. Afortunadament estes fonts tan sols apareixen a funcions de Green i factors de
forma, de manera que el seu contatge quiral és arbitrari. Diferents assignacions es
tradueixen en la manera en qué operadors amb diferent nombre de fonts tensorials
s’organitzen en la base quiral, perd no afecta els operadors que contribueixen a un
ordre donat per a un calcul especific. Per comoditat li assignem el mateix contatge
que a la font escalar t** ~ O(p?), de manera que tan sols tenim poténcies parelles
al Lagrangia quiral. El segon problema té a veure amb la dimensi6 anomala de
la font tensorial. El corrent tensorial de QCD necessita una renormalitzacié addi-
cional a la propia dels camps de quarks que la formen. Este fenomen es degut al
fet de que tenim un producte de dos camps al mateix punt de I'espai—temps. Esta
renormalitzaci6 addicional fa que el corrent es tinga que definir a una certa escala, o
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millor encara, que tinga una dependéncia explicita en l’escala de renormalitzaci6 de
QCD. Direm doncs que el corrent tensorial té dimensié anomala no nul-la. Aco es
tradueix en que la font tensorial també té dimensi6 anomala. El Lagrangia de QCD
no depén d’escala i per tant cadascun dels seus termes quan I'expresem (a energies
baixes) en graus de llibertat hadronics tampoc ho fa. La possibilitat més immediata
és tractar amb 7 = by(pgep) t* (oep) que no depén de pgep, com a ent basic
emprat per a la construccié del Lagrangia efectiu. La impossibilitat de determinar
universalment la funcié by fa que tinguem que oblidar esta idea; la soluci6 menys
dolenta és considerar que les LECs que acompanyen a les fonts tensorials tenen una
dependéncia amb pgep que fa que el producte no depenga d’escala.

Determinacio de |V

La determinaci6 de parametres de la matriu CKM mitjancant desintegracions semilep-
toniques d’hiperons és independent de la determinaci6 fent servir pions i kaons. Tin-
dre determinacions independents és important ja que es poden detectars possibles
errors i es millora 'estadistica. En esta tesi hem estudiat els efectes del trencament
de la simetria SU(3)y de sabor en la determinacié de |V,,| i els errors sistematics
associats. El formalisme que hem triat és 'expansio de QCD en 1/Ngs. Al sector
barionic esta expansié es tradueix en unes condicions de consisténcia que determi-
nen un algebra contreta d’spin—sabor. Podem per tant escriure propietats estatiques
de barions en termes dels generadors d’esta algegra. El teorema d’Ademollo-Gatto
assegura que les correccions al factor de forma vectorial son de segon ordre en el
trencament de simetria i per tant hem calculat fins este ordre en ’expansi6 combi-
nada en 1/N¢ i mg/Aqep. Una de les conclusions més importants del nostre estudi
és que no es poden ajustar les dades experimentals quan considerem trencament de
simetria a segon ordre en el factor de forma vectorial i a primer ordre en el vector—
axial: la funcié x? és plana i els diferents mimims no tenen significancia estadistica.
El desconeiximent de les correccions al limit simétric del factor de forma vectorial
son doncs la font principal d’error sistematic en la determinacié de |V

Juntament amb la nostra determinacio de |V,,|, emprant la determinacié de |V,4]
provinent de desintegracions nuclears i de la del neutré, podem comprobar que la
unitarietat de la matriu CKM es satisfa al nivell de 1.5 o.

Correccions de gluons durs a funcions de Green

Les funcions de Green que son parametres d’ordre del trencament espontani de la
simetria quiral son d’un interés especial per al coneixement de la fisica hadronica.
Com que estes funcions son exactament zero dins de teoria de pertorbacions, la seua
existéncia es deu plenament al fenomen del trencament espontani, que al mateix
temps governa les interaccions dels hadrons a energies baixes. El seu estudi per a
funcions de dos punts permet determinar les LECs del Lagrangia quiral d’ordre p*
i les de tres punts fixen les constants d’ordre p®. Es 'empalmament amb el calcul
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realitzat en el marc de 'OPE a distancies curtes el que fixa els coeficients. Estos
estudis es fan en el limit de gran nombre de colors, perd a més a I’ordre dominant en
la constant d’acoblament a,. Per a funcions de tres punts no hi ha en la literatura
cap calcul de correccions gluoniques al coeficient de Wilson associat al condensat de
quarks. En esta tesi hem calculat estes correccions per a totes les funcions de Green
parametre d’ordre de dos i tres punts. Els resultats son perfectament consistents i
satisfan dues proves basiques. La primera és invariancia gauge (el calcul es realitza
en un gauge arbitrari i la dependéncia en el parametre de gauge a cancela quan es
sumen totes les contribucions). La segona es l'equacié de Callan-Symanzic, és a dir,
I'evolucié dels coeficients de Wilson amb I’escala de renormalitzacio de QCD. Les
aplicacions fenomenologiques d’estos calculs encara no s’han obtés.

Addicionalment en esta tesi s’han calculat els coeficients de Wilson associats als
condensats gluonic, quatre quarks i mixte quark-glu6 per a funcions de dos punts.

Desintegraci6 radiativa del pio

Durant molt de temps la desintegraci6 radiativa del pio ha estat una font de con-
trovérsia. Les dades experimentals es situaven a moltes desviacions estandard de la
prediccié del SM, i per tant pareixia indicar la preséncia de nova fisica. En principi
els procesos hadronics a energies baixes no son sensibles a la fisica més enlla del SM,
entre altres coses perqué la precisié en qué es coneixen els parametres hadronics
no és massa gran. La nova interacci6 que es proposava per a curar este desacord
entre teoria i experiment era precisament de tipus tensorial, i de fet es requeria un
acoblament tan gran que ni tan sols SUSY la podia prediure. En esta tesi s’ha fet
una analisi molt meticulosa d’este procés hadronic. En primer lloc s’han incorporat
al calcul les dependéncies en el moment transferit dels factors de forma, cosa que
sempre ha estat ignorada. Per al cas del factor de forma vectorial I’ansatz amb un sol
multiplet de resonancies vectorial és insuficient ja que no pot complir les condicions
de Brodsky-Lepage. En el nostre treball hem inclés un segon multiplet i hem exigit
totes les condicions de curtes distancies per a determinar completament el factor de
forma vectorial a través de la formula LSZ. En segon lloc, per tal de tindre en compte
els efectes d’una possible interaccié tensorial, s’ha de calcular I’element de matriu
hadronic corresponent de la manera més neta possible. El formalisme necessari per
a este calcul s’ha desenvolupat en esta tesi. En particular s’han empalmat la funcio
de Green (VT) calculada a yPT, RxT i 'OPE, de manera que tots els coeficients
queden fixats. De la mateixa manera es pot calcular la dependéncia en moment dels
factors de forma associats al corrent tensorial exigint bon comportament a distancies
curtes. Un altre cop tots els parametres queden fixats. La nostra analisi revela que
la fisica més enlla del SM és compatible amb zero i el seu ordre de magnitut esta
d’acord amb SUSY.
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Correladors vectorial 1 tensorial

