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Introduió
Una desripió adequada per a la físia no pertorba-tivaEnara que pot semblar estrany omençar l'esriptura d'una tesi que trata la Cro-modinàmia Cuàntia (QCD) a energies baixes sense parlar d'aspetes tals omsimetria quiral, teories efetives o semblants, re que és fonamental assentar labase sobre la qual es onstruiran tots els àluls disutits en este treball.La físia no pertorbativa no es pot estudiar amb els mètodes habituals de laTeoria Quàntia de Camps (QFT), és a dir, teoria de pertorbaions. En este úl-tim as els diferents observables admeten una expansió en potènies de la ostantd'aoblament, que si se suposa petita (omparada amb la unitat) permet establiruna jerarquia entre els termes de l'expansió : els termes amb potènies més altesde la onstant d'aoblament estan suprimits i per tant podem tallar l'expansió aun ordre donat. La QFT garanteix que els observables aompleixen tots els req-uisits d'una teoria quàntia relativista : miroausalitat, unitarietat, analitiitat,invariània Poinaré, teorema spin�estadístia i desomposiió en lusters. Estosprerequisits no de�neixen unívoament la QFT, però qualsevol teoria que pretengadonar una desripió adequada de la físia deu omplir�los. El fet de que la físiano pertorbativa no es puga estudiar amb teoria de pertorbaions a QFT no vol dirque dega ser desrita amb altres teories que no omplisquen els nostres prerequisits.Per tant en esta tesi no es onsideraran models per als hadrons tals om el model dequarks onstituents no relativista (per suposat no es pretén fer una rítia destru-tiva d'estos models, que en alguns asos donen resultats sorprenenment en aordamb l'experiment).Quina és dons la manera adequada per a estudiar la físia no pertorbativa?En prinipi hom pot partir dels prinipis fonamentals abans esmentats i amb elseu sol ús tratar d'obtindre la màxima informaió possible de l'objete que s'estàestudiant. Enara que este mètode és el més general i no es ompromet amb ningunateoria, sol ser molt po restritiu, de tal manera que dóna propietats molt generalsde l'objete sota estudi i requereix de molta informaió experimental adiional pera fer una prediió. Per tant esta idea no és gaire atrativa. Per un altra banda,tenint en ompte la re�exió que fa Weinberg al seu llibre [1℄, a energies su�ientmentbaixes la físia quàntia relativista (a la que ens referirem genèriament om físiade partíules) neessàriament ve desrita per la QFT. Per tant, enara que no es



10 Introduiópuga apliar la teoria de pertorbaions estàndard a la físia no pertorbativa, la QFTsegueix sent la desripió adequada (i pot ser, l'únia possible).El que hem disutit al paràgraf anterior sembla un po ontraditori. Tenim queemprar QFT però no el mètod estàndard de QFT. Com podem dons fer àluls?Ens alen els mètodes no pertorbatius de la QFT. La manera més direta de feraçò és de�nint la QFT desde el formalisme d'integrals de amí, però és prou mésfàil de dir que de fer. En este formalisme tots els observables es de�neixen a partird'integrals sobre totes les possibles on�guraions dels amps de la teoria, pesadesper l'aió làsia exponeniada. Estes integrals (integrals de amí) són inabordablesanalítiament i per tant tan sols mètodes numèris poden alular�les (estos mètodeses oneixen om àlus en el retíle o lattie). Tot i així es requereixen ordinadorsmolt potents, que empren grans quantitats de temps per a fer estos àluls. Lesaproximaions que es deuen fer per a aonseguir reduir el temps de omputaiófan que els errors assoiats a estos àluls siguen grans. Este mètode és per tant,insatisfatori (enara que nous ordinadors més potents i re�naments en les tèniquesde àlul el fan més i més preís).Hi ha dons alguna altra possibilitat a banda de lattie? Afortunadament laresposta és sí. Enara que la teoria fonamental siga essenialment no pertorbativa,quan restringim el nostre estudi a un setor determinat es poden trobar paràmetresque romanen menuts en este setor. Per tant podem organitzar el nostre àlul omuna expanxió en potènies reixents d'estos paràmetres i establir una jerarquia entreells. Esta idea es manifesta plenament a les teories efetives de amps (EFT). En unrègim (d'energies, per exemple) donat, no tots els graus de llibertat (i.e., partíules)de la teoria neessiten ser onsiderats. Els modes pesats deuen ser integrats fun-ionalment de l'aió i els seus efetes es manifestaran en les onstants de energiesbaixes (LECs). Per tant, el primer pas per a afrontar l'estudi de la físia no per-torbativa és trobar els graus de llibertat efetius adients. Esta eleió normalmentdetermina també quin és el paràmetre d'expansió.Esta última possibilitat serà la que en la majoria dels asos emprarem per aafrontar els àluls d'esta tesi, enara que quan alga, els ombinarem adequadamentamb prinipis axiomàtis i altres tèniques.La teoria de les interaions fortesLa Cromodinàmia Cuàntia (QCD) es onsidera la teoria fonamental que governales interaions fortes. Hi ha un bon grapat d'evidènies teòriques i experimentalsque suporten esta a�rmaió [2℄. QCD és la teoria gauge SU(3)C , és a dir una teoriaque roman invariant sota transformaions loals del grup SU(3) de olor. Esta inva-riània implia que els transmisors de la interaió són vuit gluons, bosons de gaugesense massa d'spin 1, que es transformen om la representaió adjunta del grup degauge. El aràter no abelià del grup SU(3) implia que els gluons interatuen en-tre ells, o dit d'un altra manera, els gluons són portadors de la àrrega de olor (alontrari que en eletromagnetisme, on el fotó es elètriament neutre). El ontingut



Introduió 11material de la teoria són els quarks (antiquarks), partíules d'spin 12 (fermions) quees transformen om la representaió fonamental (antifonamental) del grup de gauge,i per tant es manifesten en tres olors diferents. Estos fermions són en general mas-sius. Mentre el ontingut en bosons de gauge de la teoria ve �xat pel grup de gauge,el ontingut material deu ser inferit de la fenomenologia (per exemple no hi haap impediment teòri a inloure bosons d'spin zero transformant�se om la repre-sentaió fonamental, om tampo seria inonsistent inloure amps transformant�seom altres representaions irredutibles del grup de gauge). El nombre de quarksen la teoria (nombre de famílies) tampo ve �xat. El model estàndard (SM) prediuque deuen aparèixer sempre en doblets [3℄, i experimentalment s'han trobat tresfamílies : � ud � ; � s � ; � tb � : (1)El fet que siguen preisament tres famílies és un fet que enara no ha trobat unaexpliaió teòria satisfatòria. Nosaltres aeptarem que hi ha tres famílies i noens preouparem dels motius fonamentals que impliquen una (inexistent) teoria delsabor. Segons la seua massa, els quarks es poden separar en lleugers (u; d i s) ipesats (; b i t). L'esala que separa els dos setors es oneix om �QCD � 1GeV ies disutirà a ontinuaió.Conentrem�nos en el setor lleuger de QCD. En este setor és una bona aprox-imaió suposar que la massa dels quarks és zero. D'esta manera la teoria tan solsdepén d'un paràmetre, la onstant d'aoblament �s. Enara podem dir més : nohi ha en el Lagrangià de QCD ap paràmetre amb dimensions de massa. Per tantno tenim ninguna esala per a distingir energies altes de baixes (la teoria és pertant làssiament onforme). Clarament la fenomenologia distingeix energies baixes(físia hadrònia) d'altes (físia de jets). La soluió d'este trenalosques la tenenels efetes quàntis. El aràter no abelià del grup de gauge SU(3) no es manifestatan sols en les partiules transmisores de la interaió. És també responsable delsfenòmens de llibertat assimptòtia i on�nament. Correions quàntiques fan que laonstant d'aoblament no siga �onstant� en el sentit estrite, sino més bé que de-penga de l'esala d'energia. Açò soluiona els problemes anteriors : la dependèniaen energia d'�s genera una esala d'energia, �QCD (este fenòmen va ser batejat omtransmutaió dimensional) que a més trena la simetria onforme que apareixia anivell làssi (a nivell del Lagrangià); el aràter no abelià fa que �s siga menudaper a energies altes (llibertat assimptòtia) i gran per a baixes (on�nament). Pertant a energies menors que �QCD la interaió es fa tan intensa que quarks i gluonsno poden existir om a partíules lliures i es veuen �on�nats� en hadrons, partíulesque sempre es transformen om la representaió trivial de SU(3) (és a dir, no tenenolor). Estos són els graus de llibertat assimptòtis que són observats experimental-ment a energies baixes i són els que tratarem en esta tesi.Una onsequènia de la grandària d'�s a energies baixes és que no podem emprarel Lagrangià de QCD diretament per als nostres àluls en una expansió pertorba-tiva estàndard. Els mètodes no pertorbatius seran la ferramenta lau per a poder



12 Introduióalular fenòmens relaionats amb les interaions fortes.Teories efetives : teoria de pertorbaions quiralTrets fonamentals de les teories efetivesSeria orrete a�rmar que les lleis de Newton son inorretes? Sabem que no tenenen ompte ni la relativitat espeial ni la físia quàntia. I les equaions de Maxwell?Ignoren els efetes quàntis de la natura. I l'equaió d'Shrödinger? Enara queés una teoria quàntia onsidera que la veloitat de la llum és in�nita. Inlús lateoria de la relativitat general, el gran llegat d'Einstein seria una teoria errònia alno onsiderar efetes quàntis, si som tant restritius en els nostres riteris. De fet,seguint amb el mateix riteri, seria molt atrevit dir que la QFT és orreta, ja queningú ens pot assegurar que no hi ha un altra teoria més fonamental que es manifestaplenament a energies més altes.En esta tesi, per desomptat, no adoptarem este punt de vista tan intransi-gent. La meània làssia newtoniana és vàlida si onsiderem  = 1 i ~ = 0,l'eletrodinàmia làssia i la relativitat assumeixen ~ = 0 i la meània quàntiaonsidera  = 1. Per tant onsiderarem estes aproximaions om teories efe-tives [4,5℄ d'una teoria més fonamental, més que onsiderar�les inorretes. De fet,en els règims en els que estes teories són vàlides onstitueixen la menera més e�ientde alular qualsevol proés físi. Al ap i a la � no hi ha que oblidar que la físiaés una desripió de la natura (ens diu om oorren les oses més que dir perquèoorren). Per tant el terme efetiu no deu ser despreiatiu, sino més bé deu ferreferènia a la onveniènia del àlul.Inlús en un esenari donat, en el que optem per una d'estes teories, podem desit-jar assolir un nivell de preissió tal que els efetes quantis (o relativistes) no podenser ignorats. Per tant hom pot, en llo de alular en la teoria fonamental (gen-eralment molt més ompliada) onsiderar orreions petites degudes a esta teoria.Per tant estes orreions es manifestaran om potènies reixents de ~ (o 1=) demanera que podem trunar la sèrie segons la preissió desitjada. Esta és l'essèniai un dels trets més fonamentals de les teories efetives : la possibilitat d'inorporarde manera organitzada orreions per a millorar la pressiió dels àluls. De fet,la teoria de pertorbaions en la onstant d'aoblament es pot veure om una teoriaefetiva on els efetes relativistes són exates i els efetes quàntis apareixen omuna sèrie de potènies en ~.En el mar d'una QFT, les teories efetives s'obtenen integrant funionalment elsamps pesats de l'aió. Si estem estudiant proesos a energies E � � integraremels graus de llibertat amb massa M � �. Els àluls s'organitzaran om potèniesreixents d'energia sobre l'esala �. Els aoblaments dels operadors a la teoria efe-tiva s'obtenen pertorbativament de la teoria més fonamental. Este proediment quea priori pot pareixer senzill, es omplia en els asos de teories fortament aoblades,om és el as de QCD. En este as, per sota de l'esala � la teoria esdevé unatransiió de fase, i per tant l'espetre anvia. Així dons tan sols podem guiar�nos



Introduió 13per arguments generals om simetria : la teoria efetiva ha de tindre les mateixessimetries que la teoria fonamental, i els aoblaments del operadors no poden �xar�se.La simetria quiralRestringint�nos al setor lleuger de QCD, podem onsiderar quarks sense massa,mu = md = ms = 0. En este límit, el Lagrangià de QCD té una simetria (global)aidental de sabor que involura tan sols els amps de quark. El Lagrangià ésinvariant sota el grup quiral G = SU(3)L 
 SU(3)R, que transforma de maneraindependent els amps de quark dretans qR i esquerrans qL (estos amps de Weylsón en realitat els amps fermiònis fonamentals, que pertanyen a representaionsirredutibles del grup de Poinaré).Esta simetria deuria tindre un efete sobre l'espetre de la teoria, lassi�antles partíules en multiplets amb aproximadament la mateixa massa orresponents arepresentaions irredutibles de G. En partiular açò impliaria que els multipletsdeurien apareixer per parells amb igual massa i paritat oposada. En la naturasí trobem multiplets aproximadament degenerats en massa, però els multiplets deparitat oposada tenen masses prou diferents. Açò fa pensar que el buit de QCD noés invariant sota G, fenòmen onegut om trenament espontani de la simetria. Elfet de que sí es troben multiplets orresponents al grup H = SU(3)V india que lasimetria no està totalment trenada : el buit és invariant sota este subgrup H � G.Este fenòmen implia l'apariió en la teoria de vuit partíules sense massa onegudesom els bosons de Goldstone, �; K i � [6℄, una per ada generador que no deixa elbuit invariant (orresponent als vuit generadors axials). Enara que realment elsquarks tenen massa, esta és prou menuda i pot onsiderar�se una perturbaió delas sense masses. Açò fa que els bosons de Goldstone adquirisquen una massa (lasimetria quiral està explíitament trenada per les masses dels quarks), que és moltmenor que la de la resta dels hadrons de l'espetre.A energies su�ientment baixes, els bosons de Goldstone són els únis grausde llibertat dinàmis i per tant podem onstruir una teoria efetiva que tinga lesmateixes simetries que QCD (simetria quiral espontàniament trenada, paritat ionjugaió de àrrega) tan sols amb estes partíules. El formalisme general pera parametritzar els amps desribint els bosons de Goldstone va ser desenvolupatper Callan, Coleman Wess i Zumino [7℄. Com que les masses dels Goldstones sónmenudes i les energies baixes, organitzarem el àlul en potènies reixents de mo-ments i masses sobre �QCD. Açò es tradueix en una organitzaió del Lagrangiàefetiu en termes reixents de derivades i masses, on en prinipi hi ha un nombrein�nit de termes multipliats per onstants desonegudes. Esta teoria es oneix omTeoria de Pertorbaions Quiral (�PT) i va ser desenvolupada en les Refs. [8, 9℄.Un dels trets araterístis de les teories efetives és que no són renormalitzablesen el sentit làssi. Calen un nombre in�nit de termes per a poder absorbir lesdivergènies generades pels loops. Com que d'entrada tenim un nombre in�nitd'operadors a la nostra teoria efetiva, podem obtindre resultats �nits treballanta un ordre donat en l'expansió quiral.



14 IntroduióExpansió en 1=NC : Resonànies i barionsTeoria quiral de resonàniesSi volem extendre el rang d'energies de �PT per damunt de la ressonània méslleugera (el mesò �, d'spin 1), neessitem inloure explíitament amps dinàmis quereen esta i altres resonànies. En prinipi açò es pot fer de manera relativamentfàil, però perdem una de les propietats més importants de �PT : l'existènia d'unparàmetre menut per a organitzar el nostre àlul. En este rang d'energies E=�QCDno és menut, i en prinipi no tenim un riteri lar per a onsider un operadorsubdominant respetre d'un altre pel fet de tindre més derivades. Tots els operadorssón igualment importants. Açò és un desastre desde el punt de vista fenomenològi,ja que no hi ha manera de tindre la més mínima apaitat preditiva.Part de la soluió la trobem a l'expansió de QCD en 1=NC , on NC representael nombre de olors. 't Hooft [10℄ va suggerir que la teoria gauge SU(NC) ambNC tendint a in�nit presentaria simpli�aions notables i al mateix temps podriadesriure la fenomenologia de QCD amb tres sabors. En general hom pot estudiareste límit om una expansió en termes de 1=NC on el primer terme representa ellímit NC !1. Entre altres oses, en este límit els loops d'hadrons estan suprimitsi poden en primera aproximaió ser ignorats. Altres onsequènies son [11℄ :1. Hi ha un nombre in�nit de resonànies per ada onjunt de nombres quàntis.Estes resonànies són estables i no interatuen entre elles.2. Els vertex d'interaió dels estats hadrònis estan suprimits om 1=pNC perada estat adiional.3. A l'ordre dominant la dinàmia hadrònia es desriu mitjançant un Lagrangiàefetiu amb hadrons om a graus de llibertat atius, on només ontribuionsa nivell arbre deuen ser onsiderades.4. La anòmalia axial dessapareix i QCD és invariant sota U(3)L 
 U(3)R.5. Es pot demostrar que en este límit la simetria quiral es trena espontàniament[12℄.6. Els mesons són estats purs �qq.Per tant, tenim un riteri d'ordenaió dels operadors en el Lagrangià efetiu per a lesresonànies. Termes amb més traes de sabor i àluls a un loop són subdominants.Enara tenim, però, un problema : no tenim ap riteri per a ordenar termes ambdiferent nombre de derivades. Per a resoldre este problema tenim que imposar quela nostra teoria amb resonànies, que en prinipi desriu la físia en qualsevol règimenergèti, empalme bé amb QCD a energies altes. Funions de Green, fators deforma i amplituts de dispersió tendeixen a zero quan els moments es fan grans. Pertant exigirem que la desripió en termes de paràmetres hadrònis tendisquen a zero



Introduió 15de la mateixa manera. Este proediment es oneix om empalmament amb urtesdistànies. D'esta manera termes amb moltes derivades produiran ontribuionsque no tendeixen a zero en el límit de grans moments, i per tant el orresponentoe�ient deu ser zero.En la majoria de les oasions, tratar amb un nombre in�nit de resonàniesés massa ambiiós, i s'opta per onsiderar tan sols un nombre de resonànies su�-ient per a satisfer tots els lligams que s'estan estudiant. Este proediment es oneixomMinimal Hadroni Ansatz (MHA). En esta tesi onsiderarem la torre senera deresonànies en alguns asos partiulars. Una volta que hem exigit que els paràmetreshadrònis satisfaen QCD, podem integrar funionalment les resonànies per a obtin-dre una prediió per a les LECs del Lagrangià de �PT. Esta prediió s'anomenaper saturaió amb resonànies, proediment que va ser apliat per primera volta enRef. [13℄.Barions en l'expansió 1/NCPodem apro�tar l'expansió de QCD en 1=NC per aprendre físia bariònia? La res-posta és a�rmativa. L'estudi onjunt de les regles de ontatge en NC de QCD iel proés de dispersió pio�nuleó a energies baixes permet trobar relaions de on-sistènia que deuen ser satisfetes pels operadors d'spin�sabor en el setor bariòni deQCD. Com a resultat es troba que en el límit de NC !1 els barions deuen satisferuna algebra SU(2nf ) ontreta. nf fa referènia al nombre de sabors lleugers i el2 denota l'spin. El paràmetre que ontrau l'algebra és preisament 1=NC. L'estudide les relaions de onsistènia és pot fer emprant una representaió explíita del'algebra ontreta. La base òptima per a este estudi és la donada pel model quarkno relativista (enara que esta eleió no suposa ap hipòtesi del aràter relati-vista dels quarks que formen el barió). Este estudi ens permet expresar propietatsestàtiques de barions (tals om masses, fators de forma, moments magnètis : : :) om una expansió en operadors de l'algebra d'spin�sabor, ordenats en potèniesreixents de 1=NC . I el que és més interesant, podem estudiar el trenament desimetria SU(3) de sabor de manera onjunta a les orreions en 1=NC , ja que elsdos efetes són aproximadament del mateix ordre [12℄.Funions de GreenCom ja hem omentat, a energies baixes i intermèdies els graus de llibertat efetiusno són quarks i gluons, sino més bé hadrons. Per tant un àlul on els estatsassimptòtis són quarks, enara que siga a energies baixes, no té gaire trellat. Elàlul en prinipi és pot fer (si es troben els mètodes neessaris), però no ens ajudaràa tindre una millor omprensió de la físia hadrònia a energies baixes. En l'esperitde la fórmula de reduió LSZ, podem alular el valor esperat en el buit del produtetemporalment ordenat de orrents en QCD. Estos orrents són de la forma J� = �q � q,on � és una matriu de Dira i de sabor (però singlet de olour), i per tant involuren



16 Introduióel produte de dos amps en el mateix punt de l'espai�temps. � determina elsnombres quàntis d'spin, paritat i onjugaió de àrrega, i om el orrent J� onetauna determinada ressonània amb el buit, pot fer de amp interpolador per a esta.El métode més e�ient per a alular funions de Green es oneix om el métodedels orrents externs.Una manera d'obtindre informaió del món hadròni és fer un estudi de les fun-ions de Green en diferents règims energètis i exigir que empalmen suaument. Pera energies baixes i intermèdies ja hem disutit om afrontar estos àluls, però,om proedir a energies altes? Hom podria pensar que a energies altes, on la on-stant d'aoblament és prou menuda, un àlul pertorbatiu proporiona un resultatsatisfatori, però açò no és ert. Les ontribuions no pertorbatives també es man-ifesten a energies altes i a més d'una forma que no pot ser mai simulada per lapart pertorbativa. Per exemple, per a una família de funions de Green onegudaom a paràmetres d'ordre del trenament espontani de la simetria quiral, el àlulpertorbatiu és zero a tots els ordres d'�s, però açò no pot ser tota la veritat. Sónpreisament els efetes no pertorbatius els que fan que estes funions de Green nosiguen idéntiament nul�les.El métode emprat per a estudiar les orreions no pertorbatives a transferèniade moment alta es basa en l'expansió en produte d'operadors (OPE) [15℄. Estaexpansió permet esriure el produte de dos (o més) operadors situats en diferentspunts de l'espai�temps x i y, om una sèrie d'operadors loals de�nits a el punt del'espai�temps x multipliats per oe�ients (anomenats de Wilson) que depenen dela diferènia x� y. El primer operador de l'expansió és la identitat, que orresponal resultat pertorbatiu. Normalment hom trata les funions de Green a l'espai demoments, de manera que l'OPE es transforma en una expanssió en potènies inversesdel moment. En prendre el valor d'expetaió en el buit dels operadors, en teoriespertorbatives tan sols l'operador identitat dóna una ontribuió no nul�la. La ideade les regles de suma [16℄ va ser onsiderar que el buit de QCD és essenialment nopertorbatiu i per tant el valor d'expetaió en el buit d'operadors n�ordenats no észero. Estos elements de matriu s'anomenen ondensats de buit i parametritzen elnostre desoneixement dels meanismes no pertorbatius.Així dons ja tenim les ferramentes adequades per a alular les funions deGreen en les diferents regions energètiques. Després d'exigir un empalmament suaua les regions intermèdies podrem obtindre molta informaió rellevant del meanismed'hadronitzaió.Relaions de dispersióTal i om hem esmentat prèviament, la desripió teòria adequada per als fenò-mens no pertorbatius és la QFT. No obstant això, en moltes oasions els prinipisaxiomàtis de la físia de partíules poden omplementar la desripió en termesd'una teoria de amps. Açò pot pareixer a primera vista un po ontraditori. Comes poden omplementar si tota la informaió dels prinipis axiomàtis ja està au-



Introduió 17tomàtiament inlosa en la QFT? La resposta és senzilla : en la majoria dels asostan sols sabem alular en teories de amps mitjançant una expansió (no neessàri-ament en la onstant d'aoblament), de tal manera que els prinipis axiomàtis tansols es ompleixen de manera pertorbativa. Els prinipis axiomàtis ens proporio-nen propietats que deuen omplir (per exemple) les amplituts de dispersió a tots elsordres i en tots el règims energètis : són essenialment resultats no pertorbatius.Certament aquesta informaió és massa suulenta per a deixar de onsiderar�la. Enesta tesi emprarem els següents prinipis :1. Simetria Poinaré. Este és el requeriment més bàsi. En primer llo impliaque en tots els proessos energia i moment (és a dir, tetra�moment) són mag-nituds onservades. En segon llo onsiderem la simetria de Lorentz (subgrupdel grup de Poinaré). Tal i om deia Einstein, les equaions que governen lafísia s'esriuen de la mateixa manera en qualsevol sistema de referènia. Açòes tradueix en que l'amplitut de dispersió tan sols pot dependre de quantitatsinvariants Lorentz (és a dir, produtes esalars).2. Unitarietat. És el prinipi més intuïtiu, i bàsiament ens diu que de la proba-bilitat de que de la ol�lisió de dos (o més) partíules es produïsa algun estat�nal és del 100%; i a l'inrevés, que donat un estat �nal, hi ha una probabili-tat màxima de que es puga produir de la ol�lisió d'algunes partíules. Estosrequeriments es tradueixen en que la matriu de dispersió és unitària :S Sy = Sy S = 11 ; (2)3. Simetria de reuament. Este prinipi relaiona les amplituts de dispersió delsproessos obtesos interanviant partíules de l'estat iniial i �nal (onvertint�les en antipartíules). Els proessos així obtesos s'anomenen anals reuats.4. Analitiitat. Este prinipi és el menys intuïtiu, però és molt i molt útil. Do-nada una amplitut de dispersió per a un proés de dos partíules anant ados partíules podem extraure les diferents ones parials. Mentre l'amplitudde dispersió depén de l'energia i angles, les ones parials tan sols depenende l'energia (normalment emprarem l'energia total en el entre de masses, oequivalentment l'invariant relativista s). Suposant que s és una variable om-plexa, les ones parials passen a ser funions de�nides en el pla omplex C .Analitiitat imposa que adasuna de les ones parials és una funió analítiade s exepte per un tall a l'eix real positiu, neessari per a satisfer unitarietat.Com que una amplitud parial en el anal s onté a totes les ones parialsdels anals t i u, la ondiió d'analitiitat es pot traduir en una ondiió per al'amplitut de dispersió om a funió de s i t.Per tant l'ús onjunt de la QFT (om a teories efetives) i els prinipis axiomàtisés una ferramenta fonamental per a la físia no pertorbativa.



18 IntroduióObjetius de la tesiTotes estes tèniques tenen om a primer objetiu una major omprensió dels fenò-mens no pertorbatius en general i de l'hadronitzaió en partiular. Un segon objetiués obtindre valuosa informaió de la dinàmia del sabor. Enara que en QCD el sa-bor és sempre onservat, les interaions eletrofebles en general violen el sabor (itambé simetries disretes tals om P , C i CP ) [3℄. Enara que el model estàndards'esriga en termes de quarks (i per suposat també leptons), els proesos físis oor-ren entre hadrons. Normalment les interaions febles desriuen la dessintegraiód'un quark (per exemple s) en un altre quark (u) i un parell de leptons, mitjançantorrents vetorials i vetor�axials. Com ja hem disutit, els estats assimptòtis sonhadrons, i per tant hem de alular elements de matriu hadrònis de orrents dequarks. El mètode dels orrents externs apliat a les teories efetives és idoni per alseu àlul. És per tant essenial ontrolar el fenòmen de l'hadronitzaió per a poderentendre orretament les interaions eletrofebles.Al Capítol 1 es fa una introduió a la �PT i en partiular es disutirà om in-loure orrents i fonts tensorials en QCD i en teories efetives. Estos orrents, a mésde odi�ar informaió important per a entendre l'estrutura bariónia i la dessinte-graió de mesons pesats amb bellesa, apareixen de manera natural en esenaris mésenllà del SM. En partiular es onstruirà la base d'operadors d'ordres O(p4) i O(p6),disutint els meanismes que fan que siga mínima i no redundant. Al Capítol 2s'introduirà l'expansió en 1=NC de QCD i om dóna llo a la teoria de resonàniesquiral (R�T). En partiular s'introduiran les fonts tensorials i les resonànies ambnombres quàntis JPC = 1+�. També s'esriurà la base d'operadors en el setor deparitat intrínsea negativa. Al Capítol 3 s'apliaran les tèniques de 1=NC en el se-tor bariòni. Es trobaran les relaions de onsistènia i les identitats entre operadorsde l'algebra d'spin�sabor. Com a apliaió alularem els fators de forma veto-rial i vetor�axial tenint en ompte el trenament de simetria SU(3). Al Capítol 4introduirem les funions de Green i derivarem les diferents identitats de Ward. Esdisutirà l'OPE i es alularan les funions de Green rellevants per a la fenomenolo-gia en els diferents règims energètis. Al Capítol 5 emprarem els resultats anteriorsper a dues apliaions fenomenòlogiques : la desintegraió radiativa del pio arregati la determinaió del paràmetre Vus en desintegraions semileptòniques d'hiperons.Finalment, al Capítol 6 es disutiran àmpliament les apliaions dels prinipis axio-màtis de la físia de partíules. Fent una anàlisi ombinada amb teories efetivesobtindrem, per una banda, otes per a les LECs de �PT, i per un altra obtindremla desripió òptima de la produió de mesons mitjançant fotons sota el llindar deproduió de quatre pions.



Chapter 1Chiral Perturbation Theory
1.1 Introdution to e�etive �eld theoriesAlthough the ultimate goal of physis is a desription of nature in terms of a funda-mental theory (let us say, the theory of everything), this does not mean that in orderto get a predition for a given phenomenon we neessarily need to know that theory.Even if that theory were known (whih is very unlikely to happen), it would not besensible to employ it for desribing any proess that one may imagine. Moreover,the knowledge of this ultimate theory does not neessarily invalidate less fundamen-tal theories (however, a model an indeed be invalidated by a more fundamentaltheory). This less fundamental theory must be regarded as a valid theory that onlyapplies under ertain onditions.Let us illustrate this with an example. If we are interested in the desription ofthe translational movement of the Earth around the Sun, it is of little sense to usequantum mehanis. For instane the radial exitation quantum number would havea value n � 3�1068, learly pointing out that the system is utterly lassi (althoughin priniple it is not forbidden at all, it seems more sensible to use the Shrödingerequation for desribing the hydrogen atom, where the radial exitation number liesbetween one and ten). It seems more reasonable then to assume } = 0 and uselassial mehanis. It is also an exellent approximation to use the Newtoniandesription (assuming then  = 1) for the gravitational fore and use Newton'slaws (this will give us a desription whih is valid within a 5% auray). But ifwe want to beat that preision we need to inlude relativisti orretions due tothe �niteness of the speed of light and the urvature of the spae�time. Sine thisproblem possesses spherial symmetry the exat analyti solution an be obtainedeasily, but in general this is not the ase. For those more ompliated ases, one anemploy numerial methods and obtain the exat solution, but the lak of an analytistruture will translate into less insight into the physial situation. If the orretionsare expeted to be small, as it is the ase for our example, there is another approahwhih yields to analyti solutions. We an identify a small quantity that an qualifyas an expansion parameter, as for example 1= (sine it is more desirable to havedimensionless quantities one might hoose � = v= with v the speed of the objet



20 Chiral Perturbation Theoryunder study). Then the �rst term in the expansion would orrespond to  = 1(� = 0) representing the Newtonian desription, and the rest of the terms wouldorrespond to the relativisti orretions. The more aurate we want our resultto be, the more terms in the expansion we need to inlude. And what it is moreimportant, the magnitude of the orretions dereases with the number of powers(so orretions are under ontrol). Other usual expansion parameters are ~, �em,me=mp : : :From the example disussed above we learn that the appropriate hoie of thetheory is essential. In the ase of Quantum Field Theory, though, it is ompulsory tomake the optimum hoie of the degrees of freedom. This is so beause any partileexisting in the spetrum of nature, no matter how heavy it is, enters our alulationsas virtual exitations from the vauum. Sine it is impossible to know the wholespetrum of partiles (let alone the details of their interations with the partileswe are interested in) we need a smart way of takling this problem. The onepts ofsymmetry and E�etive Field Theory are the key to solve it and onstitute the maintool to study the physis at energies muh smaller than a typial sale. Using a moretehnial language, if we are interested in an energy sale E � � we should integrateout of the ation those degrees of freedom heavier than � (typially partiles withmass higher than �). Those loal operators remaining after the integration (ingeneral an in�nite number of them) will have the same symmetries as the underlyingmore fundamental theory and the e�ets of the degrees of freedom that have beenintegrated out will be enoded in the ouplings. The Applequist�Carazonne theoremis the rigorous formulation of this result [17℄. For the ases where the theory is knownand it is weakly oupled, this integration an be performed analytially. In thoseases where the fundamental theory is not known, or where the theory is stronglyoupled, symmetry will be the only guidane for building the E�etive Field Theory.As a last remark, E�etive Field Theories are not renormalizable in the usual,strit sense, beause they have operators with dimension higher than four. This isnot however a drawbak, as from the very beginning we are dealing with an in�nitenumber of operators. For the ase of theories built only from symmetry priniplesthe oe�ients aompanying eah operator are a priory unknown, in suh a waythat if we want to inrease the preision of the alulations we will fae more andmore unknown parameters.The theoretial issues disussed in this hapters are niely explained in Refs. [4,5, 18, 19℄.1.2 The QCD Lagrangian and its symmetriesNowadays Quantum Chromodynamis (QCD for short) is regarded as the theory ofthe strong interations. It is the gauge theory assoiated to the Lie group SU(NC)where NC stands for the number of olours. The olour degree of freedom was �rstintrodued to aount for the apparent violation of the Pauli priniple in hadronistates with spin 3=2 suh as �++(u u u); then it played the rï¾12 le of a quantum



1.2 The QCD Lagrangian and its symmetries 21number assoiated to a global symmetry (it restrits the form of the interation).The gauge priniple is a suessful method to generate interations between matter�elds arried by gauge bosons (massless in the ase of unbroken symmetry) ensuringits renormalizability. Furthermore, in the ase of non�Abelian theories the full lot ofproesses is governed by a single oupling, namely �s (now the symmetry is ditatingthe form of the interation). There are plenty of arguments pointing out that thenumber of olours is indeed three [2℄.One the symmetry group and matter ontent is spei�ed, the Lagrangian isunique. In our ase the building bloks are Nf (number of �avours) massive spin�1=2partiles alled quarks. We will use a rather ompat notation and use a singlesymbol q to denote an Nf�omponent vetor olumn, eah omponent having NCdi�erent olours. The QCD Lagrangian then reads :LQCD = q (iD= �M) q � 14 Ga�� G��a + LFP + LGF ;D� = �� � i gsGa� �a2 ;Ga�� = ��Ga� � ��Ga� + gs fabGb�G� ;�s � g2s4 � ; as � �s� ; (1.1)where Ga� are the N2C � 1 spin�one massless gluon �elds, gs is the strong ouplingonstant, fab are the struture onstants of the SU(NC) group and �a are its gener-ators. LFP stands for the Faddeev�Popov term and LGF for the Gauge Fixing term,both required for a orret quantization of the theory. Two nie features of this La-grangian are that a mass term for the gluons is forbidden and that their oupling tothe fermions does not depend on the partiular �avour. M = diagfmu; md; ms : : : gstands for the mass matrix, whih without loss of generality an be hosen to bediagonal. Unfortunately symmetry does not onstrain the value of the masses.In order to disuss the (aidental) global symmetries of (1.1) we will restritourselves to the so alled light setor of QCD with nf light �avours. It omprises theu, d and s (light) quarks whose mass is muh lighter than the so alled heavy quarks(, b and t), whih will not be disussed in this thesis. It is not a bad approximationto onsider their mass equal to zero (the so alled hiral limit), being (1.1) reduedto L0QCD = i qLD= qL + i qRD= qR � 14 Ga��G��a + LFP + LGF ; (1.2)where qL and qR orrespond to the left� and right�handed quark �elds de�ned as 1qL;R = PL;R q ; PL;R = 12 (1 � 5) : (1.3)1In our onventions 5 = i 0123 and ��� = i2 [�; � ℄.



22 Chiral Perturbation TheorySine the left� and right�handed quarks do not mix among eah other, (1.2) isinvariant under independent phase rede�nitions and rotations for eah set of hiral�elds, what an be expressed in group theoretial language as an invariane underthe ation of the group UV (1) 
 UA(1) 
 SU(nf )L 
 SU(nf )R. Quantum e�ets(anomalies) break the U(1)A transformations and the U(1)V symmetry is triviallyrealized as the baryoni number. The remaining transformations belong to the soalled hiral group G = SU(nf )L 
 SU(nf )R whose elements an be written asg = � gL 00 gR � = exp� i �aL T aL 00 i �aR T aR �� (gL; gR) = [ exp (i �aL T aL) ; exp (i �aR T aR)℄ ; (1.4)being T aL;R = �a2 the generators of the subgroups SU(3)L;R. Its ation on the quark�elds is qL;R(x)! gL;R qL;R(x) : (1.5)The hiral group has two obvious invariant subgroups SU(3)L and SU(3)R whoseelements are of the type (gL; 11) and (11; gR), respetively. There is another non�invariant but interesting subgroup, H = SU(3)V , whose elements are de�ned as(gV ; gV ) or equivalently �aL = �aR. We an de�ne the set of axial transformationsde�ned as � = (gA; gyA) or �aL = ��aR that do not form a subgroup of G. One antake the quotient G=H but sine H is not invariant the result has not the strutureof a group. There is, however, a one to one orrespondene between the elements ofthe quotient spae and the elements of either SU(3)L, SU(3)R or �. This freedomwill be exploited to �nd the building bloks of Chiral Perturbation Theory (�PT forshort). The 2� (n2f � 1) assoiated Noether urrents, La� and Ra� are onserved andthe orresponding harges QaX = R d3~xXa0 are time�independent. They satisfy thegroup algebra of a diret produt spae :�QaX ; QbY � = i ÆXY fabQX : (1.6)For future purposes it is better to use linear ombinations of them, alled the otetsof vetor and axial�vetor urrents, assoiated to the sets of vetor and axial�vetortransformations :V a� (x) = Ra� + La� = �q(x) �a2 � q(x) ; Aa�(x) = Ra� � La� = �q(x) �a2 �5 q(x) ;(1.7)their assoiated harges satisfying the group algebra struture�QaV (A); QbV (A)� = i fabQV ; �QaA; QbV � = i fabQA ; (1.8)transforming under parity asP QaV P�1 = QaV ; P QaA P�1 = �QaA : (1.9)



1.2 The QCD Lagrangian and its symmetries 23Of ourse they ommute with the Hamiltonian of massless QCD [QaV ;H0QCD℄ =[QaA;H0QCD℄ = 0. The eletromagneti urrent and the eletri harge an be writtenas linear ombinations of the otet of vetor urrents and harges :J�em = V �3 + 1p3V �8 � V �3+ 8p3 ; Qem = Q3 + 1p3 Q8 � Q3+ 8p3 : (1.10)The vetor and axial�vetor urrents that mediate the weak deay of hadrons arealso linear ombinations of the otet of urrents :V 1�i 2� ; A1�i 2� ; u! d ;V 4+i 5� ; A4+i 5� ; s! u : (1.11)We will introdue now for future use the rest of the QCD otets of urrents : salar,pseudo�salar and tensor urrentsSa(x) = �q(x)�a q(x) ; P a(x) = i �q(x)�a 5 q(x) ;T a��(x) = �q(x) �a2 ��� q(x) ; (1.12)and the singlet urrentsV�(x) = �q(x) � q(x) ; A�(x) = �q(x) � 5 q(x) ;S(x) = �q(x) q(x) ; P (x) = i �q(x) 5 q(x) ;T��(x) = �q(x) ��� q(x) : (1.13)These omprise all independent soures beause we have used a omplete basis ofthe Dira Algebra. We remind the reader that there is no pseudo�tensor urrentbeause of the identity 2 : ��� 5 = i2 "���� ��� : (1.14)Of ourse one an handle with otets and singlets of urrents within a single expres-sion allowing a to take the value 0 and de�ning �0 =p2=nf 113�3. It will turn outuseful to de�ne the left� and right�handed salar and tensor urrentsSaL = 12 (Sa + i P a) ; T �� aL = P ����L T a�� ;SaR = 12 (Sa � i P a) ; T �� aR = P ����R T a�� ; (1.15)where PL;R are de�ned later in Eq. (1.24). It is interesting to know the derivatives ofthe vetor and axial�vetor urrents when the hiral symmetry is expliitly broken.Using the identities��(�qj � qi) = i (mj �mi) �qj qi ; ��(�qj � 5 qi) = (mj +mi) �qj i 5 qi ; (1.16)2We will use the onvention �0123 = +1 for the Levi�Civitï¾ 12 tensor ����� throughout thisthesis.



24 Chiral Perturbation Theoryinferred from the equations of motion we get :��V a� (x) = i �q(x) �M; �a2 � q(x) ; ��V�(x) = 0 ;��Aa�(x) = i �q(x)�M; �a2 � 5 q(x) ;��A�(x) = 2 i �q(x)M 5 q(x) + nf g2s32 �2 "���� G��a (x)G��a (x) ; (1.17)where the gluon term in the last divergene omes from the axial anomaly. Notethat in the speial ase ofM = m 11nf�nf [ that is, having exat SU(nf ) symmetry ℄the otet�vetor urrent is still onserved and��Aa�(x) = 2mP a(x) ;��A�(x) = 2mP (x) + nf g2s32 �2 "���� G��a (x)G��a (x) : (1.18)1.3 The running of �s : non�perturbative regimeand on�nementIn the hiral limit the QCD Lagrangian (1.2) has no energy sale. Naï¾12vely one anthink then that there is no possible distintion between long and short distanes,sine there is no mass sale to ompare with. This is in lear ontradition with thephenomenology, whih shows that at energies below one GeV QCD is a on�ningtheory and at high energies the quarks and gluons are almost free (this is the el-ebrated asymptoti freedom of QCD [20, 21℄). The quantum behaviour of QCD isgenerating an energy sale, usually denoted by �QCD.To get a �rmer grip on that idea let us have a look at the renormalization groupequation of QCD at the one�loop level :� �� d�sd� = �QCD(�s) = �(1)QCD ��s� �2 + O(�3s) ;�(1)QCD = 116 NC � nf3 : (1.19)This equation is only valid in perturbation theory, that is, as we shall see, at highenergies. For the physial values of nf and NC �QCD > 0, what points out that thestrength of the interation inreases at low energies and dereases at high energies (adistintive feature of non�Abelian theories). The solution of (1:19) is widely known :�s(�) = �s(�0)1 + �(1)QCD� �s(�0) log� ��0� � ��(1)QCD log� ��QCD� ; (1.20)where a new sale �QCD � �0 exp h� ��QCD �S(�0)i has emerged due to quantume�ets. Now we have a sale to ompare with and thene we are able to distinguish



1.4 QCD in the presene of external soures : transformation propertiesof the tensor soure 25between long and short distanes. At the sale � = MZ = 91:12GeV the strongouplig onstant has a value of �s(MZ) = 0:119 small enough for perturbationtheory to work. Applying the four�loop running equation and taking into aountthe mathing fators when quark thresholds are rossed, at a tipial low�energy salemp � 1GeV one gets �s(1GeV) = 0:5. Then at low energies the oupling onstantis so big that the theory beomes non�perturbative and on�ning. Of ourse insuh regime Eq. (1.19) no longer applies, but we an extrapolate its behaviour toonlude that the theory beomes strongly oupled. Being non�perturbative impliesthat the mathematial expression of the observables does not admit an expansionas a power series in the oupling onstant. Con�nement means that the degrees offreedom are not quark and gluons any more, but rather hadrons.1.4 QCD in the presene of external soures : trans-formation properties of the tensor soureAs explained in this hapter, the asymptoti states of QCD are not quarks andgluons, but hadrons. Then it is of little use to alulate matrix elements with quarksas initial or �nal states. It makes more sense to alulate vauum expetation valuesof olour singlet operators having the same quantum numbers as the hadroni states.This objets are usually alled Green funtions and their disussion is relegated toChapter 4.There is a powerful method for omputing matrix elements of operators made ofquark �elds in the same spae�time point alled the external �eld method [22℄. Atthe same time this method ensures that the hiral Ward identities are automatiallysatis�ed for any Green funtion (the onept of Ward identities will be explained indetail in Chapter 4). The idea is to extend the massless QCD Lagrangian (1.2) withexternal soures oupled to the di�erent quark bilinears :LQCD = L0QCD + Lext ;Lext = �q �(v� + 5 a�) q � �q (s� i 5 p) q + �q ��� �t�� q= �qR � r� qR + �qL � `� qL � �qR (s + i p) qL � �qL(s + i p) qR +�qL ��� ty�� qR + �qR ��� t�� qL ; (1.21)where we have de�ned r� � v� + a� and `� � v� � a�. The vetor and axial�vetorexternal �elds are hosen to be traeless in �avour spae, but the rest of them willin general have a non�vanishing trae; for instane�t�� = 8Xa=0 �a2 �t��a ; (1.22)The salar urrent has been introdued with a minus sign for latter onveniene(it has the same sign as the mass term). It is well known that an antisymmetritensor �t�� does not orrespond to an irreduible representation of the Lorentz group,



26 Chiral Perturbation Theorymoreover, it is ompletely reduible. So it an be deomposed into two irreduiblerepresentations using the identity [23℄�t�� = P ����L t�� + P ����R ty�� ; t�� = P ����L �t�� ; (1.23)where P ����L;R are the analogs of PL;R in Eq. (1.3) for the tensor �elds, given byP ����R = 14 (g�� g�� � g�� g�� + i "����) ; P ����L = �P ����R �y : (1.24)Atually one an hek that indeed they satisfy the usual properties of hiral pro-jetors P ����R(L) P ��R(L) �� = P ����R(L) ; P ����L(R) P ��R(L) �� = 0 : (1.25)Eq. (1.23) above just states the fat that t�� and ty�� are the left� and right�handedprojetions of the tensor �eld and an be seen as the analog of Eq. (1.3). The sixindependent omponents of �t�� an be split in a ovariant way into three left� andthree right�handed omponents. A hiral rotation ould mix v� with a�, s with pand the tensor with itself. This is preisely what one expets, sine 5 ating on ���is not an independent Dira matrix, but deomposable in terms of ��� alone.These external soures are nf � nf hermitian matries. They are not operatorsbut rather funtions, hene they are not quantized and an only appear as asymp-toti states (they do not propagate). We want (1.21) to have the same symmetriesas (1.2) and this imposes restritions in the way this soures transform under eitherdisrete symmetries (parity and harge onjugation) and the hiral group. Further-more, we an now impose the invariane of (1.21) under loal hiral transformations,where the transformation matries gR;L now depend on the spae�time point in whihthey are applied. Something similar is impossible to be satis�ed in (1.2). It is pre-isely this loal invariane what makes hiral Ward identities to be satis�ed for anyGreen funtion at any order [22℄. These transformation properties are skethed inTable 1.1. G(x) = SU(3)L 
 SU(3)R P Cs+ ip gR(s+ i p)gyL s� i p (s� i p)>`� gL`�gyL + i gL��gyL r� �r>�r� gRr�gyR + i gR��gyR `� �`>�t�� gR t�� gyL ty�� �t>��Table 1.1: Transformation properties of the external soures.If one de�nes the generating funtional, whih an be regarded as the vauum�



1.5 Spontaneous hiral symmetry breaking and the CCWZ formalism 27to�vauum transition amplitude in the presene of external �eldsexp (i Z[v�; a�; s; p; �t��℄) =Z D�qDqDG� exp�iZ d4x�L0QCD + Lext(v�; a�; s; p; �t��)	�= h 0 jT exp [ iLg:f:(v�; a�; s; p; �t��)℄ j 0 i= h0out j 0iniv�;a�;s;p;�t�� ; (1.26)then Green funtions are omputed by funtional derivatives taken with respet tothe external soures.As a last omment, we an use the external soure s to expliitly introdue asymmetry breaking term due to the non�zero masses of the quarks and the externalsoures r� and `� to break expliitly the symmetry due to eletromagneti and weakinterations : r� ! r� + eQA� ;`� ! `� + eQA� + 2p2 sin �W �W y T+ + h::� ;s ! s + M ; (1.27)being Q = 0BB� 23 0 00 �13 00 0 �13 1CCA ; T+ = 0BB� 0 Vud Vus0 0 00 0 0 1CCA : (1.28)1.5 Spontaneous hiral symmetry breaking and theCCWZ formalismSine (1.2) is invariant under global transformations of the G group, we expet thehadroni spetrum to organize itself aording to irreduible representations of G.This implies the existene of an equal�mass parity partner for eah partile, a sit-uation that does not seem to our in nature. The hadroni spetrum is however,organized as a series of irreduible representation of the group SU(3)V . This indi-ates that we are faing the phenomenon of spontaneous breakdown of the symmetrygroup G into a smaller subgroup H � G, where some generators of the group G donot annihilate the vauum of the theory (so the interation is indeed invariant butthe vauum is not).1.5.1 The appearane of the Goldstone bosonsIn Ref. [24℄ it was shown that for massless QCD the ground state must be invariantunder vetor transformations (muh as happens in quantum mehanis : the groundstate of a system desribed by a symmetri potential has even parity) and then



28 Chiral Perturbation Theorythe vauum is annihilated by their orresponding operators. So the hiral groupG = SU(3)L 
 SU(3)R is spontaneously broken to SU(3)V and we an hoose theaxial generators to be the ones not annihilating the vauum :QaV j 0 i = 0 ; QaA j 0 i 6= 0 : (1.29)The Goldstone theorem [6℄ tells us that there must appear a number of masslesspartiles (the so alled Goldstone bosons) equal to the number of operators that donot annihilate the vauum (broken generators), eight in our ase. We an assoiatethese partiles to the lightest pseudosalar otet.Let us show now that the existene of a non�vanishing salar quark ondensateimplies Eq. (1.29). It an be shown that (the proedure to reah this result isrelegated to the next hapters)�QaV ; Sb(x)� = i fab S(x) ; (1.30)and taking vauum expetation value of this expression and using (1.29) we arriveat hSi = 0 or h�uui = 
 �dd� = h�ssi � h�qqi. With this result we an show that
 0 �� i �QaA; P b(x)��� 0� = 23 Æab h�qqi 6= 0 ; (1.31)being the right�hand side of (1.31) the order parameter of the spontaneous break-down of the hiral symmetry. Then the Goldstone theorem tells that there exists aset of massless states �a suh that (no summation implied)h 0 jAa0 j�a i h�a jP a j 0 i 6= 0 ; (1.32)being the quantum numbers of these states are determined by this expression. Letus �rst determine the parity of the Goldstone bosons 3h 0 jQaA j�a i = 
 0 ��P�1 P QaA P�1 P ���a� = �h 0 jQaA P j�ai ;P j�a i = � j�a i ; (1.33)and now we onentrate in their transformation behaviour under an in�nitesimaltransformation of SU(3)V :h 0 jQaAj�a i = h 0 j gyV gV QaA gyV gV j�a i= 
 0 ���1� i �bQbV ��1 + i �bQbV �QaA�1� i �bQbV ��1 + i �bQbV ����a �= h 0 jQaAj�a i + �b fab h 0 jQAj�a i+ i �b 
 0 ��QaAQbV ���a � ;
 0 ��QaAQbV ���a � = i fab h 0 jQAj�a i = � i fab h 0 jQaAj� i ;QaV ���b � = i fab j� i : (1.34)So they form an otet of pseudosalar mesons. We an parametrize the non�vanishing matrix element in Eq. (1.32) as
 0 ��Aa�(0)���b(p) � = i p� F Æab ; (1.35)3We assume our vauum state invariant under parity and transformations generated by H .



1.5 Spontaneous hiral symmetry breaking and the CCWZ formalism 29where F has dimensions of energy and its approximate value is F � 92:4MeV. Sinethe axial�vetor urrent is onserved, its matrix element between the Goldstonebosons and the vauum must be zero
 0 �� ��Aa�(0)���b(p) � = m2 F Æab = 0 ; (1.36)what points out that either m or F is zero. The latter ase orresponds to a sym-metry realized a la Wigner�Weyl whereas the former orresponds to the Nambu�Goldstone realization. So, if (1.35) is not zero then the Goldstone bosons are mass-less.1.5.2 The Callan�Coleman�Wess�Zumino formalismThe general formalism to parametrize the set of �elds desribing the dynamis ofthe Goldstone bosons of a system su�ering spontaneous breakdown of a ontinuoussymmetry was developed by Callan, Coleman, Wess and Zumino (CCWZ presrip-tion) [7℄. We review here the most relevant aspets. Let us onsider a dimension�nGgroup G being spontaneously broken to one dimension�nH (non�invariant) subgroupH, giving rise to nG�nH massless Goldstone bosons. First let us show that there isan isomorphism between the Goldstone boson �elds vetor spaeM1 and the quo-tient spae G=H. Let us de�ne the transformation ' of the set of �elds (or vetor)� of the Goldstone bosons under one element g of the group G (it will be shownthat it is not a linear transformation)' : G�M1 !M1 ;' (g; �) = � 0 ; (1.37)satisfying 4 ' (e; �) = � 8� 2 M1 ;' (g1; ' (g2; �)) = ' (g1 g2; �) 8g1; g2 2 G ; 8� 2 M1 : (1.38)We then require that the origin � = 0 ofM1 (ground state on�guration) is mappedonto itself when transformed by elements h 2 H or '(h; 0) = 0 (and so H onstitutesthe little group of � = 0). With this it is lear that the origin is mapped into thesame on�guration �eld by all elements satisfying g1 g�12 2 H, that is, all elementsbelonging to the same left oset of H, whih is one element of the quotient spaeG=H : '(gH; 0) = '(g; 0). This de�nes a one to one (it an be shown to be invert-ible) mapping between the oset spae and the vetor spae of the Goldstone bosons�elds : � = '(f; 0) = '(gH; 0) where f 2 G=H and an be hosen to be representedby an element g 2 f . Then the transformation properties of the Goldstone �eldsunder an element ~g 2 G read '(~g; �) = '(~g; '(f; 0)) = '(~ggH; 0) = '(�gH; 0) where�g = ~ggh is the representative of the element of the oset spae g~gH (in generaldi�erent from g~g).4We do not require the linear ondition '(g; � �) = �'(g; �).



30 Chiral Perturbation TheoryAn easy way of understanding the formal proedure followed above is to onsiderthe parametrization of the vetor of Goldstone boson �elds �(x) as a loal rotationunder an element g(x) 2 G of the onstant vauum state h�i vetor : �(x) = g(x) h�i.Then the Goldstone �elds are spei�ed by g(x). But sine by assumption h h�i = h�ifor h 2 H, two elements g1 and g2 satisfying g1g�12 2 H render the same �(x),g2 h�i = g1h h�i = g1 h�i. We only need then to onsider elements of G belonging tothe same left oset gH to fully speify a given �(x) on�guration. Then, as statedabove, to eah element of G=H orresponds one �eld on�guration �.The CCWZ presription onsists in piking a set of eight broken generators fAagsuh that Aa h�i 6= 0 and hoose as a representative for eah element of G=H thefollowing SU(3)L � SU(3)R matrix :�(x) = eiAa�a(x) = [ �L(x); �R(x) ℄! �(x) = � (x) h�i : (1.39)One we selet from the ontinuum of degenerate states with equal minimal en-ergy one to be the vauum, we are at the same time spontaneously breaking thesymmetry and speifying the broken generators. But of ourse this hoie is om-pletely arbitrary and so are the broken generators (as far as we do not hoose theones generating H !). Under a global g 2 G transformation the �(x) rotates toanother matrix whih is not neessarily of the form (1.39), but an be written asg �(x) = � 0(x) h�1(g;�(x)) where � 0(x) has the form (1.39) and h(g;�(x)) 2 H isdenoted as the ompensating �eld. It is lear that g �(x) h�i = � 0(x) h�i. h(g;�(x))has an impliit x dependene through its dependene on �(x) and sine it is a vetortransformation an be written as h(g;�(x)) = [ ~h(g;�(x)); ~h(g;�(x)) ℄. Then we anwrite the transformation of �(x) as'(g;�(x)) = g �(x) h�1(g;�(x)) ;'L(R)(g; �L(R)(x)) = gL(R) �L(R)(x) ~h�1(g;�(x)) : (1.40)We omment on passing that the mapping ' is a non�linear realization of the groupbeause the matries �(x) do not form a vetor spae (the sum of two unitarymatries is no longer unitary). The vauum state (that is, the on�guration with theGoldstone boson �elds equal to zero) aording to (1.39) is represented by � = 11(�L = �R = 11). Sine we want the vauum to be mapped onto itself by vetortransformations gH = (gV ; gV ), aording to (1.40) h(gH ; 11) = gH or ~h(gH ; 11) = gV .One an get rid of the ompensating �eld ombining the relations of (1.40) intothe simpler form U(x) = �R(x) �yL(x) transforming under g as U(x) ! gR U(x) gyL,whih is equivalent to hoose as broken generators T aR or �L(x) = 11, �R(x) =U(x) and the ompensating �eld ~h(g; x) = gL. This is denoted as the U�basis.Another possibility is to take �(x) = U y(x) = �L(x) �yR(x) transforming under gas �(x) ! gL�(x) gyR, whih is equivalent to hoose as broken generators T aL or�R(x) = 11, �L = �(x) and ~h(g; x) = gR. These is to the so alled ��basis andorresponds to the hoie �R(x) = 11, �L(x) = U(x) and the ompensating �eld~h(g; x) = gR. Choosing the axial generators T aL � T aR as the broken ones (the soalled ��basis) orresponds to �L(x) = �yR(x) � �(x) transforming under g as �(x)!



1.6 E�etive Lagrangians of order O(p2) and O(p4) 31gL �(x) ~h�1(g; x) = ~h(g; x) �(x) gyR. This transformation implies that if gL = gR � gVthen ~h(g; x) � gV and it is independent of �(x), as it happens also in the U�basis. Our preferred hoie is the u�basis orresponding to the hoie T aR � T aL forbroken generators, and u(x) = �R(x) = �yL(x) = �y(x) transforming as u(x) !gR u(x) ~h�1(g; x) = ~h(g; x) u(x) gyL.The Goldstone boson �elds are angular variables and hene dimensionless. How-ever for a �eld theoretial desription we want them to have dimension one and sowe write u(x) = exp �i �(x)p2F � ; (1.41)where it an be shown that at lowest order F equals that of Eq. (1.35). The matrix�(x) in terms of physial �elds reads�(x) = p2 8Xa=1 Ta �a(x) = 0BB� 1p2�0 + 1p6�8 �+ K+�� � 1p2�0 + 1p6�8 K0K� K0 �q 23�8 1CCA : (1.42)Under a vetor transformation of the �elds u(x)! gV u(x) gyV , the �(x)! gV � (x)gyVundergoes the same transformation, pointing it transforms as an otet. For the aseof a general transformation (e.g. an axial transformation) the Goldstone bosons aretransformed as a non�linear funtion of the �elds.As a �nal omment in the U�basis representation we an identifyU(x) = u(x)2 = exp "i p2�(x)F # ; (1.43)and of ourse in the ��basis, �(x) = �(x)2.1.6 E�etive Lagrangians of order O(p2) and O(p4)If one restrits oneself to very low energies then the only interating partiles willbe the Goldstone bosons. With the ingredients disussed in the preeding setionone an build a theory made only of the Goldstone boson �elds as ative degrees offreedom. This theory is known as Chiral Perturbation Theory and was developedin Ref. [9℄. In this range of energies one an expand the observables in inreasingpowers of both the external momentum and quark masses, what translates into anorganization of the Lagrangian in terms of an inreasing number of derivatives andmass operators L�PT = Xn=1 L2n : (1.44)



32 Chiral Perturbation TheoryThe range of validity of the theory is provided by a harateristi hiral symmetrybreaking sale ��. When omputing the hiral expansion eah loop orretion isaompanied by a fator 1=(4 �F )2 giving us an estimate �� � 4 �F � 1:2GeV [25℄.Counterterms have a typial size of the inverse of the mass of a resonane, whatgives us �� � mR � 1GeV. So the radius of onvergene of the power expansionorresponds to the mass of the lightest resonane m� = 775MeV.The alulations performed in �PT are organized in the so alled Weinberg powerounting [8℄. Given a diagram with N2n verties from L2n and L loops it has a hiraldimension D� = 2L + 2 + 2 Xn N2n(n� 1) : (1.45)Sine n > 0, D� is always positive. Expression (1.45) makes lear that only a �nitenumber of terms in the Lagrangian (1.44) is needed to a given order in the hiralexpansion, and then the Lagrangian behaves as a regular renormalizable theory.1.6.1 Building bloks and L2Our strategy is to �nd the most general Lagrangian having the same symmetries as(1.21) (loal hiral symmetry, parity and harge onjugation) built with Goldstone�elds desribed as in (1.41) and the external soures. Then the QCD generatingfuntional (1.26) when restrited to low energies will readZ(v�; a�; s; p; �t��) =Z DU DU y exp � iZ d4xL�(U; v�; a�; s; p; �t��)� ; (1.46)and the Green funtions will be obtained by funtional di�erentiation. If one worksin the U�basis, the building bloks are the U(x) matrix with a ovariant derivativefor the pion �eldsD�U = ��U � i r� U + i U l� ; D�U ! gRD�U gyL ;D�U y = ��U y + i U y r� � i `� U y ; D�U y ! gLD�U y gR ; (1.47)and � = 2B0 (s + i p). For the right� and left�handed �elds, �eld strength tensorsarise naturally[D�; D�℄X = iXF ��L � i F ��R X ;F ��L = ��`� � ��`� � i [`�; `�℄ ; F ��R = ��r� � ��r� � i [r�; r�℄ : (1.48)The set (U; F ��L;R; �; t��) along with their adjoints and ovariant derivatives, are thebuilding bloks to onstrut a theory with hiral symmetry. The next step wouldbe to assemble them together in hiral invariant ombinations whih respet parity,harge onjugation and hermitiity. However, the building bloks listed above trans-form di�erently under the hiral group. This is not a problem when one is dealingwith the lowest orders in the hiral expansion, where the ombinatoris are simple



1.6 E�etive Lagrangians of order O(p2) and O(p4) 33and only a small number of operators result. However, already at next�to�leadingorder the number of operators involved reommends to deal with building bloks ina more e�ient way. In order to easily identify the invariant operators it is better touse the ��basis and use a set of building bloks that transform under the G groupas X ! h(g;�)X h (g;�)y ; (1.49)and under disrete symmetries they transform onto (�1)p times themselves. Asa result, one an de�ne a unique ovariant derivative for objets transforming as(1.49),r�X = ��X + [ ��; X℄ ; �� = 12 �uy (�� � i r�) u+ u (�� � i l�) uy	 ; (1.50)where the last term is the hiral onnetion. The set of building bloks used in thisthesis follows and their transformation properties are skethed in Table 1.2u� = i�uy (�� � i r�) u� u (�� � i l�) uy	 � i uyD�U uy ;h�� = r�u� +r�u� ; f��� = uF ��L uy � uy F ��R u ;t��� = uy t�� uy � u t�� y u ; �� = uy �uy � u�y u : (1.51)There is a �eld strength tensor assoiated to the ovariant derivative, namely[r�;r�℄X = [ ��� ; X℄ ; (1.52)with ��� = ���� � ���� + [ ��;��℄ = 14 [u�; u�℄ � i2 f+�� : (1.53)The list of elements in the left�hand side of Eq. (1.51) is omplete : u� is self�adjointand the ombination r�u� �r�u� = f��� is redundant. All along our analysis wewill make extensive use of the traelessness properties hr�i = 0 = hF ��R i; h`�i = 0 =hF ��L i and hu�i = 0 = hf��� i.Then the lowest order Lagrangian has the simple formL2 = F 24 hu� u� + �+ i ; (1.54)where h � � � i stands for the trae in nf �avour spae. At this point several ommentsare in order. The tensor does not appear at this order, the vetor and axial�vetorsoures only appear through u� and there is only one operator involving the salarsoure. Expanding (1.54) and identifying the mass term for the Goldstone bosonswe get (we assume exat isospin symmetry in this thesis)2B0M = 0BB� M2� 0 00 M2� 00 0 2M2K �M2� 1CCA ; (1.55)



34 Chiral Perturbation TheoryO P C h..u� � u� (u�)T u�h�� � h�� (h��)T h���� ��� (��)T ���f��� � f��� � (f��� )T f���t��� � t��� � (t��� )T � t���Table 1.2: Various transformation properties of the elements of Eq. (1.51)and omputing the quark ondensate we get the relationB0 = � hqqiF 2 . The equationsof motion at this order readr�u� = 12 i �h��inf � ��� : (1.56)and will be used to remove redundant operators from the basis of the Lagrangiansof higher dimension.1.6.2 On the power ounting for the tensor soureLet us begin by brie�y reviewing the hiral ounting for the remaining Dira exter-nal �elds. We have motivated the introdution of external �elds oupled to QCDurrents as a way to automatially ensure the hiral Ward identities when omput-ing Green funtions. For this to happen, the global hiral symmetry of the QCDLagrangian has to be promoted to a loal one. From the point of view of external�elds, this step only a�ets the vetor and axial�vetor, whih play the rï¾12 le ofhiral gauge �elds entering the hiral ovariant derivative, whih replaes the or-dinary derivative. One is then naturally led to make the hiral dimension of thevetor and axial�vetor soures oinide with that of the ordinary derivative, i.e.,v�; a� � O(p). Furthermore, the ombination �q �(v� + 5 a�) q has no anomalousdimension 5 (as it is a piee of the QCD Lagrangian). Both vetor and axial�vetorurrents are onserved (in the hiral limit), what in turn implies they have zeroanomalous dimension. Then both vetor and axial�vetor soures have no anoma-lous dimension. Notie that no referene to the atual physial meaning of thesoures was needed : gauge invariane is enough and the soures an be regarded asformal entities.However, for salar and pseudosalar soures the situation hanges. In orderto motivate their hiral saling ontat has to be made with QCD through quarkmasses. Quark masses are formally introdued as external salar soures, and hiralinvariane groups the salar and pseudosalar densities in the ombination � =5The onept of anomalous dimension will be disussed in Chapter 4.