Per a tindre una informacio6 el més completa possible de la fisica relacionada amb les
resonancies vectorials cal fer un estudi conjunt dels correladors (VV) , (TT) i (VT).
Les resonancies vectorials poden ser interpolades tant per corrents vectorials com
tensorials, i per tant I’estudi més complet inclou totes les funcions de Green possibles
amb estos dos corrents. A més el corrent tensorial també interpola resonancies amb
nombres quantics JZ¢ = 17 Les funcions de Green (V' V) i (T'T) no sén parametres
d’ordre, i per tant el seu terme pertorbatiu té una contribuci6 logaritmica. Per a
poder recuperar un logaritme a través d’'una suma de funcions meromorfiques (pols
de masses de resonancies) calen un nombre infinit de resonancies, tal i com QCD
per a un gran nombre de colors dicta. L’empalmament d’este logaritme amb la
torre infinita de resonancies ens determina com escalen les mases i les constants
de desintegraci6 per a nombres quantics d’excitacié radial (n) alts. Encara més,
podem prediure exactament el quocient de les constants de desintegraci6é vectorial
sobre tensorial per a n gran. No obstant aixo, la funci6 de Green (VT) si és un
parametre d’ordre i per tant no té terme pertorbatiu ni logaritme. Este fet ens
proporciona un resultat sorprenent : en exigir I’empalmament de la parametritzacio
meromorfica tenint en compte els resultats obtesos de l'estudi de les funcions de
Green (VV') i (TT) obtenim que este quocient necessariament té que alternar en
signe. Este resultat ve suportat per estudis de regles de suma.

En incloure les fonts tensorials al Lagrangia de RxT conjuntament amb les
resonancies J”¢ = 177, es poden integrar funcionalment juntament amb les resonan-
cies vectorials i aixi obtindre prediccions per als acoblaments quirals.

Aplicacions d’unitarietat i analiticitat

El procés de dispersio de dos bosons de Goldstone a dos bosons de Goldstone (amb
masses diferents de zero, perd degenerats) és molt particular, ja que com que totes les
particules que intervenen al procés son les mateixes, simetria de creuament relaciona
tots els canals possibles. Més encara, com que no hi ha particules hadroniques de
massa més lleugera, unitarietat lliga la part imaginaria de 'amplitud de dispersié
amb seccions eficaces, i a més el tall de discontinuitat comenca precisament al llindar
de producci6 i no abans. Aquests trets, juntament amb el principi d’analiticitat,
permeten escriure relacions de dispersio, és a dir, podem expresar 'amplitut de
dispersié en un punt cinematic com una integral al llarg del tall de discontinuitat.
Dins d’un cert domini cinematic esta integral és definida positiva, de manera que
I"amplitud de dispersi6 (més exactament, la seua segona derivada) és necessariament
positiva. A la regi6 cinematica en que aco és cert, els calculs amb yPT son molt
fiables (rapida convergéncia), de tal manera que podem traduir aquesta condicio de
positivitat en restriccions per als valors de les constants quirals.

Este métode pot generalitzar—se per al cas en qué la simetria de sabor SU(3) esta
trencada explicitament, de manera que les masses del kao, pio i eta son diferents.
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Aixi doncs, per a certs procesos de dispersid, podem escriure relacions de positivitat
que es tradueixen en cotes per a les constants d’energies baixes de la teoria amb tres
sabors.

En esta tesi també hem emprat estes relacions de positivitat per a testejar la
validesa del model sigma lineal amb dos sabors. Encara que en una primera analisi
es poden trobar indicis d’inconsisténcies, un estudi més profund revela que realment
no hi ha cap problema, i per tant el model és consistent amb els principis axiomatics.

La produccié de pions neutres en colisions de fotons és un procés de dificil des-
cripcio. A xPT la primera contribucié no nul-la es dona a un loop i no conté cap
LEC. L’acord d’este calcul amb les dades experimental no és massa bo. Una des-
cripcié que tinga en compte el principi axiomatic d'unitarietat de manera exacta és
fonamental per a adequar-se més a la realitat. Per sota del llindar de produccié
de quatre particules, el principi d'unitarietat constreny les amplituts de dispersio
de fotons (i també de mesons) de manera drastica. En esta tesi hem trobat les
parametritzacions més generals que satisfan unitarietat de manera exacta, i les hem
emprat per a testejar la validesa d'un model quiral. Les nostres conclusions son que
encara que aquest model reprodueix les dades experimentals d’'una manera més que
acceptable, viola unitarietat d’'una manera notoria, sent doncs aquesta descripcio
poc adequada.
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Appendix A :

Cayley—Hamilton relations

The analysis in the main text to build the basis of operators has dealt with general
SU(ny). In practice, however, one wants to specialize to the phenomenologically
relevant cases, ny = 2 and ny = 3. The Cayley-Hamilton theorem states that any
square n X n matrix A satisfies its own characteristic equation, y,(A) = 0. This
sets a relation between A and their invariants (traces and determinant). The form
of the relation depends on the dimensionality n of the linear space. For instance,

Yo(A) = A2 — (VA + (det A) Towo = 0, (n=2),

A2 — (A?
x3(A) = A* — (A) A% + %A — (det A) 343 = 0, (n=3). (A.1)
One immediate consequence of the previous equations is that the determinant of
any matrix is a function of its traces. We have implicitly used this information to
write all chiral invariants solely in terms of traces. Solving the previous equations
for the determinant, one finds

A? — (M)A + A=A ; A Iy, = 0,
PP O (U BT RIS

Cayley-Hamilton relations therefore set constraints between traces. For these con-
straints to be non—trivial, one has to build relations involving at least n+ 1 matrices.
For instance, for n = 2 the quantity (a x2(b + ¢)) gives

{a{b,c}) = (a)(be) = (b)(ca) = {c){ab) + (a)(b){c) = 0 (A-3)
whereas for n = 3, using (a x3(b + ¢ + d)) one ends up with
(ab{c,d}) +(ac{b,d}) + (ad{b, c}) = (a{b,c}){d) — {a{b,d})(c

{
= (b{e,d})(a) = (ab){cd) = (ac)(bd) = (ad){bc) + (a){b){cd)
+ (@) {d)(be) + (b)(c)(ad) + (b){d){ac) + (c){d){ab) — (a)(b)

) = (afc,d})(b)
+(a)(c ><bd>

{e)(d) = 0. (A4)
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In Table B.1 we have favored the terms with a minimum number of traces,
bearing in mind that these are the dominant ones in a large—/N, expansion of the
chiral Lagrangian.