1.6 E�etive Lagrangians of order O(p2) and O(p4) 352B0 (s + i p) (and its hermitian onjugate), where B0 an be seen as a ouplingrequired by naïve dimensional analysis. At the sight of Eq. (1.55) one is naturallyled to onsider � � m2� � O(p2). This saling assignment is of ourse subjet toassuming B0 � F , whih seems to be the piture supported by phenomenology.Again the ombination �q (s � i 5 p) q is renormalization invariant. The anomalousdimension of the salar and pseudosalar urrents is known to be the opposite of thatof the quark mass. Then the running of s and p oinides with the running of thequark mass. Sine ombination B0mq is renormalization invariant � = 2B0(s+ i p)is also invariant.Therefore, gauge symmetry alone motivates the saling for vetor and axial�vetor soures, whereas the momentum saling for salars and pseudosalars is sug-gested by the way hiral symmetry is broken.Let us examine the situation for tensor soures. The tensor �eld oupled to�q ��� q indues a hirality �ip (muh like salars and pseudosalars do) and thereforetransforms in the same way under a hiral transformation. However, unlike salarsand pseudosalars, tensor �elds do not have a physial realization as symmetrybreaking terms in the hiral Lagrangian. Their hiral power ounting is thereforenot motivated by physial arguments and should be seen only as a formal theoretialtool to ompute Green funtions. Whatever hoie is made for the hiral ounting,however, it will only a�et the way operators with di�erent number of tensor souresare organized in the hiral expansion, but it will not a�et the hiral expansion ofeah di�erent Green funtion. A onvenient hoie is to assign the tensor sourewith the same hiral ounting as the salar and pseudo�salar soures, i.e., O(p2).This has two main advantages : (a) the tensor soure only generates even terms inthe hiral expansion, and therefore does not hange the standard hiral ountingsheme; (b) operators involving resonane exhange appear at O(p4) [26℄, leavingonly universal terms at O(p2).Sine we are assigning the same hiral ounting to all spin��ipping soures s, pand t�� , one ould equally well de�ne, by analogy to � = 2B0 (s+i p), a tensor hiral�eld ��� related to our tensor �elds t�� by ��� = b0 t�� . Here b0 would be the analogof B0 for tensor �elds. Another advantage of introduing the dimensionful parameterb0 is that all the low�energy ouplings at a given order in the hiral expansion thenhave the same mass dimension. For instane, at O(p4), the omplete set of hirallow energy ouplingsLi; i = 1; � � � ; 10 ; H1; H2 ; �j; j = 1; � � � ; 4; (1.57)are dimensionless, where �j are de�ned in terms of the �j of Eq. (1:62) as �j = bn0 �j,n being the number of tensor soures in the assoiated operators. For instane,�1 = b0 �1 but �3 = b20 �3.Again the ombination �q ��� �t�� q has zero anomalous dimension, but unfortu-nately the running of the tensor urrent an only be alulated in the perturbativeregime. This an be better understood by means of a renormalization group analysis



36 Chiral Perturbation Theory(all these onepts will be explained in Chapter 4). For the tensor urrent,� dd� T a�� = � T T a�� ; (1.58)where T is the tensor anomalous dimension. In the high�momentum transfer regime(� � �QCD), the anomalous dimension an be omputed at leading order to give(see Chapter 4) T = CF �s2 � + O(�2s) : (1.59)Invariane of the QCD Lagrangian implies that the tensor external soure �t�� hasto evolve as � dd� �t a�� = T �t a�� : (1.60)Consider now a term in the �PT Lagrangian with n tensor soures, �(n)An(�t��).When related to QCD parameters, the low energy oupling �(n) will pik the QCDsale dependene. De�ning ��� = b0 �t�� , the term an now be written as �(n)An(�t��) =�(n)An(���) = bn0 �(n)An(�t��). Therefore �(n) = bn0 �(n) and all the QCD sale de-pendene is ontained in b0, namely� dd� b0 = � T b0 : (1.61)This is in omplete analogy to the rï¾12 le played by B0 in the salar�pseudosalarsetor. This analogy an be best illustrated with the example of Setion 1.9.1.6.3 The order O(p4) LagrangianOperators ontaining tensor soures appear for the �rst time at O(p4), together witha new set of operators. At this order one obtains operators that only depend on theexternal soures and have no Goldstone boson dependene. These are alled ontatterms and ontain no dynamis, are needed only to renormalize the theory. Alsoone gets a di�erent number of independent operators depending on the number of�avours onsidered, due to the Cayley�Hamilton theorem disussed in Appendix A.For three �avours it reads :L4 = L1 hu�u�i2 + L2 hu�u�i hu�u�i + L3 hu�u�u�u�i + L4 hu�u�i h�+i+L5 hu�u��+i + L6 h�+i2 + L7 h��i2 + L8=2 
�2+ + �2��� i L9 hf��+ u�u�i + L10=4 hf+��f��+ � f���f��� i (1.62)+ i L11 h��(r�u� + i=2��)i � L12 
(r�u� + i=2��)2�+�1ht��+ f+��i � i�2ht��+ u�u�i + �3ht��+ t+��i + �4ht��+ i2+H1=2 hf+��f��+ + f���f��� i + H2=4 
�2+ � �2�� ;



1.6 E�etive Lagrangians of order O(p2) and O(p4) 37where the operators proportional to L11 and L12 vanish when using the equationsof motion and the terms proportional to H1 and H2 are ontat terms. They anbe rewritten in the U�basis to make them manifestly independent of the Goldstoneboson �elds : H1 hF ��L FL�� + F ��R FR��i + H2 
��y�. The terms �1�4 have tensorsoures and sine they appear for the �rst time do not require renormalization. It isinteresting to remark that a potential ontat term like t��ty�� anels identially dueto orthogonality of hiralities, as an be easily heked using the hiral projetorsof Eq. (1.23). Hene, it follows that t��+ t+�� = t��� t��� and t��+ t��� = t��� t+�� . Theserelations have been used in deriving Eq. (1.62) and will be used hereafter. Whenomputing loop diagrams with the operators ontained in the Lagrangian (1.54)divergenes will our and must be regularized. Using dimensional regularizationone does not spoil the symmetries of the theory and then the ounterterms neededto renormalize the divergenes are ontained in (1.62). This leads to a splittingof the ouplings of (1.62) into a divergent part and a �nite part, alled renormal-ized oupling. Sine this splitting is arbitrary it will lead to a dependene of therenormalized oupling on an arbitrary sale � :Li = Lri (�) + �i �D�432 �2 � 2D � 4 + C�Hi = Hri (�) + ~�i �D�432 �2 � 2D � 4 + C� ; (1.63)where D = 4 � 2 � is the spae�time dimension and C is a onstant that �xes therenormalization sheme 6. One has to take into aount that in D dimensions, theO(p4) Li LECs have energy dimension of ED�4. Sine eah term in Eq. (1.63) musthave the same energy dimension, we have to multiply the seond term by �D�4,where � is an arbitrary parameter with mass dimension (the hiral sale). Sine Lidoes not depend on �, the � dependene of Lri is aneled by the divergent piee.In �PT the usual hoie is C = E � log(4 �) � 1 where E ' 0:5772 is the Euleronstant, and the so alled MS sheme is de�ned by the hoie C = E � log(4�).Eq. (1.63) also ditates the running of the renormalized piee :� dLri (�)d� = ��i 116 �2 : (1.64)The expliit alulation of the one�loop generating funtional gives [9℄ :�1 = 332 , �2 = 316 , �3 = 0, �4 = 18 , �5 = 38 , �6 = 11144 ,�7 = 0, �8 = 548 , �9 = 14 , �10 = � 14 , ~�1 = � 18 , ~�2 = 524 .Observables are written in terms of the renormalized ouplings Lri (�) and are ofourse ��independent.6In this thesis we will regularize loops in dimensional regularization, de�ning � = 4�D2 .



38 Chiral Perturbation Theory1.7 The O(p6) Lagrangian with tensor souresAt next�to�next�to�leading order O(p6), the number of operators inreases dramat-ially. For the setor without tensor soures the full set of operators in the U�basiswas �rst found in [27℄. Latter, in [28℄ it was found that the set was not minimal anda new one written in the u�basis for two and three �avours was given.In Ref. [23℄ this list of operators was enlarged to inlude also operators with tensorsoures. The purpose of this setion is to sketh the steps followed in reahing thebasis of hiral invariant operators listed in Table B.1, in Appendix B. In partiular,we will outline the strategies followed to redue the set of operators to a non�redundant minimal one, fousing on the results obtained rather than giving thetehnial details, whih an be found in [27, 28℄.The full set of O(p6) operators whih results from ombining the building bloksof Eq. (1.51) and their ovariant derivatives falls into one of the following generigroups t�� t�� u� u� ; t�� f�� � ; t�� t�� � ;t�� �u� u� ; t�� f�� f �� ; t�� t�� h�� ;t�� h�� u� u� ; t�� h�� h��; t�� t�� f�� ;t�� f�� u� u� ; t�� �� u� ; t�� t�� t�� ;r�t�� r�t�� ; t�� h�� f �� ; r�t�� r�f�� ;r�t�� h�� u� ; r�t�� f �� u� ; r�t�� t�� u� ;t�� u� u� u� u� ; (1.65)where emphasis has been plaed only on operator ombinations, i.e., traes andi fators have been omitted and � subsripts have been skipped for simpliity.The previous list is however omplete in the sense that it ontains all the indepen-dent operator ombinations. For instane, operators like r�t�� r�� are generiallyC�violating and r�t�� u� u� u� or t�� r�f�� u� an be shown to be redundant usingpartial integration and the hain rule.Table B.1 lists the full set of hermitian operators invariant under parity andharge onjugation, organized in bloks of operators below eah of the representativesof Eq. (1.65).Obviously, the most hallenging task in going from Eq. (1.65) above to our �nalset of operators in Table B.1 is to make sure that the set is minimal, i.e., linearlydependent operators have been removed and we an talk of a true hiral basis ofoperators. In the following we will disuss the ommonly used strategies, namelyintegration by parts, use of the equations of motion 7 and the Bianhi identity.7In determining the higher order terms in the hiral expansion the equations of motion for theleading order an be used. As disussed in [28℄, its enforement is equivalent to a transformationof �elds and therefore physis is left invariant.



1.7 The O(p6) Lagrangian with tensor soures 391.7.1 Partial integration and equations of motionIntegration by parts was already used to obtain Eq. (1.65). The list an be furtherredued, however, if one noties that the ovariant derivatives of u� satisfyr�u� = 12 (h�� � f���) : (1.66)If we ombine Eqs. (1.66) and (1.56) with integration by parts we �nd the followingrelations,i fr�t��� ; t+��gu� = � i fr�t��+ ; t���g u� + t��+ t��� �� � 1nf t��+ t���h��i ;i fr�t��� ; t+��gu� = � i�r�t��+ ; t���	 u� + i2 ft�+� ; t���g h�� + i2 ft�+�; t���g f ��� ;i fr�t��+ ; t���gu� = � i�r�t��� ; t+��	 u� + i2 ft�+� ; t���g h�� � i2 ft�+� ; t���g f ��� ;(1.67)where in the �rst line the lowest�order equations of motion of Eq. (1.56) were used.The seond and third relations follow from Eq. (1.66).Further relations an be found using the properties of the hiral onnetion listedin Eqs. (1.52) and (1.53). In partiular,r�t+��r�t��+ �r�t+��r�t��+ = [ ���; t+�� ℄ t+�� = � 12 Y11 + 12 Y12 + Y89 ;r�t���r�t��� �r�t���r�t��� = [ ���; t��� ℄ t��� = � 12 Y23 + 12 Y24 + Y90 ;r�t+��r�f ��+ �r�t+��r�f ��+ = [ ���; t+�� ℄ f+�� = 14 Y58 � 14 Y59 � Y84 : (1.68)In a similar fashion (but after a more involved alulation), one an show thati hr�t+�� ff��� ; u�gi and i hr�t+�� ff��� ; u�gi are also redundant.1.7.2 Bianhi identityIn Eqs. (1.50)�(1.53) we introdued the hiral onnetion and the �eld strength ���that naturally stems from it. There is also an assoiated Bianhi identity, whih inthis ase takes the form r���� + r���� + r���� = 0 : (1.69)and readsr�f+�� +r�f+�� +r�f+�� = i2 ([ f��� ; u� ℄ + [ f���; u� ℄ + [ f���; u� ℄) : (1.70)



40 Chiral Perturbation TheoryTraing this equation withr�t��+ and integrating by parts we get one additional rela-tion between operators. We hoose to remove from our list the operator i hr�t��r�f ��+ i.There is a seond Bianhi identityr�f��� +r�f��� +r�f��� = i2 ([ f+��; u� ℄ + [ f+��; u� ℄ + [ f+��; u� ℄) ; (1.71)that does not lead to further redution of our basis.1.7.3 Contat termsSo far, to the best of our knowledge the number of operators for general nf is om-plete and minimal. However, in our list there are ontat terms, i.e., ombinationsof operators whih only depend on external soures. Sine they do not ontain thepion �eld, they annot be determined from phenomenology, but are neessary toorretly aount for the ultraviolet behaviour of Green funtions.In the u�basis we have been using, ontat terms do not arise in a natural way,but are hidden in linear ombinations of operators. It is easier to express them inthe U�basis. As we already disussed, hirality prevents a ontat term like t�� ty��at order O(p4). At the next order, one �nds the following ones
D�t�� D�ty��� = 14 hr�t��+ r�t+��i � 14 hr�t��� r�t���i � i4 hr�t��+ ft��� ; u�gi+ 116 ht+�� (u� t��+ u� + u� t��+ u�)i + 18 ht+�� t��+ u� u�i� 116 ht��� (u� t��� u� + u� t��� u�)i � 18 ht��� t��� u� u�i+ i4 hr�t��� ft+�� ; u�gi ;
ty�� t�� FL�� + t�� ty�� FR��� = 14 
t��+ t�+� f+��� � 14 
t��� t��� f+���+ 14 
�t��+ ; t���	 f���� ;
t�� �y F ��R + �y t�� F ��L + h::� = 14 ht+�� ff��+ ; �+gi + 14 ht��� [f��� ; �+℄i� 14 ht��� ff��+ ; ��gi � 14 ht+�� [f��� ; ��℄i : (1.72)where r�t��� = (D�t��)� + i2 fu�; t��� g has been used in the �rst relation. We willinorporate the previous ontat terms in our basis, and aordingly remove thefollowing monomials, whih otherwise would be redundant :i 
�t��+ ; t���	 f���� = �Y89 + Y90 + 4Y119 ;hr�t��� r�t��� i = 12 Y11 + 14 Y13 � 12 Y23 � 14 Y25 + Y52 � Y104 + Y105 � 4Y118 ;h t+�� [f��� ; ��℄ i = Y73 � Y74 + Y75 � 4Y120 : (1.73)



1.8 Odd�intrinsi�parity setor 41All the relations disussed above �nally redue the number of operators to 117and 3 ontat terms. This is the number of independent operators for any numberof �avours. However, only nf = 2; 3 are phenomenologially relevant. For suhases, the Cayley�Hamilton theorem provides further relations between traes. Forreferene, we list them in Appendix B. We end up with 110+3 independent operatorsfor three �avours and 77+3 for two �avours.In order to have a minimal basis of O(p6) hiral invariant monomials with tensorsoures, we have followed the same proedure as in Ref. [28℄. However, a reentpaper [29℄ has pointed out that the basis of [28℄ for two �avours is not yet minimal :an identity among several operators of that basis was found, whih does not beometrivial when setting to zero the external soures. Interestingly, suh identity doesnot require new algebrai manipulations other than the Cayley�Hamilton relations,Bianhi identities, partial integration and equations of motion. The fat that evenafter the sophistiated analysis of [28℄ an additional relation was found shows thatreahing a minimal set of operators at higher orders in the hiral expansion is quitea hallenging task. With tensor soures, however, highly nontrivial relations suhas the one reported in Ref. [29℄ are unlikely to be found, mainly beause : (a) thetensor soure does not enter the lowest order equations of motion and (b) there is noBianhi identity assoiated with it. As a result, algebrai manipulations are simplerand we do not expet our basis to su�er further redution.1.8 Odd�intrinsi�parity setorSo far we have restrited our analysis to the even�intrinsi�parity setor of thehiral expansion. The Lagrangians disussed exhibit a larger symmetry than the�real world�. For instane, if we swith o� the external soures, our Lagrangians areinvariant under the substitution �(x) ! ��(x) (they ontain terms with an evennumber of Goldstone bosons only). There is no odd�intrinsi�parity hiral invariantoperator of dimension lower than six. But QCD su�ers an anomaly that a�ets thewhole U(3)L 
 U(3)R symmetry group and has its origin in the fat that it is notpossible to preserve the simultaneous invariane of the generating funtional undervetor and axial�vetor transformations. This anomaly translates into a dimensionfour piee of the hiral Lagrangian whih is not hiral invariant : the Wess�Zuminoterm. So the odd�intrinsi�parity setor starts already at O(p4) with the non hiralinvariant anomalous term and ontains an in�nite number of hiral invariat operatorsof higher dimension.1.8.1 Wess�Zumino�Witten funtionalWess and Zumino were the �rst to derive a funtional involving only pseudosalar�elds generating this anomaly [30℄. For pions alone, its form is �xed by ohomologytheory and is expressible in a 5�dimensional manifold. They emphasized that theseinteration Lagrangians annot be hiral invariant. However, the terms that involve



42 Chiral Perturbation Theoryexternal soures an be ast as a four�dimensional integral proportional to the Levi�Civitï¾12 tensor "����. It is more onvenient to use the funtional derived by Witten[31℄ and here we will follow the disussion of [32℄.The fermioni determinant does not allow for a hiral invariant regularization.Given the transformationsgR = 1 + i [�(x) + �(x)℄ ; gL = 1 + i [�(x)� �(x)℄ ; (1.74)the onventions in the de�nition of the fermioni determinant may be hosen topreserve the invariane of the generating funtional Z, either under vetor transfor-mations, or under the axial ones; but not both simultaneously. Choosing to preserveinvariane under the transformations generated by the vetor urrents, the hangein Z only involves the di�erene �(x) between gR and gL.ÆZ = � Z dx h�(x) 
(x)i ;
(x) = NC16 �2 "���� �v�� v�� + 43 D�a�D�a� + 2 i3 fv��; a� a�g+ 8 i3 a� v�� a� + 43 a� a� a� a�� ;v�� = ��v� � ��v� � i [v�; v�℄ ;D�a� = ��a� � i [v�; a�℄ : (1.75)Notie that 
 only depends of the external soures v� and a� and that the quarkmass matrix does not play any rï¾12 le. The expliit form for the funtional is :Z [U; l; r℄WZW = � i NC240 �2 ZM5 d5x "ijklm 
�Li �Lj �Lk �Ll �Lm�� i NC48 �2 Z d4x "���� �W (U; l; r)���� � W (11; l; r)����� ;W (U; l; r)���� = �U l� l� l� U y r� + 14 U l� U y r� U l� U y r� + i U �� l� l� U y r�+ i ��r� U l� U y r� � i�L� l� U y r� U l� + �L� U y ��r� U l���L� �L� U y r� U l� + �L� l� �� l� + �L� �� l� l�� i�L� l� l� l� + 12 �L� l� �L� l� � i�L� �L� �L� l��� (L  ! R) ; NC = 3 ;�L� = U y ��U �R� = U ��U y ; (1.76)where (L  ! R) stands for the exhangeU  ! U y ; l�  ! r� ; �L�  ! �R� : (1.77)



1.8 Odd�intrinsi�parity setor 43This funtional governs proesses suh asK+K� ! �+���0, �0 !  , �0 !  e+e�and � ! e � . The last two proesses are disussed in this thesis in Chapter 5.For the alulation of the hV VP i Green funtion and the radiative pion deayproess it su�es to work with the following piee of the anomalous Lagrangian :L(4)WZW = � p2NC8 �2 F ����� h� ��v� ��v� i : (1.78)1.8.2 Odd�intrinsi�parity setor with tensor souresThe Wess�Zumino�Witten funtional is of odd�intrinsi�parity and it enters in L4,so it onstitutes the lowest order odd�intrinsi�parity Lagrangian. But of ourse athigher orders this setor appears and it is not related to the anomaly any more. InRef. [33, 34℄ it was expliitly alulated for L6. In this thesis we will make use oftwo of the operators of this setor, namelyLodd6 := i "���� nCW7 D��f��+ f��+ E + i CW22 Dr�f��+ nf��+ ; u�oEo : (1.79)In the following we will argue that suh terms for the tensor soure only arise at theorder p8.In order to obtain the lowest order odd�intrinsi�parity operators in the hiralexpansion, the tensor soure must have some indies ontrated with the Levi�Civitï¾12 symbol. It is straightforward to show that they all vanish.Consider �rst the ase when both tensor indies are paired to the Levi�Civitï¾12symbol, e.g. "���� t��� B�� ; (1.80)where B�� stands for any antisymmetri tensor struture ompatible with hiral anddisrete symmetries. From the de�nition of the hiral projetors, Eq. (1.3), one anwrite "���� = 2 i�P ����L � P ����R � ; (1.81)whene it follows that ����� t��� = � 2 i t��� ; (1.82)and therefore, suh terms will not show up in the odd�intrinsi�parity setor. Notiethat this is a onsequene of the fat that the tensor soure has no hiral partner,or equivalently that 5 ��� is not an independent Dira struture.Consider now the ase when only one of the indies of the tensor operator isontrated with the Levi�Civitï¾12 density, namely 8����� t�� B ��� ; (1.83)8All other ontrations an be rendered equivalent by means of partial integration.



44 Chiral Perturbation Theorywhere B ��� stands for any generi hiral tensor (ompletely antisymmetri in �, �and �) made out of the elements of Eq. (1.51). We will use the Shouten identity :g� ����� � g�� ���� � g�� ���� � g�� ���� � g�� ���� = 0 ; (1.84)whih stems from the fat that any 5�form vanishes in 4 dimensions. Contratingit with t�� B ��� it is not di�ult to show [with the use of Eq. (1.82) ℄ that it anbe rewritten in the following way :����� t�� B ��� = 3 i t��� B ���� ; (1.85)and then one more the Levi�Civitï¾12 density vanishes.Obviously, when none of the indies of the tensor soure is ontrated with theLevi�Civitï¾12 density, these identities are no longer useful and odd�intrinsi�parityoperators will arise. If we take, for instane, any of the operators of our basis atO(p4) and multiply it by any of the O(p4) odd�intrinsi�parity operators of Ref. [33℄we will get an odd�intrinsi�parity operator involving tensor urrents. But thisoperator will be at least of O(p8) and thus falls beyond the sope of the presentwork.1.9 A simple appliation : One loop orretions to�V TConsider the following two�point orrelator in the hiral limit�V T�;��(q) = iZ d4x eiq�x 
 0 ��T �V�(x)T y��(0)	�� 0 � = i (q�g�� � q�g��) �V T (q2) ;(1.86)where T��(x) = �u(x) ��� d(x) and V�(x) = �u(x) � d(x).Using dimensional regularization with minimal subtration, a straightforward om-putation of the diagrams of Fig. 4.12 leads to�V T (q2) = � 2�1 � 
94 q2 + �232 �2F 2 � 1̂� � log(� q2) + 83� q2 ; (1.87)where 1̂� = 1� � E + log(4 �) : (1.88)The oupling 
94 is the LEC oe�ient of the operator Y94 of the hiral basis withtensor soures, that an be found in Appendix B. In �PT, renormalization proeedsorder by order in the hiral expansion. This means that the logarithmi divergeneof Fig. 4.12 (b) has to be absorbed by the ounterterm 
94 of Fig. 4.12() to render�V T (q2) �nite. This de�nes the renormalized oupling 
R94 to be
94 = 
R94(�) � �232 �2F 2�� 2 �� 2D � 4 + C� : (1.89)



1.9 A simple appliation : One loop orretions to �V T 45in D dimensions 
i and onsequently 
Ri , have energy dimension of ED�5; �i andF� have ED�3 and ED=2�1, respetively. Sine eah term in Eq. (1:89) must have thesame energy dimension, we have to multiply the seond term by �D�4. Addoptingthe usual hoie C = E�log(4 �)�1 the fully renormalized Green funtion thereforereads �V T (q2) = � 2�1 � 
R94(�) q2 + �232 �2F 2 �53 � log�� q2�2�� q2 : (1.90)So far, the sale dependene assoiated to the tensor urrent has been impliitlystored into �1, 
94 and �2. If we now introdue the aforementioned parameter b0,we �nd �1;2 = b0 �1;2 and 
94 = b0 !94 and as a result�V T (q2) = � 2�1 b0 � !R94(�) b0 q2 + �2 b032 �2F 2� �53 � log�� q2�2�� q2 : (1.91)Notie that with the b0 parameter, the hiral sale and the QCD sale fatorize.For omparison onsider now the following salar�pseudosalar two�point Greenfuntion :�SS�PP (q) = i Z d4x eiq�x 
 0 ��T �S(x)Sy(0) � P (x)P y(0)	�� 0 � ; (1.92)where S(x) = �u(x) d(x) and P (x) = �u(x) i 5 d(x). After evaluating the orrespond-ing Feynman diagrams, one obtains, in the hiral limit,�SS�PP (q2) = 2F 20 B20q2 + 32B20 L8 + 5B2048 �2 � 1̂� � log(� q2) + 2� : (1.93)The previous equation is �nite when using Eq. (1.63), whih also determines the(hiral) sale dependene of the renormalized oupling :L8 = LR8 (�) � 548 132 �2 �� �� 2D � 4 + C� ; (1.94)leading to the one�loop renormalized two�point Green funtion�SS�PP (q2) = 2F 20 B20q2 + 32B20 LR8 (�) + 5B2048 �2 �1� log�� q2�2�� : (1.95)All the QCD sale dependene, arising from the non�onservation of the salar andpseudosalar urrents, is fatored out in B0, whereas LR8 (�) shows the running withthe hiral sale. Notie the analogy with Eq. (1:91).Unfortunately, b0 annot be mathed onto the QCD Lagrangian in a way sim-ilar to what is done for B0 : the lowest dimension operators linear in the tensorsoure (and onsequently in b0) are oupled to the low�energy ouplings �1 and �2.These ouplings are insensitive to pion dynamis and instead do reeive ontribu-tions from vetor meson resonanes (see Chapter 2). Therefore, there is an inherent



46 Chiral Perturbation Theoryambiguity in the determination of b0, beause it annot be deoupled from �1 and�2. The dimensionful oupling b0 should not ontain information on the hadroniresonanes integrated out of the theory, but otherwise it remains unspei�ed. Toavoid onfusion, we have omitted in our treatment any referene to b0.As a result, one should keep in mind that, besides the hirally renormalizedlow�energy ouplings, eah operator with n tensor soures bears a non�vanishinganomalous dimension, namely n T .



Chapter 2The 1=NC expansion I : ResonaneChiral Theory
2.1 IntrodutionMany years ago, 't Hooft [10℄ proposed that many features of QCD at low andintermediate energies ould be understood if onsidering a gauge theory SU(NC) ofquarks and gluons when the limit NC ! 1 is taken. Even though one may thingthat this theory has little to do with reality, this limit an always be regarded asthe �rst term of an expansion in terms of the �small� parameter 1=NC . As we willsee, this expansion is equivalent to a semilassial expansion for an e�etive theoryhaving olour�singlet hadrons as asymptoti degrees of freedom.It ould be thought that a large number of olours, sine we are enhaningthe gauge group and the number of degrees of freedom, would instead of simplify,ompliate the understanding of QCD. In fat this is not the ase and many simpli-�ations will our. Finally one may wonder if the parameter 1=NC is small enoughto qualify as an expansion parameter and how fast the onvergene is. In QED theexpansion parameter is not e but rather �em = e2=4� � 10�3 meaning that e � 1=3.Although something similar does not happen in QCD, still 1=NC is a useful expan-sion parameter. On the other hand, 1=NC orretions are of the same order as theorretions due to the SU(3)V symmetry breaking, and an expansion of QCD interms of the breaking parameter of this symmetry works �ne. As a last omment, inertain observables the 1=NC orretion vanishes being the �rst non�zero orretions1=N2C � 10%.Although at low energies we an make a perturbative expansion in small mo-menta, it would be desirable to have a more diret onnexion with the fundamentaltheory. �PT only exploits the global (aidental) symmetries of QCD, and any othertheory with the same symmetries (and with the phenomenon of spontaneous hiralsymmetry breaking) would have the same low�energy e�etive theory (with di�erentoe�ients). The 1=NC expansion allows us to have the number of olours as a freeparameter of �PT diretly related to QCD.Finally, for several features of the low�energy phenomenology of the strong inter-



48 The 1=NC expansion I : Resonane Chiral Theoryations, the 1=NC expansion is the only satisfatory explanation from a fundamentalpoint of view. Moreover, in the intermediate energy region where the resonanes lie(above the � mass but below the perturbative regime) there is no other expansionparameter than 1=NC , sine the quark masses an be set to zero and the strong ou-pling onstant still is far too large. These reasons onstitute additional motivationsto take this expansion seriously.For the elaboration of this hapter I have followed Refs. [11, 35�37℄.2.2 Large�NC QCD : ounting rulesOne may think that the renormalization group equation (1.19) behaves badly in theNC !1 limit. We an ure this by resaling the oupling onstant g = ~g=pNC toobtain : � d~gd� = � �113 � 23 NFNC� ~g316�2 + O �~g5� : (2.1)In this way we keep the hadronization sale �QCD independent of the number ofolours when NC is big enough. It is onvenient to de�ne(G�)�� = Ga� (T a)�� ; (G��)�� = Ga�� (T a)�� ; (2.2)in suh a way thatD� = �� + i ~gpNC G� ; 14 �Ga�� G��a � = 12 Tr (G�� G��) ;G�� = ��G� � ��G� + i ~gpNC [G�; G�℄ ; (2.3)reading the Lagrangian (1.1) thenLQCD = � 12 TrG�� G�� + �q (iD= � M) q : (2.4)The large�NC ounting rules an be obtained using a trik developed by 't Hooft.The quark and gluon propagators read :
q� (x) �q � (y)� = Æ��S (x� y) ; 
Ga� (x)Gb� (y)� = ÆabD�� (x� y) ; (2.5)and are represented as in Fig. 2.1 (a) and (b). Instead, using the SU(NC) Fierzidentity (T a)�� (T a)Æ = 12 Æ�Æ Æ� � 12NC Æ�� ÆÆ ; (2.6)we will use the representation of (2.2) to write :
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(G�)�� (x) (G�)Æ (y)� = D�� (x� y)�12 Æ�Æ Æ� � 12NC Æ�� ÆÆ� ; (2.7)whih in the limit NC !1 is redued to
(G�)�� (x) (G�)Æ (y)� = 12 D�� (x� y) Æ�Æ Æ� ; (2.8)and admits the graphi representation of Fig. 2.1 (b). Any Feynman diagram an bedrawn using the double line representation, as in Figs. 2.2 and 2.3. One an think ofFeynman diagrams depited in the double line representation as a surfae obtainedgluing together polygons in the double lines.

(a) (b)

(c) (d) (e)Figure 2.1: Double line representation for gluon �elds.For deriving the NC�ounting rules it is onvenient to use a Lagrangian in whihwe rede�ne the quark and gluon �elds :Ĝ� = ~gpNC G� = g G� ; D� = �� + i Ĝ� ;Ĝ�� = ~gpNC G�� = g G�� ; q̂ = 1pNC q ; (2.9)obtaining then LQCD = NC �q̂ �iD̂= � M� q̂ � 14 ~g2 Ĝa�� Ĝ��a � : (2.10)



50 The 1=NC expansion I : Resonane Chiral TheoryAlthough the Lagrangian (2.10) has now a global NC fator it does not redue to asemilassial theory of quarks and gluons in the NC !1 limit beause the numberof quarks and gluons grows with NC . Now it is easy to read the ounting rules from(2.10) for vauum self energy diagrams : eah vertex has an NC fator and eahpropagator 1=NC ; in addition, eah olour loop has an NC fator. In the doubleline notation and onsidering the diagrams as polygons glued to form surfaes, eaholour loop orresponds to the fae of a polygon forming part of the surfae andeah propagator (either quark or gluon) orresponds to an edge of one polygon (twolines with arrows pointing in opposite diretions are glued edges and ount only asone). With this, the order of a vauum onneted diagram isNV�E+FC = N�C ; (2.11)where V stands for the number of verties, E for the number of edges and F for thenumber of faes; and � is a topologial invariant known as the Euler harater. Fora onneted orientable surfae � = 2� 2 h� b ; (2.12)where b is the number of boundaries and h is the number of handles (or holes).Of ourse one an diretly use Witten's ounting rules [37℄ to obtain the orretNC�ounting rules : eah olour loop gives an NC fator and eah interation vertexgives a fator 1=pNC or 1=NC for quark�gluon and three�gluons or for four�gluons,respetively. But with these rules the onnexion with topology is more involved.In the ase of unonneted diagrams the order is the produt of the order of eahonneted diagram. For instane Fig. 2.2 has V = 4; E = 6 and F = 3 giving � = 1,orrespondingly h = 0 and b = 1 and for Fig. 2.3 V = 4; E = 6 and F = 4 giving� = 2, orrespondingly h = 0 and b = 0. A quark loop represents a hole and thenit gives a 1=NC suppression. The maximum NC power we an reah is two and itorresponds to h = b = 0, that is, onneted vauum diagrams with the topology ofa sphere. Let as see how Fig. 2.3 has indeed the topology of a sphere. Let us startfrom a hollow sphere and ut it into two parts (two surfaes that an be hosen tobe equal); one of them an be �atten to a plane giving Fig. 2.2. In order to glue theseond surfae we identify its enter (or the �north� pole) with the border of a irlewith in�nity radius; that is, this seond surfae is the full <2 plane with a irleremoved in its origin. Now we an glue the two surfaes to get Fig. 2.3. So orderN2C diagrams are planar diagrams onsisting only on gluons (they an be drawn ona sheet of paper without any gluon jumping on top of other).If we are interested in orrelation funtions that depend on properties of quarks,suh as masses, our diagram must have at least one quark loop that, without loseof generality an be pushed to the outermost edge. The leading diagrams with onequark loop are of order NC and have the topology of a hollow sphere with one hole(the quark loop) on its surfae, orresponding to h = 0 and b = 1. Then thesediagrams are planar diagrams with a single quark loop whih forms the outermostedge. An example of a subdominant diagram is Fig. 2.4 : F = 1; V = 4; E = 6 or
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Figure 2.2: Flat diagram in both the ordinary and double line representations.

Figure 2.3: Flat diagram with the topology of a sphere in ordinary and double linerepresentation.h = 1; b = 1 orresponding to � = � 1. In general a gluon that annot be drawn inthe same plane as the rest of the �gure represents a handle and this orresponds toa 1=N2C suppression.
(a) (b) (c)Figure 2.4: An example of a non�planar diagram.It is important that we have been able to express the order of a given diagram interms of a topologial invariant, beause this makes our results general, regardlessof the number of gluons present in the diagram. To lose this setion, let us reviewthe onept of the 1=NC expansion of QCD. In a perturbative expansion in terms ofthe gs oupling, eah order orresponds to all Feynman diagrams having the samenumber of loops, and it omprises a �nite number. On the other hand, eah orderin the 1=NC expansion orresponds to all Feynman diagrams with a given topologydesribed by (2.12) and it omprises an in�nite number. This idea is skethed inFig. 2.5.
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∑

i =· · ·

1 2 i· · ·Figure 2.5: Representation of the Feynman diagrams ontributing to a given orderof the 1=NC expansion.2.3 NC�ounting rules for orrelation funtionsUsing the ounting rules derived for onneted vauum diagrams we an derive theounting rules for orrelation funtions of quark and gluon omposite operators.We will onentrate on gauge invariant operators that annot be split into separategauge invariant piees. This requires, for instane, that quark operators must bebilinear. We will use again the method of adding to the QCD Lagrangian externalsoures oupled to these operators. We need to express Eq. (1.21) in terms of theresaled quark (and gluon) �elds as in Eq. (2.9) and this adds an extra NC fator tothe soure. We will add then to the QCD Lagrangian a soure term asNC Ji(x) Ôi(x)where Ôi(x) is one operator written in terms of the resaled �elds and Ji(x) is theorresponding external soure. Furthermore, the full extended Lagrangian again hasa global NC fator ensuring that the ounting rule (2.11) still holds. To obtain theorrelation funtions we perform the appropriate funtional derivatives :DÔ1 Ô2 : : : ÔrE = 1i NC ��J1 � � � 1i NC ��Jr W (J)����J=0 ; (2.13)from where it an be learly established that eah funtional derivative (i.e. eahsoure insertion) implies a 1=NC suppression. The order N2C ontributions to W (J)ome from planar graphs with only gluons lines. They an ontribute to orrelationfuntions of purely gluoni operators. Thus pure�gluon r�point orrelation funtionsare of order N2�rC . If we want to alulate orrelation funtions involving quarkbilinears we will need order NC ontributions from W (J) given by planar diagramswith a quark loop in the outermost border as shown in Fig. 2.6. Thus r�pointorrelation funtions with quark bilinears are of order N1�rC . To obtain the ountingrules for orrelation funtions made up from non�normalized quark �elds we haveto multiply the former result by N rC obtaining then that the order does not dependon the number of quark bilinear insertions and it is equal to NC .We an use the NC�ounting rules for orrelation funtions to derive the ountingrules for meson and glueball sattering. We have to require that both meson andglueball are reated with an amplitude independent of NC (that is equivalent tomaking use of the LSZ formula). From now on, Ĥi will denote a quark bilinearoperator and Ĝi a gluon operator, both expressed in terms of the resaled �elds(2.9), that qualify as interpolating �elds for mesons or gluons. Generially we an
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Figure 2.6: Dominant ontribution to a 4�point orrelation funtion involving quarkbilinears.write a meson �eld as a olour singlet made up of quarks and anti�quarks :M� = 1pNC NCXi=1 q� � q� = pNC NCXi=1 �̂q� � q̂� = pNC Ĥ� ; (2.14)where the quantum numbers of the meson are spei�ed by the Dira and �avourmatrix � and the fator 1=NC is inluded to make the probability of reating a mesonequal to one. The two point orrelation funtion hĜ1 Ĝ2i is of order unity and so Ĝireates a glueball with unit amplitude. This ould have been inferred from Eq. (2.9)sine the reesaled gluon �eld is not reesaled by NC powers. hĜ1 : : : Ĝri is of orderN2�rC , thus an r�glueball interation vertex is of order N2�rC , and eah additionalglueball gives a 1=NC suppression. The meson two point orrelation funtion hĤ1 Ĥ2iis of order 1=NC and thus pNC Ĥi reates a meson with unit amplitude, as shownin Eq. (2.14). The r�point orrelation funtion hpNC Ĥ1 : : : pNC Ĥri is of orderN1� r2C as well as the r�meson interating vertex, and eah additional meson gives a1=pNC suppression. Mixed quark�meson verties with r glueballs and s mesons areof order N1�r� s2C . All these ounting rules are summarized in Fig. 2.7.
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Figure 2.7: NC�ounting rules for the sattering of mesons (ontinuous line) andglueballs (wiggly line).One important result is that the pion deay onstant F is of order pNC as an be



54 The 1=NC expansion I : Resonane Chiral Theoryread from Eq. (1.35) as this matrix element is of the type hNCĤ1pNC Ĥ2i � pNCwhere the �rst NC fator is added to write the axial urrent in terms of non�normalized quark �elds and the seond pNC fator to make the amplitude to reatea pion unitary.2.4 Phenomenology and main resultsThe NC�ounting rules imply that one has a weakly oupled theory of mesons andglueballs with a oupling onstant 1=pNC . As a weakly interating theory, one anperturbatively expand in the oupling onstant 1=pNC . The leading�order graphsare tree�graphs, and the leading�order singularities are poles. QCD, a stronglyinterating theory of quarks and gluons has been rewritten as a weakly interatingtheory of hadrons. The leading NC interations bind the quarks and gluons intoolour singlet hadrons. The residual interations between these hadrons are 1=NCsuppressed. The 1=NC expansion is also equivalent to a semilassial expansion forthe meson theory.The spetrum of the theory ontains an in�nite number of narrow glueballs andmeson resonanes. They are narrow beause their widths vanish as NC ! 1 (astheir interation verties are 1=NC suppressed). There must be an in�nite numberof resonanes to math the logarithmi running of QCD orrelation funtions in thehigh�energy regime (see Chapter 4) :Z d4x eiq�x hQ(x)Q(0)i = 1Xi f 2iq2 �m2i ; (2.15)where mi is the mass of the i�th hadroni resonane Hi and it is � O(1), andfi = h 0 jQ(0)jHi i is the deay onstant of the resonane for the urrent Q , and itis � O(pNC). This an be seen in Fig. 2.8. The same argument an be applied tothree�point Green funtions, as shown in Fig. 2.9
i

〈J J 〉 =
∑

iFigure 2.8: Two�point orrelation funtion in the large�NC limit.Other features ruled by the expansion are [35, 37℄ :1. Mesons are pure qq states, that is, one �nds a suppression of the qq sea atNC !1 ; suppression of exoti qqqq states.2. Zweig's rule is exat in the large�NC limit, that is, mesons should be lassi�edas nonets rather than otets. The axial anomaly has disappeared and �avourU(nf )L 
 U(nf )R has been restored.
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〈J J J 〉 =

∑

i,j,k

i j

k

+i

jFigure 2.9: Three�point orrelation funtions in the large�NC limit.3. In the large�NC limit and under reasonable assumptions, U(nf )R 
 U(nf )Lsymmetry must spontaneously break down to U(nf )V [12℄.4. Meson physis in the large�NC limit is desribed by the tree diagrams of ane�etive loal Lagrangian, with loal verties and loal meson �elds. This fatinvites us quikly to think about the proper approah of the phenomenologialLagrangians.2.5 The 1/NC expansion in �PTWe an use the NC�ounting rules obtained in the previous setions to derive usefulresults for the e�etive �eld theory of QCD at very low energies. It turns out to bea useful soure of dynamial information [35,38℄, in the sense that it omes diretlyfrom QCD.One an imagine omputing the hiral Lagrangian by evaluating the QCD fun-tional integral with soures (quark bilinears) for the Goldstone bosons. We haveseen that the leading order diagrams ontributing to orrelation funtions of quarkbilinears are O(NC) and ontain a single quark loop, Fig. 2.6. This implies thatthe leading order terms in the Lagrangian are O(NC). At the sight of this �gure itis lear that the leading order terms an be written as a single �avour trae sinethe outgoing �avour quark in one vertex is the inoming �avour at the next vertex.Similarly terms with two quark loops are O(1) and onsist in two traes and thosewith r loops have r �avour traes and are O(N1�rC ).Sine in the large�NC limit the U(nf )L
U(nf )R symmetry is restored, we havenine Goldstone bosons whih an be ast together in the matrix8Xa=0 �ap2 �a =0BB� 1p2�0 + 1p6�8 + 1p3�1 �+ K+�� � 1p2�0 + 1p6�8 + 1p3�1 K0K� K0 �q 23�8 + 1p3�11CCA :(2.16)Let us onentrate �rst in the L2 Lagrangian (1.54). It has a global fator F 2 thattranslates into a global fator of NC and it is split into two terms, the kineti and



56 The 1=NC expansion I : Resonane Chiral Theoryi Lri (M�) O(NC) soure LNC!1i2L1 � L2 � 0:6� 0:6 O(1) Ke4, �� ! �� 0:0L2 1:4� 0:3 O(NC) Ke4, �� ! �� 1:8L3 � 3:5� 1:1 O(NC) Ke4, �� ! �� � 4:3L4 � 0:3� 0:5 O(1) Zweig's rule 0:0L5 1:4� 0:5 O(NC) FK : F� 2:1L6 � 0:2� 0:3 O(1) Zweig's rule 0:0L7 � 0:4� 0:2 O(1) GMO, L5, L8 � 0:3L8 0:9� 0:3 O(NC) M�, L5 0:8L9 6:9� 0:7 O(NC) hr2i�V 7:1L10 � 5:5� 0:7 O(NC) � ! e �  � 5:4Table 2.1: Experimental values of the oupling onstants Lri (M�) in units of10�3 [35℄. The fourth olumn shows the experimental soure employed. Preditionsin the large�NC limit are obtained in the one�resonane approximation workingwithin U(3)
 U(3).the mass term. Sine hqqi = NChĤii � O(NC) then B0 � O(1) and both terms in(1.54) are O(NC) as it orresponds to the fat that we have a single �avour trae.The u matrix has an expansion in powers of �=F and so eah additional meson �eldhas a fator 1=F / 1=pNC as required by the NC�ounting rules. The Lagrangian(1.54) has an overall NC fator and the u matrix is NC independent, so the 1=NCexpansion is equivalent to a semilassial expansion. Graphs omputed using thehiral Lagrangian have a 1=NC suppression for eah loop as it implies an additionalquark loop. It is re�eted in the fat that eah hiral loop in aompanied by a1=(4 �F )2 fator.Let us have a look at the L4 Lagrangian (1.62). The terms with a single trae,L3;5;8;9 should be O(NC) and those with two traes L1;2;4;6;7 should be O(1). Howeverdue to the Cayley�Hamilton relation for three �avours we an writehu� u� u� u�i = � 2 hu� u� u� u�i + 12 hu� u�i2 + hu� u�i hu� u�i : (2.17)The orret statement is then that L1 and L2 are O(NC) but the linear ombination2L1 � L2 is O(1). The full set of preditions is shown in Table 2.1.



2.6 Resonane Chiral Theory 572.6 Resonane Chiral Theory
2.6.1 General onsiderationsAlready in the 50's and 60's, it was realized that in pion�nuleon sattering proesses,for ertain spin�isospin hannels, peaks of probability showed up. Of ourse thesepeaks where pinning down the existene of a resonane as an intermediate state,and in the frame of the quark model it was given a �qq ontent.The aim of this setion is to �nd an e�etive theory with these resonanes asative degrees of freedom. The energy region where these resonanes play an essentialrï¾12 le is m� . E . 2GeV. It has been already pointed out that at this range ofenergies the only known expansion parameter is 1=NC, and in this framework it wasdisussed that we an desribe the physis by means of e�etive Lagrangians withhadroni degrees of freedom. In fat, at leading order in 1=NC we will only onsidertree�level diagrams given by terms with only one trae.We have learned how to deal with theories su�ering spontaneous breakdown ofsymmetries, and so we know how to parametrize the Goldstone �elds. On the otherhand, the U(nf )L
U(nf )R symmetry is restored and our resonane �elds, as for theGoldstones, will be grouped in nonets rather than otets and singlets. The resonane�elds do not know anything about the underlying hiral symmetry, and so theymust have well de�ned transformation properties under the UV (3) subgroup. Thefundamental work to develop this Resonane Chiral Theory (R�T) was performedin [13℄.But the rï¾12 le played by R�T is not only to desribe the hadroni physis at thesale where resonanes manifest themselves as ative degrees of freedom. It will be anessential link between the very low�energy regime ruled by �PT and the high�energyregime ruled by the Operator Produt Expansion (OPE). Sine R�T is supposed todesribe orretly physis at all energy regimes, we an �nd relations that must besatis�ed by their parameters in order to math the asymptoti behaviour of QCDat high energies (R�T is not QCD for arbitrary values of its parameters). After afuntional integration of the resonane �elds (that is, restriting the energy belowthe lightest integrated resonane) we reover the �PT Lagrangian struture, butwith preditions for its ouplings in terms of the R�T parameters, those onstrainedby the asymptoti behaviour. So we an link the high� and low�energy regimes ofQCD, and the missing link is preisely R�T. This mathing proedure and funtionalintegration an be better understood using the language of path integrals (1.26) and(1.46) :



58 The 1=NC expansion I : Resonane Chiral Theory
e i Z = Z DqDqDG� e i R d4xLQCD= Z Du 1Yi;j;q;l;m=1DViDAj DSkDPlDBm e i R d4xLR�T (u;Vi;Aj ;Sk;Pl;Bm)= Z Du e i R d4xL�PT (u) ; (2.18)where V , A, S, P and B represent the vetor, axial�vetor, salar, pseudosalarand pseudovetor resonane �elds, respetively. As a last omment, although thelarge�NC behaviour of QCD predits an in�nite number of resonanes for any givenset of quantum numbers, in most ases one only deals with the �rst multiplet, whatis known as the Single Resonane Approximation; or if instead we take the mini-mum number of resonanes in eah hannel suh that we ful�ll all the short distanerequirements, the approah is known as theMinimal Hadroni Ansatz (MHA). Deal-ing with the in�nite tower of resonanes is ompliated beause their ouplings arenot a priory determined by QCD, and moreover, phenomenology supports the MHAapproah. If we are far from the resonane pole, its in�uene is suppressed by theinverse of its mass.2.6.2 The R�T LagrangianAs disussed previously, the transformation properties of the resonane �elds underthe hiral group must ensure that they transform as nonets under the vetor sub-group. The nine resonane �elds are then grouped together in an U(3) matrix, andfor instane, for the �rst multiplet of vetor mesons it takes the following form :V�� = 1p2 8Xa=0 �aV a�� =0BBB� 1p2�0 + 1p6!8 +q13!0 �+ K�+�� � 1p2�0 + 1p6!8 +q13!0 K� 0K�� K� 0 �q23!8 +q13!0

1CCCA�� ; (2.19)where instead of the more familiar Proa formalism, we have used the antisymmetrione, to be disussed in Appendix C. This formalism will be used throughout thisthesis for the spin�one resonane �elds, unless otherwise stated. There are manypossible ways to transform the resonane �elds that lead to the same transformation



2.6 Resonane Chiral Theory 59under the vetor group, we give some examples
V !

8>>>>>>>>>><>>>>>>>>>>:
gL V gyRgL V gyLh(g;�)V gyRgL V h(g;�)yh(g;�)V h(g;�)y... ; (2.20)

but it an be shown that all of them are equivalent after a �eld rede�nition. Workingas we are in the u�basis, obviously the most onvenient hoie isR! h(g;�)Rh(g;�)y.The R�T Lagrangian an be split in two parts :LR�T (u; V; A; S; P; B) = ~L�PT (u) + LR(u; V; A; S; P; B) : (2.21)The �rst is the �PT Lagrangian desribing the dynamis of the Goldstone bosonsamong themselves, but with di�erent oupling onstants, and the seond ontainsthe oupling of the mesoni resonanes R(JPC) of the type V (1��), A(1++), B(1+�),S(0++) and P (0�+) to the Goldstone bosons. At this point a omment is in order :the values of the hiral LECs in ~L�PT depend on the spei� hoie of the formal-ism for desribing the spin�one resonane �elds. Thus these LECs lak of physialmeaning but are nevertheless neessary to ensure that the theory omplies with theshort�distane behaviour.The disrete transformation properties of the �elds desribing the resonanes aredepited in Table 2.2. Now using as building bloks the resonane �elds plus thehiral tensors of (1.51) we have to write the most general Lagrangian being invariantunder the U(3)L 
 U(3)R group and the disrete transformations P and C (and ofourse being hermitian and Lorentz invariant). Of ourse the problem now is thatthere are an in�nite number of terms and we do not have a perturbative expansionin small momenta; so terms with many derivatives are not suppressed with respetto terms with less derivatives. However, if we want this Lagrangian to desribe thehigh�energy regime, it annot have many derivatives (at high energies form fatorsand Green funtions vanish) and this limits the number of operators drastially. Theusual way to proeed is to write those piees of the Lagrangian needed for a givengoal. In this setion we provide the piees neessary to alulate all the two�pointGreen funtions yielding at the same time upon funtional integration the hiralLECs of L4. These onsist of the kineti terms for the resonanes (those are bilinearin the resonane �elds) plus terms linear in the resonane �elds times an O(p2) hiraloperator involving only Goldstone �elds and external soures :LR = XR=V;A;S;P;B fL kin(R) + L2(R)g ; (2.22)



60 The 1=NC expansion I : Resonane Chiral Theorywith kineti term 1L kin(R) = � 12hr�R��r�R�� � 12M2RR�� R��i ; R = V;A;B ;L kin(R) = 12 
r�Rr�R � M2RR2� ; R = S; P ; (2.23)where MR is the orresponding mass in the hiral limit. The interation term isgiven byL2[V (1��)℄ = FV2p2 hV�� f��+ i + i GV2p2 hV�� [u�; u�℄i + p2F TV mV hV�� t��+ i ;L2[A(1++)℄ = FA2p2 hA�� f��� i ;L2[B(1+�)℄ = ip2F TB mBhB�� t��� i + FB4p2 hB�� f+��i "���� + GBp2 hB�� u� u�i "���� ;L2[S(0++)℄ = d hS u� u�i + m hS �+i ;L2[P (0�+)℄ = i dm hP ��i ; (2.24)where all oupling onstants are real. The interations of the B(1+�) resonaneswere �rst introdued in Ref. [39℄ and the interations with tensor soures in Ref. [26℄.The interation of the V (1��) with tensor soures was �rst introdued in Ref. [40℄.It is remarkable that in the Proa formalism the B(1+�) resonanes deouple fromvetor soures :FB4p2mB DB̂�� f+��E "���� = FB2p2mB Dr�B̂� f+��E "���� (2.25):= � FB2p2mB DB̂� r�f+��E "���� = � i FB4p2mB DB̂� [f+��; u�℄E "���� ;where B̂�� = r�B̂��r�B̂� and B̂� orresponds to the Proa �eld. Apart from inte-gration by parts, in the last step we have used the �rst Bianhi identity, Eq. (1.70).From a physial point of view this fat an be easily understood, sine the matrixelement h 0 jV a� (0) j bb(p; �)i is identially zero.2.7 Funtional integration of the resonanesIt is a ommon lore to believe that the dynamis of the Goldstone bosons is largelya�eted by the existene of the lowest mass resonanes. Muh as happens in theFermi theory, at energies well below the pole of the orresponding resonane, we ansubstitute its propagator by a tower of loal operators involving only light degreesof freedom. Sine the lowest order �PT Lagrangian L2 (1.54) is universal, it annotreeive any in�uene from heavier degrees of freedom. Then we expet that the1This kineti term inludes an interation due to the ovariant derivative.



2.7 Funtional integration of the resonanes 61Table 2.2: Disrete transformation properties of the resonane �elds.O P C h..V�� V �� �V >�� V��A�� �A�� A>�� A��S S S> SP �P P> PB�� �B�� �B>�� B��resonanes will give a ontribution to the LECs appearing at higher orders in thehiral expansion, namely L4 and L6. Of ourse, the formal proedure is to perform afuntional integration of the resonane �elds in the generating funtional (2.18). Inthe large�NC limit and after imposing that R�T mathes the known short�distanebehaviour, one an demonstrate that for almost all the ases, the LECs of �PT arefully determined by the resonane exhange; this phenomenon is known as resonanesaturation.In this setion we will express the hiral LECs involving tensor urrents in termsof the R�T parameters. In order for that, one must only integrate out the vetorand pseudovetor �elds and pik the operators ontaining at least one tensor soure.We outline the general proedure. One an reexpress (2.24) for vetors andpseudo�vetors in the following way :L2 = hV�� J��V i + hB�� J��B i ; (2.26)The equation of motion then readsr�r�V ��l � r�r�V ��l + m2V V ��l = � 2 J��V ;r�r�B��l � r�r�B��l + m2B B��l = � 2 J��B : (2.27)We an solve this equation iteratively and �nd the lassial solution :V ��l = � 2m2V J��V + 2m4V (r�r�J��V �r�r�J��V ) + O� 1m6V � ;B��l = � 2m2B J��B + 2m4B (r�r�J��B �r�r�J��B ) + O� 1m6B� ; (2.28)when substituting bak in (2.24) we �nd the e�etive Lagrangian :Le� = 12 hV ��l JV �� +B��l JB��i = � 1m2V hJ��V JV ��i � 1m2B hJ��B JB��i� 2m4V hr�JV �� r�J��V i � 2m4B hr�JB�� r�J��B i + O� 1m6R�: (2.29)



62 The 1=NC expansion I : Resonane Chiral TheorySo onsidering terms having at least one tensor �eld we �nd (we only expand to1=m4B those terms needed in this thesis) :Le� = �FHFBMB � FV F TVMV � hf+�� t��+ i + �2 i FBGHMB � 2 i F TV GVMV � ht+�� u� u�i+2 �F 2B � (F TV )2� ht+�� t��+ i � 4(F TV )2M2V 
r�t+�� r�t��+ �+ 4F 2BM2B 
r�t��� r�t��� � � 2FV F TVM3V 
r�f+�� r�t��+ � : (2.30)By omparison with the �PT Lagrangian of [23℄ shown in Eq. (1.62) and Table B.1in Appendix A.2 and de�ning the hiral LECs as Li = ~Li + LRi one onludes that�R1 = �FHFBMB � FV F TVMV � ; �R2 = �2F TV GVMV � 2FBGHMB � ;�R3 = 2 �F 2B � (F TV )2� ; 
R51 = 0 ; 
R52 = � 4(F TV )2M2V ;
R53 = 4F 2BM2B ; 
R94 = � 2FV F TVM3V ; HR118 = 0 : (2.31)Of ourse with (2.24) we annot saturate all the LECs appearing in L6 of [23℄. Forthese we would need to onsider terms with more that one resonane.To end with this subsetion and for the sake of ompleteness we review the resultsobtained for the LECs of L4 not involving tensor soures [13℄ :L1 = G2V8M2V ; L2 = G2V4M2V ; L3 = � 3G2V4M2V + 2d2M2S ;L4 = 0 ; L5 = d mM2S ; L6 = 0 ;L7 = 0 ; L8 = 2m2M2S � d2m2M2P ; L9 = FVGV2M2V ;L10 = � F 2V4M2V + F 2A4M2A ; H1 = � F 2V8M2V � F 2A8M2A ; H2 = mM2S + d2mM2P : (2.32)2.8 Odd�intrinsi�parity setorIf one wants to alulate three�point Green funtions it is not enough to use theLagrangian depited in (2.22). One then would need terms onsisting in two reso-nane �elds plus one O(p2) hiral operator and terms linear in the resonane �eldstimes one O(p4) tensor operator [ typially this is ahieved with the produt of twoO(p2) hiral operators ℄. But this is not the only reason to go beyond the (2.22)Lagrangian. If we want to determine the O(p6) LECs in terms of the resonaneparameters, one might think that the proedure is simply to use Eq. (2.29) up to



2.8 Odd�intrinsi�parity setor 63the O(M�4R ) order. However this is not enough, sine the omplete set of O(M�4R )operators is not totally rendered by the seond order expansion of (2.22) : one getsontributions of the same order preisely from the terms needed to alulate thethree�point Green funtions. The full set of operators needed to saturate the even�intrinsi�parity setor O(p6) LECs not involving tensor urrents an be found inRef. [41℄.For the phenomenologial studies performed in this thesis, the only three�pointGreen funtion that we need to study in the framework of R�T is the hV VP i.This funtion belongs to the odd�intrinsi�parity setor of QCD, and then uponfuntional integration it saturates the O(p6) LECs orresponding to this setor [33℄.We remind the reader that the �rst ontribution to the odd�intrinsi�parity setorof the hiral Lagrangian is the WZW anomalous term, and it is O(p4). This term isuniversal and does not reeive any ontribution from resonane exhange. Moreover,it must be expliitly inluded in the odd�intrinsi�parity R�T Lagrangian.The ontributions to the odd�intrinsi�parity setor onsisting only on one mul-tiplet of vetor meson resonanes was �rst worked out in Ref. [42℄ and we reviewhere its expression. As we shall see, with only one multiplet of vetor meson res-onanes, one fails to reprodue at the same time the OPE and Brodsky�Lepageonstraints. Within the antisymmetri formalism, it onsists of an independent setof odd�intrinsi�parity operators whih omprise all possible verties involving twovetor resonanes and one Goldstone (VVp), and verties with one vetor resonaneand one external vetor soure plus one Goldstone (VJp). The basis reads :VJp termsO1VJp = ����� h fV �� ; f ��+ gr�u� i ; O2VJp = ����� h fV ��; f ��+ gr�u� i ;O3VJp = ����� h fV �� ; f ��+ g�� i ; O4VJp = i ����� hV �� [ f ��� ; �+℄ i ;O5VJp = ����� h fr�V ��; f ��+ g u� i ; O6VJp = ����� h fr�V ��; f ��+ g u� i ;O7VJp = ����� h fr�V �� ; f ��+ g u� i ; (2.33)VVp termsO1VVp = ����� h fV �� ; V ��gr�u� i ; O2VVp = i ����� h fV �� ; V ��g�� i ;O3VVp = ����� h fr�V �� ; V ��g u� i ; O4VVp = ����� h fr�V �� ; V ��g u� i ;(2.34)And the Lagrangian has then the following form :LoddV = LVJP + LVVP ;LVJP = 7Xa=1 aMV OaVJP ; LVVP = 4Xa=1 daOaVVP : (2.35)For the omputation of the hV V P i Green funtion one an also onsider the inlu-sion of a multiplet of pseudosalar resonanes. As we shall see in Setion 5.2.3, if



64 The 1=NC expansion I : Resonane Chiral Theoryone onsiders a multiplet of vetor and pseudosalar resonanes only, one annotsimultaneously math the OPE behaviour and the Brodsky�Lepage ondition. Forthe sake of ompleteness we give its expression here. We now have to onsider odd�intrinsi�parity operators omprising all possible verties involving two vetor andone pseudosalar resonanes (VVP), verties with one vetor resonane, one externalvetor soure and one pseudosalar resonane (VJP), and verties with two vetorexternal soures and one pseudosalar (JJP).OV JP = "���� 
�f��+ ; V ��	P� ; OV V P = "���� 
�V ��; V ��	P� ;OJJP = "���� Dnf��+ ; f��+ oPE : (2.36)Finally we onsider the Lagrangian inluding two multiplets of vetor meson reso-nanes, � and � 0.LevenV = FV2p2 hV ��1 f+��i + F 0V2p2 hV ��2 f+��i ; (2.37)LoddV = 7Xi=1 iMV1 OiV1JP + 7Xi=1  0iMV2 OiV2JP + 4Xi=1 diOiV1V1P+ 4Xi=1 d 0i OiV2V2P + Xn=a;b;;d;ednOnV1V2P + df OfV1V2J ; (2.38)Operators OViJP and OViViP were already given in Eqs. (2.33) and (2.34) and forthe last part of the Lagrangian there are two subsets of piees [43℄ :� V1V2P terms, whih ontain verties with Goldstone and two vetor resonanesfrom di�erent multiplets :OaV1V2P = "���� hfV ��1 ; V ��2 gr�u�i ; ObV1V2P = "���� hfV ��1 ; V ��2 gr�u�i ;OV1V2P = "���� hfr�V ��1 ; V ��2 g u�i ; OdV1V2P = "���� hfr�V ��1 ; V ��2 gu�i ;OdV1V2P = "���� hfr�V ��1 ; V ��2 gu�i : (2.39)� V1V2J terms, with two vetor resonanes from di�erent multiplets and onepseudosalar external soure :OfV1V2J = i "���� hfV ��1 ; V ��2 g��i : (2.40)



Chapter 3The 1=NC expansion II : Baryons
3.1 IntrodutionBaryons are olour singlets made up of quarks (no antiquark). Sine in the SU(NC)gauge group the Levi�Civitï¾12 symbol has NC indies, a baryon is an NC�quarkstate, B = 1pNC ! �i1i2:::iNC qi1qi2 � � � qiNC : (3.1)Quarks forming a baryon have all di�erent olours, sine the indies of the ��symbolmust be all di�erent for it to be non�zero. Sine quarks are fermions they must obeyFermi�Dira statistis; the ��symbol is totally antisymmetri and hene the baryonmust be ompletely symmetri in the rest of quantum numbers : spin and �avour.Baryon masses grow linearly with NC , and hene they beome in�nitely heavyfor NC ! 1. For massless quarks, the only dimensionful parameter of QCD is�QCD, hene MB � NC �QDC : (3.2)The number of quarks in a baryon grows as NC does, but its size is governed by�QCD, whih is O(1). Therefore baryons beome more and more dense as NC grows.The 1=NC expansion for baryons will give us a deep onnexion between QCD andtwo popular models : non�relativisti quark model and Skyrme model.For the elaboration of this hapter I have followed Refs. [11, 14, 44℄.3.2 Counting rules for baryonsLet us draw a propagating baryon as NC inoming lines with olours arranged inorder, 1 � � � NC , and the outgoing NC quark lines as a permutation of 1 � � � NC . Letus �rst onentrate in the ounting of the baryon propagator. It is onvenient toderive the ounting rules for onneted diagrams. For this purpose, the inomingand outgoing quark lines are to be treated as ending on independent verties, so that



66 The 1=NC expansion II : Baryons
(a) (b)Figure 3.1: Self�interation of a baryon and its onneted piee.the onneted piee of Fig. 3.1 (a) is Fig. 3.1 (b). A onneted piee that ontains nquark lines will be referred to as an n�body interation. The olours of the outgoinglines in an n�body interation are a permutation of the n inoming quarks. Onean relate n quarks onneted graphs for baryons interations with vauum planardiagrams with a single quark in the outermost edge, by utting the quark loop in ndi�erent plaes, and setting the olour of eah quark line with that of an inoming(outgoing) quark in the baryon. Curiously, dominant �planar� diagrams are notneessarily �at when written on a sheet of paper.An n�body interation is of order N1�n , sine planar quark diagrams are of orderNC and n index sums over quark olour have been eliminated by utting n fermionlines. But there are NC(NC�1) � � � (NC�n+1)=n! � O(NnC) ways to hoose n linesout of NC quarks, and so the net e�et of an n�body interation is order NC for anyn. Diagrams with m disonneted piees are of order NmC , and this should not besurprising. Sine the baryon mass inreases with NC , baryons are very heavy andwe an onentrate only on their stati properties. In partiular baryons are alwaysin their rest frame (~pB = 0), and so the propagator we are looking for readse� iMB t = 1 � iMB t � M2B t22 + � � � ; (3.3)where the 1 orresponds to the quarks propagating without interations. So, sineMB � O(NC), eah term has a di�erent NC saling and orresponds to the ontri-butions with di�erent numbers of disonneted piees.The NC�ounting rules an be extended to baryon matrix elements of a oloursinglet suh as hB j �q �q jB i. It has NC terms beause it an be inserted in any of thequark lines, as shown in Fig. 3.2. In general we will assume hB j �q �q jB i � O(NC),beause anellations among the di�erent insertions an our. In general, an n�body operator has matrix elements � O(NnC).With the previous result we dedue that the baryon�meson oupling (Fig. 3.3)onstant g is � pNC , sine the normalized interpolating �eld for reating a mesonis 1=pNC �q �q. The baryon�meson sattering amplitude is � O(1). Two possibleontributions are shown in Fig. 3.4 : the two mesoni operators must be inserted intothe same quark line, diagram (a), to preserve energy (the baryon is stati and heneit remains stati after the interation takes plae), or a gluon must be exhangedbetween the two lines, diagram (b). In general the amplitude for Baryon + meson!