A1 SU(3)

For ny = 3, use of Eq. (A.4) leads to the following relations,

it U u”]) (uau”) [Ys] = Y1 4+2Y3+Y, =Y,
1
(apotte) (uw) 7] = Vi Voo V- Wi,
(trpw) () (uou®) [Yor] = —4Yy —2Yi0+ Yy +2Yi6 + 4V,
(tpw) (RYY (uqu”) [Yao] = —2Yy —2Y10 — Vi3 + Yis + Yiz + Yig + 2 Yy,
(t_ ) (") (uqu”) [Yao] = —2Yas —2Yoy — Vo5 + Yog + Yor + Yog +2 Y59,
Voa 1
<t+;wuo¢> <fi u > [}/63] - Y:BG + Y:’)'? - 5 Yv61 - Yv66 y
(trwta) (fR%u") [Yoa] = Yss+ Yag + Yoo — Yoo — Y5 — Yo7, (A.5)

A2 SU(2)

The relations derived in the previous section also hold for two flavours. In addition,
repetitive use of Eq. (A.3) can be used to reduce monomials with multiple traces
containing at least three chiral operators. We find

it {uau® vfu”}) [Y1] = 2Y3,
it {ta, v ) V)] = =Y - Y3,
i (trwutu’) (uau®) [Ys] = 2Y3,
i (trw) (uouuu”) [Ys] = 0,
(truwth”) (uqu®) [Yia] = 2V,
<t+uvtua> <U ua> [}/15] = lel + le? s
<t+;wu > <t#a a> [YvIG] — YZ) + leO - Yig 3
1 1
<t+;wu > < ul/> [le’?] - Yv12 + 5 Yv13 - 5 1/'20 s
. 1 1
(trwu”y (tue) [Yis] = Y+ 3 Yis — 3 Ya
<t7uutﬁa> <Uyuo¢> D/26] - }/23 + 1/'24 s
. 1 1
<t7;wua> <tli ul/> D/27] - }/24 + 5 }/25 - 5 1/'29 s
. 1 1
(t_wu”y (" uq) [Yos] = Yoz + 3 Yos — 3 Yo,
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(t ) (B47) (X4) [Yar]
(t ) (47 (- ) [Vag]

i (X4) (B puu”) [Yan]
i (b} Ot u”) [Vig]
i (=) (t-ptu”) [Yag]

0 () (X ufu”) [Yag]
(o [27) (wat®) [You]
(o [57) (0} [Yo]

ot

() (f ua

) [Yos]
() (FE uau®) [Yoo]
() (FE{ua, u"}) [Yor)
(tu fL7) (X4) [Yrs]
(o F17) (=) [Y2o]

i () (taplt,) [Yao]

i (t ) (20 f2,) [Vae]

i <t <f*w/tip> [Y92]

i (0" t_y) (f4 + Pu,) ]
]

]

]

]

]

]

(f+"u’)

( [
Z<8pt7uu> [
i (Opt—w) (f ") |
i (b)) (Va2 u?) [
i (tron) (V2 ut) |
i (ton) (Vuthut) |

[

i {to) Ch" f,)

11

—2Y5 + Y33 +2Y5,
—2Y5 + Y35 + 2 VY56,

%Y:ag-i'yzm,
Y = Vo
2

1

§Y43+Y44,
Y =V,
2

Ys6 ,

1
§(Y58+Y59),
2 (Vio + Yao)
0,

0,

Y73 — Ve,
Yo, — Yoz,
Ys0 — Ya1,
Yss

Yao — Yoo — Yoo — 4 Y19,
Yoz,

Yos ,

Yoo
Y103 — Yios
Y104 — Yo7,
Y105 — Yios,
Yite (A.6)
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Appendix B:

The L; Lagrangian with tensor

sources
monomial Y; SU(ny) | SU(3) | SU(2)

i (ty {uqu®, uru”}) 1 1

i (tutututu,) 2 2 1
i (tufuqu®u”) 3 3 2
i (t oy {ta, uFuu’}) 4 4

i (tyuru”) (ugu®) 5 5

(o [0, 00]) () 6

i (twta) (U u“u”) 7

() () s | o

(ot Uqu®) 9 7 3
(it u®) 10 8 4
(t vty uau”) 11 9 5
(4t uug) 12 10 6
(4w (Wt U + unt " u’)) 13 11 7
(tywt’) (uqu®) 14 12

(1 wth™) (W ug) 15 13

Table B.1: List of operators contributing to the O(p°®) Lagrangian
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monomial Y; SU(ny) | SU(3) | SU(2)

(4w a) (tH u®) 16 14
(t4wtia) (thu”) 17 15

(4 wu”) (T uq) 18 16

() (Euqu) 19 17 8
() (H57 {ia, u”}) 20 18 9
(F ) (1) (1) 21

(t) (1) () 2

(™ ugu) 23 19 10
(t " u”ug) 24 20 11
(- (WU + uat™u”)) 25 21 12
(t_ ™) (uugy) 26 22

(t_pwta) (t"*u”) 27 23

(- u) (ug) 28 24

(t_ ) (" {ua, u”}) 29 25 13
(F ) (1) (w0 3

(F o) 30| 2 | 14
(™ ) 32 27 15
(teuwty) (X+) 33 28 16
(F o) () 30| 20 | 7
(™) (x) 35 30 18
() () % | 31 | 19
(Fo) () (1) 3| »

(Fo) () () 3 | 33

it {X+, uPu"}) 39 34 20

Table B.1: List of operators contributing to the O(p°®) Lagrangian
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monomial Y; SU(ny) | SU(3) | SU(2)

i (tutxu”) 40 35 21
i (x+) (t4putu’) 41 36

() (G 0) 2| a7

it {x—, u'u"}) 43 38 22
i (t_ X _u”) 14 39 23
i (x—) (t_utu’) 45 40

i (t_ ) (x—utu”) 46 41

(t_pw (WPu,ut — utu,h")) 47 42 24
(t—pw (B"Putu, — uyuth¥r)) 48 43 25
(t—pw (uph?Pur — u?h"Pu,)) 49 44 26
(t_ ) (B¥P [up, uM]) 50 45 27
(V ot VP 51 46 28
(VA4 V) 52 A7 29
(VY2 53 48 30
(Opt 4 ) (OPTY) 54 49 31
(0t 1) (0°14,) 55 50 32
(0t_) (071" ) 56 51 33
(t o {71 i} 51| s | a4
(s i 2 u®) 58 53 35
(thpw (R U un + ugu f1%)) 59 54 36
(tw ([Euqu” + u”uqg f1%)) 60 55 37
(i (W U + ug fu”)) 61 56 38
(Fe £ () 62 | 57

(Fen P12 () 63 | 58

(t i) (F00) 64

Table B.1: List of operators contributing to the O(p°®) Lagrangian
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monomial Y; SU(ny) | SU(3) | SU(2)

(tua) (f7u") 65
(tu”) (Fi%Ua) 66 59
() (FE uau®) 67 60
() (FE° {ta, u"}) 68 61
(o [ uqu®]) 69 62 39
(t - (fE"u U0 — ugu” f2°)) 70 63 40
(t_pw ([ uqu” — u”uq fEY)) 71 64 41
(t_pw (u” f2%0 — ua f2%0")) 72 65 42
() (f2° [ta, u”]) 73 66 43
({1 x4 1) 74 67 44
(o {27 x-1) 75 68 45
(o 27 x=]) 76 69 46
() (17 X4) 77 70 A7
(t ) (fE"x) 78 71 48
(trmw F27) (X+) 79 72
(t—w F17) (x-) 80 73
<t+W {7 h 1) 81 74 49