3.3 Consisteny onditions 67Baryon + n mesons is � N (1�n)=2C , and hene eah meson insertion is aompaniedby a 1=pNC suppression fator as for the purely mesoni setor.
Figure 3.2: Baryon matrix elements of a one�body interation and a two�bodyinteration.

Figure 3.3: Diagram of baryon�meson oupling.
(a) (b)Figure 3.4: Diagrams for baryon�meson sattering.An observation due to Witten is that the NC�ounting rules derived in thissetion are the same as in a �eld theory with oupling onstant 1=pNC , wheremesons are fundamental �elds and baryons are solitoni solutions.3.3 Consisteny onditionsThe simplest way to derive the non�trivial onsisteny onditions is to onsiderbaryon�meson sattering at low (�xed) energy, in the hiral limit, and derive theonditions for pion�nuleon ouplings. The only assumptions needed are that both
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Figure 3.5: Momentum of the partiles involved in pion�nuleon sattering.the baryon mass and gA are of order NC , as they are, sine that is the ounting forone�body operators.One an extend the formalism of �PT in Chapter 1 to aommodate also baryons.We are not going to disuss the details here, but quote the needed elements. Sinewe are onsidering stati baryons our Lagrangian will have only one baryon andone antibaryon �eld. The most general suh Lagrangian with the lowest number ofderivatives is (two �avours) [45℄LB = �	�iD= �M + gA2 � 5 u��	 := �	 �iD= �M + gA2 � 5 ti�a�i � ���iF ��	 ;(3.4)where ti = �i=2 and 	 is a olumn matrix with the proton and neutron Dira �elds.With this Lagrangian we an study the axial�vetor matrix element of nuleons andalso the pion�nuleon vertex. After relating them we get :
B �� �q ti� 5 q ��B � = gA �	 �ti� 5�	 � O(NC) ;L��N = � ���iF 
B �� �q ti� 5 q ��B � � � ~r�iF 
B �� �q ti ~ 5 q ��B � ; (3.5)The pion�nuleon vertex is order pNC , as stems from the ounting for F and gA,already disussed. The baryon ats as a heavy stati soure for the sattering ofmesons at low energies. The absorption of the inoming meson by the heavy baryonresults in an intermediate baryon state whih is o��shell by a four�momentum oforder unity. The momentum of an intermediate meson an be written asP = M v + k = M v0 ; (3.6)where v is the veloity of the inoming baryon (and hene v2 = 1) and k is theinoming pion momentum. The M v piee is O(NC) while k is order one, so theintermediate baryon four veloityv0 = v + O� 1NC� ; (3.7)



3.3 Consisteny onditions 69is equal to the initial baryon four�veloity in the large�NC limit. So reoil e�ets areof order 1=NC and an be negleted. In this limit, the inident and emitted mesonshave the same energy, sine there is no transfer to the in�nitely heavy baryon, butthe three�momentum of the meson hanges in the sattering proess. Using theheavy�quark tehniques, we an write the heavy baryon propagator asP= +MP 2 �M2 ! ik � v �1 + v=2 � ; (3.8)whih does not involve the baryon mass and is manifestly O(1). In the rest frame ofthe baryon v� = (1;~0) the propagator projets out the two large omponents of thebaryon Dira spinor, and Eq. (3.8) redues to the non�relativisti propagator i=E,with E the initial and �nal meson energy. As shown in Eq. (3.5) the time omponentof the axial�vetor urrent between two nuleons at rest vanishes (non�relativistiredution). We then de�ne
B �� �q ta i 5 q ��B � � g NC 
B ��X ia ��B � ; (3.9)where hB jX ia jB i and g are O(1). The oupling onstant g has been fatored outso that the normalization of X ia an be hosen to simplify future expressions. Sinethe non�relativisti redution allows us to write matrix elements in terms of the twoomponent spinors, jB i on the right�hand side represents one of the four possiblestates p", p#, n" and n#, and X ia is a 4 � 4 matrix de�ned upon those states, thathas a �nite NC !1 limit :X ia = X ia0 + X ia1NC + X ia2N2C + � � � ; (3.10)
Figure 3.6: Diagrams for the baryon�meson sattering. The third diagram is sup-pressed by 1=NC.The leading ontribution to pion�nuleon sattering is from the pole graphs inFig. 3.6, whih ontributes at order E provided the intermediate state is degenerate(same mass) with the initial and �nal states. The sattering amplitude for theproess �a(k) +B(q)! �b(k0) +B 0(q0) is :� i ki k0 j N2C g2F 2E 
B0 ���X ia; Xjb ���B � ; (3.11)



70 The 1=NC expansion II : BaryonsApparently this amplitude is O(NC) and it violates both unitarity and the powerounting rules derived in Setion 3.2. This means that large�NC QCD with a mul-tiplet of nuleons with I = J = 1=2 is an inonsistent �eld theory unless some nieanellation ours. There must be other intermediate states that anel the NCorder of Eq. (3.11) to make it O(1). This leads to the onsisteny ondition, derivedin Refs. [46, 47℄ �X ia; Xjb � � O� 1NC� ; hX ia0 ; Xjb0 i = 0 : (3.12)Sine X ia is an isospin triplet spin�one operator it must satisfy the following algebrarelations �J i; Xjb � = i �ijkXkb ; �T a; X ib � = i fabX i0 ;�T a; T b � = i fab T  ; �J i; J j � = i �ijk Jk : (3.13)In general we an onsider the ase of nf �avours. Eqs. (3.12) and (3.13) onstitutea ontrated SU(2nf ) algebra. It is useful to ompare the SU(2nf ) algebra withthe SU(2nf) algebra. The only new relation is�Gia; Gjb � = i2nf �ijk Æab Jk + i4 fab Æij T  + i2 �ijk dabGk : (3.14)Then we an identify X ia � limNC!1 GiaNC : (3.15)that aurately reprodues Eq. (3.12), and is known as the ontration of a Liealgebra. The usual spin and �avour algebra of baryons is then extended to a spin��avour algebra in the large�NC limit when X ia is inluded in the algebra. Notethat a spin��avour symmetry whih mixes internal and spae�time symmetries anemerge for large�NC baryons beause the baryon �eld is stati in the large�NC limit.Then there is no violation of the Coleman�Mandula theorem [48℄, sine the baryonis non�relativisti. While we have just shown that the large�NC limit of QCD hasa ontrated SU(2nf ) symmetry in the baryoni setor, we have not shown it for�nite NC , and there is no reason to believe this is true (even if the quark modeldoes).It is easy to show that the large�NC preditions for the pion�baryon oupling ra-tios are the same as those obtained in either the skyrme or the non�relativisti quarkmodel, beause both models also have a ontrated SU(2nf) algebra in this limit.There are then two natural approahes to the study of the spin��avour algebra ofbaryons, two di�erent expliit representations of the NC ! 1 SU(2nf ) algebra.One an solve the onsisteny onditions by onstruting the irreduible representa-tions of the SU(2nf) algebra, using standard tehniques from the theory of induedrepresentations, that an be shown to be in�nitely dimensional. This is very losely



3.4 Large�NC baryon representations 71related to the Skyrme model. One an also onstrut solutions onsidering NC anodd and large but �nite number, using quark operators (quark representation), anapproah that is losely related to the non�relativisti quark model. Basially, aswe will see, the solution to the onsisteny onditions allows to express the ma-trix element of a QCD operator in terms of unknown oe�ients and operators ofthe ontrated algebra. Whereas the Skyrme representation uses X ia0 as the spin��avour generator, the quark representation makes use of Gia. The operators X ia0and Gia=NC only di�er at subleading powers of 1=NC, and so, to a given order in1=NC results expressed in both basis only di�er by higher order 1=NC orretions.In this thesis we will onentrate on the quark representation.3.4 Large�NC baryon representations
...Figure 3.7: SU(2nf) representation of the ground state baryons. The Young tableauhas NC boxes.We will disuss brie�y the irreduible representations of the ground�state baryonsfor an arbitrary number of �avours nf in the quark representation. The totallysymmetri representation for SU(2nf ), Fig. 3.7, has baryons with spin 12 ; 32 ; : : : NC2 ,transforming as the �avour representations shown in Table 3.1. For nf = 2 statesan be identi�ed by its spin and isospin as I = J = 12 ; 32 ; : : : NC2 . For three �avours,weight diagrams look a bit ompliated. We show in Fig. 3.8 an example for spin 12 .In general, weight diagrams for spin J have one edge with a = 2 J + 1 weights andanother with b = (NC +2)=2�J . The dimension of the irreduible representation isa b (a+ b)=2. The multipliity starts by one in the edge of the polygon and inreasesone unit as we move inwards till we reah the shape of a triangle. From that momenton multipliity remains onstant.3.5 Quark representationIn this setion we present the expliit realization of the SU(2nf) algebra in thequark representation and express the QCD matrix elements in terms of the algebraoperators. In this representation q does not denote the QCD fermioni �eld, but anannihilation �eld. These �elds do not depend on position (sine the spatial depen-dene of the quark wave funtion is irrelevant for the omputation of stati baryonmatrix elements of the ground state baryons) and follow ommutation relations (an-tisymmetry is arried by olour quantum number). The quark �eld has three labels,



72 The 1=NC expansion II : BaryonsSU(2) SU(nf )12 � � � � �� � � � �32 � � � � �� � � � �� �� �� �NC�22 � � � � �NC2 � � � � �Table 3.1: Deomposition of the � � � � � representation. All Youngtableaux have NC boxes.orresponding to spin (i; j), �avour (�; �) 1 and quark line (l; m) :hq�il ; qyjm�i = Æ�� Æij Ælm : (3.16)The SU(2nf ) algebra generators areJ i = NCXl=1 qyl ��i2 
 1� ql ; (1; 0)T a = NCXl=1 qyl (1
 ta) ql ; (0; adj)Gia = NCXl=1 qyl ��i2 
 ta� ql ; (1; adj) (3.17)where in brakets the transformation properties under the spin and SU(nf ) sub-groups are shown. The notation we are following isqy (A
B) q = qy�iAij B�� qj� : (3.18)It is immediate to demonstrate with the help of Eq. (3.16) that operators (3.17)ful�ll the algebrai relations (3.13) and (3.14). It is important not to onfuse the1The spin and �avour indies in the fundamental representation are not to be onfused withthe indies in the adjoint representation of the algebra generators.



3.5 Quark representation 73
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1 1 1 1 1 1 1 1 1Figure 3.8: Weight diagram for the spin�12 representation. In this partiular exampleNC = 17. Numbers denote the multipliity of the states.one�body operator Gia with the two�body operator J i T aGia = NCXl=1 qyl ��i2 
 ta� ql ;J i T a = NCXl;m �qyl �i2 ql��qym ta qm� : (3.19)The stati baryon matrix element of a QCD m�body operator an be written asa 1=NC expansion in terms of produts of operators in Eq. (3.17) times inalulableoe�ients : OmQCD = NmC Xn;l;k n 1NnC (J i)l (T a)k (Gia)n�l�k : (3.20)The NmC prefator appears due to the fat that an m�body operator has matrixelements of order � NmC . The 1=NnC fator is present beause eah generator isaompanied by a 1=NC fator. The expansion (muh as happens with the OPE, tobe disussed in Chapter 4) inludes only operators transforming in the same way asthe QCD operator under the SU(2)
SU(nf ) group. The oe�ients n parametrizethe unknown non�perturbative QCD dynamis, and admit an expansion in 1=NCstarting at order one. For �nite NC the sum on n runs for 0 � n � NC . Thesubleading terms in n are generated by non�planar diagrams or quark loops. Letus disuss Eq. (3.20) for a one body operator. Then n = 1 orresponds to theinsertion of the operator on the di�erent quark lines, n = 2 would orrespond to theinsertion of the operator plus one�gluon exhange, n = 3 two gluon exhanges, andso on. Eah exhange brings a 1=NC fator from the two ouplings, and this justi�esthe 1=NnC fator.Matrix elements of the J i operator are in general of order NC , but we will assumethat physial baryons have spin of order unity. However, matrix elements of T a and



74 The 1=NC expansion II : BaryonsGia operator are in general of order NC and in priniple, even for spin values oforder one, their value an be of order NC . For two �avours, I = J and then we it isstraightforward to have order unity matrix elements for the Ia operators.At �rst sight all terms in the expansion (3.20) are equally important, sine ann�body interation has a oe�ient of order 1=NnC and matrix elements of n�bodyinterations are of order NnC . So it seems that we annot trunate the series andhene we do not have any preditive power. However for baryons of spin O(1) oper-ators with polynomials ontaining more fators of J are systematially suppressedin 1=NC and the operator expansion an be trunated at various orders in the 1=NCexpansion. In addition there are operator identities whih allow one to simplify thegeneral expansion (3.20) and drop ertain terms as subleading in 1=NC . The 1=NCexpansion for low spin baryons is preditive beause not all spin��avour struturesappear at a given order in 1=NC.3.6 Operator identitiesBefore entering the disussion of the operator identities, let us write the SU(2nf)generator properly normalized. If we want the algebra matries of the group �A tosatisfy, as usual, Tr�A�B = 12 ÆAB, and our spin ji and �avour ta matries satisfyTr jijj = 12 Æij and Tr tatb = 12 Æab, respetively 2, we have to write �A asji 
 11pnf ; J i ! J ipnf ;11
 tap2 ; T a ! T ap2 ;p2 �ji 
 T a� ; Gia !p2Gia ; (3.21)that orresponds to resale the quark representation operators as shown in Eq. (3.21).Only symmetri produts (antiommutators) of baryon spin��avour generators o-ur, beause antisymmetri produts (ommutators) redue to linear ombinationsof lower�body operators by the SU(2nf ) Lie algebra relations. Not all of the n�thorder operator produts orrespond to independent operators. Let us disuss theidentities among the di�erent operators.We an write n�body operators in to di�erent ways : as the multilineal produtof several one�body operators (the algebra generators) or as the normal�orderedprodut of this multilineal. The former ase readsOn = M(J i; T a; Gia) ; (3.22)withM an n�grade monomial; the normal�ordered produt readsO 0n = qyj1�1 : : : qyjn�nT (i1�1):::(in�n)(j1�1):::(jn�n) qi1�1 : : : qin�n : (3.23)2In the following, indies A; B; : : : will denote adjoint SU(2nf ) indies, a; b; : : : SU(nf ) andi; j; : : : spin indies.



3.6 Operator identities 75In this ase eah quark operator ats on a di�erent quark line, and that is why wehave omitted suh label, and then the order of the reation of annihilation operatorsis unimportant (they ommute beause the quark line label is always di�erent). Trepresents a spin and �avour tensor, and independent n�body operators orrespondto tensors ompletely symmetri and traeless. It must be totally symmetri be-ause it ats on ground state baryons, that are ompletely symmetri (any tensorwith mixed symmetry vanish identially upon atuation on a baryon) and traelessbeause non�vanishing traes redue to lower�body operators.Baryon matrix elements of operator produts of the spin��avour generators areeasy to evaluate, but the lassi�ation of independent operator produts is nontrivial.When operators are written in normal ordered form, it is not easy to identify thespin and �avour quantum numbers of the operator and baryon matrix elementsare not simple to alulate. However it is straightforward to identify redundantoperators, sine they orrespond to tensors with non�vanishing traes (they redueto lower�body operators) or non ompletely symmetri (vanish on the ground baryonrepresentation).The general struture of the identities is that ertain m�body operators an beredued to linear ombinations of n�body operators, where m > n. Sine n�bodyoperators ating on an NC baryon state are generially of order NnC the oe�ientof the n�body operator is typially of order Nm�nC . The operator identities havean elegant group theoretial struture, written in terms of SU(2nf) invariants, andhave been derived for an arbitrary number of �avours nf .3.6.1 Zero� and one�body operatorsThere is only one suh operator, the identity operator 11, having matrix elements ofO(1). It transforms under SU(2)
SU(nf ) as a singlet. There is no identity at thislevel.The one body operators transform under SU(2nf ) as the tensor produt of aquark and antiquark representation :� 
 � = 1 + adj = 1 + T �� ; (3.24)where T �� is a traeless tensor transforming as the adjoint representation. There isthen only one identity at this level, and it is the trivial identityqyq = NCXl=1 qyl ql = NC 11 ; (3.25)stating that qyq is the number operator. This identity must be understood as atingon a baryon state.An important result of Ref. [14℄ is that the only non�trivial operator identitieswhih are required are those whih redue 2�body operators to linear ombinationsof 1� or 0�body operators. All identities for n�body operators with n > 2 an beobtained by reursively appliation the 2�body identities. So next setion onstitutesthe all�important set of redution rules.



76 The 1=NC expansion II : Baryons3.6.2 Two�body identitiesThe non�trivial identities our among two�body operators. The two�body oper-ators transform as the tensor produt of a two�quark and two�antiquark tensorstate : � 
 � = 1 + adj + �ss = 1 + T �� + T (�1�2)(�1�2) ; (3.26)where T (�1�2)(�1�2) is a traeless symmetri in upper and lower indies tensor. Thistensor representation will be referred to as the �ss representation (this is not, ofourse, standard notation). So Eq. (3.26) tells us that we an eliminate a linearombination of two�body operators that transforms as a singlet and another linearombination that transforms as the adjoint representation.We an ompare this deomposition with the symmetri deomposition of twoadjoint representations : (adj
 adj)S = 1 + adj + �aa+ �ss ; (3.27)where �aa = T [�1�2℄[�1�2℄ transforms as a traeless tensor whih is antisymmetri in itsupper and lower indies. Of ourse this representation vanishes upon atuation onthe baryon ground state and onstitutes the last set of two�body identities.The linear ombination of two�body operator transforming as a singlet must beneessarily of the form �qy�Aq; qy�Aq	, and it is related to one Casimir operator.Let us alulate expliitly, as an example, its value ating on a baryon state 32 qy�Aq qy�Aq = 2Xr;s qyr� ��A��� q�r qys ��A�Æ qÆs = 2 ��A��� ��A�ÆXr;s qyr� q�r qys qÆs= Xr;s qyr� q�r qys� q�s � 12nf N2C ; (3.28)where we have used the Fierz identity Eq. (2.6). It is onvenient to split the sum inthe last equality of Eq. (3.28) into a sum over s = r and a sum over s 6= r :Xr qyr� q�r qyr� q�r = 2nf NC ; (3.29)where we have used that the normal ordered version of the sum vanishes beause theannihilation operators ating on the same quark line produes a null result. For theother sum we an treat qr and qys as ommuting objets sine they at on di�erentquark lines Xr 6=s qyr� q�r qys� q�s = Xr 6=s qyr� q�r qys� q�s = NC (NC � 1) ; (3.30)3For this derivation is onvenient to use a label for the quark line and to ollet the spin and�avour labels in a single one with 2nf possible values.



3.7 Flavour symmetry breaking 77where we have used that that the baryon state is symmetri in spin��avour. Puttingall the ontributions together we arrive atfqy�Aq; qy�Aqg = NC (NC + 2nf)�1� 12nf� 11 ; (3.31)that an be written in terms of the spin��avour operators as2�J i; J i	+ nf fT a; T ag+ 4nf �Gia; Gia	 = NC (NC + 2nf) (2nf � 1) : (3.32)The linear ombination of two�body operators transforming as the adjoint mustbe neessarily of the form dABCfqy�Bq; qy�Cqg, beause a similar struture with anf symbol would redue to ommutators. By a manipulation parallel to that leadingto the singlet identity, we an show thatdABC fqy�Bq; qy�Cqg = 2 (NC + nf )�1� 1nf� qy�Aq ; (3.33)where one has to use the identitydABC ��A��� ��B�Æ = � 12nf hÆ�� ��C�Æ + ��C��� ÆÆ i+ 12 hÆ�Æ ��C�� + ��C��Æ Æ�i :(3.34)Of ourse one an write Eq. (3.33) in terms of the spin��avour operators, and theexpliit relations an be found in Table 3.2.The rest of the identities follow from the fat that the �aa representation is zeroupon atuation on the baryons. Their derivation is more involved and we will notdisuss it in this thesis. The omplete set of identities an be found in Table 3.2or Ref. [14℄. Many simpli�ations our for the values nf = 2; 3. By means ofthe operator identities one an hoose a set of independent 2�body operators. Thehoie of the appropriate set translates into two operator redution rules :� Three �avours : All operator produts in whih two �avour indies are on-trated using Æab, fab or dab, or two spin indies on G's are ontrated usingÆij or �ijk an be eliminated.� Two �avours : All operators in whih two spin or isospin indies are ontratedwith a Æ or � symbol an be eliminated with the exeption of ~J 2.Note that for two �avours ~J 2 = ~I 2 on ground state baryons.3.7 Flavour symmetry breakingAn additional ompliation for the three �avour ase is that SU(3)V �avour sym-metry orretions are omparable in size with 1=NC orretions and then we annot



78 The 1=NC expansion II : Baryonsneglet symmetry breaking e�ets if going beyond the leading order in 1=NC. For-tunately, this �avour symmetry breaking an be perturbatively introdued in the1=NC expansion in a ombined series, produing a nie pattern in the spin��avourbreaking, not dominated by neither symmetry breaking nor 1=NC e�ets.Sine the 1=NC only overs operators of NC�bodies, the expansion in symmetrybreaking an only be extended to the (NC � n) order for baryoni matrix elementsof n�body QCD operators.3.8 Useful relations for spin��avour operatorsIn this setion we brie�y give a non�exhaustive list of relations that are very usefulfor the omputation of matrix elements of spin��avour operator between groundstate baryons T 8 = 12p3(NC � 3Ns) ; T 3 = 12 (Nu �Nd) ;Gi8 = 12p3(J i � 3 J is) ; Gi3 = 12 �J iu � J id� ;T 3+ 8p3 = TQ ; J iGi8 = 1p12 �3 ~I 2 � ~J 2 � 3 ~J 2s � ;J iGi3 = 14 � ~J 2u � ~J 2d + V 2 � U2� ; J iGia~J 2 = 23 �T a + 12 fT a; Nsg� : (3.35)The omplete set of the atuation of the spin��avour operators on the otet ofspin�12 baryons, together with its wave funtions in the ompletely spin��avourrepresentation an be found in Ref. [49℄.3.9 Vetor and axial�vetor form fators.In this setion we will apply the large�NC rules for a partiular example, that willbe of phenomenologial interest in Chapter 5. We antiipate here the de�nitionof those form fators. Let B and b be two spin�12 otet baryons onneted by the�avour matrix �a2 . We will be onerned with the matrix elementsV �a � h b j q �taq jB i ; A�a � h b j q �5taq jB i ; (3.36)governing the weak deay of the B baryon into b plus a pair of leptons. We are onlyapable of alulating stati properties of baryons, and this implies that both B andb are at rest, that is, there is no three�momentum ~q transfer to the vetor and axial�vetor urrents. This is equivalent to the non�relativisti redution of the matrixelements (3.36), and no momentum dependene will be determined. Moreover, sineall otet baryons have similar mass, not only the three�momentum but the four�momentum q� will be zero, and hene we will determine the form fators at q2 = 0.



3.9 Vetor and axial�vetor form fators. 792 fJ i; J ig + nf fT a; T ag + 4nf fGia; Giag= NC (NC + 2nf) (2nf � 1) (0; 0)dab �Gia; Gib	 + 2nf fJ i; Gig + 14 dab �T a; T b	= (NC + nf)�1� 1nf � T  (0; adj)fT a; Giag = (NC + nf )�1� 1nf � J i (1; 0)1nf �Jk; T 	 + dab �T a; Gkb	 � �ijkfab �Gia; Gjb	= 2 (NC + nf)�1� 1nf � Gk (1; adj)4nf �2� n2f� fGia; Giag + 3n2f fT a; T ag + 4 �1� n2f� fJ i; J ig = 0 (0; 0)4nf (2� nf ) fGia; Giag + 3n2f fT a; T ag + 4 �1� n2f� fJ i; J ig = 0 (0; adj)4�Gia; Gib	 = � 3�T a; T b	 (�aa) (0; �aa)4�Gia; Gib	 = �T a; T b	 (�ss) (0; �ss)�ijk fJ i; Gjg = fab �T a; Gkb	 (1; adj)dab �T a; Gkb	 = �1� 2nf � ��Jk; T 	 � �ijkfab �Gia; Gjb	� (1; adj)�ijk �Gia; Gjb	 = fag dbh �T g; Gkh	 (�as+ �sa) (1; �as+ �sa)�T a; Gib	 = 0 (�aa) (1; �aa)fGia; Gjag = 12 �1� 1nf � fJ i; J jg (J = 2) (2; 0)dab �Gia; Gjb	 = �1� 2nf � fJ i; Gjg (J = 2) (2; adj)�Gia; Gjb	 = 0 (J = 2; �aa) (2; adj)Table 3.2: SU(2nf) identities. Some of the identities must be projeted onto a givenhannel. The seond olumn gives the transformation properties of the identitiesunder SU(2)
 SU(nf ).The non�relativisti redution impliesV �a ! V 0a = 
 b �� q 0 ta q ��B � ; A� a ! Aia = 
 b �� q i 5 ta q ��B � : (3.37)So, under the SU(2) 
 SU(3) group the vetor urrent transforms as (0; 8) andthe axial vetor as (1; 8). These transformation properties will, to a large extent,determine its operator expansion. Let us parametrize these form fators in the 1=NCand symmetry breaking expansion.3.9.1 Vetor form fatorLet us �rst onentrate on the operator expansion in the limit of exat symmetry.There is one one�body operator and one two�body operatorOa1 = T a ; Oa2 = �J i; Gia	 = 2 J iGia ; (3.38)



80 The 1=NC expansion II : Baryonswe have to stop our expansion at three�body operators. There is only one suhoperator Oa3 = n ~J 2; T ao = 2 ~J 2 T a ; (3.39)that in the ase of otet�to�otet transitions is equivalent to Oa3 = 32 T a and henean be absorbed in Oa1 (the oe�ient of both operators in undetermined). Sinein the limit of exat SU(3)V symmetry vetor urrent is onserved, we an use thisadditional information to alulate the unknown oe�ients : 1 = 1 and 2 = 0,and then V 0a = T a : (3.40)Let us inlude now the SU(3)V breaking e�ets. As we shall see in Chapter 5,Eq. (5.57), symmetry breaking e�ets transform as (0; 8), and so we must omputethe tensor produt of irreduible representations(0; 8)
 (0; 8) = (0; 1)� (0; 8)� (0; 8)� (0; 10)� (0; 10)� (0; 27) ; (3.41)for �rst order symmetry breaking orretions. Due to the Ademollo�Gatto theorem,to be disussed in Chapter 5, �rst order symmetry breaking orretions are null, andso we must ompute seond order e�ets. This amounts to the alulation of thetensor produt (0; 8)
(0; 8)
(0; 8), and results in all the irreduible representationsof Eq. (3.41) and the new ones (0; 35) and (0; 64). Among all those representationswe must keep only those transforming under time reversal in the same way as V 0adoes, and so we have :� (0; 0) : only two operatorsO0 = 1 ; O2 = ~J 2 ; (3.42)but again, for otet�to�otet transitions O2 = 34 and an be absorbed in O0.When it orresponds to a two�body operator we have to multiply it by anSU(3) invariant tensor with two adjoint indies, namely Æab. One index mustbe set to 8 to aount for the symmetry breaking, and then Æa8 is zero for ourtransitions. If it orresponds to a three�body operator, it must be aompaniedby da88 = � 1=p3 Æa8, again zero for our transitions. So those operators donot play any rï¾12 le in our analysis. The number of 8's in an operator indiatesthe order of the symmetry breaking.� (0; 8) : those operators have been onsidered in Eq. (3.38). Sine they orre-spond to �rst order symmetry breaking, will appear as dab8Ob1;2 .� (0; 27) : There are two� and three�body operators, orresponding to �rst� andseond�order symmetry breaking e�etsOab2 = fT a; T bg ;Oab3 = fT a; fJ i; Gibgg + fT b; fJ i; Giagg= 2 fT a; J iGibg + 2 fT b; J iGiag ; (3.43)and they will appear as Oa82;3 and dab8Ob82;3.



3.9 Vetor and axial�vetor form fators. 81� (0; 10+ 10) : there is one three�body operator, orresponding to seond�ordersymmetry breaking e�ets [ the two�body (0; 10+10) operators are redutible ℄Oab�3 = fT a; fJ i; Gibgg � fT b; fJ i; Giagg= 2 fT a; J iGibg � 2 fT b; J iGiag ; (3.44)and ontributes as Oa8�3 and dab8Ob8�3 .� (0; 64) : there is one three�body operator [ there is no (0; 64) in (0; 8)
 (0; 8) ℄Oab3 = fT a; fT b; T gg ; (3.45)ontributing as Oa883 .In priniple one has to subtrat from the higher dimension representation operatorsthose terms orresponding to lower dimension representations. However, in pratie,these lower dimension terms already appear in our expansion and an be reabsorbedin those. The (0; 35) and (0; 10 + 10) irreduible representations are odd undertime�reversal and hene do not ontribute (V 0a is T�even). With all that, to seondorder in symmetry breaking we an writeV 0a = (1 + � a1)T a + � a2 1NC fJ i; Giag + � b1dab8 T b +� b2 1NC dab8fJ i; Gibg + � a4 1NC fT a; T 8g +� a5 1N2C �fT a; fJ i; Gi8gg + fT 8; fJ i; Giagg�+� a6 1N2C �fT a; fJ i; Gi8gg � fT 8; fJ i; Giagg�+�2 b4 1NC dab8fT b; T 8g + �2 a7 1N2C fT a; fT 8; T 8gg+�2 b5 1N2C dab8 �fT b; fJ i; Gi8gg + fT 8; fJ i; Gibgg�+�2 b6 1N2C dab8 �fT b; fJ i; Gi8gg � fT 8; fJ i; Gibgg� : (3.46)We an rewrite this expression for our transitions in terms of Ns and J is. We haveto demand that �S = 0 transitions have no symmetry violation, sine isospinsymmetry is unbrokenV 0a = T a ; �S = 0 ;V 0a = (1 + v1)T a + v2 fT a; Nsg + v3 fT a;� I2 + ~Js2g; j�Sj = 1 :(3.47)In Table 3.3 we depit the matrix elements of the operators in front of the unknownoe�ients for the vetor urrent.



82 The 1=NC expansion II : BaryonsTransition 1 v1 v2 v3n! p 1 0 0 0�� ! � 0 0 0 0�! p �q32 �q32 �q32 0�� ! n � 1 � 1 � 1 2�� ! � q32 q32 3q32 p6�� ! �0 1p2 1p2 3p2 0�0 ! �+ 1 1 3 0Table 3.3: Matrix elements for the vetor form fator3.9.2 Axial�vetor form fatorLet us �rst onentrate on the unbroken symmetry operators. There are one�, two�and three�body operatorsOia1 = Gia ; Oia2 = �ijkfJ i; Gkag = i h ~J 2; Giai ;Dia2 = J i T a ; Dia3 = fJ i; fJ j; Gjagg = 2 fJ i; J j Gjag ;Oia3 = f ~J 2; Giag � 12 fJ i; fJ j; Gjagg = f ~J 2; Giag � fJ i; J j Gjag : (3.48)There is only one additional operator, f ~J 2; Giag that for otet�to�otet transitionsan be absorbed in Oia1 . The operators Dian onnet only states with the same spin,whereas Oian>2 onnet only states with di�erent spin. Hene they do not ontributeto our proesses. Furthermore, Oia2 is even under time reversal and do not ontribute(Ai a is T�odd). Then we haveAia = a1Oia1 + a2 1NC Dia2 + a3 1N2C Dia3 : (3.49)We are now in position to drop terms subleading in 1=NC. Sine in general T a=NCand Gia=NC matrix elements an be order unity, the suppression is ontrolled bythe J i=NC matrix elements : operators with more J i elements are suppressed. ThenOia1 and Dia2 are of the same order in the ounting, but Dia3 is suppressed. Then atleading order we have Aia = a1Gia + a2 J i T aNC : (3.50)Let us study the symmetry breaking orretions. In this ase we will only onsiderthe �rst order e�ets, sine there is no Ademollo�Gatto theorem for the axial�vetorurrent.



3.9 Vetor and axial�vetor form fators. 83Transition a; ~a b;~b 1 2 3 4 �n! p 53 1 0 0 0 0 1�� ! � q23 0 0 0 q83 0 0�! p �q32 �q32 �q32 �q32 �q32 �q32 0�� ! n 13 � 1 13 � 1 13 13 0�� ! � 1p6 q32 1p6 q32 q32 7p6 0�� ! �0 53p2 1p2 53p2 1p2 5p2 1p2 0�0 ! �+ 53 1 53 1 5 1 0Table 3.4: Matrix elements for the axial�vetor form fator.� (1; 0) : there is one one�body operatorOi1 = J i ; (3.51)that will appear as Æa8Oi1 and hene it is zero for our transitions� (1; 8) : we have those of the unbroken ase, that will appear as dab8Oib1 anddab8Dia2 (Dia3 is already suppressed in 1=NC).� (1; 10 + 10) : we have one two�body operatorOiab2 = fGia; T bg � fGib; T ag � 23 fabf ghfGig; T hg= fGia; T bg � fGib; T ag � 23 h ~J 2; [T b; Gia℄i : (3.52)The last term vanishes for otet�to�otet transitions. It will appear as Oia82 .� (1; 27) : there is one operator (we do not bother subtrating the lower dimen-sion operators, sine they are absorbed in other representations)Oiab2;27 = fGia; T bg + fGib; T ag : (3.53)It will appear as Oia82;27.With that information, we an write Aia at �rst order in 1=NC and symmetry break-ingAia = �a Æab + � 1 dab8�Gib + �b Æab + � 2 dab8� J iT bNC + � 3 fGia; NsgNC= aGia + b J i T a + �a(1Gia + 2 J i T a) + 3 fGia; Nsg + 4 fT a; J isg ;(3.54)



84 The 1=NC expansion II : Baryonswhere �a is 0 for a = 1; 2; 3; 8 and 1 for a = 4; 5; 6; 7. For j�Sj = 1 transitions�a = 1 and 0 for �S = 0. For the latter we have thenAiaj�Sj=1 = ~aGia + ~b J i T a + 3 fGia; Nsg + 4 fT a; J isg ;~a = a+ 1 ;~b = b + 2 : (3.55)Sine we are interested only in one transition with �S = 0 , namely neutron deayinto proton, we only need an additional parameter for our analysis�h p j (1Gia + 2 J i T a) jn i � � : (3.56)In Table 3.4 we depit the matrix elements of the operators in front of theunknown oe�ients for the axial�vetor urrent.



Chapter 4Green funtions of QCD
4.1 IntrodutionAs already pointed out in Chapter 1, the QCD Lagrangian (1.1) does not havehadrons (whih are the partiles we indeed observe as asymptoti free states atlow energies) as degrees of freedom, but rather quarks and gluons. It does notmake muh sense then to ompute amplitudes having these fundamental partilesas asymptoti states, sine we do not gain any insight on hadroni dynamis. Insteadit is better to ompute Green funtions (GFs for short) of omposite operators (thatis, operators having more than one �eld in the same spae�time point). We musthoose omposite operators having the same quantum numbers as the hadronistate we want to study, as they qualify as interpolating �elds in the sense of the LSZredution formula, having non�vanishing matrix element between the vauum andthe hadroni state : hHaJ j J b� j 0 i 6= 0. In the ase of mesoni states quark bilinearurrents are the suitable omposite operators, and a very detailed disussion aboutthem was given in Setion 1.2 [ see Eqs. (1.7), (1.12) and (1.13) ℄.Sine these urrents have dimension three, we an introdue them into the QCDLagrangian via dimension�one external soures [ see Eq. (1.21) ℄, as was explainedin Chapter 1. In this way the extended QCD Lagrangian is still renormalizable. Wean treat the external soures as bosoni �elds (spinless for salar and pseudosalar,and spin�one for the rest of the urrents) whih are not quantized. Aordingly theyannot propagate and only appear as urrent insertions in GFs and form fators.In fat we an write Feynman rules for the oupling of the quark urrent to theexternal soure : given the generi extended LagrangianLextQCD := : �q(x) � �a2 q(x) : Sa� ; (4.1)eah urrent insertion is aompanied by the matrix i� �a2 as shown in Fig. 4.1.From now on we will assume that all operators are normal�ordered and will dropthe symbol �: � � � : � everywhere. Analogous Feynman rules an be derived for �PTand R�T in the presene of external soures.
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Figure 4.1: Feynman diagram of an external soure insertion for quark�gluon degreesof freedom.At very low energies (long distanes) E � m� GFs an be omputed as a pertur-bative series in the (small) momentum arried by the urrent and the quark masses(although we will set them to zero). At high energies (short distanes) the QCDurrents in the GF approah eah other and one an expand their produt as a towerof loal operators, in the Wilson operator produt expansion (OPE). In momentumspae this is tantamount to an expansion in inverse powers of momenta, only validin the deep eulidean region � p2 � m2�. At intermediate energies one an only relyon the expansion of QCD in powers of 1=NC , as disussed in Chapter 2. This regionis populated by hadroni resonanes driving the strong dynamis. One is then ableto perform a mathing of the three regimes and thus to estimate the values of theLECs present in the �PT Lagrangian. In this hapter we will alulate all two�pointGFs in the three regimes : �PT to O(p4) auray, R�T at leading 1=NC preisionand OPE up to and inluding dimension six operators, and inluding leading �sorretions in the Wilson oe�ient of theh�qqi operator.The power of EFTs is enhaned by mathing onto the more fundamental theoryin a region where both desriptions are sensible, and running down with the renor-malization group equations (RGE) to a sale when the EFT is useful. This resultsinto a resummation of large logarithms that would otherwise spoil the perturbativeexpansion. This mathing between �PT and R�T is straightforward sine up to aertain mass sale �� the spetrum of both EFTs oinide, and the heavy parti-les an be formally integrated out of the ation. However the situation drastiallyhanges when mathing R�T onto QCD, beause the spetrum no longer has anypartile in ommon. The reason for it is that we are going through the hiral phasetransition. One is then fored to ompare GFs omputed in the di�erent EFTs inmomentum regions where their domain of validity overlap.This mathing relation is better understood for the so alled order parameter ofthe hiral symmetry breaking GFs (order parameters for short). These GFs havezero Wilson oe�ient for the identity operator (that is, the purely perturbativeontribution) to all orders in �s in the hiral limit, and hene, as we shall see, itsmain ontribution stems form the h�qqi ondensate. Sine this operator is the respon-sible for the hiral symmetry breaking those GFs enode essential information for abetter understanding of on�nement. As a result, two�point GFs order parameterdo not have subtrations in their dispersion relations (in the hiral limit). Thus



4.2 De�nitions of Green funtions and Ward identities 87they are fully determined by its spetral funtion, whih is of ourse an observable.In this sense these GFs an be regarded as observables, and a diret mathing oftheir expression in the di�erent theories (that is, in di�erent energy domains) ismeaningfull. For two�point GFs we will math all GFs (even those not being orderparameters of the hiral symmetry breaking) to the OPE result, within di�erentansätze (MHA or inluding the full tower of resonanes).This method has been used for two�point GFs inluding several orders of �sorretions [50℄, but only at leading order for three�point GFs [41, 42, 51�53℄. InSetion 4.13.1 we will math the hV VP i GF with two multiplets of vetor mesonresonanes. It is the purpose of some setions of this hapter to push the mathingup toO(�s). Unfortunately the O(�s) orretions to the h�qqiWilson oe�ient Ch�qqifor three�point GFs are not known, and we will onentrate on their omputation,relegating the mathing to forthoming works. Finally, we will use the hV T i GF toillustrate that within the MHA one annot math the OPE result when radiativeorretions are taken into aount.Throughout this hapter we will assume the hiral limit of QCD. For the elabo-ration of this hapter I have followed Refs. [1, 54�58℄.4.2 De�nitions of Green funtions and Ward iden-titiesThe formal de�nition of the GF of n�urrents follows :�J1���Jn(p1 � � � pn�1) = in�1Z n�1Yj=1 d4xj eiPn�1k=1 xk�pk h 0 jTfJ1(x1) � � �Jn(0)gj 0 i ;(4.2)where the in�1 fator is inluded by onvention and ensures that Feynman rules forexternal urrents an be applied thoroughly. It is important to remark that the j 0 istate is the true non�perturbative QCD vauum (the one whih is not annihilatedby the axial generators) in ontrast with the perturbative one. We will disuss itsnature in the next setions. It is ustomary to design the non�perturbative vauumas j
 i, but we will not adopt this notation. In this hapter we will ompute GFsin the hiral limit, what implies that both vetor and axial�vetor urrents areonserved and that SU(3)V symmetry is exat. We will exploit these two features.Some of the material overed in this setion an be found in Refs. [51, 59℄.For those GFs having at least either one vetor or one axial�vetor urrent, wean derive the so alled Ward identities, being a onsequene of their null divergene.For bosoni operators time�ordering requires urrents with bigger time omponentsto appear to the left. For example for two urrentsTfJ1(x) J2(0)g = �(x0) J1(x) J2(0) + �(� x0) J2(0) J1(x) ; (4.3)



88 Green funtions of QCDand similar for more urrents. With this de�nition we an alulate the followingderivatives : ��TfJ�1 (x) J2(0)g = Tf��J�1 (x) J2(0)g + Æ(x0) [J01 (x); J2(0)℄ ;��TfJ�1 (x) J2(y) J3(0)g = Tf��J�1 (x) J2(y) J3(0)g+ Æ(x0 � y0)Tf[J01 (x); J2(y)℄ J3(0)g+ Æ(x0)Tf[J01 (x); J3(0)℄ J2(y)g : (4.4)On the other hand, we an relate derivatives with ontrations with one momentuminZ n�1Yj=1 d4xj eiPn�1k=1 xk�pk ��j� + i pj�� h 0 jTfJ�1 (x1) � � �Jn(0)gj 0 i = 0 : (4.5)The ommutator of two quark urrents an be easily omputed using the identity 1Æ(x0 � y0) ���q �a2 �1q� (x);��q �b2 �2q� (y)� =Æ4(x� y) �q(x)��1 0 �2�a2 �b2 � �2 0 �1�b2 �a2 � q(x) ; (4.6)from where we obtain the well�known urrent algebra relations :Æ(x0 � y0) �V a0 (x); V b� (y)� = Æ(x0 � y0) �Aa0(x); Ab�(y)� = i fab V � (x) Æ(4)(x� y) ;Æ(x0 � y0) �V a0 (x); Ab�(y)� = Æ(x0 � y0) �Aa0(x); V b� (y)� = i fabA�(x) Æ(4)(x� y) ;Æ(x0 � y0) �V a0 (x); Sb(y)�P b(y)	� = i fab S(x) fP (x)g Æ(4)(x� y) ;Æ(x0 � y0) �Aa0(x); Sb(y)fP b(y)g� = � i � 2nf ÆabP (x)fS(x)+ dabP (x)fS(x)gÆ(4)(x� y)� ;Æ(x0 � y0) �Aa0(x); T b��(y)� = � i2 ����� � 1nf T ��(x) + dab T ��(x)� Æ(4)(x� y) :Æ(x0 � y0) �V a0 (x); T b��(y)� = i fab T ��(x) Æ(4)(x� y) ; (4.7)Let us apply this to two�point GFs :p� ��V V [AA℄�ab�� (p) = � i fab h 0 jV � (0) j 0 i = 0 ;p� (�V T )ab� �� (p) = � i fab h 0 jT ��(0)j 0 i = 0 ; (4.8)where the right�hand side vanishes beause vauum is Lorentz invariant and �avour-less. Let us study separately the hAP i GF. From Lorentz invariane and SU(3)Vsymmetry we an write (�AP )ab� (p) = i Æab �AP (p2) p� ; (4.9)1Shwinger terms will be omitted in this thesis.



4.2 De�nitions of Green funtions and Ward identities 89and thenp� (�AP )ab� (p) = i Æab p2�AP = i 2nf Æab h 0 jS(0)j 0 i = 2 i Æab h�qqi ; (4.10)from where we an identify �AP = 2 h�qqi =p2. Thus the hAP i is fully saturated byone pion exhange in the hiral limit [60℄ :(�AP )ab� (p) = 2 i Æab h�qqip2 p� : (4.11)The only remaining two�point GFs are hSSi, hPP i and hTT i. The rest an beshown to vanish due to disrete symmetries. Due to Eqs. (4.8) plus other symmetryonsiderations we an write��V V [AA℄�ab�� (p) = Æab (p�p� � p2g��) �V V [AA℄(p2) ;(�V T )ab�;�� (p) = i Æab (p�g�� � p�g��) �V T (p2) ;�abSS (PP )(p2) = Æab�SS (PP )(p2) ;(�TT )ab��;�� (p) = � 2 q2Æab ���TT (p2) 
L��;�� � �+TT (p2) 
T��;��� ; (4.12)where 
L;T are de�ned in Appendix C.In general one always has �abij (p) = Æab �ij(p) and also �ij(p) = ��ij(� p)where the � sign orresponds to hAP i and hV T i and + to the rest. One an de�nethe orrelators of the hirality urrents de�ned in Eq. (1.13) whih, as for the hAP iand hV T i GFs, are order parameters :�LR(p2) = �V V (p2)� �AA(p2) ;�SS�PP (p2) = �SS(p2) � �PP (p2) ;��TT (p2) = �+TT (p2) � ��TT (p2) (4.13)Let us turn now our attention to the three�point GFs. For these we will not onsiderthe tensor soure and will only onentrate on order parameter GFs. Bearing in mindthat the GF made out of an otet and a singlet urrent is zero, that �V S, �AS and�V P are identially null and the result of Eq. (4.11), we obtain :p�(q�) ��V VP (AAP ) [VAS℄ fV VSg�ab�� (p; q) = 0 ;p�(q�) (�AAS)ab�� (p; q) = � 2 dab h�qqi q�q2 �p�p2� ;p� (�VAP )ab�� (p; q) = � 2 h�qqi fab �r�r2 + q�q2� ;q� (�VAP )ab�� (p; q) = h�qqi fab r�r2 ; (4.14)where we have de�ned the four�momentum r = � (p+ q) assoiated with the thirdurrent. These results rely on the fat that the hAP i GF is fully determined by the



90 Green funtions of QCDhiral Ward identity Eq. (4.11), and they must be satis�ed in any sensible desriptionof the strong interations. The right hand sides of Eqs. (4.14) are proportional to thequark ondensate and this has deep impliations. For instane in R�T it means thatone we ontrat with one momenta, only the pion pole an survive. In the OPEthey also have deep impliations : the ontribution of higher dimension ondensatesvanishes when ontrating with one external momenta, and sine there is no �sfator all radiative orretions to the h�qqi Wilson oe�ient beyond leading ordermust also vanish when the ontration is done.These relations together with disretesymmetries and SU(3)V invariane determine for the odd�intrinsi�parity setor����V VP (AAP ) [VAS℄�ab (p; q) = "���� p�q�dab�V VP (AAP ) [VAS℄ �p2; q2; r2� : (4.15)In addition Bose symmetry requires�V VP (AAP )(p2; q2; r2) = �V VP (AAP )(q2; p2; r2) ; (4.16)The even�intrinsi�parity setor an be split into a subset of GFs being rank�twoLorentz tensors :(���V VS)ab �p2; q2; r2� = dab �P ��(p; q)FV V S �p2; q2; r2�+ Q��(p; q)GV V S �p2; q2; r2�� ;(���AAS)ab �p2; q2; r2� = dab �2 h�qqi p�q�q2p2 + P ��(p; q)FAAS �p2; q2; r2�+ Q��(p; q)GAAS �p2; q2; r2�� ;(���VAP )ab �p2; q2; r2� = 2 fab��h�qqi �(p+ 2 q)� q�q2r2 � g��r2 �+ P ��(p; q)�FV AP �p2; q2; r2�+ Q��(p; q)GV AP �p2; q2; r2�	 ;(4.17)and the Lorentz salar subset :�abSSS (SPP ) = dab�SSS (SPP )(p2; q2; r2) ; (4.18)where the transverse tensors P �� and Q�� are de�ned asP ��(p; q) = q�p� � (p � q) g�� ;Q��(p; q) = p2 q�q� + q2 p�p� � (p � q) p�q� � p2q2 g�� : (4.19)Again Bose symmetry requiresF [G ℄V V S (AAS) �p2; q2; r2� = F [G ℄V V S (AAS) �q2; p2; r2� ;�SPP (p2; q2; r2) = �SPP (p2; r2; q2) ; (4.20)and �SSS is invariant under any relabeling of the three squared momenta.



4.3 Dispersion relations for two�point Green funtions 914.3 Dispersion relations for two�point Green fun-tionsIt was shown by Källen and Lehmann [61℄ that two�point GFs obey dispersionrelations. Dispersion relations follow from the analyti properties of �(q2) as aomplex funtion of q2, the only energy�momentum invariant appearing in a two�point funtion. In full generality �(q2) is an analyti funtion in the entire omplexq2�plane exept for a ut in the real axis 0 � q2 � 1.The general proof of dispersion relations is the main topi of this setion. We�rst dedue them for salar urrents J� and J�, and generalize the disussion forthe rest of the urrents afterwards. The only requirement is that the two urrentsare hermitian and the key point is to insert a omplete set of states between them,using the Parseval identityI = Xn;s Z d3~q1 � � �d3~qn24n �3nE1 � � �En jn i hn j = Xn;s Z d4p(2�)4 dQn �(p0) jn i hn j� Xn;s Z d4p(2 �)4 d3~q1 � � �d3~qn24(n�1) �3n�4E1 � � �En �(p0) Æ(4)(p� pn) jn i hn j ; (4.21)where the sum runs over all possible multipartile states and all possible polariza-tions, dQn is the n�partile phase spae, Ei =q~pi2 +m2i is the on�shell energy ofthe partile and pn =P qi is the total four�momentum of the n partiles. Sine allpartiles in the sum are on�shell, p2 � 0 (timelike) and p0 > 0 (future oriented).The seond ondition is enfored by �(p0) and we an enfore the �rst one by a slightmodi�ation of Eq. (4.21)I =Xn;s Z 10 dt Z d4p(2 �)4 dQn Æ(p2 � t) �(p0) jn i hn j : (4.22)Poinaré invariane relates any operator to its value at the origin,O(x) = ei P �xO(0) e� i P �x : (4.23)Having in mind that vauum arries zero four�momentum it followsD 0 ���J�(0) Jy�(0)��� 0E = Xn;s Z 10 dtZ d4p(2 �)4 dQn Æ(p2 � t) �(p0)h 0 jJ�(0)jn i h 0 jJ�(0)jn i�� Z 10 dtZ d4p(2 �)3 Æ(p2 � t) �(p0) ���(p2) ; (4.24)where we have de�ned the spetral funtion���(p2) = 1(2 �)Xn;s Z dQn h 0 jJ�(0)jn i h 0 jJ�(0)jn i� : (4.25)



92 Green funtions of QCDIt follows immediately ���(p2) = ���(p2)�, and so, if we speialize to � = �,���(p2) � �(p2) = �(p2)� � 0, the spetral funtion is real and positive de�nite.For this partiular ase we haveh 0 jTfJ(x) J(0)gj 0 i = Z 10 dtZ d4p(2 �)3 Æ(p2 � t) �(p0) �(t) �e� i p�x�(x0) + ei p�x�(�x0)�= � i Z 10 dt �(t) Z d4p(2 �)4 e� i p�xt� p2 + i � ; (4.26)where we have used the de�nition of the Feynman propagator, or instead the integralexpression for the Heavyside funtion�(x) = 12 � i Z dw ei w xw � i � : (4.27)Finally in momentum spae we have our �nal expression�(p2) = i Z d4x ei p�x h 0 jTfJ(x) J(0)gj 0 i = Z 10 dt �(t) 1t� p2 + i � : (4.28)The last goal is to relate the spetral funtion �(q2) with the imaginary part of�(q2). This is easy using the widely known formula1x� x0 � i � = P � 1x� x0� � i � Æ(x� x0) ; (4.29)in Eq. (4.28) to obtain �(q2) = 1� Im�(q2). So the imaginary part is positive. Thenour dispersion relation is omplete :�(p2) = Z 10 dt 1� Im�(t) 1t� p2 + i � : (4.30)As an example we will ompute the spetral funtion for the single�partile inter-mediate state a1� Im�(p2) = Z d3~q2Ep jh 0 jJ(0)j a ij2 Æ4(p� q) = jh 0 jJ(0)j a ij2 12Eq Æ(Ep � p0)= jh 0 jJ(0)j a ij2 Æ(p2 �m2a) : (4.31)We an derive Eq. (4.30) using Cauhy's theorem for �(q2) bearing in mind thatit is analyti in the full q2�plane exept for a branh ut in the real positive axis,starting in the �rst multipartile threshold of the sum in Eq. (4.25). Then we performa ontour integral as shown in Fig. 4.2 (a) and then deform it as in Fig. 4.2 (b).�(q2) = 12 � i ICdt �(t)t� q2 = 12 � i Ijtj=Rdt �(t)t� q2 + 12 � i Z 10 dt �(t+ i �)� �(t� i �)t� q2 ;(4.32)



4.3 Dispersion relations for two�point Green funtions 93assuming that �(t) falls su�iently rapidly for t!1 the �rst integral is zero, andusing Shwartz's re�etion priniple�(t + i �)� �(t� i �) = 2 i Im�(t+ i �) ; (4.33)we reover Eq. (4.30). But, what happens if the �rst integral is not zero? We anperform n�derivatives in �(q2) to make it onverge,� ddq2�n�(q2) = n!2 � i ICdt �(t)(t� q2)n+1 ; (4.34)eah derivative is known as a subtration. In general, if in the q2 ! 1 limit�(q2) � q2n log q2, then n+ 1 subtrations are needed. When suh subtrations areperformed, Eq. (4.30) is modi�ed to�(q2) = Z 10 dt 1� Im�(t) 1t� q2 + i � + n�1Xj=0 aj q2j= qN Z 10 dt 1� Im�(t) 1tN (t� q2 + i �) + n�1Xj=0 bj q2j : (4.35)Any of the aj(bj) is a subtration point [ for instane b0 = �(0) ℄, generially diver-gent.
q2 q2=)

t t

(a) (b)Figure 4.2: Contour integral yielding the dispersion relation for two�point funtions.However it seems that in the �rst derivation of the dispersion relation there wasno room for subtrations. In fat there is : in Eq. (4.24) we have ommuted the sumand the integral, and this an only be done if the sum is onvergent.Let us lose this setion with the derivation of dispersion relations for onservedvetor urrents. In this ase Lorentz invariane and urrent onservation implies1(2 �)Xn Z dQn h 0 jJ�(0)jn i h 0 jJ�(0)jn i� Æ(4)(p� pn) = �J(p2) (p�p� � p2g��) ;� 13 p2 1(2 �)Xn Z dQn h 0 jJ�(0)jni h 0 jJ�(0)jn i� Æ(4)(p� pn) = �J(p2) � 0 ;(4.36)



94 Green funtions of QCDand again �J(p2) = �J(p2)� > 0. Plugging this into the time�ordered produt weget
 0 ��TfJ�(x) J� y(0)g�� 0 � = Z 10 dt Z d4p(2 �)3 Æ(p2 � t) �(p0) �J(t)� (p�p� � p2g��) �e� i p�x�(x0) + ei p�x�(�x0)�= iZ 10 dt �J(t) ����� � �2 g��� Z d4p(2 �)4 e� i p�xt� p2 + i � ;= � iZ 10 dt �(t)Z d4p(2 �)4 e� i p�xt� p2 + i � (p�p� � p2g��) ; (4.37)were Shwinger terms have been omitted. Fourier transforming, identifying thesalar GF and using Eq. (4.29) we arrive at�JJ(p2) = Z 10 dt 1� Im�JJ(t) 1t� p2 + i � + n�1Xj=0 aj q2j ;1� Im�JJ(t) = � 13 p2 (2 �)Xn Z dQn h 0 jJ�(0)jn i h 0 jJ�(0)jn i� ; (4.38)were again possible subtrations have been inluded. Similar expressions an befound for more omplex GFs.Before we lose this setion we should address one last point : kinematial singu-larities in dispersion relations. This topi is losely linked to the physial meaningof subtrations. Let us �rst disuss the hSSi GF as an illustration. As we shall see,in the deep eulidean it diverges as q2 log(� q2) and hene it needs two subtrations.However we also learn from perturbative QCD that only one of the two subtrationsis unphysial, and so one ould perfetly de�ne the funtion e�SS = 1q2�SS that mustbe subtrated only one, being suh subtration genuinely unphysial. By doing soone is generating at low q2 a kinematial singularity, sine we know from �PT thatat suh momentum �SS behaves like a onstant. This is not a major problem, andwe must simply have to modify Eq. (4.34) to aount for a seond residue� ddq2�n�(q2) = n!2 � i ICdt �(t)(t� q2)n+1 + (�1)n 1q2(n+1) limq2!0 q2�(q2) ; (4.39)where now the ontour C in the t omplex plane must enlose both t = q2 and t = 0.After integrating n times the dispersion relation reads�(q2) = Z 10 dt 1� Im�(t) 1t� q2 + i � + 1q2 limq2!0 q2�(q2) + n�1Xj=0 aj q2j ; (4.40)where we insist one more that limq2!0 q2�(q2) is a physial onstant, typiallyrelated to a hiral LEC. In this ase, obviously one annot pik q2 = 0 as thesubtration point, sine the GF is not de�ned there. This singularity should never



4.4 Wilson's Operator Produt Expansion (OPE) 95be onfused with a pion pole : it is not, and so it will never be present in the spetralfuntion �(t). So the two options for writing a dispersion relation for hSSi are either�over�subtrat� and bear in mind that only one subtration is unphysial, or divideby q2 and take into aount the kinematial singularity as an additional pole. Forthe ase of hPP i we indeed have a pion pole and so if we de�ne e�PP = 1q2�PP inthe hiral limit its spetral funtion would read ��(t) = F 2 1t Æ(t), whih is not wellde�ned.Something similar happens with the hTT i GF. With the de�nition of Eq. (4.12)��TT need only one (unphysial) subtration, but on the other hand they have akinematial singularity at q2 = 0. In this ase hiral symmetry predits that theresidues of the longitudinal and transversal orrelators at zero momentum are re-lated : limq2!0 q2��TT (q2) = ��3.4.4 Wilson's Operator Produt Expansion (OPE)We often �nd ourselves needing to know how a GF behaves when the four�momentumbrought in by one operator tends to in�nity. If an operator produt suh as J�(x)J�(0)were analyti in x�, then its Fourier transform would derease exponentially as theFourier variable k goes to in�nity. The leading terms in the high�momentum limitof the Fourier transform arise from the singularities of the operator produt as thespae�time arguments approah one another.Wilson [15℄ hypothesized that the singular part as x ! y of the produt of twooperators is given by a sum over other loal operatorslimx!yO�(x; �)O�(y; �) = Xj C��j (x� y; �)Oj(y; �) ; (4.41)were C��j are singular �number funtions known as the Wilson oe�ients andOj are loal operators of inreasing dimension dj. These loal operators Oj(y)must have the same global symmetry quantum numbers of the produt O�O�, butare otherwise unrestrited. In the ase of QCD, aside from the identity 11 theseoperators are onstruted from quark and gluon �elds and we will onsider themas normal�ordered. By dimensional analysis the mass�dimension of the Wilsonoe�ients is d�;�;j = d� + d� � dj and thus naï¾12vely its singular part behaves as� (x � y)�d��d�+dj . So as the dimension of Oj inreases its numerial in�uenerapidly dereases. Hene it is safe to trunate this expression at a �nite order. Arelation like (4.41) holds also for ommutators or time�ordered produts, and thelatter are the ones we are interested in. In general operators suh as O�, O� or Ojhave anomalous dimension and then must be de�ned at a ertain renormalizationsale �. This sale is then also present in the Wilson oe�ients modifying thesimple power�ounting argument. In priniple non�analyti funtions are likely toour. The remarkable thing of the OPE is that it is an operator relation : thenthe Wilson oe�ients are universal and do not depend on the partiular matrix



96 Green funtions of QCDelementlimx!y hA jTfO�(x; �)O�(y; �)gjB i = Xj C��j (x� y; �) hA jOj(y; �)jB i : (4.42)When taking matrix elements, not all the operators entering the OPE will give anon�zero ontribution.The standard proof of the OPE was given in perturbation theory in 1970 byZimmerman [62℄, but it is believed that it also remains valid under non�perturbativee�ets. In [1℄ a non�perturbative (but less rigorous) proof based on path�integralis given. We will not enter in the details of the alulations, but merely state theresult. Basially it is proved that the vauum expetation value of the time�orderedprodut of n + m operators when the spae�time arguments of n operators tendto a ommon spae�time point x whih is far from the spae�time points of theremaining m operators an be expanded as follows :limx1���xi!x h 0 jTfO1(x1) � � �On(xn)B1(y1) � � � Bm(ym)gj 0 i =Xk C1���nk (x� x1; � � � ; x� xn) h 0 jTfOk(x)B1(y1) � � � Bm(ym)gj 0 i ; (4.43)now the idea is to use the Bj �elds as interpolating funtions for partiles in thespirit of the LSZ formula on both sides of Eq. (4.43). Sine the nature and number ofthese �elds is arbitrary, in priniple we an interpolate any partile in the spetrum,and solimx1���xi!xhA jTfO1(x1) � � �On(xn)gjB i =Xk C1���nk (x� x1; � � � ; x� xn)hA jOk(x)jB i ;(4.44)sine the states A and B are arbitrary, we are faing an operator identitylimx1���xi!xTfO1(x1) � � �On(xn)g = Xk C1���nk (x� x1; � � � ; x� xn)Ok(x) : (4.45)Fourier transforming we write the OPE into momentum spaelimp1���pn�1!1 in�1 Z n�1Yj=1 d4xj eiPn�1k=1 xk�pk TfO1(x1) � � �On(0)g =Xk in�1 "Z n�1Yj=1 d4xj eiPn�1k=1 xk�pkC1���nk (x1 � � �xn�1)#Ok(0) =Xk C1���nk (p1 � � � pn�1)Ok(0) ; (4.46)At this point a omment is in order. At the sight of the previous equation it seemslear that the x� ! 0 limit is dual to the p� !1, but for this to be true we mustrequire in addition that p is spae�like (p2 < 0), that is the OPE has its validityonly in the deep eulidean region p2 ! �1.