(t ) (t770") 82 75 50
i (7Y (tywht) 83 76
i (e S 17, 84 77 51
it f0 1Y) 85 78 52
i(tw {F70, 1) 86 79 53
i () (F2 ) 87 80

Table B.1: List of operators contributing to the O(p°®) Lagrangian
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monomial Y; SU(ny) | SU(3) | SU(2)

i (bt 1Y,) 88 81 54
ittt ) 89 82 55
i frmt ) 90 83 56
it ) 91 84 57
() (foput”) 02 | & | 58
i (0 (ot ) 93 86

(Vuth'V fran) 94 87 59
i (V ot [0, u¥]) 95 88 60
i (VP (B, u,]) 96 89 61
i (VE e [0, u,)) 97 90 62
(VP {7 u,}) 98 91 63
P (V ot {1, uP}) 99 92 64
i(V ot {47, u”}) 100 93 65
i (Ot ) (f{ u,) 101 94

i (Ot ) (f} u?) 102 05

i (Dpt— ) (170 103 96

i ({Vt" tw} ut) 104 97 66
P ({Vuth o ut) 105 98 67
i (O\t") (ty ) 106 99 68
i(0 ut ) (troaut) 107 100 69
i (0, (t_pau?) 108 101 70
z<t+w> (Vatut) 109 102

i (tron) (V" u?) 110 103

i (t_yn) (Vuth u?) 111 104

Table B.1: List of operators contributing to the O(p°®) Lagrangian
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monomial Y; SU(ny) | SU(3) | SU(2)

(" [ w]) 112 105 71
(Y Xy w]) 113 106 72
i (tywhh”) 114 107 73
i (o [P 24 ]) 115 108 74
i (o LR fY ) 116 109 75
it (RPfY L) 117 110
Contact terms

(Dt Dt} ) 118 111 76
i (Pt Py + 60 Fry, ) 119 112 77
(tuwX FR"+ xth, F&’ + th,xFI” + X"t Fi”) | 120 113 78

Table B.1: List of operators contributing to the O(p®) Lagrangian
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The antisymmetric formalism

Although the antisymmetric tensor formalism for spin—one massive fields was already
proposed at the end of 60’s [195], its use was not regular until it was rediscovered in
Ref. [9] in order to introduce the p resonance field in the chiral Lagrangian, Ecker
et al. turned it into the usual way to work with spin-one resonances in RyT [13].

The most common formalism for the description of a spin—one massive particle
is the Proca field R,. Since R, is a Lorentz vector it has four degrees of freedom,
but a spin-one field has only three degrees of freedom. So the R, field must have a
constraint, and it is given by the Lorentz transversality condition 0- R = 0. However
the Proca Lagrangian

1 1
Loroca = — 1 R, R" + 3 M} R,R",
R, = O0,R, — O,R,, (C.1)

automatically ensures the Lorentz condition because the equation of motion reads

OR" + MR R" =0, (C.2)
M}y 0,R* = 0,— (0 + Mp) R* =0,

the second equation is obtained calculating the divergence of the first one and when
implemented back in the first we obtain that the Proca Lagrangian implies that each
component of the Proca field satisfies the same Klein—Gordon equation subject to
the Lorentz condition. Another way of seeing that indeed we have only two degrees
of freedom is to notice that Eq. (C.1) is not the most general Lagrangian bilinear
in the Proca field. In full generality one has ad,R,0"R” + b0,R,0"R" but the
choice a = —b = —1/4 removes one degree of freedom. The fact that Eq. (C.1) is
built with R, suggest that we can employ an antisymmetric tensor field to describe
the spin—one massive particles. An antisymmetric tensor field has 6 independent
components, hence we have to remove 3 degrees of freedom to correctly describe a
spin—one particle.

In Ref. [196] it was proved that for antisymmetric tensor fields with mass there
are (up to multiplicative factors and a total four divergence) only two possible La-
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grangians of second order in derivatives, if one assumes the existence of a Klein—
Gordon divisor. They correspond to having either the Lorentz condition or else a
Bianchi identity satisfied by the fields. In the case of describing spin—one particles,
one has these two possibilities, where I, = — R,,,,

1. The subsidiary condition is the Bianchi identity, i.e. e“A”f’aAWp(, =0, and W
are frozen, so the dynamical degrees of freedom are W;y, where 7 runs over
t =1,2,3. Notice that there are 3 degrees of freedom, as it should be.

2. The subsidiary condition is now the Lorentz condition, that is, 0’W,, = 0,
and Wy, are frozen, so the three degrees of freedom are W;;.

In order to get a better understanding on that, let us consider the most general
Lagrangian with up to two derivatives built with an antisymmetric field W, :

L= ad"Wu,0,W*” + boPW,,0,W™ + cW,,WH (C.3)

where a, b and ¢ are arbitrary constants. We have to choose these constants in such
a way that three degrees of freedom are removed. Indeed, consider the EOM

a (OMO,W — 0"0,WH) + 2007 0,WH — 2 WH = 0, (C.4)
that can be split up into the time—spatial and spatial-spatial components:

(a+20)W% + adW" — ad QW — 260> + )W" = 0,
20W* + a |0(W + W) = 200* + W™ = 0,  (C.5)

where the dots denote time derivatives. For a 4+ 2b = 0, the three fields W
do not propagate (b = 0 freezes the spatial-spatial components, on the contrary).
The W* propagator contains poles in k? = —¢/b and k* = —2¢/(a + 2b), which
disappear for b = 0, or a + 2b = 0, respectively. To maintain only one pole and
reduce the number of degrees of freedom to three, we must choose among these two
options, corresponding to the choices listed above. Because of historical reasons, the
first option b = 0 has been chosen, and a and ¢ are chosen to reproduce the pole
corresponding to the particle mass, that is, @ = —1/2, and ¢ = M?/4. Then, the
Lagrangian [13] reads

1 1
L= — 5 "W, 0,W* 4 1 M? W, WH, (C.6)
from which the free—case EOM is
MO,W — OYO,WH + M*WH = 0, (C.7)

Notice that with the definition W, = - 9"W,,, (C.7) recovers the Proca equation
of motion (C.2).
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Now from (C.6) we can derive the propagator for the antisymmetric field [69]:

ik x 21
[ e 1T (W), W 0)10) = 555 O + 75 Ve

21 q T
- M2 — q2 {qu,pa - MQ qu,pa} 7(08)

where the antisymmetric tensors (they are symmetric double 2—forms, and in general
they have the structure A,, .5 being antisymmetric under p <+ v and a < 3 but
symmetric under p v <+ a [3; they can be considered as symmetric operators acting
on the space of antisymmetric 2—tensors)

1
Q;Lw,pa(q) = 2—(]2 (gupQVch — 9pvquds — (pe0)),
1
nypg(q) = - 2—q2 (guquQU - 904495 — QQQWQW — (p<—> 0')) , (Cg)

denote longitudinal and transverse modes of propagation. The identity in the space
of antisymmetric tensors is