4.5 Callan�Symanzik equation in the OPE 974.5 Callan�Symanzik equation in the OPEAs explained in Setion 4.4, omposite operators made out of the produt of several�elds in the same spae�time point, due to renormalization need to be de�ned atsome sale �. In the renormalization programme of QCD, also all �elds and onstantsin the Lagrangian must be de�ned at a ertain sale. One then distinguishes betweenbare and renormalized �elds and parameters, related multipliatively as follows :qB(x) = Z 122F q(x) ; GaB�(x) = Z 12GGa�(x) ;MB = ZmM ; gsB = Zg gs ; (4.47)where the mass will be treated as a small parameter, and will be eventually set tozero. Whereas bare quantities do not depend on any renormalization sale, renor-malized ones do. In D = 4�2 � dimensions, gs has dimension �, and so we will de�ne�s(�) � �� 2 �g2s=(4 �). Operators made out of the produt of several �elds at thesame spae�time need additional multipliative renormalization (it is not enough torenormalize the �elds they are made of)JaB = �qB(x) � �a2 qB(x) ; JaR = 1ZJ JaB = Z2FZJ �q(x) � �a2 q(x) : (4.48)Let us introdue all these de�nitions in the extended QCD Lagrangian (1.21)LQCD = Z2F �q (iD= � ZmM) q � 14 ZGGa��G��a + LFP + LGF + Lext ;D� = �� � i Zg Z 12G gsGa� T a ; G��a = Z 12G ���Ga� � ��Ga��+ Zg ZG fabgsGa�Gb�;Lext = X� �qB(x) � �a2 qB(x)J aB = Z2FZ� �q(x) � �a2 q(x)J a ; (4.49)All Feynman rules must be read from the renormalized Lagrangian. For example,the propagators, ondensates and soure insertions are :S(p)! 1Z2F ip= ; h�qqi ! 1Z2F Zm h�qqi(�) ; J a ! i Z2FZJ �a2 � ; (4.50)respetively. Atually, it is the GF of renormalized urrents what is �nite underrenormalization 2. It is not di�ult to �nd a general formula for the Z� fator atone loopZ� � = �1� 1̂� CF4 �s� �� + 1̂� CF16 �s� � � � � � + O ��2s� ; (4.51)2Atually this is not exatly true, sine GFs needing subtrations in their dispersion relationshave a divergene in the identity Wilson oe�ient that annot be regularized with the above pro-edure. For the rest of the divergenes, it is however enough to use the renormalization proedureoutlined in this setion.



98 Green funtions of QCDwhere the Dira algebra must be performed in four dimensions. Let us reall thede�nition of the m funtion together with the expressions for all the Z fators atleading order :Z2F = 1� a CF4 �s� 1̂� +O ��2s� ; Zm = Z�1S(P ) = 1� 3CF4 �s� 1̂� + O ��2s� ;ZT = 1 � 1̂� �s� CF4 + O ��2s� ; ZV (A) = 1 ; m(�s) = � �m dmd� ; (4.52)As previously stated, QCD urrents need to be de�ned at a ertain renormalizationsale, as they onsist on the produt of several �elds at the same spae�time point.In other words, renormalized QCD urrents depend on the sale, or �run�; thismotivates the de�nition of their anomalous dimension,� dJR(�)d� = � J JR(�) = � 1ZJ(�) � dZJ(�)d� JR(�) : (4.53)The anomalous dimension depends on the oupling �s, and in perturbation theoryhas an expansion�(as) = (1)� �s� + (2)� ��s� �2 + (3)� ��s� �3 + : : : :Vetor and axial�vetor urrents have zero anomalous dimension. This is a generalresult that stems from the fat that in the hiral limit both urrents are onserved.In the MS sheme that we follow in this thesis the renormalization proedure is massindependent and so the result holds for non�zero quark masses. Similarly one anshow that the quantities mq Sa and mq P a are also independent of � (if the urrentsare normal�ordered), whene it follows S = P = � m. For the tensor urrentthere is no suh simple relation and we will alulate T at leading order in �s. Thegeneral formula for the one�loop order anomalous dimension stems diretly fromEq. (4.51) and reads : (1)� � = CF2 �� � 14 � � � � �� ; (4.54)where again the Dira algebra must be performed in four dimensions. For the tensorurrent its value is (1)T = CF2 = 23 � NC4 ; (4.55)where the approximation orresponds to the large�NC limit. We are now in onditionto disuss the Callan�Symanzik equation (often also known as the renormalizationgroup equation or RGE). The relation of the time�ordered produts of bare andrenormalized urrents read nYi=1 Zi!TfOR1 (x1) � � �ORn (xn)g = TfOB1 (x1) � � �OBn (xn)g : (4.56)



4.6 QCD sum rules 99The right�hand side is a bare objet, and hene �nite. Applying one derivative withrespet to � to the above expression we �nd 3 nXi=1 i + � dd�!TfOR1 (x1) � � �ORn (xn)g = 0 : (4.57)This very same equation must be satis�ed one the OPE is applied for any of theterms entering the expansion�� dd� �C1���nk (x� x1; � � � ; x� xn)Ok(x)� =���� dd� + k�C1���nk (x� x1; � � � ; x� xn)�Ok(x) = nXi=1 i!C1���nk (x� x1; � � � ; x� xn)Ok(x) ; (4.58)and so "�� dd� + k � nXi=1 i#C1���nk = 0 ;"�� ��� + �s �(�s) ���s + m(�) m(�s) ��m + k � nXi=1 i#C1���nk = 0 ; (4.59)where we have used the hain rule to separate the expliit � dependene from that en-oded in parameters of the Lagrangian. This last expression onstitutes the Callan�Symanzik equation for the Wilson oe�ients of the OPE. If we speialize for theases under study in this thesis, many simpli�ations our. Sine we are workingin the hiral limit, there is no quark mass term, and sine we work at most to theO(�s) preision, the � term does not ontribute. We will only ompute gluoniorretions of the quark ondensate Wilson oe�ient :"�� ��� � m � nXi=1 i#C1���nh�qqi = 0 ; (4.60)where we have used that the produt mq : �qq : has no running, or equivalently thath�qqi = S = � m.4.6 QCD sum rulesThe physial vauum of QCD is not the vauum state that one uses in perturbationtheory. Physial e�ets disussed in Chapter 1 suh as spontaneous hiral sym-metry breaking and on�nement do not appear in an order by order perturbation3This argument is spoiled if the GF needs subtrations, that is it does not orrespond to aphysial quantity. GFs that are order parameter never need subtrations.



100 Green funtions of QCDtreatment of QCD (even if we onsider all suh orders). Then one might wonderhow the perturbative QCD results get modi�ed by non�perturbative e�ets at longdistanes. We shall see that non�perturbative e�ets manifest in GFs evaluated atlarge momentum transfer as inverse power orretions of the squared momenta.In this setion we will apply the OPE to QCD GFs. Then we only have to takevauum expetation value of both sides of Eq. (4.46). Naïvely one ould think thatsine the operators appearing in the right�hand side of the OPE are normal ordered,their vauum expetation value must be zero and thus only the identity operatorwould ontribute, giving then the usual perturbative result. However, this wouldonly be true for the �perturbative� vauum. The non�perturbative QCD vauum isby no means trivial, and the vauum expetation value of normal�ordered operatorsis in general non�vanishing due to long�distane e�ets. They are known as vauumondensates. The Wilson oe�ients are alulable perturbatively and admit anexpansion in powers of �s.In fat it is known that the need of non�perturbative power orretions to GFsan be �hinted� from what emerges already in perturbation theory when renormalone�ets are studied, as disussed in [55℄.This idea was pioneered by the ITEP group [16℄ and onsists on an expliit sep-aration of long� and short�distane e�ets. The short�distane e�ets are enodedin the Wilson oe�ients and the long�distane ones in the ondensates. This split-ting of sales must be performed at some arbitrary sale � high enough to make aperturbative alulation reliable. This is re�eted in the � dependene of both theWilson oe�ient and the ondensate. So the Wilson oe�ient overs the inter-ations orresponding to � q2 < �2 and the ondensates parametrize e�ets due to� q2 > �2. Whereas the former depend on the spei� GF under study, the latterare universal parameters. In priniple these ondensates are alulable in QCD anddepend only on the parameters of the Lagrangian, but as happens with the hiralLECs, their omputation is only abordable with either models (instanton based) orlattie QCD. Our approah will be to onsider the ondensates as phenomenologialparameters to �t. In pratie, using the standard methods of Feynman diagrams,an expliit separation of distanes is impossible in the quark�gluon diagrams. Oneis then fored to take into aount both the soft parts of perturbative diagrams andthe long�distane ondensate e�ets simultaneously. This yields a ertain amountof double ounting, whih is, fortunately, numerially insigni�ant, beause the on-densate ontributions turn out to be muh larger that the soft �tails� of perturbativediagrams.However, one annot alulate in the OPE an arbitrary number of power or-retions. As demonstrated in [16℄ there is a ritial dimension at whih non�perturbative e�ets ause the OPE to break down. We will not enter in the detailsof this phenomenon, but will restrit ourselves to the �rst orders.To lose this setion we give a list of the ondensates that we are going to onsiderin this thesis h�qqi ; �s 
Ga��G��a � ; gs h�q ���G��qi ; h�q ��aq �q ��aqi ; (4.61)



4.7 First OPE appliations 1014.7 First OPE appliationsIn this setion we will use the results derived in Setion 4.4 to obtain relationsbetween two� and three�point GFs when high momentum limits are taken. Ofourse, in the language of Fourier transformations this limit is dual to the smalloordinate limit when momentum and oordinate are onjugate to eah other. Someof the topis disussed in this setion an be found in Ref. [51℄. To start with, let usredue the time�ordered produt of three urrents when the limit of one oordinatetending to another is takenlimx!0TfJ1(x) J2(y) J3(0)g = TfTfJ1(x) J3(0)gJ2(y)g : (4.62)Thus the time�ordered produt of three operators redues to the time�ordered prod-ut of the time�ordered of two of them with the third one, when the appropriatelimit is taken. Next we onsider the OPE for two urrents at O(�0s) :limx!y T �Ja1 (x)Jb2(y)	 = NC Æab2 Z d4p d4q(2 �)8 e�i(p�q)(x�y) Tr[ p=�2 q=�1℄p2q2+ i8 Z d4q(2 �)4 e�iq(x�y)X� �q2 �Æabnf (�q � q) (x) Tr[ (�2 ��1 � �1 ��2) q= ℄+ ��q � �2 q�(x)�hab Tr[ �2 ��1 q= ℄ � hab Tr[ �1 ��2 q= ℄�� ; (4.63)limx!y T �Ja1 (x)Jb2(y)	 = � NC Æab8 �2 1x8 Tr [ �1x=�2x= ℄+ i16 �2 X� �x3 �Æabnf (�q � q) (x) Tr [ (�2 ��1 � �1 ��2) x= ℄+ ��q � �2 q�(x)�habTr [ �2 ��1 x= ℄ � habTr [ �1 ��2 x= ℄�� ; (4.64)where we have written the result both in momentum and position spaes. We denotegenerially Jai (x) = : �q(x) �i �a2 q(x) : : (4.65)The �rst term orresponds to the perturbative part and in general needs to besubtrated, and the seond is obtained after applying the Fierz identity in both�avour and Dira spaesÆ�� ÆÆ = 2 ��a2 �� ��a2 ��Æ + 1nf Æ� Æ�Æ ; Æij Ækl = 14 X� � �ik �jl : (4.66)The � matries span a basis of the Dira algebra, and their expression an be foundin Table 4.1 together with the values for the � oe�ients. For order parameterGFs the perturbative term vanishes, whereas the seond one does so for the rest.



102 Green funtions of QCD� 114�4 i 5 � � 5 ���� 1 � 1 1 � 1 12Table 4.1: Fierz identity in the Dira algebra.As a �rst appliation of Eq. (4.64) we an ompute the leading order of boththe perturbative term and quark ondensate ontribution to two�point GFs in theOPE 4 limp!1�ab12(p) = i NC Æab2 Z d4`(2 �)4 Tr [�1=̀�2 (=̀ � p= )℄`2(`� p)2+ h�qqi8 p2 ÆabTr ([�1;�2℄ p= ) +O �p�2� ; (4.67)where either the �rst or the seond term survive depending on the nature of theGF. The integral in the �rst term an be expliitly alulated with the help of theexpressions in Appendix G and after properly regularized we �ndlimp!1�ab12(p) = NC Æab12 (4 �)2 �p22 Tr [ �1 � �2 �℄ � 1̂� + 83 � log�� p2�2��+ Tr [ �1 p=�2 p= ℄ � 1̂� + 53 � log�� p2�2���+O �p0� : (4.68)The Feynman diagram leading to this result is depited in Fig 4.3 (a).
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(a) (b)Figure 4.3: Feynman diagrams of : (a) the perturbative term and (b) the quarkondensate, for a two�point GF at O(�0s).4The statement O(pn) must be understood as O(�n) having written p� = �n� with n2 = � 1.If more than one momenta appear in the limit, we will understand p�i = �n�i , n2i = � 1 with thesame � for all i.



4.7 First OPE appliations 103Applying this formula to the set of GFs not being order parameter we obtain�SS (PP )(p2) = NC p2(4 �)2 � 1̂� + 2� log�� p2�2��+O �p�2� ;�V V (AA)(p2) = 23 NC(4 �)2 � 1̂� + 53 � log�� p2�2��+O �p�4� ;��TT (p2) = NC3(4 �)2 � 1̂� + 83 � log�� p2�2��+O �p�4� ; (4.69)And doing so with the ones being order parameter we get�AP (p2) = 2 h�qqip2 ; �V T (p2) = h�qqip2 +O �p�6� : (4.70)and the orresponding Feynman diagram is drawn in Fig 4.3 (b). One has to multiplythis diagram by a fator of two beause the ounterlokwise ontribution oinideswith the lokwise one. Notie that for the ase of hAP i we reover the resultobtained in Eq. (4.11), whih we know is the exat solution.As a seond appliation, we obtain the following set of relations :limp!1�ab123(p; q) = 18 p2 8Xi=1 ��2�(q)�habTr [�1��3 p= ℄� habTr [�3��1 p= ℄� ;limq!1�ab123(p; q) = � 18 q2 8Xi=1 ��1�(p)�habTr [�3��2 q= ℄� habTr [�2��3 q= ℄� ;limp!1�ab123(p;�r � p) = � 18 p2 8Xi=1 ��3�(r)�habTr [�1��3p= ℄� habTr [�3��1p= ℄�;(4.71)where in the last expression we have used the fat that �ij(p) = �ji(�p). We annow partiularize Eq. (4.71) to the di�erent three�point GFs.limq!1�SSS (SPP )(p2; q2; (p+ q)2) = O(q�2) ;limp!1�SPP (p2; q2; (p+ q)2) = � 8 h�qqi p � qp2 q2 + O(p�2) ;limq!1�V VP (V AS)(p2; q2; (p+ q)2) = � 2 �V T (p2)q2 + O(q�3) ; (4.72)limp!1�V VP (AAP )(p2; (r + p)2; r2) = � 2 h�qqip2 r2 + O(p�3) ; (4.73)limp!1�AAP (V AS)(p2; q2; (p+ q)2) = limp!1�V AS(p2; (r + p)2; r2) = O(p�3) ;limp!1FV V S(p2; q2; (p+ q)2) = 2 �V T (q2)p2 + O(p�3) ;



104 Green funtions of QCDlimq!1GV VS (AAS) [VAP ℄(p2; q2; (p+ q)2) = limq!1FAAS(p2; q2; (p+ q)2) = O(q�4) ;limp!1FV V S(p2; (r + p)2; r2) = limp!1GVAP (p2; q2; (p+ q)2) = O(p�4) ;limp!1GV V S(p2; (r + p)2; r2) = O(p�6) ;limp!1FAAS (VAP )(p2; q2; (p+ q)2) = O(p�3) ;limq!1FVAP (p2; q2; (p+ q)2) = �V T (p2)q2 + O(q�4) ; (4.74)And in addition we havelimp!1FAAS(p2; (r + p)2; r2)� p2 GAAS(p2; (r + p)2; r2) = O(p�4) ; (4.75)andlimp!1FVAP (p2; (r + p)2; r2) = � h�qqip2 �F (0)(r2) + p � rp2 F (1)(r2) + O(p�2)� ;limp!1GVAP (p2; (r + p)2; r2) = � h�qqip4 �G(0)(r2) + p � rp2 G(1)(r2) + O(p�2)� ;(4.76)together withF (0)(r2) � G(0)(r2) = 1r2 ; F (1)(r2) � G(1)(r2) + G(0)(r2) = 2r2 : (4.77)4.8 Ch�qqi for three�point Green funtions at O(�0s)As already disussed in the introdution of this hapter, the h�qqi ondensate playsa speial rï¾12 le sine it is believed to be driving the spontaneous breaking of hiralsymmetry. Moreover, sine we are onsidering only order parameter GFs, there isno perturbative ontribution and the quark ondensate is the �rst OPE term. Wereall the reader that the Wilson oe�ient for two�point GFs has been alreadyalulated in the previous setion.The easiest way to ompute the Wilson oe�ient for the quark ondensateoperator is a diret appliation of the Wik theorem leaving a pair of quark �eldsunontrated and using the identity
�q ai�(0)qbj�(0)� = 14NC Æab Æij Æ�� h�qqi ; (4.78)where a, b are �avour indies, i, j are Dira indies and �, � are olour indies. Amore e�ient method to obtain Ch�qqi is to use the plane wave method, whih exploitsthe fat that the OPE is an operator relation. The Feynman diagrams orrespondingto this ontribution are depited in Fig. 4.4. In fat one has to onsider the samediagrams with the fermioni harge �owing ounterlokwise. We will de�ne�OPESSS(SPP )(p2; q2; r2; �) = CSSS(SPP )h�qqi (p2; q2; r2; �)h�qqi(�) + � � � ;



4.9 Hard�gluon orretions to the quark ondensate 105�V V P (AAP )[V AS℄(p2; q2; r2; �) = CV V P (AAP )[V AS℄h�qqi (p2; q2; r2) h�qqi(�) + � � � ;F [G℄V V S(AAS)[V AP ℄(p2; q2; r2; �) = CV V S(AAS)[V AP ℄F [G℄h�qqi (p2; q2; r2) h�qqi(�) + � � � :(4.79)It is not di�ult to �nd a general formula for this Wilson oe�ient. De�ninghab = 4Tr�T a T b T � = dab + i fab we obtain :Cabh�qqi 123 = � 116 � 1p2 q2 �habTr [ �1�2q=�3p= ℄ + hab Tr [ �2�1p=�3q= ℄�+ 1p2 r2 �hab Tr [ �3�1p=�2r= ℄ + hab Tr [ �1�3r=�2p= ℄�+ 1q2 r2 �habTr [ �2�3r=�1q= ℄ + hab Tr [ �2�3q=�1r= ℄��; (4.80)
Figure 4.4: O(�0s) ontributions to the quark ondensate operator for three�pointfuntions.Applying Eq. (4.80) to the funtions we are interested in we get :CSSSh�qqi (p2; q2; r2) = � 2 � (p2; q2; r2)p2 q2 r2 ; CSPPh�qqi (p2; q2; r2) = 2 p4 � (q2 � r2)2p2 q2 r2 ;CV VPh�qqi (p2; q2; r2) = � p2 + q2 + r2p2 q2 r2 ; CAAP (VAS)h�qqi (p2; q2; r2) = r2 � p2 � q2p2 q2 r2 ;CV V S (AAS)F h�qqi �p2; q2; r2� = p2 + q2 � r2p2 q2 r2 ; CVAPF h�qqi �p2; q2; r2� = � p2 � q2 � r2p2 q2 r2 :CV V S (AAS) [VAP ℄G h�qqi �p2; q2; r2� = 2 1p2 q2 r2 ; (4.81)4.9 Hard�gluon orretions to the quark ondensateIn this setion we will ompute the O(�s) orretions to the Wilson oe�ientorresponding to the �rst non�perturbative operator : h�qqi. In the ase of orderparameter of the hiral symmetry breaking GFs this �rst operator is the leadingone, and so it is relevant to alulate its �rst order gluoni orretions. Yet anothermotivation for omputing the O(�s) orretions to Ch�qqi is to make the QCD runningoinide both in the OPE and R�T.



106 Green funtions of QCDLet us now onsider the ase of the �SSS GF. In the OPE it gets its �rst ontri-bution from h�qqi, and at leading order its Wilson oe�ient is ��independent. Onthe R�T side the situation is a bit di�erent. It is well known that eah salar andpseudosalar urrent insertion in a hiral theory is aompanied by a h�qqi fator, so�OPESSS = Ch�qqi(p; q) h�qqi(�) ; �R�TSSS = e�(p; q) h�qqi(�)3 ; (4.82)and apparently we annot math one onto the other beause the � dependene isdi�erent. What it is happening is that whereas for Ch�qqi we restrit our alulationto the leading order, R�T inludes all �s orders in a non�perturbative fashion. Butif we take into aount the RGE for the Wilson oe�ient Eq. (4.86), Eq. (4.82)beomes meaningful and in priniple the mathing ould be performed.We will �rst disuss the ase of two�point GFs and onentrate latter in thethree�point ase.4.9.1 Two�point funtionsWe start reviewing the derivation of the �s orretions for Ch�qqi in the ase of two�point GFs whih are order parameter. In this simple senario we will disuss theappearane of infrared (IR) divergenes and the renormalization of h�qqi. The onlyGF that we an onsider is the hV T i, sine the hAP i is fully determined by theWard identities and does not reeive any ontribution (in Ref. [60℄ this has beenexpliitly heked to the one loop level). The diagrams that ontribute to this orderare shown in Fig. 4.5 (eah diagram is aompanied by a fator of two as disussedin Setion 4.7).
(a) (b) ()

(f )(e)(d)Figure 4.5: Gluoni orretions to the quark ondensate.The �rst thing one should observe is that diagrams (), (e) and (f) of Fig. (4.5)are infrared divergent sine they involve gluons attahed to quark lines with zeromomentum. The same diagrams ontribute to ��AP and Eq. (4.11) shows that itis free from IR divergenes. So they anel when adding the six diagrams, andsomething similar must our for the hV T i GF. Sine these divergenes anel at theend we might hoose any method to regularize them. A �rst option, more intuitive,



4.9 Hard�gluon orretions to the quark ondensate 107is to give the quark (or the gluon) a small mass, and in this way the divergene willmanifest itself as log(m). This method is analytially more involved and gets terriblefor three�point GFs. We will adopt the dimensional regularization method whihsimpli�es the omputations notoriously. The problem with this method is that oneloses the possibility of distinguishing the ultraviolet (UV) divergenes from the IRones. The divergenes will manifest, as usual, as 1=�̂ and log(�). In this shemediagrams (e) and (f) are zero : they are saleless and onvert the IR divergenesof () into UV ones. So we are left with diagram () as the only one potentiallyproblemati. For this diagram (omputed in an arbitrary gauge) we obtain in theMS sheme :M()V T = � �s� CF4 h�qqip2 �(a + 3) � 1̂� � log�� p2�2��+ a + 1� : (4.83)As we see, by itself this diagram is still gauge dependent, whih means that the otherdiagrams are required in order to obtain a gauge�invariant result. The divergene inthe expression has the form 1̂� (3+a)4 �s� CF2 and together with the tree�level amplitudewe get the struture :h�qqi�1� 1̂� (3 + a)4 �s� CF� = h�qqiZm Z2F = h�qB qBiZm= mBmR(�) h�qB qBi = h�qqiR (�) : (4.84)We have used the fat that the produt m h�qqi is a renormalization group invariantquantity and so the divergene is absorbed in the renormalization of the onden-sate. Summing up all diagrams, taking into aount Eq. (4:84), inluding the wavefuntion renormalization of the quark �elds and the renormalization of the tensorurrent we �nd�OPEV T (p2) = h�qqi (�)p2 �1 + �s� CF �log�� p2�2�� 1��+ O(�2s; p�4) ; (4.85)whih is of ourse independent of the a parameter as required by gauge invariane,onstituting a good hek for our alulation 5. For NC �avours CF = N2C�12NC � NC2where the approximation orresponds to the large�NC limit. As a last omment, letus write the Wilson oe�ient Callan�Symanzik equation,��� ��� � m � T�CV Th�qqi = ��� ��� � 2 �s� CF�CV Th�qqi = 0 ; (4.86)whih is identially satis�ed by Eq. (4.85).5All alulations in this hapter have been performed in an arbitrary gauge. The dependeneinto the gauge parameter a anels in all our �nal results.



108 Green funtions of QCD4.9.2 Three�point funtionsWe turn now our attention to the three�point funtions whih are of great interestfor di�erent reasons. First, unlike the two�point ones, there is a quite big amountof them that are order parameter of the hiral symmetry breaking. Seond, inthe framework of R�T they involve verties among resonanes and so it is usefulto learn how they interat. Third, there are a lot of O(p6) �PT LECs that an bedetermined with these GFs [41℄. And fourth, by means of the LSZ redution formulawe an relate the GFs with form fators entering the alulation of many interestinghadroni observables.The expressions of the �s orretions to Ch�qqi for the three�point GFs are quiteinvolved and their expliit form is relegated to Appendix D. There are two reasons forthis omplexity : �rst, they involve three Lorentz invariants p2, q2 and r2, and seond(and speially for V V S, AAS and VAP ) they involve di�erent Lorentz struturesthat mix with eah other under quantum orretions.The diagrams ontributing to the hard gluoni orretions for the three�pointfuntions when the quark ondensate is between the �rst and seond urrents areshown in Fig. 4.6. Of ourse, the same kind of orretions must be onsidered forthe other two insertions of the quark ondensate and the reverse fermioni �owterms. Diagrams (h), (i) and (j) are analogous to those in Fig. 4:5 (), (e) and(f), respetively. Diagrams (d) and (e) are IR and UV safe, even though they havegluons attahed to zero momentum quark lines. Muh as we did in Setion 4.9.1, weregularize both type of divergenes in dimensional regularization, renormalize thequark ondensate as in Eq. (4:84) and after summing up all diagrams IR divergeneswill anel out. The rest of the (UV) divergenes are absorbed in ounterterms asusual and this renders a �nite (but in general sale dependent) result.
(b)(a) (d)()

(j)(i)
(e) (f ) (g) (h)

Figure 4.6: Gluoni orretions to Fig. (4.4)



4.9 Hard�gluon orretions to the quark ondensate 109Loop orretions manifest themselves as logarithms, dilogarithms and onstantpiees. In general we will have the following deomposition :C�sh�qqi = �s� CF8 �Lp log�� p2�2�+ Lq log�� q2�2� + Lr log�� r2�2�+ Ld C0 + L� ;(4.87)where Li are ��independent meromorphi funtions of the squared external mo-menta. This simple struture arises beause in the hiral limit all internal lines,either quark or gluon, are massless. C0 ollets all dilogarithms and its expliitexpression reads :Co �p2; q2; r2� = � i (4�)2Z d4k(2�)4 1k2(p+ k)2(q � k)21p��Li2�� � + q2 + p2 � r2�� q2 � p2 + r2�� Li2�� �� q2 � p2 + r2�+ q2 + p2 � r2�+Li2�� �+ q2 + r2 � p2�� q2 � r2 + p2�� Li2�� �� q2 � r2 + p2�+ q2 + r2 � p2�+Li2�� �+ r2 + p2 � q2�� r2 � p2 + q2�� Li2�� �� r2 � p2 + q2�+ r2 + p2 � q2��;(4.88)where � is the well known Källen funtion � (p2; q2; r2) = (p2 + q2 � r2)2 � 4 p2q2.The � dependene of Ch�qqi orresponds then to�� ��� Ch�qqi = �s� CF4 (Lp + Lq + Lr) : (4.89)For the hV VP i, hAAP i, hVASi, hV V Si, hAASi and hVAP iGFs the total anomalousdimension is  = S and the Callan�Symanzik equation for their Wilson oe�ientis trivial ��� CV VP [S℄ (AAP [S℄) fVAS[P ℄gh�qqi = 0 ; (4.90)having no ��dependene. For the rest of the GFs, hSSSi and hSPP i,  = 3 S andthe RGE is also rather simple :��� ��� + 2 m�CSSS (SPP )h�qqi = 0 : (4.91)It is better to study the odd�intrinsi�parity setor (hV V P i, hAAP i and hVASi)at one. The Feynman diagram for any of the three GFs has the same value up to a� i fator. The same applies to the rest of setors. Here a tehnial omment is inorder. Sine we work in dimensional regularisation, there is a question how to treat5. In all our omputations we have employed a fully antiommuting 5. Either two



110 Green funtions of QCD5's appear in a trae and an be anelled before taking the trae, or, in the odd�parity setor, we an �rst perform the  ontrations before taking the trae, andare then left with traes of only four �matries and a 5 whih are unambiguous.As we saw in Eq. (4.17) eah rank�two even�intrinsi�parity GF (hV V Si, hAASiand hVAP i) deomposes into two salar funtions, F and G. At lowest order thedetermination of these two salar funtions is straightforward, but one we go beyondthis level their diret omputation turns out to be rather ompliated. Insteadwe will onentrate on the determination of linear ombinations of these fators,obtained by taking the appropriate traes in Eq. (4.17) [ those traes that do notredue to a Ward identity ℄ :g�� ���V V S = 32 �p2 + q2 � r2�FV V S � ��4 + 3 p2q2�GV V S ;q� p� ���V V S = 14 � ��FV V S + 12 �p2 + q2 � r2�GV V S� ;g�� ���AAS = 32 �p2 + q2 � r2�FAAS � ��4 + 3 p2 q2�GAAS + h�qqi (r2 � p2 � q2)p2 q2 ;q� p� ���AAS = 14 � ��FAAS + 12 �p2 + q2 � r2�GAAS�+ h�qqi (r2 � p2 � q2)22 p2 q2 ;g�� ���V AP = 32 �p2 + q2 � r2�FV AP � ��4 + 3 p2 q2�GV AP + h�qqi 5 q2 + p2 � r2q2 r2 ;q� p� ���V AP = 14 � ��FV AP + 12 �p2 + q2 � r2�GV AP�� h�qqi (r2 � p2)2 � q42 q2 r2 :(4.92)These traes have the same symmetry properties under exhange of momenta as Fand G, due to Bose symmetry. One they are known we an reonstrut the totalGFs inverting Eq. (4.92).The analyti expressions for Lp, Lq, Lr, L, and Ld an be found in Appendix D.4.10 Soft�gluon orretions : the h�q ��� G��qi opera-torIn this setion we alulate the next non�perturbative orretion to the hV T i GF.We will ompute the orresponding Wilson oe�ient only at leading order in �s.The operator h�q ��� G��qi has dimension �ve and represents interations due to asoft quark pair and a soft gluon from the vauum. One an of ourse alulatethis oe�ient diretly using Wik's theorem, but in this way many diagrams areinfrared divergent onstituting a rede�nition of the h�qqi ondensate itself, as shownin Fig. 4.7 (a). There is, however, a smart proedure for omputing soft�gluoni or-retions without onfronting suh di�ulties, the so alled bakground �eld method.This idea was originally proposed by Fok [63℄ and Shwinger [64℄ and redisovered



4.10 Soft�gluon orretions : the h�q ��� G��qi operator 111by a number of people [65, 66℄. In this method one introdues an external gauge�eld Ga�(x) into the QCD Lagrangian with the following gauge ondition (Shwingeror �xed point gauge) : (x� x0)�Ga�(x) = 0 ; (4.93)where x0 is an arbitrary but �xed point in spae�time that an be eventually setto the origin. The gauge �eld an be then diretly expressed in terms of gaugeovariant derivativesG� = Z 10 � d�G��(� x) x� = 12 x�G��(0) + � � � : (4.94)
(a) (b)Figure 4.7: Diagrams of the mixed quark-gluon ondensate : (a) Infrared divergentdiagram renormalizing the h�qqi ondensate, (b) ontribution to the quark�gluonondensate oming from the bakground gluons.Gluoni orretions an now be alulated by onsidering that our virtual quarksand gluons propagate into this bakground �eld, being propagators modi�ed (infat we will only need the modi�ation of the quark propagator). This modi�edpropagator in momentum spae and for massless quarks readsSF (p) = ip= � i4 gsG��(0) 1p4f��� ; p= g + i3 gsD�G��(0) p= � p=p6 (� p= � + � p= �) + � � � ;(4.95)and its diagrammati representation is shown in Fig. 4.8. It is also simple to expressthe quark propagator in oordinate spae, what makes omputations easierSF (x) = s0(x) x= � i gsG��(x) s1(x)fx= ; ���g + � � � ; (4.96)s0(x) = i2 �2 1x4 ; s1(x) = 132 �2 1x2 :The only missing ingredient for the omputation of gluoni orretions is thefollowing integralZ d4xx2n eiq�x = 8>><>>: i (�1)n 2 4�2n �2�(n� 1)�(n) q2(n�2) log(� q2) ; n � 2� i 4 �2q2 ; n = 1 : (4.97)
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+ + + � � �Figure 4.8: Quark propagator in a bakground of gluon �elds.But the Wilson oe�ient of the h�q ��� G��qi operator does not only ome from softbakground gluons, but also from the expansion of the quark ondensate in diagramslike Fig. 4.3 (b). So, after applying Wik's theorem, one has to onsider
�q ai�(x)qbj�(0)� = 14NC Æab Æij Æ�� �h�qqi + 116 x2 gs h�q ��� G��qi� + � � � : (4.98)For the omputation of the ontribution from gluons oming from the bakgroundone has to take into aount thath �qi(0)G��(0) qj(0)i = 148 h �q ��� G��qi (���)ji : (4.99)Let us now onentrate on the omputation of the Wilson oe�ient for a generitwo�point GF. The �rst ontribution oming from the expansion of the quark on-densate gives C(1)h�q ��� G��qi = gs Æab32 Tr ([ �1;�2℄ p= )p4 ; (4.100)whereas the seond one, oming from a diagram like the one in Fig. 4.7 givesC(2)h�q ��� G��qi = gs Æab384 p4Tr [fp= ; ���g (�2 ��� �1 � �1 ��� �2)℄ : (4.101)It is reassuring to hek that for the hAP i GF, both ontributions exatly anel,as the Ward identity demands. For hV T i we obtain [ adding also Eq. (4.85) ℄ :�OPEV T (p2) = h�qqip2 �1 + �s� CF� log�� p2�2� � 1��+ gs3 h�q ��� G��qip4 : (4.102)4.11 Soft gluon orretions : the hGa��G��a i operatorWe will now onsider the �rst non�perturbative orretion to the two�point GFsthat are not order parameters. These are purely gluoni orretions due to the in-terations of the hard quarks with the vauum gluons. For its omputation it isbetter to use one more the bakground �eld method in position spae. The orre-sponding Feynman diagrams are shown in Fig. 4.9 and the expression for arbitraryurrents of its Wilson oe�ient isChGa��G��a i = Æab�s3072 � p2 �g�� � p�p�p2 �Tr �f�; ���g�2f�; ���g�1� : (4.103)



4.12 The four�quark operator h�q ��aq �q ��aqi 113
Figure 4.9: Gluon ondensate Feynman diagrams.In partiular, for the di�erent GFs we obtain :CV V (AA)hGa��G��a i = �s24 � p4 ; CSS (PP )hGa��G��a i = �s4 � p2 ; CTT�hGa��G��a i = �s48 � p4 : (4.104)4.12 The four�quark operator h�q ��aq �q ��aqiThis operator is speially important beause it is the �rst non�perturbative on-tribution that distinguishes hV V i from hAAi, hSSi from hPP i and hTT i+ fromhTT i�. However, there are additional ontributions of the same order in 1=p2 thatvanish when taking the di�erenes of the GFs mentioned before. We are not goingto alulate them in detail here.
Figure 4.10: Four�quark ondensate ontribution.Even though we are alulating orretions involving one gluon (see Fig. 4.10),the bakground �eld method is no longer useful for two reasons : �rst, the gluon is avirtual, hard gluon and it is not taken into aount in the modi�ed quark propagator(it omes from the QCD ation); seond, we are integrating over three spae�timepoints x (were the �rst urrent is de�ned) y and z (the two hard�gluon insertions).The most e�ient way to alulate the Wilson oe�ient is the plane wave methodin ombination with the Fierz identity (4.66).In fat there is not only one operator but rather �ve, one per eah independentDira matrix (no summation over �avour index implied) :�S = � �q �a2 q �q �a2 q� ; �P = � �q �a2 i 5 q �q �a2 i 5 q� ;�V = � �q �a2 � q �q �a2 �q� ; �A = � �q �a2 � 5 q �q �a2 � 5 q�



114 Green funtions of QCD�T = � �q �a2 ��� q �q �a2 ��� q� ; (4.105)where �a are olor matries of the SU(NC) group. All those ontributions stemfrom diagrams like those depited in Fig. (4.10). The general formula for the Wilsonoe�ient is easily obtained and readsC�� = Æab g2sp6 � g2s Tr(p= [ �1�; �℄) Tr (p= [� ��2 � �2 � �℄) : (4.106)For the di�erent funtions it rendersCV V (AA)A(V ) = 2 g2sp6 ; CSS(PP )T = � 4 g2sp4 ; CTT�S(P ) = � 4 g2sp6 : (4.107)Sine very little is known about the numeri value of the four�quark ondensates,an approximation only valid in the strit large�NC limit is normally assumed. Itis known as the vauum saturation hypothesis and it basially assumes that theintermediate state giving the main ontribution when inserting a Parseval identityis preisely the vauumh �q �1 �a2 TA q �q �2 �b2 TB q i = Xn h 0 j �q�1 �a2 TA q jn i hn j �q�2 �a2 TB q j 0 i� h 0 j �q�1 �a2 TA q j 0 i h 0 j �q�2 �a2 TB q j 0 i= � h�qqi264N2C Æab ÆAB Tr[ �1�2℄ ; (4.108)and ertainly it makes sense sine large�NC QCD favours ontributions with asless number of intermediate partiles as possible. Eq. (4.108) leads to tremendoussimpli�ations in the alulation and, in partiular, it redues the �ve independentoperators in Eq. (4.105) to only one, namely h�qqi2. The general expression for theWilson oe�ient of that operator isCh�qqi2 = g2s CF16NC p6 fTr [�p=�2�p=�1℄ + Tr [ p= ��2p= ��1℄� 8Tr [ �1�2℄g ; (4.109)and its value for the GFs under study isCV V (AA)h�qqi2 � � g2s2 p6 ; CSS (PP )h�qqi2 � � 3 g2sp4 ; CTT�h�qqi2 � � g2s4 p6 ; (4.110)where we perform the approximation CF � NC=2 beause the vauum saturationhypothesis is only valid in the strit large�NC limit. However, several tests seem toindiate that the vauum saturation hypothesis is quite inaurate, and in ertainondensates the deviation is about 100%. We will assume that this error does nothange the sign.



4.13 Calulation in �PT 1154.13 Calulation in �PTIn this setion we alulate some GFs in the opposite regime : the low energy region.The basi ideas of �PT and the operators needed for these alulations have beenovered in Chapter 1. Again we will assume the hiral limit.4.13.1 Three�point Green funtion : hVVPiFor this funtion and bearing in mind the appliation it will be used for (see Chap-ter 5), we will onentrate only on the leading 1=NC term of the O(p4) result. Sothere will be no logarithms. The leading term is produed by the WZW anomalousterm in Eq. (1.78), giving rise to a piee proportional to NC , and the next orretionsare produed by the odd�intrinsi�parity L(6) Lagrangian (1.79). The result reads��PTV V P = B0�64 eCW7 � 16 eCW22 p2 + q2r2 � NC4 �2 r2� + O�p2; N0C� ; (4.111)and the Feynman diagrams leading to it are shown in Fig. 4.11.
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Figure 4.11: hV VP i GF in �PT.4.13.2 Two�point Green funtionsFor this simple ase we will perform the alulations to the next�to�leading order inboth the hiral and 1=NC expansions. So we will in priniple �nd hiral logarithms.The three possible ontributions are drawn in Fig. 4.12. To hAAi and hPP i onlyFig. 4.12 (a) and () ontribute, for hV V i and hSSi only 4.12 (b) and (), for hV T ionly 4.12 (b) and () and for hTT i only 4.12 () :��PTV V (p2) = � 2Lr10 � 4Hr1 + 132 �2 �53 � log�� p2�2�� ;��PTAA (p2) = � F 2p2 � 4Hr1 + 2Lr10 ;��PTSS (p2) = B20 �32�Lr8 + Hr22 � + 524 �2 �1� log�� p2�2��� ;��PTPP (p2) = � 4B20 �F 2p2 + 8�Lr8 � Hr22 �� ;



116 Green funtions of QCD�V T (p2) = ��1(�) + p2 �2(�)F 2 (� e
94(�)2 + 164 �2 �C 0 + 53 � log�� p2�2��) ;��(�PT)TT (p2) = � �3p2 � 
51 � 
532 � H1188 : (4.112)It is interesting to stress the fat that in the hiral limit and at next�to�leading orderthe hTT i GF does not get any logarithmi orretion. This is so beause the tensorsoure is O(p2) and appears for the �rst time L(4). So the one�loop orretions isformed with two verties from L(4), whih is already O(p8).
(a) (b) ()

+ +

Figure 4.12: Two�point GFs in �PT.4.14 Calulation in R�TIn this setion we will alulate some GFs in the large�NC limit. The many sim-pli�ations ourring in this limit where already exposed in Chapter 2. Whereas inSetion 4.4 we used quark and gluon degrees of freedom, the alulations will nowbe performed with hadroni degrees of freedom. All these features are implementedin the R�T Lagrangian of Setions 2.6.2 and 2.8. The expressions obtained will havevalidity (in priniple) in all energy domains. We will restrit ourselves to the MHAapproximation, that is, onsidering only the minimal number of resonanes neededto satisfy several onstraints. Use of quark�hadron duality is done when omparingthe results of this setion with those of Setion 4.4.4.14.1 Three�point Green funtion : hVVPiOur purpose is now to build a representation of the hV VP i GF whih is valid at allenergies. In partiular we have already alulated its expression in the asymptotienergy region, inluding hard�gluoni orretions to the leading order ondensateh�qqi. For our ansatz it su�es to onsider only the O(�0s) quark ondensate ontri-bution. Our parametrization has to reprodue this behaviour for large values of themomenta. In addition, we also have to enfore the onditions of Eq. (4.72) whenonly one momentum is large. In the very low energy region, the GF has to satisfy theonstraints of hiral symmetry enoded in �PT that an be read from Eq. (4.111).In addition to these onstraints on the hV VP i GF there is also a requirement that



4.14 Calulation in R�T 117we will enfore in any hadroni form fator of vetor or axial�vetor QCD urrents.It is known [67℄ that the leading perturbative ontribution, within QCD, to thespetral funtions of both vetor and axial�vetor orrelators is onstant. Then itomes out, as a heuristi dedution, that any of the in�nite hadron ontributions tothe spetral funtions should vanish at high transfer of momentum. This implies, inorder, that hadron form fators of those urrents should behave smoothly at highenergy [68, 69℄. Inidentally this feature oinides with the known Brodsky�Lepageondition on form fators (derived from a partoni framework) [70℄. Spei�ally theondition, in our ase, reads :limr2!0; q2!1 r2�V VP (0; q2; r2) = 0 : (4.113)Our task is to onstrut a funtion for hV VP i that satis�es, at least, the onditionsde�ned above. In general the large�NC preditions allows us to parametrize �V VPwith meromorphi funtions (i.e. funtions with real poles as singularities) withpoles in the orresponding resonanes propagating between the QCD urrents. Ingeneral we have then �V VP = P3+m�1n=0 Pn(p2; q2; r2)Q3;mi;j=1(p2i �m2j) ; (4.114)where mj are the masses of the resonanes that ouple to the urrent Ji = V; P , andp2i = p2; q2; r2 is the momentum �owing from this urrent. Pn is the most generaln�grade monomial in p2, q2 and r2 :Pn = nXk=0 kXl=0 n�k;k�l;l(r2)n�k(q2)k�l(p2)l : (4.115)Bose symmetry requires that kml = klm.In Ref. [42℄ a Lagrangian theory, inluding one multiplet of vetor resonanesonly, was designed in order to obtain an expression for �V VP that satis�ed all ondi-tions but for the one in Eq. (4.113). Indeed the fat that only one multiplet of vetorresonanes was not enough in order to satisfy all short�distane onstraints for thisGF was already notied [51℄ with the use of a parametri ansatz. It is already wellknown [51,71℄ that the MHA is more involved if we want that our representation ofthe GF satis�es both OPE and the Brodsky�Lepage requirements. To see that letus use (4.114) for this ansatz :�resV VP (p2; q2; r2) = 000 + 100 r2 + 010 (p2 + q2)(M2V � q2) (M2V � p2) r2 : (4.116)Mathing to OPE requires 100 = 010 = �B0 F 2 whereas the Brodsky�Lepage wouldimply 010 = 0, thene these two requirements annot be satis�ed at the same time.The obvious extension is to extend our spetrum by inluding also a multi-plet of pseudosalar resonanes in the onstrution of the �V VP funtion. Al-though it an be shown that indeed this parametrization satis�es onditions inEqs. (4.111,4.81,4:113), it fails to meet the OPE ondition in Eq. (4.73) 6. Eq. (4.114)6Constraints in Eq. (4.72) are, in this ase, undetermined.



118 Green funtions of QCDreads for this ansatz :�resV VP (p2; q2; r2) = 1(M2V � q2) (M2V � p2) r2 (M2P � r2)�000 + 100 r2 + 010 (p2 + q2)+ 200 r4 + 020 (p4 + q4) + 110 r2(p2 + q2) + 011 p2 q2� : (4.117)After mathing this result with the OPE we get020 = 011 = 0 ; 200 = 110 = B0 F 2 ; (4.118)whereas the Brodsky�Lepage ondition implies 010 = 0, and so they do not lash.However when we try to satisfy Eq. (4.73) we �nd that instead of a pion pole wehave a pseudosalar resonane polelim�!1�resV VP ((�p)2; (q � �p)2; q2) ' 2 B0F 2�2 1p2 1M2P � q2 + � � � : (4.119)It is not di�ult to relate this problem to the fat that the hAP i orrelator in thehiral limit is saturated by one pion exhange [60℄.It an be seen that all onditions are met if we onsider in the spetrum of thehV VP i GF two non�degenerated multiplets of vetor resonanes, together with theGoldstone pseudosalar mesons. Then the ansatz would read [40℄ :�resV VP = 1(M2V1 � q2) (M2V1 � p2) (M2V2 � q2) (M2V2 � p2) r2 � 000 + 100 r2 + 200 r4+ 010 (p2 + q2) + 020 (q4 + p4) + 011 p2 q2 + 110 r2(p2 + q2)+ 300 r6 + 030 (p6 + q6) + 021 p2 q2(p2 + q2) + 111 r2 p2 q2+ 120 r2(p4 + q4) + 210 r4(p2 + q2) � : (4.120)The hiral symmetry behaviour (4.111) gives000 = B0M4V1M4V2 NC4 �2 ; (4.121)and the OPE mathing demands300 = 030 = 120 = 210 = 0 ; 021 = 111 = �B0 F 2 : (4.122)Finally the Brodsky�Lepage behaviour on the vetor form fator, de�ned by ondi-tion (4.113), �xes one additional parameter, namely :020 = 0 : (4.123)Our ansatz, with all these onstraints, satis�es also the OPE onditions in Eqs. (4:73).The study of the hV VP i GF along the lines outlined in this setion an also bearried out within a resonane Lagrange theory instead of a parametri representa-tion as given by Eq. (4.120). We ollet this proedure in Appendix E.



4.14 Calulation in R�T 1194.14.2 Two�point Green funtionsFor the ase of the two point GFs, the parameters appearing in the large�NC limitare only masses and deay onstants. The de�nition of the latter follow :h 0 jV a� (0) j �bn(p; �)i := Æab FV nmV n �(�)� ;h 0 jT a��(0) j �bn(p; �)i := i Æab F TV n(�) (�(�)� p� � �(�)� p�) ;h 0 jT a��(0) j bbn(p; �)i := i Æab F TB n(�) "���� ��(�) p� ;h 0 jAa�(0) j abn(p; �)i := Æab FAnmAn �(�)� ;h 0 jSa(0) j sbn(p)i := 4p2 ÆabB0(�) mn ;h 0 jP a(0) j pbn(p)i := 4p2 ÆabB0(�) dmn : (4.124)The sale dependene of the F TV (�) and F TB (�) in Eq. (4:124) [muh as happenswith B0(�) ℄ re�ets the fat that the tensor urrent has a non�vanishing anomalousdimension. In the literature it is also ommon to work with the lowerase deayonstants fV n, fTV n and fTBn, whih are related to the upperase ones in a trivial way :fV n = �p2FV n, fTV n = �p2F TV n, fTBn = �p2F TBn. Also, for future onvenienewe introdue the parameter �n, de�ned as�n = fTV nfV n = F TV nFV n : (4.125)In the strit large�N limit two�point funtions are saturated by the single�partileexhange of an in�nite number of stable mesons. Therefore, the spetral funtionsabove take the simple forms1� Im�V V (t) = Xn F 2V n Æ(t�m2V n); 1� Im�+TT (t) =Xn �F TBn�2 Æ(t�m2Bn);1� Im��TT (t) = Xn �F TV n�2 Æ(t�m2V n); 1� Im�V T (t) =Xn FV F TV nmV n Æ(t�m2V n);1� Im�AA(t) = Xn (FAn)2 Æ(t�m2An); 1� Im�SS(t) = 32B20Xn 2mn Æ(t�m2Sn);1� Im�PP (t) = 32B20Xn d2mn Æ(t�m2Pn): (4.126)In this setion we will onsider only the �rst multiplet for eah set of quan-tum numbers, and apply the mathing to the short�distane behaviour (OPE). Theexpression for the two�point GFs in the antisymmetri formalism read :�R�TV V (p2) = F 2Vm2V � p2 � F 2Bm2B � 2 ~L10 � 4 ~H1 ; (4.127)�R�TAA (p2) = �F 2p2 + F 2Am2A � p2 � 4H1 + 2 ~L10 ;



120 Green funtions of QCD�R�TSS (p2) = 32B20 " 2mm2S � p2 + ~L8 + ~H22 !# ;�R�TPP (p2) = � 32B20 "� d2mm2P � p2 + F 28 p2 + ~L8 � ~H22 !# ;�R�TV T (p2) = FV F TV mVm2V � p2 � FB F TB2mB � ~�1 ;��R�TTT (p2) = (F TV )2m2V � p2 � 1p2 h(F TB )2 � (F TV )2 � ~�3i+ 12  ~
51 � ~H1188 ! ;�+R�TTT (p2) = (F TB )2m2B � p2 + 1p2 h(F TB )2 � (F TV )2 � ~�3i� 12  ~
51 + ~
522 + ~H1188 ! ;A mathing to short distanes implies~L10 = � F 2B4m2B ; F 2V � F 2A = F 2 ; m2V F 2V = F 2Am2A ;~L8 = 0 ; 8 (2m � d2m) = F 2 ; 2mm2S � d2mm2P = 3 � �s4 F 4 ;~�1(�) = � FB FBT (�)2mB ; 2 ~�3 = (F TB )2 � (F TV )2 ; FV F TV (�) = F 2B0(�)mV ;F TV (�)mV = F TB (�)mB ; ~
51 + ~
524 = 0 : (4.128)In partiular this �xes �1 = � FV FTVmV = F 2B0m2V . In addition we an math the quartiondensate to obtain F 2V m2V �m2A �m2V � = 4 � �s F 4B20(�) > 0 ;�F TV (�)�2 m2V �m2B �m2V � = 2 � �s F 4B20(�) > 0 : (4.129)The results above deserve some omments. In this MHA approximation we preditthat mA > mV and mB > mV , but we annot say anything similar for mS andmP . Phenomenology supports this piture, and of ourse there are more sophis-tiate theoretial methods that also onlude the same. It is remarkable that theaforementioned kinematial singularity in hTT i is playing the same rï¾12 le as thatof the pion pole in hPP i and hAAi. Had it been zero, mV = mB, in lear on-tradition with experimental determinations. B mesons only play a rï¾12 le in GFsinvolving tensor urrents (and also in the tensor form fator of the pions). Mathingto short�distane QCD implies that the ontributions of B mesons on hV V i andhV T i must be ompensated with loal ounterterms from the hiral Lagrangian.This was �rst notied in Ref. [39℄, and as we saw in Chapter 2, in the Proa for-malism B mesons deouple from the vetor urrent. In the ase of hV T i and in thisMHA approximation, the mathing to short distanes fully determines the produtFV FV T .



4.15 Can we math the MHA to the OPE at O(�s)? 121It is worth alulating the hTT i GF in the Proa formalism, where for simpliitywe ignore the O(p6) �PT ontributions��R�TTT (p2) = (F TV )2m2V � p2 + ~�P3q2 ; �+R�TTT (p2) = (F TB )2m2B � p2 � ~�P3p2 ;��(res)TT (p2) = (F TB )2m2B � p2 � (F TV )2m2V � p2 � 2 ~�P3p2 ; (4.130)in this ase the longitudinal part of the propagator does not �pollute� the GFs withkinematial singularities. In this formalism the mathing to short distanes implies2 ~�P3 = (F TV )2� (F TB )2. Either in antisymmetri or Proa formalism, one we imposeshort�distane mathing we obtain the same result, namely :��(res)TT (p2) = m2V (F TV )2p2 � 1m2B � p2 � 1m2V � p2� : (4.131)This result �xes the �3 hiral LEC and its sign :�3 = 12 m2V (F TV )2� 1m2B � 1m2V � = F 4B20(�)2F 2V � 1m2B � 1m2V �= 14 F 2B20(�)� 1m2B � 1m2V � < 0 ; (4.132)where in the seond step we have used one relation of Eqs. (4.128) and in the lastwe used FV = p2F , whih omes from assuming unsubtrated dispersion relationsfor both the pion eletromagneti form fator and the axial form fator in radiativepion deay [13℄ and has been shown to be satis�ed in sum rule analysis of vetorand axial hannels.As a last omment, in Eq. (4.128) several relations have sale dependene. Insome ases the sale dependene on the left� and right�hand sides oinide, makingthe mathing ��independent. But in some other ases the dependene is not thesame, and it seems that the mathing ondition is di�erent for di�erent values of�. In fat what is happening is that our alulation in the OPE is trunated inthe number of loops (in fat, it has no loops at all), and so we do not generate theexpliit � dependene that makes the anomalous dimensions of left� and right�handsides oinide, at least formally.4.15 Can we math the MHA to the OPE at O(�s)?In this setion we shall see that even if the MHA does not su�e to math orderparameter GFs to the the OPE when radiative orretions to the quark�ondensateWilson oe�ient are taken into aount, [ that is we annot math Eqs. (4.85) and(4.127) ℄ we an make a re�nement of the mathing at tree�level.Sine the hV T i GF in the hiral limit does not need to be subtrated, it isompletely determined by its spetral funtion. Then it an be regarded as an ob-servable and thus we an diretly math its expression in di�erent approximations,



122 Green funtions of QCDsuh as OPE and R�T. However, we still have the problem that the tensor urrentrequires renormalisation, and thus, the hV T i GF is sale and sheme dependent.This renormalisation dependene would then be re�eted in a sale dependent ou-pling of the tensor urrent to vetor mesons F TV (�) on the hadroni side. Sine weprefer to work with hadroni quantities whih are expliitly sale independent, an-other possibility is to multiply F TV (�) by an appropriate sale fator RT (�), whihresults in a sale independent tensor deay onstant F̂ TV . This is analogous to thede�nition of sale�invariant B�fators, whih parametrise hadroni matrix elementsof four�quark operators, in the ase of weak hadroni deays [72℄. Therefore, wede�ne f̂TV � fTV (�)RT (�) � fTV (�) exp��as(�)Z T (as)�(as) das�= fTV (�) [as(�)℄�(1)T =�1� 1� �(2)T�1 � �2 (1)T�21 �as(�) +O(a2s) �Nf=3= fTV (�) [as(�)℄� 427� 1� 337486 as(�) +O(a2s) � : (4.133)The anomalous dimension of the tensor urrent is known up to order �3s [73,74℄, andthus one ould even extend Eq. (4.133). However, at the order onsidered here thisdoes not make sense, sine we only stay at the next�to�leading order level.(2)T = CF144(257NC � 117CF � 26nf) = 17936 � 397576 N2C ;were the exat number orresponds to three olours and �avours, and the approxi-mation to the large�NC limit. For our numeris we also need the �(2) funtion [75℄ :�(2) = 1712 N2C � 14 CF nf � 512 NC nf = 8 � 1712 N2C :Now multiplying our result (4.85) for the Green funtion with the sale fator RT (�),it is a trivial exerise to onvine oneself that RT (�) �OPEV T (p2; �) is sale indepen-dent at the onsidered order. Nevertheless, it should be kept in mind that it stilldepends on the renormalisation sheme, for example on the sheme in whih h�qqi isrenormalised.In priniple, sine the next�to�leading order result for the hV T i GF ontains alogarithm in the dynamial variable p2, let us strongly emphasise that an in�nitetower of resonanes would be required for a sound mathing to the R�T. Still,as a simple�minded approah, we will next onsider the aforementioned minimalhadroni ansatz (MHA). This amounts to the assumption that a single resonaneis enough to orretly desribe the physis in a ertain energy regime. In Ref. [40℄the mathing for the hV T i GF was performed at O(�0s), and here we will inlude



4.15 Can we math the MHA to the OPE at O(�s)? 123the O(�s) orretions. Again multiplying the GF with the sale fator in order toobtain a sale�invariant quantity, the hadroni ansatz reads :RT (�) �R�TV T (p2) = FV F̂ TV mVm2V � p2 : (4.134)Eq. (4.134) is in priniple assumed to be valid at all energies at leading order in1=NC , sine it inorporates hiral symmetry and the orret high�energy behaviour.It an be expanded in inverse powers of p2, permitting a diret omparison with theOPE in Eq. (4.85). However while Eq. (4.127) is expliitly sale independent, (4.85)ontains a logarithm whih ompensate the running of the tensor soure and thequark ondensate.To perform the mathing in pratie, we hoose a partiular mathing point andsale. First of all, to sum up the logarithm, we will employ the sale �2 = � p2 �M2.Then, M2 should be large enough so that only keeping the �rst term in the OPEis a good approximation, while it should not be too large so that only putting oneresonane on the hadroni side is reasonable. From these onsiderations, we wouldonlude, that M should be in the range 1�2GeV. For the mathing relation, wethen �ndFV F̂ TV mV = � [as(M2)℄� 427f 322gh�qqi(M2) � 1� 985486 � 835711616 NC� as(M2) � ;(4.135)where in the urly brakets, we have also inluded the numbers orresponding tothe large�NC limit. Eq. (4.135) an be viewed as a re�nement over the analogousestimate of Ref. [40℄.Let us �nally ome to a numerial analysis of Eq. (4.135). Employing the entralvalues FV = 156MeV and MV = 775MeV, as well as the value for the quarkondensate h�qqi(2GeV) = � (267MeV)3 [76℄, we obtainF̂ TV = 138� 40 MeV ; (4.136)where the quoted unertainty dominantly results from a variation of the math-ing sale M in the range 1�2GeV, and to a lesser extent from either taking therenormalisation�group oe�ients in full QCD, or the large�NC limit. The largemathing�sale dependene of our result re�ets the imperfetion of the math-ing. At a sale of 1GeV, the sale dependent vetor�meson tensor oupling reads :F TV (1GeV) = 118� 33MeV. Given the large unertainties from the mathing sale,this �nding is in surprising agreement to the leading order result F TV (1GeV) =117MeV [40℄ and to determinations of the tensor oupling F TV from QCD sum rulesand lattie QCD of Refs. [77�80℄.For the tree�point GFs one annot even get rid of logarithms (and dilogarithms)by a onvenient hoie of the � sale and hene the full spetrum of resonanesshould be onsidered as well.



124 Green funtions of QCD4.16 Mathing to the OPE with an in�nite numberof resonanesIn this setion we will obtain a quantitative predition of the large�NC limit in thesetor of vetor mesons. In partiular, we will show that perturbative QCD alone setsa relation between the ouplings of vetor mesons to the vetor and tensor urrents.This power of predition is due to the exeptional status of the two�point orrelators�V V , �TT and �V T . As we saw in Setion 4.14.2 JPC = (1��) ��like mesonsare exhanged in the three orrelators, a situation that strongly onstrains and, aswe will show, sets a distint pattern for the deay onstants of vetor resonanesin the large�NC limit. To the best of our knowledge, no similar self�onstrainedset of orrelators exists for partiles other than vetor resonanes. This system oforrelators was �rst disussed in [81℄, where, in their words, the (1��) vetor mesonsetor was `bootstrapped'. However in their analysis they ignored the kinematialsingularity of the ��TT GFs at q2 = 0 and hene their results should be read withare.So far, when omparing the OPE results of Setion 4.4 with the alulations ofSetion 4.14 we have restrited ourselves to the MHA approximation. Sine we wereinterested in GFs being order parameter of the hiral symmetry breaking, the Wilsonoe�ient of the identity operator in the OPE was identially zero. This implied thatat leading order in gluoni orretions there was no logarithm to worry about, andthen the OPE was simply a pure expansion in inverse powers of the momentum.Sine in the large�NC limit GFs are desribed by meromorphi funtions of theresonanes, the high�momentum limit of those expressions is preisely in inversepowers of the momentum. So the mathing proedure was straightforward, evenwhen onsidering only one multiplet of resonanes.But one might wonder what kind of information is obtained by mathing thelarge�NC resonane expression onto the perturbative parton logarithm, i.e., for fun-tions that are not order parameters. Having a �nite number of multiplets, we anonly obtain a series in inverse powers of the momentum. It is then impossible tomath a logarithm and one is fored to introdue an in�nite number of them (asexplained in Chapter 2). If we have an in�nite number of resonanes of inreasingmass, the proess of taking the high�momentum limit and the sum over an in�nitenumber of terms no longer ommute. This an be seen as follows : let n be aninteger number labeling the resonanes with equal quantum numbers ordered byinreasing mass; when expanding in 1=p2 no matter how large is p2, there will be inthe spetrum an integer n� suh that m2n� > jp2j, and then for n � n� we annotexpand in 1=p2. So we have �rst to sum up the in�nite number of resonanes, andafterwards, perform the 1=p2 expansion.But, how an we deal with this? We an trade the in�nite for integrals over theresonane ounting index n with the use of Euler�Malaurin theoremNXn=0 f(n) = Z N+10 f(n) dn + 12 ff(0) � f(N + 1)g +



4.16 Mathing to the OPE with an in�nite number of resonanes 125+ 1Xn=1 B2n(2n)! �f (2n�1)(N + 1) � f (2n�1)(0)	 ; (4.137)that is nothing more than the familiar trapezoidal rule for numerial integrations.This idea was pioneered by a series of authors [82, 83℄ and reently in Ref. [50℄ themethod has been extended to inlude radiative orretions. In Ref. [84℄ an attemptto estimate the error ommitted by the trunation of the in�nite tower was done.Let us apply this formula to the ase of the hV V i orrelator, and generalize itlatter for the rest :�V V (p2) = NXn=0 F 2V nm2V n � p2 = Z N+10 dn F 2V nm2V n � p2 + � � � ; (4.138)where the dots stand for the terms subleading in inverse powers of p2 that willontribute to higher order terms in the OPE. Let us onentrate on the integral andsplit it in the following wayZ N+10 dn F 2V nm2V n � p2 = Z N+1n� dn F 2V nm2V n � p2 + Z n�0 dn F 2V nm2V n � p2 ; (4.139)where n� is a large but �nite number, de�ned suh that for an arbitrarily large jp2j,� p2 > m2V n� . By using n�, we have split the integral keeping the ontribution thatwill math the parton model logarithm of perturbative QCD [ f, Eqs. (4.69) ℄. Weexpet that for n & n� the masses and deay onstants follow a regular pattern inn. The remaining piee an therefore be safely expanded in inverse powers of themomentum and together with the omitted terms determines the OPE ondensates;it is in general model dependent. We are left with the �rst integral, where the uto�N will eventually be sent to in�nity. Whatever the preise form of FV n and mV nmay take, the integral has to math the parton model logarithm of Eq. (4.69). Bylooking at Eq. (4.139) one onludes that for highly exited resonanesF 2V n = AV dm2V ndn ; (F TV n)2 = ATV dm2V ndn ;F 2An = AA dm2Andn ; F 2B n = AB dm2B ndn ; (4.140)for both vetor and tensor deay onstants, and orrespondingly with axial�vetorand pseudovetor resonanes. Atually, this is the only possibility if we want toensure the right high energy behaviour.The saling of the vetor and tensor form fators makes possible to onvert theintegral in Eq. (4.139) over the radial exitation number n into an integral over themass. The integration is performed trivially yielding :�(�)V V (TT )(q2) := (A(T )V )2Z m2N+1m2n� dm2 m2m2 � q2 = (A(T )V )2 log�m2N+1 � q2m2n� � q2 � ; (4.141)



126 Green funtions of QCDand analogously for �AA and �+TT . It is important to stress that the limits N !1and q2 !1 do not ommute. The former must be taken in �rst plae, and togetherwith the requirement limn!1mn = 1 the parton model logarithm is reprodued.So our �rst predition is that vetor masses grow to in�nity as n does. Moreover,imposing that the quark�gluon piture is dual to the hadroni one, we obtainA2V = A2A = NC24 �2 ; A2B = A2T = NC48 �2 �! limn!1 �2n == 12 : (4.142)The de�nition of �n an be found in Eq. (4.125). Inidentally, note that for thedetermination of �n no use was made of the b mesons entering �+TT . In order torelate both parity setors in �TT , additional assumptions on the spetrum wouldhave to be made. For instane, if some relation betweenmV n andmBn were spei�ed,a predition for fTV n=fBn would then follow.For the ase of salar and pseudosalar orrelators, the OPE result in Eqs. (4.69)has � p2 log p2, and so we have to perform the following manipulation to the reso-nane propagator 2mnm2Sn � p2 = 2mnm2Sn + 2mnm2Sn p2m2Sn � p2 ; (4.143)and similarly for the pseudosalar orrelator. Then we obtain2mn = A2S dm4Sndn ; d2mn = A2P dm4Pndn ; (4.144)and again mathing to the perturbative result �xes B20 A2S = B20 A2P = NC32 �2 . In thisase the anomalous dimensions in both sides of the equality do not math. Indeedwe already faed the same situation for F TV n(�).4.16.1 Sign alternation in �nSo far we have been able to �x the magnitude of �n from the asymptoti behaviourof �V V and ��TT . However, it turns out that even the sign an be predited. Toshow this we turn our attention to the rossed�orrelator �V T . In this ase, theEuler�MaLaurin theorem takes the form�V T (p2) = 2 NXn=0 F 2V n �nmV nm2V n � p2 = 2 Z N+1n� dn F 2V n �nmV nm2V n � p2 + � � � : (4.145)With the help of our previous ombined analysis of �V V and ��TT we an alsotransform Eq. (4.145) into an integral over the mass. Taking the limit N !1 weobtain �V T (q2) = � NC24p2� p� q2 +O(q�2) : (4.146)



4.16 Mathing to the OPE with an in�nite number of resonanes 127However, in order to omply with the short distane behaviour, it should onvergeas q�2. The only possibility left is to allow for an alternate series, with �n showinga pattern of alternation in sign 7. Note that, unlike �V V (AA), ��TT and �SS (PP ),�V T is not positive de�nite : the orresponding spetral funtion in Eq. (4.126) anontain both positive and negative ontributions.The most general situation that omplies with QCD is the presene of someanellations for high�resonane ontributions, no matter how they are arranged.So we need an in�nite number of positive ontributions v+, with ut�o� N+ and anin�nite number of negative ones v� with ut�o� N�. So one onsequene is thatnot all vetor mesons are alike. Let us show that this general senario does notontradit QCD. We will have to �nd a representation for the GF suh that theresult is independent of the ut�o�s N� for N� !1. An unsubtrated dispersionrelation does not satisfy this basi requirement, and so we will addopt a one (over�)subtrated one. For highly exited states, for both v+ and v� we haveFV n� �n� = � NC24p2�2 dm2V n�dn : (4.147)The one subtrated dispersion relation reads�V T (p2) = q2 Z dt 1t(t� p2) 1� Im�V T (t)� �1 ; : (4.148)Imposing that this GF must vanish for q2 !1 we get the following sum rule�1 = limq2!1 p2 Z dt 1t(t� p2) 1� Im�V T (t) : (4.149)Eq. (4.148) leads to�V T (p2) := NC p224p2�2 0�Z mN+mn+� dn 1m2 � p2 � Z mN�mn�� dn 1m2 � p21A= NC p224p2�2 0�Z mN+mN� dn 1m2 � p2 + Z mn��mn+� dn 1m2 � p21A : (4.150)The �rst integral vanishes when taking the limits N� ! 1 in an independent(unorrelated) way (that is, the limit is de�ned); the seond integral involves onlythe �nite quantities and so an be safely expanded in inverse powers of p2. Thenwe omply with the OPE beause there are only integer powers of p2 and the seriesstarts with 1=p2 terms.7Note that �n is a real number beause fV and fTV are de�ned to be real, so this is indeed theonly possible senario. To the best of our knowledge, the �rst instane of alternating ontributionsin the hadroni spetrum was found in Ref. [85℄ in the ontext of e+e� ! hadrons.



128 Green funtions of QCDThe simplest (and most natural) senario onsists of a regular pattern of sign�alternating ontributions. For this partiular senario, onsisteny with perturbativeQCD leads to the predition�n = (�1)n j�nj ; j�nj = 1p2 ' 0:71 ; (4.151)for highly exited ��like vetor meson resonanes. Interestingly, the � parameterhas been reently omputed in the lattie for the �(770) meson [79, 80, 86℄. Quiteremarkably, the value reported is �� = 0:72(2) for � = 2GeV 8. In Setion 5.2.9we shall see that either sum rules or R�T within the minimal hadroni ansatz getsimilar answers.This result is extremely interesting, suggesting that �n may be a onstant in-dependent of the resonane exitation number. Therefore, one would like to assesswhat is the range of validity of the pattern shown in Eq. (4:151). Inidentally, onewould also like to identify the spei� realization of opposite�sign ontributions.Note that stritly speaking, short distanes only demand that some anellationsbetween high�resonane ontributions have to take plae in �V T . It would ertainlylook odd if the alternation started at some energy sale � � m��n , but it annot beruled out. However, if this were the ase, some triggering dynamial mehanism atthis sale should be invoked. The natural thing to expet is that a regular patternof sign��ipping ontributions be a feature of the whole meson tower.So far we have been dealing with large�NC QCD. A more ambitious and in-teresting issue is to hek whether the result of Eq. (4:151) and the onjeturedopposite�sign pattern we advoate as its most natural realization has anything todo with QCD. In the following setion we will see that sum rules niely omply withthis piture.4.16.2 Comparison with QCD spetral sum rulesIn order to test the ideas of the previous setion, we will onsider a set of sum rules.We will start with the �V V and ��TT orrelators and afterwards onsider �V T .We hoose as hadroni ansätze the following funtions,1� Im��TT (t) = �2�F 2� Æ(t�m2�) + �2�0F 2�0Æ(t�m2�0) + 13 N(4 �)2 �V �(t� �s0) ;1� Im�V V (t) = F 2� Æ(t�m2�) + F 2�0Æ(t�m2�0) + 23 N(4 �)2 �T �(t� s0) ; (4.152)onsisting of two isolated single poles, orresponding to the �(770) and �(1450) plusa ontinuum, whose onset is determined by the parameters s0 and �s0, whih in8In a reent paper [40℄ this ratio was also determined for � = 1GeV, the value reported being�� = 0:75(14). Sum rules also obtain similar results [77, 78℄. Inidentally, in the ENJL model [87℄one also �nds �� = 1=p2.



4.16 Mathing to the OPE with an in�nite number of resonanes 129general are di�erent. The fators in front of the theta terms have been hosen so asto math the parton model logarithms. The parameters �T , �V are given by�T (�) = 1 + �s(�)3 � �73 + 2 log t�2� ; �V = 1 + �s(�)� : (4.153)They represent the �rst�order �s orretion to the perturbative ontribution, theformer also aounting for the fat that the tensor urrent has a non�vanishinganomalous dimension.Using one subtrated dispersion relations and expanding the result in inversepowers of momenta and mathing onto the OPE result one �ndsF 2� + F 2�0 � 23 N(4 �)2 �V s0 = 0 ;�2� F 2� + �2�0 F 2�0 + �3 � 13 N(4 �)2 �2 �s0 = 0 ;F 2� m2� + F 2�0m2�0 � 13 N(4 �)2 �V s20 = � 124 � h�sG��G��i;�2� F 2� m2� + �2�0 F 2�0m2�0 � 16 N(4 �)2 �4 �s20 = 148 � h�sG��G��i; (4.154)where �2 and �4 are given by�2(�s0) = 1 + 19 �s(p�s0)� ; �4(�s0) = 1 + 49 �s(p�s0)� : (4.155)Notie that above the renormalization point was hosen to be �2 = �s0.As already notied in Ref. [88℄, �s orretions in the vetor hannel indue atmost a 8% hange in the deay onstants and will be dismissed. For the tensor han-nel, the equations above show that the �s orretion in the sum rules is extremelysmall. For instane, at �s0 = 1:5 GeV2, they represent less than 2% for �2 and about6% for �4. Therefore, the perturbative orretions in �s an be safely negleted.For the numerial analysis, we will take as inputs the masses, m� = 770 MeVand m�0 = 1440 MeV, and the gluon ondensate. Due to the existing unertainty,we will hoose it to lie in the range h�sG��G��i = (0:001 � 0:021) � GeV4, whihinludes both the values extrated from harmonium sum rules and � deays [89℄.Additionally, we will use the relation F� = p2F . With F = 92 MeV, one obtainsF� = 131 MeV. Finally, we will further impose �2� = 0:5, in aord with the lattiedetermination. Notie that in the sum rules we have inluded the �3 term. However,laking any estimate of the parameter, for our numerial analysis we will set �3 = 0,as ommonly assumed in the literature.Solving Eqs. (4.154) for F�0, s0, �s0 and ��0, one �ndsps0 = (1:64� 0:02)GeV ; p�s0 = (1:59� 0:02)GeV ;F�0 = (129� 4)MeV ; ��0 = (0:95� 0:05) �� ; (4.156)



130 Green funtions of QCDwhere the errors quoted are due to the variation of the gluon ondensate. Note thatboth s0 and �s0 yield reasonable values, i.e., they satisfy m�(1440) < ps0 � p�s0 <m�(1750).The following omments are in order :� Lower values of the gluon ondensate, typial in analysis of � deays, favor��0 � ��. In partiular, notie that a vanishing gluon ondensate, not exludedby � deay analyses, implies ��0 = �� (together with s0 = �s0).� Eqs. (4.154) provide a solution only for the narrow range 126 MeV � f� � 133MeV. Interestingly, the range omplies with the relation F 2� ' 2F 2.In order to test our onjetured pattern of signs we have to onsider �V T . Ourspetral ansatz will be the following :1� Im�V T (t) = �� F 2� m� Æ(t�m2�) + ��0 F 2�0m�0 Æ(t�m2�0) ; (4.157)Inserting the last expression and the OPE of Eq. (4.70) into the dispersion relation,equating powers of q2 on both sides we get�h�qqi = �� F 2� m� + ��0 F 2�0m�0 ;� gs3 h�q ��� G��qi = �� F 2� m3� + ��0 F 2�0m3�0 ; (4.158)upon solving these equations for �� and ��0 we �nd��0 = h�qqim2�F 2�0m�0(m2�0 �m2�) �1� �m2�� ;�� = � h�qqim2�0F 2� m�(m2�0 �m2�) �1� �m2�0� ; (4.159)where � = gs3 h�q ��� G��qih�qqi ; (4.160)is the ratio between the mixed and the quark ondensates. In view of Eqs. (4:159)there are three possible senarios, depending on the magnitude of � (reall that thequark ondensate is negative) :� � < m2�, leading to alternation in sign, with positive ��;� m2� < � < m2�0, where both �� and ��0 are positive;� � > m2�0, leading to alternation in sign but with a negative ��.



4.16 Mathing to the OPE with an in�nite number of resonanes 131The last possibility is in lear ontradition with the lattie result and an be readilyexluded. Independent sum rule analyses [90℄ indeed onluded that� = 0:22GeV2 ; (4.161)so that the mixed ondensate is small enough and leads to alternation in sign. (Ini-dentally, notie that arbitrarily large negative values of � would have also led to thissenario). Note that the small value of the mixed ondensate in the seond equationfores the alternation in sign, whereas the quark ondensate �xes the ontributionof the �(770) to be positive.More sophistiated sum rules have on�rmed the pattern of alternating ontribu-tions in �V T [91℄. However, a word of aution should be issued on the quantitativevalues of the parameters extrated from suh sum rules. We already pointed outin the previous setion that the presene of a mass fator multiplying eah reso-nane ontribution in Eq. (4.157) spoils the onvergene of the series. As a result,the sum rules are not stable under addition of new resonane states in the spetralfuntion. However, Eqs. (4.159) distintly show that there has to be some negativeontribution to outweight the �(770) ontribution.4.16.3 DisussionA remarkable property of QCD in the large�NC limit is that the qualitative har-ateristis of hadrons emerge naturally from imposing quark�hadron duality onsis-teny onditions on the orrelators of the theory. This very general analysis doesnot rely on the partiular �avour or Dira struture of the orrelators. Therefore,any relation between a ertain subset of orrelators may turn out to yield additionaluseful onstraints on the spetrum of large�NC QCD.From a ombined analysis of three orrelators we onluded that, for highlyexited states, F TV n=FV n � (�1)njF TV n=FV nj, where jF TV n=FV nj = 1=p2. The ratio ofdeay onstants is �xed by the Dira struture of the urrents and equals the ratioof the leading perturbative behaviour of �V V and �TT , while the alternate harateris required to ensure the onvergene of �V T .We �nd this result partiularly beautiful. It is a really striking predition whihrelies only on the simultaneous high�energy onsisteny of the orrelators. In thissense, the previous result an be rendered as a high�energy theorem of large�NCQCD. Our analysis was restrited to light��avour vetor mesons, but similar pre-ditions should be obtained for mesons with heavy �avours.A natural issue to address at this point is whether this pattern, valid for highlyexited mesons in the large�N limit, resembles QCD. The lattie reently omputedthe ratio of the �(770) deay onstants, with the result F T� =F� = 0:72(2). Theagreement is ertainly impressive, and it seems suggestive to entertain the senario ofn�independent deay onstant ratios for the ��meson radial exitations. We testedthis possibility with QCD sum rules and the pattern is qualitatively reprodued.Corretions due to light quark masses and the anomalous dimension of the tensorurrent have not been onsidered.
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Chapter 5Phenomenologial appliations
5.1 Weak deaysIn this hapter we are going to disuss some appliations of the methods we havestudied in this thesis. By phenomenologial we mean omputations that an bediretly ompared with the experimental data.We will be onerned by the phenomenology of partile deays mediated by weakinterations. Most of the partiles deay due to the weak fore, and this ertainlymakes sense, beause it is the only known interation that ouples partiles withinone family (eletron with neutrino, up with down quark), and also mixes the di�erentfamilies (in the quark setor). It is in this sense that this thesis deals with the topiof �avour�dynamis.If gauge interations only oupled partiles with themselves (we will all thendiagonal interations), suh as QED or QCD, partiles would not be able to deaybeause a partile annot deay into itself (this statement is true for fundamentalpartiles, not for omposite partiles suh as hadrons or atoms). This speial featureof the weak interations is linked with the spontaneous symmetry breakdown of aloal gauge symmetry known as the Higgs mehanism. It is this breakdown whatprovides fundamental partiles with non�zero masses, and gives rise to the knownHiggs boson. The details of this mehanism are not going to be disussed in thisthesis (a nie review an be found for instane in Refs. [3, 57, 92, 93℄). We willhowever, omment the results that we need for our omputations.The standard model of eletroweak interations has three gauge partiles, eahone assoiated with one fore. As disussed in Chapter 1, the gluon mediates thestrong interations (QCD) and is a massless spin�one boson. The photon is alsomassless, and governs the eletromagneti interations. The fat that these parti-les are massless points that the orresponding symmetry is unbroken. The weakinterations are mediated by two partiles, one neutral boson Z oupled to all par-tiles in a diagonal way, and the harged W partile, the one that ouples the twoweak partners and the di�erent families among themselves. These three partiles arefar from being massless, in fat mW � mZ � 90GeV. At the energies we are work-ing, we an integrate out of the ation these partiles, along with the heavy quarks.



134 Phenomenologial appliationsThen we are left with four�fermion loal interations (non�renormalizable). Sinewe are interested in the leptoni deay of hadrons we will write only this piee of theweak Lagrangian. A fundamental feature of the �avour hanging weak interationsis that they only involve left�handed urrents [3℄LW = � Gp2 (J� L� + h::) ;L� = e �(1� 5) �e ; J� = V � � A� ;V � = Vud u� d + Vus u � s ; A� = Vud u� 5 d + Vus u� 5 s : (5.1)G is the Fermi onstant, L� and J� denote the leptoni and hadroni urrents,respetively; V � and A� stand for the vetor and axial�vetor urrents. Vud and Vusare the CKM matrix elements [94, 95℄, that an be hosen to be real [96℄, and toa very good approximation satisfy jVudj2 + jVusj2 = 1, or equivalently Vud = sin �,Vus = os �, being � the Cabibbo angle. The hadroni urrents an be written interms of the Noether urrents asV � = Vud V 1+i2� + Vus V 4+i5� ; A� = VudA1+i2� + VusA4+i5� : (5.2)Whereas the leptoni part is always trivial, and an be analyzed perturbatively,the quark urrent deserves a spei� treatment. Even if the e�etive Lagrangian(5.1) is written in terms of quarks, we know that the e�etive degrees of freedomare hadrons, and so we are faing a non�perturbative problem. For the ase ofpseudosalar mesons deaying weakly into a pair of leptons, only the axial urrenthas a non�vanishing matrix element with the vauum, and the problem simpli�essomehow. But if the pseudosalar is deaying into a pair of leptons plus a photon(involving then the eletromagneti interations), then both vetor and axial�vetorurrents play a rï¾12 le. The same an be said if a baryon is deaying into anotherbaryon and a ouple of leptons. These two last �pathologi� ases are the ones to bedisussed in this hapter.5.2 Radiative pion deay5.2.1 IntrodutionThe radiative deay of the pion is a suitable proess to be analysed within �PT.This framework provides the struture of the relevant form fators through : i) apolynomial expansion in momenta, essentially driven by the ontributions of heav-ier degrees of freedom that have been integrated out, and ii) the required hirallogarithms generated by the loop expansion and ompelled by unitarity. Both on-tributions orrespond to the hiral expansion in p2=M2V and p2=�2�, respetively,where �� � 4 �F [25℄. Hene their magnitude is, in priniple, omparable. Thehiral logarithms have thoroughly been studied in later years up to and inludingO(p6) both in SU(2) [97℄ and SU(3) [98, 99℄.



5.2 Radiative pion deay 135However the size of the polynomial ontributions is more ontroversial. Theyinvolve short�distane dynamis through the hiral low�energy onstants (LECs)of the �PT Lagrangian and their determination from QCD is a di�ult non�perturbative problem. Phenomenology and theoretial arguments suggest that themain rï¾12 le is played by the physis at the sale MV , i.e. the physis of low�lyingresonanes. This assumption, widely known as resonane saturation of the LECs in�PT, implies that the struture of the form fators is given by the pole dynamis ofresonanes and this hint works well in all known ases.Beause m� � MV , it is expeted that the struture of the form fators inpion deays should be less relevant and, aordingly, the approah provided by �PTshould be good enough even when only the �rst terms of the hiral expansion areinluded. This is the ase of the radiative pion deay, namely � ! ` �` , ` = �; e,where onstant form fators (that orrespond to the leading order ontribution inthe hiral expansion) have widely been employed in the analyses of data. Howeverthe PIBETA ollaboration [100℄ showed that a strong disrepany between theoryand experiment arises for the branhing ratio of the proess in a spei� region ofthe eletron and photon energies. Lately the same ollaboration, after their 2004analysis, onludes that the disrepany has faded away [101℄. Curiously enough thisdeay has a persistent story of deeptive omparisons between theory and experi-ment [102℄ that have prompted the publiation of proposals beyond the StandardModel (SM) to aount for the variane [103�107℄. Between these it has reeived par-tiular attention the possibility of allowing a tensor ontribution that ould explainthe disrepany by interfering destrutively with the Standard Model presriptionthough showing some inonsisteny with the orresponding tensor ontribution innulear � deay [108℄. Related with this issue it is essential, seeking to disern thepresene of a new physis ontribution to the radiative deay of the pion, to providean aurate pro�le of the involved form fators within QCD.In order to settle the Standard Model desription of the vetor and axial�vetorform fators partiipating in � ! ` �`  deays we study, in this setion, the strutureprovided by the lightest meson resonanes. This is very muh relevant on the exper-imental side beause high�statistis experiments as PIBETA [101℄ already are ableto determine, for instane, the slopes of the form fators involved in these deays.5.2.2 Radiative pion deay : vetor and axial�vetor formfatorsThe amplitude that desribes the �+ ! `+�`  proess an be split into two di�erentontributions : M(�+ ! `+�` ) = MIB + MSD :Here MIB is the inner bremsstrahlung (IB) amplitude where the photon is radiatedby the eletrially harged external legs, either pion or lepton; onsequently theinteration is driven by the axial�vetor urrent. MSD is the struture�dependent



136 Phenomenologial appliations(SD) ontribution where the photon is emitted from intermediate states generatedby strong interations. In this later ase both vetor and axial�vetor form fatorsarise from the hadronization of the QCD urrents within the Standard Model.Beause �+ ! e+�e is heliity suppressed, the IB ontribution to its radiativeounterpart su�ers the same inhibition and, onsequently, the eletron ase is theappropriate hannel to unover the non�perturbative SD amplitude. Contrarily, the�+ ! �+�� deay is fairly dominated by IB. As a onsequene the �+ ! e+�e isof great interest to investigate the hadronization of the urrents ontributing to theSD amplitudes that are driven, within the Standard Model, by the vetor [FV (q2)℄and axial�vetor [FA(q2)℄ form fators de�ned by :
 j u� d j��� = � eM�+ "�� FV (q2) "���� r� p� ;
 ju� 5 d j��� = i eM�+ "�� FA(q2) [(r � p) g�� � p�r�℄ + i e "��p2F ; (5.3)where r and p are the pion and photon momenta, respetively, q2 = (r � p)2 ande is the eletri harge of the eletron. The seond term in the matrix element ofthe axial�vetor urrent orresponds to the pion pole ontribution (whih ouplingis given by the deay onstant of the pion F ) to the IB amplitude.Form fators drive the hadronization of QCD urrents and embed non�perturbativeaspets that we still do not know how to evaluate from the underlying strong in-teration theory. Their determination is all�important in order to disentangle thoseaspets. It is reasonable to assume, as has been ommon lore in the literature onthis topi, that hadroni resonane states should dominate the struture of form fa-tors and, aordingly, meromorphi funtions with poles in the relevant resonanesoupled to the orresponding hannels have been extensively proposed in order to�t hadroni data. This proedure by itself is, however, not fully satisfatory beauseit does not impose known QCD onstraints.On one side hiral symmetry of massless QCD drives the very low�energy regionof form fators. Hene the latter have to satisfy its onstraints in this energy domain.On the other, one an also demand that form fators in the resonane energy regionshould math short�distane QCD properties.In the following we apply these tehniques in order to determine the StandardModel desription of the vetor and axial�vetor form fators in the radiative piondeay. Their de�nition, given by Eq. (5.3), illustrates the fat that they follow fromthree�point GFs of the orresponding QCD urrents. The proper GF in this ase,namely hV VP i and hVAP i, happen to be order parameters of the spontaneous break-ing of hiral symmetry hene free of perturbative ontributions in the hiral limit.This is a key aspet required by our proedure. Hene we onsider in this artiletheir study in the hiral limit, that otherwise should provide the dominant features.In the following we handle the GF in order to provide a desription onstrained byQCD and then we will work out the form fators.



5.2 Radiative pion deay 1375.2.3 Vetor form fatorFor the determination of the vetor form fator de�ned by Eq. (5.3) we will use theLSZ formula (valid in the hiral limit)FV (q2) = p2M�+6FB0 limp2;r2!0 r2�V V P (p2; q2; r2) ;on the hV VP i GF determined in Eq. (4.120) to obtain :FV (q2) = M�+3p2B0 F M2V1M2V2 000 + 010 q2(M2V1 � q2) (M2V2 � q2) ; (5.4)and we observe that only one parameter, 010, has not been �xed by our proe-dure. The expression for the vetor form fator in the radiative pion deay givenby Eq. (5:4) is the most general one that satis�es the short�distane onstraintsspei�ed above. As the transferred momenta in the �+ ! e+ �e  proess is smallby omparison with the mass of the lightest vetor meson resonane, q2 � M2V , itis appropriate to perform the relevant expansion until �rst order in q2. Using theresult for 000 given by Eq. (4.121) it gives :FV (q2) = FV (0) � 1 + �V q2M2�+ + O(q4)� ; (5.5)where �V = �VNC!1 + �V1=NC + � � � admits an expansion in 1=NC andFV (0) = p2NCM�+24 �2F ;�VNC!1 = M2�+M2V1 + M2�+M2V2 +M2�+ 010000 : (5.6)We must ompare our value 1 for FV (0) ' 0:0271 with the result oming from�(�0 !  ) and CVC, FV (0) = 0:0261(9), and with the reent experimental �tby the PIBETA ollaboration, FV (0) = 0:0259(18) [109℄. We reall that our resultfor the vetor form fator (5.4) arises from a large�NC proedure where a model ofthe NC ! 1 has been implemented, namely the ut in the spetrum. At q2 �M2V this form fator has been studied up to O(p6) in �PT [97, 98℄. At O(p4) theWess�Zumino Lagrangian determines FV (0) as given in Eq. (5.6). Higher hiralorder orretions to this result vanish in the hiral limit, aordingly their size issuppressed over the leading order by powers of M2�=M2V or M2�=�2� that are tiny.Indeed, using the O(p6) odd�intrinsi�parity Lagrangian LW6 worked out in Ref. [33℄,this modi�ation to FV (0) is proportional to a low�energy onstant as M2�+ CW7 ,that also ontributes to the �0 !   deay. From the latter one obtains [110℄CW7 ' (0:013� 1:17)� 10�3GeV�2, i.e. ompatible with zero.1In the following numerial determinations we will use F = 0:0924GeV, M� = 0:138GeV,MK = 0:496GeV, M�0 = 0:135GeV,M�+ = 0:140GeV and MV1 = M�(770) = 0:775GeV.



138 Phenomenologial appliationsThe slope �V arises at O(p6) with the usual two features : the loal operator OW22in LW6 provides the NC !1 ontribution :��PTNC!1 = 64 �2NC M2�+ CWr22 (�) ; (5.7)and a one�loop alulation provides the hiral logs that orrespond to the next�to�leading order in the 1=NC expansion [98℄ :��PT1=NC = � M2�+48 �2F 2 �1 + log�M2��2 �� : (5.8)There is another proess diretly related with the hV VP i GF, namely � !  �;hene it should be related with the radiative pion deay. Indeed within the assump-tions that arried us to FV (q2) in Eq. (5.4), the momenta struture for the � !  �deay should be the same, though with di�erent normalization. In onsequene the�VNC!1 slope in Eq. (5.6) is the same for both proesses.The �0 !  e+e� amplitude an be expressed by :M�!� = M�! � 1 + � q2M2�0 + :::� ; (5.9)where q2 = (pe+ + pe�)2. The slope arises at O(p6) in �PT and it is [111℄ 2 :� = 64 �2NC M2�0 CWr22 (�) � M2�096 �2F 2 �2 + log�M2�M2K�4 �� : (5.10)Fortunately it has been measured rather aurately [112℄, � = 0:032 � 0:004 andthen we an input this measure to determine the LEC CW22 (�) obtaining :CWr22 (M�) = 7:0+1:0�1:5 � 10�3GeV�2 ; (5.11)where the error inludes also the inertitude of the renormalization point � betweenM� and 1GeV. Coming bak to the slope of FV (q2) we get :�V = 0:041+0:004�0:007 ; (5.12)that ompares well with the reent PIBETA measurement �V = 0:070� 0:058 [109℄.By omparing now �VNC!1 in Eq. (5.6) and ��PTNC!1 in Eq. (5.7) we an providea determination for the undetermined parameter in the GF and then give a fullpresription for the FV (q2) form fator in Eq. (5.4). For the mass of the �rst multipletof vetor resonanes we take M�(770) and for the seond M�(1450) = 1:459GeV :010000 = (� 0:7� 0:3)GeV�2 : (5.13)2Notie that one�loop O(p6) �PT ontributions, enoded in ��PT1=NC , oinide in � ! e �e and� !  � in the SU(3) limit, i.e. for MK =M�.



5.2 Radiative pion deay 139Notie that the size of this parameter is of the same order that the other two termsin �VNC!1. With this result we end the onstrution of the vetor form fator inradiative pion deays in the large�NC limit given by Eq. (5.4).It is interesting to ompare our results with those in Ref. [42℄. As ommentedabove the onstrution of the hV VP i GF in those referenes was arried out usingonly one multiplet of vetor resonanes, hene the vetor form fator in radiativepion deay did not satisfy the onstraint in Eq. (4.113). With this setting they areable to give a full predition for the leading ontribution to the slope �V , namely,�1RNC!1 = M2�+M2V �1� 4 �2F 2NCM2V � : (5.14)Using MV = M� they get �1RNC!1 ' 0:027 to be ompared with �VNC!1 = 0:028�0:006 from our analysis above.5.2.4 Axial�vetor form fatorWe now ome bak to the axial�vetor form fator de�ned by Eq. (5.3) . In orderto determine the FA(q2) form fator we follow an analogous proedure to the oneoutlined before for the vetor form fator. The LSZ formula then reads :FA(q2) = p2M�+B0 F limp2;r2!0 r2F(p2; q2; r2) : (5.15)A detailed study of this GF was performed in Ref. [52℄. One of the onlusionsahieved was that the inlusion of one multiplet of vetor, axial�vetor and pseu-dosalar resonanes (together with the pseudosalar mesons) was enough to satisfythe mathing to the OPE of the hVAP i GF at leading order. Moreover the analo-gous to the Brodsky�Lepage ondition (4:113), in this ase, was also satis�ed, i.e.the resulting axial�vetor form fator FA(q2) behaves smoothly at high q2. Henewe obtain, for NC !1 with a ut spetrum :FA(q2) = p2F M�+M2A � q2 �M2AM2V � 1� ; (5.16)At q2 �M2A we may resort again to �PT [97,99℄ with the expansion :FA(q2) = FA(0) �1 + �A q2M2�+ + :::� : (5.17)Both terms, FA(0) and slope, satisfy an expansion in 1=NC , for instane �A =�ANC!1 + �A1=NC + � � � . From our result above we get :FA(0) = p2F M�+ � 1M2V � 1M2A� ;�ANC!1 = M2�+M2A : (5.18)



140 Phenomenologial appliationsExperiment [101℄ SU(2) Ref. [97℄ SU(3) Ref. [99℄ Our workFV (0) 0.0258(18) 0.0271 0.0272 0.0271�V 0.070(58) 0.044 0.045 0.041FA(0) 0.0121(18) 0.0091 0.0112 exp. input�A not measured 0.0034 � 0 0.0197(19)Table 5.1: Comparison of theoretial and experimental determinations for the low�energy expansion of vetor and axial�vetor form fators. The PIBETA determina-tion assumes that the axial�vetor form fator is onstant, i.e. it does not onsidera slope.FA(q2) arises �rst at O(p4) with a onstant loal ontribution from the �PT La-grangian, namely : F (4)A (q2) = 4p2M�+F (Lr9 + Lr10) : (5.19)The next orretions appear at O(p6) in the hiral expansion [99℄. One of themresults from loal operators of the O(p6) hiral Lagrangian that, in the hiral limit,only ontribute to �A :�(6)A jNC!1 = M2�+Lr9 + Lr10 �Cr78 � 2Cr87 + 12 Cr88� : (5.20)There is also a subleading term, in the large�NC expansion, that omes from one�loop diagrams involving the O(p4) hiral Lagrangian. However it only a�ets FA(0)and it is zero in the hiral limit. The third orretion is sub�subleading and resultsfrom two�loop diagrams evaluated with the O(p2) hiral Lagrangian. The latterontributes both to FA(0) and �A. All loal additions, F (4)A (q2) and �(6)A jNC!1, or-respond to our result in Eq. (5.18), i.e. NC !1, when LECs are saturated by reso-nane ontributions [52℄. Though the full O(p6) hiral result is rather umbersome,the authors of Ref. [99℄ have provided a numerial expression for the renormalizationsale � =M�. The onlusion is that, in the hiral limit, subleading ontributions tothe slope are negligible. Notwithstanding it is relevant to emphasize that both �PTresults of Refs. [97, 99℄ use models to evaluate the resonane ontributions to theO(p6) loal terms and, aordingly, their �nal onlusion is tamed by this estimate.We turn now to give our numerial results. Contrarily to what happens in thevetor ase, where the lightest vetor resonane mass in the NC ! 1 limit is wellapproximated by the �(770) mass, the axial�vetor mass in that limit (MA) di�ersappreiably from the lightest multiplet of these resonanes, namely a1(1260). Theresult MA = p2MV was obtained in Ref. [13℄ by imposing several short�distaneonstraints on the ouplings of the resonane Lagrangian. Lately [68,69℄ it has beennotied that the inlusion of NLO e�ets in the large�NC expansion points out to



5.2 Radiative pion deay 141MA � p2MV . These results are rather di�erent from the mass of the lightest axial�vetor meson determined experimentally MA ' 1:230GeV ' Ma(1260) [113℄ but it isimportant to remind that this resonane is rather wide.Our strategy is the following : we will use the experimental value of FA(0) asgiven in Tab. 5.2.4 to determineMA through Eq. (5.18); then we provide a preditionfor �A. We �nd 3 : MA = 998 (49)MeV ; �A = 0:0197 (19) ; (5.21)where the error stems only from the experimental unertainty in FA(0). Notie thatthis result satis�es MA � p2MV ' 1096MeV.5.2.5 Theory versus ExperimentWe are now ready to ompare our results with other theoretial settings and exper-imental determinations. In Tab. 5.2.4 we ompare our outome for the low�energyexpansion of the form fators with the one provided by O(p6) �PT and the reentPIBETA published values.As FV (0) is ruled by the Wess�Zumino anomaly all the theoretial results agreefor this parameter. Leading orretions to this value are driven by the pion mass andas a result happen to be tiny [42℄. This is also re�eted in the exellent omparisonwith the experimental determination. The agreement is also good for the slope ofthe vetor form fator, onsidering the large error of the experimental value.The axial�vetor form fator does not arise a similar onsensus. As indiatedabove �PT an only predit reliably all loop ontributions [ up to O(p4) in the even�intrinsi�parity and O(p6) in the odd�intrinsi�parity setors ℄ while higher orderloops involve the ouplings of loal operators. Moreover tree�level O(p4) (5.19)and O(p6) (5.20) terms an only be determined in di�erent models for resonanesaturation ontributions. The exellent agreement between the �PT results andthe experimental determination of FA(0) is, indeed, not a major issue as the axial�vetor form fator in radiative pion deay is the main phenomenologial soure 4to �x the value of Lr10 . It happens that F (4)A (0) arises from a strong anellationbetween the Lr9 and Lr10 LECs and, in onsequene, it is very sensitive to the hosenvalue for Lr10. In terms of resonane saturation this sensitivity moves to the valueof the axial�vetor mass MA input in the numerial determination. The value ofLr10 ' � 5:5� 10�3, used by Ref . [99℄, arises for MA ' 1GeV.Our model of large�NC gives the leading result for the axial�vetor form fatorparameters and there are leading Goldstone�mass driven ontributions that we havenot onsidered. In the �PT framework these O(p6) orretions arise from the LECsand, a priory, it is di�ult to estimate their ontribution due to our lak of reliableknowledge on those low�energy ouplings. However it has been pointed out [99℄ that3It is important to notie that the value of FA(0) measured by the PIBETA experiment assumesno slope for the axial�vetor form fator. We should repeat this exerise when �A is inluded.4Lr9 is rather well determined from the phenomenology (squared harge radius of the pion) andits numerial value agrees niely with resonane saturation.



142 Phenomenologial appliationsthe rï¾12 le of LECs is unimportant in the O(p6) orretions. As the subleading loopontributions are also tiny, it is onluded that �A is not sizeable and FA(0) is ruledby the leading O(p4) ontribution by far.However using as input the experimental value of FA(0) we �nd a large value for�A. As subleading 1=NC loop ontributions seem to be tiny our leading result showsa lear disrepany with the estimates of tree�level ontributions performed in thehiral framework [97,99℄. It would be very muh interesting to have an experimentaldetermination of �A in order to disentangle the di�erent resonane models.5.2.6 Beyond SM : Tensor form fatorAs pointed out in theSetion 5.2.1, the history of the radiative deay of the pionaumulates a few lashes between theory and experiment. It seems though that,after the latest analysis by the PIBETA ollaboration, the landsape has very muhsoothed. However it has beome ustomary to investigate possible ontributionsbeyond the Standard Model in order to appease alleged disrepanies. Betweenthe latter the possible rï¾12 le played by a tensor form fator has thoroughly beenstudied [103�107℄.The new short�distane interation an be written in terms of quark and leptonurrents and it reads :LT = GF2p2 Vud FT [ �q ��� (1� 5) q ℄ � �̀��� (1� 5) �` � ; (5.22)where FT is an adimensional parameter measuring the strength of the new intera-tion. Beause of the identity (1.14) we an write (5.22) as :LT = � GFp2 Vud FT [ �q ��� 5 q ℄ � �̀��� (1� 5) �` � : (5.23)In the Standard Model the later struture, a tensor�like quark�lepton interation,arises from loop orretions to the tree�level amplitudes and gives a tiny valuefor FT � 10�8 [104℄. More sizeable ontributions ould ome from New Physismodels. Leptoquark exhanges, for instane, ould give FT � 10�3 [105℄, while SUSYontributions provide FT � 10�4 � 10�5 [104℄ for light supersymmetri partners.The hadronization of the tensor urrent, at very low transfer of momenta, isdriven by the onstant fT de�ned by :
 j �u��� 5 d j��� = � e2 fT (p� �� � p� ��) ; (5.24)where p is the photon momentum 5. The determination of fT involves QCD in itsnon�perturbative regime and, onsequently, is a non�trivial task. We will ome bakto this issue in the next Subsetion.5There is in fat another Lorentz struture ontributing to this matrix element but it arrieshigher orders in momenta. If the latter is inluded fT aquires a dependene in the squared of thetransferred momenta, i.e. fT (q2). See Setion 5.2.8 for a detailed evaluation of both form fators.



5.2 Radiative pion deay 143Emine+ Emin �mine exp no slopes with slopes SU(2) SU(3)50 50 � 2:614(21) 2:78(38) 2:81(38) 2:46(35) 2:72(38)10 50 40Æ 14:46(22) 14:81(54) 15:08(58) 14:73(53) 15:00(37)50 10 40Æ 37:69(46) 37:69(98) 38:41(103) 37:51(94) 38:17(103)Table 5.2: Comparison of the theoretial preditions and the experimental data forRQ = 108RQ for onstant form fators and di�erent preditions of the q2 depen-dene. All energies are measured in MeV.It is possible to obtain the produt T = FT fT from the analyses of di�erentproesses. Hene from some previous disrepany in the � ! e �e proess it isfound that T� = � (5:6�1:7)�10�3 [103℄, while from the introdution of a Gamow�Teller term in the amplitude of nulear ��deay [108℄ gives TN = (1:8� 1:7)� 10�3.5.2.7 hVTi Green funtion : the tensor form fatorIf we want to extrat information on the value of FT from experimental data, weneed a reliable QCD�based determination of the hadroni tensor form fator. UsingLSZ and at leading order in the pion mass we an express the matrix element (5:24)as follows 6 :
 j �u��� 5 d j��� = ip2F 
 �� �u��� u+ �d ��� d �� 0 � = � i p2 e3F �V T (0)(p� �� � p� ��);(5.25)where in the last step we have used again the LSZ redution formula applied to thehV T i orrelator. Then we have :fT = i 2p23F �V T (0) : (5.26)The orrelator has been alulated in Chapter 4 and after imposing mathing to theOPE result we get : �V T (q2) = � i B0 F 2M2V � q2 : (5.27)Using Eq. (5:27) in Eq. (5:26) yields :fT = 2p2B0 F3M2V : (5.28)An eduated guess an be obtained by writing B0 F = �h�qqi0 =F and using theestimate 
 �  �0 (1GeV) = � (242� 15MeV)3 [76℄.6See Appendix A.2 for a derivation of this expression.



144 Phenomenologial appliationsAnother parameter of interest is the suseptibility of the quark ondensate �zde�ned by the vauum expetation value of the tensor urrent in the presene of anexternal soure Z�� [114, 115℄ :h 0 j �q ��� q j 0 iZ = g �z h�qqi0 Z�� : (5.29)In our ase we onsider the magneti suseptibility � given by an external eletro-magneti �eld as :
  j �u��� u+ �d ��� d j 0 � = � i e (eu + ed) � h�qqi0 F�� ; (5.30)with eu = 2=3 and ed = � 1=3. Using the �rst equality of Eq. (5:25) we get :fT = � p23 �B0F ; (5.31)and omparing with Eq. (5:28) we obtain :� = � 2M2V ' � 3:3GeV�2 : (5.32)There are several determinations of the magneti suseptibility that provide a rangethat runs from � = � (8:16� 0:41)GeV�2 [114℄ up to � ' � 2:7GeV�2 [77℄.5.2.8 q2�dependene of the tensor form fatorAs mentioned in Setion 5:2:7 there are two form fators involved in the hadronitensor matrix element
  j �u��� 5 d j��� = � e2 fT (q2) (p� �� � p� ��)� e2 gT (q2) [ � � q (p� q� � p� q�) + q � p (q� �� � q� ��)℄ ;(5.33)where p is the photon momentum and q the transferred momentum by the tensorurrent. To generate the seond Lorentz struture one needs operators of higherorder in the hiral expansion, suh asY93 = hr�t��+ r�f+��i ; (5.34)of Ref. [23℄ that an be found in Appendix B. In the framework of resonane hiraltheory one needs in addition of the operators in (2.24) the basis of odd�intrinsi�parity operators of Eqs. (2.34) and (2.35). These new ontributions do not modifyresult of the fT = fT (0). The result reads :fT (q2) = p2F TV3F MV �2FV � �4p2MV (1 � 2 � 5 + 26) + 8FV d3 q2M2V � q2�� ;



5.2 Radiative pion deay 145gT (q2) = 8F TV3F M2V �2M2V � q2M2V � q2 (1 � 2 � 5) + 2 M2VM2V � q2 6 � 2 7+ p2 FVMV � M2VM2V � q2 d3 + d4�� : (5.35)The spetral funtion of the tensor�tensor urrents orrelator to whih the amplitudein Eq. (5:33) ontributes behaves as a onstant at high q2 and leading order in�s [81℄. Hene the fT (q2) and gT (q2) form fator should exhibit a smooth behaviour,vanishing at large transferred momentum.Imposing that the fT (q2) form fator vanishes at large momentum we get theonstraint : 1 � 2 � 5 � 2 6 = � p24 FVMV (1 + 4 d3) : (5.36)The same proedure with gT (q2) gives :1 � 2 � 5 � 2 7 = �p2 FVMV d4 : (5.37)Interestingly enough these onstraints fully determine both form fators :fT (q2) = 2p2F TV FV3F MVM2V � q2 ;gT (q2) = � fT (q2)M2V : (5.38)Notie that the ontribution of the gT (q2) form fator to the matrix element understudy is fairly suppressed, typially O(q2=M2V ) over the fT (q2) ontribution.5.2.9 Lattie data and sum rulesThe last years have witnessed and inreasing attention to the determination of ma-trix elements of tensor quark urrents. For instane, together with the QCD sumrules tehnique [77,78℄, lattie has also performed evaluations of amplitudes involv-ing the tensor urrent and a vetor resonane [79, 80℄.The FV oupling an be obtained from the measured �(�0 ! e+e�) [112℄. Weobtain FV ' 156MeV with an expeted tiny error 7. Then from Eq. (4.128) andusing the value of the quark ondensate quoted above we get :F TV (1GeV) = 117� 22MeV ; (5.39)7The vetor oupling an also be determined from short�distane analyses within resonanetheory [52℄, giving f2V = 2 F 2M2AM2A�M2V ; that translates into fV = 207 (15)MeV for MA = 998 (49)MeV(5:21), in exellent agreement with the quoted phenomenologial result.



146 Phenomenologial appliationswhere the error ollets only the unertainty in the value of 
 �  �0. Our result is inexellent agreement with those oming from QCD sum rules : F T� = 113(7)MeV [77℄and F T� = 111(4)MeV [78℄.Lattie evaluations determine the ratio with the vetor oupling. From ourresults we get F TVFV (1GeV) = 0:75� 0:14 ; (5.40)to be ompared with the quenhed value [79, 80℄, run down to � = 1GeV :F T�F� (1GeV) = 0:74� 0:03 : (5.41)Finally from the later result and the phenomenologial value of FV lattie providesthe determination : F T� (1GeV) = 164� 7MeV ; (5.42)to ompare with our �gure in Eq. (5:39).5.2.10 Analysis of the photon spetrum in the radiative piondeayThe PIBETA experiment has thoroughly measured the photon spetrum in theradiative deay of the pion [100℄. Though the results of that referene seemed toon�rm a serious disrepany with theoretial determinations, an ensuing analysisof more data and the re�nement of systemati errors [101, 109℄ has brought a loseagreement between Theory and Experiment.The experimental available data amounts to the branhing ratio of the radiativepion deay integrated in di�erent subregions (Q) of the �nal state phase spae :RQ = 1��!e � ZQ dQ3X� jM(Ee; E�)j2 ; (5.43)where the sum runs over the polarizations of the �nal partiles. The three regionsand the experimental results are shown in Tab. 5.2.We test the preditions ruled by our determination for the hadroni form fatorswith the experimental data, ignoring �rst a possible tensor interation, and omparethem with other theoretial settings. In order to ahieve the auray required bythe experimental information higher order radiative orretions to the deay [116℄must be inluded and they have been implemented in our analysis. The numerialinput for vetor and axial�vetor form fators is given in Tab. 5.2.4.In the fourth olumn of Tab. 5.2 the latest experimental data are given; in the�fth and sixth we show the results provided by our analysis. We study the numerialimpat of the momenta dependene of the form fators by setting the slopes to zero



5.2 Radiative pion deay 147and we onlude that it is tiny : the q2 dependene tends to inrease the entralvalue of R but the modi�ation is by far within the errors. The last two olumnsbring the results yielded by two� and three��avour two�loop �PT alulations. Theevaluation of the errors for the theoretial preditions is ruled by those in the formfators. The estimate of the latter has been done in the following way : we assumeno error oming from the slopes (sine their numerial impat is very poor); to thevetor form fator we assign the same error as that of the experimental determination� 7% and to the axial�vetor form fator we attah the error of the experimentalinput. Finally the error given for the �PT alulations only onsiders the saledependene that is a tiny 5%.We onlude then that the orretions indued by the q2 dependene of vetorand axial�vetor form fators are numerially negligible unless the theoretial erroris redued. For this we would need a better determination of vetor and, speially,axial�vetor form fators at q2 = 0. When omparing our results with experimentaldata, we see that our preditions are in agreement with previous estimates.As a �nal exerise we use the experimental data to �t the value of T = FTfTde�ned above. In order to reah this purpose we use the experimentally �tted valuesfor the hadroni inputs FV (0) and FA(0), and our results for the slopes �V and �A.Finally, to extrat the value of the FT oupling from the �t, we use our determinationfor the tensor form fator fT . The value that we obtain is ompatible with zero andits order of magnitude is ompatible with that ditated by SUSY :FT = (1� 14)� 10�4 : (5.44)5.2.11 ConlusionsRadiative pion deay has been a ontinuous soure of debate between theoretialpreditions and experimental determinations. Nevertheless the latest analysis bythe PIBETA Collaboration seems to bring a lose agreement between both sides.In this thesis we have performed a detailed analysis of the struture�dependentamplitudes ontributing to � ! e �e. The q2 dependene of vetor and axial�vetor form fators, driven by the Standard Model, has been rigorously onstrutedthrough the study of the hV VP i and hVAP i GFs, by mathing meromorphi ansätzewith their leading OPE ontributions. Moreover we have also required that our formfators are soft at high transfer of momenta. Hene we obtain the most general (andsimple) funtions that satisfy all those onstraints. The appropriate struture ofthe form fators requires a double vetor resonane pole for the vetor form fatorand a single axial�vetor resonane pole for the axial�vetor form fator. After asmall momenta expansion we ompare our results with those of �PT and while inthe vetor setor we �nd omplete agreement, our slope for the axial�vetor formfator is muh larger than the one provided by modelizations of loal terms in thehiral framework.The rï¾12 le of a tensor ontribution to the radiative pion deay has ustomarilybeen taken into aount in order to analyse the experimental results. We use those



148 Phenomenologial appliationsin order to �x the size of the ontribution and we �nd that it is ompatible withzero. Inidentally we have given a predition for F TV that measures the oupling ofa vetor resonane JPC = 1�� to the tensor urrent. Our results agree well withdeterminations from QCD sum rules and quenhed lattie.We onlude that the Standard Model is able to embody the experimentallyknown features of the radiative pion deay. As it happens with other deays involvingnon�perturbative strong e�ets, the rather large size of the numerial inertitudesgenerated by our lak of knowledge of this QCD regime shows that this proess is,at present, unsuitable for the searh of New Physis.5.3 Vus from hyperon semileptoni deay5.3.1 IntrodutionAurate determinations of the quark mixing parameters are of fundamental im-portane to test the �avour struture of the Standard Model. In partiular, theunitarity of the CKM matrix [94, 95℄ has been tested to the 0.2% level [3, 117℄ withthe preise measurement of its �rst�row entries jVudj and jVusj [119℄. At that levelof preision, a good ontrol of systemati unertainties beomes mandatory. In fat,the existene of small deviations from unitarity has been a long�standing questionfor many years [120℄.Reently, there have been many relevant hanges to this unitarity test, whihhave motivated a very alive disussion. While the standard jVudj determination fromsuperallowed nulear beta deays remains stable, jVudj = 0:97418�0:00026 [117℄, theinformation from neutron deay is su�ering strong �utuations, due to on�itingdata on the axial oupling gA measured through deay asymmetries [112℄ and thelarge derease of the neutron lifetime by more than 6 � obtained in the most reentpreision measurement [121℄.On the other side, the K ! � l � branhing ratios have been found to be signi�-antly larger than the previously quoted world averages. Taking into aount the re-ently improved alulation of radiative and isospin�breaking orretions [122�124℄,the new experimental data from BNL�E865 [125℄, KTeV [126℄, NA48 [127℄ andKLOE [128℄ imply [129℄.jVus fK0��+ (0)j = 0:21661� 0:00047 : (5.45)In the SU(3)V limit, vetor urrent onservation guarantees that the Kl3 form fatorfK0��+ (0) is equal to one. Moreover, the Ademollo�Gatto theorem [130, 131℄ statesthat orretions to this result are at least of seond order in SU(3) breaking. Theywere alulated long time ago, at O(p4) in Chiral Perturbation Theory, by Leutwylerand Roos [132℄ with the result fK0��+ (0) = 0:961� 0:008. Using the alulated two�loop hiral orretions [133, 134℄, two reent estimates of the O(p6) ontributionsobtain the updated values fK0��+ (0) = 0:974� 0:011 [135℄ and fK0��+ (0) = 0:984�0:012 [53℄, while a lattie simulation in the quenhed approximation gives the result



5.3 Vus from hyperon semileptoni deay 149fK0��+ (0) = 0:960 � 0:005stat � 0:007syst [136℄ (the quoted lattie systemati errordoes not aount for quenhing e�ets, whih are unfortunately unknown). TakingfK0��+ (0) = 0:974� 0:012, one derives from Kl3 :jVusj = 0:2233� 0:0028 : (5.46)An independent determination of jVusj an be obtained from the Cabibbo�suppressedhadroni deays of the � lepton [137℄. The present data implies [138℄ jVusj =0:2208 � 0:0034. The unertainty is dominated by experimental errors in the �deay distribution and it is expeted to be signi�antly improved at the B fa-tories. jVusj an be also determined from �(K+ ! �+��)=�(�+ ! �+��) [139℄,using the lattie evaluation of the ratio of deay onstants fK=f� [140℄; one getsjVusj = 0:2219� 0:0025.The jVusj determination from hyperon deays is supposed to be a�eted by largertheoretial unertainties, beause the axial�vetor form fators ontributing to therelevant baryoni matrix elements are not proteted by the Ademollo�Gatto the-orem. Thus, it su�ers from �rst�order SU(3)V breaking orretions. Moreover,the seond�order orretions to the leading vetor�urrent ontribution are badlyknown. In spite of that, two reent analyses of the hyperon deay data laim au-raies whih, surprisingly, are ompetitive with the previous determinations :jVusj = 0:2250� 0:0027 ; Ref: [141℄ (5.47)jVusj = 0:2199� 0:0026 ; Ref: [142℄ (5.48)Although they use basially the same data, the two analyses result in rather di�erententral values for jVusj and obtain a qualitatively di�erent onlusion on the patternof SU(3) violations. While the �t of Ref. [141℄ �nds no indiation of SU(3)V break-ing e�ets in the data, Ref. [142℄ laims sizeable seond�order symmetry breakingontributions whih inrease the vetor form fators over their SU(3)V preditions.Clearly, systemati unertainties seem to be underestimated.In order to larify the situation, we have performed a new numerial analysis [143℄of the semileptoni hyperon deay data, trying to understand the di�erenes betweenthe results (5:47) and (5:48).5.3.2 Theoretial Desription of Hyperon Semileptoni De-aysThe semileptoni deay of a spin�12 hyperon, B1 ! B2 l���l, involves the hadronimatrix elements of the vetor and axial�vetor urrents :hB2(p2)jV � jB1(p1)i = �u(p2) �f1(q2) � + i f2(q2)MB1 ���q� + f3(q2)MB1 q��u(p1) ;hB2(p2)jA� jB1(p1)i = �u(p2) �g1(q2) � + i g2(q2)MB1 ���q� + g3(q2)MB1 q�� 5 u(p1) ;(5.49)



150 Phenomenologial appliationsB1 ! B2 n! p �! p �� ! n �� ! � �� ! �0 �0 ! �+CB2B1F 1 �q32 � 1 q32 1p2 1CB2B1D 1 � 1p6 1 � 1p6 1p2 1Table 5.3: Clebsh�Gordan oe�ients for otet baryon deays.where q = p1 � p2 is the four�momentum transfer. Sine the orresponding V � Aleptoni urrent satis�es q�L� � ml, the ontribution of the form fators f3(q2)and g3(q2) to the deay amplitude is suppressed by the harged lepton mass ml.Therefore, these two form fators an be safely negleted in the eletroni deayswhih we are going to onsider.In the limit of exat SU(3)V symmetry, we an use the Clebsh�Gordan theorem
Ba ��J b��B � = FJ fab + DJ dab ; (5.50)and then the urrent matrix elements among the di�erent members of the baryonotet are related [144℄ :f symk (q2) = CB2B1F Fk(q2) + CB2B1D Dk(q2) ;gsymk (q2) = CB2B1F Fk+3(q2) + CB2B1D Dk+3(q2) ; (5.51)where Fk(q2) and Dk(q2) are redued form fators and CB2B1F and CB2B1D are well�known Clebsh�Gordan oe�ients. The onservation of the vetor urrent impliesF3(q2) = D3(q2) = 0. Moreover, the eletromagneti urrent belongs to the sameotet of vetor urrents, and from general priniples suh as Lorentz and gaugeinvariane it is known thath b j J�em jB i = ub(pb) �F1(q2) � + i F2(q2) ���2mB q��uB(pB) ; (5.52)with F1(0) = Qem and 2F2(0) = g��2. Then the values at q2 = 0 of the vetor formfators are determined by the eletri harges and the anomalous magneti momentsof the two nuleons, �p = 1:792847351 (28) and �n = � 1:9130427 (5) [112℄ :F1(0) = 1 ; D1(0) = 0 ; F2(0) = ���p + 12 �n� ; D2(0) = 32 �n : (5.53)The values at q2 = 0 of the two redued form fators determining g1(q2) are the usualF and D parameters : F4(0) = F , D4(0) = D. SU(3)V symmetry also implies avanishing �weak�eletriity� form fator g2(q2), beause harge onjugation does notallow a C�odd g2 term in the matrix elements of the neutral axial�vetor urrentsA3� and A8�, whih are C�even.



5.3 Vus from hyperon semileptoni deay 151The available kinemati phase spae is bounded by m2e � q2 � (MB1 �MB2)2.Thus, q2 is a parametrially small SU(3) breaking e�et. Sine the form fatorf2(q2) appears multiplied by a fator q�, it gives a small ontribution to the deayrate. To O(q2) auray, whih seems su�ient to analyze the urrent data, theonly momentum dependene whih needs to be taken into aount is the one of theleading form fators f1(q2) and g1(q2) :f1(q2) � f1(0) �1 + �f1 q2M2B1� ; g1(q2) � g1(0) �1 + �g1 q2M2B1� : (5.54)Moreover, f2(0) and g2(0) an be �xed to their SU(3)V values, beause any devia-tions from the symmetry limit would give a seond�order symmetry breaking e�et.Therefore, the form fator g2(q2) an be negleted.The slopes �f1 and �g1 are usually �xed assuming a dipole form regulated by themesoni resonane with the appropriate quantum numbers [145, 146℄ :f1(q2) = f1(0)�1� q2M2V �2 ; �f1 = 2M2B1M2V ;g1(q2) = g1(0)�1� q2M2A�2 ; �g1 = 2M2B1M2A : (5.55)Previous analyses have adopted the mass values MV = 0:97 GeV [141,142,144�146℄and MA = 1:25 GeV [141, 145℄ or MA = 1:11 GeV [142, 144, 146℄. We will analyzethe systemati unertainties assoiated with these inputs.It is useful to de�ne the ratio of the physial value of f1(0) over the SU(3)Vpredition CB2B1F : ~f1 = f1(0)=CB2B1F = 1 +O(�2) : (5.56)Due to the Ademollo�Gatto theorem [130,131℄, ~f1 is equal to one up to seond�orderSU(3) breaking e�ets.The transition amplitudes for hyperon semileptoni deays have been extensivelystudied, using standard tehniques. We will not repeat the detailed expressions ofthe di�erent observables, whih an be found in Refs. [142, 145�147℄. In order tomake a preision determination of jVusj, one needs to inlude the e�et of radiativeorretions [146, 148�150℄. To the present level of experimental preision, the mea-sured angular orrelation and angular spin�asymmetry oe�ients are una�eted byhigher�order eletroweak ontributions. However, these orretions are sizeable inthe total deay rates. To a very good approximation, their e�et an be taken intoaount as a global orretion to the partial deay widths : � � G2F jVusj2(1 + ÆRC).The Fermi oupling measured in � deay, GF = 1:16637 (1) � 10�5 GeV�2 [112℄, ab-sorbs some ommon radiative ontributions. The numerial values of the remainingorretions ÆRC an be obtained from Ref. [146℄.