1
Ipu,po’ = 5 (gupgua - guagup) s (Clo)

and with that QF, () and QF, (q) are projection operators that satisfy the fol-

lowing properties:
QA+t =17, oF.of =ol.of = o,
Qr.Q =, Q.o = QF,
T T
MQuupa( ) q Quupa( ) = quuupa( ) =q Quupa( ) = 07

ehvab potk QZV o = = 4 Q%ﬂ,fﬁ ’ ehvab pokr wa o = — 4 Q%ﬁ,ﬁﬁ :
&.uv)\p EaBfrp = — 4I;waﬁ . (C.ll)

The propagator (C.8) corresponds to the normalization
i

(01 Wl Wep) = e = <7

[puev(p) — pueu(p)]- (C.12)

Thus, the summation over the physical vector polarizations €5_, , , for a massive
vector (g -p = 0) yields:

vV _ofp* 2p v,x
Zg” br = -3 U g (C.13)

where we have used

va b, PP
Ze‘js/\ = —g" + T (C.14)
A
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Appendix D :

Wilson coefficient C g4y at O(as)

In this appendix we give the expression to the oy corrections for the quark condensate
Wilson coefficients. We will split our results as shown in Eq. (4.87), in terms of
coefficients multiplying logarithms, dilogarithms and polynomic terms. The results
can be found in Table D.

(SSS)
Ly sz 40+ ¢+t =667 =37 (¢* +17)]
L, 732;;273[4q4+p4+r4—6p2r2—3q2(p2+r2)]
L, e (41t + gt +pt =667 p* = 312 (¢ + p?)]
Ld 1)21182r2 [pﬁ + q6 + T6 _ 2p4 (q2 + TQ) _ 2q4 (pQ + TQ) _ 27.4 (pQ + qQ)]
L, o (—5pt = 5¢t =5t + 14p”r? + 1467 p* + 14¢°r?)
(SPP)
L, p2q42r2[T4+q4—4p4—3p2(r2+q2)—67“2612]
L, p2q42,«2 [4¢" + 7' —p' +3¢* (p* —1?)]
L, e At gt = pt 437 (0P = )]
Ld MLQH[TG-F(]G—p6—2]92(7“4+q4)+2(p4—q27“2)(7“2+q2)}
L. o (=51t = 5¢t +5pt + 1477 ¢?)
(VVP)
Ly s | PO 2P 4P (512 4 ) = 2(r2 + ) (2 — 2

Table D: a4 corrections to the Wilson coefficients for three—point GFs.
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L, Py [q6+7“2q4+p2q2 (5T2+p2)—2(T2+p2)(r2—p2)2]
L | sy [P+ ) (07— ) + 415 = 2 (307 + @) (3¢ + %) — 20" (¢ + 1?)|
L s (200 =397 + ')t =207 (0P + %) (0" + ¢)
2 (P )+t (P — @) (0 gt — ¢ pQ)]
L p%i2 (p% + q% + 412
(AAP)
Ly Ve [p6—3r2p4+p2q2 (5T2+q2)+2(7“2—q2)3}
L, W[qﬁ—3r2q4+p2q2(5r2+p2)+2(T2—p2)3}
L, ﬁ {— 48+ 61 (P2 4+ %) — 2 (@ +30°) (P + 3% + (0> — ) (0° + qg)}
Ly s 1270 (P @) + 607 ¢t =207 (0P + ¢7) (0" + )
(-t — pQ)]
L. o (PP + = 4r?)
(VAS)
Ly Ve [pﬁ +3p'(2¢ = 1?) = PP (52 + ¢*) +2 (2 + ) (12 — ¢*)°
L, ﬁ[—%ﬁ—l— (?+6r)pt —(6¢*+67r1 —5¢212)p? — ¢® +2r% — ¢* r?]
Ly | 5y [P+ TP (@ = %) = ® =410+ 2(3p° + ¢*)r' = 3 (p" — ¢") 1?]
Lqg Y [(3qﬁ—|-27“2q4+67“4qg4—27“6);02 — (2=’ (r* +¢Y)
+ pS _pﬁ (3q2+2r2) —27“2(]2]94]
L e (PP — ¢° — 417)
G (VHVVS)
L, s 200 =) = p' 0 (1P = 3¢°)]
L, ez (20" = 1Y) — '+ ¢* (r* = 3p%)]
L, o (6077 + 41t —p' =" =7 (0" + ¢%)]
Ly g (270 = (r* +pt " = 307 ) (0° + ¢7)]

Table D: a4 corrections to the Wilson coefficients for three—point GFs.
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L e [372 (07 + @7 = 1%) — 4p* ¢
qu v (VFVYS)
Ly L[ (24— 297 +12) = 302 (9 = 1)
Ly [P 21— 2+ 1) = 372 (¢ — )]
L Az B+ ") =312 (P + ¢%) — 2p7 ¢°]
Ly ﬁ (P8 —p'r2 + (¢ —12)%(* + 1) — p*r?(4 ¢* + r?)]
L. ﬁ(pQ—i-qQ—Zrz))\

Guv (A AV S)

L, p2q22r2 [2 (2 —r2) = p*+p2 (5r2 — 3q2)]
L, p2q22r2 [2 P =) ="+ 2 (5r2 — 3p2)]
L, o (6077 — 41! —p' —¢' =1 (0" + ¢°)]
Ly — o 270+ (=37 pt gt = 397 ¢%) (0 + )]
L e (311 = 4p*¢® =377 (¢ + p?)]
Gu py (A*A”S)
Lp (1217,2 [TQ (q2_3p2+3r2)+2q2 (q2_p2)]
Ly e (12 (0P = 3¢% +31%) = 2p* (¢ — p?)]
Lr p21q2 [_ 2p2 q2 + 3 (p4 + q4> _ 37‘2(]92 + q2>]
Ly o [P0 = 3pt 1+ 3071t + (¢* = 1))
L. qul%2 (P? + ¢ +272) A
Guw (VA P)
Ly o [2(gt =) +pt = p? (5% + ¢%)]
L, ]ﬂq%ﬂ[pQ(qQ—i-élTQ)—2p4—q4—27“4+q27“2}
Lr #[p4_q4+4r4+7.2(p2_q2)}
Ly e (D0 =26t +2p7 ¢ — ¢° +20° — 11 (397 + ¢7))]

Table D: a; corrections to the Wilson coefficients for three-point GFs.
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L, s (@@ +p* —1?)
Gupy (V'A"P)
I, 3 (p? +3¢2 —1?)
L, — 5B+ —1?)
L, i (@ = 1) (¢ +p* = 1?)
Ly _ﬁ p6_3r2p4+p2r2(2q2+37.2)_(q2_r2)2(q2+r2)
I — e (7 — 2+ 217) A

Table D: «ay corrections to the Wilson coefficients for three-point GFs.