152 Phenomenologial appliations5.3.3 The Ademollo�Gatto theoremBefore studding the SU(3)V breaking e�ets in the 1=NC framework, it is onvenientto disuss a general theorem that will give us hints about the symmetry breakingpattern. It is known as the Ademollo�Gatto theorem and it applies to vetor ur-rents, not only in the hyperon setor, but also for mesons.As already disussed in Chapter 1, the symmetry breaking e�ets ome entirelyfrom the mass di�erene between the up/down quark (that will be regarded asdegenerate) and the strange quark. We an write the quark mass matrix (denotingmu = md � m̂) as M = 13 (ms + m̂) 11 + 1p3 (ms + m̂) �82 ; (5.57)where the �rst term is symmetry onserving [ an SU(3)V singlet ℄ and the seond oneis symmetry violating, and transforms as an otet (adjoint representation). More-over, it is proportional to the �avour generator T 8. The adimensional parameter �giving the order of the symmetry breaking an be estimated as� � ms�QCD � 13 : (5.58)Using the ommutation relations for the vetor harges mediating �S = 1 tran-sitions at equal times we get�Q4+ i 5; Q4� i 5� = Q3 +p3Q8 = Qem + Y ;Y = 2p3 Q8 ; (5.59)where Y orresponds to the hyperharge operator. Sine ��V 3;8� = 0 even for di�er-ent quark masses, the right�hand side, and orrespondingly the left�hand side, aretime independent. Let us take the matrix element of Eq. (5.59) for a spin�12 baryonB with mass mB and three�momentum ~pB(Qem + Y )B hB(pB) jB(pB)i =� ��h b jQ4+ i 5jB(pB)i��2 + ~Xm ��hm jQ4� i 5jB(pB)i��2 � ~Xn ��hn jQ4+ i 5jB(pB)i��2= � ��h b jQ4+ i 5jB(pB)i��2 +O(�2) ; (5.60)where b is the only otet baryon onneted to B through Q4+ i 5, and m; n aredeuplet baryons. The seond and third terms of Eq. (5.60) are O(�2), beause inthe exat SU(3) limit hn jQ4+ i 5jB(pB)i = 0, and so it must be O(�). The ovariantnormalization for partiles readshB(pB) jB(pB)i = 2EB(2 �)3 Æ(3)(0) ; (5.61)



5.3 Vus from hyperon semileptoni deay 153and will be used latter. From the �rst term in Eq. (5.60) we geth b; p; � jQ4+ i 5jB(pB)i = Z d3~x h b; p; � j u(x) 0 s(x) jB(pB)i= Z d3~x h b; p; � j eiP �x u(0) 0 s(0) e� iP �x jB(pB)i= Z d3~x eiq�xh b; p; � j u(0) 0 s(0) jB(pB)i= Z d3~x eiq�x u(p; �) �f1(q2) 0 + i f2(q2)�0�2mB q� + f3(q2)mB q0�u(pB)= (2 �)3Æ(3)(~q) u(p; �) �f1(q20) 0 + f3(q20)mB q0�u(pB):= (2 �)3Æ(3)(~q) f1(q20) uy(p; �) u(pB) +O(�2) : (5.62)where we drop the f3 fator beause it is O(�) and as we will see q0 � O(�). Lorentzinvariane enfores q2 = (q0)2 in the rest frame of the baryons. With that, summingover polarizations and integrating over the phase spae we obtainX� Z d3~p(2 �)32E ��h b; p; � jQ4+ i 5 jB(pB)i��2= X� Z d3~p2E (2�)3 Æ(3)(~q) Æ(3)(~q) f 21 (q2) u(pB) 0 u(pb; �) u(pb; �) 0 u(pB)= Z d3~p2E (2 �)3 Æ(3)(~q) Æ(3)(~0) f 21 (q2) u(pB) (pb=y +mb) u(pB)= Z d3~p2E (2 �)3 Æ(3)(~q) Æ(3)(~0) f 21 (q2) u(pB)�(EB + E)0 + (mb �mB)�u(pB) ;= (2 �)3Eb Æ(3)(~0) [EB(EB + Eb) +mB(mb �mB)℄ ; (5.63)where we understand EB = p~p 2B +m2B, E = p~p 2 +m2b and Eb = p~p 2B +m2b . Wehave used pb= = E 0 � ~pb � ~ ;pb=y = E 0 + ~pb � ~ ;�EB 0 � ~pB � ~�u(pB) = mB u(pB) : (5.64)We will onsider the phenomenologially interesting rest frame of the B baryon ~pB =0, and hene EB = mB, Eb = mb. In this frame q2 = (q0)2 = (mB �mb)2 � O(�2).Eq. (5.63) redues toX� Z d3~p(2 �)32E ��h b; p; � jQ4+ i 5 jB(pB)i��2 = 2mB(2�)3Æ(3)(~0) f 21 (0) +O(�2) :(5.65)



154 Phenomenologial appliations�! p e��e �� ! n e��e �� ! � e��e �� ! �0e��e �0 ! �+e��eR 3.161� 0.058 6.88 � 0.24 3.44� 0.19 0.53 � 0.10 0.93� 0.14�e� � 0.019� 0.013 0.347� 0.024 0.53� 0.10�e 0.125� 0.066 � 0.519� 0.104�� 0.821� 0.060 � 0.230� 0.061�B � 0.508� 0.065 0.509� 0.102A 0.62� 0.10g1=f1 0.718� 0.015 � 0.340� 0.017 0.25� 0.05 1.287� 0.158 1.32� 0.22Table 5.4: Experimental data on j�Sj = 1 hyperon semileptoni deays [112℄. R isgiven in units of 106 s�1.Comparing Eqs. (5.60), (5.61) and (5.65) we obtainf1(0)2 = � (Qem + Y )B +O(�2) ; f1(0) = f sim1 (0) +O(�2) : (5.66)Last equation is equivalent to Eq. (5.56).5.3.4 g1/f1 analysis�! p �� ! n �� ! � �0 ! �+j ~f1 Vusj 0:2221 (33) 0:2274 (49) 0:2367 (97) 0:216 (33)Table 5.5: Results for j ~f1 Vusj obtained from the measured rates and g1(0)=f1(0)ratios. The quoted errors only re�et the statistial unertainties.The experimentally measured observables in hyperon semileptoni deays [112℄ aregiven in Table 5:4, whih ollets the total deay rate R, the angular orrelationoe�ient �e� and the angular�asymmetry oe�ients �e, ��, �B, A and B. Thepreise de�nition of these quantities an be found in Refs. [145, 146℄. Also given isthe ratio g1(0)=f1(0), whih is determined from the measured asymmetries.The simplest way to analyze [141℄ these experimental results is to use the mea-sured values of the rates and the ratios g1(0)=f1(0). Taking for f2(0) the SU(3)Vpreditions, this determines the produt j ~f1 Vusj. Table 5:5 shows the results ob-tained from the four available deay modes. The di�erenes with the values givenin Ref. [141℄ are very small; the largest one is due to the slightly di�erent valueof the �0 ! �+e���e branhing ratio [151℄. The four deays give onsistent results(�2=d:o:f: = 2:52=3), whih allows one (assuming a ommon value for ~f1) to derivea ombined average j ~f1 Vusj = 0:2247� 0:0026 : (5.67)



5.3 Vus from hyperon semileptoni deay 155This number agrees (assuming ~f1 = 1) with the value in Eq. (5:47).The quoted unertainty only re�ets the statistial errors and does not aountfor the unknown SU(3)V breaking ontributions to ~f1 � 1, and other soures oftheoretial unertainties suh as the values of f2(0) and g2(0) [SU(3)V has beenassumed ℄, or the momentum dependene of f1(q2) and g1(q2). We will estimatelater on the size of all these e�ets. For the moment, let us just mention thathanging the dipole ansatz for f1(q2) and g1(q2) to a monopole form, the entralvalue in (5:67) inreases to 0:2278, with a �2=d:o:f: = 3:24=3.The agreement among the four determinations in Table 5:5 has been laimed tobe a strong indiation that SU(3)V breaking e�ets are indeed small [141℄. Note,however, that �rst�order symmetry breaking orretions in the ratio g1(0)=f1(0) aree�etively taken into aount, sine we have used the experimental measurements.What Table 5:5 shows is that the �tted results are onsistent, within errors, witha ommon ~f1 value for the four hyperon deays. The deviations of ~f1 from oneare of seond order in symmetry breaking, but unfortunately even their sign seemsontroversial [152�155℄.5.3.5 1/NC Analysis of SU(3)V Breaking E�etsAs explained in Chapter 3, the 1=NC expansion of QCD provides a framework toanalyze the spin��avour struture of baryons [14, 156℄, whih an be used to inves-tigate the size of SU(3)V breaking e�ets through a ombined expansion in 1=NCand SU(3)V symmetry breaking. A detailed analysis, within this framework, ofSU(3)V breaking in hyperon semileptoni deays was performed in Refs. [142, 144℄,and we performed an expliit alulation in Chapter 3, where all relevant formulaean be found. To avoid unneessary repetition we will only show expliitly the mostimportant ingredients whih have been used in the reent jVusj determination ofRef. [142℄.At q2 = 0 the hadroni matrix elements of the vetor urrent are governedby the assoiated harge or SU(3) generator. In the limit of exat SU(3) �avoursymmetry, V 0a = T a to all orders in the 1=NC expansion, where T a are the baryon�avour generators. The SU(3) symmetry breaking orretions to V 0a have beenomputed to seond order [144, 157℄. For the hyperon j�Sj = 1 deays that we areonsidering, the �nal result an be written in the form [144℄ of Eq. (3.47) whih werepeat here : V 0a = (1 + v1)T a + v2 fT a; Nsg+ v3 �T a;� I2 + J2s	 ; (5.68)where Ns ounts the number of strange quarks, I denotes the isospin and Js thestrange quark spin. The parameters vi onstitute a seond�order e�et in agreementwith the Ademollo�Gatto theorem [130,131℄.The 1=NC expansion for the axial�vetor urrent was studied in Refs. [14, 158℄.For the hyperon j�Sj = 1 deay modes, one an write the result in a simpli�ed formwhih aounts for �rst�order symmetry breaking e�ets [142, 144℄ of Eq. (3.55)



156 Phenomenologial appliationsDeay g1(0) ~f1n! p 53 ~a +~b+ � 1�! p �q32 �~a+ ~b + 3 + 4� 1 + v1 + v2�� ! n 13 (~a+ 3 + 4)� ~b 1 + v1 + v2 � 2v3�� ! � 1p6 (~a+ 7 4) +q32 �~b + 3� 1 + v1 + 3 v2 + 2 v3�� ! �0 53p2 (~a+ 3 3) + 1p2 �~b+ 4� 1 + v1 + 3 v2�0 ! �+ 53 ~a +~b+ 5 3 + 4 1 + v1 + 3 v2Table 5.6: Parameterization of g1(0) and ~f1 to �rst and seond order, respetively,in symmetry breaking [144℄. The neutron deay involves an additional parameter �,not inluded in (5.69).whih for the reader's onveniene we repeat here :12 Aia = ~aGia +~b J i T a + 3 �Gia; Ns	+ 4 �T a; J is	 : (5.69)The oe�ients ~a � a + 1 and ~b � b + 2 reabsorb the e�et of two additionaloperators onsidered in Ref. [144℄. These operators generate an additional ontribu-tion to neutron deay, whih we parametrize as � = � �53 1 + 2�. Table 5:6 showsthe resulting values of g1(0) and ~f1 for the relevant deay modes, in terms of theparameters ~a, ~b, 3, 4, �, v1, v2 and v3.In the strit SU(3)V symmetry limit, i = vi = 0, i.e. ~f1 = 1 while the values ofg1(0) are determined by two parameters a and b, or equivalently by the more usualquantities D = a and F = 23 a + b. A 3�parameter �t to the hyperon deay datagives the results shown in Table 5:7. Column 2 uses diretly the measured values ofthe di�erent rates and asymmetries, while in olumn 3 the asymmetries have beensubstituted by the derived g1(0)=f1(0) values in Table 5:4. Both proedures giveonsistent results, but the diret �t to the asymmetries has a worse �2=d:o:f: = 3:09(2:36 for the g1(0)=f1(0) �t). These �2 values indiate the need for SU(3)V breakingorretions. The �tted parameters agree within errors with the ones obtained inRef. [142℄, although our entral value for jVusj is 1 � smaller. For the F and Dparameters, we obtain :F = 0:462� 0:011 ; D = 0:808� 0:006 ; F +D = 1:270� 0:015 : (5.70)The last number, an be ompared with the value of g1(0)=f1(0) measured inneutron deay : [ g1(0)=f1(0)℄n!p = D + F = 1:2695� 0:0029 [112℄. Using the jVudjvalue determined from superallowed nulear beta deays and the neutron lifetimequoted by the Partile Data Group [112℄, a more preise value, [g1(0)=f1(0)℄n!p =1:2703� 0:0008, has been derived in Ref. [118℄.



5.3 Vus from hyperon semileptoni deay 157SU(3) symmetri �t 1st-order symmetry breakingAsymmetries g1(0)=f1(0) Asymmetries g1(0)=f1(0)jVusj 0:2214� 0:0017 0:2216� 0:0017 0:2266� 0:0027 0:2239� 0:0027~a 0:805� 0:006 0:810� 0:006 0:69� 0:03 0:72� 0:03~b � 0:072� 0:010 � 0:081� 0:010 � 0:071� 0:010 � 0:081� 0:0113 0:026� 0:024 0:022� 0:0234 0:047� 0:018 0:049� 0:018�2=d:o:f: 40:23=13 14:15=6 18:09=11 2:15=4Table 5.7: Results of di�erent �ts to the semileptoni hyperon deay data.Inluding �rst�order SU(3) breaking e�ets in g1(0), the �t has two more freeparameters. The �tted values are given in the last two olumns of Table 5:7. Thee�et of SU(3)V breaking manifests through a value of ~a lower than a [ i.e. 1 =�0:10 � 0:03 6= 0, taking a from the SU(3)V �ts ℄, and the non�zero value of 4.The �t to the asymmetries has again a worse �2=d:o:f: = 1:64 than the g1(0)=f1(0)�t (�2=d:o:f: = 0:54) and gives a 1 � higher value of jVusj. Taking jVusj from thebest �t, its entral value is about 1 � higher than the value obtained with exatSU(3)V symmetry. These results agree within errors with the orresponding �ts inRef. [142℄.One an repeat the �ts inluding also the neutron deay, whih introdues theadditional parameter �. Taking Vud = 0:97418 � 0:00026 [117℄, this gives a size-able measure of SU(3)V breaking, � = 0:16 � 0:05. The other parameters remainunhanged.Ref. [142℄ presents the results of another �t, inluding seond�order SU(3)Vbreaking e�ets in ~f1 through the parameters vi. The �nal value quoted for jVusjomes in fat from this �t, where jVusj, v1, v2 and v3 are �tted simultaneously(together with ~a, ~b, 3 and 4), obtaining a very good �2=d:o:f: = 0:72=2 = 0:36.We annot understand the meaning of this numerial exerise. While it is indeedpossible to �t the data with the parameters given in Ref. [142℄, one an obtain anin�nite amount of di�erent parameter sets giving �ts of aeptable quality, beausethere is a �at �2 distribution in this ase. This an be easily understood looking tothe last olumn in Table 5.6. From the four analyzed j�Sj = 1 hyperon semileptonideays, one ould only determine the global fator jVus (1 + v1 + v2) j, v2 and v3. Itis not possible to perform separate determinations of jVusj and v1 beause, as shownin Eq. (5:68), the ontribution to the vetor urrent of the �avour generator T a isalways multiplied by the same global fator (1 + v1).To assess the possible size of these seond�order e�ets, we have also performed a7�parameter �t to the data. The results are shown in Table 5:8. One more, the �t to



158 Phenomenologial appliations2nd-order symmetry breakingAsymmetries g1(0)=f1(0)j (1 + v1 + v2) Vusj 0:2280� 0:0034 0:2220� 0:0038~a 0:69� 0:03 0:74� 0:04~b � 0:075� 0:010 � 0:083� 0:0113 0:03� 0:03 0:02� 0:034 0:04� 0:02 0:04� 0:02v2 0:01� 0:03 0:04� 0:03v3 � 0:004� 0:013 � 0:013� 0:014�2=d:o:f: 16:5=9 0:53=2Table 5.8: Seond order �ts to the semileptoni hyperon deay data.the asymmetries has a worse �2=d:o:f: and gives a larger value for jVus (1 + v1 + v2) j.The �tted values are onsistent with the results in Table 5:7 from the �rst�order�t. Within the present experimental unertainties, the 7�parameter �t is not ableto learly identify any non�zero e�et from seond�order SU(3)V breaking. Notie,that in this numerial exerise one is only onsidering seond�order ontributionsto ~f1, while g1(0) is still kept at �rst order. Unfortunately, it is not possible atpresent to perform a omplete seond�order analysis, owing to the large number ofoperators ontributing to the axial urrent at this order.Comparing the results from all �ts, it seems safe to onlude that the g1(0)=f1(0)ratios are less sensitive to SU(3)V breaking than the asymmetries. Therefore, wewill take as our best estimate the orresponding �rst�order result in Table 5:7,j ~f1 Vusj = 0:2239� 0:0027 : (5.71)This number is in good agreement with the simplest phenomenologial �t in Eq. (5:67)and ould give a very adequate estimate of jVusj, one the systemati unertaintiesare properly inluded.5.3.6 Systemati UnertaintiesIn our analysis the lepton masses, and therefore the form fators f3(q2) and g3(q2),have been negleted. This approximation does not introdue any relevant uner-tainty at the present level of experimental auray. The errors assoiated withradiative orretions have been already taken into aount in the �ts, together withthe experimental unertainties. At �rst order in symmetry breaking, the main soure



5.3 Vus from hyperon semileptoni deay 159Parameter SU(3)V symmetri �t 1st�order SU(3)V breakingAsymmetries g1(0)=f1(0) Asymmetries g1(0)=f1(0)f�!p2 = 2:40� 0:20 �0:0001+0:0001 �0:0001+0:0001 +0:0001�0:0000 �0:0002+0:0001f��!n2 = � 2:32� 0:28 �0:0001+0:0000 +0:0001�0:0000 +0:0000�0:0000 �0:0001+0:0000f��!�2 = 0:178� 0:030 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000f��!�02 = � 3:2� 0:6 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000f�0!�+2 = � 4:4� 0:8 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000 +0:0000�0:0000MA = 1:10� 0:09 +0:0001�0:0001 +0:0001�0:0001 +0:0001�0:0001 +0:0001�0:0001MV = 0:91� 0:07 +0:0005�0:0006 +0:0004�0:0005 +0:0002�0:0002 +0:0005�0:0006Total systemati error 0.0006 0.0004 0.0002 0.0006Table 5.9: Parametri unertainties of the Vus determination from hyperon deaysof parametri unertainties omes from the numerial values of f2(0) and the slopes�f1 and �g1 governing the low�q2 behaviour of the form fators f1(0) and g1(0).Sine the f2(q2) ontribution to the deay amplitude appears multiplied by q�,whih is already a parametrially small SU(3) breaking e�et, at O(�) the value off2(0) an be �xed in the SU(3) limit from the proton and neutron magneti moments[ see Eq. (5:53) ℄. However, what appears in the vetor matrix elements (5.49) are theratios f2(q2)=MB1. The SU(3)V limit an either be applied to f2(0) or f2(0)=MB1,beause the baryon masses are the same for the whole otet multiplet in the limit ofexat SU(3)V symmetry. Taking the physial baryon masses, the numerial resultswould be obviously di�erent. In order to estimate the assoiated unertainty in f2(0)we will vary its value within the range obtained with these two possibilities.The slopes �f1 and �g1 are determined from eletroprodution and neutrino sat-tering data with nuleons, whih are sensitive to the �avour�diagonal vetor andaxial�vetor form fators in the Q2 = � q2 > 0 region. The obtained distributionsare well �tted with dipole parametrizations GV;A(Q2) = GV;A(0)= �1 +Q2=M2V;A�2,with M0V = (0:84 � 0:04)GeV and M0A = (1:08 � 0:08)GeV [145℄. Extrapolatingthese funtional forms to q2 > 0, one gets a rough estimate of the needed hyperonform fator slopes in the SU(3) limit. To aount for SU(3) breaking, one usu-ally modi�es the parameters MV and MA in a rather naï¾12ve way, adopting thevalues MV = M0V (mK�=m�) = 0:98GeV and MA = M0A (mK1=ma1) = 1:12GeV.To estimate the systemati unertainty assoiated with �f1 and �g1, we adopt thesedipole parametrizations, varying the values of the vetor and axial�vetor mass pa-rameters between M0V;A and MV;A. As mentioned in previous setions, a monopoleparametrization ould lead to a signi�ative shift of the �tted Vus value; however,in this ase one should take di�erent values for the parameters MV;A, in order to �tthe q2 < 0 data.



160 Phenomenologial appliationsReferene �! p �� ! n �� ! � �� ! �0 �0 ! �+DHK'87 [152℄ (quark model) 0.987 0.987 0.987 0.987 0.987Sh'95 [153℄ (quark model) 0.976 0.975 0.976 0.976Kr'90 [154℄ (hiral loops) 0.943 0.987 0.957 0.943AL'93 [155℄ (hiral loops) 1.024 1.100 1.059 1.011LKM [159℄ (hiral loops) 0.943 1.028 0.989 0.944Table 5.10: Theoretial preditions for ~f1.In Table 5:9 we show the sensitivity of the resulting Vus value to these para-metri unertainties. Columns 2 and 3 give the indued systemati errors in the 3�parameter [SU(3) symmetri ℄ �ts, while olumns 4 and 5 ontain the orrespondingnumbers for the 5�parameter �ts inluding �rst�order SU(3) breaking in g1(0). Inboth ases, we indiate separately the estimates obtained for the �ts to the asymme-tries and the g1(0)=f1(0) �ts. The numbers in the table show that the vetor slope�f1 is the dominant soure of parametri unertainty. In any ase, these unertaintiesare muh smaller than the statistial errors of the orresponding �ts.At seond order, one should take into aount the unknown value of g2(0) and theO(�2) orretions to f1(0) and g1(0). There exist a few estimates of f1(0) using quarkmodels and baryon hiral Lagrangians. Unfortunately, they give rather di�erent re-sults as shown in Table 5:10. The quark�model alulations agree with the naï¾12veexpetation that SU(3)V orretions should be negative, i.e. ~f1 < 1 [152, 153℄.In ontrast, the hiral�loop estimates obtain large orretions with opposite signs :while Ref. [155℄ �nds values for ~f1 whih are larger than one for all analyzed deays,Ref. [154℄ gets results more onsistent with the quark�model evaluations. The tworeferenes use slightly di�erent hiral tehniques, and are probably taking into a-ount di�erent sets of Feynman diagram ontributions. Ref. [159℄ is the latest �PTalulation. They use the infrared regularization sheme, whih is a relativisti for-mulation that preserves hiral ounting. However they do not take into aount thee�et of the spin�32 deuplet and hene their results should be read with are. InRef. [160℄ the heavy baryon formalism is used, but it is found that the ontributionsof the spin�32 deuplet spoil the onvergene of the hiral series. Clearly, a new andmore omplete alulation is needed.Nothing useful is known about g2(0) and the needed O(�2) orretions to g1(0).However, g2(0) is not expeted to give a sizeable ontribution, while g1(0)=f1(0)an be diretly taken from experiment using the phenomenologial �t of previoussetions. In fat, the experimental g1(0)=f1(0) ratios given in Table 5:4 assumealready g2(0) = 0. Thus, the value of ~f1 onstitute the main theoretial problem foran aurate determination of Vus from hyperon deays. Although orretions to theSU(3)V symmetri value are of O(�2), it has been argued that they are numeriallyenhaned by infrared�sensitive denominators [144,155℄. In the absene of a reliable



5.3 Vus from hyperon semileptoni deay 161theoretial alulation, and in view of the estimates shown in Table 5:10, we adoptthe ommon value ~f1 = 0:99� 0:02 ; (5.72)for the �ve deay modes we have studied. While the two quark model estimates arein the range ~f1 = 0:98� 0:01, the disagreement between the two hiral alulationsexpands the interval of published results to ~f1 = 1:02 � 0:08. However, for somedeay modes suh as �� ! n e���e one an show that ~f1 should indeed be smallerthan one, as naï¾12vely expeted [141,161℄. This disagrees with the results obtainedin Ref. [155℄. Our eduated guess in (5.72) spans the whole interval of quark modelresults, allowing also for higher values of ~f1 within a reasonable range. Applyingthis orretion to our best estimate in Eq. (5:71), gives the �nal result :jVusj = 0:226� 0:005 : (5.73)5.3.7 Vud from Neutron DeayA reent reanalysis of radiative orretions to the neutron deay amplitude has giventhe updated relation [118, 162℄ :jVudj = � 4908 (4) se�n (1 + 3 g2A)�1=2 : (5.74)Using Vud = 0:97418� 0:0005, Ref. [118℄ derives the Standard Model predition forthe axial oupling gA � g1(0)=f1(0) = 1:2703� 0:0008 ; (5.75)whih is more preise than the diret measurements through neutron deay asym-metries.In order to extrat Vud from (5:74), using as inputs the measured values of theneutron lifetime and gA, one would need to larify the present experimental situation.The Partile Data Group [112℄ quotes the world averages�n = (885:7� 0:8) s ; gA = 1:2695� 0:0029 ; (5.76)whih implies jVudj = 0:9745� 0:0019 : (5.77)However, the most reent measurement of the neutron lifetime [121℄ has lead to avery preise value whih is lower than the world average by 6:5 �,�n = (878:5� 0:7� 0:3) s : (5.78)



162 Phenomenologial appliationsSoure Kl3 [53, 122�128,132�136℄ Kl2 [139, 140℄ � [137, 138℄ HyperonsjVusj 0:2233� 0:0028 0:2219� 0:0025 0:2208� 0:0034 0:226� 0:005Table 5.11: Determinations of Vus.Taking gA from (5:76), this would imply a 2 � higher jVudj :jVudj = 0:9785� 0:0019 : (5.79)Atually, the PDG value of gA in (5:76) omes from an average of �ve measure-ments whih do not agree among them (�2 = 15:5, on�dene level = 0:004). If oneadopts the value obtained in the most reent and preise experiment [163℄,gA = 1:2739� 0:0019 ; (5.80)one gets the results : jVudj = 8<: 0:9717� 0:00130:9757� 0:0013 : (5.81)5.3.8 SummaryAt present, the determinations of jVudj and jVusj from baryon semileptoni deayshave large unertainties and annot ompete with the more preise informationobtained from other soures.Hyperon semileptoni deays ould provide an independent determination ofjVusj, to be ompared with the ones obtained from kaon deays or from the Cabibbo�suppressed � deay width. However, our theoretial understanding of SU(3)V break-ing e�ets onstitutes a severe limitation to the ahievable preision. We have pre-sented a new numerial analysis of the available data, trying to understand thedisrepanies between the results previously obtained in Refs. [141℄ and [142℄, andthe systemati unertainties entering the alulation.The 1=NC expansion of QCD is a onvenient theoretial framework to study thebaryon deay amplitudes and estimate the size of SU(3)V breaking e�ets. From theomparison of �ts done at di�erent orders in symmetry breaking, one an learlyidentify the presene of a sizeable SU(3)V breaking at �rst order. However, thepresent unertainties are too large to pin down these e�ets at seond order.One an use the measured deay rates and g1(0)=f1(0) ratios to perform a ratherlean determination of j ~f1 Vusj. However it is impossible to disentangle Vus from ~f1without additional theoretial input. The Ademollo�Gatto theorem guarantees that~f1 = 1 + O(�2), but it has been argued that the seond�order SU(3) orretionsto ~f1 = 1 are numerially enhaned by infrared�sensitive denominators [144, 155℄.The existing alulations, using quark models or baryon hiral perturbation theory,



5.3 Vus from hyperon semileptoni deay 163give ontraditory results and signal the possible presene of sizable orretions.Adopting as an eduated guess the value ~f1 = 0:99 � 0:02, we �nd our �nal resultin Eq. (5:73).Table 5:11 ompares the hyperon determination of Vus, with the results obtainedfrom other soures. The present hyperon value has the largest unertainty. To geta ompetitive determination one would need more preise experimental informationand a better theoretial understanding of ~f1, beyond its symmetri value. Theaverage of all determinations isjVusj = 0:2225� 0:0016 : (5.82)Without the information from hyperon semileptoni deays, the average would be0:2221� 0:0016. Taking jVudj = 0:97418� 0:00026, from superallowed nulear betadeays [117℄, the resulting �rst�row unitarity test gives (the jVubj ontribution isnegligible) : jVudj2 + jVusj2 + jVubj2 = 0:9985� 0:0009 : (5.83)Thus, the unitarity of the quark mixing matrix is satis�ed at the 1:7 � level.
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Chapter 6Dispersion relations and unitarity
6.1 IntrodutionThe failure of early attempts to apply perturbative quantum �eld theory to thestrong and weak nulear fores led theorists by the late sixties to attempt the use ofthe analytiity and unitarity of sattering amplitudes as a way of deriving generalnon�perturbative results that would not depend on any partiular �eld theory. Thisstarted with a revival of interest in dispersion relations.Even before quantum �eld theory (QFT for short) was regarded as the theoryapable of desribing a relativisti quantum theory of partiles (at least at lowenergies [1℄), some of the basi ingredients (S�matrix, sattering amplitudes, : : : )and their properties (unitarity, rossing, : : : ) where already known, or at leastonjetured. In fat QFT provides a method of alulating these basi ingredients,and of ourse with its axiomati properties. However, in most (if not all) of the asesthe QFT alulation is of perturbative nature (by perturbative we mean any kindof organization allowing to drop some terms as subleading, and not neessarily anexpansion in the oupling onstant), and then some of the properties of the S�matrixare only satis�ed at the perturbative level (it is well known that the absorptive partof an amplitude appears for the �rst time at one loop, and not at tree level).So some times it is good to �forget� for a while the goods of QFT and derivegeneral expressions for the S�matrix elements or the sattering amplitudes (forinstane, dispersion relations), and afterwards ombine these relations with QFTresults to obtain the maximum information possible. In the ase of non�perturbativedynamis where the information is rather sare, these relations (of non�perturbativenature) are an essential tool for the QCD pratitioner.In this hapter we use axiomati �eld theory together with �PT to derive boundson the hiral LECs and to onstrain the preditions for the prodution of mesons intwo photon reations. For writing some of the tehnials aspets of this hapter Ihave followed [57, 164, 165℄.



166 Dispersion relations and unitarity6.2 Unitarity and partial wave deompositionUnitarity is the simplest and more fundamental requirement that any sensible the-ory must ful�ll. Basially it is equivalent to the quantum mehanial priniple of�probability onservation�. Of ourse, in a relativisti quantum theory partiles arereated and destroyed all the time, and so the quantum mehanis onept of �prob-ability� loses its meaning. Instead one must require that the probability of �ndingany �nal state j i i out of the ollision of several partiles j�i must be 100% :1 =Xi jh i jS j� ij2 =Xi h� jS j i ih i jSyj� i = h� jSSy j� i ; (6.1)and also that the probability of �nding a given �nal state j� i when trying with allpossible initial states j i i must be one : h� jSSy j� i = 1 for any state j� i. If nowwe write j� i = a1 j�1i+ a2 j�2i with j�1i 6= j�2i and a21 + a22 = 1 we obtain1 = 1 + a�1a2h�1 jSSy j�2 i + a1a�2h�2 jSSy j�1 i : (6.2)Sine this must be satis�ed for arbitrary a1, a2, neessarily h�1 jSSy j�2 i = 0. Thisrelation together with Eq. (6.1) enables us to write the unitarity requirement as anoperator identity : SSy = SyS = 11 : (6.3)It is ustomary to separate the trivial part of the S�matrix desribing the probabilityof the partiles not to interat at all from the so alled T�matrix, enoding thedynamis : S = 11 + i T : (6.4)Moreover, sine the S�matrix must ommute with the generators of the Poinarï¾12group, when the initial and �nal states have well de�ned total momentum Pi andPf it must have an overall momentum onservation Dira delta funtion, that anbe fatored out as well :hPf jT jPi i = (2 �)4 Æ(4)(Pf � Pi)M ; (6.5)beingM the redued matrix element. Inserting Eq. (6.4) into (6.3) we obtain� i �T � T y� = T y T : (6.6)Let us onsider the sattering proess of two partiles into two partiles, and let usinsert a Parseval identity in the right�hand side of Eq. (6.6)� i [M(k1k2 ! p1p2)�M(p1p2 ! k1k2)�℄ = Xf Z dQfM(k1k2 ! f)M(p1p2 ! f)� ;(6.7)



6.2 Unitarity and partial wave deomposition 167Of ourse time reversal invariane (if it applies) requiresM (p! k) =M (k ! p).Let us assume now that the identity of the initial and �nal states is the same, andalso that pi = ki (forward sattering). Then Eq. (6.7) redues to the so alled Optialtheorem ImM(k1k2 ! k1k2) = �(s;m21; m22) �tot(k1k2 ! all) > 0 : (6.8)The diagrammati representation of this equation is shown in Fig. 6.1. Althoughthis expression is very interesting by itself, it only applies for the spei� ase offorward sattering. It would be desirable to have a similar expressions for moregeneral situations. In fat one an write unitarity relations like in Eq. (6.8) forthe partial wave amplitudes. We an haraterize the initial and �nal states bythe value of the total spin of the two partiles, its total energy and two anglesde�ning the orientation of the three�momentum (the option we have used so far).Without lose of generality we an hoose the initial state momenta to point inthe z diretion. Another possible hoie (orresponding to another omplete set ofommuting operators) is the value of the spin of the two partiles, its total energy,the value of the total angular momentum J and its third omponent M . It isonvenient to separate the uninteresting enter of mass three�momentum :j ~p1; ~p2; s1; s2i = j~P i 
 jE; �; �; s1; s2i ;j~P;E; J;M ; s1; s2i = j~P i 
 jE; J;M ; s1; s2i ; (6.9)The two basis are related by (we label the total energy in the enter of mass frameby E) jE; �; �; s1; s2i = XJM J D(J)M;�(�; �;��) jE; J;M ; s1; s2i ;jE; J;M ; s1; s2i = J Z d
D(J) �M;� (�; �;��) jE; �; �; s1; s2i ;� = �1 � �2 ;J = r2 J + 14 � ; (6.10)where D(J)M;� are the usual rotation matries. Matrix elements of the T�matrix takenwith states of de�nite angular momentum are known as partial waveshE 0; J 0;M 0; s01; s02 jT jE; J;M ; s1; s2i = (4 �)(2�)4ÆJJ 0ÆMM 0Æ(E � E 0)MJ12!1020(E) ;hE 0;
; s01; s02 jT jE; 0; s1; s2i = (2 �)4Æ(E � E 0)M12!1020(E;
) ; (6.11)and the two deompositions of the T�matrix are relatedM12!1020(E;
) = XJ (2 J + 1)D(J) ��;�0 (�; �;��)MJ12!1020(E) ;MJ12!1020(E) = (2 J + 1) Z d
D(J)�;�0(�; �;��)M12!1020(E;
) : (6.12)



168 Dispersion relations and unitarityThe �rst relation of Eq. (6.12) is known as the partial wave deomposition of thesattering amplitude. Taking matrix elements of Eq. (6.6) with angular momentumeigenstates, and inserting a Parseval identity, expressed in the angular momentumbasis, we obtain (the sum over �nal states inludes integrations and sum over po-larizations)MJ12!1020(E) � MJ1020!12(E)� = iXf MJf!1020(E)MJ12!f(E)� ; (6.13)where f is a multipartile state with total energy E and total angular momentumJ . If the identity (and hene spin) of the initial and �nal states oinide we obtainthe optial theorem for partial wave amplitudes2 ImMJ12!12(E) = Xf ��MJ12!f(E)��2 > 0 ; (6.14)and when inserting this result bak into Eq. (6.12) we get2 ImM12!12(E) = XJ;f (2 J + 1)D(J) ��;�0 (�; �;��) ��MJ12!f(E)��2 (6.15)
2 Im = �f f faa
b b

 
d dFigure 6.1: Diagrammati representation of the optial theorem.To lose this setion we will omment on the onepts of rossing symmetry andanalytiity. Crossing symmetry states that (for simpliity we will assume spinlesspartiles) given the reation a b!  d desribed by the matrix elementMab!d(s; t)being s, t and u the usual Mandelstam variables 1 de�ned ass = (pa + pb)2 = (p + pd)2 s > (ma +mb)2 ;t = (pa � p)2 = (pb � pd)2 t < Min �(ma �m)2; (mb �md)2� ;u = (pa � pd)2 = (pb � p)2 u < Min �(ma �md)2; (mb �m)2� ; (6.16)satisfying the on�shell onstraints + t + u = m2a + m2b + m2 + m2d ; (6.17)1For the de�nition of the Mandelstam variables the ordering of the initial and �nal state partilesis important. For instaneMab!d(s; t) =Mab!d(s; u).



6.3 The linear sigma model 169the rossed hannel reations (see Fig. 6.2) are desribed by the same matrix elementas follows : Ma!bd(s; t) =Mab!d(t; s),Mad!b(s; t) =Mab!d(u; t).Analytiity states that, if we regard the amplitudeM(s; t) as a funtion of theomplex variables s and t, the amplitude is analyti everywhere in the omplex s� tspae exept for a number of isolated points, due to single partile exhange andbranh uts along the real axis, neessary for unitarity to be satis�ed. So all thebranh uts overlap and we have a single branh ut, its branh point oinidingwith the �rst possible intermediate state. The rest of branh uts are ditated byrossing symmetry. The physial amplitudes are de�ned for ertain (real) values of sand t with a ertain presription, aeptable for all the rossed hannels. The threephysial regions are non�overlaping, and out of them the amplitude is de�ned byanalyti ontinuation. So physial amplitudes are boundaries of the same analytifuntionM(s; t). This statement an be translated to the partial wave amplitudesMJ(s). Let us keep in mind that one partial wave amplitude from the s�hannelreeives ontributions from all the partial waves de�ned in the t� or u�hannels.
s

ta

b



dFigure 6.2: Graphi representation of the s and t rossed hannels.
6.3 The linear sigma modelIn this setion we introdue and disuss the SU(2) linear sigma model of Gell�Mannand Levy [166℄. This model was originally developed as a toy model for nulearfores, desribing the nuleon�pion interations. It inorporates in an spei� waythe breakdown of hiral symmetry. Here we will onentrate only in the salar setorof the model. For this setion I have followed Refs. [92, 93, 167℄.In linear sigma models, basi �elds are assumed to belong to linear represen-tations of the hiral group G. We will onsider representations of low dimensions,playing the main rï¾12 le at low energies. Then one builds the most general La-grangian being renormalizable and hiral invariant. For denoting the irreduiblerepresentations of G we will use the notation (m;n), being m and n the dimen-sion of the orresponding left and right SU(2) subgroups [ note that SU(2) is a realgroup ℄. The fundamental left� and right�handed �elds �L, �R are fermioni. Theytransform under G as (2; 1) and (1; 2) : � 0LR = gLR �LR. Under parity, of ourse



170 Dispersion relations and unitarity�L $ �R. The Dira representations  = �R + �L and 5  = �R � �L transformas (2; 1) + (1; 2) and are parity eigenstates.Of partiular importane is the (hiral) four�vetor representation, that an bebuilt out of the fundamental onesB� = �yR �� �L ; (6.18)where �� = (11; �i) are the Pauli matries ating on the isospin indies. The basitransformation rule of B� under an in�nitesimal hiral transformation isB0 ! B0 + i~a � ~B ;~B ! ~B + ~v � ~B + i B0~a ; (6.19)where we have written the hiral transformation Eq. (1.4) asg = exp [ i (~v � ~a) � ~� ; i (~v + ~a) � ~� ℄ : (6.20)Eq. (6.19) implies that the group SU(2)
 SU(2) is isomorphi to O(4). The four�vetor B� is not a parity eigenstate : BP� = By�. We an form the appropriateombinations with de�nite parity�� = �yR ���L + �yL ���R = � ��  ;�� = i (�yR ���L � �yL ���R) = � �� i 5  ; (6.21)and so there are two hiral four�vetors of (Lorentz) salars and pseudosalars. Theirin�nitesimal transformations under G are�0 ! �0 + ~� � ~a ;~� ! ~� + ~v � ~� + �0 ~a ;�0 ! �0 � ~� � ~a ;~� ! ~� + ~v � ~� � �0 ~a ; (6.22)from these we see that there are two invariants in quadrati form : �20 + ~� 2 and�20 + ~� 2. Sine in nature there are three degenerate negative�parity states (pions)we will adopt the �rst ombination as the basi building blok. It onstitutes thelength of a four�vetor (�0; ~�) in notation of the O(4) group. We will identify �0 � �and, in order to have a more diret onnetion with the hiral group G we will groupthe partiles in the matrix 2 � = � + i ~� � ~� ; (6.23)whih reprodues the transformation rules (6.22) if it transforms under G as �0 =gL� gyR (of ourse the hoie � = �0 + i ~� � ~� is transformed in a similar way with2By a �eld rede�nition the � matrix an be ast into the form � = � exp(i~��~�v ). Then ��y = �2and the pion dynamis is entirely ontained in the kineti term.



6.3 The linear sigma model 171L $ R). Now, sine ��y = �y � = (�2 + ~� 2) 11 and det � = �2 + ~� 2 it followsthat ��y is p�2 + ~� 2 times a unitary unimodular matrix, and that �2 + ~� 2 is theonly possible hiral invariant. So the most general invariant Lagrangian isL = 14 
��� ���y�� V (�2 + ~�2) = 14 
��� ���y�+ �24 
��y�� g16 
��y�2= 14 
��� ���y�� g16 �
��y�� 2 v2�2= 12 (��� ��� + ��~� ��~�)� g4 �(�2 + ~� 2)� v2�2 ; (6.24)with v2 = �2=g. If �2 < 0 the symmetry is realized a la Wigner�Weyl, and allpartiles have a ommon mass of p��2. For �2 > 0 the symmetry is realized ala Nambu�Goldstone and the Lagrangian exhibits the phenomenon of spontaneoussymmetry breaking. This last possibility is the one onerning us.The vauum, whih has the lowest energy is expeted to be stati and uniform(�� ��i = 0), and so the energy minimum satis�es �V=��i = 0. The minimumondition is 3 �2 + ~� 2 = v2 ; (6.25)and so we have an in�nite number of on�gurations with minimum energy. Now wean use our freedom to make hiral transformations to rotate any vauum expe-tation value into the � diretion. If the minimum has a non�vanishing omponentin a pion diretion, it does not have de�nite parity, ontraditing nature. So thatwithout any loss of generality we an assumeh�i = v ; h~� i = 0 ; (6.26)and perturb around the vauum. Thus we de�ne the shifted �eld and the shiftedmatrix �0 = � � v ; �0 = � � v 11 ; (6.27)in whih the Lagrangian readsL = 14 
���0 ���0 y�� g16 �
�0 �0 y� + v 
�0 + �0 y��2 (6.28)= 12 ����0 ���0 �m2� �02 + ��~� � ��~��� g4 ��0 2 + ~� 2�2 �rg2 m� �0 ��0 2 + ~� 2� ;with m2� = 2�2 = 2 g v2. The new Lagrangian (6.28) do not have the full SU(2)
SU(2) � O(4) symmetry any more, but possesses a remnant SU(2) � O(3) symme-try. So, as expeted from the Goldstone theorem, there appear in the theory three3In the form � = � exp(i~� �~�F ) the minimum ondition reads diretly �2 = v2 and � 0 = (v +�) exp(i~� �~�v ).



172 Dispersion relations and unitaritymassless spin�zero partiles, the Goldstone bosons. The � salar partile, however,has aquired a non�vanishing mass.As disussed in Chapter 1, in the real world the SU(2)
SU(2) � O(4) symmetryis also expliitly broken by the mass term of the u and d quarks. Assuming thatisospin is preserved by this mass term (that is, mu = md) the linear sigma modelLagrangian is only invariant under SU(2) � O(3). So, we must introdue a termviolating hiral symmetry but preserving isospin symmetry (and of ourse, beingrenormalizable and hermitian). The simplest hoie is to add to Eq. (6.24) a termlike 
� + �y� (analogous to an external magneti �eld) :L = 14 
��� ���y�+ �24 
��y�� g16 
��y�2 + � 
� + �y� : (6.29)When trying to �nd the minimum of the potential, we �nd that there is no degen-eray in the vauum state as in Eq. (6.25) any more. Now the minimum onditionimposes h~�i = 0 and h�i = v ; where v must satisfy the third order equation�2 v � g v3 + 4 � = 0 : (6.30)We an use Eq. (6.30) in order to write the Lagrangian in a more apparent wayL = 14 
���0 ���0 y�� g16 �
�0�0 y�� 2 v2�2 � �v 
�0 �0y�+ � 
�0 + �0 y� ; (6.31)and after writing the Lagrangian in terms of the exitations around the true vauumone gets :L = 14 
��� 0 ��� 0 y�� g16 �
� 0� 0 y�+ v 
� 0 + � 0 y��2 � �v 
� 0� 0 y�= 12 ���� 0 ��� 0 �m2� �0 2 + ��~� � ��~� �m2 ~� � ~��� g4 �� 0 2 + ~� 2�2�rg (m2� �m2)2 � 0 �� 0 2 + ~� 2� ; (6.32)where we have used the following relations and de�nitions :�2 = m2� � 3m22 ; v2 = m2� �m22 g ; � = m24 sm2� �m22 g : (6.33)By means of a tree level mathing with �PT we an relate the g onstant with thepion deay onstant 4 g = m2� �m22F 2 ; (6.34)4Note that in Ref. [9℄ the relation 2 g = m2�=F 2� is used. However we identify F� with thevauum expetation value of the � �eld v, whih an be shown to oinide with the pion deayonstant at leading order. In addition, in the non-linear parametrization of the LSM the pion�elds are olleted in the exponential matrix exp(i ~� � ~�=v), wih ompares well with �PT afterthe identi�ation F� = v is made. Finally, m� depends on the pion mass but at leading orderthe ombination m2� �m2 does not. Although in pratie this hoie does not a�et the results ofEq. (6.60) and the disussion of this setion, we prefer to use the notation of Ref. [182℄.



6.4 Bounds on hiral LECs from dispersion relations 173whih allows us the write the Lagrangian asL = 12 ���� 0 ��� 0 �m2� � 0 2 + ��~� � ��~� �m2 ~� 2�� m4�F 4 �� 0 2 + ~� 2�2 � m�F p(m2� �m2)� 0 �� 0 2 + ~� 2� : (6.35)Let us alulate the minimum value m2�m2� an ahieve. From (6.33)m2�m2� = 1 + g v32 � ; (6.36)and then ould naï¾12vely think that for g ! 0 m2�m2� ! 1 but this is not truebeause from (6.30) follows that g v3 � 4 � � 0, and so � ! 0 as g does. De�ningg v3 = 4 � + g 0 v3 ; we always ful�ll the minimum ondition for g0 > 0. Rewriting(6.36) we get m2�m2� = 3 + g 0 v32� ; =) m2�m2� � 3 : (6.37)where the limit is ahieved for g 0 ! 0+.As a last omment, all the derivations we have done for �nding the minimum ofthe potential are only valid at tree level. If one is to perform a one�loop alulation,the minimum ondition has to be derived imposing a vanishing � one�point funtion,as disussed in Appendix H.6.4 Bounds on hiral LECs from dispersion rela-tionsLow energy pion dynamis, partiularly elasti pion�pion sattering enodes usefulinformation about the on�ning dynamis of the strong interations. The pions (andkaons) are the pseudo Goldstone bosons assoiated with the spontaneous breakdownof the hiral symmetry in QCD, a purely non�perturbative phenomenon.As explained in Chapter 1, the standard tehnique to study the pion dynamisat very low energies as a series expansion in powers of the momentum and thequark masses is Chiral Perturbation Theory (�PT). It is formulated in terms ofa Lagrangian whose only degrees of freedom are pions and whih inorporates thesymmetries of QCD, inluding spontaneously broken hiral symmetry. It also hasall the usual bene�ts of a Lagrangian formalism.At lowest order the physial observables are determined it terms of two param-eters, namely the pion deay onstant F and the pion (and kaon) mass m� (mK).The determination of their values from the experimental data is very preise. Ifone wants to go beyond the lowest order, a number of LECs li or Li, not �xed bysymmetries must be inluded. The grow of low energy onstants (LECs for short)



174 Dispersion relations and unitarityis even more dramati in the theory with three �avours [SU(3) ase ℄ beause theCayley�Hamilton relations are less restritive than for the SU(2) theory. Thesean be determined by �tting to experimental data (for the best determination seeRefs. [168,169℄) or estimated by vetor�meson dominane as disussed in Chapter 2(see also [13, 170℄), but both methods have large unertainties.An alternative formulation of � � (and �K) sattering an be obtained basedonly on axiomati priniples of quantum �eld theory, suh as analytiity, unitarityand rossing symmetry. This allows one to obtain relations between observablequantities that must hold, regardless of the theory used for the desription of thephenomenon under study. Of ourse, one of the usual bene�ts of an e�etive theoryapproah is that many of these priniples are automatially satis�ed by the satteringamplitudes omputed using the e�etive theory. Nevertheless, there is still usefulinformation missing in the e�etive theory approah, and one obtains interestingresults by studying the onstraints imposed by axiomati priniples on the e�etiveLagrangian. Analytiity and unitarity an be exploited to write the well knowndispersion relations for the sattering amplitudes. These, together with rossingsymmetry, an be onverted into positivity onditions on sattering amplitudes,whih in turn, an be ombined with the �PT preditions to give bounds on the �l1and �l2 LECs in the hiral Lagrangian at O(p4) [171℄. We will extend this study alsoto the SU(3) ase, in whih the kaon and eta partiles also appear in the Lagrangian,to obtain bounds for L1, L2 and L3 [172℄.Two��avour �PT was ombined with axiomati priniples in Ref [173℄, whihanalyzed onstraints on s and p partial wave amplitudes in the framework of disper-sion relations. The analysis was done in �PT at the one�loop level. In Ref. [174℄this study was extended to over all three isospin amplitudes of � � sattering atthe two�loop level in �PT. The best bounds were found for positivity onditionson full amplitudes (in ontrast with partial wave amplitudes), and we follow thisapproah in the present work. However, we �nd inonsistenies in the domain ofappliability of the positivity onstraints used in Ref. [174℄ whih will be explainedin Setion 6.4.1. Similar bounds where �rst found in Ref. [170℄ in the ontext ofthe Froissart�Gribov representation for the sattering lengths. More reently, inRef. [175℄, the very same bounds of Ref. [170℄ were redisovered using the sameproedure as in Ref. [174℄ but using a more restrited domain of validity (in theMandelstam plane) of the positivity onstraint. Referenes [170,175℄ both used one�loop �PT amplitudes. We show that the methods of Ref. [170℄ and Refs. [174, 175℄are equivalent, and we improve the bounds by properly using the domain of validityonsidered in Ref. [174℄, whih is bigger than that onsidered in Ref. [175℄.To our knowledge the �rst attempt to onfront dispersion relations with three��avour �PT to bound linear ombinations of LECs was Ref. [176℄. However, inthis early work, the ontribution from hiral logarithms in the O(p4) amplitudewas ignored. This simpli�ation beomes exat in the limit of in�nite number ofolours, but for a numerial analysis better results are obtained maintaining alsohiral loops. In Ref. [176℄ it was only possible to assert that ertain linear ombi-nations of LECs were positive, and no information about the sale at whih these



6.4 Bounds on hiral LECs from dispersion relations 175LECs were evaluated ould be obtained.In Ref. [177℄ a di�erent approah was followed for putting bounds on some �PTparameters. QCD inequalities on Green funtions of quark bilinear urrents wereused to obtain relations (inequalities) that involve light quark masses, the quarkondensate and some LECs. With our method we are insensitive to the quark massand ondensate, sine these are lowest order quantities and our analysis starts atO(p4). On the other hand, sine our study relies on sattering amplitudes, we onlymake use of the hiral Lagrangian when vetor, axial�vetor and salar soures areswithed o� (one always needs the salar soure for giving masses to the pseudo�Goldstone bosons). In fat we an only give bounds for the O(p4) LECs of operatorsontaining only pseudo-Goldstone �elds, L1, L2 and L3, and so our results do notoverlap with theirs.The LSM Lagrangian is renormalizable and thus has a redued (�nite) numberof parameters ompared with the most general hiral Lagrangian. It shares the samesymmetries as �PT but has an additional (�) partile in its spetrum. If the � massis su�iently greater than that of the pions, it an be formally integrated out of theation, leaving behind the �PT Lagrangian, with all the LECs having spei� valueswhih an be predited in terms of the �nite number of parameters of the LSM.The values for �l1 and �l2 predited by the LSM do not satisfy the dispersionrelation bounds for low values of the � mass. We will demonstrate that the LSMis perfetly onsistent with the dispersion relation bounds and that the apparentontradition results beause for low values of the � mass, integrating out the � isnot valid, or equivalently, that higher order terms in the hiral expansion annot benegleted.It is the purpose of Setion 6.4.2 to generalize those results to the SU(3) theory,and in partiular to extend the method to over the situation of di�erent masses[ this is, onsidering SU(3)V symmetry breaking ℄. In this way we will �nd out if forthree �avours �PT su�ers the same anomaly as the linear sigma model.Sine �PT onsists on an expansion in both the external momenta and quarkmasses, the oe�ients of the expansion (that is, the LECs) annot depend on eitherof them. This means that LECs do not depend on the pseudo�Goldstone bosonsmasses. In other words the value of hiral LECs in our universe with ms 6= mu = mdis the same as in �another� universe in whih the symmetry is unbroken, mu = md =ms. It is ommon lore in the literature, for instane, to onsider massless quarks forestimating the values of some LECs, but this limit is not suitable for a dispersionrelation analysis. The most straightforward generalization of the method used for � �is thus to onsider the exat SU(3)V limit in whih there are only �ve independentamplitudes.The bounds derived in this limit have two drawbaks : �rst, it is not lear whatommon mass should be adopted for the degenerate otet, what is essential to om-pare our bounds with the values obtained by �tting the experimental data (usuallydisplayed at the � = m� sale); seond, the results are not very hallenging. In orderto assess these two problems we will repeat our analysis with the physial valuesfor the K and � masses. In this ase the dispersive integrals will imply positivity



176 Dispersion relations and unitarityonditions only under more severe onditions. One these are addressed the newbounds turn out to be muh more restritive, and remarkably the entral values ofthe �tted LEC values lie preisely on the border ditated by axiomati priniples.6.4.1 SU(2) boundsDispersion relations for � � satteringIn this setion, we �nd the region of the Mandelstam s � t plane in whih the � �sattering amplitude is analyti, and derive the orresponding dispersion relations.We begin by brie�y reviewing a few properties of � � sattering. For furtherdetails the reader is referred, for instane, to Ref. [178℄. The three pioni states anbe labeled either by I3 = � 1; 0; 1 or by Cartesian indies a = 1; 2; 3. Both sets ofstates are linearly related between them and to the physial pion states :�� �� � = 1p2 ��� �1 �� ���2�� ; �� �0 � = �� �3 � ;j 1;�1 i = � �� �� � ; j 1; 0 i = �� �0 � ; (6.38)where j�a i denotes the Cartesian basis, and j 1; I3 i denotes the isospin basis states.Isospin invariane implies that there are only three linearly independent satteringamplitudes in the I = 0; 1; 2 hannels, and rossing symmetry relates them to eahother, so they an all be desribed by a single funtion of s and t. In the Cartesianbasis we an write the Chew�Mandelstam formulaT (a b!  d) = A(s; t; u) ÆabÆd + A(t; s; u) ÆaÆbd + A(u; t; s) ÆadÆb :(6.39)Crossing symmetry implies A(x; y; z) = A(x; z; y) � A(x; y) = A(x; 4m2 � x � y)where m is the pion mass. The funtion A is related to the isospin amplitudesthroughT 0(s; t) = 3A(s; t) + A(t; s) + A(u; s) ; T 1;2(s; t) = A(t; s)� A(u; s) : (6.40)The I = 0; 2 amplitudes are symmetri under the exhange of the �nal states,whereas the I = 1 is antisymmetri : T (0;2)(s; t) = T (0;2)(s; u), T 1(s; t) = �T 1(s; u).The isospin amplitudes in the di�erent kinemati hannels are also linearly re-lated. For our present purposes, we only need the relation with the rossed u�hannel. This follows diretly from Eq. (6.40) and an be onveniently displayed inmatrix notationT I(s; t) = CII0u T I0(u; t) ; CII0u CI0Ju = ÆIJ ; Cu = 16 0BBB� 2 � 6 10� 2 3 52 3 1 1CCCA; (6.41)where, as expeted, the rossing�matrix Cu is its own inverse. T I(s; t) is the sat-tering amplitude with isospin I in the s�hannel, and T I0(u; t) is the amplitude withisospin I 0 in the u�hannel.



6.4 Bounds on hiral LECs from dispersion relations 177Axiomati priniples an be used to show that sattering amplitudes are analytiin the full omplex s plane exept for possible isolated points, due to single partileexhange, and branh uts, due to unitarity. For our purposes we only need to knowthe position s0 of the �rst branh point along the real axis of the omplex s plane.There is then a branh ut along the real s�axis for s � s0. Any other singularitiesalong the real s�axis will be along this ut. The remaining branh uts will bedetermined by rossing symmetry.Let us onentrate on the s hannel keeping t �xed. Unitarity ensures that for reals, the sattering amplitude only develops an imaginary part above the lowest massthreshold of possible intermediate states 5. In our ase the threshold orresponds totwo�pion states, i.e. s0 = 4m2. This means that above the prodution threshold (forphysial amplitudes) the sattering amplitude is omplex. Sine below threshold, theamplitude is real and analyti away from the real axis, it follows from the Shwarzre�etion priniple that T � (s+ i �) = T (s� i �) and hene T (s+ i �)�T (s� i �) =2 i ImT (s+ i �) 6= 0. This means there must be a branh point at s = 4m2, anda disontinuity in the amplitude along the real axis for s > 4m2. We will hoosethe branh ut to run along the real s axis, beause as already explained, the otherbranh points due to higher mass thresholds (e.g. four�pion state s1 = 16m2) orsingularities due to single�partile states (e.g. � exhange s� = m2�) will lie along it.We onlude that our amplitude is non�analyti for s > 4m2, regardless of the valueof t. The amplitude must also reprodue the singularities in the rossed hannels,so it is non�analyti for s; t; u > 4m2. The region in the s � t plane where theamplitude is analyti is limited to the inside of the triangle de�ned by the onditionss; t � 4m2, s+ t � 0. 4m2 is referred to as the normal threshold, assoiated to theprodution of two pions. In Refs. [173,175℄ it is assumed that the amplitude is onlyanalyti between the normal threshold and the abnormal threshold, orrespondingto s; t; u = 0. The region delimited by the ondition 0 < s; t; u < 4m2 is known asthe Mandelstam triangle (see Fig. 6.3).However it has been proved [164℄ using very general arguments that rely on per-turbation theory to all orders (i.e. that are true for every single Feynman diagram),that the amplitude beomes non�analyti only above the normal threshold, and thatnothing partiular happens at s = 0. The region bounded by s; t; u < 4m2 is thelarger triangle shown in Fig. 6.3. This is the main di�erene between our methodand that of Ref. [175℄. We use analytiity in a larger domain, and so obtain morerestritive onditions on the sattering amplitude. Ref. [174℄ uses the same analyt-iity domain as we do. However, in their numeri omputations, they inlude pointsoutside this region, whih is not justi�ed.The derivation of the dispersion relation is quite straightforward and is veryniely explained, for instane, in Ref. [165℄. For our derivation we onsider t as a5Above threshold, the physial sattering amplitude is de�ned as the value given by approahingthe ut from above, T phys(s; t) = T (s+ i �; t), with � ! 0. This orresponds to the Feynman i �presription for propagators
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Figure 6.3: Mandelstam plane for � � sattering. The small triangle in the enter isthe Mandelstam triangle. The big triangle is the region free from singularities. Theouter dashed regions denote the physial regions for the three rossed hannels, andthe inner dashed region orresponds to the area A in whih the positivity onditionsare de�ned.�xed parameter. We an then use Cauhy's theorem to writeT I(s; t) = 12 � i I dx T I(x; t)x� s ; (6.42)wherever the amplitude is analyti in a neighborhood (in s) of the point (s; t), andwhere the ontour  enloses the point x = s [ see Fig. 6.4 (a) ℄.
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 0s s

Figure 6.4: Contour integrals leading to the �xed t dispersion relations.Then t � 4m2, and if s > 0, we have to use s ! s + i �, as already mentioned.From the results of Ref. [164℄ we infer that �xed�t dispersion relations hold for



6.4 Bounds on hiral LECs from dispersion relations 179t < 4m2, but using solely axiomati priniples it an be shown (Ref. [179℄) thatthey are at least valid in the interval � 28m2 � t � 4m2, whih will be adequatefor our purposes. For �xed t, we have along the real s�axis a right�hand branh utfor s > 4m2 and a left�hand branh ut for s < � t. The  ontour in Eq. (6.42)an be deformed into  0, as shown in Fig. 6.4 (b) in order to express the integral interms of the disontinuity of the amplitude along the real axis. In order to do this,the amplitude must fall su�iently rapidly that the ontribution from the ontourat in�nity vanishes. If it does not, we an perform n derivatives (subtrations) toinrease the onvergene at in�nity,dndsnT I(s; t) = n!2�i I dx T I(x; t)(x� s)n+1 : (6.43)For large enough n that the ontour at in�nity does not ontribute, one �nds aftersome straightforward manipulations thatdndsnT I(s; t) = n!� Z 14m2 dx � ÆII0(x� s)n+1 + (�1)n CII0u(x� u)n+1� ImT I0(x+ i �; t) :(6.44)The �rst term is from the disontinuity aross the right�hand ut. The seond termis from the disontinuity aross the left�hand ut, rewritten using rossing symmetryand Eq. (6.41) to relate the s�hannel disontinuity in the unphysial region s < 0to the u�hannel disontinuity in the physial region.The best onstraint omes from using Eq. (6.44) with the smallest possible valueof n. The Froissart bound [180℄ �xes the minimum number of subtrations neededfor pion�pion sattering to n = 2. Clearly, if we restrit ourselves to s < 4m2 ands+ t > 0, both denominators in Eq. (6.44) are positive, and if n is an even number(for instane, in our ase n = 2) the relative sign is also positive, exept for the signof CII0u .
2 Im = + +

(s) (t) (u)Figure 6.5: Lowest mass branh points in the three rossed hannels, orrespondingto the physial threshold of two�pion prodution .Bounds implied by the dispersion relationEah isospin amplitude admits a partial wave expansion. In the ase of spin�zeropartiles, the amplitude depends only on the sattering angle �, de�ned as the angle



180 Dispersion relations and unitaritybetween the three�momenta of the �rst initial and �nal pions, in the enter ofmass frame. Speializing Eq. (6.12) to spin�zero partiles, taking � = 0 and usingDJ00(�; �;��) = Pl(os �) we get :T I(s; t) = 1X̀=0 (2 `+ 1) f Ì(s)P`(os �) = 1X̀=0 (2 `+ 1) f Ì(s)P`�1 + 2 ts� 4m2� ;(6.45)where f Ì(s) denotes the partial wave amplitudes. The optial theorem impliesIm f Ì(s) = s �(s) �Ì(s) � 0 ; (6.46)where �(s) =q1� 4m2s is the veloity of the pions in the enter of mass frame, and�Ì are the partial�wave ross�setions in a given isospin hannel. Equation (6.46)gives ImT I(s; t) = 1X̀=0 (2 `+ 1)s �(s) �Ì(s)P`�1 + 2 ts� 4m2� : (6.47)The partial wave expansion of the absorptive part onverges in the large Lehmann�Martin ellipse, whih, when projeted onto real s translates into the interval� 4m2 <s < 60m2. We also need to make sure the absorptive part is positive. In Eq. (6.44),the region of integration is s > 4m2, and as pointed out in Ref. [173℄, sine P`(z) > 1for z > 1 for all `, if we restrit ourselves to t > 0, eah partial wave ontributionto the imaginary part is positive and so the full imaginary part is itself positive. Asnoted in Ref. [175℄, one an �nd ertain linear ombinations P aI T I with aI � 0,P aI CIJu TJ � PJ bJ TJ with bJ = PI aI CIJu � 0. For these linear ombinations,the two terms in brakets in Eq. (6.44) give a positive ontribution. Hene, for theselinear ombinations, in the region A de�ned as s; t < 4m2, t > 0 and s+ t > 0 (seeFig. 6.3) the right�hand side of Eq. (6.44) for n = 2 is also positive.There are three linear ombinations whih satisfy the positivity ondition, orre-sponding to the physial proesses �0�0 ! �0�0, �+�+ ! �+�+ and �+�0 ! �+�0.In matrix notation we an write0 � C I Jpos d2ds2T J [ (s; t) 2 A ℄ ; Cpos = 0BBB� 13 0 230 12 120 0 1 1CCCA : (6.48)These results are in fat expeted and an be dedued without any mention ofisospin amplitudes. The optial theorem ensures that for proesses with the sameinitial and �nal partiles a + b ! a + b, the imaginary part of eah partial waveis positive de�nite. The rossed u�hannel for those proesses has equal initial and�nal states as well, a + �b ! a + �b, so for suh proesses, the imaginary part along



6.4 Bounds on hiral LECs from dispersion relations 181the right� and left�hand uts will be always positive. The positivity onditions forthe three proesses are0 � d2ds2T ��0�0 ! �0�0� [ (s; t) 2 A ℄ ; 0 � d2ds2T ��+�0 ! �+�0� [ (s; t) 2 A ℄ ;0 � d2ds2T ��+�+ ! �+�+� [ (s; t) 2 A ℄ ; (6.49)orresponding to 23 T (2)(s; t) + 13 T (0)(s; t), 12 T (2)(s; t) + 12 T (1)(s; t) and T (2)(s; t), re-spetively.Bounds for l1 and l2 in �PT : hoie of the most stringent pointIt is simple to onvert the onditions displayed in Eq. (6.49) into bounds for hiralLECs. The regionA overs a very low energy domain, and is below the 2 � thresholdin any of the three rossed hannels. In this range of energies one expets the hiralexpansion to work well, so we will approximate the right�hand side of Eq. (6.49) bythe �PT result at O(p4).Sine the �PT amplitude is derived from a loal Lagrangian, it automatiallyrespets the priniples of rossing symmetry, unitarity and analytiity. One ouldnaï¾12vely argue that the positivity onstraints should also be automatially satis�ed,but this is not neessarily true. As noted in Ref. [173℄, �PT is an expansion inlow momenta, so the amplitude has polynomial behaviour (up to logarithms) andgrows as s2 or even worse at higher orders, violating the Froissart bound. As aresult, the positivity onstraints provide additional information beyond �PT, andgive restritions on the LECs.The �PT leading order amplitude is linear in s and t and so vanishes on takingthe seond derivative; the next�to�leading order amplitude does not. The O(p4)amplitude an be found in Ref. [9, 18℄, and its seond derivative depends only ontwo LECs : �l1 and �l2 in the SU(2)L 
 SU(2)R hiral Lagrangian. The amplitudean be split into polynomial terms quadrati in momenta and masses, and hirallogarithms. The former ontain the LECs and their seond derivatives yield energyindependent terms; the latter depend only on momenta and masses, are independentof theO(p4) LECs, and give energy dependent ontributions to the seond derivative.The general struture of the bound an thus be written as2Xi=1 �ji �li � fj[ (s; t) 2 A ℄ � 0 j = 1; 2; 3 ; (6.50)where �ji are real oe�ients and fj(s; t) are funtions obtained from hiral loga-rithms and LEC�independent polynomial terms, and j labels eah one of the pro-esses in Eq. (6.49). The most stringent restrition is obtained for those values of(s; t) that maximize fj(s; t) inside the region A :2Xi=1 �ji �li � fj[ (s; t) 2 A ℄ ���max : (6.51)



182 Dispersion relations and unitarityProess LECs Maximum position Bound Fit to Expt�0�0 ! �0�0 �l1 + 2�l2 s = 0 � 15740 = 3:925� 0:4 8:2� 0:6�+�0 ! �+�0 �l2 s = 0 � 2720 = 1:350� 0:4 4:3� 0:1�+�+ ! �+�+ �l1 + 3�l2 1:114m2 � 5:604� 0:4 12:5� 0:7Table 6.1: Bounds obtained by unitarity, rossing and analytiity and omparisonwith values extrated from a �t to the experimental data given in Ref. [168℄. Theerror on the bound is an estimate of the O(p6) terms.It is important to estimate possible orretions to the bounds in Eq. (6.51) omingfromO(p6) terms in the amplitude. The omputation of the � � sattering amplitudeat this level of preision was performed in Ref. [181℄, and an be split into threepiees : two�loop terms (double hiral logarithms), that only depend on m and F�;one�loop terms (single hiral logarithms), that depend linearly on several O(p4)LECs (not only l1 and l2); and tree�level terms, that depend on O(p6) LECs. InRef. [174℄, Eq. (6.50) was alulated with the orresponding O(p6) amplitude for�0�0 and �+�0 at s = 0, t = 4m2. Unfortunately the orresponding O(p6) LECsare badly known (resonane saturation estimates are usually used), and the hiralLECs we want to bound, l1 and l2, appear again in the one�loop terms. In additionthe rest of LECs in the one�loop terms are symmetry breaking operators, and heneappear always multiplied by the pion mass. As a result, their numerial values arepoorly known. So we have only ontrol over the two�loop terms. To get an eduatedguess for the error from the O(p6) terms, we will multiply the value of the purelytwo�loop orretion by a fator of three. To be more onservative we will adopt asa ommon error for the three bounds, the biggest of these, whih is 0:4.There is one last issue to be disussed before we show our results. It is wellknown that the salar one�loop two�point funtion is not smooth at threshold (forinstane its imaginary part is zero below threshold but non�zero above). Its �rstand seond derivatives tend to in�nity when we approah threshold from below. Soin order for the positivity ondition to hold, the oe�ients in front of these �rstand seond derivatives must always be positive below threshold. This is indeed thease in all proesses under study in our work.We �nd that the maximum of fj(s; t) is always ahieved for t = 4m2, regardless ofthe proess (i.e. for j = 1; 2; 3); the value for s does depend on the partiular proess.The maximum of fj is at s = 0 for j = 1; 2. For j = 3, the maximum was foundnumerially to be at s = 1:114m2. Our results are summarized in Table 6.1 togetherwith a omparison with the values for the experimentally �tted LECs �l1 = � 0:4�0:6and �l2 = 4:3 � 0:1 from Ref. [168℄. In Fig. 6.6, we plot the allowed region in the�l1 � �l2 spae parameter, together with the experimentally �tted value.