Appendix E:

(VVP) from a Lagrangian

We used the meromorphic ansatz in Eq. (4.120) in order to determine the (VVP)
Green function. To reach the same result one could also proceed starting with a
Lagrangian like the one given by Resonance Chiral Theory RxT and collected in
Eqgs. (1.79), (2.37) and (2.38) to explicitly calculate the coefficients ¢y, using the
Lagrangian formalism. The result can be expressed as [40]:

+q2 1 NC
2 +C M2 — 02) (M2 — o2)  4dn2r?
r ( 1% p)( 1% q) T
1 1 (Erl+ Kp>+Gag?
+D< 2 2+ 2 2> _< 2p 2 :
le—p le—q le—p

- - 2
My, = —30{64C¥V—1602Vgp

2
Er2+Kq2+Gp2> A'r? + B' (p® + ¢?)
Mg — ¢ (M7, - p?) (M3, — ¢?) 12

1 1 1
+C’ + D' < + >
(M3, —p?) (M3, — ¢?) Mg, —p* Mg, —¢?
+ 1 <E’T2 _|_ Klp2 _|_ qu2 + EIT2 —|—K’q2 +Glp2>

r2 ]\4‘2/2 — p? M‘Q/2 — g2
_|_l A”TQ—i-Bl'pQ—i-HqQ A”TQ—FB”(]Q—i-HpQ
r2 (MY, —p?) (Mg, —a?) (M3, —p?) (M3, — ¢?)
1 1
+ " + , E.1
0, — ) (O, — @) T 00— ) (1 —p2>” (Y

where

A =8F2 (dy—ds), A"=8F2(d,—d)), B=8Fds,

32 \/iFV C3
My, ’

1

B'=8F?d,, C=64F2dy,, C'=64Fr?d,, D=—

32vV2 Fi, ¢ 4+/2 F!
- \/_ VC3: E'=— \/_ V(Cll+c’2_c’5):

M Vs M Va

D' =
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42 Fy 42 F
E—— i (et +c—c5), K =-— MV2V(—C'1—|-C'2+C'5—2CE),
42 F
G=- \/_ V(Cl_CQ+C5), G’I:32FvF‘I/df,
My,
H=A4FyF, (dg+de—dy) , A"=4FyF), (dy+dy —d,)
42 F|
B"=4Fy F, (dy+d.—d, —2dy), G =-— L_Vv(c'l—c'2+cg),
2
4+/2 F;
K =— \/M_V v (_Cl + co + ¢y — 266) y (EQ)

The parametrization of Eq. (E.1) reflects its origin in the Feynman diagrams of
Fig. E.1.

PC

®
ry
= + +
/Q\p
® 4 ® & ® & )]
‘/uu ‘/;b

PC PC
: ! V‘?(g)\@ ) / B

Figure E.1: Resonance contributions to the (V'V P) Green function.

a b
ve v,

v

In terms of the parameters of our ansatz in Eq. (4.120) we obtain:

N,
con =—G-G", 0022:—2(K+K')—4—7T02, coo=—D—-D'—-FE—F

ciz0 = (D + E)My, + (D' + E)My, ,  cozo = GMy, + G' M, ,

con=A+A+2A4"+C+C" +2C"

+2(My, + My,)(D+ D'+ E+FE'),

copr =B+ B+ B"+ H+ K (M}, +2M,) + K' (2 My, + M;,)
Ne¢

+ (M, + M) <G+G’+ 4—7T2> :

N
4 a4 VO 2 2
CO[]O — MV2 le 4 2 6030 — GMV2 GIle 5

ciio=—(D+ E)My, — (D' + E" )My, — (A+ A"+ C + C" )M,
—(A"+ A"+ C'"+C" )M}, —2(D+ D'+ E + E')M}, My, ,
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2 No
con = —2KMj, — 2K' My, — (M2 + MZ)? 1z AB+ B")Mz,
—2(K+K'+G+G)M;, M,

N,
cozo = —G' My, — GMy, — (K +K'+G+G + 4—7f2> oM

—(B'+ B"YM}, — (B + H)M;, ,
coro = BMy, + B'My, + (K' + G') My, My, + (K + G) Mg, My,

Ne
(B + H)M M3, + (M, + M) Mg Mg, =5

cio0 = (A" + C")My, + (A + C) My, + 2(A" + C") M3, M,

+2(E"+ D")My, M¢, + 2(E + D) M, M, (E.3)

in units of — By. Chiral symmetry, implemented in our Lagrangian, brings features
that with the ansatz had to be forced by hand. In this way we immediately find
that c3p0 = 0 and c919 = 0. Moreover, as a bonus we also find co99 = 0. The rest of
constraints are given in Eqs. (4.122,4.123). In addition we find five more relations:

CWV=cly =0 G+G=0
Ne

D+D +FE+FE =0 2K+ K') =
C4q?

(E.4)

After applying all the constraints coming from the OPE and Brodsky—-Lepage asymp-
totic condition we obtain the following relations among the Lagrangian couplings:

des+cep =0, 45+, =0, ¢i—c+ce5 =0,
F‘I/MV1 (CI—C’): Yo
Fy My, b 0 Fy 64272
8 F2 vds + 8 F’Qd' + 8 Fy Fy(d. — dg)

M2 ! NC

Cs — Cg +

+8fo'sz“(¢5 )+M518 = F?,
AF%(dy +8dy) + 4 F?(d) + 8dy) + 4 Fy F{-(d, + dy — dg + 8dy) +
4\/_F'27M‘2/1(c’ )+ M2 —< Ne _ = F?,
My, Y167
8 My, Fyds + 8 FP My, diy + 4 Fy Fy, [M}, (dy + de — dy — 2dy)

Nc
+ M7, (dy + de — dy)] = — My, M

Vigoa (E.5)
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Appendix F:

LSZ formula for a soft pion

In this appendix we discuss the derivation of Eq. (5.25). Let us start defining three
quark currents:

Af(z) = d(x) 9" s u(z),
@) = ale) o™ d),
T = u(x)o™ u(z) + d(xz) o™ d(z) . (F.1)

™

N

N

Then we can construct the following Green function that after partial integration
can be expressed as:

(/(p) | 9aA® TH|0) = / d' 7 (o (p) | T {Ba A% (), T2 (0)}0)

- / d*z e ™ (y(p) | T {A%(x), T (0)}]0)
— i (v(p) | T (0)]0) (F.2)

We can relate this Green function to the (y(p)|@ oy, v5d |7~ (r)) matrix element
(5.22) through the LSZ formula:

2 2
re— M:

()| a0 sad |7 (1) = tim, <o () 0,47 T0) . (F

Then the (v(p) |0, A% TE”|0) Green function must have a pole at r?> = M?2. Since
the second piece in (F.2) has no r—dependence it cannot have a pole, and this must
come from the first term:

o [ @t e ) T{A@. T} 0) = s FUp). (Ra)

™

As the divergence of the axial current is zero in the chiral limit, the left-hand side
must vanish for M, = 0, what implies:

F P ag,—0 = 17 (D) [TF(0)]0)y, - (F.5)
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Finally, assuming that pion mass corrections are small, (F.3) yields the desired
result :

1
V2 F

that is also the result that stems from the soft pion theorem.

(v(p) | wo™ ysd|7(r)) =i (y(p) | TE(0)]0) , (F.6)



Appendix G:

Loop functions

In this appendix we present expressions for one—, two— and three—point one—loop
functions appearing in this thesis. The basic expressions are the scalar one loop
amplitudes are defined as:

dPs 1
2 —
AO(m) - /(QW)DEQ—mQ,

B (qQ 2 mQ) _ / 4Py 1
P T P (@ =) (= a)? = ]
Co(p?, p3, 3, me, mi, m7) = / a7 !
1925 /3y 1oqs T10h s Hoe (QW)D(EQ—mZ)[(E—pl)Q—mg][(é—pg)Q—mg]’
(G.1)

where D = 4 — 2¢ is the space—time dimension and p3 = (p; + p2)?. The one—point
amplitude has a simple expression :

ity =i 7 T g (7] @3

where 1/é = u=2¢/e—yp+log(4 7). The two point function is a bit more complicated.
We display first the particular case of equal masses:

_ 4m2

q2

Bls) = /1 (G-3)

’

2 2

The function —i By(g?, m?, m?) is real for ¢> < 4m? and manifestly real for s < 0.
For 0 < s < 4m? it is convenient to express it in a way which is manifestly real :
i

mu(ton?) = Ll a o (U] + 28 cor B | (G
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S

If s > 4m? then — i By(¢?, m?, m?) becomes complex,

By(q*, m*,m?) = (4—;)2{1 +2 —log (:) + B(q¢?) log {%T@} +z‘7r/3(q2)} :
(G.5)

For the general case of different masses we have:

' 1 m?2 m?
Bola? m2 m?2) — ¢ 1+ — |m21 a 1 my
U(q ;ma:mb) (471')2 + + m, 10g 2 mb 0g ,U/

:
(D))o o

D, 2 2 2 _ 1 ( + )

Bolgsma.my) = 327r2{q (¢ —v)" — }
vo= VI — (ma+m)?[¢? — (ma —my)?,
A = m;—mj, Y=m]+m;.

We know that this function should yield an imaginary part above threshold ¢? >

(ma + my)?, but written as above this is not apparent. This expression it is not

even satisfactory for the region (m, — my)% > ¢* > (mg, + my)? where it develops a

discontinuity. It has no problem, however, for ¢*> < (m, — my)?. So it is better to

split the definition of this function depending on the region we want to evaluate it :
(¢ +v)° — A

f _ ! “ 1o
3272 | ¢? 8 (¢2 — v)* — A2

1 7 2-A Z ‘+A
— 2 Z arctan a - —2 z arctan q —f ;
32 72 2 v q> v

_ q
B[]:%

} q2 < (ma - mb)27

(G.7)

(Mg — myp)? < ¢> < (my + my)?,

1 v P?+v-—A v P+rv+A
— —log | ————| — <log | ————| ¢ .,
3272 | ¢? —¢?4+rv—A q? —¢+rv+A

L q2 > (mb + mb)27

with 7 = /= [¢2 — (ma + my)?] [¢2 — (ma — my)?]. In addition to the scalar am-
plitudes it is also interesting to consider vector amplitudes for one— and two—point

loops::
/ dPe¢ o _ 0
2m)Pr—m2
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dPy YLz B i o o
| e = g Lot - Ao
+ (m2 —mj +p*) Bo(q®, m>,mj)] |
P ¢ _ ¢ 2 02 0
| T B (G8)

In particular we are also interested in the massless one-loop integrals:

Ao(O) - 0,
) B i 1 q°
BO(q 70:0) - (47'(')2 |:E+2_10g <_E>:| )
: o A+ 4 -
C(p% p2p2,0,0,0) = —  dLiy (-2 P22l =P
(p1;p2:p3: ) Yy ) (477')2)\ Iy )\_p%_p%_i_pg

: A —ps — pi+p3 , A+ p5 +p3— Dt
—Liy { — 2 2 5| Lo | — 2 2 2
A+ py+pi— D3 A—p;—p3+p

(APt (APl pS
12 N+ 12 5 o | T Lk N2 2 2
+p; +p3 —pi p3 — Py + P35

L.( A—ﬁ—ﬂﬁ+%>}
— L2 | — 2 2 2
A+ ps+pi — p3

i

(4 7{')2 C10 (pfapgapg) 3 (Gg)

And also in loop amplitudes having some propagator squared or to the third power.
Then we define

dPe 1
I'(a,8:¢%0,0) = /(QW)D (2a( — )2 = I(8,05¢%0,0) . (G.10)

The explicit expression for some particular cases follow

1|1 q?
1@100.0) = - g - (-55)|
11
I(3,1,q2,070) = - (47‘_)2? (Gll)

and also we provide the expression for the scalar three—point function with one
propagator squared

/ dPy 1 =i 1 [l—k)<—ﬁ>
CrP O —p)2(l—p)?  @rep; e B\ T2

where again p; = — p; — po. Finally, it is also useful to have explicit expressions for
vector and tensor one—loop amplitudes for the one—, two— and three—point functions
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in the massless case (with the possibility of having one propagator squared)
/ dPe o 0
2m)Pe
dPv 128 q" 1qH 1 q*
= — By(¢?0,0) = Z4+2-log| ——
/(mww-q)? y P00 = 5y [é+ °g< )]

apPr 1 i [1 8 A\
EPEl—g? — T2(nZ|et3 8\ Tz)|Y
q

/ dP] Lz gt
(27m)P 04 (0 — q)? - (47)2q2’
dPi gy i 1 (1 q> q“q”

— “d o 2—tog [ =L )| g 42
/(m)ﬂwe—qv (4@24{[&* °g< uﬂg T }

dPy Iz i
/ (27)P 02(0 — py)2(€ — p,)? - (47)2) [Cl (p%,p%,pg) p’f +Ch (p%,p%,pg) pﬂ )
2 2
Cy (p1,p5,03) = (pi+p3—p3)log (i—é) — 2p3 log <£—§>
—p3 (p3 +pi — p3) Co (01,13, 13)
dDé éu _ Z C~1 ( 2 2 2 I C~1 2 2 2 I
/(QW)D£4(q—p1)2(q—p2)2 o (4m)2 [ ! pl,pg,p3) prt+ G (pg,pl,p3) pQ] ’
2 2 2 2 2
Cy (vl p3) = (o1 + 7 ~ p3) i ~ 1) g <p—§> —2log <p—§>
D1 Dp3 P3
— (P} + p3 — p7) Co (p1.13.13) . (G.13)

once more, pg = — p1 — pPa2.
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Renormalization of the linear sigma
model

In this appendix, we renormalize the linear sigma model at one-loop for finite pion
mass. We will use the mass-independent MS scheme, instead of the subtraction
scheme of Ref. [182]. So our Lagrangian will be split into renormalized pieces and
counterterms.