6.4 Bounds on hiral LECs from dispersion relations 183

-2 -1 0 1 2 3 4 5
-1

0

1

2

3

4

l1

l2

Figure 6.6: The �l1��l2 region allowed by the positivity onditions is shown. The threelines orrespond to the three bounds in Table 6.1. We also show the experimentally�tted values of Ref. [168℄ with their error.Comparison with previous analysesAs mentioned in Setion 6.4, there are several studies in the literature that ombine�PT with axiomati priniples. In this setion we ompare with previous resultsand point out the advantages of the method used here.In Ref. [173℄ only the �0�0 amplitude was onsidered, and so only bounds on�l1 + 2�l2 ould be obtained. From the requirement that the s�wave amplitude has aminimum in the interval 1:217 � s=m2 � 1:697 they obtain �l1 + 2�l2 � 3:32� 0:85.This value is less restritive than our bound, and in addition has a muh biggerunertainty. From the one subtrated dispersion relation of the full �0�0 amplitudethey obtain �l1+2�l2 � 3:3� 2:5 whih has a very large error, and is weaker than ourbound. Using the Froissart�Gribov representation for the d�wave partial amplitude,they obtained our value for the bound, but sine a reliable estimate of its error wasnot found, this result was not taken into aount in the �nal results in Ref. [173℄.In Ref. [170℄, the Froissart�Gribov representation for the d�wave satteringlengths was used to derive positivity onditions. In this way they reprodue ourresults for �l1+2�l2 and �l2, with no errors quoted. In the next setion we demonstratethat this method is equivalent to ours for the partiular point s = 0, t = 4m2.In Ref. [174℄, the analysis of Ref. [173℄ was repeated, requiring a minimum of thes�wave amplitude in the same interval as above, 1:217 � s=m2 � 1:697. SurprisinglyRef. [174℄ obtained a muh more stringent bound, �l1+2�l2 � 6:16 (no error quoted).In view of the disussion in both papers, it is our believe that Ref. [173℄ gives theorret answer. The main analysis of Ref. [174℄ uses the same method that we do,and in the same domain A. They argue that the most stringent point neessarilylies on the 2 s + t = 4m2 line, but we do not see why this should be true. In fat,we expliitly �nd that for the �+�+ amplitude it is not on this line. Furthermore,Ref. [174℄ only display the bounds at s = 0 (t = 4m2), where we get the same resultsfor �l1+2�l2 and �l2, and at s = � 4m2 (t = 12m2), where the bounds are muh more



184 Dispersion relations and unitarityrestritive. The result �l1+�l2 � 4:914 quoted in Ref. [174℄ at s = � 4m2 (t = 12m2)is violated by the experimentally �tted values of Ref. [168℄. Even though Ref. [174℄uses the same domain A as our analysis, for the numeris they trespass outside thisregion. The bounds �l1 + 2�l2 � 6:923, �l2 � 2:01 and �l1 + �l2 � 4:914 should not betrusted sine the �xed�t dispersion relations are not valid for t > 4m2.Finally, in Ref. [175℄ the same method of Ref. [174℄ is used, but only in theMandelstam triangle, whih is why their bound for �l1 + 3�l2 is less restritive thanours, and does not exlude any values for �l1;2 not already exluded by the boundson �l1 + �l2 and �l2.Relation between our method with sattering lengthsIn this appendix we wish to demonstrate how the proedure followed in Ref. [170℄is related to ours. Let us start by realling the de�nition of the sattering lengths.From the partial wave deomposition of Eq. (6.45), one de�nes for eah spin andisospin amplitude the sattering lengths aÌaÌ = lims!4m2 f Ì(s)� s4 �m2�` : (6.52)For even `, the I = 1 sattering length must vanish beause of Bose symmetry. InRef. [170℄ these sattering lengths an be shown to satisfy the positivity onditionsa02 + 2 a22 � 0 ; a02 � a22 � 0 : (6.53)using the Froissart�Gribov representation :aI2 = 1615� Z 14m2 dss3 ImF It �s; 4m2� : (6.54)It is not di�ult to relate the sattering lengths to the `�derivative of the totalspin�I sattering amplitude :aÌ = 4` ` !(2 `+ 1) d`T I(4m2; t)d t` ����t=0 = 4` ` !(2 `+ 1) CII0t d`T I0(s; 4m2)d s` ����s=0 ;(6.55)where we have used a relation analogous to Eq. (6.41)T I(s; t) = CII0t T I0(t; s) ; CII0t CI0Jt = ÆIJ ; Ct = 16 0BBB� 2 6 102 3 � 52 � 3 1 1CCCA ; (6.56)whih follows from rossing symmetry in the t�hannel.For even ` and I = 1, Eq. (6.55) implies that the orresponding satteringlength is identially zero. To see this, reall that T 1(4m2; t) = �T 1(4m2;� t) by



6.4 Bounds on hiral LECs from dispersion relations 185Bose symmetry. Now, sine the point s = 0, t = 4m2 lies in the region A, for ` = 2we know that ertain linear ombinations of the derivatives appearing in the lastequality of Eq. (6.55) must be positive. Inverting Eq. (6.55) we obtaind2 T I(4m2; t)d t2 ����t=0 = 532 CI Jt aI2 : (6.57)Using Eq. (6.48) we obtainCIJpos CJKt aK2 � CIJa aJ2 � 0 ; Ca = 0BBB� 1 0 21 0 �12 �3 1 1CCCA ; (6.58)and bearing in mind that a12 � 0 we immediately reprodue the result shown inEq. (6.53) plus the linearly dependent relation 2 a02 + a22 � 0.We have demonstrated that the method in Ref. [170℄ orresponds to using posi-tivity at the s = 0, t = 4m2 point in region A of the Mandelstam plane. This is whyRef. [170℄ did not �nd our third bound, whih arises from s = 1:114m2, t = 4m2.Unitarity relations for the linear sigma modelIn Setion 6.4.1, we substituted the �PT results into Eq. (6.49) and obtained boundson some undetermined low�energy onstants in the e�etive Lagrangian. One anrepeat this exerise for theories in whih the low�energy e�etive Lagrangian isalulable, to test the validity of the bounds. In this setion we perform suh ananalysis for the linear sigma model.The most straightforward method is to use the preditions of the LSM for �l1 and�l2 for the bounds displayed in Table 6.1. As already explained the LSM is invariantunder the same symmetries as �PT, and so all operators obtained after integratingout the � partile must belong to the �PT Lagrangian at some order in the hiralexpansion. In Ref. [9℄ this omputation was performed at the one�loop level and atO(p4), the following result was obtained :�l1 = 24 �2g + log�m�m �� 356 ; �l2 = log�m�m �� 116 ; (6.59)leading to the inequalities24 �2g + 3 log�m�m � � 43740 ; log�m�m � � 19160 ; 24 �2g + 4 log�m�m � � 19:94 :(6.60)These results are obtained in weak�oupling perturbation theory to one�loop, andhave orretions of order g from the two�loop graphs. The �rst and third relationsof Eq. (6.60) are always satis�ed for a weakly oupled theory on whih Eq. (6.59)



186 Dispersion relations and unitarityrely, sine the 24 �2=g term is larger than the other terms for small values g. Notethat the oe�ient of the 1=g term must have the orret sign for the inequality tobe satis�ed, whih it does. The seond relation does not involve an inverse powerof the oupling onstant, and is not satis�ed for large enough values of m=m�. Inpartiular, it is violated if m� . 4:9m. One way out of this ontradition is thatthe derivation of the inequality, whih relies on the Froissart bound, is not valid.But it is not di�ult to show that the LSM is a loal renormalizable theory, andsatis�es the Froissart bound. In the hiral limit m ! 0 and the bound is satis�ed.The Goldstone boson is made massive by a symmetry breaking term (analogous toan external magneti �eld). The strength of the symmetri breaking term mustbe inreased to inrease m. The symmetry breaking term also ontributes to the� mass, so another way out is if the region m�=m . 4:9 is not possible for anyvalues of the parameters in the LSM. But as we expliitly showed in Setion 6.3 anym�=m � p3 is allowed, and sine p3 < 4:9 there are allowed values for the massratio whih violate the bound.The loophole in the argument is that for low values of the � mass, the higher1=m2� orretions beome more important. Results in Table 6.1 rely on the fat thatin �PT, the sattering amplitude an be safely trunated at O(p4), whih translatesinto the statement that the LSM amplitude an be trunated at O(m�2� ). If m�is not big enough, this approximation reeives sizable orretions and the hiralexpansion breaks down. To violate the bound in the seond of Eqs. (6.60) requiresm� . 4:9:1m. The hiral expansion is formally an expansion in powers of m=m�,and the bound is violated when m2=m2� � 0:04, a �nite distane away from theorigin. What is surprising is that this number, whih is formally of order one, isnumerially muh smaller than one would have naively guessed.As a �rst approah, we inlude the 1=m4� orretions to the amplitude, and �ndlog�m2�m2� � 191m4� � 734m2�m2 + 540m460 (m2 �m2�)(3m2 �m2�) : (6.61)Taking the limit m� ! 1 we reover the seond relation in Eq. (6.60). SolvingEq. (6.61) we �nd that the bounds are violated for m� . 5m, whih is not satisfa-tory, but indiates that the 1=m2� expansion is slowly onverging, and the 1=m4� termontribution moves the result in the diretion of restoring the validity of the bound.To test the LSM bound we will apply diretly Eq. (6.49), rather than the expandedform Eq. (6.59), to the LSM sattering amplitude predition for the �+�0 ! �+�0proess. The seond derivative of the tree�level amplitude for this proess withinthe LSM vanishes, and so one needs the one�loop result. In Ref. [182℄ this alu-lation was performed using a mass�dependent subtration sheme. The result isexpressed in terms of �nite two�, three� and four�point salar one�loop integrals,whih are then expanded in inverse powers of m2�. We will use instead the numerialvalues for the full integral expressions. The renormalization proedure followed inRef. [182℄ is perfetly aeptable for our omputation, sine the physial amplitudesare sheme independent. Most modern omputations are done in the MS sheme.In Appendix H we give the one�loop LSM amplitudes in the mass�independent MS



6.4 Bounds on hiral LECs from dispersion relations 187sheme, a result whih does not appear in the literature.The seond derivative d2ds2T (s; 4m2)js=0 for the �+�0 ! �+�0 proess in the LSMis omputed for any value of the m�=m ratio. The results are shown in Fig. 6.7,whih learly shows that the positivity ondition is satis�ed at the one�loop levelin the LSM for any value of the � mass bigger than the pion mass (even thoughit would su�e to be satis�ed for m� > p3m). The apparent ontradition ofEq. (6.60) was only due to the poor onvergene of the of the 1=m2� expansion ofthe LSM amplitude for small m�. The non�linear sigma model (understood as thenon�renormalizable e�etive �eld theory obtained by integrating the � �eld out theLSM ation) is onsistent (i.e. obeys the axiomati bounds) only if we (at least)inlude the O(p8) ontribution. well.This should serve as a warning for the estimate of hiral LECs by resonanesaturation. In suh determinations, one starts with a hiral invariant Lagrangianwith resonanes as expliit degrees of freedom [13℄. The values of the hiral LECs areobtained, as in the LSM, by funtionally integrating out the hadroni resonanes.The ratio m�=m � 5:5 is muh smaller than the value m�=m that makes the LSMhiral expansion fail. However we believe that sine in the Lagrangians of [13℄,all LECs are already generated at tree�level, this anomalous behaviour is absent.In the LSM, l2 is only generated at one�loop, whih is why the middle inequalityin Eq. (6.60) does not have a 1=g term, and has poor onvergene in the 1=m2�expansion.At this point a natural question arises. Sine mK=m � 3:5 < 5 it ould beinonsistent to integrate the kaon and eta out of the SU(3) �PT ation to obtainthe SU(2) hiral LECs. In fat using the L1; L2 and L3 values of Ref. [169℄, weobtain �l1 = 5:64 � 0:84 and �l2 = 1:95 � 0:23 whih do not agree well with thevalues quoted in Ref. [168℄, but are in agreement with our bounds. The additionalompliations that arise on imposing the positivity onditions to SU(3) �PT aredisussed in next setion.6.4.2 SU(3) boundsIn this setion we will apply the same proedure as in Setion 6.4.1 for the SU(3)theory. As a �rst approximation we will onsider the SU(3)V limit in whih mu =md = ms and thus the masses of the eight pseudo�Goldstone bosons are the same,and will be denoted by m. As already mentioned, the value of the hiral LECsannot depend of the quark masses, and so bounds for LECs derived in a worldwith equal quark masses must also be satis�ed in our own world. After this simpleanalysis we will extend the method to over also the ase of mu = md 6= ms.SU(3) relations : oupling of two otets and irreduible amplitudesIn the limit we are onsidering the QCD Lagrangian exhibits an exat SU(3)Vsymmetry. Then partiles are lassi�ed aording to the di�erent irreduible repre-sentations of this group (e.g. pGs belong to the real otet representation) and the
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Figure 6.7: Plot of 16 �2F 4� d2T (s; 4m2)=ds2��s=0 in the linear sigma model for the�+�0 ! �+�0 proess as a funtion ofm�=m. The exat amplitude (blue) is positivefor m� > m. The amplitude up to and inluding 1=m4� terms (red, dashed), ispositive for m� > 5m. The O(m�2� ) amplitude (green, dotdashed) remains negativefor m� < 4:9m.Wigner�Ekart theorem drastially redue the number of independent amplitudesto six. To see this we simply need to look at the Clebsh�Gordan deomposition ofthe diret produt of two otets :8
 8 = 27� 10� 10� � 81 � 82 � 1 : (6.62)First we express the two�partile states as linear ombinations of vetors withwell de�ned total quantum numbers, belonging to di�erent irreduible representa-tions. We reall the SU(3) quantum numbers for the otet mesons j�; I; I3; Y i :j �+ i = � j8; 1; 1; 0i ; j �0 i = j8; 1; 0; 0i ; j �� i = j8; 1;�1; 0i ;j � i = j8; 0; 0; 0i ; jK+ i = ����8; 12 ; 12 ; 1� ; jK0 i = ����8; 12 ;�12 ; 1� ;j �K0 i = ����8; 12 ; 12 ;�1� ; jK� i = � ����8; 12 ;�12 ;�1� ; (6.63)and the relation between the Cartan and the physial states bases,����� = 1p2 ����1�� i ���2�� ; ��K�� = 1p2 ����4�� i ���5�� ; ���0� = ���3� ;��K0� = 1p2 ����6�� i ���7�� ; �� �K0� = 1p2 ����6�+ i ���7�� ; j � i = ���8� ; (6.64)The general proedure to fully deompose the diret produt of irreduible represen-tations (whih is in general reduible) into irreduible representations is explained



6.4 Bounds on hiral LECs from dispersion relations 189in Ref. [183℄, and we shall use its notation. Basially one must use the followinggeneral formula :��8; I1; I13 ; Y 1�
 ��8; I2; I23 ; Y 2� =XI;� C�I1; I2; I ��I13 ; I23I3 �C0� 8 8I1 Y 1 I2 Y 2 ������ �I Y1A j�; I; I3; Y i : (6.65)One an also alulate the inverted relation, what means that we express the vetorswith well de�ned total quantum numbers belonging to di�erent irreduible repre-sentations as linear ombinations of two�partile states :j�; I; I3; Y i = XI1;I2;I13 ;I23 C�I1; I2; I ��I13 ; I23I3 �� (6.66)C0� 8 8I1 Y 1 I2 Y 2 ������ �I Y1A��8; I1; I13 ; Y 1�
 ��8; I2; I23 ; Y 2� :Sine we suppose that our QCD Lagrangian is invariant under the SU(3) �avourgroup, we an make use of the identityh�1 �1 jT j�2 �2i = F�1Æ�1�2Æ�1�2 ; (6.67)where � labels the irreduible representation and � labels one state inside a givenirreduible representation. Using rossing symmetry one an show that two am-plitudes are equal : T10(s; t; u) = T10�(s; t; u). One an also obtain the symmetryproperties under the exhange of the �nal states (t$ u); two of the amplitudes areantisymmetri T10(82)(s; t) = �T 10(82)(s; u) and the rest are symmetri.On the other hand one an �nd a representation analogous to the Chew�Mandelstamin SU(3) 6T (ab! d) = A1(s; t; u) ÆabÆd + A2(s; t; u) ÆaÆbd + A3(s; t; u) ÆadÆb+B1(s; t; u) dabedde +B2(s; t; u) daedbde : (6.68)Eq. (6.68) has only �ve independent amplitudes, what is in perfet agreement withthe aforementioned relation T10 = T10� . We also expet rossing symmetry to furtherredue the number of independent funtions. In ase of having r irreduible represen-tation amplitudes [ r = 3 for SU(2) and r = 6 for SU(3) ℄ rossing symmetry impliesthat there are only 2 r3 independent funtions. This is easy to understand : the rirreduible funtions T I I = 1; : : : r translate into 3 r degrees of freedom T I(s; t),T I(t; s) and T I(4m2� s� t; t) orresponding to the s, t and u rossed hannels, re-spetively. Crossing symmetry implies 2 r restritions, sine it relates the s�hannel6One must remember the SU(3) identity 3 �dabedde + daedbde + dadedbe� = ÆabÆd + ÆaÆbd +ÆadÆb to make sure that the basis of tensors is minimal. One an also add four more strutures ofthe type fabedde, but they lash after imposing rossing symmetry.



190 Dispersion relations and unitarityamplitudes with the t� and u�hannel ones ( 2 r relations). So we end up with rindependent degrees of freedom, whih is equivalent to r3 independent funtions. Soin � � sattering there is only one independent funtion (e.g. the Chew�Mandelstamoordinate A) while for three �avours we are left with two independent funtions.All in all for SU(3) we an write the following rossing relationsT I(s; t) = CII0u T I0(u; t) ; T I(s; t) = CII0t T I0(s; t) ; CII0t(u)CI0Jt(u) = ÆIJ ; (6.69)
Cu = 0BBBBBBBBB�

740 16 15 13 18940 12 25 0 � 182740 1 � 310 � 12 1898 0 � 12 12 � 18278 � 52 1 � 1 18
1CCCCCCCCCA ; Cu = 0BBBBBBBBB�

740 �16 15 �13 18� 940 12 �25 0 182740 �1 � 310 12 18�98 0 12 12 18278 52 1 1 18
1CCCCCCCCCA :

Bounds for the sattering amplitudesIn this setion we apply the methods of Ref. [171℄ to the pseudosalar�pseudosalarsattering proesses. The detailed derivation of the positivity onditions an befound in Setion 6.4.1 and will not be repeated here.We an write the following twie�subtrated dispersion relationd2ds2T I(s; t) = 2� Z 14m2 dx � ÆII0(x� s)3 + CII0u(x� u)3� ImT I0(x+ i�; t) ; (6.70)wherever (s; t) makes the amplitude analyti, that is t � 4m2, s + t � 0 andif s > 4m2 onsidering s ! s + i �, orresponding to the Feynman presriptionfor propagators. Again, if we restrit ourselves to s < 4m2 and s + t > 0, bothdenominators in Eq. (6.70) are positive, and for several linear ombinationsP aI T Iwith aI � 0,P aI CIJu TJ �PJ bJ TJ with bJ =PI aI CIJu � 0. These have positiveimaginary part along the integral for t > 0, orresponding to physial proesses withequal initial and �nal states. Of ourse, many di�erent proesses are related bySU(3) symmetry and need to be onsidered only one. If a proess an be expressedas a linear ombination of other proesses with positive oe�ients it annot bemore restritive that the proesses separately, so it will be disarded. With all thatwe obtain the following set of positivity onditions :d2ds2T ��+�+ ! �+�+� [ (s; t) 2 A ℄ � 0 ; d2ds2T (�0�0 ! �0�0)[ (s; t) 2 A ℄ � 0 ;d2ds2T (�+�0 ! �+�0)[ (s; t) 2 A ℄ � 0 ; d2ds2T (� � ! � �)[ (s; t) 2 A ℄ � 0 ;d2ds2T (K � ! K �)[ (s; t) 2 A ℄ � 0 ; d2ds2T (K�+ ! K�+)[ (s; t) 2 A ℄ � 0 ;(6.71)



6.4 Bounds on hiral LECs from dispersion relations 191where A is the losed region of the Mandelstam plane de�ned by 0 � t � 4m2,s � 4m2, s + t � 0. Eq. (6.71) orresponds to the following linear ombinations ofirreduible amplitudesT27 ; 2720 T27 + 15 T81 + 18 T1 ; 12 T27 + 13 T82 + 15 T10 ; (6.72)310 T27 + 15 T81 + 12 T10 ; 920 T27 + 120 T81 + 14 T82 + 14 T10 ; 12 T27 + 12 T10 ;respetively.Bounds for L1, L2 and L3.It is straightforward now to onvert the positivity onditions in Eq. (6.71) intobounds for hiral LECs, sine the energy domain A is well inside the onvergeneradius of �PT. We simply plug into Eq. (6.71) the O(p4) �PT predition [ the O(p2)predition vanishes when ating with two derivatives ℄ for the di�erent amplitudesand seek the most stringent point in A. These amplitudes an be found in theliterature but are olleted and very niely displayed in Ref. [184℄, whih we follow.Upon seond derivative they only depend on three LECs : L1; L2 and L3. At one�loop the amplitudes expliitly depend on the hiral renormalization sale �, but itis in fat aneled by the impliit � dependene of the hiral LECs. We will adoptthe value � = m that greatly simpli�es the expressions (as it is the only energy salein the proess). So we will get our bounds for L1 and L2 evaluated at that energysale (L3 does not get renormalized and thus it is � independent). Our bounds havethe following general expression�1i Lr1(m) + �2i Lr2(m) + �3i Lr3 � fi[ (s; t) 2 A ℄���max ; (6.73)where fi are funtions obtained by isolating the LECs of the seond derivative ofthe amplitude : it ontains hiral logarithms and onstant LEC�independent terms.For the proesses �+�+ ! �+�+ and K �+ ! K �+ the minima are found fors = 1:3684m2 and s = 1:2593m2, respetively. For the rest of the proesses it isfound for s = 0.If we are to ompare our theoretial bounds with the �tted values we need to �xthe ommon mass m to a physial value. The most onservative value is of oursethe pion mass m�, sine it is the lightest partile in the otet, but in priniple anyvalue low enough not to ompromise the hiral expansion is equally good. We willadopt the two extreme values m� and mK for our analysis. The results are shownin Table 6.2.If we onsider the more realisti ase of ms 6= mu = md and use the physialvalue for the � and K states 7 the hoie of m is absolutely transparent. This isdisussed in the next setion.7In our analysis we will assume the Gell-Mann�Okubo formula for the masses : m2� = 43m2K �13m2�:
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) 2Figure 6.8: Sattering of partiles with di�erent masses. Inside the triangle theamplitude sattering is free from singularities. In the dashed region the unitarityondition applies.Symmetry breaking orretions to the boundsThe �rst e�et showing up when onsidering m� < mK is that for several proessesthe unitarity branh ut might our before reahing the physial threshold. This,as we disuss next, spoils the positivity ondition.Let us �rst obtain the analyti triangle for the present situation. We will onsideronly proesses with equal initial and �nal states a + b ! a + b, of masses ma = Mand mb = m (M � m), sine this ensures that the imaginary part of the partialwave amplitudes is positive. If the lowest mass intermediate state in that proess is + d, the amplitude is analyti for s � (m +md)2. Analogously from the rossedhannels we will obtain t � (me +mf )2 and s+ t � 2 (m2 +M2)� (mg +mh)2. Ofourse the maximum [minimum ℄ value for these three thresholds are (m+M)2, 4m2and (M � m)2, respetively. Then the dispersion relation reads (now we diretlyonsider physial proesses)d2ds2 T (s; t) = 2� Z 1(m+md)2 dx ImT (x+ i�; t)(x� s)3 + 2� Z 1(mg+mh)2 dx ImTu(x + i�; t)(x� u)3 ;(6.74)wherever the amplitude is analyti. Here Tu is the amplitude orresponding to theu�hannel a + �b ! a + �b, whih has of ourse equal initial and �nal states, too.Both denominators are positive as far as s � (m+md)2 and s+ t � 2 (m2+M2)�(mg + mh)2, and so up to this point there is nothing ompromising the positivityondition. But still we have to make sure that the imaginary part remains positivealong the two uts. Expanding the amplitude T (and also Tu) in partial waves weget T (s; t) = 1X̀=0 (2 `+ 1) f `(s)P` �1 + s t(s+m2 �M2)2 � 4m2 s� ; (6.75)with Im f`(s) = s �(s) �`(s) � [ s � (m +md)2 ℄ � 0 and with � [ s � (mg +mh)2 ℄for the u�hannel. So for getting a positive imaginary part eah P` must be positive



6.4 Bounds on hiral LECs from dispersion relations 193along the orresponding uts. Sine P`(z) > 1 for z > 1 for all ` it is enough torequire s t(s+m2 �M2)2 � 4m2 s � 1 for s � (m +md)2 [ (mg +mh)2 ℄ : (6.76)Sine for s ! 1 Eq. (6.76) tends to t=s then we must require t > 0. Then forpositive t Eq. (6.76) is only satis�ed if (M �m)2 � s � (M +m)2. Thus if either(m+md) [ or (mg+mh) ℄ is less than (M+m) the imaginary part between (m+md)[ or (mg+mh) ℄ and the physial threshold ould turn negative, making the positivityondition invalid.Summarising, the positivity onditions hold for proesses of the type a+b! a+bsuh that the lightest pair of partiles that an arise o� the sattering a+b is preiselya+ b, and analogously for a+ �b. Or in other words, for proesses with equal initialand �nal states suh that the imaginary part of the s� and u�hannels starts at theirphysial prodution threshold. Moreover, the positivity ondition is satis�ed in thelosed area of the Mandelstam plane A de�ned by 0 � t � 4m2, s � (M + m)2and s+ t � (M �m)2. As an additional bonus for breaking SU(3)V we have manyindependent amplitudes that are no longer related by symmetry. The �nal set ofpositivity onditions reads :d2ds2T ��+�+ ! �+�+� [ (s; t) 2 A ℄ � 0 ; d2ds2T (�0�0 ! �0�0)[ (s; t) 2 A ℄ � 0 ;d2ds2T (�+�0 ! �+�0)[ (s; t) 2 A ℄ � 0 ; d2ds2T (� � ! � �)[ (s; t) 2 A ℄ � 0 ;d2ds2T (K �+ ! K �+)[ (s; t) 2 A ℄ � 0 ; (6.77)where of ourse, the area A depends on eah spei� proess. There are moreproesses satisfying the onditions stated above, but they give a less stringent boundfor the same linear ombination of LECs and so we will not show them. Again allminima are found at t = 4m2. For the �+�0, � � and K �+ proesses the minimaare ahieved for s = 1:14384m2, s = 16:0027m2 and s = 4:78m2, respetively. Forthe remaining two proesses, it is found at s = 0.ResultsIn this setion we disuss the bounds obtained for the di�erent linear ombinationsof hiral LECs, and ompare them with the values obtained by �tting observablesto the experimental data. In Ref. [169℄ those values are given at the � = m� sale,so we will run our bounds to this sale to ompare. The running equation for theseLECs readsLi(�1)� Li(�2) = � �i16 �2 log��1�2� ; �1 = 332 ; �2 = 316 ; (6.78)



194 Dispersion relations and unitarityand the values at the di�erent sales areLr1(m�) = (0:43 [ 0:38 ℄� 0:12)� 10�3 ; Lr2(m�) = (0:73 [ 1:59 ℄� 0:12)� 10�3 ;L3 = (� 2:35 [ 2:91℄� 0:37)� 10�3 : (6.79)Those values were obtained from a �t to the available experimental data taking astheoretial input the O(p6) �PT predition. Sine in our analysis we are using theO(p4) amplitude it is instrutive to ompare our bounds with the values of the LECsobtained by �tting the O(p4) �PT amplitude to the same data. Those an be foundin Ref. [169℄ as well, and are displayed in Eq. (6.79) in brakets.A very important issue is to estimate the error ommitted by trunating theamplitude at O(p4). For the symmetri analysis this an be done in as in Ref. [171℄,that is, adopting as an eduated guess three times the orretions of the O(p6) am-plitude due to hiral logarithms. When assuming m = m� the bounds are not verystringent, and the errors are rather small; experimental values are well within thebounds. However form = mK the entral values of the bounds greatly inrease (thatis, bounds tighten) and some experimental values apparently violate the bounds.But at the same time errors get multiplied by a fator of twelve. Thene the validiyof the hiral expansion is not ompromised.For the symmetry breaking analysis the error annot be estimated so straightfor-wardly. It is expeted that the main orretions ome from hiral LECs multipliedby the kaon mass. The O(p6) omputation of the � � sattering amplitude in three-�avour �PT was performed in Ref. [185℄, and the K � sattering at the same orderan be found in Ref. [186℄. We will adopt as an eduated guess the orretion due tothe O(p6) LECs, that is the O(p6) tree�level piee. Unfortunately the O(p6) LECsare unknown, so we will use the estimate given in Ref. [186℄, obtained by resonanesaturation. In addition, to be more onservative, we will assume a ommon errorfor all the hannels, the biggest of these, whih is 3:0. This error is very large, ofthe same orther as that of the symmetri analysis with m = mK .For the three � � sattering proesses we do not see large deviations of theorreted bounds (they inrease around a 20%). However the estimated error dueto higher order orretions greatly enhanes due to terms proportional to the kaonmass. So we an onlude that the symmetri analysis is most onvenient for theserelations. Inidentally experimental values satisfy these three bounds. For K �sattering the orreted bound is muh worse. However for � � sattering the inreaseof the orreted bound is great : 139%. In fat the experimentally �tted value ispartially in on�it with the bound, but sine the error of the bound is quite large,the validity of �PT is not ompromised.The bounds ompare better to the values of the LECs obtained from an O(p4)�t. It is quite easy to understand this. The bounds are to a large extent dominatedby the value of L2, sine in the orresponding linear ombinations it always appearsmultiplied by large oe�ients (see seond olumn of Table 6.2). In Eq. (6.79) wesee that the value of L2 in the O(p4) �t is twie as big as in the O(p6).Results are displayed in Table 6.2. In the �rst olumn we show whih proessis rendering eah bound and in the seond the orresponding linear ombination



6.4 Bounds on hiral LECs from dispersion relations 195of LECs for O(p6) (up) and O(p4) �ts (down), in the third olumn we displaythe orresponding linear ombinations of the experimentally �tted values; in thefourth and �fth olumns we display the bounds for the symmetri analysis assumingm = m� and m = mK , respetively; in the last olumn we give the bounds obtainedfor broken SU(3)V symmetry.103 �i Li(m�) Fit to exp. bound m = m� bound m = mK bound m� 6= mK2Lr1 + 2Lr2 + L3 � 0:031:03 � 0:5 �� 3:88� 0:20 �0:68� 2:50 � � 3:87� 0:20Lr2 0:731:59 � 0:12 �� 1:30� 0:20 �0:22� 2:50 � � 1:10� 0:202Lr1 + 3Lr2 + L3 0:702:62 � 0:6 �� 4:88� 0:20 �1:20� 2:50 � � 4:29� 0:2012Lr2 + L3 6:4116:17 � 1:5 �� 15:99� 0:20 �2:24� 2:50 -3Lr2 + L3 �0:161:86 � 0:5 �� 3:64� 0:20 �0:92� 2:50 � � 0:15� 2:004Lr2 + L3 0:573:45 � 0:6 �� 4:70� 0:20 �1:38� 2:50 �� 14:75� 2:00Table 6.2: Experimental values for linear ombinations of the LECs [ upstairs O(p6)�t and downstairs O(p4) �t ℄ and their bounds.6.4.3 ConlusionsThere are non�trivial onstraints whih follow from unitarity, analytiity and ross-ing symmetry whih must be satis�ed by any relativisti quantum theory. There aresome interesting and non�trivial onstraints on low�energy e�etive theories whiharise by imposing these onstraints on the e�etive theory sattering amplitude.In this work we have transformed the dispersion relations for the � � satteringamplitude into positivity onditions for several proesses, valid in a ertain regionof the Mandelstam plane below threshold. This region is in fat larger than theMandelstam triangle, as ommonly assumed. These positivity onditions an beonverted into bounds for two LECs of the SU(2) �PT Lagrangian. Our analysisleads to a stronger bound than those obtained previously, sine we use positivity ina larger region of the Mandelstam plane. The values of the LECs extrated fromexperiment are onsistent with the bounds derived in this paper.One nie feature of the struture of the bounds is that it orrelates two distintpiees of the O(p4) amplitude : LECs and hiral logarithms. Whereas the for-mer is leading order in the 1=NC ounting and represents an expansion in 1=m2� �(0:7GeV)�2 the latter is subleading in large�NC and represents an expansion in1=�2� � (1:1GeV)�2 where �� � 4 �F� and F� is the deay onstant of the pion [25℄.One an use Eq. (6.44) with n = 4 to obtain bounds for higher order LECs, usingthe amplitude up to order O(p6). The O(p4) LECs in the O(p4) amplitude vanishon taking the fourth derivative but the one�loop O(p4) hiral logarithmi terms do



196 Dispersion relations and unitaritynot. However, one�loop diagrams with one insertion of the O(p4) LECs ontributeto terms of order p6 times hiral logarithms, whih do not vanish on taking thefourth derivative. The O(p6) LECs also ontribute to the fourth derivative. Thusone now gets inequalities involving the O(p4) LECs and O(p6) LECs plus O(p4)hiral logarithms. In addition of having a lot of LECs we no longer ompare termsof the same order in the hiral expansion.We apply this program to �PT with three �avours and �nd bounds for L1, L2and L3. When the exat SU(3)V limit is onsidered the theory beomes slowlyonvergent if the ommon mass m for the multiplet of pGs is of the order of mK(albeit it onverges quikly for m = m�). When the real values for the pion andkaon masses are employed the bounds beome more stringent and in fat in one asethe experimentally �tted values are partially in ontradition with the entral valueof the bound. However for this proess the O(p6) orretions are very large and sothere is no ontradition.The low�energy limit of the linear sigma model Lagrangian is a theory withspontaneous hiral symmetry breaking in whih the LECs an be omputed in termsof the oupling onstant g of the LSM. The values of �l1 and �l2 for this model arein apparent violation of the positivity bounds for m� . 4:9m, while the rangem� > p3m an be realized in the LSM. We have shown that the apparent violationis an artifat of the trunation of the 1=m2� orretions and that the LSM is onsistentwith the positivity onditions for m� � m.6.5 Dipion prodution in two photon reations
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Figure 6.9: e+e� ! e+e�X when dominated by two photon exhange.In this setion we disuss why two photon interations are interesting and why,in partiular for the   ! �0�0 hannel, the �PT predition is not satisfatoryenough for a sensible desription. A more general approah, based in unitarity andanalytiity is then mandatory, and we present here the basis of the formalism.



6.5 Dipion prodution in two photon reations 197We will derive a general parametrization for the two photon reation amplitudethat preserves unitarity exatly and test the onsisteny of a partiular model. Forwriting this setion I have mainly followed Refs. [165, 187℄.A beautiful feature of an e+e� mahine is its ability to study two photon pro-esses. The ross�setion for e+e� ! e+e�X is dominated by the exhange of twoalmost real photons, so that one an really extrat information of   ! X, whereX is hadroni, as seen in Fig. 6.9.In the low energy region, suh information not only sheds light on the strutureof hadrons, but an provide insight into the workings of QCD dynamis. At lowmomenta, � �, having the lowest threshold energy, is naturally the most abundantlyprodued hadroni �nal state. What this an teah an be seen by onsidering  ! � � from the t�hannel point of view, where we think the photon satteringo� a pion. At low energies, the photon, having long wavelenght sees the hargedpions, but not the neutral, so the ross�setion for   ! �+�� is large omparedto that form �0�0, see Fig. 6.10. However, as the energy of the photon inreasesits wavelenght shortens it reognises that the pions, whether harged or neutral,are made of the same harged onstituents, namely quarks, and auses these toresonate. Consequently, the ross�setion for both   ! �+�� and   ! �0�0 aredominated by the well�known tensor meson f2(1270).In this setion we will onsider only the leading eletromagneti ontribution(that is, amplitudes at order �em), and all radiative orretions will be due to stronginterations.6.5.1 The pitfall of �PTAt low energy, we an alulate the amplitude of   ! �+�� and   ! �0�0using the tehniques explained in Chapter 1, �PT. For the harged hannel, theleading ontribution are tree�level diagrams, as shown in Fig. 6.11, that in thefollowing will be referred to as the Born term B. However, for the neutral ase pionsdo not ouple to photons diretly and then the reation takes plae through loopdiagrams, as shown in Fig. 6.12. Even though it is a general fat that loops needto be renormalized and in an e�etive �eld theory this implies the introdution ofnew parameters to be �xed, the neutral pion prodution is a remarkable exeption.Sine there is no Born term, the sum of all one�loop diagrams must be �nite, andso we do not need any ounterterm to get a �nite answer. Moreover, there is noontribution from L(4) to this proess (no diret oupling of photons to two neutralpions) and then no new LECs appear in the sattering amplitude. The alulationof these diagrams was done long ago in Refs. [188, 189℄. Another feature of thisalulation is that it is purely S�wave (it has no angular dependene).If we ompare the lean predition of �PT for the neutral hannel with theexperimental data, we beome sorely disappointed, as shown in Fig. 6.13. Clearly,�PT predits a ross�setion of the same order of magnitude, but the shape is quitedi�erent. The data arise from threshold and are then essentially �at for hundredsof MeV, while �PT at lowest order gives an almost linearly inreasing predition.
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Figure 6.10:   ! �+�� (open irles, left�hand sale) for j os �j < 0:6 and the  ! �0�0 ross�setion (solid irles, right�hand sale) for j os �j < 0:8 as fun-tions of s.Reassuringly, this rosses the data around 500 MeV, whih is still where we mightexpet low orders of �PT to apply. Of ourse, the predition beyond one loop isexpeted to be modi�ed at higher energies.To attempt to resolve this puzzle, we need an independent way of modeling theamplitude for   ! � � and this will be disussed next.6.5.2 Unitarity in meson�meson satteringBefore entering into the detailed disussion of the unitarity onstraints for the dipionprodution, we will explain with some detail the very speial ase of � � sattering.In priniple one ould think that we already exploited all the nie features impliedby very �rst priniples in Setion 6.4, but if we restrit ourselves below the thresholdprodution of four pions (or two kaons) we an further onstrain the form of thesattering amplitude.Let us �rst, for simpliity, disuss the ase of � � sattering below the two�kaonthreshold. The unitarity requirement for the partial waves (6.14) implies only thetwo�pion intermediate state. But of ourse there are always two possible intermedi-
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��Figure 6.11: Born amplitude for the two photon reation of harged pions.
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Figure 6.12: Lowest order ontributions to   ! �0�0 in �PT.ate states, �0�0 and �+�� 8. If instead of employing the physial states basis we usethe isospin basis the only possible intermediate state must have the same isospin asthe initial (and �nal) state (in this basis pions are idential partiles and we haveto inlude the 1=2 symmetry fator). Finally, let us write the spei� form of theParseval identity for two partiles in the isospin and angular momentum basisI2 = 12 14 � Z d3~p12E1 d3~p22E2 XIjm jI; j;mi hI; j;mj ; (6.80)Inserting last expression in Eq. (6.14) we arrive at the ondition 9ImT I J�� (s) = ��(s) ��T I J�� (s)��2 ;8Sine the neutral pions are idential partiles, we have to inlude a 1=2 symmetry fator in theParseval identity9In this setion, we reserve T for the matrix element of � � interation and F for two photonreations.



200 Dispersion relations and unitarity

Figure 6.13: Integrated ross�setion for   ! �0�0 as a funtion of s. The dots arethe experimental data. The line marked �PT is the predition of the lowest order�PT [188,189℄ and the dashed lines are orretions to this result.��(s) = ��(s)32 � �(s� 4m2) ; ��(s) = r1� 4m2s ; (6.81)where � is the veloity of the pions in the enter of mass frame to whih the angularmomentum is referred. For the sake of larity we will omit the spin and isospinindies. Of ourse Eq. (6.81) trivially leads to the relation(ReT )2 + �2 jT j2 = jT j4 : (6.82)It is easy to show that Eq. (6.81) ompletely �xes the imaginary part of the inverseof the sattering amplitude ImT�1�� (s) = � ��(s) ; (6.83)and this relation permits to write the most general parametrization for the satteringamplitude T��(s) = TB�(s)1� i ��(s)TB�(s) = sin Æ(s)��(s) eiÆ(s) ; (6.84)where T�1B� = ReT�1�� is a real funtion. The seond equality re�ets the relation ofthe phase shift Æ(s) and the modulus of the sattering amplitude. All these relations



6.5 Dipion prodution in two photon reations 201hold even above 4m2K for the I = 2 ase beause there is no two�kaon state withsuh isospin.Let us disuss now the ase of prodution above the two�pion threshold. It isnow better to onsider at the same time three reations : � � ! � �, � � ! KKand KK ! KK, also for a given spin and isospin. Then we haveImT��(s) = ��(s) jT��(s)j2 + �K(s) jTKK(s)j2 ;ImT�K(s) = ��(s)T��(s)� T�K(s) + �K(s)T�K(s)� TKK(s) ;ImTKK(s) = ��(s) jT�K(s)j2 + �K(s) jTKK(s)j2 : (6.85)These set of relations an be better gathered in matrix notationImT = T� T y ; T = T> = 0� T�� T�KTK� TKK 1A ; � = 0� �� 00 �K 1A : (6.86)It is easy to hek that indeed ImT is a hermitian symmetri matrix, and henereal. Again Eq. (6.86) fully determines the imaginary part of T�1 (now it is theinverse of a matrix) and allows to write a general parametrizationIm (T�1) = � � ; T = (1� i TB �)�1 TB = TB(1� i � TB)�1 ; (6.87)with T�1B = Re (T�1) a real matrix. We an derive two useful relations by insertingthe identity T = ReT + i T� T y bak into Eq. (6.86) and requiring ImT to be real :T� T y = (ReT ) � (ReT ) + T� T y � T� T y ;(ReT ) � T� T y = � T� T y )ReT ) : (6.88)The Lippmann�Shwinger equations are a theoretial �eld method to �nd sat-tering amplitudes satisfying unitarity exatly below the four�pion threshold. Inmatrix notation they read T = V + V GT ; (6.89)with V = T at tree�level (hene it is real) andV GT = Z d4q(2�)4 V (k; p; q)G(P; q)T (k; p; q) ; (6.90)with V (k; p; q) and T (k; p; q) the o��shell total and tree�level amplitudes and G adiagonal matrix with entriesGii = 1q2 �m2i + i � 1(q � P )2 �m2i + i � ; (6.91)being P = p + k, p and k the inoming partile momenta. Under the assumptionV GT � V �G(s)T (that is, the integral disappears) we arrive at the Bette�Salpeterequations that have the trivial solutionT = V (1� �GV )�1 � V (1 + �GV + �GV �GV + � � � ) ; (6.92)
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= =+ + + + · · ·Figure 6.14: Diagrammati representation of the Lippmann�Shwinger and Bette�Salpeter equations. Crossed verties orrespond to the full amplitude whereas simpleverties represent tree�level ouplings.satisfying unitarity exatly as far as Im �G(s) = �(s). Comparison of Eqs. (6.92) and(6.87) links V with TB : TB = V (1�Re �GV )�1. These ideas are better understoodin Fig. 6.14.The ombination of �PT and the Bette�Salpeter equations is known as the Uni-tarized �PT or inverse amplitude method, and was pioneered in Ref. [190℄. Apartiularly interesting appliation of the method is its extension to the three�bodyinterations. In Ref. [191℄ it was applied for the �rst time to the N K � hannel, inorder to gain insight in the struture of the so alled pentaquark hadron �+. Theidea was (as it is ommon in the literature related to the inverse amplitude method)to seek for poles in the S�matrix, to be identi�ed with (unstable) bound states withthe same quantum numbers as the hannel under study. Although the method usedfor the three�body interation in Ref. [191℄ was rudimentary (re�nements suh asthe Faddeev equations were ignored), the onlusion that the pentaquark was not abound state of N K � in S�wave was laimed.6.5.3 General desription of the two photon reationWe onsider dipion prodution out of two real photons. It is well known that theamplitude for this proess has two independent heliity omponents F++, F+�,whih ontribute inoherently to the unpolarized ross�setion :d�d
 = ��128 �2s � jF++j2 + jF+�j2 � ; (6.93)and a similar formula for kaon prodution. The heliity amplitudes F++ and F+�orrespond to photon heliity di�erenes of � = 0; 2 respetively. These have partialwave expansions involving even J � �, and from Eq. (6.12) with � 0 = 0, � = � = 0; 2we get : F++(s; �; �) = e2p16 � XJ�0 FJ0(s)YJ0(�; �) ;F+�(s; �; �) = e2p16 � XJ�2 FJ2(s)YJ2(�; �) ; (6.94)where the fator of e2p16 � has been taken out for onveniene. With this normal-ization the integrated ross�setion is� = 2 � �2em��s XJ�� jFJ�(s)j2 : (6.95)



6.5 Dipion prodution in two photon reations 203There is no interferene among the di�erent partial wave amplitudes in the totalross�setion (6.95), but this is no longer true for the partially integrated ross�setion.Sine isospin symmetry is not onserved by the strong interations, any possibleisospin two�pion state an emerge o� the two photon ollision. Sine in the partialwave deomposition (6.94) only even partial waves take plae, only the values I =0; 2 are possible (Bose symmetry forbids odd values for I in the ase of even partialwaves). Sine eletri harge is, of ourse, onserved, the only possible �nal stateshave Iz = 0. Let us explore what an we learn from unitarity below the four�pion threshold. We remark that within eletromagneti interations we are onlyinterested in the O(�em) terms, and so there are no virtual photon orretions. Thusthe only possible intermediate states in Eq. (6.13) are hadrons, and the regime ofenergies we are interested in, two�hadron states. Let us �rst fous in pion produtionbelow the two�kaon prodution threshold, or equivalently the ase of I = 2 pionprodution. Sine time reversal is onserved by both eletromagneti and stronginterations we have ImF� = �� F�� T�� = �� F� T ��� ; (6.96)where again we drop angular momentum and isospin indies. In the derivation ofEq. (6.96) we have taken into aount that, even though isospin is not a symmetry ofeletromagnetism, and hene two partiles of arbitrary total isospin an in priniplebe an intermediate state, the strong interation resattering fores its isospin tooinide with that of the �nal state. Let us ompare Eq. (6.81) with Eq. (6.96) :the �rst only involves T��, and onstrains its strength, beause it relates T�� withT 2��; the seond relates F� with T��, but it is linear in F�, and hene the strength ofF� is not onstrained. Eq. (6.96) ensures that any resonane in � � sattering alsoappears in the � � two photon reation and vie versa, as they must. One immediateonsequene of Eq. (6.96) is that sine ImF� is by de�nition real, the phase of F�and T�� below 4m2K must oinide (Watson's �nal state interation theorem [192℄).This enables us to write the following relationF�(s) = ��(s)T��(s) ; �� = F�� T��jT��j2 : (6.97)with �� a real funtion depending on the spei� partial wave and isospin. Theexpression for �� is obtained taking the imaginary part of Eq. (6.97) and using rela-tions (6.96) and (6.81). Above the unitarity threshold, again unitarity is powerful,it says that F� and T� have the same right�hand ut struture. Our task is nowto �nd the most general parametrization satisfying the onstraints of unitarity forF�(s). We will trial with and expression inspired in the Bette�Salpeter equationsand then prove that it is in fat unitarity preservingF� = (FB� + ~t� T��) ; FB� 2 < ; (6.98)



204 Dispersion relations and unitaritywhere T�� satis�es unitarity exatly. Taking the imaginary part of F�� T�� anddemanding it to be zero we obtainIm ~t� = FB� �� ;F�� T�� = FB� ReT�� +Re ~t� jT��j2 ; (6.99)Taking the imaginary part of Eq. (6.98) together with Eq. (6.99) we verify ondition(6.96) and obtain an expression for �� :�� = Re ~t� + FB� ReT�1�� : (6.100)Let us onentrate now in the prodution above the two�kaon threshold for I = 0; 2.Again it is interesting to study at the same time the kaon prodution : unitarityimposes ImF� = �� F�� T�� + �K F�K TK� ;ImFK = �� F�� T�K + �K F�K TKK ; (6.101)and the reality of the imaginary parts requiresF� = �� T�� + �K TK� ;FK = �� T�K + �K TKK : (6.102)Again it is most onvenient to use matrix notation to group these equationsImF = T �F� = T y �F ; F = T � F = 0� F�FK 1A � = 0� ���K 1A :(6.103)It is not di�ult to �nd an expression for � as we did for ��� = (T � T y)�1 T y �F : (6.104)We have now to �nd the most general parametrization of the F matrix satisfyingunitarity exatly. Our trial funtion isF = FB + T ~t : (6.105)By imposing that T y�F is a real matrix we easily obtainIm ~t = �FB ;T y �F = T y� T �Re ~t +ReT�1FB� ;� = Re ~t +ReT�1FB : (6.106)



6.5 Dipion prodution in two photon reations 2056.5.4 Di�erent parts of the two photon reation amplitudeNow we will make a ausal deomposition of the total amplitude F(s; t) (and not ofthe di�erent partial waves) for the prodution of mesons whih is true at order �emand exat in the strong interations part. The �rst part of the amplitude is the Bornterm B(s; t). This term is given by the three diagrams of Fig. 6.11 and nothing else.Low's theorem states that the amplitude F for the ross hannel  � !  � tendsto its Born amplitude as s! 0 and t; u! m2. Moreover, the Born amplitude hasa left�hand ut starting in s = 0 and has no right�hand ut.Though Low's theorem states that F equals the Born result at just one pointin the Mandelstam plane, it, in fat, approahes the limit smoothly along any lineat �xed sattering angle. Thus away from the  � threshold, we an write theamplitude as F = B + L, where L, the left�over part, vanishes as s ! 0 andt; u! m2. Now L reeives ontributions from other t, u�hannel exhanges, like �or !. Thene L ontributes with poles in the left�hand ut at the position of themasses of the exhanged resonanes, rather far away from the pion pole, and thenwith little in�uene near threshold.The near threshold amplitude is then almost dominated by the Born term, andin�uened by the one pion poles of the rossed hannels. The loseness of thepion poles have yet another e�et in the two photon reation proess. Crossedhannel partial waves are built from an in�nite number of diret�hannel partialwaves. Thus the s�hannel   ! � � amplitude must have sizeable higher partialwaves. So while the S�wave always ontrols the near threshold behaviour, D�wavesvery rapidly beome important, being only suppressed by a fator of (1 � 4m2=s).In ontrast, the lak of a Born term for �0�0 prodution and the fat that nearthreshold its rossed�hannel exhanges are far away means that the amplitude isS�wave dominated even at higher energies.In hadroni proesses, it is a feature of nature that I = 2 ross�setions aremuh smaller that those with I = 0. However, here in   ! � �, beause of theimportane of the pion exhange ontributions, the amplitude for I = 2 for the�nal state pions is just as important as for I = 0. Indeed, the large �+�� ross�setion omes from a onstrutive interferene of the I = 0; 2 amplitudes, while thevery small �0�0 ross�setion omes from their destrutive interferene. Thus anamplitude analysis requires the measure of both the �+�� and �0�0 distributionsto make the separation of the two isospin omponents.Our deomposition of the two photon reation amplitude is not omplete yet.There are two kind of ontributions not being pion exhange. The �rst we have justonsider and alled L, generated by all the t� and u�hannel exhanges other thatthe pion. The rest we allR, and it is generated by the �nal state interations. Theygenerate the right�hand ut, starting at s = 4m2, and involve basially the stronginterations. These makes the whole amplitude F = B+L+R omplex. It is alsoustomary to group all the ontributions generating the left�hand ut as H = B+L.Eah of the piees in whih F is deomposed admits a partial wave expansion. Eahpartial wave amplitude of F has a right�hand ut starting at s = 4m2 and a left�



206 Dispersion relations and unitarityhand ut starting at s = 0. Low's theorem is then satis�ed in eah partial wave by(again we drop isospin and angular momentum indies) byL(s! 0)! 0 ; R(s! 0)! 0 : (6.107)This onstrains the form of the resonane ontributions to be of the type� s2(s+m2R)2.6.5.5 Shwinger�Dyson equations for the two photon rea-tionMuh as happens with unitary meson�meson sattering, there is a �eld theoretialmethod for exatly implementing unitarity in meson�meson prodution. Again toO(�em) preision they read (in matrix notation)F = FB + T GFB : (6.108)Here FB ollets all the tree�level amplitudes, suh as pion or resonane exhange,and so we an identify FB � H. Again FB GT is an integral expression :FB GT = Z d4q(2�)4 FB(k; p; q)G(P; q)T (k; p; q) ; (6.109)with G de�ned in Eq. 6.91. If the same approximation leading to the Bette�Salpeterequations in Setion 6.5.2 is done, we arrive at the expressionF = FB + T �GFB ; (6.110)that satis�es unitarity exatly, as it is preisely of the form of Eq. (6.105) with~t = �GFB. These ideas are diagrammatially explained in Fig. 6.15. The ideaof using the Bette�Salpeter equations for the meson prodution was pioneered inRef. [193℄. We will see however, that despite the good desription of the existingdata, their amplitudes violate unitarity.
= +

Figure 6.15: Diagrammati piture of the Shwinger�Dyson equations. Diamondinterations means exat amplitude at O(�em), gray irle means all tree�level ele-tromagneti ontributions H (or FB) and rossed irle stands for the exat meson�meson amplitude.
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+

Figure 6.16: Resonane exhange ontribution to L and to FB.6.5.6 Unitarity violationHaving in mind what we have exposed in the previous setions it will not be di�ultto �nd riteria to test and measure unitarity violation in several models. We willonentrate in the unitary �PT extension as worked out in Ref. [193℄, and in parti-ular disuss only the S�wave amplitude. In this paper basially a parametrizationsimilar to that of Eq. (6.15) was used, with a partiular model for Re �GF = FB + T �G ~FB : (6.111)Their strong meson�meson sattering amplitude does satisfy unitarity exatly byonstrution, sine it is of the form (6.92) with the same model for Re �G, and V takenfrom tree�level �PT. The partiular expressions an be found in Ref. [190℄ for I = 0and Ref. [193℄ for I = 2. A feature of these amplitudes is that V has no resonaneexhange. As long as ~FB 6= F unitarity is violated, and in fat we shall see that thissituation happens for this model. Both F and FB are built from �PT tree�leveldiagrams as in Fig. 6.11 and resonane exhange as in Fig. 6.16. In partiular theyonsider �, ! and a1 exhange in S�wave. These ontributions were �rst introduedin a hiral invariant way in Ref. [194℄, but the resattering e�ets were not onsidered.In the pure �PT setor (that is, no resonanes) F�PT = F�PTB and hene thisontribution does not violate unitarity. Problems arise when the resonane exhangeis inluded, beause its treatment is di�erent in F and FB. While in the former thefull resonane propagator is used, for the latter (that is, the one�loop omputation)they ontrat the propagator to a single point : 1=(q2 �M2)! �1=M2. Despite ofthe ritiism that suh ontration an reeive from the �eld theoretial point of view,it also has the onsequene of unitarity violation. So we have ~FB = F + O(M�2)and unitarity is only satis�ed at the 1=M2 level. Corretions will beome importantat energies omparable with the resonane mass.We will de�ne a funtion of s that measures the perentual unitarity violation.Sine the I = 0 amplitude above threshold is a oupled hannel but the I = 2 andthe I = 0 below threshold onsist of a single hannel we will use a slightly di�erentexpression for eah one. We will de�ne our violation funtion as :�(1)I = 2 Im (FI)� �� F �I TIIm (FI) + �� F �I TI : (6.112)
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Figure 6.17: Preditions of Ref. [193℄ for the harged (up plot) and the neutral(down plot) pion prodution ross�setions. In the harged pion prodution plotwe also show the born amplitude. The ross�setion is measured in nanobarns as afuntion of the � � invariant mass, in GeV.And for the two�hannel ase we de�ne our violation funtion as :�(2)I = 2 Im (FI)� �� F �I TI � �K F �K TK�Im (FI) + �� F �I TI + �K F �K TK� : (6.113)It is immediate to realize that these two quantities are omplex. So we will usetheir modulus as a measure of the unitarity violation. For the I = 0 hannel wewill de�ne the violation funtion as Eq. (6:112) when we are below threshold and asEq. (6:113) when we are above. The results are shown in Fig. 6:18. It an be seenthat there are serious violations in the region near the mass of the resonanes. Themain ontribution of this violation omes from ! exhange.6.5.7 ConlusionsAgain we have experiened that the axiomati priniples of unitarity and rossingare a powerful tool for the desription of meson�meson sattering and two photonproesses. In partiular, below the four�pion threshold, these priniples severely
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Figure 6.18: Unitarity violation funtion j�I j for I = 0 pion prodution (up plot)and I = 2 (down plot). This funtion an be interpreted as a perentual violation,and it is plotted as a funtion of the invariant mass of the pions in GeV.onstrain the behaviour of the sattering amplitudes. In the ase of meson�mesonsattering they link the phase shift with the modulus of the amplitude, onstrainingthe strength of the interation. For the two photon reation, we obtain an interestinglink between its amplitude and the meson�meson sattering amplitude. In partiularit is easy to hek that both amplitudes share the same right�hand ut strutureand the same phase (Watson's theorem).We have been able to �nd general parametrizations inspired in the Bette�Salpeterequations that exatly satisfy unitarity. These parametrizations are then an exellenttool for testing if unitary is respeted by some models, and if violated, how muh.We have applied this riteria to a model in whih the �PT results are extendedin a unitary way, and resonane exhange is onsidered in the tree�level term andthe resattering. This amounts to a partiular modelization of some real parts, not�xed by unitarity.A detailed study shows that the treatment of the resonane ontributions leadin fat to unitarity violations. Despite the exellent desription of the existing dataobtained with suh amplitudes, we have expliitly heked that unitarity is badlyviolated at intermediate energies.