It is convenient to use the “primitive” set of parameters in the Lagrangian,
namely ¢, ;¢ and 8 and also to include explicitly the term linear in the o field.
Our Lagrangian is then written in terms of bare constants and fields. We then can
reexpress the Lagrangian in terms of renormalized quantities and counterterms,

1 I g 2
L — Z<a#gauzi>+z<zzf>—ﬁ<zzf> +B8(S+3N) + Lo, (H.I)

In the MS scheme we will absorb in the counterterms the divergent pieces propor-
tional to % Now we treat the counterterms as perturbations and then the non-—
perturbative part (kinetic term plus masses) must have the usual term with a posi-
tive mass squared. In other words, perturbation must be done around a minimum
of the potential. This was already discussed in Section 6.3.

At tree—level, one can calculate the VEV directly from the Lagrangian by mini-
mizing the potential. At one—loop, the most convenient procedure is to impose the
condition that the one—point ¢ function identically vanishes, as shown in Fig. H.1.
This ensures that we are considering quantum excitations around an extremum of
the potential. Tt also implies that one-point functions (tadpoles) are zero in any
graph, so we will not display this topology.

Let us start calculating the quantum corrections for the 7 and ¢ propagators, as
shown in Fig. H.2. The pion propagator is diagonal in isospin, and thus proportional
to 6%, which we drop . The renormalized one-loop contributions are

@ g
g - 16 7T2 [2 (mg B mQ) IUW(QQ) -2 m(Q,— Ao’ + 2 mQAﬂ} )
T — 3gq (mi - m2) |:[ﬂ'ﬂ'(q2) 4 31{70((]2)] : (HZ)

16 72
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P

Figure H.1: One point ¢ function. Double line denotes o particle and dashed line
pions. It must vanish to ensure that perturbation theory is done around a minimum
of the potential.

Q

Figure H.2: One-loop diagrams for the 7 propagator.

where we have defined

2s [s —v(s)]? — (m2 — m?)?
/Bﬁ(q2) = 1 - 4;22 ) 60(‘]2) = 1 - 4;23 ;
v(s) = V[s— (m2+m?)]s — (m2 —m?)], (H.3)

From the renormalization of the propagators one can obtain the running of the g
coupling constant

pdg

3
L - = H.4

which ensures that observables are p—independent.
Next we calculate the vertex correction to the o7 7 interaction, that is, the
irreducible three—point function. This correction would affect, among other things,
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/
/

N N N
N N\ \
J\> \L ) \@— \ \>\f\—7
. . ): // /) ;
/ e /

Figure H.3: Quantum corrections to the ¢ — 77 vertex.

the decay of the o into two pions. The diagrams are shown in Fig. H.3. Since the o
is an isospin singlet, its coupling to the pair 7 7’ must be proportional to §*° which
again will not be displayed. The renormalized result then reads

2
T°7™" = —2gv+ % [2 (m?7 — mQ) Vo(s)+ 6 (m?, — mQ) Vi (s)
+ 4 Ln(m?) + 5 Lin(s) + 3 1,0(s)] (H.5)

where we define three—point one—loop functions as

1 i 4m? —2m?2 + 5 (B,(s) — 1)
Vo) = =55 {2L2[8m2—2m3+8(3ﬂﬂ(s)—2)} (H.6)

[4m? —2m?2 + s (3 Bx(s) — 1)}
18m2 —2m2 425 (B(s) — 1)
_mg'_ Am? = 2m2 + 5 (3 Be(s) — 1) ]
| 2m2B(5) + 222 (3 Be(s) — 1) (Be(m2) — 1)
. 1
~2le |5 T = (B36.(s) — 1) (B (ni2) — 1>}

—2Li,

. 1
e |:ﬂ7r(m§) + gz (Bx(s) = 1) (Bx(m3) — 1)]
4m2_2m§—|—5(6ﬂ(5)—1) ]
2m2 B (m2) + 525 (Bx(s) — 1) (Br(m2) — 1)

—2Li [—

+ Liy

/871'(5)_3 ]}
(Br(5) — 1) [Bo(m2) + 22 3 Bn(s) — ) (Ba(mi2) — 1] | [ °
1 : —2m?2 + 5 (1 — Bx(s))
) - S5 {2“ L_ YmZ + 5 Ba(5) (Bo (5) — 2>} 1
[ —2m2 451 —38:(s))
T e B () —QJ

) 2m2 + 5 (3 B:(s) — 1)
—|—2L12 - 2
| s+ 2m2Br(m2) — 35 0x(s) + 5 (36x(s) — 1) (Bx(m2) +1)
) [ 4m? —2m?
—2L12 3
s+ 2m203:(m2) — 35 Bx(s) + 525 (3 8x(s) — 1) (Bx(m2) + 1)
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4m? —2m?

5 +2m2fr(m2) = s B(s) + 50 (5x(s) = 1) (Ba(m2) +1)
(4m? —2m?2) s (B(s) — 3)

5 (Br(s) = 1) [s+2m2 B (m2) = 35 Ba(s) + 525 (3.82(5) = 1) (Be(m2) + 1)

+ Li,

+ Li,

Figure H.4: Diagrams contributing to the 4-7 irreducible Green Function.

The last set of diagrams to be considered are the corrections to the four—pion
vertex, that is, the four—point irreducible function. Diagrams are shown in Fig H.4
and only contribute to the 7w scattering. The structure of the amplitude for the
process 7 ® — 7¢7? is identical to that of Eq. (6.39), and our result corresponds
to A(s,t,u). The renormalized result is

AT = —2g+4 89—711 {2 (mg — mQ)2 [D(s,t) + D(s,u)] + Vy(t) + Vy(u) + I,,(s)

+ 4 (my —m?) [Va(s) + Vo (5)] + TLin(s) + 2 [Len(t) + Lix(u)]} ,  (H.8)

where D(s, t) is the scalar four—point one—loop function, or scalar box diagram, with
all external momenta set to m? and two internal masses equal to m and the other two
equal to m,, as can be deduced from Fig. H.4. Its expression is rather cumbersome
and will not be displayed here, but it can be found for instance in Ref. [197].

All the pieces must be combined together to give the one-loop amplitude. First
we recall the tree—level amplitude

g s —m?

A(S, t)tree—level = (Hg)

— —,
2 s—m2

which reduces to the well known O(p?) xPT result when the m, — oc limit is taken.
The renormalized one—loop amplitude is then

A(5:)1 oo = 89—;2 {2 (m2 — m2)2 [D(s,t) + D(s,u)] + Vy(t) + Vo (u) + Iy (s)

+ 4 (my —m?) [Va(s) + Vo)) 4 Tlor(s) + 2 L o () + Lrx(u)]
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2 :?2 Fea(s) 3 Ioos) — 3.4,
42 (”;‘2’_ m”f) [2 (m2 — m?) Vy(s) + 6 (m2 — m?) Vy(s)
+ 41,0 (m?) + 51 n(s) + 3 1,0(5)] } (H.10)

and the total amplitude to one-loop is given by adding the two. It is y—independent
once we take into account the running coupling constant of Eq. (H.4).
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