210 Dispersion relations and unitarityWe onlude then that a orret desription of the experimental data is notsu�ient to ensure a sensible desription of the two photon reation proess.



ConlusionsDonat que el amp d'estudi d'esta tesi és prou ampli, no és fàil obtindre unaonlusió a nivell general. Es pot a�rmar que s'han tratat tots els mètodes nopertorbatius apliats al setor lleuger de QCD a exepió de àluls en el retile.Pot ser una onlusió que sí es pot extraure d'esta tesi és el paper fonamental quejuga en els fenòmens no pertorbatius l'estudi onjunt dels diversos règims energètis.Anem però, a extraure les onlusions parials més importants.Teoria quiral de pertorbaionsEstà més enllà de qualsevol dubte raonable el fet que �PT és la teoria dual de QCDen el règim d'energies molt baixes. En esta tesi hem fet una petita ontribuió alformalisme de �PT, inorporant la darrera font externa que manava : la font ten-sorial. Hem estudiat les transformaions d'esta font sota les simetries de QCD, és adir transformaions quirals, de paritat i onjugaió de àrrega. Una partiularitat dela font tensorial és que no té ompany quiral (no hi ha ap font �pseudotensorial�).L'estudi de les transformaions quirals ens ensenya que la font tensorial, que té sisomponents independents, es parteix en dos fonts de paritat oposada, adasunaamb tres omponents independents. Por suposat adasuna de les omponents és laompanya quiral de l'altra. La font tensorial té assoiats alguns problemes onep-tuals adiionals. En primer llo no hi ha ap manera transparent d'assignar�li unontatge quiral. Per a la resta de les fonts açò era direte, ja que estan assoiades obé a les transformaions quirals o bé al trenament explíit de la simetria quiral através de les masses dels quarks. Ninguna d'estes situaions afeta a les fonts tenso-rials. Afortunadament estes fonts tan sols apareixen a funions de Green i fators deforma, de manera que el seu ontatge quiral és arbitrari. Diferents assignaions estradueixen en la manera en què operadors amb diferent nombre de fonts tensorialss'organitzen en la base quiral, però no afeta els operadors que ontribueixen a unordre donat per a un àlul espeí�. Per omoditat li assignem el mateix ontatgeque a la font esalar t�� � O(p2), de manera que tan sols tenim potènies parellesal Lagrangià quiral. El segon problema té a veure amb la dimensió anòmala dela font tensorial. El orrent tensorial de QCD neessita una renormalitzaió addi-ional a la pròpia dels amps de quarks que la formen. Este fenòmen es degut alfet de que tenim un produte de dos amps al mateix punt de l'espai�temps. Estarenormalitzaió addiional fa que el orrent es tinga que de�nir a una erta esala, o



212 Conlusionsmillor enara, que tinga una dependènia explíita en l'esala de renormalitzaió deQCD. Direm dons que el orrent tensorial té dimensió anòmala no nul�la. Açò estradueix en que la font tensorial també té dimensió anòmala. El Lagrangià de QCDno depén d'esala i per tant adasun dels seus termes quan l'expresem (a energiesbaixes) en graus de llibertat hadrònis tampo ho fa. La possibilitat més immediataés tratar amb ��� = b0(�QCD) t��(�QCD) que no depén de �QCD, om a ent bàsiemprat per a la onstruió del Lagrangià efetiu. La impossibilitat de determinaruniversalment la funió b0 fa que tinguem que oblidar esta idea; la soluió menysdolenta és onsiderar que les LECs que aompanyen a les fonts tensorials tenen unadependènia amb �QCD que fa que el produte no depenga d'esala.Determinaió de jVusjLa determinaió de paràmetres de la matriu CKMmitjançant desintegraions semilep-tòniques d'hiperons és independent de la determinaió fent servir pions i kaons. Tin-dre determinaions independents és important ja que es poden detetars possibleserrors i es millora l'estadístia. En esta tesi hem estudiat els efetes del trenamentde la simetria SU(3)V de sabor en la determinaió de jVusj i els errors sistemàtisassoiats. El formalisme que hem triat és l'expansió de QCD en 1=NC . Al setorbariòni esta expansió es tradueix en unes ondiions de onsistènia que determi-nen un àlgebra ontreta d'spin�sabor. Podem per tant esriure propietats estàtiquesde barions en termes dels generadors d'esta àlgegra. El teorema d'Ademollo�Gattoassegura que les orreions al fator de forma vetorial són de segon ordre en eltrenament de simetria i per tant hem alulat �ns este ordre en l'expansió ombi-nada en 1=NC i ms=�QCD. Una de les onlusions més importants del nostre estudiés que no es poden ajustar les dades experimentals quan onsiderem trenament desimetria a segon ordre en el fator de forma vetorial i a primer ordre en el vetor�axial : la funió �2 és plana i els diferents mímims no tenen signi�ània estadístia.El desoneiximent de les orreions al límit simètri del fator de forma vetorialsón dons la font prinipal d'error sistemàti en la determinaió de jVusj.Juntament amb la nostra determinaió de jVusj, emprant la determinaió de jVudjprovinent de desintegraions nulears i de la del neutró, podem omprobar que launitarietat de la matriu CKM es satisfà al nivell de 1:5 �.Correions de gluons durs a funions de GreenLes funions de Green que són paràmetres d'ordre del trenament espontàni de lasimetria quiral són d'un interés espeial per al oneixement de la físia hadrònia.Com que estes funions són exatament zero dins de teoria de pertorbaions, la seuaexistènia es deu plenament al fenòmen del trenament espontani, que al mateixtemps governa les interaions dels hadrons a energies baixes. El seu estudi per afunions de dos punts permet determinar les LECs del Lagrangià quiral d'ordre p4i les de tres punts �xen les onstants d'ordre p6. És l'empalmament amb el àlul



Conlusions 213realitzat en el mar de l'OPE a distànies urtes el que �xa els oe�ients. Estosestudis es fan en el límit de gran nombre de olors, però a més a l'ordre dominant enla onstant d'aoblament �s. Per a funions de tres punts no hi ha en la literaturaap álul de orreions gluòniques al oe�ient de Wilson assoiat al ondensat dequarks. En esta tesi hem alulat estes orreions per a totes les funions de Greenparàmetre d'ordre de dos i tres punts. Els resultats són perfetament onsistents isatisfan dues proves bàsiques. La primera és invariània gauge (el àlul es realitzaen un gauge arbitrari i la dependènia en el paràmetre de gauge a anela quan essumen totes les ontribuions). La segona es l'equaió de Callan�Symanzi, és a dir,l'evoluió dels oe�ients de Wilson amb l'esala de renormalitzaió de QCD. Lesapliaions fenomenològiques d'estos àluls enara no s'han obtés.Addiionalment en esta tesi s'han alulat els oe�ients de Wilson assoiats alsondensats gluoni, quatre quarks i mixte quark�gluó per a funions de dos punts.
Desintegraió radiativa del pioDurant molt de temps la desintegraió radiativa del pio ha estat una font de on-trovèrsia. Les dades experimentals es situaven a moltes desviaions estàndard de laprediió del SM, i per tant pareixia indiar la presènia de nova físia. En prinipiels proesos hadrònis a energies baixes no són sensibles a la físia més enllà del SM,entre altres oses perquè la preisió en què es oneixen els paràmetres hadrònisno és massa gran. La nova interaió que es proposava per a urar este desaordentre teoria i experiment era preisament de tipus tensorial, i de fet es requeria unaoblament tan gran que ni tan sols SUSY la podia prediure. En esta tesi s'ha fetuna anàlisi molt metiulosa d'este proés hadròni. En primer llo s'han inorporatal àlul les dependènies en el moment transferit dels fators de forma, osa quesempre ha estat ignorada. Per al as del fator de forma vetorial l'ansatz amb un solmultiplet de resonànies vetorial és insu�ient ja que no pot omplir les ondiionsde Brodsky�Lepage. En el nostre treball hem inlós un segon multiplet i hem exigittotes les ondiions de urtes distànies per a determinar ompletament el fator deforma vetorial a través de la fórmula LSZ. En segon llo, per tal de tindre en ompteels efetes d'una possible interaió tensorial, s'ha de alular l'element de matriuhadròni orresponent de la manera més neta possible. El formalisme neessari pera este àlul s'ha desenvolupat en esta tesi. En partiular s'han empalmat la funióde Green hV T i alulada a �PT, R�T i l'OPE, de manera que tots els oe�ientsqueden �xats. De la mateixa manera es pot alular la dependènia en moment delsfators de forma assoiats al orrent tensorial exigint bon omportament a distàniesurtes. Un altre op tots els paràmetres queden �xats. La nostra anàlisi revela quela físia més enllà del SM és ompatible amb zero i el seu ordre de magnitut estàd'aord amb SUSY.



214 ConlusionsCorreladors vetorial i tensorialPer a tindre una informaió el més ompleta possible de la físia relaionada amb lesresonànies vetorials al fer un estudi onjunt dels orreladors hV V i , hTT i i hV T i.Les resonànies vetorials poden ser interpolades tant per orrents vetorials omtensorials, i per tant l'estudi més omplet inlou totes les funions de Green possiblesamb estos dos orrents. A més el orrent tensorial també interpola resonànies ambnombres quàntis JPC = 1+�. Les funions de Green hV V i i hTT i no són paràmetresd'ordre, i per tant el seu terme pertorbatiu té una ontribuió logarítmia. Per apoder reuperar un logaritme a través d'una suma de funions meromòr�ques (polsde masses de resonànies) alen un nombre in�nit de resonànies, tal i om QCDper a un gran nombre de olors dita. L'empalmament d'este logaritme amb latorre in�nita de resonànies ens determina om esalen les mases i les onstantsde desintegraió per a nombres quàntis d'exitaió radial (n) alts. Enara més,podem prediure exatament el quoient de les onstants de desintegraió vetorialsobre tensorial per a n gran. No obstant això, la funió de Green hV T i sí és unparàmetre d'ordre i per tant no té terme pertorbatiu ni logaritme. Este fet ensproporiona un resultat sorprenent : en exigir l'empalmament de la parametritzaiómeromòr�a tenint en ompte els resultats obtesos de l'estudi de les funions deGreen hV V i i hTT i obtenim que este quoient neessàriament té que alternar ensigne. Este resultat ve suportat per estudis de regles de suma.En inloure les fonts tensorials al Lagrangià de R�T onjuntament amb lesresonànies JPC = 1+�, es poden integrar funionalment juntament amb les resonàn-ies vetorials i així obtindre prediions per als aoblaments quirals.Apliaions d'unitarietat i analitiitatEl proés de dispersió de dos bosons de Goldstone a dos bosons de Goldstone (ambmasses diferents de zero, però degenerats) és molt partiular, ja que om que totes lespartíules que intervenen al proés són les mateixes, simetria de reuament relaionatots els anals possibles. Més enara, om que no hi ha partíules hadròniques demassa més lleugera, unitarietat lliga la part imaginària de l'amplitud de dispersióamb seions e�aes, i a més el tall de disontinuïtat omença preisament al llindarde produió i no abans. Aquests trets, juntament amb el prinipi d'analitiitat,permeten esriure relaions de dispersió, és a dir, podem expresar l'amplitut dedispersió en un punt inemàti om una integral al llarg del tall de disontinuïtat.Dins d'un ert domini inemàti esta integral és de�nida positiva, de manera quel'amplitud de dispersió (més exatament, la seua segona derivada) és neessàriamentpositiva. A la regió inemàtia en que açò és ert, els àluls amb �PT són molt�ables (ràpida onvergènia), de tal manera que podem traduir aquesta ondiió depositivitat en restriions per als valors de les onstants quirals.Este mètode pot generalitzar�se per al as en què la simetria de sabor SU(3) estàtrenada explíitament, de manera que les masses del kao, pio i eta són diferents.



Conlusions 215Així dons, per a erts proesos de dispersió, podem esriure relaions de positivitatque es tradueixen en otes per a les onstants d'energies baixes de la teoria amb tressabors.En esta tesi també hem emprat estes relaions de positivitat per a testejar lavalidesa del model sigma lineal amb dos sabors. Enara que en una primera anàlisies poden trobar indiis d'inonsistènies, un estudi més profund revela que realmentno hi ha ap problema, i per tant el model és onsistent amb els prinipis axiomàtis.La produió de pions neutres en olisions de fotons és un proés de difíil des-ripió. A �PT la primera ontribuió no nul�la es dona a un loop i no onté apLEC. L'aord d'este àlul amb les dades experimental no és massa bo. Una des-ripió que tinga en ompte el prinipi axiomàti d'unitarietat de manera exata ésfonamental per a adequar�se més a la realitat. Per sota del llindar de produióde quatre partíules, el prinipi d'unitarietat onstreny les amplituts de dispersióde fotons (i també de mesons) de manera dràstia. En esta tesi hem trobat lesparametritzaions més generals que satisfan unitarietat de manera exata, i les hememprat per a testejar la validesa d'un model quiral. Les nostres onlusions són queenara que aquest model reprodueix les dades experimentals d'una manera més queaeptable, viola unitarietat d'una manera notòria, sent dons aquesta desripiópo adequada.
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Appendix A :Cayley�Hamilton relationsThe analysis in the main text to build the basis of operators has dealt with generalSU(nf ). In pratie, however, one wants to speialize to the phenomenologiallyrelevant ases, nf = 2 and nf = 3. The Cayley�Hamilton theorem states that anysquare n � n matrix A satis�es its own harateristi equation, �n(A) = 0. Thissets a relation between A and their invariants (traes and determinant). The formof the relation depends on the dimensionality n of the linear spae. For instane,�2(A) = A2 � hAiA+ (detA) 112�2 = 0 ; (n = 2) ;�3(A) = A3 � hAiA2 + hAi2 � hA2i2 A� (detA) 113�3 = 0 ; (n = 3) : (A.1)One immediate onsequene of the previous equations is that the determinant ofany matrix is a funtion of its traes. We have impliitly used this information towrite all hiral invariants solely in terms of traes. Solving the previous equationsfor the determinant, one �nds A2 � hAiA+ hAi2 � hA2i2 112�2 = 0 ;A3 � hAiA2 + hAi2 � hA2i2 A� �hA3i3 � hA2ihAi2 � hAi36 � 113�3 = 0 : (A.2)Cayley�Hamilton relations therefore set onstraints between traes. For these on-straints to be non�trivial, one has to build relations involving at least n+1 matries.For instane, for n = 2 the quantity ha �2(b+ )i givesha fb; gi � haihb i � hbih ai � hiha bi+ haihbihi = 0 (A.3)whereas for n = 3, using ha �3(b + + d)i one ends up withha b f; dgi+ ha  fb; dgi+ ha d fb; gi � ha fb; gihdi � ha fb; dgihi � ha f; dgihbi� hb f; dgihai � ha bihdi � ha ihb di � ha dihb i+ haihbih di+ haihihb di+ haihdihb i+ hbihiha di+ hbihdiha i+ hihdiha bi � haihbihihdi = 0 : (A.4)



218 Appendix A : Cayley�Hamilton relationsIn Table B.1 we have favored the terms with a minimum number of traes,bearing in mind that these are the dominant ones in a large�N expansion of thehiral Lagrangian.A.1 SU(3)For nf = 3, use of Eq. (A.4) leads to the following relations,i ht+�� [u�; u�℄i hu�u�i [Y6℄ = Y1 + 2Y3 + Y4 � Y5 ;i ht+��u�i hu�u�u�i [Y7℄ = Y1 + Y2 � 12 Y5 � Y8 ;ht+��i ht��+ i hu�u�i [Y21℄ = � 4Y9 � 2Y10 + Y14 + 2Y16 + 4Y19 ;ht+��i ht��+ i hu�u�i [Y22℄ = � 2Y11 � 2Y12 � Y13 + Y15 + Y17 + Y18 + 2Y20 ;ht���i ht��� i hu�u�i [Y30℄ = � 2Y23 � 2Y24 � Y25 + Y26 + Y27 + Y28 + 2Y29 ;ht+��u�i hf��+ u�i [Y63℄ = Y56 + Y57 � 12 Y61 � Y66 ;ht+��u�i hf��+ u�i [Y64℄ = Y58 + Y59 + Y60 � Y62 � Y65 � Y67 : (A.5)A.2 SU(2)The relations derived in the previous setion also hold for two �avours. In addition,repetitive use of Eq. (A.3) an be used to redue monomials with multiple traesontaining at least three hiral operators. We �ndi ht+�� fu�u�; u�u�gi [Y1℄ = 2Y3 ;i ht+�� fu�; u�u�u�gi [Y4℄ = �Y2 � Y3 ;i ht+��u�u�i hu�u�i [Y5℄ = 2Y3 ;i ht+��i hu�u�u�u�i [Y8℄ = 0 ;ht+��t��+ i hu�u�i [Y14℄ = 2Y9 ;ht+��t��+ i hu�u�i [Y15℄ = Y11 + Y12 ;ht+��u�i ht��+ u�i [Y16℄ = Y9 + Y10 � Y19 ;ht+��u�i ht��+ u�i [Y17℄ = Y12 + 12 Y13 � 12 Y20 ;ht+��u�i ht��+ u�i [Y18℄ = Y11 + 12 Y13 � 12 Y20 ;ht���t��� i hu�u�i [Y26℄ = Y23 + Y24 ;ht���u�i ht��� u�i [Y27℄ = Y24 + 12 Y25 � 12 Y29 ;ht���u�i ht��� u�i [Y28℄ = Y23 + 12 Y25 � 12 Y29 ;



Appendix A : Cayley�Hamilton relations 219ht+��i ht��+ i h�+i [Y37℄ = � 2Y31 + Y33 + 2Y34 ;ht���i ht��+ i h��i [Y38℄ = � 2Y32 + Y35 + 2Y36 ;i h�+i ht+��u�u�i [Y41℄ = 12 Y39 + Y40 ;i ht+��i h�+u�u�i [Y42℄ = 12 Y39 � Y40 ;i h��i ht���u�u�i [Y45℄ = 12 Y43 + Y44 ;i ht���i h��u�u�i [Y46℄ = 12 Y43 � Y44 ;ht+��f��+ i hu�u�i [Y61℄ = Y56 ;ht+��f��+ i hu�u�i [Y62℄ = 12 (Y58 + Y59) ;ht+��u�i hf��+ u�i [Y65℄ = 12 (Y59 + Y60) ;ht+��i hf��+ u�u�i [Y66℄ = 0 ;ht+��i hf��+ fu�; u�gi [Y67℄ = 0 ;ht+��f��+ i h�+i [Y78℄ = Y73 � Y76 ;ht���f��+ i h��i [Y79℄ = Y74 � Y77 ;i ht��� i 
t+��h��� [Y82℄ = Y80 � Y81 ;i ht���i 
f ��� f�+�� [Y86℄ = Y85 ;i ht��� i 
f���t�+�� [Y92℄ = Y89 � Y90 � Y92 � 4Y119 ;i h��t���i hf ��+ u�i [Y100℄ = Y97 ;i h��t���i hf��+ u�i [Y101℄ = Y98 ;i h��t���i hf��+ u�i [Y102℄ = Y99 ;i ht+��i 
r�t��� u�� [Y109℄ = Y103 � Y106 ;i ht+��i 
r�t��� u�� [Y110℄ = Y104 � Y107 ;i ht���i 
r�t��+ u�� [Y111℄ = Y105 � Y108 ;i ht���i 
h��f�+�� [Y117℄ = Y116 : (A.6)
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Appendix B :The L6 Lagrangian with tensorsoures
monomial Yi SU(nf ) SU(3) SU(2)i ht+�� fu�u�; u�u�gi 1 1i ht+��u�u�u�u�i 2 2 1i ht+��u�u�u�u�i 3 3 2i ht+�� fu�; u�u�u�gi 4 4i ht+��u�u�i hu�u�i 5 5i ht+�� [u�; u�℄i hu�u�i 6i ht+��u�i hu�u�u�i 7i ht+��i hu�u�u�u�i 8 6ht+��t��+ u�u�i 9 7 3ht+��u�t��+ u�i 10 8 4ht+��t��+ u�u�i 11 9 5ht+��t��+ u�u�i 12 10 6ht+�� (u�t��+ u� + u�t��+ u�)i 13 11 7ht+��t��+ i hu�u�i 14 12ht+��t��+ i hu�u�i 15 13Table B.1: List of operators ontributing to the O(p6) Lagrangian



222 Appendix B : The L6 Lagrangian with tensor souresmonomial Yi SU(nf ) SU(3) SU(2)ht+��u�i ht��+ u�i 16 14ht+��u�i ht��+ u�i 17 15ht+��u�i ht��+ u�i 18 16ht+��i ht��+ u�u�i 19 17 8ht+��i ht��+ fu�; u�gi 20 18 9ht+��i ht��+ i hu�u�i 21ht+��i ht��+ i hu�u�i 22ht���t��� u�u�i 23 19 10ht���t��� u�u�i 24 20 11ht��� (u�t��� u� + u�t��� u�)i 25 21 12ht���t��� i hu�u�i 26 22ht���u�i ht��� u�i 27 23ht���u�i ht��� u�i 28 24ht���i ht��� fu�; u�gi 29 25 13ht���i ht��� i hu�u�i 30ht+��t��+ �+i 31 26 14ht+��t��� ��i 32 27 15ht+��t��+ i h�+i 33 28 16ht+���+i ht��+ i 34 29 17ht+��t��� i h��i 35 30 18ht+����i ht��� i 36 31 19ht+��i ht��+ i h�+i 37 32ht+��i ht��� i h��i 38 33i ht+�� f�+; u�u�gi 39 34 20Table B.1: List of operators ontributing to the O(p6) Lagrangian



Appendix B : The L6 Lagrangian with tensor soures 223monomial Yi SU(nf ) SU(3) SU(2)i ht+��u��+u�i 40 35 21i h�+i ht+��u�u�i 41 36i ht+��i h�+u�u�i 42 37i ht��� f��; u�u�gi 43 38 22i ht���u���u�i 44 39 23i h��i ht���u�u�i 45 40i ht���i h��u�u�i 46 41ht��� (h��u�u� � u�u�h��)i 47 42 24ht��� (h��u�u� � u�u�h��)i 48 43 25ht��� (u�h��u� � u�h��u�)i 49 44 26ht���i hh�� [u�; u�℄i 50 45 27hr�t+��r�t��+ i 51 46 28hr�t+��r�t��+ i 52 47 29hr�t��� r�t���i 53 48 30h��t+��i h��t��+ i 54 49 31h��t+��i 
��t�+�� 55 50 32h��t���i 
��t���� 56 51 33ht+�� ff��+ ; u�u�gi 57 52 34ht+��u�f��+ u�i 58 53 35ht+�� (f��+ u�u� + u�u�f��+ )i 59 54 36ht+�� (f��+ u�u� + u�u�f��+ )i 60 55 37ht+�� (u�f��+ u� + u�f��+ u�)i 61 56 38ht+��f��+ i hu�u�i 62 57ht+��f��+ i hu�u�i 63 58ht+��u�i hf��+ u�i 64Table B.1: List of operators ontributing to the O(p6) Lagrangian



224 Appendix B : The L6 Lagrangian with tensor souresmonomial Yi SU(nf ) SU(3) SU(2)ht+��u�i hf��+ u�i 65ht+��u�i hf��+ u�i 66 59ht+��i hf��+ u�u�i 67 60ht+��i hf��+ fu�; u�gi 68 61ht��� [f��� ; u�u�℄i 69 62 39ht��� (f��� u�u� � u�u�f��� )i 70 63 40ht��� (f��� u�u� � u�u�f��� )i 71 64 41ht��� (u�f��� u� � u�f��� u�)i 72 65 42ht���i hf��� [u�; u�℄i 73 66 43ht+�� ff��+ ; �+gi 74 67 44ht��� ff��+ ; ��gi 75 68 45ht+�� [f��� ; ��℄i 76 69 46ht+��i hf��+ �+i 77 70 47ht���i hf��+ ��i 78 71 48ht+��f��+ i h�+i 79 72ht���f��+ i h��i 80 73i 
t+�� �t��� ; h��	� 81 74 49i ht+��i 
t��� h��� 82 75 50i ht��� i 
t+��h��� 83 76i 
t+��f��� f ���� 84 77 51i 
t+��f��+ f �+�� 85 78 52i 
t��� �f ��� ; f�+�	� 86 79 53i ht���i 
f ��� f�+�� 87 80Table B.1: List of operators ontributing to the O(p6) Lagrangian



Appendix B : The L6 Lagrangian with tensor soures 225monomial Yi SU(nf ) SU(3) SU(2)i 
t+��t��+ t�+�� 88 81 54i 
t+��t��� t���� 89 82 55i 
f+��t��+ t�+�� 90 83 56i 
f+��t��� t���� 91 84 57i 
t�+�� hf���t��� i 92 85 58i ht��� i 
f���t�+�� 93 86hr�t��+ r�f+��i 94 87 59i hr�t+�� [h��; u�℄i 95 88 60i hr�t+�� [h��; u�℄i 96 89 61i hr�t+�� [f ��� ; u�℄i 97 90 62i hr�t��� ff ��+ ; u�gi 98 91 63i hr�t��� ff��+ ; u�gi 99 92 64i hr�t��� ff��+ ; u�gi 100 93 65i h��t���i hf ��+ u�i 101 94i h��t���i hf��+ u�i 102 95i h��t���i hf��+ u�i 103 96i 
fr�t��� ; t+��g u�� 104 97 66i 
fr�t��+ ; t���g u�� 105 98 67i h��t��� i 
t+��u�� 106 99 68i h��t��� i 
t+��u�� 107 100 69i h��t��+ i 
t���u�� 108 101 70i ht+��i 
r�t��� u�� 109 102i ht+��i 
r�t��� u�� 110 103i ht���i 
r�t��+ u�� 111 104Table B.1: List of operators ontributing to the O(p6) Lagrangian



226 Appendix B : The L6 Lagrangian with tensor souresmonomial Yi SU(nf ) SU(3) SU(2)ht��� [�+�; u�℄i 112 105 71ht��+ [���; u�℄i 113 106 72i ht+��h��h��i 114 107 73i 
t+�� �h��; f ����� 115 108 74i 
t��� �h��; f �+�	� 116 109 75i ht���i 
h��f �+�� 117 110
Contat terms
D�t��D�ty��� 118 111 76i 
ty��t��FL�� + t��ty��FR��� 119 112 77
t���yF ��R + �ty��F ��R + ty���F ��L + �yt��F ��L � 120 113 78Table B.1: List of operators ontributing to the O(p6) Lagrangian



Appendix C :The antisymmetri formalismAlthough the antisymmetri tensor formalism for spin�one massive �elds was alreadyproposed at the end of 60's [195℄, its use was not regular until it was redisovered inRef. [9℄ in order to introdue the � resonane �eld in the hiral Lagrangian, Ekeret al. turned it into the usual way to work with spin�one resonanes in R�T [13℄.The most ommon formalism for the desription of a spin�one massive partileis the Proa �eld R�. Sine R� is a Lorentz vetor it has four degrees of freedom,but a spin�one �eld has only three degrees of freedom. So the R� �eld must have aonstraint, and it is given by the Lorentz transversality ondition � �R = 0. Howeverthe Proa LagrangianLProa = � 14 R��R�� + 12M2RR�R� ;R�� = ��R� � ��R� ; (C.1)automatially ensures the Lorentz ondition beause the equation of motion reads��R�� + M2RR� = 0 ; (C.2)M2R ��R� = 0 ;! ��2 +M2R�R� = 0 ;the seond equation is obtained alulating the divergene of the �rst one and whenimplemented bak in the �rst we obtain that the Proa Lagrangian implies that eahomponent of the Proa �eld satis�es the same Klein�Gordon equation subjet tothe Lorentz ondition. Another way of seeing that indeed we have only two degreesof freedom is to notie that Eq. (C.1) is not the most general Lagrangian bilinearin the Proa �eld. In full generality one has a ��R���R� + b ��R���R� but thehoie a = � b = � 1=4 removes one degree of freedom. The fat that Eq. (C.1) isbuilt with R�� suggest that we an employ an antisymmetri tensor �eld to desribethe spin�one massive partiles. An antisymmetri tensor �eld has 6 independentomponents, hene we have to remove 3 degrees of freedom to orretly desribe aspin�one partile.In Ref. [196℄ it was proved that for antisymmetri tensor �elds with mass thereare (up to multipliative fators and a total four divergene) only two possible La-



228 Appendix C : The antisymmetri formalismgrangians of seond order in derivatives, if one assumes the existene of a Klein�Gordon divisor. They orrespond to having either the Lorentz ondition or else aBianhi identity satis�ed by the �elds. In the ase of desribing spin�one partiles,one has these two possibilities, where R�� = �R��,1. The subsidiary ondition is the Bianhi identity, i.e. �������W�� = 0, and Wikare frozen, so the dynamial degrees of freedom are Wi0, where i runs overi = 1; 2; 3. Notie that there are 3 degrees of freedom, as it should be.2. The subsidiary ondition is now the Lorentz ondition, that is, ��W�� = 0,and Wi0 are frozen, so the three degrees of freedom are Wij.In order to get a better understanding on that, let us onsider the most generalLagrangian with up to two derivatives built with an antisymmetri �eld W�� :L = a ��W����W �� + b ��W����W �� + W��W �� ; (C.3)where a, b and  are arbitrary onstants. We have to hoose these onstants in suha way that three degrees of freedom are removed. Indeed, onsider the EOMa (����W �� � ����W ��) + 2b ����W �� � 2W �� = 0 ; (C.4)that an be split up into the time�spatial and spatial�spatial omponents :(a+ 2 b) �W 0i + a �l _W li � a �i�lW l0 � 2 (b �2 + )W 0i = 0 ;2 b �W ik + a h�i( _W 0k + �lW lk)i � 2 (b �2 + )W ik = 0 ; (C.5)where the dots denote time derivatives. For a + 2 b = 0, the three �elds W 0ido not propagate (b = 0 freezes the spatial�spatial omponents, on the ontrary).The W �� propagator ontains poles in k2 = � =b and k2 = � 2 =(a + 2 b), whihdisappear for b = 0, or a + 2 b = 0, respetively. To maintain only one pole andredue the number of degrees of freedom to three, we must hoose among these twooptions, orresponding to the hoies listed above. Beause of historial reasons, the�rst option b = 0 has been hosen, and a and  are hosen to reprodue the poleorresponding to the partile mass, that is, a = � 1=2, and  = M2=4. Then, theLagrangian [13℄ readsL = � 12 ��W�� ��W �� + 14M2W��W �� ; (C.6)from whih the free�ase EOM is����W �� � ����W �� + M2W �� = 0 ; (C.7)Notie that with the de�nition W� = 1M ��W�� (C.7) reovers the Proa equationof motion (C.2).



Appendix C : The antisymmetri formalism 229Now from (C.6) we an derive the propagator for the antisymmetri �eld [69℄ :Z d4x eik x h 0 jT fW��(x); W��(0)gj 0 i = 2 iM2 � q2 
L��;�� + 2 iM2 
T��;��= 2 iM2 � q2 �I��;�� � q2M2 
T��;��� ;(C.8)where the antisymmetri tensors (they are symmetri double 2�forms, and in generalthey have the struture A��;�� being antisymmetri under � $ � and � $ � butsymmetri under � � $ � �; they an be onsidered as symmetri operators atingon the spae of antisymmetri 2�tensors)
L��;��(q) = 12 q2 (g��q�q� � g��q�q� � (�$ �)) ;
T��;��(q) = � 12 q2 �g��q�q� � g��q�q� � q2g��g�� � (�$ �)� ; (C.9)denote longitudinal and transverse modes of propagation. The identity in the spaeof antisymmetri tensors isI��;�� = 12 (g��g�� � g��g��) ; (C.10)and with that 
L��;��(q) and 
T��;��(q) are projetion operators that satisfy the fol-lowing properties : 
T + 
L = I ; 
T � 
L = 
L � 
T = 0 ;
T � 
T = 
T ; 
L � 
L = 
L ;q� 
T��;��(q) = q� 
T��;��(q) = q� 
T��;��(q) = q� 
T��;��(q) = 0 ;����� �����
T��;�� = � 4
��;��L ; ����� �����
L��;�� = � 4
��;��T ;"���� "���� = � 4 I���� : (C.11)The propagator (C.8) orresponds to the normalizationh 0 jW�� jW; p i = "�� = iM [ p�"�(p) � p�"�(p)℄ : (C.12)Thus, the summation over the physial vetor polarizations "��=1;2;3 for a massivevetor (" � p = 0) yields : X� "��� "�� �� = � 2 p2M2 
��;��L (C.13)where we have used X� "��"� �� = � g�� + p�p�M2 : (C.14)



230 Appendix C : The antisymmetri formalism



Appendix D :Wilson oe�ient Ch�qqi at O(�s)In this appendix we give the expression to the �s orretions for the quark ondensateWilson oe�ients. We will split our results as shown in Eq. (4:87), in terms ofoe�ients multiplying logarithms, dilogarithms and polynomi terms. The resultsan be found in Table D. hSSSiLp 4p2q2r2 [ 4 p4 + q4 + r4 � 6 q2 r2 � 3 p2 (q2 + r2)℄Lq 4p2q2r2 [ 4 q4 + p4 + r4 � 6 p2 r2 � 3 q2 (p2 + r2)℄Lr 4p2q2r2 [ 4 r4 + q4 + p4 � 6 q2 p2 � 3 r2 (q2 + p2)℄Ld 8p2q2r2 [ p6 + q6 + r6 � 2 p4 (q2 + r2)� 2 q4 (p2 + r2)� 2 r4 (p2 + q2)℄L 8p2q2r2 (� 5 p4 � 5 q4 � 5 r4 + 14 p2 r2 + 14 q2 p2 + 14 q2 r2)hSPP iLp 4p2q2r2 [ r4 + q4 � 4 p4 � 3 p2 (r2 + q2)� 6 r2 q2 ℄Lq 4p2q2r2 [ 4 q4 + r4 � p4 + 3 q2 (p2 � r2)℄Lr 4p2q2r2 [ 4 r4 + q4 � p4 + 3 r2 (p2 � q2)℄Ld 8p2q2r2 [ r6 + q6 � p6 � 2 p2 (r4 + q4) + 2 (p4 � q2 r2) (r2 + q2)℄L 8p2q2r2 (� 5 r4 � 5 q4 + 5 p4 + 14 r2 q2)hV VP iLp 2� p2q2r2 h p6 + r2 p4 + p2 q2 (5 r2 + q2)� 2 (r2 + q2) (r2 � q2)2iTable D: �s orretions to the Wilson oe�ients for three�point GFs.



232 Appendix D : Wilson oe�ient Ch�qqi at O(�S)Lq 2� p2q2r2 h q6 + r2 q4 + p2 q2 (5 r2 + p2)� 2 (r2 + p2) (r2 � p2)2iLr 2� p2q2r2 h(p2 + q2) (p2 � q2)2 + 4 r6 � r2 (3 p2 + q2) (3 q2 + p2)� 2 r4 (q2 + p2)iLd 4� p2q2r2 [ 2 (p4 � 3 p2q2 + q4) r4 � 2 r2 (p2 + q2) (p4 + q4)� 2 r6 (p2 + q2) + r8 + (p2 � q2)2 (p4 + q4 � q2 p2)iL � 2p2q2r2 (p2 + q2 + 4 r2)hAAP iLp 2� p2q2r2 h p6 � 3 r2 p4 + p2 q2 (5 r2 + q2) + 2 (r2 � q2)3iLq 2� p2q2r2 h q6 � 3 r2 q4 + p2 q2 (5 r2 + p2) + 2 (r2 � p2)3iLr 2� p2q2r2 h� 4 r6 + 6 r4 (p2 + q2)� r2 (q2 + 3 p2) (p2 + 3 q2) + (p2 � q2)2 (p2 + q2)iLd 4� p2q2r2 [ 2 r6 (p2 + q2) + 6 p2 q2 r4 � 2 r2 (p2 + q2) (p4 + q4)� r8 + (p2 � q2)2 (p4 + q4 � q2 p2)iL � 2p2q2r2 (p2 + q2 � 4 r2)hV ASiLp 2� p2q2r2 h p6 + 3 p4 (2 q2 � r2)� p2q2 (5 r2 + q2) + 2 (r2 + q2) (r2 � q2)2iLq 2� p2q2r2 [� 2 p6 + (q2 + 6 r2) p4 � (6 q4 + 6 r4 � 5 q2 r2) p2 � q6 + 2 r6 � q4 r2 ℄Lr 2� p2q2r2 [ p6 + 7q2 p2(q2 � p2)� q6 � 4 r6 + 2 (3 p2 + q2) r4 � 3 (p4 � q4) r2 ℄Ld 4� p2q2r2 h(3 q6 + 2 r2 q4 + 6 r4 q2 + 2 r6) p2 � (r2 � q2)2 (r4 + q4)+ p8 � p6 (3 q2 + 2 r2)� 2 r2 q2 p4 ℄L � 2p2q2r2 (p2 � q2 � 4 r2)g�� hV �V �SiLp 2p2q2r2 [ 2 (q4 � r4)� p4 + p2 (r2 � 3 q2)℄Lq 2p2q2r2 [ 2 (p4 � r4)� q4 + q2 (r2 � 3 p2)℄Lr 2p2q2r2 [ 6 p2 q2 + 4 r4 � p4 � q4 � r2 (p2 + q2)℄Ld 4p2q2r2 [ 2 r6 � (r4 + p4 + q4 � 3 p2 q2) (p2 + q2)℄Table D: �s orretions to the Wilson oe�ients for three�point GFs.
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L 4p2q2r2 [ 3 r2(p2 + q2 � r2)� 4 p2 q2℄q� p� hV �V �SiLp 1q2r2 [ q2 (2 q2 � 2 p2 + r2)� 3 r2 (p2 � r2)℄Lq 1p2r2 [ p2 (2 p2 � 2 q2 + r2)� 3 r2 (q2 � r2)℄Lr 1p2q2 [3 (p4 + q4)� 3 r2 (p2 + q2)� 2 p2 q2℄Ld 2p2q2 [ p6 � p4 r2 + (q2 � r2)2(q2 + r2)� p2 r2(4 q2 + r2)℄L 1q2r2p2 (p2 + q2 � 2 r2)�g�� hA�A�SiLp 2p2q2r2 h 2 (q2 � r2)2 � p4 + p2 (5 r2 � 3 q2)iLq 2p2q2r2 h 2 (p2 � r2)2 � q4 + q2 (5 r2 � 3 p2)iLr 2p2q2r2 [ 6 p2 q2 � 4 r4 � p4 � q4 � r2 (p2 + q2)℄Ld � 4p2q2r2 [ 2 r6 + (� 3 r4 + p4 + q4 � 3 p2 q2) (p2 + q2)℄L 4p2q2r2 [ 3 r4 � 4 p2 q2 � 3 r2 (q2 + p2)℄q� p� hA�A�SiLp 1q2r2 [ r2 (q2 � 3 p2 + 3 r2) + 2 q2 (q2 � p2)℄Lq 1p2r2 [ r2 (p2 � 3 q2 + 3 r2)� 2 p2 (q2 � p2)℄Lr 1p2q2 [� 2 p2 q2 + 3 (p4 + q4)� 3 r2(p2 + q2)℄Ld 2p2q2 [ p6 � 3 p4 r2 + 3 p2 r4 + (q2 � r2)3℄L 1p2q2r2 (p2 + q2 + 2 r2)�g�� hV �A�P iLp 2p2q2r2 [ 2 (q4 � r4) + p4 � p2 (5 r2 + q2)℄Lq 2p2q2r2 [ p2 (q2 + 4 r2)� 2 p4 � q4 � 2 r4 + q2 r2℄Lr 2p2q2r2 [ p4 � q4 + 4 r4 + r2 (p2 � q2)℄Ld 4p2q2r2 [ p6 � 2 q2 p4 + 2 p2 q4 � q6 + 2 r6 � r4 (3 p2 + q2)℄Table D: �s orretions to the Wilson oe�ients for three�point GFs.



234 Appendix D : Wilson oe�ient Ch�qqi at O(�S)L 12p2q2 (q2 + p2 � r2)q� p� hV �A�P iLp 3q2 (p2 + 3 q2 � r2)Lq � 3p2 (3 p2 + q2 � r2)Lr 3p2q2 (q2 � p2) (q2 + p2 � r2)Ld � 2p2q2 h p6 � 3 r2 p4 + p2 r2 (2 q2 + 3 r2)� (q2 � r2)2 (q2 + r2)iL � 1p2q2r2 (p2 � q2 + 2 r2)�Table D: �s orretions to the Wilson oe�ients for three�point GFs.



Appendix E :hVVPi from a LagrangianWe used the meromorphi ansatz in Eq. (4.120) in order to determine the hV VP iGreen funtion. To reah the same result one ould also proeed starting with aLagrangian like the one given by Resonane Chiral Theory R�T and olleted inEqs. (1.79), (2.37) and (2.38) to expliitly alulate the oe�ients klm using theLagrangian formalism. The result an be expressed as [40℄ :�R�TV V P = �B0(64 eCW7 � 16 eCW22 p2 + q2r2 + C 1�M2V1 � p2� �M2V1 � q2� � NC4 �2r2+D � 1M2V1 � p2 + 1M2V1 � q2�+ 1r2 �E r2 +K p2 +Gq2M2V1 � p2+ E r2 +K q2 +Gp2M2V1 � q2 �+ A0r2 +B0 (p2 + q2)�M2V2 � p2� �M2V2 � q2� r2+C 0 1�M2V2 � p2� �M2V2 � q2� +D0 � 1M2V2 � p2 + 1M2V2 � q2�+ 1r2 �E 0r2 +K 0p2 +G0q2M2V2 � p2 + E 0r2 +K 0q2 +G0p2M2V2 � q2 �+ 1r2 " A00r2 +B00p2 +Hq2�M2V1 � p2� �M2V2 � q2� + A00r2 +B00q2 +Hp2�M2V2 � p2� �M2V1 � q2�#+ C 00 " 1�M2V1 � p2� �M2V2 � q2� + 1�M2V1 � q2� �M2V2 � p2�#) ; (E.1)where A0 = 8F 2V (d1 � d3) ; A00 = 8F 02V (d01 � d03) ; B = 8F 2V d3 ;B0 = 8F 02V d03 ; C = 64F 2V d2 ; C 0 = 64F 02V d02 ; D = � 32p2FV 3MV1 ;D0 = � 32p2F 0V 03MV2 ; E 0 = � 4p2F 0VMV2 (01 + 02 � 05) ;



236 Appendix E : hVVPi from a LagrangianE = � 4p2FVMV1 (1 + 2 � 5) ; K 0 = � 4p2F 0VMV2 (�01 + 02 + 05 � 206) ;G = � 4p2FVMV1 (1 � 2 + 5) ; G00 = 32FV F 0V df ;H = 4FV F 0V (da + d � db) ; A00 = 4FV F 0V (da + db � d) ;B00 = 4FV F 0V (db + d � da � 2dd) ; G0 = � 4p2F 0VMV2 (01 � 02 + 05) ;K = � 4p2FVMV1 (�1 + 2 + 5 � 26) ; (E.2)The parametrization of Eq. (E.1) re�ets its origin in the Feynman diagrams ofFig. E.1.
V a� q V b�pP r = + +

+ + V a�P  + V b�P  + V a� V b�Figure E.1: Resonane ontributions to the hV V P i Green funtion.In terms of the parameters of our ansatz in Eq. (4.120) we obtain :031 = �G�G0 ; 022 = � 2(K +K 0)� NC4 �2 ; 121 = �D �D0 � E � E 0120 = (D + E)M2V2 + (D0 + E 0)M2V1 ; 030 = GM2V2 +G0M2V1 ;111 = A+ A0 + 2A00 + C + C 0 + 2C 00+2 �M2V1 +M2V2� (D +D0 + E + E 0) ;021 = B +B0 +B00 +H +K �M2V1 + 2M2V2�+K 0 �2M2V1 +M2V2�+ �M2V1 +M2V2��G+G0 + NC4 �2� ;000 = �M4V2M4V1 NC4 �2 ; 030 = GM2V2 +G0M2V1 ;110 = �(D + E)M4V2 � (D0 + E 0)M4V1 � (A+ A00 + C + C 00)M2V2�(A0 + A00 + C 0 + C 00)M2V1 � 2(D +D0 + E + E 0)M2V1M2V2 ;



Appendix E : hVVPi from a Lagrangian 237011 = �2KM4V2 � 2K 0M4V1 � �M2V1 +M2V2�2 NC4 �2 � 2(B +B00)M2V2� 2(K +K 0 +G+G0)M2V1M2V2 ;020 = �G0M4V1 �GM4V2 ��K +K 0 +G+G0 + NC4 �2�M2V1M2V2�(B0 +B00)M2V1 � (B +H)M2V2 ;010 = BM4V2 +B0M4V1 + (K 0 +G0)M2V2M4V1 + (K +G)M2V1M4V2(B00 +H)M2V1M2V2 + �M2V1 +M2V2�M2V1M2V2 NC4 �2 ;100 = (A0 + C 0)M4V1 + (A+ C)M4V2 + 2(A00 + C 00)M2V1M2V2+2(E 0 +D0)M4V1M2V2 + 2(E +D)M4V2M2V1 ; (E.3)in units of �B0. Chiral symmetry, implemented in our Lagrangian, brings featuresthat with the ansatz had to be fored by hand. In this way we immediately �ndthat 300 = 0 and 210 = 0. Moreover, as a bonus we also �nd 200 = 0. The rest ofonstraints are given in Eqs. (4.122,4.123). In addition we �nd �ve more relations :eCW7 = eCW22 = 0 G + G0 = 0D + D0 + E + E 0 = 0 2 (K + K 0) = � NC4 �2 : (E.4)After applying all the onstraints oming from the OPE and Brodsky�Lepage asymp-toti ondition we obtain the following relations among the Lagrangian ouplings :4 3 + 1 = 0 ; 4 03 + 01 = 0 ; 1 � 2 + 5 = 0 ;5 � 6 + F 0VMV1FVMV2 (05 � 06) = MV1FV NC64p2�2 ;8F 2V d3 + 8F 02V d03 + 8FV F 0V (d � dd)+ 8p2F 0V M2V2 �M2V1MV2 (05 � 06) +M2V1 NC8 �2 = F 2 ;4F 2V (d1 + 8 d2) + 4F 02V (d01 + 8 d02) + 4FV F 0V (da + db � dd + 8 df) +4p2F 0V M2V2 �M2V1MV2 (05 � 06) +M2V1 NC16 �2 = F 2 ;8M2V2F 2V d3 + 8F 02V M2V1d03 + 4FV F 0V �M2V1(db + d � da � 2 dd)+M2V2(da + d � db)� = �M2V1M2V2 NC8 �2 : (E.5)
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Appendix F :LSZ formula for a soft pionIn this appendix we disuss the derivation of Eq. (5.25). Let us start de�ning threequark urrents : A��(x) = �d(x) � 5 u(x) ;T ��5 (x) = �u(x) ��� 5 d(x) ;T ��� = �u(x) ��� u(x) + �d(x) ��� d(x) : (F.1)Then we an onstrut the following Green funtion that after partial integrationan be expressed as :h(p) j ��A� T ��5 j 0 i � i Z d4x ei r�x h(p) jT f��A��(x); T ��5 (0)gj 0 i= r� Z d4x ei r�x h(p) jT fA��(x); T ��5 (0)gj 0 i� i h(p) jT ��� (0)j 0 i (F.2)We an relate this Green funtion to the h(p) j �u��� 5 d j��(r)i matrix element(5.22) through the LSZ formula :
(p) j �u��� 5 d j��(r)� = limr2!M2� r2 �M2�p2F M2� h(p) j ��A� T ��5 j 0 i : (F.3)Then the h(p) j��A� T ��5 j 0 i Green funtion must have a pole at r2 = M2� . Sinethe seond piee in (F.2) has no r�dependene it annot have a pole, and this mustome from the �rst term :r� Z d4x eirx h(p) jT fA��(x); T ��5 (0)gj 0 i � 1r2 �M2� F��(p; r) : (F.4)As the divergene of the axial urrent is zero in the hiral limit, the left�hand sidemust vanish for M� = 0, what implies :F��(p; r)jM�=0 = i r2 h(p) jT ��� (0)j 0 iM�=0 : (F.5)



240 Appendix F : LSZ formula for a soft pionFinally, assuming that pion mass orretions are small, (F.3) yields the desiredresult : 
(p) j �u��� 5 d j��(r)� = i 1p2F h(p) jT ��� (0)j 0 i ; (F.6)that is also the result that stems from the soft pion theorem.



Appendix G :Loop funtionsIn this appendix we present expressions for one�, two� and three�point one�loopfuntions appearing in this thesis. The basi expressions are the salar one loopamplitudes are de�ned as :A0(m2) � Z dD`(2 �)D 1`2 �m2 ;B0(q2; m2a; m2b) � Z dD`(2 �)D 1(`2 �m2a) [(`� q)2 �m2b ℄ ;C0(p21; p22; p23; m2a; m2b ; m2) � Z dD`(2 �)D 1(`2 �m2a) [(`� p1)2 �m2b ℄ [(`� p2)2 �m2℄ ;(G.1)where D = 4� 2 � is the spae�time dimension and p23 = (p1 + p2)2. The one�pointamplitude has a simple expression :A0(m2) = i m2(4 �)2 � 1̂� + 1� log�m2�2 �� ; (G.2)where 1=�̂ = �� 2 �=��E+log(4 �). The two point funtion is a bit more ompliated.We display �rst the partiular ase of equal masses :B0(q2; m2; m2) = i(4 �)2 � 1̂� + 2� log�m2�2 � + �(q2) log ��(q2)� 1�(q2) + 1�� ;�(s) = s1� 4m2q2 ; (G.3)The funtion �i B0(q2; m2; m2) is real for q2 < 4m2 and manifestly real for s < 0.For 0 < s < 4m2 it is onvenient to express it in a way whih is manifestly real :B0(q2; m2; m2) = i(4 �)2 � 1̂� + 2� log�m2�2 �+ 2 ��(q2) ot�1 ��(q2)� ; (G.4)



242 Appendix H : Renormalization of the linear sigma model��(s) = r4m2s � 1 :If s > 4m2 then � i B0(q2; m2; m2) beomes omplex,B0(q2; m2; m2) = i(4 �)2 � 1̂� + 2� log�m2�2 �+ �(q2) log �1� �(q2)�(q2) + 1�+ i � �(q2)� :(G.5)For the general ase of di�erent masses we have :B0(q2; m2a; m2b) = i(4 �)2 � 1̂� + 1 + 1� �m2a log�m2a�2 ��m2b log�m2b�2 ��+ ��q2 � ��� log�m2bm2a��+ �B0(q2; m2a; m2b) ; (G.6)�B0(q2; m2a; m2b) = � 132 �2 ( �q2 log"(q2 + �)2 ��2(q2 � �)2 ��2#) ;� = p[q2 � (ma +mb)2℄ [q2 � (ma �mb)2℄ ;� = m2a �m2b ; � = m2a +m2b :We know that this funtion should yield an imaginary part above threshold q2 >(ma + mb)2, but written as above this is not apparent. This expression it is noteven satisfatory for the region (ma �mb)2 > q2 > (ma +mb)2 where it develops adisontinuity. It has no problem, however, for q2 < (ma �mb)2. So it is better tosplit the de�nition of this funtion depending on the region we want to evaluate it :
�B0 =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

� 132 �2 ( �q2 log"(q2 + �)2 ��2(q2 � �)2 ��2#) q2 < (ma �mb)2;� 132 �2 �2 ��q2 artan �q2 ���� �� 2 ��q2 artan �q2 +��� �� ;(ma �mb)2 < q2 < (mb +mb)2;� 132 �2 � �q2 log � q2 + � ��� q2 + � ���� �q2 log � q2 + � +�� q2 + � +��� ;q2 > (mb +mb)2;
(G.7)

with �� = p� [q2 � (ma +mb)2℄ [q2 � (ma �mb)2℄. In addition to the salar am-plitudes it is also interesting to onsider vetor amplitudes for one� and two�pointloops : Z dD`(2 �)D `�`2 �m2 = 0 ;



Appendix H : Renormalization of the linear sigma model 243Z dD`(2 �)D `�(`2 �m2a) [(`� q)2 �m2b ℄ = q�2 q2 �A0(m2b)� A0(m2a)+ �m2a �m2b + p2�B0(q2; m2a; m2b)� ;Z dD`(2 �)D `�(`2 �m2) [(`� q)2 �m2℄ = q�2 B0(q2; m2; m2) : (G.8)In partiular we are also interested in the massless one�loop integrals :A0(0) = 0 ;B0(q2; 0; 0) = i(4 �)2 � 1̂� + 2� log�� q2�2�� ;C(p21; p22; p23; 0; 0; 0) = i(4 �)2� �Li2�� �+ p22 + p21 � p23�� p22 � p21 + p23��Li2�� �� p22 � p21 + p23�+ p22 + p21 � p23� + Li2�� �+ p22 + p23 � p21�� p22 � p23 + p21��Li2�� �� p22 � p23 + p21�+ p22 + p23 � p21� + Li2�� �+ p23 + p21 � p22�� p23 � p21 + p22�� Li2�� �� p23 � p21 + p22�+ p23 + p21 � p22��� i(4 �)2 C0 �p21; p22; p23� ; (G.9)And also in loop amplitudes having some propagator squared or to the third power.Then we de�neI ��; �; q2; 0; 0� � Z dD`(2 �)D 1`2�(`� q)2� = I ��; �; q2; 0; 0� : (G.10)The expliit expression for some partiular ases followI �2; 1; q2; 0; 0� = � i(4 �)2 1q2 � 1̂� � log�� q2�2�� ;I �3; 1; q2; 0; 0� = � i(4 �)2 1q4 : (G.11)and also we provide the expression for the salar three�point funtion with onepropagator squaredZ dD`(2 �)D 1`4(`� p1)2(`� p2)2 = � i(4 �)2 1p21 p22 � 1̂� � log�� p21�2�� log�� p22�2�+ log�� p23�2�� ; (G.12)where again p3 = � p1 � p2. Finally, it is also useful to have expliit expressions forvetor and tensor one�loop amplitudes for the one�, two� and three�point funtions



244 Appendix H : Renormalization of the linear sigma modelin the massless ase (with the possibility of having one propagator squared)Z dD`(2 �)D `�`2 = 0 ;Z dD`(2 �)D `�`2(`� q)2 = q�2 B0(q2; 0; 0) = i q�2 (4 �)2 � 1̂� + 2� log�� q2�2�� ;Z dDl(2 �)D `�`�`2(`� q)2 = � 112 i q2(4 �)2 � 1̂� + 83 � log�� q2�2�� g��+ 13 i(4 �)2 � 1̂� + 136 � log�� q2�2�� q�q� ;Z dDl(2 �)D `�`4(`� q)2 = i(4 �)2 q�q2 ;Z dDl(2 �)D `�`�`4(`� q)2 = i(4 �)2 14 �� 1̂� + 2� log��q2� �� g�� + 2 q�q�q2 � ;Z dD`(2 �)D `�`2(`� p1)2(`� p2)2 = i(4 �)2� �C1 �p21; p22; p23� p�1 + C1 �p22; p21; p23� p�2� ;C1 �p21; p22; p23� = �p21 + p22 � p23� log�p21p23�� 2p22 log�p22p23�� p22 �p23 + p21 � p22�C0 �p21; p22; p23� ;Z dD`(2 �)D `�`4(q � p1)2(q � p2)2 = i(4 �)2� h ~C1 �p21; p22; p23� p�1 + ~C1 �p22; p21; p23� p�2i ;~C1 �p21; p22; p23� = (p21 + p22 � p23)p21 log�p22p23�� 2 log�p21p23�� �p22 + p23 � p21�C0 �p21; p22; p23� ; (G.13)one more, p3 = � p1 � p2.



Appendix H :Renormalization of the linear sigmamodelIn this appendix, we renormalize the linear sigma model at one�loop for �nite pionmass. We will use the mass�independent MS sheme, instead of the subtrationsheme of Ref. [182℄. So our Lagrangian will be split into renormalized piees andounterterms.It is onvenient to use the �primitive� set of parameters in the Lagrangian,namely g, � and � and also to inlude expliitly the term linear in the � �eld.Our Lagrangian is then written in terms of bare onstants and �elds. We then anreexpress the Lagrangian in terms of renormalized quantities and ounterterms,L = 14 
��� ���y� + �24 
��y�� g16 
��y�2 + � 
� + �y�+ L:t: ; (H.1)In the MS sheme we will absorb in the ounterterms the divergent piees propor-tional to 1̂� . Now we treat the ounterterms as perturbations and then the non�perturbative part (kineti term plus masses) must have the usual term with a posi-tive mass squared. In other words, perturbation must be done around a minimumof the potential. This was already disussed in Setion 6.3.At tree�level, one an alulate the VEV diretly from the Lagrangian by mini-mizing the potential. At one�loop, the most onvenient proedure is to impose theondition that the one�point � funtion identially vanishes, as shown in Fig. H.1.This ensures that we are onsidering quantum exitations around an extremum ofthe potential. It also implies that one�point funtions (tadpoles) are zero in anygraph, so we will not display this topology.Let us start alulating the quantum orretions for the � and � propagators, asshown in Fig. H.2. The pion propagator is diagonal in isospin, and thus proportionalto Æab, whih we drop . The renormalized one�loop ontributions areT � = g16 �2 �2 �m2� �m2� I��(q2)� 2m2� A� + 2m2A�� ;T � = 3 g16 �2 �m2� �m2� �I� �(q2) + 3 I��(q2)� ; (H.2)
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Figure H.1: One point � funtion. Double line denotes � partile and dashed linepions. It must vanish to ensure that perturbation theory is done around a minimumof the potential.

Figure H.2: One�loop diagrams for the � propagator.where we have de�nedA� = 1� log�m2�2 � ; A� = 1� log�m2��2 � ;I� �(q2) = A� + 1� ��(q2) log���(q2) + 1��(q2)� 1� ;I��(q2) = A� + 1� ��(q2) log���(q2) + 1��(q2)� 1� ;I��(q2) = 1 + 1m2� �m2 �m2� A� �m2A��+ 12 �m2� �m2s � m2� +m2m2� �m2� log�m2m2��� �(s)2 s log� [s+ �(s)℄2 � (m2� �m2)2[s� �(s)℄2 � (m2� �m2)2� ;��(q2) = s1� 4m2q2 ; ��(q2) = s1� 4m2�q2 ;�(s) = p[s� (m2� +m2)℄[s� (m2� �m2)℄; (H.3)From the renormalization of the propagators one an obtain the running of the goupling onstant �g dgd� = 32 �2 g ; (H.4)whih ensures that observables are ��independent.Next we alulate the vertex orretion to the � � � interation, that is, theirreduible three�point funtion. This orretion would a�et, among other things,
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Figure H.3: Quantum orretions to the � � �� vertex.the deay of the � into two pions. The diagrams are shown in Fig. H.3. Sine the �is an isospin singlet, its oupling to the pair �a �b must be proportional to Æab whihagain will not be displayed. The renormalized result then readsT ��� � = � 2 g v + g2v8 �2 �2 �m2� �m2�V�(s) + 6 �m2� �m2�V�(s)+ 4 I��(m2) + 5 I� �(s) + 3 I��(s)� ; (H.5)where we de�ne three�point one�loop funtions asV�(s) = � 1s ��(s) �2 Li2 � 4m2 � 2m2� + s (��(s)� 1)8m2 � 2m2� + s (3��(s)� 2)� (H.6)� 2 Li2 �4m2 � 2m2� + s (3 ��(s)� 1)8m2 � 2m2� + 2 s (��(s)� 1)�� 2 Li2 "� 4m2 � 2m2� + s (3 ��(s)� 1)2m2���(s) + sm2�2m2 (3 ��(s)� 1) (��(m2)� 1)#� 2 Li2 � 1��(m2�) + s4m2 (3 ��(s)� 1) (��(m2�)� 1)�+Li2 � 1��(m2�) + s4m2 (��(s)� 1) (��(m2�)� 1)�� 2 Li2 "� 4m2 � 2m2� + s (��(s)� 1)2m2���(m2�) + sm2�2m2 (��(s)� 1) (��(m2�)� 1)#+ Li2 " ��(s)� 3(��(s)� 1) ���(m2�) + s4m2 (3 ��(s)� 1) (��(m2�)� 1)�#) ;V�(s) � 1s ��(s) �2 Li2 � �2m2� + s (1� ��(s))s� 2m2� + s ��(s) (��(s)� 2)� (H.7)� 2 Li2 � �2m2� + s (1� 3 ��(s))s� 2m2� + s ��(s) (��(s)� 2)�+2Li2 "� 2m2� + s (3 ��(s)� 1)s + 2m2���(m2�)� 3 s ��(s) + sm2�m2 (3 ��(s)� 1) (��(m2�) + 1)#� 2 Li2 " 4m2 � 2m2�s+ 2m2���(m2�)� 3 s ��(s) + sm2�2m2 (3 ��(s)� 1) (��(m2�) + 1)#



248 Appendix H : Renormalization of the linear sigma model+Li2 " 4m2 � 2m2�s+ 2m2���(m2�)� s ��(s) + sm2�2m2 (��(s)� 1) (��(m2�) + 1)#+Li2 24 (4m2 � 2m2�) s (��(s)� 3)s (��(s)� 1) hs+ 2m2� ��(m2�)� 3 s ��(s) + sm2�2m2 (3 ��(s)� 1) (��(m2�) + 1)i35 :

Figure H.4: Diagrams ontributing to the 4�� irreduible Green Funtion.The last set of diagrams to be onsidered are the orretions to the four�pionvertex, that is, the four�point irreduible funtion. Diagrams are shown in Fig H.4and only ontribute to the � � sattering. The struture of the amplitude for theproess �a �b ! � �d is idential to that of Eq. (6.39), and our result orrespondsto A(s; t; u). The renormalized result isA4� = � 2 g + g28�2 n2 �m2� �m2�2 [D(s; t) +D(s; u)℄ + V�(t) + V�(u) + I��(s)+ 4 �m2� �m2� [V�(s) + V�(s)℄ + 7 I� �(s) + 2 [I� �(t) + I� �(u)℄	 ; (H.8)where D(s; t) is the salar four�point one�loop funtion, or salar box diagram, withall external momenta set tom2 and two internal masses equal tom and the other twoequal to m�, as an be dedued from Fig. H.4. Its expression is rather umbersomeand will not be displayed here, but it an be found for instane in Ref. [197℄.All the piees must be ombined together to give the one�loop amplitude. Firstwe reall the tree�level amplitudeA(s; t)tree�level = � g2 s�m2s�m2� ; (H.9)whih redues to the well known O(p2) �PT result when the m� !1 limit is taken.The renormalized one�loop amplitude is thenA(s; t)1�loop = g28 �2 n2 �m2� �m2�2 [D(s; t) +D(s; u)℄ + V�(t) + V�(u) + I��(s)+ 4 �m2� �m2� [V�(s) + V�(s)℄ + 7 I� �(s) + 2 [I� �(t) + I� �(u)℄



Appendix H : Renormalization of the linear sigma model 249+ 3 (m2� �m2)2(m2� � s)2 [I� �(s) + 3 I��(s)� 3A�℄+ 2 (m2� �m2)s�m2� �2 �m2� �m2�V�(s) + 6 �m2� �m2�V�(s)+ 4 I��(m2) + 5 I� �(s) + 3 I��(s)�	 ; (H.10)and the total amplitude to one�loop is given by adding the two. It is ��independentone we take into aount the running oupling onstant of Eq. (H.4).
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